Logistic regression by the Bayesian approach and application
dc.contributor.author | Adghar, Fatma | |
dc.date.accessioned | 2024-11-10T09:23:19Z | |
dc.date.available | 2024-11-10T09:23:19Z | |
dc.date.issued | 2021 | |
dc.description | 67f.:ill.;30cm | |
dc.description.abstract | This dissertation is devoted to study the logistic regression using the Bayesian approach. To obtain the posterior distributions of the parameters regression, the Monte Carlo approximation methods by Markov chain (MCMC) are very powerful and indispensable and have there fore been developed in order to approximate the posterior distribution when one does not know how to do it analytically. | |
dc.identifier.citation | Probabilités et statistiques | |
dc.identifier.uri | https://dspace.ummto.dz/handle/ummto/25309 | |
dc.language.iso | en | |
dc.publisher | ummto | |
dc.subject | Régression logistique | |
dc.subject | Régression logistique bayésienne | |
dc.subject | Chaîne de Markov (MCMC) | |
dc.subject | Distribution a posteriori | |
dc.title | Logistic regression by the Bayesian approach and application | |
dc.type | Thesis |