
MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE.

UNIVERSITÉ MOULOUD MAMMERI, TIZI- OUZOU

FACULTÉ DES SCIENCES

DÉPARTEMENT DE MATHÉMATIQUES

THÈSE DE DOCTORAT LMD

SPÉCIALITÉ : MATHÉMATIQUES

OPTION : ANALYSE MATHÉMATIQUE ET APPLICATIONS

Présentée par :

Mr Hamza BIBI

sujet :

Contribution à la stabilisation des systèmes dynamiques
" systèmes à commutations "

Devant le jury d’examen composé de :

Djennoune Said Professeur UMMTO Président
Bedouhene Fazia Professeur UMMTO Rapporteur
Zemouche Ali MC-HDR Univ. Lorraine Co-rapporteur
Morsli Mohamed Professeur UMMTO Examinateur
Trinh Hieu Professeur Univ. Deakin Examinateur
Achemine Farida MCA UMMTO Examinatrice

Soutenue : le 28/02/2018



Acknowledgments

I would like to express my gratitude to my thesis director Prof. Fazia BEDOUHENE
for having followed my research with a lot of interest and availability. Her support, her
knowledge, and her valuable pieces of advice were such a precious support for me. I
also thank her for her confidence in my capacities and for helping me with her expe-
rience and her meticulousness in the work.

I would also like to express my gratitude to my thesis supervisor Prof. Ali ZE-
MOUCHE, authorized to conduct research at the University of Lorraine, which wanted
to guide me to the end of this work. Thank you for your scientific exchanges, your pre-
cious advice and your academic rigour.

I would like to express my profound gratitude to Prof. Said DJENNOUNE for having
honored me by accepting to preside over the jury of this thesis.

In addition, I would like to thank Prof. Mohamed MORSLI, Professor at the Univer-
sity of Tizi-Ouzou and Dr. Farida ACHEMINE, Maitre de conférences at the University
of Tizi-Ouzou for agreeing to sit on the jury.

A special mention to Prof. Hieu TRINH, Deakin University, Australia, for the many
enriching discussions and collaborations we have had. Thank you also for accepting to
evaluate my thesis.

It is also a pleasure to thank Prof. Hamid Reza KARIMI, Politecnico di Milano, Italy,
for his collaboration in our research work. His experience in our research themes and
his tips have been so helpful for me.

I thank Mss. Khadidja CHAIB-DRAA and Prof. Abdel AITOUCHE for their collabo-
ration in our research work.

Finally, I can not conclude without expressing my warmest thanks to all the members
of my family who have always supported me. I would also like to thank all friends, and
especially Hamid Bezia, Abdennasser Brahimi, Hamza, Rachid, Abdelrahmane, Madjid,
Mustapha, Fethi,. . .which have helped us, each in his own way, in a mathematical or
other framework.

ii



I dedicate this thesis to my mother, to my father,
to my brother especially my little brother Rayane,

to my late grandfather "May God bless his soul and grant him paradise",
to my sisters, nephews : Amine, Annas, Baylasane

and all my friends.

iii



iv



Table des matières

General Introduction 1

Chapitre 1

Generalities and Previous Literature

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Switched systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Switching linear system . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Solutions of Switched Linear Systems . . . . . . . . . . . . . . . . 5

1.3 Lyapunov Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Common Quadratic Lyapunov Function . . . . . . . . . . . . . . 10

1.3.2 Multiple Lyapunov Functions . . . . . . . . . . . . . . . . . . . . 11

1.4 Switched Systems with Uncertain Parameters . . . . . . . . . . . . . . . 12

1.5 Controllability, Observability, Stabilizability and Detectability . . . . . . . 13

1.6 Linear Matrix Inequalities Based Approach . . . . . . . . . . . . . . . . 16

1.7 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Stabilization of Switched Linear Systems with Parameter Uncertainties . 19

1.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8.3 State of the Art on LMI techniques . . . . . . . . . . . . . . . . . 21

v



Table des matières

1.8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapitre 2

Observer-based Stabilization of Switching Discrete-time Linear Systems with

Parameter Uncertainties

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Comments on standard Finsler’s lemma based approach [1] . . . 28

2.2.2 Young’s inequality based approach . . . . . . . . . . . . . . . . . 31

2.3 Main Results : Enhanced LMI Conditions . . . . . . . . . . . . . . . . . . 32

2.3.1 Introductory developments . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 A new linearization procedure . . . . . . . . . . . . . . . . . . . . 33

2.4 Numerical Design Aspects and Some Comments . . . . . . . . . . . . . . 37

2.4.1 On the Optimization of the uncertainty bounds . . . . . . . . . . 37

2.4.2 Some comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3 On the numerical complexity of the proposed LMI techniques . . 39

2.5 Numerical examples and comparisons . . . . . . . . . . . . . . . . . . . 40

2.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Example 2 (Evaluation of maximum admissible uncertainty) . . . 43

2.5.3 Numerical evaluation by Monte Carlo in the uncertainty free case 46

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapitre 3

General Scenarios of Using Finsler’s inequality for the Stabilization of Swit-

ched Linear Systems

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 LMI Designs : Case when F11
i 6= 0 and P̂i diagonal . . . . . . . . . . . . . 52

3.2.1 First case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Second case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 LMI Designs : Case when F11
i = 0 and P̂i non diagonal . . . . . . . . . . . 57

3.3.1 First case : Fi 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Second case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Third case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.4 Fourth case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Numerical examples and comparisons . . . . . . . . . . . . . . . . . . . 60

vi



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapitre 4

Further Contributions to the H∞ Output Feedback Stabilization for a Class of

Switched Discrete-time Linear Systems with Uncertain Parameters

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 H∞ Observer-based stabilization problem . . . . . . . . . . . . . 69

4.2.3 Application of Finsler’s Lemma . . . . . . . . . . . . . . . . . . . 71

4.3 Main contribution : New LMI design . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapitre 5

Contribution to Observer-based Control Design via LMI for a class of LPV

Discrete-Time Linear Systems

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 System description and problem statement . . . . . . . . . . . . . . . . . 84

5.3 The Proposed LMI Design Procedure . . . . . . . . . . . . . . . . . . . . 86

5.3.1 About the Assumption (5.2) on the uncertainty . . . . . . . . . . 86

5.3.2 Young’s inequality based approach . . . . . . . . . . . . . . . . . 88

5.3.3 A relaxed LMI Design Procedure . . . . . . . . . . . . . . . . . . 91

5.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Conclusion and Future Works 99

Bibliographie

vii



Table des matières

viii



Table des figures

1 Unstable state trajectory of switched stable systems. . . . . . . . . . . . . 2

1.1 State responses for Example . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Example 1 : Controlled states and their estimates in the uncertainty free
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Example 1 : Simulation results in the presence of uncertainties. . . . . . 45

3.1 Diagram of different scenarios of application of Finsler’s Lemma . . . . . 51
3.2 Observer-based stabilized states in example F−18 aircraft . . . . . . . . 64
3.3 Switching mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 The controlled states x, its estimate x̂ and the estimation error e . . . . . 96

ix



Table des figures

x



Notations and Acronyms

xi



Notations and Acronyms

1. Acronyms :
— LTI : Linear Time Invariant .
— LPV : Linear Parameter Varying .
— LMI : Linear Matrix Inequality .
— BMI : Bilinear matrix inequality .
— SLF : Switching Lyapunov Function.
— GAS : Global Asymptotically Stable.
— CQLF : Commun Quadratic Lyapunov Function.

2. Notations :
— R is the set of real numbers ;
— Rn is the vector space of dimension n built on the body of the real ;
— (?) is used for blocks induced by symmetry in a matrix or in a matrix inequa-

lity ;
— AT represents the transposed matrix of A ;
— A−T represents the inverse of matrix AT ;
— Rn×m is the set of all real matrices of n rows and m columns ;
— I is an identity matrix of appropriate size and Ir represents a matrix of identity

of dimension r
— The value 0 represents a zero matrix of appropriate dimension, and 0(n,m) de-

signates null matrix with n rows and m columns ;
— For a square matrix S, S > 0 (S < 0) means that this matrix is positive definite

(defined negative) ;
— A≤ B means that the matrix B−A is semi-definite positive ;
— He(A) represents the sum A+AT .
— ‖.‖ is the usual Euclidean norm ;
— ls

2 is the space of the summable square sequences, i.e.,

ls
2 = {x = (x(k))k ⊂ Rs,

∞

∑
k=0
‖x(k)‖2 <+∞}

with the norm ‖x‖ls
2
=
(

∑
∞
k=0 ‖x(k)‖2) 1

2 ;
— diag(A1, . . . ,Ai) is the block diagonal matrix with A1, . . . ,Ai on its main diago-

nal ;

— es(i) = (0, . . . ,
ith︷︸︸︷
1 , . . . ,0)︸ ︷︷ ︸

s composantes

∈ Rs, s≥ 1 is a vector of the canonical basis of Rs.

— C 1(Rn) ) is the set of continuously differentiable functions,
— ImB is the subspace spanned by columns of matrix B,
— rσ is the joint spectral radius.
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General Introduction

Preamble

Dynamical systems that are described by an interaction between continuous and dis-
crete dynamics are called switched systems. Such systems can be viewed as higher-level
abstractions of hybrid systems, although they are of interest in their own right. A very
simple example is the the model that describes the motion of an automobile [2] :

ẋ1(t) = x2(t) (1)
ẋ2(t) = f (α(t),q(t)) (2)

where x1(.) is the position, x2(.) is the velocity, α(.) 6= 0 is the acceleration input, and
q(.)∈ {1,2,3,4,5,−1,0} is the gear shift position. The function f should be negative and
decreasing in a when q=−1, negative and independent of α when q= 0, and increasing
in α, positive for sufficiently large α, and decreasing in q when q > 0. In this system, x1
and x2 are the continuous states and q is the discrete state (called switching function).
Hence, the switched system consists of seven distinct dynamic motions (seven distinct
continuous state models) indexed by q and concatenated in some way to produce an
overall dynamic motion.
Clearly, the discrete transitions affect the continuous trajectory. In the case of an auto-
matic transmission, the evolution of the continuous state x2 is in turn used to determine
the discrete transitions. In the case of a manual transmission, the discrete transitions
are controlled by the driver.

Other phenomena that present a hybrid behavior are : a valve or a power switch
opening and closing ; a thermostat that turns the heat on and off ; a server switching
between the buffers in a queue ; network ; aircraft entering, crossing and leaving an
air traffic control area ; the dynamics of a car changing abruptly because of the wheels
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General Introduction

that lock and unlock on the ice, ...etc. Hybrid systems became a very active area of
current research. They present attractive theoretical challenges and are significant in
many problems of the real world. Due to its interdisciplinary nature, the realm has at-
tracted the attention of the scientists from diverse domains, mainly computer scientists,
mathematicians, and engineers.

This thesis deals with the study of classes of switched systems from a control-theory
point of view. More precisely, we are focused on the analysis of their stabilization (by
a dynamic state feedback). The following example motivates the rich challenges and
unexpected surprises intrinsic to the stability of switched systems.

Example 0.0.1 ( [3]). Consider the autonomous state dynamics ẋ(t) = Ap(t)x(t), t ≥ 0,
where x(t) = [x1(t),x2(t)] ∈ R2 and p(t) ∈ {1,2} and

A1 =

[
−1 −100
10 −1

]
, A2 =

[
−1 10
−100 −1

]
.

Both A1 and A2 are stable, having identical eigenvalues λ1,2 = −1± i
√

100. Define the
switching function p as follows :

p(t+) =
{

1, if p(t) = 2 and x2(t) =−1
k x1(t)

2, if p(t) = 1 and x2(t) = kx1(t)
(3)

For any given initialization, this function specifies a rule with memory for switching the
dynamic motion of the system between A1 and A2. For k = −0.2 and any initial condition
x(0) 6= 0, the state trajectory diverges to ∞ (see Fig. 1, taken from [3]), illustrating that

FIGURE 1 – Unstable state trajectory of switched stable systems.

switching between two asymptotically stable systems can induce an unstable trajectory.
This situation can occur in the control of the longitudinal dynamics of an aircraft with
constrained angle of attack [4].

2



Two main problems arise in the literature of switched systems :

1. What is the class of switching systems which are stable in the presence of any
arbitrary switching rule ?

2. What are the switching rules which lead to stable switched systems even if the
subsystems are unstable ?

In the context of this thesis, we focused on the study of the first issue.
Several methodologies have been developed in the literature for both continuous-time
an discrete-time systems [5–9]. Among the existing methods, we have : dwell-time and
average dwell-time approaches for stability analysis and stabilization problems [10,11] ;
approaches based on a specific class of switching laws [12], [13] and under arbi-
trary switching sequences [14] ; sliding mode technique [15] ; algebraic approach [5] ;
Lyapunov-Metzler approach [16, 17] ; input-output approach [18]. For an overview on
stability analysis, we refer the reader to [2,3,19,20], which summarize some contribu-
tions on the analysis and design of switching systems. New investigations on stabiliza-
tion and control for both linear and nonlinear switched systems have been addressed in
the monograph [21], see also [9].

In this thesis, we investigate the problem of robust observer-based stabilization for
linear switched discrete-time systems in the presence of parameter uncertainties. The
switching mode is assumed to be arbitrary, but its instantaneous values are available in
real time.

Most of the existing control strategies of switched systems focus on full-state feed-
back ; see, e.g., [22] and [23]. However, in practice, full measurement of the states of
a switched system may be expensive or unavailable at any cost. For this reason, consi-
derable efforts have been paid to state estimation of linear and nonlinear switched
systems [6, 12, 24]. On the other hand, it is always more suitable to design a control
system which is not only stable, but also guarantees an adequate level of performance.
This is why control systems design in the presence of model uncertainties has been a
challenging topic and received considerable attention [9,25–27].

One of hot topics in switched systems is to find non conservative conditions to guaran-
tee the stabilization of the systems under arbitrary switching rules. A breakthrough re-
garding this issue is the switched quadratic Lyapunov functions (SLF) introduced in [7].
Within LMI framework, control techniques by switching among different controllers
have been applied extensively in recent years, see in particular [16, 28–31]. Control
synthesis techniques via static output feedback for switched systems under arbitrary
switching rule have been first considered in [7]. Sufficient LMI conditions subject to an
equality constraint that guarantees the asymptotic stability of the closed-loop system
have been given. Using similar techniques, the issue has been reconsidered in [32], in
the observer-based static output feedback context, in presence of parameter uncertain-
ties. Relevant results and interesting improvements of [7] have been considered in [29].
As for the dynamic output feedback, it has been investigated in [16].

Finsler’s lemma has been used previously in the control literature mainly in order
to eliminate some unlike matrix terms, see e.g. [33]. Switched quadratic Lyapunov
functions combined with Finsler’s lemma have been used in [34] to get necessary and
sufficient LMI conditions for the asymptotic stability issue. However, based on the pio-
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neering work in [34], some attempts using Finsler’s lemma-based approach have been
presented in [1] and [27]. Unfortunately, the obtained LMI conditions still remain very
conservative. Indeed, they are either subjected to strong equality constraints [27], or
require particular choices of the decision variables [1]. From LMI point of view, the sta-
bilization problem is far from being solved. Indeed, finding a systematic LMI technique
for handling the bilinear matrix terms related to the controller gains and the Finsler
inequality is a hard task. This is one of the main motivations of the work investigated in
this thesis.

The main objective of this thesis consists in developing new and less conservative LMI
synthesis conditions for the observer-based stabilization problem for switched discrete-
time linear systems with parameter uncertainties. As mentioned previously, the addres-
sed problem has been investigated in [1] and [27] in the LMI context by using swit-
ched Lyapunov functions combined with Finsler’s lemma. However, the obtained LMI
conditions are conservative because of the particular use of Finsler’s lemma in its ba-
sic formulation. In addition, the switched Lyapunov matrices used in [1] are assumed
to be diagonal, and the LMI synthesis conditions proposed in [27] require additional
equality constraints, which turns out to be very conservative. To show the importance
of the work we proposed in this thesis, we summarize the contributions in the following
items :

— New linearization schemes and different scenarios of a convenient use of Finsler’s
Lemma are proposed to reduce the conservatism of some previous results in the
literature. This novel use of Finsler’s lemma may open some new directions to
solve more complicated control design problems.

— As compared to the Young inequality based approach introduced recently in [35]
and [36], the proposed technique in this thesis allows to eliminate some bilinear
terms arising from the use of the Young relation-based approach, and then leads
to less conservative LMI conditions.

— The proposed LMI methods are more general than those established in the lite-
rature for the same stabilization problem. We essentially demonstrated that the
way to select the matrices inferred from Finsler’s lemma plays an important role
in the feasibility of the obtained LMIs.

— As an application, new enhanced LMI conditions are proposed to solve the pro-
blem of stabilization of Linear Parameter Varying (LPV) discrete-time systems
with uncertain parameters. Indeed, asymptotic stability problem for switched li-
near systems with arbitrary switching is equivalent to the robust asymptotic sta-
bility problem for LPV systems, for which several strong stability conditions are
available in the literature [8].

Structure of thesis

This thesis is organized in five chapters that are structured as follows :

Chapter 1 : The first chapter is a literature survey. The general stability problem is recal-
led in order to establish fundamental concepts that are necessary to the comprehension

4



of manuscript. Then, we present several stability problems and stability criteria that are
encountered in the domain of switched linear systems.

The rest of the chapters constitutes our contributions.
Chapter 2 : In this chapter, we deal with observer-based control design for a class of
switched discrete-time linear systems with parameter uncertainties. The main contribu-
tions of this chapter consists in a new and judicious use of the Finsler’s Lemma to reduce
the conservatism of some previous results in the literature. Especially, we correct the
false application of Finsler’s lemma in [1] and thanks to some new mathematical tools
we introduced in this chapter, we will get new slack variables allowing more degree of
freedom in the obtained LMI conditions. Two numerical examples followed by a Monte
Carlo evaluation are proposed to show the superiority of the proposed design technique.

Chapter 3 : This chapter is an extension of results in chapter 2. We provide different
scenarios of the use of Finsler’s Lemma to reduce the conservatism of some previous
results in the literature. The validity and effectiveness of the proposed design methodo-
logies are shown through numerical evaluations.

Chapter 4 : Our objective in this chapter is to extend and improve the study in the pre-
vious chapter, by taking into account the presence of l2-bounded disturbances in state
equations, and by introducing a more general structure of the slack variable coming
from Finsler’s lemma.

Chapter 5 : In this chapter, we investigate the observer-based stabilization problem for
a class of LPV discrete-time systems. The problem is motivated by the work proposed
by Heemels et al [37], Jetto and Orsini [38] and recently by Zemouche et al [39]. One
of the contributions of this chapter consists in the use of a relaxed reformulation for
the parameter uncertainty. This relaxation is inspired from recent design methods for
observer design of nonlinear Lipschitz systems Zemouche and Boutayeb [40], Phanom-
choeng et al. [41]. Using this reformulation, a new LMI synthesis method is developed
to design observer-based controllers for the studied LPV systems. The approach used
a new congruence principle by pre- and post multiplying the basic BMI condition by
new and ingenious slack matrices. We propose relaxations of some approaches in the
literature, especially the Young inequality based approach.

5



General Introduction

6



Personal Publications

1



Personal Publications

Below is a list of publications related to the work of this thesis :

— Journals

1. H. BIBI, F. BEDOUHENE, A. ZEMOUCHE, H.R. KARIMI & H. KHELOUFI, "Output
feedback stabilization of switching discrete-time linear systems with parameter
uncertainties " Journal of the Franklin Institute – (354) : 5895-5918 (2017).

— International Conferences

1. H. BIBI, F. BEDOUHENE, A. ZEMOUCHE, H. KHELOUFI & H. TRINH " Observer-
Based Control Design via LMIs for a Class of Switched Discrete-Time Linear Sys-
tems with Parameter Uncertainties " In Proceeding 55th IEEE Conference on De-
cision and Control (pp. 5321 - 5326) Las Vegas, USA.

2. H. BIBI, F. BEDOUHENE, A. ZEMOUCHE & A. AITOUCHE " H∞ Observer-Based
Stabilization of Switched Discrete-Time Linear Systems " In Proceeding IEEE 6th

International Conference on Systems and Control. (pp. 285 - 290 ) University of
Batna 2, Batna, Algeria.

3. C. BENNANI , F. BEDOUHENE, A. ZEMOUCHE, H. BIBI & A. AITOUCHE " A
Modified Two-Steps LMI Method to Design Observer-based controller for Linear
Discrete-Time Systems with Parameter Uncertainties " In Proceeding IEEE 6th In-
ternational Conference on Systems and Control. (pp. 279 - 284 ) University of
Batna 2, Batna, Algeria.

4. H. BIBI, F. BEDOUHENE, A. ZEMOUCHE & H.R. KARIMI " A New LMI-Based
Output Feedback Controller Design Method for Discrete-Time LPV Systems with
Uncertain Parameters " In Proceeding 20th IFAC World Congress. (pp.11847 -
11852) Toulouse Convention Center, Toulouse, France.

5. H. BIBI, A. ZEMOUCHE, F. BEDOUHENE, K.C DRAA & A. AITOUCHE " Robust
Observer-Based H∞ Stabilization for a Class of Switched Discrete-Time Linear
Systems with Parameter Uncertainties " In Proceeding 56th IEEE Conference on
Decision and Control. (Accepted)

— National Conference

1. The First National Doctoriales of Mathematics, Constantine, Algeria, OCTO-
BER 28-31, 2017

2



CHAPITRE

1
Generalities and Previous Litera-

ture

Sommaire
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Switched systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Switching linear system . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Solutions of Switched Linear Systems . . . . . . . . . . . . . . . 5

1.3 Lyapunov Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Common Quadratic Lyapunov Function . . . . . . . . . . . . . 10
1.3.2 Multiple Lyapunov Functions . . . . . . . . . . . . . . . . . . . 11

1.4 Switched Systems with Uncertain Parameters . . . . . . . . . . . . . 12
1.5 Controllability, Observability, Stabilizability and Detectability . . . . 13
1.6 Linear Matrix Inequalities Based Approach . . . . . . . . . . . . . . 16
1.7 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Stabilization of Switched Linear Systems with Parameter Uncer-

tainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.3 State of the Art on LMI techniques . . . . . . . . . . . . . . . . 21
1.8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Introduction

The aim of this chapter is to represent both the necessary and crucial reminders for
the comprehension of this script, and previous literature of the different methods LMIs
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synthesis by observer-based of switching systems discrete-time with parameters uncer-
tainties. First, a reminder of the stability (Lyapunov’s direction) is given. We also state
briefly the criteria of controllability, observability and stabilizability of systems to ex-
plore. We move to present the LMI approach, depicting the rationale of using it. Finally,
we close this chapter exposing the results of some recent studies tackling the same class
of systems which are parts of the comparison in the following chapters.

1.2 Switched systems

Switched systems provide an introduced framework for mathematical modeling of many
physical or man-made systems displaying switching features such as power electronics,
flight control systems, and network control systems. More specifically, a switched dy-
namical system is a two-level hybrid system with the lower level governed by a set
of modes described by differential and/or difference equations and the upper level a
coordinator that orchestrates the switching among the modes. Switching systems are
particular case hybrid dynamic systems [2]. They combine the elegance of the simpli-
city and the richness of the described phenomena. A switched-system is composed of
a finite set N ∈ N∗ dynamics, among one and only one is activated in each time by the
switching mode. A switched-system is said in a discrete time if, more precisely, consists
of dynamics in differences. Such system can be defined under the following form :

xt+1 = fσ(t)(t,xt ,ut), ∀t ∈ N (1.1)
yt = gσ(t)(t,xt ,ut) (1.2)

where xt ∈Rn is vector state, ut ∈Rm is the control input vector and yt ∈Rp is the output
measurement vector, and σ : N→ Λ, {1,2, . . . ,N} t→ σt is a switching rule. If there is
no ambiguity, we simply write σ instead of σt , for σ ∈ Λ is said to be a subsystem of the
switched system.
The N couples of functions fi(., ., .) and gi(., ., .), i ∈ Λ is subsystem dynamic or mode.
The correspondent model of the switched systems (1.1)-(1.2) is too broad. In this script,
the class of the considered systems will be a restrain for the switched-linear systems,
among the modes are linear time invariant. Moreover, without losing a generality, we
can consider the output yt without the controller input ut .

xt+1 = Aσ(t)xt +Bσ(t)ut , ∀t ∈ N (1.3)
yt = Cσ(t)xt (1.4)

If no control input is imposed on the system, then, the system is said to be a switched au-
tonomous system, or an unforced switched system. The unforced switched linear system
is described by

xt+1 = Aσ(t)xt , ∀t ∈ N (1.5)
yt = Cσ(t)xt (1.6)
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1.2.1 Switching linear system

A switching linear system is a dynamic system composed of a finite number subsys-
tems and a so-called switching law to manage the switching between these different
subsystems. In discrete time, a Switching linear system has the form

xt+1 = Aσ(t)xt (1.7)

In continuous time,
ẋ = Aσ(t)x (1.8)

where x∈Rn is the state vector, t ∈N the time, σ :N−→Λ the switching arbitrary, Aσ(t) ∈
Rn×n the dynamic matrix of the system, and Λ the set of indices {1, . . . ,N} representing
the modes of the linear switching systems (1.7) and (1.8).
The stability analysis in the case of linear switched systems is different from the LTI case
in so far as some interesting phenomena are observed. We can cite the case where even
if all modes (subsystems) are asymptotically stable.

1.2.2 Solutions of Switched Linear Systems

For a nonlinear system, usually it is very hard (if not impossible) to explicitly express the
solution in terms of the system parameters in an analytic way. On the other hand, for
well-posed switched linear systems, this is always possible. For clarity, let φ(t; t0,x0,u,σ)
denote the state trajectory at time t of a continuous-time switched linear system

ẋ(t) = Aσ x(t)+Bσ u(t) (1.9)

initialized at x(t0) = x0 with input u and switching signal σ . Suppose that the switching
signal is well-defined and its switching sequence

x0,(t0, i0),(t1, i1), ...,(tl, il).

As the i th
0 subsystem is active during [t0, t1[, we have

ẋ(t) = Ai0 +Bi0u(t), x(t0) = x0, t ∈ [t0, t1[

This is a linear differential equation with an initial condition, so its solution can be given
explicitly by

φ(t, t0,x0,u,σ) = eAi0(t−t0)x0 +
∫ t1

t0
eAi0(t−τ)Bi0u(τ)dτ, t ∈ [t0, t1[

and (by the continuity of the state trajectory)

x1 = x(t1) = φ(t1, t0,x0,u,σ) = eAi0(t1−t0)x0 +
∫ t1

t0
eAi0(t1−τ)Bi0u(τ)dτ,

Continuing with the above procedure, the solution for the switched system can be com-
puted to be

φ(t, t0,x0,u,σ) = eAik (tk−t0)eAik−1(tk−1−t0) . . .eAi0(t1−t0)x0
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+ eAik (t−tk) . . .eAi1(t2−t1)
∫ t1

t0
eAi0(t1−τ)Bi0u(τ)dτ,

+ · · ·+ eAik (t−tk)
∫ tk

tk−1

eAik−1(tk−τ)Bik−1u(τ)dτ,

+
∫ t

tk
eAik (t−τ)Biku(τ)dτ, t ∈ [tk, tk+1[.

Let
Ψ(t,σ ,x0) = expAik (t−tk) . . .eAi0(t1−t0) t ∈ [tk, tk+1[

It is clear that the state transition matrix is given by

Φ(t1, t2,σ ,x0) = Ψ(t1,σ ,x0)(Ψ(t2,σ ,x0))
−1

The solution of the system can be re-written, in terms of the transition matrix, as

φ(t, t0,x0,u,σ) = Φ(t, t0,σ ,x0)x0 +
∫ t

t0
Φ(t,τ,σ ,x0)u(τ)dτ.

From this expression, we can draw a few useful conclusions as follows :
— For a switched linear system, if the switching signal is well-defined and the input

is globally integrable, then the system always permits a unique solution for the
forward time space.

— The solution is usually not continuously differentiable at the switching instants,
even if the input is smooth.

— The state transition matrix is a multiple multiplication of matrix function of the
form eAt . Accordingly, properties of functions in this form play an important role
in the analysis of switched linear systems.

Similarly, for a discrete-time switched linear system

xt+1 = Aσ xt +Bσ ut (1.10)

the solution is

xt = Aσ(t−1) . . .Aσ(1)Aσ(0)x0 +Aσ(t−1) . . .Aσ(1)Bσ(0)u0 + . . .Aσ(t−1)Bσ(t−2)ut−2 +Bσ(t−1)ut−1.

The state transition matrix is

Φ(t1, t2,σ) = Aσ(t1−1) . . .Aσ(t2) t1 > t2.

In terms of the transition matrix, the solution can be rewritten as

xt = Φ(t,0,σ)x0 +
t−1

∑
j=0

Φ(t, j,σ)u j.

From the solution, we have :
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— For a switched linear system, the system permits a unique solution for the for-
ward time space. Hence, any discrete-time switched system is wellposed.

— The state transition matrix is a multiple multiplication of matrices. Accordingly,
properties of matrix multiplication play an important role in analyzing the swit-
ched system.

Finally, for both continuous-time and discrete-time switched linear systems, the state
trajectory possesses several nice properties under mild conditions.

1.3 Lyapunov Stability Analysis

The notion of stability has a broad range of definition in the literature. In our case, we
will focus on the stability in the sense of Lyapunov, who constitutes a powerful tool in
studying the stability of an equilibria point.
Considering now a nonlinear discrete-time system, we write

xt+1 = f (x(t)). (1.11)

where f (., .) is function of N×Rn in Rn, locally Lipschitz with second variable.
We note xeq = 0 equilibria point of (1.11).The theory of Lyapunov allows also to provide
sufficient conditions of stability in the general case.

Definition 1.3.1. The equilibrium points xeq the real solutions of equation

f (t,xeq) = xeq, ∀t ∈ N. (1.12)

An equilibrium point xeq of the system (1.11) is said
— Stable at time t0, if ∀ε > 0,∃δ = δ (ε, t0)> 0 such that

||xt0− xeq||< δ ⇒ ||xt− xeq||< ε, ∀t > t0; (1.13)

— asymptotically stable at time t0, si xeq stable and δ = δ (ε, t0)> 0 can be chosen as
then

||xt0− xeq||< δ ⇒ lim
t→+∞

xt = xeq; (1.14)

— exponentially stable if there are three positive reels c,K and ρ(0 ≤ ρ ≤ 1) such
that

||xt− xeq||< K||xt0− xeq||ρ t−t0,∀||xt0− xeq||< c; (1.15)

Definition 1.3.2. [42]

— A function φ : R+→ R+ belongs to class K if it is continuous, strictly increasing
and φ(0) = 0 and to class K∞ if additionally φ(s)→ ∞ as s→ ∞.

— A function β :R+×R+→R+ belongs to class K L if for each fixed k∈R+, β (.,k)∈
K and for each fixed s ∈ R+, β (s, .) is decreasing and limk→∞ β (s,k) = 0.

Definition 1.3.3. [42] A continuous function V : Rn → R+ is called an ISS-Lyapunov
function for system (1.11) if the following holds :
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1. There exist K∞ functions α1,α2 such that

α1(|x|)≤V (x)≤ α2(|x|), ∀x ∈ Rn. (1.16)

2. There exist K∞ function α3 and K∞ function α4 such that

V ( f (x,µ))−V (x)≤−α3(|x|)+α4(|µ|), ∀x ∈ Rn,∀µ ∈ Rm. (1.17)

A smooth ISS-Lyapunov function is one which is smooth.

Theorem 1.3.4. Equilibria point xeq = 0 is said
— locally stable if a function exists V : Rn −→ R is a neighbourhood Ω ⊂ Rn of
origin as :

• V (x)> 0, ∀x ∈Ω et V (0) = 0,
• ∆V (x(t))≤ 0, ∀x ∈Ω, x 6= 0,

— locally asymptotically stable if a function exists V (x) : Rn −→ R is a neighbou-
rhood Ω⊂ Rn of origin as :

• V (x)> 0, ∀x ∈Ω et V (0) = 0,
• ∆V (x(t))< 0, ∀x ∈Ω, x 6= 0,

— globally asymptotically stable if a function exists V (x) : Rn −→ R as in

• V (x)> 0, ∀x ∈ Rn and V (0) = 0,
• ∆V (x(t))< 0, ∀x ∈ Rn, x 6= 0,
• V (x)−→ ∞ when ‖x‖ −→ ∞

with ∆V (x(t)) =V (x(t +1))−V (x(t)).

Consider the discrete-time switched system

xt+1 = Aσ(t)xt (1.18)

The following definitions are needed to precisely state what is "stable" in the context of
switched systems

Definition 1.3.5. [43] The switched system (1.18) is globally uniformly asymptotically
stable (GUAS) if there exists a class K L function β (‖.‖, .) such that for all switching
signals σ and all initial conditions xt0, the solutions of (1.18) satisfy the inequality ‖xt‖ ≤
β (‖xt0‖, t− t0), ∀t ≥ t0.

Definition 1.3.6. [43] The switched system (1.18) is globally uniformly exponentially
stable (GUES) if for constants c > 0,0 < λ < 1, all switching signals σ and all initial
conditions xt0, the solutions of (1.18) satisfy the inequality ‖xt‖ ≤ cλ t−t0‖xt0‖, ∀t ≥ t0.
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For discrete-time switched system (1.18), it should be pointed out that the reason why
the switched system is not stable under arbitrary switching is due to the fact that some
(at least one) of the subsystems satisfy ‖Ai‖ ≥ 1, i ∈ {1,2, . . . ,N}.

In the particular case of the discrete-time switched-system, the existence condition of
Lyanpunov function proves to be necessary and sufficient.
Indeed, considering the system

xt+1 = Axt . (1.19)

The following theorem recalls the asymptotic stability of the LTI discrete-time systems.

Theorem 1.3.7. The point xeq = 0 is asymptotically stable if and only if, for all Q=QT > 0,
a matrix exists P = PT > 0 verifying Lyapunov’s equation

AT PA−P+Q = 0. (1.20)

To consider stability for the discrete-time switched system (1.19),

Remark 1.3.8. Consider the linear time-invariant symmetric system (1.19) and AT = A.
The system (1.19) is Schur stable if and only if

A2 < I.

Remark 1.3.9. The system (1.19) is asymptotically stable if and only if the eigenvalues of
A satisfy |λi|< 1 ; i.e if they lie strictly within the unit disc of the complex plane.

Theorem 1.3.1. [44] For discrete-time linear time-invariant system (1.19), the following
statements are equivalent :

1. the system is asymptotically stable ;

2. the system is exponential stable ;

3. matrix A is Schur ;

4. the Lyapunov difference equation

P−AT PA = Q (1.21)

has a unique solution P> 0 for any Q> 0 ; and equation (1.21) has a unique solution
P > 0 for some Q > 0.

Consider the linear time-invariant system given by

ẋ(t) = Ax(t) t ≥ 0 (1.22)

In the same way as if in the LTI systems of a discrete-time, in this special case, Lyapunov
theory is very complete, and we have the following theorem.

Theorem 1.3.2. [44]For linear time-invariant system (1.22), the following statements
are equivalent :

1. the system is asymptotically stable ;

9



Generalities and Previous Literature

2. the system is exponential stable ;

3. matrix A is Hurwitz ;

4. the Lyapunov equation
AT P+PA =−Q (1.23)

has a unique solution P > 0 for any Q > 0 ; and

5. Equation (1.23) has a unique solution P > 0 for some Q > 0.

1.3.1 Common Quadratic Lyapunov Function

From a practical point of view, it is very difficult to verify the criteria proposed by the
previous theorem. This difficulty has led many researchers to limit their search to a
quadratic Lyapunov function in the form

V (x) = xT Px.

The existence of such a function is a sufficient condition for stability. The latter may be
expressed in terms of linear matrix inequalities [33] whose solution can be found by
convex optimization algorithms. In discrete time, we have the following result

Theorem 1.3.10. If there exists a positive definite symmetric matrix P satisfying

AT
i PAi−P < 0, pour i = 1, . . . ,N (1.24)

then the function V (x) = xT Px is a common quadratic Lyapunov function (CQLF) for the
system (1.7). The switching system (1.7) is then GAS.

The system of linear matrix inequalities (LMIs) (1.24) is said to be feasible if there exists
a solution P, otherwise it is said to be unfeasible. For example, the existence of a CQLF
is equivalent to checking the feasibility of the LMIs (1.24). In recent decades, convex
optimization algorithms have been to solve this type of LMIs [33]. In [45], the authors
proposed an algorithm to converge to a CQLF in a finite step number. But, until now, the
conditions necessary and sufficient for the existence of a CQLF stay an open problem in
the neral. In [46], the authors used Lie algebra to express the conditions of existence of
a CQLF in terms of solvable Lie algebra.

Example 1.3.11. Consider the switched linear system composed of two subsystems with
the following system matrices,

A1 =

[
−0.9 3.2

0 −0.1

]
, A2 =

[
−0.3 0
−1.9 −0.9

]
.

It is clear that both subsystems are stable. However, it can be seen in Figure.(1.1) that the
system is not stable under the switching shown in the figure.
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FIGURE 1.1 – State responses for Example .

Example 1.3.12. The following counterexample, taken from [2] , proves that even for
switched linear systems GUES does not imply the existence of a quadratic common Lyapu-
nov function. Take σ = 1,2, and let the two matrices be

A1 =

[
−1 −1
1 −1

]
, A2 =

[
−1 −10
0.1 −1

]

These matrices are both Hurwitz.

The systems ẋ = A1 x and ẋ = A2 x do not share a quadratic common Lyapunov function
of the form V (x) = xT Px. Without loss of generality, we can look for a positive definite
symmetric matrix P in the form

P =

[
1 q
q r

]

which satisfies the inequality AT
i P+PAi < 0 ∀i ∈ {1,2}. For more detail see [2].

1.3.2 Multiple Lyapunov Functions

Several stability criteria based on common quadratic Lyapunov functions exist in the
literature. However, the existence of a common quadratic Lyapunov function is only a
sufficient stability condition, not a necessary one. In [47], it is analytically shown that
there exist switched linear systems that are asymptotically stable for which no common
quadratic Lyapunov function exists. This indicates that looking for such a function may
be too conservative. This motivates the search of other types of Lyapunov functions. In
the literature, we can find several types of Lyapunov functions that may be classified,
in a generic framework, under the name of multiple Lyapunov functions. The multiple
Lyapunov functions describe a family of function of the form

V (x) = xT P(σ ,x)x
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where the Lyapunov matrix may depend on the state vector and/or on the switching law.
The concatenation of these functions composes one common, non quadratic, Lyapunov
function. The idea is to reassemble matrices Pi in the idea of the mode switching, we
consider Lyapunov function form

V (t,x(t)) = xT (t)Pσ(t)x(t). (1.25)

Theorem 1.3.13 ( [7]). The following statements are equivalent :

1. There exists Lyapunov function under form (1.25) strictly decreasing along system
(1.7) trajectories ∀σ ∈ Λ.

2. There exist N symmetric matrices Pi, for all i ∈ Λ, satisfying the LMIs :
[

Pi AT
i Pj

PjAi Pj

]
> 0, ∀(i, j) ∈ Λ×Λ.

3. There exist N symmetric matrices Si and N matrices Gi ∈Mn(R) satisfying the LMIs :
[
−Si AiGi

GT
i AT

i S j−Gi−GT
i

]
< 0, ∀(i, j) ∈ Λ×Λ.

The poly-quadratic function approach represents a generalization of the common qua-
dratic approach. With the constraint Pi = P, ∀i ∈Λ, we obtain the LMIs for the quadratic
case. This generalization allows to relax the constraints imposed by the quadratic me-
thod and to obtain less conservative stability conditions.
This result can be seen as generally as CQLFs, in this case of Pi = P for all i∈Λ in (1.25),
we obtain CQLF.

Euler Approximation

We have the following useful proposition that establishes the connection between a
stable continuous-time system and its discrete-time Euler approximating system.

Proposition 1.3.14. [48] Suppose that the continuous-time switched linear system (1.8)
is stable. Then, the Euler approximating system defined as

x(t +1) = (I +TAσ )x(t) (1.26)

is also stable for sufficiently small T .

1.4 Switched Systems with Uncertain Parameters

The stability problem is very complicated when parameter uncertainty is considered. In
this case, the dynamic of each mode is influenced by uncertainty. Until now, few results
are concerned with robust stability in the context of switched systems with arbitrary
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switching law. In the case of discrete time switched linear systems, the uncertain model
is described by :

xt+1 = Ãσt xt (1.27)

where Ãi represents an uncertain matrix that belongs to the domain Ai ⊂ Rn×n,∀i ∈ Λ.
Usually we consider compact Ai domains, such as

1. norm bounded uncertainties, with

Ãi ∈Ai = {Ai,0 +MiDi(t)Ei, ||Di(t)|| ≤ 1}, (1.28)

where the Ai,0 matrices describe a nominal behavior, Di(t) is an uncertain time
varying matrix and Mi,Ei, ∀i ∈ Λ are known matrices ;

2. polytopic uncertainties, with

Ãi ∈Ai = co{Ai,1,Ai,2, . . . ,Ai,ni},∀i ∈ Λ (1.29)

where the Ai,1,Ai,2, . . . ,Ai,ni matrices are called vertex.

An important problem is to extend the methods given for the classical switched systems
case to the case when the switched models are uncertain.

1.5 Controllability, Observability, Stabilizability and De-
tectability

Controllability :
In general, a switched linear system is composed of a family of subsystems and a rule
that governs the switching among them and is mathematically described by

ẋ = Aσ x+Bσ u (1.30)

It is obvious that if one subsystem say (A1,B1) is controllable, then system (1.30) is both
controllable. Hence, we shall investigate the nontrivial situation where each subsystem
(Ai,Bi), i ∈ Λ is not controllable.
In the sequel, the following definition of controllability for the system (1.30) will be
adopted [49] :

Definition 1.5.1. The switched linear system (1.30) is said to be (completely) controllable
if for any initial state x0 and final state x f , there exist a time instance t f > 0, a switching
signal σ : [0, t f )−→ Λ and an input u : [0, t f )−→ Rm such that x(0) = x0 and x(t f ) = x f .

For the controllability of switched linear systems, a matrix rank condition was given
in [49].

Proposition 1.5.2. [49] if the matrix : [B1,B2, . . . ,Bm,A1B1, . . . ,AmB1, . . . ,A1Bm, . . . ,AmBm,
A2

1B1,A2A1, . . . ,AmA1B1,A1A2B1,A2
2B1, . . . ,AmA2B1, . . . ,A1AmBm,A2AmBm,A2

mBm, . . . ,An−1
1 B1,

A2An−2
1 B1, . . . ,AnAn−1

1 B1,A1A2An−3
1 B1,A2

2An−3
1 B1, . . . ,An−3

1 B1, . . . ,A1An−2
m Bm,A2An−2

m Bm, . . . ,
An−1

m Bm] has full row rank n, then the switched linear system (1.30) is controllable, and
vice versa.
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Remark 1.5.3. When σ = 1, we obtain the following criterion of controllability of linear
continuous systems

ẋ = Ax+Bu (1.31)

and discrete time
xt+1 = Axt +But (1.32)

— The pair (A,B) is controllable if and only if the following n×nm matrix (called a
controllability matrix) has rank n :

[B AB . . . An−1B].

Observability :
Consider a switched linear control system with outputs given by

ẋ = Aσ x+Bσ u
yt = Cσ xt (1.33)

Definition 1.5.4. The switched linear system (1.33) is (completely) observable, if there
exists a time t1 > 0 and a switching path σ : [0, t1)−→ Λ, such that state x0 can be determi-
ned from knowledge of the output yt , t ∈ [0, t1] and the input ut , t ∈ [0, t1].

Definition 1.5.5. The switched linear system (1.33) is (completely) determinable, if there
exist a time t1 < 0 and a switching path σ : [t1,0]−→Λ, such that state x0 can be determined
from knowledge of the output yt , t ∈ [t1,0] and the input ut , t ∈ [t1,0].

Theorem 1.5.6. [49] For switched linear system (1.33), the following statements are
equivalent :

1. The system is completely observable ;
2. The system is completely determinable ; and
3. O = Rn,

where subspace O = ∑
∞
j=1 O j is defined by

O1 = ImCT
1 + · · ·+ ImCT

m,

O j+1 = ΓAT
1
O j + · · ·+ΓAT

m
O j, j = 1,2, . . .

where ΓAO = O+AT O+ · · ·+An−1O

�

Remark 1.5.7. When σ = 1, we obtain the following criterion of controllability of linear
continuous systems

ẋ = Ax+Bu
yt = Cxt (1.34)

and discrete time

xt+1 = Axt +But

yt = Cxt (1.35)

14



1.5. Controllability, Observability, Stabilizability and Detectability

— The pair (C,A) is observable if and only if the following pn×n matrix (called an
observability matrix) has rank n :




C
CA
.
.
.

CAn−1



.

We also define the concept of detectability, which is dual to the definition of stabilizabi-
lity.

Definition 1.5.8. [50](Detectability). Switched system (1.34) is said to be detectable, if
yt = 0 for all t ∈ N, it holds that x(t) −→ 0 as t −→ +∞. The system is called undetectable
otherwise.

Remark 1.5.9. The pair (C,A) is said to be detectable if there exists L ∈ Rp×n such that
rσ (A+LC)< 1.

The idea behind the concept of controllability is rather simple. It deals with answering
the following question : for a certain pair (A,B), is it possible to apply a sequence of ut
in order to drive the system from any x0 to a specified final state x f in a finite time.

Definition 1.5.10. [51][Switching sequence] A switching sequence is a finite set of pairs
π := {(i1,h1), . . . ,(iM,hM)}where the positive integer M≤∞ is the length of π, im ∈{1, . . . ,N}
the index of the mth realization, hm ∈ (0,∞) is the time interval of the mth realization, for
m = 1, . . . ,M. The switching sequence is called infinite if M < ∞, otherwise, is called infinite.

Definition 1.5.11. [51][Stabilizability] Given an infinite switching sequence, system
(A1,B1), . . . ,(AN ,BN) is said to be stabilizable under π if for any nonzero state x0, there
exists u(t), t ∈ [0,+∞) such that limt→+∞ x(t) = 0.

Definition 1.5.12. The control u in closed-loop, also called a feedback, or a bouclage is an
application x 7→ u = γ(x) defined on the space M = Rm with values in the set of admissible
controls U .

In this chapter, we will consider the following three types of output feedback controller :
— Static feedback :

ut = Kσ xt

where Kσ is the controller gain.
— Output feedback :

ut = Kσ yt .

— Observer-based controller :
ut = Kσ x̂t

where x̂t is the estimate xt .
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Suppose that for some Kσ , we apply u = Kσ x in System (1.30), yielding

ẋ = (Aσ +Bσ Kσ )x.

According to the theorem above, an adequate choice of Kσ (for Aσ ,Bσ and Kσ real)
would allow us to perform pole placement for the closed loop system (Aσ +Bσ Kσ ). For
instance we could use state feedback to stabilize an unstable system.

The case in which the state feedback can only change the unstable eigenvalues of the
system is of great interest and leads us to the introduction of the concept of stabilizabi-
lity.

Definition 1.5.13. [52](Stabilizability). The pair (Aσ ,Bσ ) is said to be stabilizable if
there exists Kσ such that rσ (Aσ +Bσ Kσ )< 1.

The observer structure considered in the remainder of this thesis corresponds to that of
a Luenberger type observer.

Definition 1.5.14 (Luenberger observer). A Luenberger observer x̂ of x is a solution of
a system of type

x̂t+1 = f (x̂,u)︸ ︷︷ ︸
(I)

+L(yt− ŷt)︸ ︷︷ ︸
(II)

,

ŷt = h(x̂t ,u) (1.36)

The part (I) is that corresponding to the dynamics of the system and part (II)is the correc-
tive. By definition of an observer, the matrix L ∈Mn,p is such that

∀x(0), x̂(0) ∈ Rn, x(t)− x̂(t)−−−→t→+∞
0. (1.37)

Before starting an observer design procedure for a dynamic system, it is important and
necessary to ensure that the condition of the latter can be estimated from information
on input and output. The observability of a system is the property ie the state can be
estimated only from the knowledge of the input and output signals. exit. In the case
of non-linear systems, the notion of observability is linked to inputs and to the initial
conditions.

1.6 Linear Matrix Inequalities Based Approach

A large number of automatic problems concerning performance and robustness can be
translated in the form of a convex optimization with inequalities constraints. More re-
cently, progress in the field of convex optimization and the introduction of LMIs by
Yakubovich in the control of systems a new stage that combines the mathematical pos-
sibilities with computer computing power. The reference still unavoidable in LMI is the
book [33] where is done a history and a directory of the many problems using LMIs.
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Definition 1.6.1 (Linear Matrix Inequality). An LMI constraint LMI 1 1 is a constraint on
a real vector x ∈ Rm of the form

F(x) = F0 +
m

∑
i=1

xiFi ≥ 0, (1.38)

where the symmetric matrices Fi = FT
i ∈ Rn×n are given, and the symbol of inequality in

the broad sense (rep.strict) means that F is semi-defined (defined) positive, ie uT Fu≥ 0 for
all u ∈ Rn.

The LMI constraint is equivalent to a set of n polynomial inequalities constraints (cor-
responding to the principal minor of F(x)).

Definition 1.6.2 (Bilinear Matrix Inequality). a constraint BMI is a constraint on x ∈Rm

and y ∈ Rr which is of the form

F(x,y) := F0,0 +
m

∑
i=1

r

∑
j=1

xiy jFi, j ≥ 0, (1.39)

with F0,0 ∈ Rn×n and Fi, j ∈ Rn×n.

This is the generalization of the notion of LMI. A wide variety of automatic problems
can be formulated as BMIs. However, BMIs are not convex, which generates difficulties
in their resolution.

1.7 Useful Lemmas

In the following, we collect some mathematical inequalities and useful lemmas that
have been widely used in the manuscript. Let us first recall the "Finsler’s Lemma" and
"Schur’s complement" which makes it possible to transform certain nonlinear matrix
inequalities into LMI.

Lemma 1.7.1 (Finsler’s Lemma). [53] Let x ∈ Rn,P ∈ Sn×n, and U ∈ Rm×n such that
rank(U) = r < n. The following statements are equivalent :

1. xT Px < 0, ∀Ux = 0,x 6= 0,

2. U⊥T PU⊥ < 0.

3. ∃µ ∈ R : P−µUTU < 0.

4. ∃X ∈ Rn×m such that P+XU +UT XT < 0.

1. The term "Linear Matrix Inequality" is not consistent with the expression F(x)≥ 0 since F(x) ) is not
necessarily linear in the variable x but affine. The term AMI for Maternal Affine Inequalities would seem
more appropriate.
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Proof 1. 1⇒ 2 : For all x such that Ux = 0 can be written as x =U⊥y. Consequently

xT Px = yTU⊥
T

PU⊥y < 0

for all y 6= 0 which implies U⊥T PU⊥ < 0.
2⇒ 1 : By multiplied U⊥T PU⊥ < 0 pre and post by yT , we obtain yTU⊥T PU⊥y < 0 and
using the change of variable x =U⊥y then we get xT Px < 0.
3⇒ 2 : We multiply 2 pre-and post by U⊥T we obtain U⊥T PU⊥ < 0.

4⇒ 2 : We multiply 4 pre-and post by U⊥T we obtain U⊥T PU⊥ < 0.
3⇒ 4 : We choose X =−µ

2 UT .
2⇒ 3 : We have U in the full rank factors U =UlUr, on define H =UT

r (UrUT
r )
−1(UT

l Ul)
− 1

2

and using the congruence principle
[
H U⊥

]

[
HT

U⊥T

]
(P−µUTU)

[
H U⊥

]
=

[
HT PH−µI HT PU⊥

(?) U⊥T PU⊥

]
< 0

Since the U⊥T PU⊥ is negative definite by assumption, a sufficiently large µ exists so that
the whole matrix is negative definite.

�

Lemma 1.7.2 (Schur’s Complement ). Let Q1, Q2 and Q3 be three matrices of appropriate
dimensions such as Q1 = QT

1 and Q3 = QT
3 . Then,

[
Q1 Q2
QT

2 Q3

]
< 0 (1.40)

if and only if
Q3 < 0, et Q1−Q2Q−1

3 QT
2 < 0

or equivalent
Q1 < 0, et Q3−QT

2 Q−1
1 Q2 < 0

One of the main ideas we have adopted in the linearization of bilinear terms consists in
applying the Young inequalities described in the following lemma.

Lemma 1.7.3 (Young inequality). Let X and Y be two matrices of appropriate dimensions.
have for every invertible matrix S and scalar ε > 0,

XTY +Y T X ≤ εXT SX +
1
ε

Y T S−1Y. (1.41)
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1.8 Stabilization of Switched Linear Systems with Para-
meter Uncertainties

1.8.1 Introduction

The stabilisation of switching system discrete time is a subject that has aroused much
and motivated the interest of the automation community [54], [55], [38], [34], [8],
[37], [27], [1], [56]. A variety of stabilization conditions have been established for
different classes of systems.

1.8.2 Problem Formulation

Consider a class of switched discrete-time linear systems described by the following
equations : {

xt+1 = (Aσ +∆Aσ )xt +(Bσ +∆Bσ )ut
yt = (Cσ +∆Cσ )xt

(1.42)

where xt ∈ ℜn is the state vector, yt ∈ ℜm is the output measurement vector, ut ∈ ℜp

is the control input vector, and σ : N→ Λ , {1,2, . . . ,N}, t 7→ σt , is a switching rule. If
there is no ambiguity, we simply write σ instead of σt . Aσ , Bσ , and Cσ , σ ∈ Λ, are n×n ,
n×m and p×n real matrices, respectively. Assume that

[∆Aσ ,∆Bσ ,∆Cσ ],Mσ Dσ [Eσ1,Eσ2,Eσ3], (1.43)

where, for each σ ∈ Λ, the uncertainty Dσ satisfies

DT
σ Dσ ≤ I. (1.44)

Mσ ,Eσ1,Eσ2,Eσ3 are constant matrices characterizing the structure of the uncertainties.
Note that such a model can be used to describe a large class of practical systems, such as
cognitive radio networks [57], stepper motors [58], and control of an F-16 aircraft [4].
The references [2], [8], [20] provide a general and accurate modeling framework for
many relevant real-world models and processes. In particular, a discrete-time version of
the Lipschitz nonlinear switched system modeling the longitudinal dynamics of an F-18
aircraft [11] can be viewed as a switched linear discrete-time system with parameter
uncertainties. Indeed, any Lipschitz system can be transformed to a linear system with
structured and norm-bounded parameter uncertainties [59].
Throughout this thesis, the following assumption is needed [1] :

Assumptions 1.8.1. The switching function σ satisfies the two following items :

i) σ is unknown a priori, but it is available in real-time ;

ii) the switching of the observer should coincide exactly with the switching of the system.

As speculated in [25], assuming an unknown switching rule σ can be very useful in
many practical applications such as the case when σ is computed via complex algo-
rithms by a higher level supervisor or when it is generated by a human operator (for
instance the switch of gears in a car).
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The observer-based controller we consider in this thesis is under the form :




x̂t+1 = Aσ x̂t +Lσ (yt−Cσ x̂t)+Bσ ut
ŷt =Cσ x̂t
ut = Kσ x̂t

(1.45)

where x̂t ∈Rn is the estimate of xt , Lσ ∈Rn×p, Kσ ∈Rm×n, σ ∈ Λ, are the observer-based
controller gains. Consider the generalized state vector

x̄t = [x̂T
t eT

t ]
T ,

where et = x̂t − xt is the estimation error. Then the closed-loop system resulted from
(1.42) and (5.4) can be written as :

xt+1 = Aσ x̄t (1.46)

where

Aσ =

[
Aσ +Bσ Kσ +Lσ ∆Cσ −Lσ (Cσ +∆Cσ )

−(∆Aσ +∆Bσ Kσ −Lσ ∆Cσ ) Aσ +∆Aσ −Lσ (Cσ +∆Cσ )

]
. (1.47)

The objective is to design output feedback matrices Kσ and Lσ , σ ∈Λ, so that the closed-
loop system (1.46) is asymptotically stable. Let us define the indicator function

ξ (t) = [ξ1(t),ξ2(t), . . . ,ξN(t)]T

as follows :

ξi(t) =
{

1, σt = i ;
0, otherwise.

Therefore, system (1.46) can be rewritten in the unified form :

x̄t+1 =
N

∑
i=1

ξi(t)Aix̄t , (1.48)

where Ai is defined in (1.47), when σt = i.
To analyze stability of the closed-loop system (1.48), we use the switched Lyapunov
function defined as :

V (x̄t ,ξ (t)) = x̄T
t P̂(ξ (t))x̄t

=
N

∑
i=1

ξi(t)x̄T
t

[
P̂11

i P̂12
i

(?) P̂22
i

]
x̄t . (1.49)

Notice that the Lyapunov function (1.49) is well known in the literature, (see for ins-
tance [54] and [60]). For shortness we use σt = i and σt+1 = j. This means that ξi(t) = 1
and ξ j(t +1) = 1. Then we get

∆V ,V (x̄t+1,ξ (t +1))−V (x̄t ,ξ (t))
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= x̄T
t+1

(
N

∑
j=1

ξ j(t +1)P̂j

)
x̄t+1− x̄T

t

(
N

∑
i=1

ξi(t)P̂i

)
x̄t

=
N

∑
j=1

ξ j(t +1)

(
N

∑
i=1

ξi(t)
[

x̄t
x̄t+1

]T [−P̂i 0
0 P̂j

][
x̄t

x̄t+1

])
. (1.50)

We have to show that, under suitable conditions, ∆V < 0, which means that the closed-
loop system (1.48) is asymptotically stable. Thanks to Finsler’s lemma and the principle
convexity, inequality ∆V < 0 holds if, and only if, for all i, j ∈Λ, there exists Xi j satisfying

Pi j +Xi jHi +HT
i XT

i j < 0 (1.51)

for all i, j ∈ Λ, where

Pi j =

[
−P̂i 0

0 P̂j

]
, Hi =

[
Ai −I

]
. (1.52)

The main question that we address in this thesis is to determine a judicious choice
of the matrix Xi j so as to eliminate the bilinear terms of the Finsler inequality
(1.51). Which also amounts to linearize inequality (1.51).

1.8.3 State of the Art on LMI techniques

This section is devoted to the some LMI techniques for stabilisation problem for both
switched linear discrete-time systems and LPV systems, with which we will compare the
proposed main contribution of this thesis.
We begin our presentation by recalling the approaches using Finsler’s lemma.
Finsler’s lemma has been used previously in the control literature mainly in order to eli-
minate some unlike matrix terms, see e.g. [33]. Switched quadratic Lyapunov functions
combined with Finsler’s lemma have been used in [34] to get necessary and sufficient
LMI conditions for the asymptotic stability issue. However, based on the pioneering
work in [34], some attempts using Finsler’s lemma-based approach have been presen-
ted in [1] and [27]. Unfortunately, the obtained LMI conditions still remain very conser-
vative. Indeed, they are either subjected to strong equality constraints [27], or require
particular choices of the decision variables [1].

Approach by Li and Liu [1]

In [1], the Finsler lemma has been used with the following parameters

x =
[

xt
xt+1

]
, Pi j =

[
−P̂i 0

0 P̂j

]
, Hi =

[
Ai −I

]
, Xi =

[
F̂i

ĜT
i

]
, (1.53)

which lead to ∆V < 0 if the following second Finsler inequality :

Pi j +XiHi +HT
i XT

i < 0 (1.54)
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holds for all i, j ∈ Λ. By substituting (2.1) in (2.2) we get the detailed inequality :
[

F̂iAi +AT
i F̂T

i − P̂i −F̂i +AT
i Ĝi

−F̂T
i + ĜT

i Ai P̂j− Ĝi− ĜT
i

]
< 0, (1.55)

instead of [1, Inequality (9)] which is erroneous.
We enounce the following theorem in [1].

Theorem 1.8.2. [1] For the closed-loop switched system (1.46), if there exist Pi,Qi ∈ Sn×n
+

and matrices Fi,Gi,Ri,Li ∈ Rn×n (i = 1,2, . . . ,N), satisfying for ∀i, j ∈M = {1,2, . . . ,N},



Πi1 −LiCi Πi2 −LiCi
(?) Πi3 0 Πi4
(?) (?) Πi5 0
(?) (?) (?) Π j6


< 0, (1.56)

where

Πi1 = AiFT
i +FiAT

i +BiRi +RT
i BT

i −Pi,

Πi2 = AiGi +BiRi−Fi,

Πi3 = (Ai−LiCi)+(Ai−LiCi)
T −Qi,

Πi4 = Ai−LiCi− I,

Πi5 = Pj−Gi−GT
i ,

Πi6 = Q j−2I,

and the static output feedback matrices are taken as

Ki = RiG−1
i , ∀i ∈M = {1,2, . . . ,N}. (1.57)

Then the closed-loop switched system (1.46) is asymptotically stable under an arbitrary
switching rule.

Approach by Mahmoud and Xia [27]

In what follows, we introduce the approach presented in the paper [27].
The authors considered a Lyapunov function with a triangular Lyapunov matrix in the

stability analysis ie P̂j =

[
P1 j 0
P2 j P3 j

]
. The technique uses several principle congruence

and the choice of slack variable Ĝ j =

[
ϒs 0
ϒo ϒc

]
, and uses the constraint equality C jϒ

−1
c =

E1C j
In [27], the Finsler lemma has been used with the following parameters

x =
[

xt
xt+1

]
, Pjs =

[
−P̂j 0

0 P̂s

]
, H j =

[
A j −I

]
, X j =

[
0

ĜT
j

]
, (1.58)

These stabilization conditions are expressed in LMIs form and formulated in the theo-
rem below.
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Theorem 1.8.3. [27] The switched system (1.46) with ∆A j = ∆B j = ∆C j = 0 is asymp-
totically stable. if there exist matrices 0 < X T

j = X j,0 < X T
s = Xs,Y j,Ŝ T = Ŝ > 0,Yj

satisfying the following LMIs, for ( j,s) ∈ Λ




Π11 −ΛT
o Π13 Π14

−Λo−X2s Π22 0 Π24
(?) (?) −P1s 0
(?) (?) −P2s −P3s


< 0, (1.59)

where

Π11 =−Λs−Λ
T
s −X1s,

Π13 = A jΛ
T
s +B jYj,

Π14 = A jΛ
T
o +B jK jΛ

T
o +G jC jλ

T
c ,

Π22 =−Λc−Λ
T
c −X3s,

Π24 = A jΛ
T
c −L1 jC j.

Moreover the gain matrices are given by

K j = YjΛ
−T
s , G j = L1 jE−1

s . (1.60)

This next paragraph is devoted to some LMI techniques for stabilisation problem for a
class of LPV systems, with which we will compare the proposed main contribution of
this thesis.

Approach by Jetto and Orsini [38] : ITV-based approach for LPV systems

There are other approaches dealing with stabilization of uncertain linear systems in
time discrepancy with other types of uncertainties such as LPV type uncertainties, (see
for instance [37,38]).

Remark 1.8.4. It should be mentionned that observer-based control design problem for
switched linear systems can be seen as an observer-based control design problem for po-
lytopic uncertain linear time-variant systems. Indeed, as stated by Lin and Antsaklis [8],
asymptotic stability problem for switched linear systems with arbitrary switching is equiva-
lent to the asymptotic stability problem for polytopic uncertain linear time-variant systems.

Consider the system governed by the following equation

xk+1 = A(ρ)xk +B(ρ)uk (1.61a)
yk =C(ρ)xk (1.61b)

where x ∈ Rn is the state vector, y ∈ Rp is the measured output, u ∈ Rm is the input
control. A(ρ),B(ρ),C(ρ) are assumed to belong to convex polytopes with a finite number
of vertices. Indeed, the results related to this type of uncertainty are generally obtained
under certain constraints [61], [62], [63], [54]. L. Jetto and V. Orsini have developed in
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[38] a new approach to avoid these additional constraints and reduce the number of of
the LMIs to be resolved so that they do not depend on the number of variant parameters.
To this end, they proposed an approach called the ITV-based approach (matrices defined
in time varying intervals). Under the following assumptions :

— the vector ρ(.) =
[
ρ1(.), . . . ,ρp(.)

]T takes its values in a compact set ;

— the extreme vectors ρ− ,
[
ρ
−
1 , . . . ,ρ−p

]T and ρ+ ,
[
ρ
+
1 , . . . ,ρ+

p
]

are known ;
— the triplet (C, Ā,B) is detectable and observable ;

Jetto and Orsini proposed sufficient system stabilization conditions (1.61) with B(ρ) =
B,C(ρ) =C, via the following observer-based control :

z(k+1) = (A(ρ(k))+LC)z(k)+Bu(k)−Ly(k) (1.62)
u(k) = Kz(k). (1.63)

These stabilization conditions are expressed in LMIs form and formulated in the theo-
rem below.

Theorem 1.8.5 ( [38]). for θ1, θ2 ∈ (0,1], there exist matrices U1, U2, and two matrices
diagonals S1 > 0n and S2 > 0n such that the following LMI conditions are feasible

[
S1

1
θ1
(ĀS1 +BU1)

T

(?) S1

]
> 0, (1.64)

[
S2

1
θ2
(ĀT S2 +CTU2)

T

(?) S2

]
> 0, (1.65)

ĀS1 +BU1 � 0n, ĀS2 +CTU2 � 0n, −BU1 � 0n, (1.66)

− ĀS1−2BU1−A−S1 � 0n, (1.67)

− ĀT S2−2CTU2−A−T S2 � 0n, (1.68)

with
āi j = max{|a−i j |, |a+i j |}

then the system (1.61) is asymptotically stabilizable via the observer-based control (1.62)-
(1.63).

Approach by Heemels et al. [37]

In what follows, we present the approach developed in the paper [37].
The observer based is governed by

x̂t+1 = A(ρ̂t)x̂t +But +L(ρ̂t)(y−Cx̂t) (1.69)

The estimation error et = xt− x̂t is governed by

et+1 = Ae(ρ̂t)et +υt (1.70)

with Ae(ρ̂t) := ∑
N
i=1 ξ i(ρ̂t)Ãi, where Ãi = Ai−LiCi and

υt = (A(ρt)−A(ρ̂t)︸ ︷︷ ︸
:=∆A(ρt ,ρ̂t)

)xt (1.71)
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Theorem 1.8.6 ( [37]). Assume that there exist symmetric matrices Pi ∈ Rn×n, matrices
Gi ∈ Rn×n, Fi ∈ Rn×m, i = 1, . . . ,N and a scalar σev ≥ 1 satisfying for all i, j = 1, . . . ,N the
LMIs 



GT
i +Gi−Pj 0 GiAi−FiCi Gi

(?) I I 0
(?) (?) Pi 0
(?) (?) (?) σevI


> 0 (1.72)

then the error dynamics (1.70) with uncertainty set Θ for ρ̂ and Li = G−1
i Fi is ISS with

respect to υ with ISS gain γ(s) = σevs,s ∈ R+.

We now focus on the design of a state feedback. This results in the closed loop

xt+1 = Ax(ρ̂t)xt +υt−BK(ρ̂t)et (1.73)

with, as before, υt given by (1.71) and

Ax(ρ̂t) =
N

∑
i=1

ξ
i(ρ̂t)(Ai +BKi)︸ ︷︷ ︸

ABKi

.

Theorem 1.8.7 ( [37]). Assume that there exist symmetric matrices Yi ∈ Rn×n, matrices
Zi ∈ Rn×n, i = 1, . . . ,N and a scalar σxv,σxe,µ with µ > 0 and σxv ≥ 1 satisfying for all
i, j = 1, . . . ,N the LMI conditions




Yi 0 0 YiAT
i +ZT

i BT Yi
(?) σxvI 0 I 0
(?) (?) σxeI −ZT

i BT 0
(?) (?) (?) Yj 0
(?) (?) (?) (?) I



> 0 (1.74)

and for i = 1, . . . ,N
Yi ≥ µI (1.75)

then the closed-loop system (1.73) with uncertainty set Θ for ρ̂ and Ki = ZiY−1
i , i= 1, . . . ,N,

is ISS with respect to e and υ .

Next, we will show that the separate design of the observer and a state feedback leads
to a stabilizing output-based controller for some nontrivial level of uncertainty δ :=
sup ||∆A(ρ, ρ̂)||, ||ρ− ρ̂||∞ ≤ ∆. The closed-loop system is given by

( xt+1
et+1

)
=

[
A(ρt)+BK(ρ̂t) −BK(ρ̂t)
A(ρt)−A(ρ̂t) A(ρ̂t)−L(ρ̂t)C

]( xt
et

)
. (1.76)

Theorem 1.8.8. [37] Let an observer (1.36) that satisfies the hypotheses of Theorem
(1.8.6) and a state feedback law that satisfies the hypotheses of Theorem (1.8.7) be given.
Then for any max1−1/σev,1−1/σxv ≤ ε < 1 and any 0 < β ≤ (1− (1− ε)σev)/µ−2σxe
the closed-loop system (1.76) is GES with decay factor equal to

√
ε for all uncertainties

satisfying

||∆A(ρ, ρ̂)|| ≤ δ :=

√
β (1− (1− ε)σxυ)

σeυ +βσxυ

.

25



Generalities and Previous Literature

Approach by Zemouche et al. [39]

This approach is based on the use of a diagonal Lyapunov function and a particular
choice of the slack variable in the stability analysis. The authors use several transforma-
tions Schur’s lemma and an application of the linearization Ibrir lemma [64], to arrive at
a inequality which has a structure a diagonal structure equivalent to the two conditions
LMIs formulated in the following theorem

Theorem 1.8.1 ( [39]). The observer-based controller (1.69) stabilizes asymptotically the
system (1.61a) if the there exist symmetric positive definite matrices Pj, matrices K̃ j, L̃ j of
appropriate dimensions, and positive scalars α j,ε j, j = 1, . . . ,N such that LMIs (1.77) are
feasible : 



−Pl

[
α jA j−BK̃ j BK̃ j

0 α jA j− L̃ jC

]
0 α j

[
I
I

]

(?) −2α jI2n +

[
ε j∆

2ΓT Γ 0
0 0

]
Pj 0

(?) (?) −Pj 0
(?) (?) (?) −ε jIn



< 0. (1.77)

1.8.4 Conclusion

This chapter gave an overview of some important stability/stabilizability criteria en-
countered in the context of switched linear systems. In the following chapters we intend
to provide robust control methods for stability analysis and control design for switched
linear systems.
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2.1 Introduction

The main objective of this chapter consists in developing new and less conservative LMI
synthesis conditions for the observer-based stabilization problem for switched discrete-
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time linear systems with parameter uncertainties. As mentioned previously, the addres-
sed problem has been investigated in [1] and [27] in the LMI context by using swit-
ched Lyapunov functions combined with Finsler’s lemma. However, the obtained LMI
conditions are conservative because of the particular use of Finsler’s lemma in its ba-
sic formulation. In addition, the switched Lyapunov matrices used in [1] are assumed
to be diagonal, and the LMI synthesis conditions proposed in [27] require additional
equality constraints, which turns out to be very conservative. To show the importance
of the work we proposed in this paper, we summarize the contributions in the following
items :

— A new linearization scheme is proposed, thanks to a convenient use of Finsler’s
lemma.

— Analytical developments to show the superiority of the proposed design method
compared to the existing techniques in the literature are proposed.

— As compared to the Young inequality based approach introduced recently in [35]
and [36], the proposed technique in this paper allows to eliminate some bilinear
terms arising from the use of the Young relation-based approach, and then leads
to less conservative LMI conditions.

— The proposed LMI method is more general than those established in the literature
for the same stabilization problem. We essentially demonstrated that the way to
select the matrices inferred from Finsler’s lemma plays an important role in the
feasibility of the obtained LMIs.

2.2 Preliminary results

This section is devoted to two LMI techniques reported in the literature, with which we
will compare the proposed main contribution of this chapter. On the other hand, it is
worth mentioning that these two techniques can be considered as preliminary results
because they are not available for the same class of systems. First, we will recall the
standard Finsler lemma based approach in [1] that we will correct because of some
erroneous mathematical decompositions in [1]. Second, we will generalize the Young
inequality based approach introduced in [35,36] to switched linear systems in the pre-
sence of parameter uncertainties.

2.2.1 Comments on standard Finsler’s lemma based approach [1]

The aim of this subsection is to provide a discussion about the result in [1]. Indeed, the
result in [1] is erroneous because of a significant mistake in [1, Inequality (9)], which
removes many bilinear terms. Throughout this section, we will give a correct version of
the result in [1] and we will provide some comments on the way Finsler’s lemma has
been used.
In [1], the Finsler lemma has been used with the following parameters

x =
[

xt
xt+1

]
, Pi j =

[
−P̂i 0

0 P̂j

]
, Hi =

[
Ai −I

]
, Xi =

[
F̂i

ĜT
i

]
, (2.1)
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which leads to ∆V < 0 if the following second Finsler inequality :

Pi j +XiHi +HT
i XT

i < 0 (2.2)

holds for all i, j ∈ Λ. By substituting (2.1) in (2.2) we get the detailed inequality :
[

F̂iAi +AT
i F̂T

i − P̂i −F̂i +AT
i Ĝi

−F̂T
i + ĜT

i Ai P̂j− Ĝi− ĜT
i

]
< 0, (2.3)

instead of [1, Inequality (9)] which is erroneous.
Now, using the same matrices as in [1], defined as follows :

F̂i = diag(Fi, I), Ĝi = diag(Gi, I), P̂i = diag(P̂11
i , P̂22

i ),

with Fi = GT
i .

To simplify the presentation and to understand more the corrected version of the result,
we consider, as in [1], systems without uncertainties, i.e :

∆Ai = 0,∆Bi = 0,∆Ci = 0, ∀i ∈ Λ.

By substituting F̂i, Ĝi, and P̂i in (2.3), and after developing, we get the following detailed
inequalities :




Ωi
11 −FiLiCi Ωi

13 0
(?) Ωi

22 −CT
i LT

i Gi Ωi
24

(?) (?) P̂11
j −GT

i −Gi 0
(?) (?) (?) P̂22

j −2I


< 0, i, j ∈ Λ (2.4)

where

Ω
i
11 =−P̂11

i +He
(

FiAi +FiBiKi

)
,

Ω
i
13 =−Fi +Ai

T Gi +KT
i BT

i Gi,

Ω
i
22 =−P̂22

i +He
(

Ai−LiCi

)
,

Ω
i
24 =−I +AT

i −CT
i LT

i .

Note that, for each i, j ∈ Λ, inequality (2.4) is a BMI, which cannot be linearized by
choosing Fi = GT

i as in [1]. This difficulty is due to the presence of the coupling FiBiKi
and GT

i BiKi, which are vanished from [1, Inequality (9)] because of the mistake.
To linearize such a BMI, we use several steps. First, we pre- and post-multiply (2.4) by
diag

(
F−1

i , I,G−T
i , I

)
, we obtain :




Ω̂i
11 −LiCi Ω̂i

13 0
(?) Ωi

22 −CT
i LT

i Ωi
24

(?) (?) G−T
i P̂11

j G−1
i −G−T

i −G−1
i 0

(?) (?) (?) P̂22
j −2I


< 0, (2.5)
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where

Ω̂
i
11 =−F−1

i P̂11
i F−T

i +He
(

AiF−T
i +BiKiF−T

i

)
,

Ω̂
i
13 =−G−1

i +F−1
i Ai

T +F−1
i KT

i BT
i .

There are still two bilinear terms in (2.5), namely −F−1
i P̂11

i F−T
i and G−T

i P̂11
j G−1

i . To
avoid these terms, we first introduce the following change of variables

F−1
i = F̃i, (P̂11

i )−1 = P̃11
i , G−1

i = G̃i, Ri = KiF−T
i .

Then, using the inequality

−F−1
i P̂11

i F−T
i ≤ P̃11

i − F̃i− F̃T
i ,

it follows that (2.5) is fulfilled if the following inequality holds :



ϒi
11 −LiCi ϒi

13 0
(?) Ωi

22 −CT
i LT

i Ωi
24

(?) (?) G̃T
i P̂11

j G̃i− G̃T
i − G̃i 0

(?) (?) (?) P̂22
j −2I


< 0, (2.6)

where

ϒ
i
11 = P̃11

i +He
(
− F̃i +AiF̃T

i +BiRi

)
,

ϒ
i
13 =−G̃i + F̃iAi

T +RT
i BT

i .

Finally, a simple application of Schur lemma [33] on (2.6) leads to the following theo-
rem, which is a corrected version of [1, Theorem 1].

Theorem 2.2.1. Assume that there exist matrices P̃11
i , P̂22

i ∈ Sn×n
+ , invertible matrices F̃i ∈

Rn×n, G̃i ∈Rn×n, and arbitrary matrices Ri ∈Rm×n, Li ∈Rn×p, i∈Λ, such that the following
LMIs are fulfilled :




ϒi
11 −LiCi ϒi

13 0 0
(?) ϒi

22 −CT
i LT

i −I +AT
i −CT

i LT
i 0

(?) (?) −G̃i− G̃T
i 0 G̃T

i
(?) (?) (?) P̂22

j −2I 0
(?) (?) (?) (?) −P̃11

j



< 0, i, j ∈ Λ (2.7)

with

ϒ
i
11 = P̃11

i +He
(
− F̃i +AiF̃T

i +BiRi

)
,

ϒ
i
13 =−G̃i + F̃iAi

T +RT
i BT

i ,

ϒ
i
22 =−P̂22

i +He
(

Ai−LiCi

)
.

Then, the closed-loop system (1.46) without uncertainties is asymptotically stable for the
observer-based controller gains

Ki = RiF̃−T
i , i ∈ Λ (2.8)

and Li, i ∈ Λ, are free solutions of (2.7).

Proof 2. The rest of the proof is omitted. It is based on the use of the Schur’s lemma
on (2.6) to linearize the remaining bilinear term G−T

i P̂11
j G−1

i .
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2.2.2 Young’s inequality based approach

This section is dedicated to the application of Young’s relation based approach introdu-
ced in [35, 36] to solve the problem of observer-based stabilization problem of linear
uncertain systems. The Young inequality based approach in [35] corresponds to F̂i = 0
and Ĝi = diag(G11,G22

i ), with G22
i = (G22

i )T . It follows that inequality (2.3) has the same
structure than [35, Inequality (11)].
The crucial linearization problem lies in the presence of the isolated term (Ci+∆Ci)

T LT
i ,

while the matrix Li is elsewhere coupled with the matrix G22
i . Then, to retrieve the term

LT
i G22

i and eliminate the isolated term related to Li, in order the make a change of
variables, a solution has been proposed in [35, 36], which provides straightforwardly
the next theorem valid for linear switched systems (1.42).

Theorem 2.2.2. Assume that for some fixed positive scalars εi, γi and µi, i ∈ Λ, there exist

positive definite matrices Di ,

[
P̃11

i P̃12
i

(?) P̂22
i

]
∈ R2n×2n and G22

i , G̃11 ∈ Rn×n, K̃i ∈ Rm×n, L̂i ∈
Rn×p, for i ∈ Λ, such that the LMI (2.9) holds for all i, j ∈ Λ




−P̃11
i −P̃12

i (1.3) 0 0 0 (1.7) 0 (1.9) 0
(?) −P̂22

i 0 (2.4) −CT
i L̂T

i 0 ET
i1 0 −ET

i3 0
(?) (?) (3.3) P̃12

j 0 I 0 0 0 0
(?) (?) (?) (4.4) 0 0 0 G22

i Mi 0 L̂iMi
(?) (?) (?) (?) −εiG22

i 0 0 0 0 L̂iMi

(?) (?) (?) (?) (?) −ε
−1
i G22

i 0 0 0 0
(?) (?) (?) (?) (?) (?) −γiI 0 0 0
(?) (?) (?) (?) (?) (?) (?) −γ

−1
i I 0 0

(?) (?) (?) (?) (?) (?) (?) (?) −µiI 0
(?) (?) (?) (?) (?) (?) (?) (?) (?) −µ

−1
i I




< 0 (2.9)

(1.3) = (G̃11)T AT
i + K̃T

i BT
i , (1.7) =−(G̃11)T ET

i1− K̃T
i ET

i1
(1.9) = (G̃11)T ET

i3, (2.4) = AT
i G22

i −CT
i L̂T

i
(3.3) = P̃11

j − G̃11− (G̃11)T , (4.4) = P̂22
j −2G22

i

(2.10)

Then the closed-loop system (1.46) is asymptotically stable with the observer-based control-
ler gains :

Ki = K̃iG̃11, Li = (G22
i )−1L̂i. (2.11)

Proof 3. The proof is omitted. It is straightforward and follows exactly the same steps
than [35]. The matrix Di comes from the change of variable :

Di ,

[
(G̃11)T 0

0 I

][
P̂11

i P̂12
i

(?) P̂22
i

][
G̃11 0

0 I

]
=

[
P̃11

i P̃12
i

(?) P̂22
i

]
.

Although Theorem 2.2.1 and Theorem 2.2.2 provide solutions to the observer-based sta-
bilization problem for switched linear systems, the obtained LMIs still remain conserva-
tive, and then there are some possibilities for improvements from LMI feasibility point of
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view. This is the objective of the next section, where new and enhanced LMI conditions
will be proposed by exploiting the Finsler’s lemma in a non-standard way.

2.3 Main Results : Enhanced LMI Conditions

In this section, we introduce the main result of this paper, which consists in new LMI
conditions to solve the problem of robust observer-based stabilization for switched sys-
tems. We will show that thanks to the use of convenient matrices in the Finsler’s lemma,
we get more general and less conservative LMIs compared to the those presented in the
previous section.

2.3.1 Introductory developments

We will analyze all the bilinear terms in (2.3) by considering the detailed structures of
F̂i, Ĝi, and P̂i as follows :

F̂i ,

[
F11

i F12
i

F21
i F22

i

]
, Ĝi ,

[
G11

i G12
i

G21
i G22

i

]
, P̂i ,

[
P̂11

i P̂12
i

(?) P̂22
i

]
. (2.12)

By substituting (4.15) in (2.3) and after developing, we get the new inequality :



Ωi
11 Ωi

12 Ωi
13 Ωi

14
(?) Ωi

22 Ωi
23 Ωi

24
(?) (?) P̂11

j − (G11
i )T −G11

i P̂12
j − (G21

i )T −G12
i

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (2.13)

where

Ω
i
11 =− P̂11

i +He
(

F11
i Ai +F11

i BiKi +(F11
i +F12

i )Li∆Ci−F12
i ∆Ai−F12

i ∆BiKi

)
,

Ω
i
12 =− P̂12

i +F12
i (Ai +∆Ai)− (F11

i +F12
i )Li(Ci +∆Ci)+AT

i (F
21
i )T ,

+KT
i BT

i (F
21
i )T +∆CT

i LT
i (F

21
i +F22

i )T −∆AT
i (F

22
i )T −KT

i ∆BT
i (F

22
i )T ,

Ω
i
13 =−F11

i +Ai
T G11

i +KT
i BT

i G11
i −∆AT

i G21
i −KT

i ∆BT
i G21

i +∆CT
i LT

i (G
11
i +G21

i ),

Ω
i
14 =−F12

i +AT
i G12

i +KT
i BT

i G12
i −∆Ai

T G22
i −KT

i ∆BT
i G22

i +∆CT
i LT

i (G
12
i +G22

i ),

Ω
i
22 =− P̂22

i +He
(

F22
i (Ai +∆Ai)− (F21

i +F22
i )Li(Ci +∆Ci)

)
,

Ω
i
23 =−F21

i − (Ci +∆Ci)
T LT

i (G
11
i +G21

i )+AT
i G21

i +∆AT
i G21

i ,

Ω
i
24 =−F22

i +AT
i G22

i +∆AT
i G22

i − (Ci +∆Ci)
T LT

i (G
12
i +G22

i ).

As we can see, the linearization problem is a hard challenge due to the presence of
twelve bilinear terms without counting the bilinearities related to the uncertainties.
We cannot use change of variables because the matrices Li, i ∈ Λ, are coupled with
eight different matrices, namely G11

i , G12
i , G22

i , G21
i , F11

i , F12
i , F22

i , and F21
i . The strategy

consists in exploiting the invertibility of the matrices G11
i , and G22

i , which is a conse-
quence of (2.13). Then we use the congruence principle with convenient matrices. To
do this, we first start by linearizing the bilinear terms related to the gains Ki. The linea-
rization procedure is presented in the next section.
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2.3.2 A new linearization procedure

To enhance the clarity of the contributions and to simplify the understanding of the
main ideas, the proposed linearization strategy is shared into three steps.

First step : Linearization with respect to Ki

Since the matrices G11
i and G22

i are necessarily invertible, then using a congruence trans-

formation on (2.13) by pre- and post-multiplying by diag
(
(G11

i )−T , I,(G11
i )−T , I

)
, we get




Ω̂i
11 Ω̂i

12 Ω̂i
13 Ω̂i

14
(?) −Ω̂i

22 Ω̂i
23 Ω̂i

24
(?) (?) Ω̂

i j
33 Ω̂

i j
34

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (2.14)

where

Ω̂
i
11 =− (G11

i )−T P̂11
i (G11

i )−1 +He
(
(G11

i )−T F11
i Ai(G11

i )−1 +(G11
i )−T F11

i BiKi(G11
i )−1

+((G11
i )−T F11

i +(G11
i )−T F12

i )Li∆Ci(G11
i )−1− (G11

i )−T F12
i ∆Ai(G11

i )−1

− (G11
i )−T F12

i ∆BiKi(G11
i )−1

)
,

Ω̂
i
12 =− (G11

i )−T P̂12
i +(G11

i )−T F12
i (Ai +∆Ai)− ((G11

i )−T F11
i +(G11

i )−T F12
i )Li(Ci +∆Ci)

+(G11
i )−T AT

i (F
21
i )T +(G11

i )−T KT
i BT

i (F
21
i )T +(G11

i )−T
∆CT

i LT
i (F

21
i +F22

i )T

− (G11
i )−T

∆AT
i (F

22
i )T − (G11

i )−T KT
i ∆BT

i (F
22
i )T ,

Ω̂
i
13 =− (G11

i )−T F11
i (G11

i )−1 +(G11
i )−T Ai

T +(G11
i )−T KT

i BT
i − (G11

i )−T
∆AT

i G21
i (G11

i )−1

− (G11
i )−T KT

i ∆BT
i G21

i (G11
i )−1 +(G11

i )−T
∆CT

i LT
i (I +G21

i (G11
i )−1),

Ω̂
i
14 =− (G11

i )−T F12
i +(G11

i )−T AT
i G12

i +(G11
i )−T KT

i BT
i G12

i − (G11
i )−T

∆Ai
T G22

i

− (G11
i )−T KT

i ∆BT
i G22

i +(G11
i )−T

∆CT
i LT

i (G
12
i +G22

i ),

Ω̂
i
22 =Ω

i
22,

Ω̂
i
23 =−F21

i (G11
i )−1− (Ci +∆Ci)

T LT
i (I +G21

i (G11
i )−1)+AT

i G21
i (G11

i )−1 +∆AT
i G21

i (G11
i )−1,

Ω̂
i
24 =Ω

i
24,

Ω̂
i j
33 =(G11

i )−T P̂11
j (G11

i )−1− (G11
i )−1− (G11

i )−T

Ω̂
i j
34 =(G11

i )−T P̂12
j − (G11

i )−T G12
i − (G11

i )−T (G21
i )T .

Then, we can be see, there are two "similar" bilinear terms in inequality (2.14), na-
mely, (G11

i )−T P̂11
i (G11

i )−1 and (G11
i )−T P̂11

j (G11
i )−T , in the expressions of Ω̂i

11, and Ω̂
i j
33,

respectively. By choosing G11
i = G11 for all i, then we can introduce a suitable change

of variables. On the other hand, in order to avoid some bilinear terms containing Ki,
we focus on the case where F11

i = 0. To sum up, we introduce the convenient change of
variables :

(G11)−1 , G̃11, K̃i , KiG̃11, (G̃11)T P̂11
i G̃11 , P̃11

i , (G̃11)T P̂12
i , P̃12

i .
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Therefore, inequality (2.14) becomes :



Ω̃i
11 Ω̃i

12 Ω̃i
13 Ω̃i

14
(?) Ω̃i

22 Ω̃i
23 Ω̃i

24
(?) (?) P̃11

j − G̃11− (G̃11)T P̃12
j − G̃11G12

i − G̃11(G21
i )T

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (2.15)

where

Ω̃
i
11 =− P̃11

i +He
(
(G̃11)T F12

i Li∆CiG̃11− (G̃11)T F12
i ∆Ai(G̃11)− (G̃11)T F12

i ∆BiK̃i

)
,

Ω̃
i
12 =− P̃12

i +(G̃11)T F12
i (Ai +∆Ai)− (G̃11)T F12

i Li(Ci +∆Ci)+(G̃11)T AT
i (F

21
i )T + K̃T

i BT
i (F

21
i )T

+(G̃11)T
∆CT

i LT
i (F

21
i +F22

i )T − (G̃11)T
∆AT

i (F
22
i )T − K̃T

i ∆BT
i (F

22
i )T ,

Ω̃
i
13 =(G̃11)T AT

i + K̃T
i BT

i − (G̃11)T
∆AT

i G21
i G̃11− K̃T

i ∆BT
i G21

i G̃11 +(G̃11)T
∆CT

i LT
i (I +G21

i G̃11),

Ω̃
i
14 =− (G̃11)T F12

i +(G̃11)T AT
i G12

i + K̃T
i BT

i G12
i − (G̃11)T

∆Ai
T G22

i − K̃T
i ∆BT

i G22
i

+(G̃11)T
∆CT

i LT
i (G

12
i +G22

i ),

Ω̃
i
22 =− P̂22

i +He
(

F22
i (Ai +∆Ai)− (F21

i +F22
i )Li(Ci +∆Ci)

)
,

Ω̃
i
23 =−F21

i G̃11− (Ci +∆Ci)
T LT

i (I +G21
i G̃11)+AT

i G21
i G̃11 +∆AT

i G21
i G̃11,

Ω̃
i
24 =−F22

i +AT
i G22

i +∆AT
i G22

i − (Ci +∆Ci)
T LT

i (G
12
i +G22

i ).

Inequality (2.15) is still a BMI with respect to K̃i, even in the uncertainty free case. This
is due to their coupling with the matrices F21

i and G12
i . Then, these bilinear terms vanish

if G12
i = F21

i = 0. Then, in such a case, inequality (2.15) is equivalent to the following
one : 



Θi
11 Θi

12 Θi
13 Θi

14
(?) Θi

22 Θi
23 Θi

24
(?) (?) P̃11

j − G̃11− (G̃11)T P̃12
j − G̃11(G21

i )T

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (2.16)

where

Θ
i
11 =− P̃11

i +He
(
(G̃11)T F12

i Li∆CiG̃11− (G̃11)T F12
i ∆Ai(G̃11)− (G̃11)T F12

i ∆BiK̃i

)
,

Θ
i
12 =− P̃12

i +(G̃11)T F12
i (Ai +∆Ai)− (G̃11)T F12

i Li(Ci +∆Ci)+(G̃11)T
∆CT

i LT
i (F

22
i )T

− (G̃11)T
∆AT

i (F
22
i )T − K̃T

i ∆BT
i (F

22
i )T ,

Θ
i
13 =(G̃11)T AT

i + K̃T
i BT

i − (G̃11)T
∆AT

i G21
i G̃11− K̃T

i ∆BT
i G21

i G̃11 +(G̃11)T
∆CT

i LT
i (I +G21

i G̃11),

Θ
i
14 =− (G̃11)T F12

i − (G̃11)T
∆Ai

T G22
i − K̃T

i ∆BT
i G22

i +(G̃11)T
∆CT

i LT
i G22

i ,

Θ
i
22 =− P̂22

i +He
(

F22
i (Ai +∆Ai)−F22

i Li(Ci +∆Ci)
)
,

Θ
i
23 =− (Ci +∆Ci)

T LT
i (I +G21

i G̃11)+AT
i G21

i G̃11 +∆AT
i G21

i G̃11,

Θ
i
24 =−F22

i +AT
i G22

i +∆AT
i G22

i − (Ci +∆Ci)
T LT

i G22
i .

Now that the BMI (2.13) is linearized with respect to the controller matrices K̃i, we will
proceed to the linearization with respect to the observer gains Li. This is the aim of the
next linearization step.
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Second step : Linearization of (2.16) with respect to Li

Throughout this step, we aim to linearize all the bilinear terms related to the observer
gains Li, namely the terms (G̃11)T F12

i LiCi, (I +G21
i G̃11)T LiCi, F22

i LiCi, and (G22
i )T LiCi.

The other terms containing the uncertainties will be handled in the third linearization
step. To avoid all the previous bilinear terms, the strategy consists in taking

(G̃11)T F12
i = I +G21

i G̃11 = (G22
i )T and F22

i = 0,

these identities lead to

F12
i = (G11)T (G22

i )T , G21
i = G22

i G11−G11 and F22
i = 0,

which means that the matrices F̂i and Ĝi have the following structures :

F̂i =

[
0 (G11)T (G22

i )T

0 0

]
, Ĝi =

[
G11 0

G22
i G11−G11 G22

i

]
. (2.17)

It follows that the following change of variable

L̂i = (G22
i )T Li

is possible.
By substituting (2.17) in (2.16) we get the new inequality :




Θ̂i
11 Θ̂i

12 Θ̂i
13 Θ̂i

14
(?) −P̂22

i Θ̂i
23 Θ̂i

24
(?) (?) P̃11

j − G̃11− (G̃11)T P̃12
j + I− (G22

i )T

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (2.18)

where

Θ̂
i
11 =− P̃11

i +He
(

L̂i∆CiG̃11− (G22
i )T

∆AiG̃11
i − (G22

i )T
∆BiK̃i

)
,

Θ̂
i
12 =− P̃12

i +(G22
i )T (Ai +∆Ai)− L̂i(Ci +∆Ci),

Θ̂
i
13 =(G̃11)T Ai

T + K̃T
i BT

i − (G̃11)T
∆Ai

T (G22
i − I)− K̃T

i ∆BT
i (G

22
i − I)+(G̃11)T

∆CT
i L̂T

i ,

Θ̂
i
14 =− (G22

i )T − (G̃11)T
∆Ai

T G22
i − K̃T

i ∆BT
i G22

i +(G̃11)T
∆CT

i L̂T
i ,

Θ̂
i
23 =− (Ci +∆Ci)

T L̂T
i +(AT

i +∆AT
i )(G

22
i − I), (2.19)

Θ̂
i
24 =AT

i G22
i +∆AT

i G22
i − (Ci +∆Ci)

T L̂T
i .

Third step : Full linearization

This step is classic and well-known in the literature, see in particular [35]. By developing
∆Ai, ∆Bi, and ∆Ci, we can rewrite (2.18) in the following convenient from :

Ξ
i j +He

(
ZT

i1 DT
i Zi2 +ZT

i3 DT
i Zi4

)
< 0, (2.20)
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where
Zi1 =

[
(Θi

15)
T Ei1 0 0

]T
, Zi3 =

[
Ei3G̃11 −Ei3 0 0

]T
,

Zi2 =
[
MT

i G22
i 0 MT

i (G
22
i − I) MT

i G22
i
]
,

Zi4 =
[
MT

i L̂T
i 0 MT

i L̂T
i MT

i L̂T
i
]
,

Ξ
i j =




−P̃11
i Θ̃i

12 Θ̃i
13 −(G22

i )T

(?) −P̂22
i Θ̃i

23 Θ̃i
24

(?) (?) P̃11
j − G̃11− (G̃11)T P̃12

j + I− (G22
i )T

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


 ,

Θ̃
i
12 =− P̃12

i +(G22
i )T Ai− L̂iCi,

Θ̃
i
13 =(G̃11)T AT

i + K̃T
i BT

i ,

Θ̃
i
15 =− (G̃11)T ET

i1− K̃T
i ET

i2,

Θ̃
i
23 =−CT

i L̂T
i +AT

i (G
22
i − I),

Θ̃
i
24 =AT

i G22
i −CT

i L̂T
i ,

Θ
i
15 =− (G̃11)T ET

i1− K̃T
i ET

i2.

Using the Young inequality [33] and the fact that DT
σ Dσ ≤ I, we deduce that inequa-

lity (4.32) is fulfilled if the following one holds :

Ξ
i j +α

−1
i ZT

i1Zi1 +αiZT
i2Zi2 +λ

−1
i ZT

i3Zi3 +λiZT
i4Zi4 < 0, (2.21)

where αi and λi are some positive scalars. Now, it remains to use Schur lemma on the
right hand side of (2.21) to get an LMI. This LMI is stated in the next theorem.

Theorem 2.3.1. Assume that there exist positive definite matrices

Di ,

[
P̃11

i P̃12
i

(?) P̂22
i

]
∈ R2n×2n,

invertible matrices G22
i and G̃11 ∈ Rn×n, and matrices K̃i ∈ Rm×n, L̂i ∈ Rn×p, for i ∈ Λ, such

that the LMI (2.22) holds for some positive constants αi and λi, for all i, j ∈ Λ.
Then the closed-loop system (1.46) is asymptotically stable with the observer-based control-
ler gains :

Ki = K̃iG̃11, Li = (G22
i )−T L̂i, i ∈ Λ. (2.23)

Proof 4. The proof is done in the three previous linearization steps. It remains to apply the
Schur lemma on the right hand side of (2.21) to get the LMI (2.22). The matrices Di, for
i ∈ Λ, come from the change of variable :

Di ,

[
P̃11

i P̃12
i

(?) P̂22
i

]
=

[
(G̃11)T 0

0 I

][
P̂11

i P̂12
i

(?) P̂22
i

][
G̃11 0

0 I

]
, ∀i ∈ Λ.
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


−P̃11
i (1.2) (1.3) −(G22

i )T (1.5) (G22
i )T Mi (G̃11)T ET

i3 L̂iMi

(?) −P̂22
i (2.3) (2.4) ET

i1 0 −ET
i3 0

(?) (?) (3.3) (3.4) 0 (3.6) 0 L̂iMi

(?) (?) (?) (4.4) 0 (G22
i )T Mi 0 L̂iMi

(?) (?) (?) (?) −αiI 0 0 0
(?) (?) (?) (?) (?) −α

−1
i I 0 0

(?) (?) (?) (?) (?) (?) −λiI 0
(?) (?) (?) (?) (?) (?) (?) −λ

−1
i I




< 0 (2.22)

(1.2) =−P̃12
i +(G22

i )T Ai− L̂iCi, (1.3) = (G̃11)T AT
i + K̃T

i BT
i

(1.5) =−(G̃11)T ET
i1− K̃T

i ET
i2, (2.3) =−CT

i L̂T
i +AT

i (G
22
i − I)

(3.3) = P̃11
j − G̃11− (G̃11)T , (2.4) = AT

i G22
i −CT

i L̂T
i

(3.4) = P̃12
j + I− (G22

i )T , (4.4) = P̂22
j −G22

i − (G22
i )T

(3.6) = (G22
i − I)T Mi,

2.4 Numerical Design Aspects and Some Comments

2.4.1 On the Optimization of the uncertainty bounds

Notice that the scalars αi and λi are to be fixed a priori to render linear the condi-
tion (2.22). Moreover, in order to overcome this drawback and to maximize the uncer-
tainty bounds tolerated by (2.22), the uncertainties are replaced by the more general
form :

∆Ai = Mi
ADi(t)Ei1, ∆Bi = Mi

BFi(t)Ei2, ∆Ci = Mi
CHi(t)Ei1. (2.24)

The uncertain matrices, containing the uncertainty bounds, are replaced by :

DT
i (t)Di(t)≤ δ

2
i I, FT

i (t)Fi(t)≤ β
2
i I, HT

i (t)Hi(t)≤ γ
2
i I (2.25)

instead of (1.44). This formulation is often used in decentralized stabilization problem
of interconnected systems. The objective consists in maximizing the bounds δi,βi, and
γi. Such a strategy leads to an LMI without a priori choice of the scalars αi and λi.
Under these new considerations, inequality (4.32) becomes

Ξ
i j +He

(
ZT

i1 DT
i Zi2 +ZT

i3 FT
i Zi4 +ZT

i5 HT
i Zi6

)
< 0, (2.26)

where

Zi1 =
[
−Ei1G̃11 Ei1 0 0

]T
, Zi2 = Mi

A
T [G22

i 0 (G22
i − I) G22

i
]

Zi3 =
[
−Ei2K̃i 0 0 0

]T
, Zi4 = Mi

B
T [G22

i 0 (G22
i − I) G22

i
]

Zi5 =
[
Ei3G̃11 −Ei3 0 0

]T
, Zi6 =

[
Mi

C
T L̂T

i 0 Mi
C

T L̂T
i Mi

C
T L̂T

i

]
.

Using the classical Young’s relation and taking into account (2.25), we deduce that
(2.26) holds if the following one is fulfilled :
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Ξ
i j +

(
aiδ

2
i ZT

i1Zi1 + a−1
i ZT

i2Zi2 + biβ
2
i ZT

i3Zi3 + b−1
i ZT

i4Zi4 + ciγ
2
i ZT

i5Zi5 + c−1
i ZT

i6Zi6

)
< 0.

Finally, with the change of variables

ξi =
1

aiδ
2
i
, νi =

1
biβ

2
i
, κi =

1
ciγ

2
i

and by using the Schur lemma, we get the following enhanced version of Theorem 2.3.1.

Theorem 2.4.1. Assume that there exist positive definite matrices Di ∈R2n×2n and G22
i , G̃11 ∈

Rn×n, K̃i ∈ Rm×n, L̂i ∈ Rn×p, for i ∈ Λ, such that the following convex optimization problem
holds :

minTrace(Γi) subject to [
Ξi j [

ZT
i1 Zi2 Zi3 Zi4 Zi5 Zi6

]

(?) −Γi

]
< 0, i, j ∈ Λ (2.27)

Γi = diag
{

ξiI, aiI, νiI, biI, κiI, ciI
}
.

Then the closed-loop system (1.46) is asymptotically stable with the observer-based control-
ler gains :

Ki = K̃iG̃11, Li = (G22
i )−T L̂i, (2.28)

for all δi, βi, γi, i ∈ Λ, satisfying

δi ≤
1√
aiξi

, βi ≤
1√
biνi

, γi ≤
1√
ciκi

.

2.4.2 Some comments

This section is dedicated to some constructive remarks, which may be helpful and useful
for any application of the proposed enhanced LMI methodology.

On the a priori choice of some scalar variables

Conditions (2.22) and (2.9) are LMIs if the positive scalars αi, λi,εi,γi and µi are fixed a
priori. Then to get LMIs we need to use some techniques providing these a priori choices
of the scalar variables. One of the famous techniques can be found in [35, Remark 3],
namely the gridding method. It is worth noticing that this alternative solution will be
used in case where the bounds of the uncertainties are fixed and not to be maximized.
Indeed, this latter may be handled by using Theorem 2.4.1.
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Comparison with the Young relation based approach

As compared to the Young inequality based approach, the judicious choice of the slack
variable in (4.15) coming from Finsler’s lemma (especially the triangular structure of
Ĝi), has eliminated the isolated term (Ci +∆Ci)

T LT
i arising from the diagonal structure

of Ĝi used in the Young inequality based approach. Hence, the proposed enhanced LMI
design methodology based on a convenient use of Finsler’s inequality allows to avoid
all these bilinear terms without using Young’s inequality several times, which leads to
conservative LMI conditions like in the Young relation based approach [35].

Handling the uncertainties to get full linearization

It should be mentioned that Young’s relation is almost unavoidable when dealing with
uncertainties satisfying equations (1.43)-(1.44). This is due mainly to their structure
and the condition (1.44), namely DT

σ (t)Dσ (t) ≤ I. This technique is standard and well
known in the literature. We can proceed otherwise if we are dealing with other uncer-
tainties, such as LPV uncertainties. These latter can be handled more easily, thanks to
the use of the convexity principle. This LPV reformulation of the uncertainties is not
suitable in the context of the paper dealing with switched systems. Indeed, in case of
switched systems with large number of subsystems we have a large number of LMIs
to solve. Then the LPV reformulation of the uncertainties leads to a higher number of
LMIs, which may causes numerical problems from computational point of view.
On the other hand, the Young inequality based approach may be used even in the un-
certainty free case to handle the BMI coming from some coupling between decision
variables. Young’s inequality based approach is more conservative than the new propo-
sed enhanced LMI methodology based on the novel and non standard use of the Finsler
lemma. As we have mentioned above, the source of the conservatism is the diagonal
structure of the variables Gi. The conservatism comes also crucially from the manner to
handle the term (Ci +∆Ci)

T LT
i .

2.4.3 On the numerical complexity of the proposed LMI techniques

The numerical complexity associated with the proposed LMI conditions can be com-
puted in terms of the number of scalar variables and number of LMI to be solved. As
for the relaxed algorithm proposed in Theorem 2.4.1, the computational complexity
can easily be evaluated. Indeed, we must solve N2 LMIs conditions to get 12N +1 deci-
sion variables, or N(3n2 + n(m+ p+ 1)+ 6)+ n2 scalar variables. As compared with the
other conditions presented in this paper, following the comment in subsection 2.4.2, if
we use the gridding method, we must solve conditions (2.9) by scaling the parameters
εi, γi, µi via the change of variables si := εi/(1+εi), ti := γi/(1+ γi), κi := µi/(1+µi), with
si, ti, κi ∈ (0,1). Thus, for each mode i, we have to make a (uniform) mesh of the interval
(0,1) with length equal to ∆

si
i , ∆

ti
i and ∆

κi
i , respectively. If conditions (2.9) are found

feasible for (s∗i , t
∗
i ,κ

∗
i ), then this means that we solved, for each i, j ∈ Λ, the following
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number of LMI conditions : [
s∗i
∆

si
i

] [
t∗i
∆

ti
i

] [
κ∗i
∆

κi
i

]

where [x] denotes the integer part of a real number x. This amounts to solving a number
of LMI equal to

N

∑
j=1

N

∑
i=1

[
s∗i
∆

si
i

] [
t∗i
∆

ti
i

] [
κ∗i
∆

κi
i

]
.

It should be noted that this number is greater than or equal to N2. We have N2 LMIs to
solve only if the LMI (2.9) is found feasible at the first step when the gridding method is

applied, i.e :
[

s∗i
∆

si
i

]
=

[
t∗i
∆

ti
i

]
=

[
κ∗i
∆

κi
i

]
= 1. The computational complexity of the algorithm

given by (2.22) can be evaluated similarly. Table 2.1 shows the number, ]SV, of the
scalar variables, the number, ]DV, of decision variables, and the number, ]LMI, of LMI
conditions to be solved for the three tests presented here. From a numerical complexity
point of view, the superiority of (2.27) is quite clear.

Algorithm ]SV ]DV ]LMIs

LMI (2.27) N
(

3n2 +n(m+ p+1)+6
)
+n2 12N +1 N2

LMI (2.22) N
(

3n2 +n(m+ p+1)+2
)
+n2 8N +1 N

N

∑
i=1

[
τ∗i
∆

τi
i

][
υ∗i
∆

υi
i

]

LMI (2.9) N
(

3n2 +n(m+ p+1)+3
)
+n2 9N +1 N

N

∑
i=1

[
s∗i
∆

si
i

][
t∗i
∆

ti
i

][
κ∗i
∆

κi
i

]

TABLE 2.1 – Numerical complexity associated with the proposed algorithms

2.5 Numerical examples and comparisons

In this section, we present numerical examples to show the validity and effectiveness of
the proposed design methodology. For a comparison reason, we reconsider the examples
given in [35] and [1]. We will also provide a Monte Carlo simulation to evaluate the
superiority of the enhanced LMI conditions (2.22) in the uncertainty free case.

2.5.1 Example 1

Here we consider the example proposed in [1]. First, we take exactly the same example
(given without uncertainties). That is ∆Ai = ∆Bi = ∆Ci = 0 and the other parameters are
described as follows :

A1 =

[
1.5 1
0 2

]
, B1 =

[
1 2
4 0

]
,C1 =

[
3 2
0 −1

]
, (2.29a)
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A2 =

[
1.7 1
0.5 2

]
, B2 =

[
1 2
0 −1

]
,C2 =

[
1 0
−1 −1

]
. (2.29b)

It is clear that all the matrices A1 and A2 are unstable. It should be noticed that the LMI
conditions proposed in [1] are not feasible for this example, contrarily to what has been
speculated in [1]. Indeed, first, the LMI conditions given in [1] are false because the au-
thors made a mistake in [1, Inequality (9)]. This mistake removes many bilinear terms
and conducted the authors to very simple LMIs. On the other hand, despite this error,
the LMIs in [1] are not feasible for this example because of the particular choice Ĝi = F̂T

i
and a conservative way of using Finsler’s inequality. The same goes to the approach pre-
sented in [27], which is found infeasible due to a strong equality constraint. However,
using Matlab LMI toolbox, we get that both LMI (2.22) and LMI (2.9) are feasible. Note
that the solvability of (2.9) is performed via the gridding technique with respect to
epsiloni. Indeed, by scaling εi, i ∈ {1,2}, by defining si = εi/(1+ εi), with si ∈ [0.1,0.9],
then with a uniform subdivision of the interval [0.1,0.9] of length equal to ∆

si
i = 0.1,

∀i ∈ {1,2}, we get LMI (2.9) feasible for s1 = 0.7, s2 = 0.8, i.e., ε1 = 2.3333, ε2 = 4. The
observer-based controller gains are given in Table 2.2. Notice that the symbol (!) means
that the corresponding LMI condition is found infeasible.

LMI (2.7) LMI [27] LMI (2.22) LMI (2.9)
ε1 = 2.3333, ε2 = 4

K1 ( !) ( !)
[
−0.1737 −0.6394
−0.2222 −0.0530

] [
−0.1373 −0.5938
−0.2100 −0.0146

]

K2 ( !) ( !)
[
−2.3124 −4.2526
−0.1131 1.4825

] [
−2.0309 −3.6428
−0.1534 1.3106

]

L1 ( !) ( !)
[
+0.3877 −0.3601
0.0103 −1.9046

] [
+0.3403 −0.5823
0.0435 −1.7723

]

L2 ( !) ( !)
[

0.5731 −1.0100
−1.0873 −1.7078

] [
−0.7444 −1.7542
−0.9839 −1.6725

]

TABLE 2.2 – Observer-based controllers for the proposed LMI design applied to system
(2.29)

The simulation results corresponding to these observer-based controller gains obtained
by solving LMIs (2.22) are given in Figure 2.1. These simulations are done for an ho-
rizon T = 40s, with x0 =

[
−3 −5

]T and x̂0 =
[
7 −15

]T . The switching rule is taken in
this form :

σt = 1+ round(ωt) (2.30)

for t = 1 to T ,
— Algorithm 1 (switching rule generation) : for t = 1 to T ,

σt = 1+ round((N−1)∗ rand(t))

where ωt is an uniformly distributed random variable on the interval [0,1], and round(x)
is the nearest integer function of real number x. Then, the switching signal can be
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(a) Example 1 : Time-behaviors of x1 and x̂1 in the uncertainty free case.
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(b) Example 1 : Time-behaviors of x2 and x̂2 in the uncertainty free case.

realized by Matlab and a possible case is shown in Figure 2.1(d). Note that the switching
instants in Figure 2.1(d) are arbitrary.
In order to boost comparisons between the proposed LMI conditions (2.22), (2.9) and
(2.27), we add to the previous example parameter uncertainties as follows :

M1 =

[
0.35 0.2
0.3 0.15

]
, M2 =

[
0.3 −0.1
0.3 0.2

]
, (2.31a)

E11 =

[
0.22 0.22
0.2 0.25

]
, E12 =

[
0.4 0.5
0.6 0.5

]
, E13 =

[
0.2 0.21
0.15 0.25

]
, (2.31b)

E21 =

[
0.25 0.15
0.31 0.25

]
, E22 =

[
0.15 0.25
0.15 0.2

]
, E23 =

[
0.15 0.2
0.2 0.2

]
. (2.31c)

Then, the proposed LMIs (2.22) and (2.27) work successfully. LMI (2.22) is found
feasible for τ∗1 = τ∗2 = 0.5, υ∗1 = 0.7, υ∗2 = 0.6, and ∆

τi
i = ∆

υi
i = 0.1, for all i. We obtain

then, α1 = α2 =
τ∗1

1−τ∗1
= 1 and λ1 =

υ∗1
1−υ∗1

= 2.3333, λ2 =
υ∗2

1−υ∗2
= 1.5. However, the Young

inequality-based approach is found infeasible for the same values of εi given in Table 2.2,
and for the same step of discretization. The results are summarized in Table 2.3.
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(c) Example 1 : Time-behaviors of u1 and u2 in the uncertainty free case.
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FIGURE 2.1 – Example 1 : Controlled states and their estimates in the uncertainty free
case.

The simulation results corresponding to these observer-based controller gains returned
by LMIs (2.22) are shown in Figure 2.2. These simulations shown in Figure 2.2 are done
over an horizon of length T = 40s with x0 =

[
5 6.5

]T , x̂0 =
[
7 4.5

]T . The switching rule
is generated randomly as in (2.30).

2.5.2 Example 2 (Evaluation of maximum admissible uncertainty)

Through this example, we will show that the proposed LMI conditions are less conserva-
tive than those provided in [35]. We reconsider the same system as in [35, Example 1].
Obviously, this example can be viewed as a switching system under the form (1.42)
with only one mode (there is no switching). The system is described by the following
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LMI (2.22) LMI (2.27) LMI (2.9)
∆

τi
i = ∆

υi
i = 0.1, α1 = α2 = 1 ∆

ti
i = ∆

κi
i = 0.1

λ1 = 2.3333,λ2 = 1.5 ε1 = 2.3333, ε2 = 4

K1

[
−0.2532 −0.6666
−0.1582 0.1107

] [
−0.4175 −0.9023
0.3077 0.7274

]
( !)

K2

[
−2.9813 −5.7095
0.5477 2.6315

] [
−3.6037 −6.2027
1.2277 3.0381

]
( !)

L1

[
+0.4065 −0.2117
0.2954 −0.8230

] [
+0.3752 −0.2373
0.1966 −0.9884

]
( !)

L2

[
+1.1317 −0.7526
0.1649 −1.3045

] [
0.6219 −0.8185
−0.5084 −1.3906

]
( !)

TABLE 2.3 – Observer-based controllers for the proposed LMI design applied to system
(2.29)-(2.31)
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(a) Example 1 : Time-behaviors of x1 and x̂1 in the presence of uncertainties
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(b) Example 1 : Time-behaviors of x2 and x̂2 in the presence of uncertainties

matrices :

A =




1 0.1 0.4
1 1 0.5
−0.3 0 1


 , B =




0.1 0.3
−0.4 0.5
0.6 0.4


 ,C =

[
1 1 1
1 1 1

]
,
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(c) Example 1 : Time-behaviors of u1 and u2 in the presence of uncertainties
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FIGURE 2.2 – Example 1 : Simulation results in the presence of uncertainties.

MA =




0 0 0
0.1 0.3 0.1
0 0.2 0


 ,NA =




0 0 0
0.2 0 0.4
0 0.1 0


 ,

MC =

[
0 0 0.3
0 0 0.8

]
, NC =




0 0 0
0 0 0
0 0 0.2


 .

The proposed design methodology works successfully. Solving the LMI (2.22) of Theo-
rem 2.3.1 with α1 = 1 and λ1 = 0.5, we get the following gains :

K =

[
1.2322 0.8710 −0.8064
−1.9374 −1.1776 −2.0770

]
, L =




0.6909 −0.2591
0.9596 −0.3599
0.6405 −0.2402


 .
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To show the superiority of the proposed design methodology as compared with [35],
we considered uncertain matrices, scaled by the parameters γ1 and γ2, as follows :

MA = γ1




0 0 0
0.1 0.3 0.1
0 0.2 0


 , MC = γ2

[
0 0 0.3
0 0 0.8

]
.

We look for the maximum values of γ1 and γ2 that satisfy LMI (2.7) and LMI (2.22). The
results summarized in Table 4.2, reflect the superiority of the proposed methodology as
compared to the Young inequality based approach [35] and the approach in [1].

LMI (2.7) [1] LMI (9) in [35] LMI (2.22)
ε1 = 2.33 α = 6
ε3 = 1.42 λ = 51.594
ε4 = 0.08

maxγ1 ( !) 4.64 5.4
maxγ2 ( !) 1013 1015

TABLE 2.4 – Comparison between different LMI design methods

2.5.3 Numerical evaluation by Monte Carlo in the uncertainty free
case

Here we investigate the uncertainty-free case. The aim consists in evaluating numeri-
cally the necessary conditions required by each method. For this, we generate randomly
1000 stabilizable and detectable systems of dimension n = 3; p = 2 and ranging from 1
to n (with switching rule σt ∈ {1,2}). The results are summarized in Table 2.5, which
gives the percentage of systems for which the different methods addressed in this note
succeeded for each value of m.

Method LMI (2.7) LMI (2.22) LMI (2.9) LMI (60) in [27]
with εi = 10

m = 1 0 % 31.5 % 28.6 % 0.5%
m = 2 0 % 100 % 84.1% 1.5%
m = 3 0 % 90.8 % 78.7 % 2 %

TABLE 2.5 – Superiority of the proposed LMI methodology

2.6 Conclusions

This chapter developed new LMI conditions for the problem of stabilization of discrete-
time uncertain switched linear systems. First, we revisited and corrected the approach
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2.6. Conclusions

proposed in [1] that combines Finsler’s lemma and the switched Lyapunov function ap-
proach. A general theoretical method was proposed, which leads to less conservative
LMI conditions. This is due to the use of Finsler’s inequality in a new and convenient
way. Illustrative examples are presented to demonstrate the effectiveness and superio-
rity of the proposed design methodology.
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CHAPITRE

3
General Scenarios of Using Fins-

ler’s inequality for the Stabilization
of Switched Linear Systems
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3.1 Introduction

The main objective of this chapter is to revisit the stabilization problem for a class of
switching discrete-time linear systems with parameters uncertainties. Indeed, this ques-
tion is treated in [1] in the LMI framework context by leaning on the use of switching
Lyapunov functions and a false application of Finsler’s lemma in the stability analysis.
However, even with a correct application of Finsler’s lemma, the obtained results re-
main conservative. Thus, our efforts focused on the reduction of the conservatism by
adding slack variables allowing more degree of freedom in the obtained LMI condition.
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This study allowed us to propose several ways to linearize Finsler’s inequality, using a
more general structure of the switching Lyapunov matrix and the slack variables from
Finsler’s Lemma. The validity and the effectiveness of the proposed design methodology
are shown through an illustrative example.
In what follows, we will discuss several manners of choosing the matrix Fi,Gi and Pi
in order to linearize Finsler’s inequalities (2.3) (or equivalently (2.13)). This problem
presents several difficulties. First, we must linearize the terms G11

i BiKi, G21
i BiKi, F11

i BiKi
and F21

i BiKi. Second, we can not use a change of variables because the gain matrices
Li, i ∈ Λ, are attached to eight different matrices G11

i , G11
i , G22

i , G21
i , F11

i , F12
i , F22

i , and
F21

i . In order to linearize the bilinear terms attached to the gains matrices Ki, we use
the congruence principle. We study several possibilities of choosing the matrices which

appear in the expression of Xi j, namely, Fi =

[
F11

i F12
i

F21
i F22

i

]
and Gi =

[
G11

i G12
i

G21
i G22

i

]
. Also, we

will take into account the structure of the Lyapunov matrix, P̂i. Our methodology is
summarized in the diagram below (see next page).
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General Scenarios of Using Finsler’s inequality for the Stabilization of Switched Linear Systems

The next sections are devoted to new LMI design algorithms. Following the diagram in
page 4, two case studies will be presented, the first one takes into account the fact that
F11

i 6= 0 and switching Lyapunov matrix P̂i has a diagonal structure, and the second one
considers F11

i = 0 with general Lyapunov matrix P̂i. For both cases, the general structure
of both Fi and Gi is taking into account.

3.2 LMI Designs : Case when F11
i 6= 0 and P̂i diagonal

Note that in view of (2.13), the matrices G11
i , and G22

i i= 1 . . .n are necessarily invertible.

We multiply pre and post inequality (2.13) by diag
(
(F11

i )−1, I,(G11
i )−1, I

)
, and we use

the following changes of variables :

(G11
i )−1 = G̃11

i , (F11
i )−1 = F̃11

i , K̃i = Ki(F̃11
i )T ,

(P̂11
i )−1 = P̃11

i .

We focus on the particular case F21
i = G21

i = χ ∈ {0, I}. Hence, applying a result of de
Oliveira et al. [65] or [7], we obtain the equivalent form of (2.13) :




Ω̃i
11 Ω̃i

12 Ω̃i
13 Ω̃i

14
(?) Ω̃i

22 Ω̃i
23 Ω̃i

24
(?) (?) Ω̃

i j
33 G̃11

i P̂12
j − G̃11

i G12
i − G̃11

i χ

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (3.1)

where

Ω̃
i
11 =P̃11

i +He
(
− F̃11

i +Ai(F̃11
i )T +BiK̃i +(I + F̃11

i F12
i )Li∆Ci(F̃11

i )T − F̃11
i F12

i ∆Ai(F̃11
i )T

− F̃11
i F12

i ∆BiK̃i

)
,

Ω̃
i
12 =F̃11

i F12
i (Ai +∆Ai)− (I + F̃11

i F12
i )Li(Ci +∆Ci)+ K̃T

i BT
i χ + F̃11

i AT
i χ

+ F̃11
i ∆CT

i LT
i (χ +F22

i )T − F̃11
i ∆AT

i (F
22
i )T − K̃T

i ∆BT
i (F

22
i )T − F̃11

i P̂12
i ,

Ω̃
i
13 =− (G̃11

i )T + F̃11
i Ai

T + K̃T
i BT

i − F̃11
i ∆Ai

T (G̃11
i G12

i )T − K̃T
i ∆BT

i (G̃
11
i G12

i )T

+ F̃11
i ∆CT

i LT
i (I + G̃11

i G12
i )T ,

Ω̃
i
14 =− F̃11

i F12
i + F̃11

i AT
i χ + K̃T

i BT
i χ− F̃11

i ∆Ai
T (G22

i )T − K̃T
i ∆BT

i (G
22
i )T

+ F̃11
i ∆CT

i LT
i (χ +G22

i )T ,

Ω̃
i
22 =− P̂22

i +He
(

F22
i Ai +F22

i ∆Ai− (F22
i +χ)Li(Ci +∆Ci)

)
,

Ω̃
i
23 =−χ(G̃11

i )T − (Ci +∆CT
i )

T LT
i (I + G̃11

i G12
i )T +(AT

i +∆AT
i )(G̃

11
i G12

i )T ,

Ω̃
i
24 =−F22

i +AT
i (G

22
i )T +∆AT

i (G
22
i )T − (Ci +∆Ci)

T LT
i (G

22
i +χ)T ,

Ω̃
i j
33 =G̃11

i P̂11
j (G̃11

i )T − G̃11
i − (G̃11

i )T .

Therefore, we will consider two cases, each one in a separated subsection.
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3.2. LMI Designs : Case when F11
i 6= 0 and P̂i diagonal

3.2.1 First case

In this case, we choose

F12
i = F11

i G22
i −F11

i (I−χ), G12
i = G11

i G22
i −G11

i (I−χ)

where χ ∈ {0, I}. Note that (4.28) is still a BMI because of presence of the coupling term
G̃11

i P̂11
j (G̃11

i )T . On the other hand, the gain matrix Li is attached to different variables,
so we must identify the four terms (I + F̃11

i F12
i )LiCi, (I + G̃11

i G12
i )LiCi, (F22

i + χ)LiCi and
(G22

i +χ)LiCi, which amounts to put :

G22
i = I + F̃11

i F12
i −χ = I + G̃11

i G12
i −χ = F22

i ,

thus, we can introduce the change of variable

L̂i = (G22
i +χ)Li.

Note that such a change of variable requiers a stronger condition on G22
i to be well

defined when χ = I. In fact, the invertibility of (G22
i + χ) is note guaranteed even if G22

i
is. But under the additional "stronger" condition −I < G22

i ≤ I, the matrix G22
i + χ, for

each i ∈ Λ, is well and truly invertible.
Now, in order to deal with the bilinear term G̃11

i P̂11
j (G̃11

i )T , we state the following
lemma :

Lemma 3.2.1. If (P̂11
j )−1− G̃11

i and(P̂11
j )−1 +(G̃11

i )T are positive definite matrices (or ne-
gative definite matrices), then

G̃11
i P̂11

j (G̃11
i )T ≤ (P̂11

j )−1 +(G̃11
i )T − G̃11

i . (3.2)

Proof 5. Since (P̂11
j )−1− G̃11

i and(P̂11
j )−1+(G̃11

i )T and P̂11
j are positive define matrices, we

get (
(P̂11

j )−1− G̃11
i
)

P̂11
j
(
(P̂11

j )−1 +(G̃11
i )T)≥ 0

by developing, we get

(P̂11
j )−1 +(G̃11

i )T − G̃11
i − G̃11

i P̂11
j (G̃11

i )T ≥ 0

Which is equivalent to

G̃11
i P̂11

j (G̃11
i )T ≤ (P̂11

j )−1 +(G̃11
i )T − G̃11

i .

In our study, we didn’t take the case (P̂11
j )−1− G̃11

i and(P̂11
j )−1+(G̃11

i )T are negative define
matrices i.e (P̂11

j )−1 < G̃11
i and(P̂11

j )−1 <−(G̃11
i )T . Indeed,

— If (P̂11
j )−1 < G̃11

i then G̃11
i > 0, and we have (P̂11

j )−1 < −(G̃11
i )T , i.e (P̂11

j )−1 < 0.
Thus, we get a contradiction.

— If (P̂11
j )−1 <−(G̃11

i )T then (G̃11
i )T < 0, we also have (P̂11

j )−1 < G̃11
i i.e (P̂11

j )−1 < 0.
A contradiction.
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Now come back to the linearization problem with respect the bilinear term G̃11
i P̂11

j (G̃11
i )T .

We use (3.2) in the right hand side of (4.28), we deduce that (4.28) satisfied if the fol-
lowing inequality :




Θi
11 Θi

12 Θi
13 Θi

14
(?) Θi

22 Θi
23 Θi

24
(?) (?) P̃11

j −2G̃11
i Θ

i j
34

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


< 0, (3.3)

holds, where

Θ
i
11 =P̃11

i +He
(
− F̃11

i +Ai(F̃11
i )T +BiK̃i + L̂i∆Ci(F̃11

i )T − (G22
i +χ− I)∆Ai(F̃11

i )T

− (G22
i +χ− I)∆BiK̃i

)
,

Θ
i
12 =− F̃11

i P̂12
i +(G22

i +χ− I)Ai +(G22
i +χ− I)∆Ai− L̂i(Ci +∆Ci)+ K̃T

i BT
i χ + F̃11

i AT
i χ

+ F̃11
i ∆CT

i L̂T
i − F̃11

i ∆AT
i (G

22
i )T − K̃T

i ∆BT
i (G

22
i )T ,

Θ
i
13 =− (G̃11

i )T + F̃11
i Ai

T + K̃T
i BT

i − F̃11
i ∆Ai

T (G22
i +χ− I)T − K̃T

i ∆BT
i (G

22
i +χ− I)T

+ F̃11
i ∆CT

i L̂T
i ,

Θ
i
14 =− (G22

i +χ− I)+ F̃11
i AT

i χ + K̃T
i BT

i χ− F̃11
i ∆Ai

T (G22
i )T − K̃T

i ∆BT
i (G

22
i )T + F̃11

i ∆CT
i L̂T

i ,

Θ
i
22 =− P̂22

i +He
(

G22
i Ai +G22

i ∆Ai− L̂i(Ci +∆Ci)
)
,

Θ
i
23 =−χ(G̃11

i )T − (Ci +∆CT
i )

T L̂T
i +AT

i (G
22
i +χ− I)T +∆AT

i (G
22
i +χ− I)T ,

Θ
i
24 =−G22

i +AT
i (G

22
i )T +∆AT

i (G
22
i )T − (Ci +∆Ci)

T L̂T
i ,

Θ
i j
34 =G̃11

i P̂12
j − (G22

i +χ− I)− G̃11
i χ.

By developing ∆Ai,∆Bi and ∆Ci, we can rewrite the previous inequality in the following
more suitable form :

Ωi j = Ξi j +He
(
ZT

i1DT
i Zi2 +ZT

i3DT
i Zi4

)
, (3.4)

where :

Ξi j =




ϒi
11 ϒi

12 ϒi
13 ϒi

14
(?) ϒi

22 ϒi
23 ϒi

24
(?) (?) P̃11

j −2G̃11
i ϒ

i j
34

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


 ,

ϒ
i
11 =P̃11

i − F̃11
i − (F̃11

i )T +He
(

Ai(F̃11
i )T +BiK̃i

)
,

ϒ
i
12 =− F̃11

i P̂12
i +(G22

i +χ− I)Ai− L̂iCi + K̃T
i BT

i χ + F̃11
i AT

i χ,

ϒ
i
13 =F̃11

i AT
i + K̃T

i BT
i − (G̃11

i )T ,

ϒ
i
14 =I−G22

i −χ + F̃11
i AT

i χ + K̃T
i BT

i χ,

ϒ
i
22 =− P̂22

i +He
(

G22
i Ai− L̂iCi

)
,

ϒ
i
23 =−χ(G̃11

i )T +AT
i (G

22
i +χ− I)T −CT

i L̂T
i ,
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3.2. LMI Designs : Case when F11
i 6= 0 and P̂i diagonal

ϒ
i
24 =AT

i (G
22
i )T −CT

i L̂T
i −G22

i ,

ϒ
i j
34 =G̃11

i P̂12
j + I−G22

i −χ− G̃11
i χ,

ϒ
i
19 =− F̃11

i ET
i1− K̃T

i ET
i2,

and

Zi1 =
[
(ϒi

19)
T Ei1 0 0

]T

Zi3 =
[
Ei3(F̃11

i )T −Ei3 0 0
]

Zi2 = MT
i Zi2

Zi2 =
[
(G22

i +χ− I)T (G22
i )T (G22

i +χ− I)T (G22
i )T

]

Zi4 =
[
MT

i L̂T
i MT

i L̂T
i MT

i L̂T
i MT

i L̂T
i
]

Consequently, applying the classical Young inequality (see e.g. [33]), we get the follo-
wing inequality :

Ωi j ≤ Ξi j + γiZT
i1Zi1 + γ

−1
i ZT

i2Zi2 +λiZT
i3Zi3 +λ

−1
i ZT

i4Zi4, (3.5)

where γi and λi are some positive scalars. Using Schur’s Lemma (see, [33]), we deduce
that the inequalities Ωi j < 0, i, j ∈ Λ are satisfied (after assuming that P̂12

i = 0 (i.e, P̂i
are diagonal matrices)), if the LMI (4.21) is feasible. So we just proved the following
theorem :

Theorem 3.2.2. For the closed-loop switched system (1.46), if there exist positive definite
matrices P̃11

i , P̂22
i ∈Rn×n, invertible matrices G22

i , G̃11
i , F̃11

i ∈Rn×n so that P̃11
j +(G̃11

i )T > 0
and P̃11

j − G̃11
i > 0 for all i, j ∈ Λ, matrices K̃i ∈ Rp×n, L̂i ∈ Rn×m, and positives scalars λi,γi

such that (3.6) holds for all i, j ∈ Λ,
[

Ξi j Si
(?) Di

]
< 0, (3.6)

where :

Ξi j =




ϒi
11 ϒi

12 ϒi
13 ϒi

14
(?) ϒi

22 ϒi
23 ϒi

24
(?) (?) P̃11

j −2G̃11
i ϒ

i j
34

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


 ,

ϒ
i
11 =P̃11

i +He
(
− F̃11

i +Ai(F̃11
i )T +BiK̃i

)
,

ϒ
i
12 =(G22

i +χ− I)Ai− L̂iCi + K̃T
i BT

i χ + F̃11
i AT

i χ,

ϒ
i
13 =F̃11

i AT
i + K̃T

i BT
i − (G̃11

i )T ,

ϒ
i
14 =I−G22

i −χ + F̃11
i AT

i χ + K̃T
i BT

i χ,

ϒ
i
22 =− P̂22

i +He
(

G22
i Ai− L̂iCi

)
,

ϒ
i
23 =−χ(G̃11

i )T +AT
i (G

22
i +χ− I)T −CT

i L̂T
i ,
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ϒ
i
24 =AT

i (G
22
i )T −CT

i L̂T
i −G22

i ,

ϒ
i j
34 =I−G22

i −χ− G̃11
i χ, ϒ

i
19 =−F̃11

i ET
i1− K̃T

i ET
i2,

and

Si =




ϒi
19 (G22

i +χ− I)Mi F̃11
i ET

i3 L̂iMi
ET

i1 G22
i Mi −ET

i3 L̂iMi
0 (G22

i +χ− I)Mi 0 L̂iMi
0 G22

i Mi 0 L̂iMi


 ,

Di = diag(−γ
−1
i I,−γiI,−λ

−1
i I,−λiI)

Then the closed-loop switched system (1.46) is asymptotically stable under an arbitrary
switching with the gains

Ki = K̃i(F̃11
i )−T ,andLi = (G22

i +χ)−1L̂i, i ∈ Λ. (3.7)

3.2.2 Second case

In what follows, we assume that F22
i = 0 and F21

i = G21
i = 0. Let us choose

F12
i = F11

i G22
i −F11

i , G12
i = G11

i G22
i −G11

i .

We replace the corresponding Fi,Gi in (4.28) and by using the same steps as in the
previous case, we conclude the following theorem :

Theorem 3.2.3. For the closed-loop switched system (1.46), if there exist positive definite
matrices P̃11

i , P̂22
i ∈Rn×n, invertible matrices G22

i , G̃11
i , F̃11

i ∈Rn×n so that P̃11
j +(G̃11

i )T > 0
and P̃11

j − G̃11
i > 0 for all i, j ∈ Λ, matrices K̃i ∈ Rp×n, L̂i ∈ Rn×m, and positives scalars λi,γi

such that (3.8) holds for all i, j ∈ Λ,
[

Ξ
i j
1 Si

12
(?) Di

]
< 0, (3.8)

where :

Ξ
i j
1 =




ϒi
11 ϒi

12 ϒi
13 I−G22

i
(?) −P̂22

i ϒi
23 AT

i (G
22
i )T −CT

i L̂T
i

(?) (?) P̃11
j −2G̃11

i I−G22
i

(?) (?) (?) P̂22
j −G22

i − (G22
i )T


 ,

ϒ
i
11 =P̃11

i − F̃11
i − (F̃11

i )T +He
(
Ai(F̃11

i )T +BiK̃i
)
,

ϒ
i
12 =(G22

i − I)Ai− L̂iCi,

ϒ
i
13 =F̃11

i AT
i + K̃T

i BT
i − (G̃11

i )T ,

Si
12 =




−F̃11
i ET

i1− K̃iET
i2 (G22

i − I)Mi F̃11
i ET

i3 L̂iMi
ET

i1 0 −ET
i3 0

0 (G22
i − I)Mi 0 L̂iMi

0 G22
i Mi 0 L̂iMi


 ,
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3.3. LMI Designs : Case when F11
i = 0 and P̂i non diagonal

Di = diag(−γ
−1
i I,−γiI,−λiI,−λ

−1
i I)

Then the closed-loop switched system (1.46) is asymptotically stable under an arbitrary
switching with the gains

Ki = K̃i(F̃11
i )−T and Li = (G22

i )−1L̂i, i ∈ Λ. (3.9)

Remark 3.2.4. 1. Notice that the study corresponding to Fi = Gi = I is not interesting.
Indeed, from a numerical point of view, we did not get any result.

2. In the previous cases, we chose P̂i as a diagonal matrix because F11
i 6= G11

i , and in
case where F11

i = G11
i , we can choose P̂i as a plain matrix.

3.3 LMI Designs : Case when F11
i = 0 and P̂i non diagonal

In this case we cannot use the technique in of slack variable in [65] or [7] and property
(3.2). As an alternative, we choose G11

i = G11 , that is independent of i. Recall that G11

and G22
i , for i = 1 . . .N are necessarily invertible. Here, we consider four cases.

3.3.1 First case : Fi 6= 0

We use the same steps as in the previous subsection. First, we pre-and post multiply
(2.13) by diag

(
(G11)−1, I,(G11)−1, I

)
and we are going to substitute some terms as fol-

lows :

(G11)−1 = G̃11, K̃i = Ki(G̃11)T , G̃11P̂11
i (G̃11)T = P̃11

i ,

F21
i = G21

i = χ(χ = 0or I), G̃11P̂12
i = P̃12

i .

We will observe that the gain matrix Li is attached to G̃11F12
i , χ +F22

i , I + G̃11G12
i and

G22
i +χ, so we identify

G̃11F12
i = χ +F22

i = I + G̃11G12
i = G22

i +χ.

This leads to the following choices of F22
i = G22

i ,

F12
i = G11(G22

i +χ) and G12
i = G11(G22

i +χ− I).

Thus after linearizing with respect to the uncertainties, we get the following theorem.

Theorem 3.3.1. For the closed-loop switched system (1.46), if there exist positive definite
matrices Di ∈ R2n×2n, invertible matrices G22

i , G̃11, F̃11
i ∈ Rn×n, matrices K̃i ∈ Rp×n, L̂i ∈
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General Scenarios of Using Finsler’s inequality for the Stabilization of Switched Linear Systems

Rn×m, and positives scalars λi,γi so that (3.10) holds for all i, j ∈ Λ,



−P̃11
i Θi

12 Θi
13 Θi

14 Θi
15 (G22

i +χ)Mi G̃11ET
i3 L̂iMi

(?) Θi
22 Θi

23 Θi
24 ET

i1 G22
i Mi −ET

i3 L̂iMi

(?) (?) Θ
j
33 Θ

i j
34 0 (G22

i +χ− I)Mi 0 L̂iMi
(?) (?) (?) P̂22

j −G22
i − (G22

i )T 0 G22
i Mi 0 L̂iMi

(?) (?) (?) (?) −αiI 0 0 0
(?) (?) (?) (?) (?) −α

−1
i I 0 0

(?) (?) (?) (?) (?) (?) −λiI 0
(?) (?) (?) (?) (?) (?) (?) −λ

−1
i I




< 0.

(3.10)
where

Θ
i
12 =− P̃12

i +(G22
i +χ)Ai− L̂iCi +(K̃T

i BT
i + G̃11AT

i )χ, Θ
i
13 = G̃11AT

i + K̃T
i BT

i ,

Θ
i
14 =− (G22

i +χ)+ G̃11AT
i χ + K̃T

i BT
i χ, Θ

i
22 =−P̂22

i +He
(

G22
i Ai− L̂iCi

)
,

Θ
i
23 =− (G̃11)T

χ−CT
i L̂T

i +AT
i (G

22
i +χ− I)T , Θ

i
24 = AT

i (G
22
i )T −CT

i L̂T
i −G22

i ,

Θ
j
33 =P̃11

j − G̃11− (G̃11)T , Θ
i j
34 = P̃12

j + I−G22
i −χ− G̃11

χ,

Di =

[
P̃11

i P̃12
i

(?) P̂22
i

]
, Θ

i
15 =−G̃11ET

i1− K̃T
i ET

i2, ∀i ∈ Λ,

Then the closed-loop switched system (1.46) is asymptotically stable under an arbitrary
switching rule with the gains

Ki = K̃i(G̃11)−T and Li = (G22
i +χ)−1L̂i, i ∈ Λ. (3.11)

3.3.2 Second case

Let us put : Fi =

[
0 G11G22

i
0 F22

i

]
with F22

i = χ = 0 and choose Gi =

[
G11 G11G22

i −G11

0 G22
i

]
. We

replace Fi, Gi in inequality (2.13), and using the same step as previously, we get the
following theorem

Theorem 3.3.2. For the closed-loop switched system (1.46), if there exist positive definite
matrices Di ∈ R2n×2n and G22

i , G̃11 ∈ Rn×n, K̃i ∈ Rp×n, L̂i ∈ Rn×m and a positives scalars
λi,αi satisfying, for ∀i, j ∈ Λ = 1,2, . . . ,N, the LMI(3.12),



−P̃11
i Θi

12 Θi
13 −G22

i Θi
15 G22

i Mi G̃11ET
i3 L̂iMi

(?) −P̂22
i Θi

23 AT
i (G

22
i )T −CT

i L̂T
i ET

i1 0 −ET
i3 0

(?) (?) Θi
33 P̃12

j + I−G22
i 0 (G22

i − I)Mi 0 L̂iMi

(?) (?) (?) P̂22
j −G22

i − (G22
i )T 0 G22

i Mi 0 L̂iMi

(?) (?) (?) (?) −αiI 0 0 0
(?) (?) (?) (?) (?) −α

−1
i I 0 0

(?) (?) (?) (?) (?) (?) −λiI 0
(?) (?) (?) (?) (?) (?) (?) −λ

−1
i I




< 0.

(3.12)
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3.3. LMI Designs : Case when F11
i = 0 and P̂i non diagonal

where

Θ
i
12 =− P̃12

i +G22
i Ai− L̂iCi, Θ

i
15 =−G̃11ET

i1− K̃T
i ET

i2, Θ
i
13 = G̃11AT

i + K̃T
i BT

i ,

Θ
i
23 =−CT

i L̂T
i +AT

i (G
22
i − I)T , Θ

i
33 = P̃11

j − G̃11− (G̃11)T ,

Di =

[
P̃11

i P̃12
i

(?) P̃22
i

]
∀i ∈ Λ,

then the closed-loop switched system (1.46) is asymptotically stable under an arbitrary
switching rule with the gains Li = (G22

i )−1L̂i and Ki = K̃i(G̃11)−T , for i ∈ Λ.

Remark 3.3.3. When Fi = 0, the approach of the Finsler’s lemma coincides with the stan-
dard Lyapunov approach for stability analysis.

3.3.3 Third case

Let us choose Fi = 0 and Gi =

[
G11 G12

i
0 G22

i

]
, we replace Fi and Gi in (2.13), we pre-

and post multiply the obtained BMI by diag
(
(G11)−1, I,(G11)−1, I

)
and we introduce the

following notations and changes of variables :

(G11)−1 = G̃11, (G11)−1P11
i (G11)−T = P̃11

i , K̃i = Ki(G11)−T ,

L̂i = G22
i Li, G22

i = I + G̃11G12
i , P̃12

i = (G11)−1P12
i .

By using the standard Young inequality and Schur lemma (see, [33]), we get LMI
(3.13).




−P̃11
i −P̃12

i Θi
13 0 Θi

15 0 G̃11ET
i3 0

(?) −P̂22
i Θi

23 AT
i (G

22
i )T −CT

i L̂T
i ET

i1 0 −ET
i3 0

(?) (?) Θ
j
33 P̂12

j −G22
i + I 0 (G22

i − I)Mi 0 L̂iMi

(?) (?) (?) P22
j −He

(
G22

i

)
0 G22

i Mi 0 L̂iMi

(?) (?) (?) (?) −ε
−1
i I 0 0 0

(?) (?) (?) (?) (?) −εiI 0 0
(?) (?) (?) (?) (?) (?) −αiI 0
(?) (?) (?) (?) (?) (?) (?) −α

−1
i I




< 0.

(3.13)
where :

Θ
i
13 =G̃11AT

i + K̃T
i BT

i , Θ
i
15 =−G̃11ET

i1− K̃T
i ET

i2,

Θ
i
23 =−CT

i L̂T
i +AT

i (G
22
i − I)T ,

Θ
j
33 =P̃11

j −He
(

G̃11
)
.
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General Scenarios of Using Finsler’s inequality for the Stabilization of Switched Linear Systems

3.3.4 Fourth case

We choose Fi = 0, and Gi = diag(G11,G22
i ) and G11 independent of i (i.e. G11

i = G11). In
this case, we apply the Young inequality approach as in [66]. We will get LMI (3.14).



−P̃11
i −P̃12

i Θi
13 0 0 0 Θi

17 0 G̃11ET
i3 0

(?) −P̂22
i 0 Θi

24 −CT
i L̂T

i 0 ET
i1 0 −ET

i3 0
(?) (?) Θ

j
33 P̃12

j 0 I 0 0 0 0
(?) (?) (?) P̂22

j −2G22
i 0 0 0 G22

i Mi 0 L̂iMi

(?) (?) (?) (?) −µiG22
i 0 0 0 0 L̂iMi

(?) (?) (?) (?) (?) −µ
−1
i G22

i 0 0 0 0
(?) (?) (?) (?) (?) (?) −γiI 0 0 0
(?) (?) (?) (?) (?) (?) (?) −γ

−1
i I 0 0

(?) (?) (?) (?) (?) (?) (?) (?) −εiI 0
(?) (?) (?) (?) (?) (?) (?) (?) (?) −ε

−1
i I




< 0.

(3.14)
where :

Θ
i
13 =G̃11AT

i + K̃T
i BT

i ,

Θ
i
17 =− G̃11ET

i1− K̃T
i ET

i2,

Θ
j
33 =P̃11

j − G̃11− (G̃11)T ,

Θ
i
24 =AT

i G22
i −CT

i L̂T
i .

Remark 3.3.4. Conditions (3.6), (3.8), (3.10), (3.12), (3.13) and (3.14) are LMIs if the
scalars αi,λi,εi,γi,µi, for all i ∈ Λ, are fixed a priori. The computational issue involved by
each LMI can be tackled by linearization technique proposed in [35, Remark 3].

3.4 Numerical examples and comparisons

In this section, we present numerical examples to show the validity and effectiveness of
the proposed design methodology. The first one is especially related with a comparative
study of the different obtained LMI conditions. The second one serves to demonstrate
the validity of our approach.

Example 1 : Numerical evaluation by Monte Carlo in uncertainties
free case

We randomly generate 1000 stabilization and detectable systems via a Monte Carlo
simulation ( with switching rule σ ∈ {1,2}), and compute the percentage of feasible
LMIs for each method with µi = 10 in LMI (3.14), ∆Ai = ∆Bi = ∆Ci = 0, and χ = 0. The
results are summarized in Table (3.15).
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3.4. Numerical examples and comparisons
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The percentage of feasibility is weak in LMI (3.6) and LMI (3.10). Similarly, the simula-
tion results obtained (not reported here) in the case where χ = I are scarcely interesting,
because of the constraint of invertibility of G22

i + I. In all cases, our study shows that the
structure of the matrices P̂i, Fi and Gi plays a crucial role for the feasibility of the obtai-
ned LMI conditions.

Example 2

For an F−18 aircraft, it is necessary to stabilize the longitudinal dynamics independent
of heights since the fact that the F−18 aircraft needs to operate at all possible heights,
and the stability has to be persevered for all the possible operation points in the presence
of faulty actuators. Now, we apply the proposed methods to the following longitudinal
dynamics of the F-18 aircraft operating on two different heights [11],

A1 =



−0.8 0 0

0 −0.2296 0.9931
0 0.2436 −2.046


 , B1 =




0 0
−0.0434 0.0115
−1.73 −0.517


 ,

A2 =



−0.8 0 0

0 −0.2423 0.9964
0 −2.342 −0.1737


 , B2 =




0 0
−0.0416 0.0114
−2.595 −0.8161


 ,

C1 =

[
0 1 0
0 0 1

]
, C2 =

[
0 1 0
0 0 1

]
,

∆Ai =




0.35sin(x1− x2) −0.35sin(x1− x2) 0
0 0 0
0 0 0


 , ∆Ci =

[
0 0 0
0 0 0

]

and thus with

M1 = M2 =



√

0.35
√

0.35 0
0 0 0
0 0 0


 , E11 = E21 =



√

0.35 0 0
0

√
0.35 0

0 0 0


 .

Euler discretisation is applied to such a system to obtain a discrete-time model with
sample period inferior to δ = 1.4 we get LMI feasible, we chose δ = 1.4, we need to
solve the (2.22) with system matrices Ãi = I + δAi, B̃i = δBi, M̃i =

√
δMi, Ẽi1 =

√
δEi1.

instead of Ai, Bi, Mi, Ei1.
Applying our design methodology, the solution of the LMI (2.22) with α1 = 1.5,α2 = 1.5,
provides the following gains :

K1 =

[
0 6.8676 11.8050
0 −22.4156 −42.0954

]
, L1 =




0 0
0.5638 0.9982
0.3410 −1.8526


 ,

K2 =

[
0 6.4509 12.9395
0 −23.9305 −40.4780

]
, L2 =




0 0
0.5638 0.9982
0.3410 −1.8526


 .

The simulation results are illustrated in Figure 3.2 -3.3.
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3.5 Conclusion

This chapter has developed new sufficient linear matrix inequality conditions for the
problem of stabilization of discrete-time uncertain switched linear systems under ar-
bitrary switching rule. We revisited and corrected the approach proposed in [1] that
combines the Finsler’s Lemma and the Switching Lyapunov function approach. A global
theoretical study was performed, in particular, we obtained Lemma 2 that could lead
to quite interesting applications in the field of LMI. This study has allowed us to offer
several ways to linearize Finsler’s inequality, by choosing judiciously the slack variables
coming from Finsler’s Lemma. An example has been investigated, and a simulation re-
sults are presented to demonstrate the effectiveness of the proposed methods.
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FIGURE 3.2 – Observer-based stabilized states in example F−18 aircraft
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4.1 Introduction

This chapter presents a robust observer-based H∞ controller design method via LMIs
for a class of switched discrete-time linear systems with l2-bounded disturbances and
parameter uncertainties. The main contribution of this chapter may be viewed as :
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1. an extension of the technique presented in previous chapters to systems with
with l2-bounded disturbances in the dynamical equations and the output mea-
surements ;

2. an improvement of the LMI techniques in [67] by introducing a more general
structure of the slack variables coming from Finsler’s lemma.

More precisely, we propose a new and judicious use of the slack variables coming from
Finsler’s lemma. We show analytically how the proposed slack variables allow to eli-
minate some bilinear matrix coupling. The validity and effectiveness of the proposed
design methodology are shown through two numerical examples.

4.2 Formulation of the Problem

4.2.1 System description

Let us consider the class of switching discrete-time linear systems described by :

xt+1 = (Aσt +∆Aσt )xt +Bσt ut +Eσt ωt (4.1a)
yt = (Cσt +∆Cσt )xt +Sσt ωt (4.1b)
zt = Hσt xt +Dσt ut + Jσt ωt (4.1c)

where t ∈N, xt ∈Rn is the state vector, yt ∈Rp is the output measurement, ut ∈Rm is the
control input, wt ∈ Rv is an unknown exogenous disturbance, zt ∈ Rq is the controlled
output, and σ : N→ Λ = {1,2, . . . ,N}, t 7→ σt , is a switching rule.
Without ambiguity and for shortness, we write σ instead of σt . The matrices Aσ ∈Rn×n,
Bσ ∈Rn×m, Eσ ∈Rn×v, Cσ ∈Rp×n, Sσ ∈Rp×v, Hσ ∈Rq×n, Dσ ∈Rq×m, and Jσ ∈Rq×v,σ ∈
Λ, are constant with real coefficients.
The uncertainties ∆Aσ and ∆Cσ are structured and norm-bounded in the sense of condi-
tions

[∆Aσ , ∆Cσ ] = [Mσ , Nσ ]Γσ [Eσ , Sσ ], (4.2)

Γ
T
σ Γσ ≤ I, (4.3)

where the matrices Mσ ,Nσ ,Eσ ,Sσ are known constant which characterize the structure
of the uncertainty, and the normalized matrix Γσ contains the uncertain parameters.
The pairs (Aσ ,Bσ ) and (Aσ ,Cσ ) are assumed to be stabilizable and detectable, respec-
tively. Throughout the paper, the coming assumptions are to build (see e.g. [1], [68]).
Assume without loss of generality that the switching rule σt satisfies the following two
items :

— The switching rule σ is not known a priori, but its instantaneous value is available
in real time.

— The switching of the observer for systems should coincide exactly with the swit-
ching of the system.

Remark 4.2.1. It is worth to notice that when Λ= {1}, the class of systems (4.1) is reduced
to the class of linear discrete-time systems with parameter uncertainties widely investigated
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in recent literature [69], [70]. For instance, in the uncertainty free case, we get the class of
systems investigated in [71].

Remark 4.2.2. Without loss of generality, we can consider an arbitrary switching rule σt .
That is the instantaneous values of the switching rule are not available in real time, and
then the switching rule in the observer, σ̂t , does not coincide with σt . Indeed, for instance,
the simple class of systems

xt+1 = Aσt xt +But (4.4a)
yt =Cσt xt (4.4b)

can be rewritten under the form

xt+1 =
(

Aσ̂t +

∆A︷ ︸︸ ︷
(Aσt −Aσ̂t )

)
xt +But (4.5a)

yt =
(

Cσ̂t +

∆C︷ ︸︸ ︷
(Cσt −Cσ̂t )

)
xt (4.5b)

where σ̂t is the estimated switching mode σt that will be used in the observer-based control-
ler. The class of systems (4.4) is often investigated in the literature, some times in swit-
ching context [28], [27], [32], and some times in the LPV context with inexact parame-
ters [37], [38]. Notice that switching systems with arbitrarily switching rule may be very
useful in many practical applications. For instance, this is the case when σt is computed
via complex algorithms by a higher level supervisor ; or when it is generated by a human
operator [25] (for example the switch of gears in a car). On the other hand, notice that
the class of systems (1.42) can be generalized to systems with Bσt +∆Bσt ,Eσt +∆Eσt ,Sσt +
∆Sσt ,Hσt +∆Hσt , and Jσt +∆Jσt instead of Bσt ,Eσt ,Sσt ,Hσt , and Jσt , respectively. For simpli-
city of the presentation and more clarity of the new proposed tools, we consider only the
class of systems (1.42) in this chapter.

4.2.2 H∞ Observer-based stabilization problem

The state observer-based controller we consider in this chapter has the following stan-
dard structure :

x̂t+1 = Aσ x̂t +Bσ ut +Lσ

(
yt−Cσ x̂t

)
(4.6a)

ut = Kσ x̂t (4.6b)

where x̂t ∈ Rn is the estimate of xt , and for each σ ∈ Λ, Lσ ∈ Rn×p,Kσ ∈ Rm×n is the
observer-based controller gains to be determined such that the estimation error et =
xt − x̂t and the state xt satisfy a prescribed performance criterion, namely the H∞ crite-
rion considered in this chapter.
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From (4.1) and (4.6), the dynamics of the augmented vector x̄t = [x̂T
t eT

t ]
T is given by :

xt+1 =

[
Ω11(σ) Ω12(σ)
Ω21(σ) Ω22(σ)

]

︸ ︷︷ ︸
Ωσ

x̄t +

[
Lσ Sσ

Lσ Sσ −Eσ

]

︸ ︷︷ ︸
Πσ

wt

, Ωσ x̄t +Πσ wt (4.7)

where

Ω11(σ) = Aσ +Bσ Kσ +Lσ ∆Cσ , (4.8a)
Ω12(σ) =−Lσ (Cσ +∆Cσ ), (4.8b)
Ω21(σ) =−(∆Aσ −Lσ ∆Cσ ), (4.8c)
Ω22(σ) = Aσ +∆Aσ −Lσ (Cσ +∆Cσ ). (4.8d)

Let us define the indicator function

ξ (t) = [ξ1(t),ξ2(t), . . . ,ξN(t)]T

as follows :

ξi(t) =
{

1, σt = i ;
0, otherwise.

Therefore, system (4.7) and zt in (4.1c) can be rewritten in the unified form :
[

x̄t+1
zt

]
=

N

∑
i=1

ξi(t)
[

Ωi Πi
Hi +DiKi −Hi

][
x̄t
wt

]
, (4.9)

where Ωi are defined in (4.7)-(4.8), when σt = i.
In the aim to analyze stability of the closed-loop system (4.9), we use the switched
Lyapunov function (1.49). Notice that the Lyapunov function (1.49) is well known in
the literature, (see for instance [54] and [60]). For shortness we use σt = i and σt+1 = j.
This means that ξi(t) = 1 and ξ j(t +1) = 1. Then we have

∆Vi j(t),V (xt+1,ξ (t +1))−V (xt ,ξ (t))

= xT
t+1(

N

∑
i=1

ξi(t +1)P̂i)xt+1− xT
t (

N

∑
i=1

ξi(t)P̂i)xt

= [xT
t xT

t+1]

[
−P̂i 0

0 P̂j

]
[xT

t xT
t+1]

T (4.10)

Hence the H∞ performance criterion is fulfilled if the following inequality holds :

ϑi j(t) := ∆Vi j(t)+ zT
t zt−µwT

t wt < 0. (4.11)

It is worth to notice that the inequalities (4.11) are sufficient to ensure the H∞ criterion

‖z‖`n
2
≤
√

µ‖w‖2
`

q
2
+ν‖z0‖2 (4.12)

where
√

µ is the disturbance attenuation level, representing the disturbance gain from
w to z, and ν > 0 is to be determined. To show how (4.11) implies the classical H∞

criterion (4.12), we refer the reader to [56] and [70] for instance. This criterion is well
known in the literature and the use of Lyapunov analysis like in (4.11) is standard.
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4.2.3 Application of Finsler’s Lemma

Now we will exploit the Finsler’s lemma to get sufficient conditions ensuing ϑi j(t) < 0
for all t ≥ 0.
Let us introduce the following notations :

ζt =




xt
xt+1
wt


 , Pi j =




−P̂i 0 0 ϒi
(?) P̂j 0 0
(?) (?) −µI JT

i
(?) (?) (?) −I


 ,

Ui =
[
Ωi −I Πi

]
,

ϒi =

[
KT

i DT
i +HT

i
−HT

i

]
, ∀i, j ∈ Λ

We have Uiζt = 0 and ϑ(t) = ζ>t Pi jζt . Then, from Lemma ?? (Finsler’s Lemma), we
deduce that

ϑ(t)< 0, ∀Uiζt = 0,ζt 6= 0

if there exists

Xi, j =




Fi, j
Gi, j
Ti, j




such that
Pi j +Xi, jUi +UT

i XT
i, j < 0. (4.13)

After developing the calculations, we get the following equivalent detailed form of (4.13) :




ℑi j −Fi j +ΩT
i GT

i j Fi jΠi +ΩT
i T T

i j ϒi

(?) P̂j−He(Gi j) Gi jΠi−T T
i j 0

(?) (?) −µI +He(Ti jΠi) JT
i

(?) (?) (?) −I


< 0, (4.14)

for all i, j ∈ Λ, where ℑi j = He(Fi jΩi)− P̂i, and He(Y ) = Y +Y T , for any matrix Y .
Rewriting the matrices Fi j,Gi j,Ti j and P̂i under the detailed forms :

Fi j =

[
F11

i j F12
i j

F21
i j F22

i j

]
, (4.15)

Gi j =

[
G11

i j G12
i j

G21
i j G22

i j

]
, (4.16)

P̂i =

[
P̂11

i P̂12
i

(?) P̂22
i

]
, (4.17)

Ti j =
[
T 1

i j T 2
i j
]
, (4.18)
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we get the equivalent detailed form of (4.14) :
[

Ψi j
[
ϒT

i 0 0 Ji
]T

(?) −I

]
< 0, (4.19)

for all i, j ∈ Λ, where

Ψi j =




Ω
i j
11 Ω

i j
12 Ω

i j
13 Ω

i j
14 Ω

i j
15

(?) Ω
i j
22 Ω

i j
23 Ω

i j
24 Ω

i j
25

(?) (?) Ω
i j
33 P̂12

j −G12
i j − (G21

i j )
T Ω

i j
35

(?) (?) (?) P̂22
j −G22

i j − (G22
i j )

T Ω
i j
45

(?) (?) (?) (?) Ω
i j
55



,

Ω
i j
11 =− P̂11

i +He
(

F11
i j Ai +F11

i j BiKi +(F11
i j +F12

i j )Li∆Ci−F12
i j ∆Ai

)
,

Ω
i j
12 =− P̂12

i +F12
i j (Ai +∆Ai)− (F11

i j +F12
i j )Li(Ci +∆Ci)+KT

i BT
i (F

21
i j )

T +AT
i (F

21
i j )

T

+∆CT
i LT

i (F
21
i j +F22

i j )
T −∆AT

i (F
22
i j )

T ,

Ω
i j
13 =−F11

i j +AT
i (G

11
i j )

T +KT
i BT

i (G
11
i j )

T −∆AT
i (G

12
i j )

T +∆CT
i LT

i (G
11
i j +G12

i j )
T ,

Ω
i j
14 =−F12

i j +AT
i (G

21
i j )

T +KT
i BT

i (G
21
i j )

T −∆AT
i (G

22
i j )

T +∆CT
i LT

i (G
21
i j +G22

i j )
T ,

Ω
i j
15 =AT

i (T
1

i j)
T +KT

i BT
i (T

1
i j)

T +∆CT
i LT

i (T
1

i j +T 2
i j)

T −∆AT
i (T

2
i j)

T +(F11
i j +F12

i j )LiSi−F12
i j Ei,

Ω
i j
22 =− P̂22

i +He
(

F22
i j Ai +F22

i j ∆Ai− (F22
i j +F21

i j )Li(Ci +∆Ci)
)
,

Ω
i j
23 =−F21

i j − (Ci +∆Ci)
T LT

i (G
11
i j +G12

i j )
T +AT

i (G
12
i j )

T +∆AT
i (G

12
i j )

T ,

Ω
i j
24 =−F22

i j +AT
i (G

22
i j )

T +∆AT
i (G

22
i j )

T − (Ci +∆Ci)
T LT

i (G
22
i j +G21

i j )
T ,

Ω
i j
25 =− (Ci +∆Ci)

T LT
i (T

1
i j +T 2

i j)
T +AT

i (T
2

i j)
T +∆AT

i (T
2

i j)
T +(F21

i j +F22
i j )LiSi−F22

i j Ei,

Ω
i j
33 =P̂11

j − (G11
i j )

T −G11
i j ,

Ω
i j
35 =(G11

i j +G12
i j )LiSi−G12

i j Ei− (T 1
i j)

T ,

Ω
i j
45 =(G21

i j +G22
i j )LiSi−G22

i j Ei− (T 2
i j)

T ,

Ω
i j
55 =−µI +He

(
(T 1

i j +T 2
i j)LiSi−T 2

i jEi

)
.

In the next section we will provide some techniques allowing to handle the BMI pro-
blem (4.19). By exploiting the Finsler’s lemma, we will show that convenient choices of
some matrices in Xi j lead to less conservative LMI conditions compared to the existing
results in the literature.

4.3 Main contribution : New LMI design

This section is devoted tot the main contribution of this chapter. We will propose new
and less conservative LMI conditions to handle the observer-based stabilization problem
for a class of linear switched systems in the presence of L2 bounded disturbances and
norm-bounded parameter uncertainties.
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4.3.1 Main Theorem

This subsection is devoted to the main result of the chapter. We will provide less conser-
vative LMI synthesis conditions ensuring the H∞ criterion (4.12).

Theorem 4.3.1. If for i, j ∈ Λ there exist positive definite matrices P̃11
i , P̂22

i ∈ Rn×n, inver-
tible matrices G22

i , G̃11
i j , F̃11

i ∈ Rn×n, matrices K̃i ∈ Rm×n, L̂i ∈ Rn×p, such that the following
convex optimization problem holds for some positive constants εi and λi :

min(µ) subject to (4.20)
[

Ξi j Si
(?) Di

]
< 0,∀i, j ∈ Λ, (4.21)

where

Ξi j =




ϒi
11 −Ai ϒ

i j
13 I Ei ϒi

16 0
(?) −P̂22

i −AT
i ϒi

24 0 −HT
i 0

(?) (?) ϒ
i j
33 I Ei 0 G̃11

i j

(?) (?) (?) ϒ
i j
44 ϒi

45 0 0
(?) (?) (?) (?) −µI JT

i 0
(?) (?) (?) (?) (?) −I 0
(?) (?) (?) (?) (?) (?) −P̃11

j




, (4.22)

ϒ
i
11 =P̃11

i +He
(
− F̃11

i +Ai(F̃11
i )T +BiK̃i

)
,

ϒ
i j
13 =F̃11

i AT
i + K̃T

i BT
i − (G̃11

i j )
T ,

ϒ
i
16 =K̃T

i DT
i + F̃11

i HT
i ,

ϒ
i
24 =AT

i (G
22
i )T −CT

i L̂T
i ,

ϒ
i j
33 =−He(G̃11

i j ),

ϒ
i
45 =L̂iSi−G22

i Ei,

ϒ
i j
44 =P̂22

j −G22
i − (G22

i )T , (4.23)

Si =




−F̃11
i E T

i −Mi F̃11
i S T

i 0
E T

i 0 −S T
i 0

0 −Mi 0 0
0 G22

i Mi 0 L̂iNi
0 0 0 0
0 0 0 0
0 0 0 0




, (4.24)

Di = diag(−ε
−1
i I,−εiI,−λ

−1
i I,−λiI), (4.25)

then the H∞ criterion (4.12) is satisfied with the obtained minimum attenuation level µ

and the observer-based controller gains :

Ki = K̃i(F̃11
i )−T , Li = (G22

i )−1L̂i. (4.26)
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4.3.2 Proof of Theorem 4.3.1

The proof is too long and uses different tools. To enhance the clarity of the contributions,
we shared it into three steps. We will present the linearization of the BMI (4.19) to get
the LMI (4.21) step by step until a full linearization.

First step : Linearization with respect to Ki

From inequality (4.19), we can deduce that the matrices G11
i j , and G22

i j are invertible. Let
us focus on the case where F11

i j is invertible and independent of j. This is mainly due to
the following principle of congruence. Indeed, by pre- and post-multiply the left hand
side of (4.19) by

diag
(
(F11

i )−1, I,(G11
i j )
−1, I

)

and by using the change of variables

G̃11
i j = (G11

i j )
−1, F̃11

i = (F11
i )−1, K̃i = Ki(F̃11

i )T

we get the equivalent inequality



Ω̃
i j
11 Ω̃

i j
12 Ω̃

i j
13 Ω̃

i j
14 Ω̃

i j
15 K̃T

i DT
i + F̃11

i HT
i

(?) Ω
i j
22 Ω̃

i j
23 Ω

i j
24 Ω

i j
25 −HT

i
(?) (?) Ω̃

i j
33 Ω̃

i j
34 Ω̃

i j
35 0

(?) (?) (?) Ω
i j
44 Ω

i j
45 0

(?) (?) (?) (?) Ω
i j
55 JT

i
(?) (?) (?) (?) (?) −I



< 0, (4.27)

where

Ω̃
i j
11 =− F̃11

i P̂11
i (F̃11

i )T +He
(

Ai(F̃11
i )T +BiK̃i +(I + F̃11

i F12
i j )Li∆Ci(F̃11

i )T

− F̃11
i F12

i j ∆Ai(F̃11
i )T

)
,

Ω̃
i j
12 =F̃11

i F12
i j (Ai +∆Ai)− (I + F̃11

i F12
i j )Li(Ci +∆Ci)+ K̃T

i BT
i (F

21
i j )

T + F̃11
i AT

i (F
21
i j )

T − F̃11
i P̂12

i

+ F̃11
i ∆CT

i LT
i (F

21
i j +F22

i j )
T − F̃11

i ∆AT
i (F

22
i j )

T ,

Ω̃
i j
13 =− (G̃11

i j )
T + F̃11

i Ai
T + K̃T

i BT
i − F̃11

i ∆Ai
T (G̃11

i j G12
i j )

T + F̃11
i ∆CT

i LT
i (I + G̃11

i j G12
i j )

T ,

Ω̃
i j
14 =− F̃11

i F12
i j + F̃11

i AT
i (G

21
i j )

T + K̃T
i BT

i (G
21
i j )

T − F̃11
i ∆Ai

T (G22
i j )

T + F̃11
i ∆CT

i LT
i (G

21
i j +G22

i j )
T ,

Ω̃
i j
15 =F̃11

i AT
i (T

1
i j)

T + K̃T
i BT

i (T
1

i j)
T + F̃11

i ∆CT
i LT

i (T
1

i j +T 2
i j)

T − F̃11
i ∆AT

i (T
2

i j)
T

+(I + F̃11
i F12

i j )LiSi− F̃11
i F12

i j Ei,

Ω̃
i j
23 =−F21

i j (G̃
11
i j )

T − (Ci +∆Ci)
T LT

i (I + G̃11
i j G12

i j )
T +(AT

i +∆AT
i )(G̃

11
i j G12

i j )
T ,

Ω̃
i j
33 =G̃11

i j P̂11
j (G̃11

i j )
T − G̃11

i j − (G̃11
i j )

T ,
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Ω̃
i j
34 =G̃11

i j P̂12
j − G̃11

i j G12
i j − G̃11

i j (G
21
i j )

T ,

Ω̃
i j
35 =(I + G̃11

i j G12
i j )LiSi− G̃11

i j G12
i j Ei− G̃11

i j (T
1

i j)
T ,

Ω
i j
44 =P̂22

j −G22
i j − (G22

i j )
T .

Note that F11
i j must depend only on i, otherwise the previous congruence principle

reveals the term Ki(F̃11
i j )

T , which prevents a change of variables with respect to the gain
Ki.
There are still some bilinear terms related to K̃i, which need to be avoided, namely
the coupling of K̃i with F21

i j ,G
21
i j ,T

1
i j and T 2

i j . To do this, the best way we propose is the
following convenient and judicious choice :

G21
i j = F21

i j = 0,T 1
i j = T 2

i j = 0.

This is mainly do to the presence of bilinear terms F̃11
i AT

i (T
1

i j)
T , F̃11

i ∆AT
i (T

2
i j)

T , which
may lead to very conservative conditions if they are not null. Consequently, by using the
change of variable P̃11

i = (P̂11
i )−1 and the following Young’s inequality −F̃11

i P̂11
i (F̃11

i )T ≤
P̃11

i − F̃11
i − (F̃11

i )T , we deduce that (4.27) is fulfilled if the following inequality holds :



Ω̂
i j
11 Ω̂

i j
12 Ω̂

i j
13 Ω̂

i j
14 Ω̂

i j
15 K̃T

i DT
i + F̃11

i HT
i

(?) Ω̂
i j
22 Ω̂

i j
23 Ω̂

i j
24 Ω̂

i j
25 −HT

i
(?) (?) Ω̃

i j
33 Ω̂

i j
34 Ω̂

i j
35 0

(?) (?) (?) Ω
i j
44 Ω̂

i j
45 0

(?) (?) (?) (?) −µI JT
i

(?) (?) (?) (?) (?) −I



< 0, (4.28)

where

Ω̂
i j
11 =P̃11

i +He
(
− F̃11

i +Ai(F̃11
i )T +BiK̃i +(I + F̃11

i F12
i j )Li∆Ci(F̃11

i )T − F̃11
i F12

i j ∆Ai(F̃11
i )T

)
,

Ω̂
i j
12 =F̃11

i F12
i j (Ai +∆Ai)− (I + F̃11

i F12
i j )Li(Ci +∆Ci)+ F̃11

i ∆CT
i LT

i (F
22
i j )

T − F̃11
i ∆AT

i (F
22
i j )

T

− F̃11
i P̂12

i ,

Ω̂
i j
13 =− (G̃11

i j )
T + F̃11

i Ai
T + K̃T

i BT
i − F̃11

i ∆Ai
T (G̃11

i j G12
i j )

T + F̃11
i ∆CT

i LT
i (I + G̃11

i j G12
i j )

T ,

Ω̂
i j
14 =− F̃11

i F12
i j − F̃11

i ∆Ai
T (G22

i j )
T + F̃11

i ∆CT
i LT

i (G
22
i j )

T ,

Ω̂
i j
15 =(I + F̃11

i F12
i j )LiSi− F̃11

i F12
i j Ei,

Ω̂
i j
22 =− P̂22

i +He
(

F22
i j Ai +F22

i j ∆Ai−F22
i j Li(Ci +∆Ci)

)
,

Ω̂
i j
23 =− (Ci +∆Ci)

T LT
i (I + G̃11

i j G12
i j )

T +(AT
i +∆AT

i )(G̃
11
i j G12

i j )
T ,

Ω̂
i j
24 =−F22

i j +AT
i (G

22
i j )

T +∆AT
i (G

22
i j )

T − (Ci +∆Ci)
T LT

i (G
22
i j )

T ,

Ω̂
i j
25 =F22

i j LiSi−F22
i j Ei,

Ω̃
i j
33 =G̃11

i j P̂11
j (G̃11

i j )
T − G̃11

i j − (G̃11
i j )

T ,

Ω̂
i j
34 =G̃11

i j P̂12
j − G̃11

i j G12
i j ,

Ω̂
i j
35 =(I + G̃11

i j G12
i j )LiSi− G̃11

i j G12
i j Ei,
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Ω̂
i j
45 =G22

i j LiSi−G22
i j Ei.

Now that the BMI (4.19) is linearized with respect to the matrices K̃i, we will proceed to
the linearization with respect to the observer gains Li. The next second step is dedicated
to this issue.

Second step : Semi-linearization with respect to Li

The gains Li are coupled with the matrices (I + F̃11
i F12

i j )LiCi, (I + G̃11
i j G12

i j )LiCi, F22
i j LiCi,

and G22
i j LiCi. Since G22

i j is necessarily invertible and Li depends only on i, then to avoid
complicated bilinearities, we take G22

i j =G22
i independent of j. With the following conve-

nient matrices :
Fi =

[
F11

i −F11
i

0 0

]
, (4.29a)

Gi j =

[
G11

i j −G11
i j

0 G22
i

]
, (4.29b)

P̂12
i = 0, (4.29c)

and the change of variable L̂i = G22
i Li, we get the following semi-linearized version of

(4.28) with respect to Li :



Θi
11 Θi

12 Θ
i j
13 Θi

14 Ei Θi
16 0

(?) −P̂22
i Θi

23 Θi
24 0 −HT

i 0
(?) (?) Θ

i j
33 I Ei 0 G̃11

i j

(?) (?) (?) Θ
i j
44 Θi

45 0 0
(?) (?) (?) (?) −µI JT

i 0
(?) (?) (?) (?) (?) −I 0
(?) (?) (?) (?) (?) (?) −P̃11

j




< 0, (4.30)

where

Θ
i
11 =P̃11

i +He
(
− F̃11

i +Ai(F̃11
i )T +BiK̃i +∆Ai(F̃11

i )T
)
,

Θ
i
12 =− (Ai +∆Ai),

Θ
i j
13 =− (G̃11

i j )
T + F̃11

i Ai
T + K̃T

i BT
i + F̃11

i ∆Ai
T ,

Θ
i
14 =I− F̃11

i ∆Ai
T (G22

i )T + F̃11
i ∆CT

i L̂T
i ,

Θ
i
16 =K̃T

i DT
i + F̃11

i HT
i ,

Θ
i
23 =− (AT

i +∆AT
i ), Θ

i j
33 =−G̃11

i j − (G̃11
i j )

T ,

Θ
i
24 =AT

i (G
22
i )T +∆AT

i (G
22
i )T − (Ci +∆Ci)

T L̂T
i ,

Θ
i j
44 =P̂22

j −G22
i − (G22

i )T , Θ
i
45 = L̂iSi−G22

i Ei.
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In fact, equations (4.29a)-(4.29b) imply

I + F̃11
i F12

i j = 0, (4.31a)

I + G̃11
i j G12

i j = 0, (4.31b)

which mean that the bilinear terms (I+F̃11
i F12

i j )LiCi, (I+G̃11
i j G12

i j )LiCi related to Li vanish.
Finally, with (4.29c) and from Schur Lemma applied on the term G̃11

i j P̂11
j (G̃11

i j )
T , we get

easily (4.30).
Hence all the bilinear terms except those related to ∆Ai and ∆Ci, are avoided. The linea-
rization of the terms related to the uncertainties is the aim of the next and last step of
the proof.

Third step : Full linearization

In this subsection, we use Young relation for linearize uncertainties. By developing ∆Ai
and ∆Ci , we can rewrite the previous inequality in the following more suitable form :
Inequality (4.30) may be rewritten under the form :

Ξi j +He
(

ZT
i1Γ

T
i Zi2 +ZT

i3Γ
T
i Zi4

)
< 0, (4.32)

where

Zi1 =
[
−Ei(F̃11

i )T Ei 0 0 0 0 0
]
,

Zi3 =
[
Si(F̃11

i )T −Si 0 0 0 0 0
]
,

Zi2 =
[
−MT

i 0 −MT
i MT

i (G
22
i )T 0 0 0

]
,

Zi4 =
[
0 0 0 NT

i L̂T
i 0 0 0

]
,

and Ξi j is defined in (4.22). Consequently, applying the well known Young’s inequality,
we deduce that (4.32) holds if the following one is satisfied :

Ξi j + εiZT
i1Zi1 + ε

−1
i ZT

i2Zi2 +λiZT
i3Zi3 +λ

−1
i ZT

i4Zi4, (4.33)

where εi, λi are some positive scalars coming from Young’s relation. finally, by using
again Schur Lemma (1.7.2), inequality (4.33) is fulfilled if the LMI (4.21) is feasible.
This ends the proof of Theorem 4.3.1.

4.4 Numerical Examples

In this section, we present two numerical examples to show the validity and effecti-
veness of the proposed design methodology. The superiority of the new LMI synthesis
conditions (4.21) is quite clear from these examples.
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4.4.1 Example 1

We reconsider the example presented in [29] and modify it by adding parameter un-
certainties and disturbances. The system is described under the form (4.1) with the
matrices given in Table 4.1.

i 1 2 3 4

Ai




0.7786 0.9908 0.1270
0.1616 0.8443 0.8144
0.9214 0.9747 0.7825







0.3894 0.3263 0.7746
0.7806 0.9886 0.1297
0.8814 0.4718 0.3110







0.3049 0.4247 0.8979
0.8448 0.2485 0.6921
0.7558 0.9160 0.3636







0.1194 0.3964 0.2454
0.1034 0.2515 0.4983
0.6981 0.8655 0.2403




Bi




0.2458 0.7409
0.2501 0.5257

0 0







0.2722 0.6055
0.1576 0.1580

0 0







0.4945 0.3020
0.9237 0.9118

0 0







0.9894 0.7205
0.1709 0.1519

0 0




Ci
[
0.3815 0.6916 0.7183

] [
0.0591 0.8258 0.4354

] [
0.5204 0.8010 0.9708

] [
0.6995 0.3081 0.8767

]

Ei




0.1 0
0.2 0.1
0 0







0 0.2
0.1 0.1
0 0.1







0 0
0.1 0.1
0.1 0







0.1 0.2
−0.2 0.1
0.1 0




Si
[
0.6 0

] [
0.2 0.2

] [
0.4 0.1

] [
0.2 0.5

]

Ji
[
0.2 0.1

] [
0.2 0

] [
0.3 0.2

] [
0.5 0.1

]

Hi
[
0 0.1 0

] [
0 0.2 0

] [
0.2 0 0.1

] [
0.1 0.2 0

]

Mi




0.1 0 0.1
0 0.3 0.1
0 0.2 0







0 0.1 0
0.1 0 0
0 0.1 0.1







0.1 0 0.3
0 0.2 0
0 0.1 0.2







0.1 0 0
0 0.1 0

0.2 0 0.2




Ei




0.3 0 0.1
0 0.2 0

0.5 0 0.1







0.1 0 0.1
0 0.1 0.2

0.3 0.1 0







0.2 0 0.1
0 0.1 0

0.1 0 0.2







0.3 0.2 0
0.2 0 0.1
0 0.3 0




Ni
[
0.1 0.1 0

] [
0 0.1 0.2

] [
0 0.1 0.1

] [
0.1 0 0.2

]

Si




0.1 0 0
0 0.1 0.1

0.2 0 0.1







0.1 0 0.1
0 0.1 0

0.1 0 0.15







0 0 0.1
0.1 0 0
0 0.1 0







0 0 0.1
0.1 0 0
0 0 0.1




TABLE 4.1 – The matrices of the system in Example 1.

All the matrices A1, A2, A3 and A4 are unstable. Assume that the system is disturbed by a
noise wt = χ(t)ωt , where ωt is an uniformly distributed random variable on the interval
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[0 1], and χ(.) is defined by

χ(t) =





2 if t ∈ [0,20[;
−2 if t ∈ [40,70[;
0 elsewhere,

After solving the LMI (4.21) with εi = 0.5,λi =
5
6 for i ∈ {1, . . . ,4}, we get the optimal

disturbance attenuation level µmin = 2.2998, and the observer-based controller gains :

K1 =

[
4.5728 0.5119 −9.0280
−3.3328 −2.1843 2.2872

]
, L1 =




0.8025
0.9772
1.1982


 ,

K2 =

[
−10.1939 −11.9644 −0.4646

2.9566 4.2608 −1.4921

]
, L2 =




0.8025
0.9772
1.1982


 ,

K3 =

[
−2.3231 −3.6350 −4.5955
1.2054 3.1349 3.7249

]
, L3 =




0.7091
0.7368
0.7709


 ,

K4 =

[
2.2343 5.5158 11.4936
−3.7789 −8.7247 −16.3481

]
, L4 =




0.4002
0.3955
0.7685


 .

The simulation results corresponding to these observer-based controller gains are gi-
ven in Fig. 4.1(a)-4.1(f). These simulations are done for an horizon T = 100, with
x =

[
1 2 5

]T , x̂ =
[
−1 3 6

]T .

10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

Time

x 1
(t
)
an

d
x̂ 1

(t
)

 

 

x1 true state

x̂1 Luenberger estimate

(a) Example 1 : Time-behaviors of x1 and e1 in the presence of uncertainties

In the goal to show the superiority of the proposed design methodology as compared
to [68], we replace Mi by γiMi and without disturbance. We look for the maximum
values of γi for i∈ {1, . . . ,4} which satisfy the LMI (4.21). The results of the comparisons
are summarized in Table 4.2, which shows the superiority of the LMI (4.21).
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10 20 30 40 50 60 70 80 90 100
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Time

x 2
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d
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)

 

 

x2 true state

x̂2 Luenberger estimate

(b) Example 1 : Time-behaviors of x2 and e2 in the presence of uncertainties
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x3 true state

x̂3 Luenberger estimate

(c) Example 1 : Time-behaviors of x3 and e3 in the presence of uncertainties
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d
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u1

u2

(d) Example 1 : Control input u1 and u2

4.4.2 Example 2

Through this example, we will show that the proposed LMIs (4.21) are less conservative
than those provided in [71]. Then, we reconsider the same example given in [71],
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(e) Control output zt
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(f) Switching mode σt

which is a linear system without parameter uncertainties. The system is described by
the following matrices :

A =




δ 0.8 −0.4
−0.5 0.4 0.5
1.2 1.1 0.8


 , B =




0 1
2 −1
0 1.3


 ,

ET =
[

0.1 0.4 0.1
]
, C =

[
−1 1.2 1
0 −3 1

]
,D = 0,

ST =
[

0.1 0.4
]
, H =

[
−1 0 2

]
, J = 0.3

Obviously, this example can be viewed as a switching system under the form (4.1) with
only one mode (there are no switching) and with ∆Ai = ∆Ci = 0. We test the feasibility
for different values of δ and we look for the minimum value of µmin provided by each
method. Table 4.3 summarizes the results.
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LMI Methods LMI (18) in [68] LMI (4.21)
γ1max 0.6 1.3
γ2max 0.4 1.4
γ3max 0.8 1
γ4max 0.6 1.1

TABLE 4.2 – Example 1 : Comparison between two LMI design methods.

δ Theorem 1 in [71] LMI (4.21)

(α,β ) µmin µmin

0.5 (−0.03,−2.85) 0.5523 0.3703

1.2 (0.11, 3.66) 0.6307 0.3703

1.7 (1.03, 4.08) 2.9248 0.3703

1.9 (−1.20,−1.69) 16.1504 0.3703

TABLE 4.3 – Example 2 : Value of µmin for two LMI design methods

4.5 Conclusion

In this chapter, new LMI conditions have been developed for the problem of the stabili-
zation of a class of switching discrete-time linear systems with parameter uncertainties
and l2-bounded disturbances. We have shown that a judicious choice of slack variables
coming from Finsler’s lemma leads to less conservative LMIs. Analytical developments
have been provided to clarify how the proposed choice allows to eliminate some bilinear
matrix coupling without using any conservative inequality. The validity of the proposed
design method is shown through two numerical examples.
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5.1 Introduction

Linear parameter-varying (LPV) modeling has been the subject of increasing interest in
the literature with many practical applications in the areas of aerospace, automotive,
. . .etc.. Indeed, LPV systems offer an alternative to handle the complexity of nonlinear
systems and combine the simplicity of linear systems and the real variability of their
parameters avoiding the approximation of nonlinear systems by linearization or with
a transformation [40], [41]. If the problem of observer design for LPV systems with
known and bounded parameters is easy to investigate, the observer-based stabilization
problem is difficult from the LMI point of view. Therefore, the stabilization problem be-
comes more complicated when the parameters are unknown. Indeed, these unknown
parameters lead to bilinear matrix coupling, which are difficult to linearize with known
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mathematical tools. Some design methods have been proposed in this area in the lite-
rature, however all the proposed techniques still remain conservative ( see for instance
[54], [7], [64], [72], [59]). This motivates us to develop new and less conservative
LMI conditions by using new mathematical tools.
In this chapter we propose new and enhanced LMI conditions to solve the problem of
observer-based stabilization for a class of discrete-time LPV systems with uncertain pa-
rameters. The proposed technique consists in designing an observer-based controller
which stabilizes the LPV system, provided that the difference between the uncertain pa-
rameters and their estimates are norm-bounded with bounds not exceeding a tolerated
maximum value. Hence, the observer-based gains depend on these bounds.
One of the contributions of this chapter consists in the use of a relaxed reformulation
for the parameter uncertainty. This relaxation is inspired from recent design methods
for observer design of nonlinear Lipschitz systems [40], [41]. Using this reformulation,
two new LMI synthesis methods are developed to design observer-based controllers for
a class of LPV systems with inexact but bounded parameters. The first approach is based
on the use of Young’s relation, while the second one uses a new congruence principle by
pre- and post-multiplying the basic BMI condition by new and ingenious slack matrices.
Thanks to these matrices, which can be seen as additional decision variables, some bi-
linear terms vanish from the BMI, which increases flexibility in the to linearization. We
show analytically how particular forms of the slack variables reduce the complexity of
the bilinear problem. This new use of congruence principle allows avoiding the gridding
method as in [35].

5.2 System description and problem statement

Consider a discrete-time LPV system described by the following state-space equation :

{
xt+1 = A(ρ(t))xt +But
yt =C xt

(5.1)

where xt ∈Rn is the state vector, yt ∈Rm is the measurement vector, ut ∈Rp is the control
signal, for any t ∈ Z+. Further, the state matrix A(ρ(t)) ∈ Rn×n depends on a bounded
time-varying parameter ρ(t) = [ρ1(t), . . . ,ρN(t)]T , which is assumed to be not available
in real time, but only an approximated ρ̂(t) ∈Θ⊂ RN , satisfying

sup
t∈Z+
||ρ(t)− ρ̂(t)|| ≤ ∆ (5.2)

is known, where ∆ is some nonnegative constant indicating the uncertainty level, and
Θ is some bounded subset of RN . B and C are are n×m and p×n real matrices, respec-
tively. Throughout the paper, the following assumptions are made :

— The matrix A(ρ(t)) lies for each ρ(t) ∈Θ in the convex hull Co(A1, ...,AN), that is
there exists a finite sequence

(
ξ i(ρ(t))

)N
i=1 depending on ρ(t) such that ξ i(ρt)≥ 0,
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5.2. System description and problem statement

∑
N
i=1 ξ i(ρ(t)) = 1, and

A(ρ(t)) =
N

∑
i=1

ξ
i(ρ(t))Ai; (5.3)

— The pairs (Ai,B) and (Ai,C), for i = 1 . . . ,N, are respectively stabilizable and de-
tectable.

The observer-based controller we proposed here is the same as in [37–39], and descri-
bed by the following equations :

{
x̂t+1 = A(ρ̂(t))x̂t +L(ρ̂(t))(yt−Cx̂t)+But ,
ŷt =Cx̂t .

(5.4)

Based on the estimate x̂t , we develop a set of the controllers of the form

ut = K(ρ̂(t))x̂t . (5.5)

Define xt = [x̂T
t eT

t ]
T , where et = x̂t−xt is the estimate error. Then the closed-loop system

of (5.1), (5.4) and (5.5) is described by

xt+1 =

[
A(ρ̂)+BK(ρ̂) −L(ρ̂)C
−∆A A(ρ̂)+∆A−L(ρ̂)C

]
xt , (5.6)

where, for shortness, we set ∆A :=A(ρ(t))−A(ρ̂(t)), X(ρ̂) :=X(ρ̂(t)) and Y (ρ) :=Y (ρ(t)),
for any parametric matrices X and Y .

In this chapter, the aim is to design a collection of observer-based controller gains
K(ρ̂) = ∑

N
j=1 ξ j(ρ̂)K j and L(ρ̂) = ∑

N
j=1 ξ j(ρ̂)L j such that the closed-loop system (5.6) is

globally asymptotically stable.
We first formulate the non-convex optimization problem that allows us to compute the
observer-based controller gains K j and L j, for j ∈ Λ, using Lyapunov stability. For the
stability analysis, we use the same quadratic and parameter dependent Lyapunov func-
tion as that in [39], namely,

V (x̄, ρ̂) : = x̄T
t P(ρ̂(t))x̄t = xT

t

[
P11(ρ̂) P12(ρ̂)
PT

12(ρ̂) P22(ρ̂)

]
xt ,

where

P(ρ̂(t)) =
N

∑
j=1

ξ
j(ρ̂(t))Pj.

One obtains after some calculations (see [39] for more details) that

∆Vt(x, ρ̂) := V (xt+1, ρ̂(t +1))−V (xt , ρ̂(t))

=
N

∑
j,l=1

ξ
j(ρ̂(t))ξ l(ρ̂(t +1)xT

t Ω jlxt < 0

where for each j, l ∈ Λ,
Ω jl =−Pj +Π

T
j PlΠ j
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and

Π j =

[
A j +BK j −L jC
−∆A A j +∆A−L jC

]
. (5.7)

We have that ∆Vt(x, ρ̂)< 0 for all xt 6= 0 and ρ̂(t) ∈Θ if

Ω jl =−Pj +Π
T
j PlΠ j < 0, ∀ j, l ∈ Λ, (5.8)

or, equivalently, [−Pj ΠT
j

Π j −P−1
l

]
< 0, ∀ j, l ∈ Λ. (5.9)

5.3 The Proposed LMI Design Procedure

This section proposes a new way of "convexifying" the Lyapunov stability problem (5.9),
which is BMI due to many coupling between the Lyapunov matrices and the observer
based controller gains. Our purpose is to give two new strategies that give better so-
lutions to (5.9) in the sense that they tolerate larger uncertainty level ∆. We begin by
giving an equivalent reformulation for the parameter uncertainty, and consequently a
relaxation of the assumption proposed in [37] will be derived.

5.3.1 About the Assumption (5.2) on the uncertainty

It is easy to see that condition (5.2) is equivalent to the existence of two vectors ∆min ∈
RN and ∆max ∈ RN so that

∆
min
k ≤ ρk(t)− ρ̂k(t)≤ ∆

max
k , ∀k = 1, . . . ,N. (5.10)

Thanks to this reformulation of (5.2), it allows us to relaxe the assumptions proposed
in [37], namely the matrix ∆A satisfies the following condition :

∆AT
∆A≤ ∆

2
Γ

T
Γ (5.11)

where Γ is known constant matrix of appropriate dimension. This relaxation, inspired
from recent design methods for observer design of nonlinear Lipschitz systems [40],
[41], is based on the use of an LPV approach to treat the uncertainties on the parame-
ters. From now on, the condition (5.10) will be denoted by (H).
Let us start by checking that under condition (5.2) or (H), the following result, which
is given in [39] without proof, holds.

Proposition 5.3.1. Under condition (H), the parametric matrix ∆A belongs to a bounded
convex B, for which the set of vertices is defined by :

VB =
{

A (ρ) = ∑
(i, j,k)∈S

ρkλ
k
i jΛi j : ρk ∈ {∆min

k ,∆max
k }

}
. (5.12)

The set S is defined by
S=

{
(i, j,k) : (ρk− ρ̂k)λ

k
i j 6= 0

}
.
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The proof is based on the following Lemma :

Lemma 5.3.2 ( [40]). Consider a function Ψ : Rn→ R. Then, for all

X =
[
x1, . . . ,xn

]T ∈ Rn andY =
[
y1, . . . ,yn

]T ∈ Rn

there exist functions ψ j : Rn×Rn→ R, j = 1, . . . ,n so that

Ψ(X) − Ψ(Y ) =
j=n

∑
j=1

ψ j

(
XY j−1,XY j

)
eT

n ( j)
(

X − Y
)

(5.13)

where XY j =
[
y1, . . . ,y j,x j+1, . . . ,xn

]T , XY0 = X and en( j) is the jth vector of the canonical
basis of Rn.

Proof of Proposition 1 : We have the detailed form of A(ρ) :

A(ρ) = ∑
i, j

Ai j(ρ) en(i)eT
n ( j).

Thus we can write ∆A under the more suitable form :

∆A = A(ρ)−A(ρ̂)

=
n

∑
i, j=1

(
Ai j(ρ)−Ai j(ρ̂)

)
en(i)eT

n ( j). (5.14)

By using Lemma 1 on Ai j, for each fixed i, j = 1, . . . ,n, we obtain the existence of func-
tions ψk

i j : Rn×Rn→ R, k = 1, . . . ,n such that

Ai j(ρ)−Ai j(ρ̂) =
n

∑
k=1

ψ
k
i j

(
ρ

ρ̂k−1,ρ ρ̂k
)
(ρk− ρ̂k) (5.15)

By replacing in (5.14) the reformulation of Ai j(ρ)−Ai j(ρ̂) given in (5.15), we get

A(ρ)−A(ρ̂) = ∑
i, j,k

(ρk− ρ̂k)ψ
k
i j

(
ρ

ρ̂k−1,ρ ρ̂k
)

en(i)eT
n ( j) (5.16)

Thanks to the following notations

λ
k
i j = ψ

k
i j

(
ρ

ρ̂k−1 ,ρ ρ̂k
)
, Λi j = en(i)eT

n ( j)

we obtain that
∆A = ∑

(i, j,k)∈S
(ρk(t)− ρ̂k(t))λ k

i jΛi j, (5.17)

from which we conclude that ∆A belongs to the bounded convex B. Which completes
the proof of Proposition 1.

�
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Now, let us return to the linearization problem (5.9). To our knowledge, the best manner
to linearize the Lyapunov inequality in the discrete-time systems is the introduction of
slack variables (see for instance [73], [7]). Since inequality (5.9) depends on both
indices j, l, let us introduce a matrix G jl of adequate dimension that depends on j and
l. Firstly, we use the congruence principle as follows : we pre- and post- multiply (5.9)
by diag(I,G jl) and diag(I,GT

jl) respectively. Secondly we exploit the adapted well-known
inequality (see for example [37, Ineq. (12)]),

−G jlP−1
l GT

jl ≤ P11
l −G jl−GT

jl, ∀ j, l ∈ Λ.

One obtains that inequalities (5.9) hold, if the following ones

[ −Pj ΠT
j GT

jl
G jlΠ j Pl−G jl−GT

jl

]
< 0, ∀ j, l ∈ Λ (5.18)

are fulfilled. Now, we take the detailed structures of Pl and G jl respectively :

Pl =

[
P11

l P12
l

(?) P22
l

]
,G jl =

[
G11

jl G12
jl

G21
jl G22

jl

]
. (5.19)

Notice that the slack variable G jl that we use here is more general than [28, 37–39]
since it involves both indices j and l and not necessarily of the form α jI. This form
comes from the dependency of inequality (5.9) on both j and l.

5.3.2 Young’s inequality based approach

In this subsection we study the case where the slack variable G jl has a diagonal form.
To this end, we choose

G jl = diag{
√

εG11
l , G22

j } (5.20)

where ε is some positive scalar. Observe that if ε = 1 and G11
j = G22

j = α jI we get the
approach based on the linearization Lemma of Ibrir adressed in [28] and [39]. On the
other hand, the introduction of the parameter ε inside G jl will reduce considerably the
conservatisme of the Young’s inequality based approach introduced in [36] and [59] in
the continuous case and in [35], in the discrete case. Indeed, our approach does not
involve the application of the gridding method.
With the choice (5.20) combined with congruence principle : we pre- and post- multiply
(5.18) by

diag
(
(G11

j )−1, I,(G11
l )−1, I

)

we get by introducing the following notations and changes of variables :

G̃11
j = (G11

j )−1, P̃11
j = G̃11

j P11
j (G̃11

j )T , Ĝ11
j =
√

εG̃11
j ,

P̃12
j = G̃11

j P12
j , L̂ j = G22

j L j, K̃ j = K j(Ĝ11
j )T ,
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that (5.18) hold if the following inequality :



−P̃11
j −P̃12

j Ω
j
13 −G̃11

j ∆AT (G22
j )T

(?) −P22
j −CT LT

j
√

ε Ω
j
24

(?) (?) Ωl
33 P̃12

l
(?) (?) (?) Ω

jl
44


< 0, (5.21)

is fulfilled for all j, l ∈ Λ, where

Ω
j
13 = Ĝ11

j AT
j + K̃T

j BT ,

Ω
j
24 = AT

j (G
22
j )T +∆AT (G22

j )T −CT L̂T
j ,

Ω
l
33 = P̃11

l − Ĝ11
l − (Ĝ11

l )T ,

Ω
jl
44 = P22

l −He(G22
j ).

The BMI (5.21) can be rewritten under the more suitable form :

Ψ jl +He(XT
j Y )< 0, ∀ j, l ∈ Λ (5.22)

where

Ψ jl =




−P̃11
j −P̃12

j Ĝ11
j AT

j + K̃T
j BT −G̃11

j ∆AT (G22
j )T

(?) −P22
j 0 Ω

j
24

(?) (?) Ωl
33 P̃12

l
(?) (?) (?) P22

l −He(G22
j )


 ,

X j =
[
0 −√εL jC 0 0

]
and Y =

[
0 0 I 0

]
. Using the Young’s relation as in [35]

and [36], we obtain that inequalities (5.22) hold if the following

Ψ jl−
[

S jX j
Y

]T [−1
ε
S j 0

0 −εS j

]−1[S jX j
Y

]
< 0, ∀ j, l ∈ Λ (5.23)

are satisfied for S j = G22
j and ε is given in (5.20). Hence, using Schur complement

Lemma [33], inequalities (5.23) are verified if and only if



Ψ jl




0 0
−CT L̂T

j
√

ε 0
0 I
0 0




(?)

[−εG22
j 0

(?) −1
ε
G22

j

]



< 0,∀ j, l ∈ Λ. (5.24)

In order to linearize the terms εG22
j and 1

ε
G22

j , we pre- and post-multiply inequality

(5.24) by diag
(

I, 1√
ε
I,
√

εI
)

, we obtain the following set of BMI with respect to the
uncertainty

BMI(∆A) =




Ψ jl




0 0
−CT L̂T

j 0
0

√
εI

0 0




(?)

[−G22
j 0

(?) −G22
j

]



< 0,∀ j, l ∈ Λ. (5.25)
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We complete our procedure by linearizing the uncertainty ∆A under assumption (H).

Linearization of (5.25) with respect to the uncertainty.

By virtue of the convexity principal, we get that BMI(∆A)< 0 if and only if BMI(A (ρ))<
0 holds for each A (ρ) ∈ VB. Thus inequalities (5.25) are equivalent to :

Ξ̃ jl +He(ZT
1 j Z2 j)< 0, ∀l, j ∈ Λ, ∀A (ρ) ∈ VB. (5.26)

where :

Ξ̃ jl(A (ρ)) =




−P̃11
j −P̃12

j Θ
j
13 0 0 0

(?) −P22
j 0 Θ

j
24 −CT L̂T

j 0
(?) (?) Θl

33 P̃12
l 0

√
εI

(?) (?) (?) Θ
jl
44 0 0

(?) (?) (?) (?) −G22
j 0

(?) (?) (?) (?) (?) −G22
j



,

Θ
j
24(A (ρ)) = (A j +A (ρ))T G22

j −CT L̂T
j ,

Z1 j(A (ρ)) =
[−A (ρ)(G̃11

j )T 0 0 0
]
,

Z2 j =
[
0 0 0 G22

j
]
.

By using (5.17), the Young’s relation, and Schur complement Lemma, we obtain that
inequalities (5.26) hold, if there exist some scalars γ j, j ∈ Λ such that the inequality




Ξ̃ jl(A (ρ))
√

ε ZT
1 j(A (ρ)) ZT

2 j
(?) − ε

γ j
I 0

(?) (?) −γ jI


< 0, (5.27)

is fulfilled for all j, l ∈ Λ and A (ρ) ∈ VB. To linearize the term − ε

γ j
I in inequality

(5.27), we use the well-known estimation − ε

γ j
I ≤ (γ j− 2

√
ε)I which becomes optimal

when taking γ j =
√

ε. At this stage, we enounce the following theorem :

Theorem 5.3.3. The observer-based controller (5.5) stabilizes asymptotically the system

(5.1) if, there exist symmetric positive definite matrices Dl =

[
P̃11

l P̃12
l

(?) P22
l

]
∈ R2n×2n, inver-

tible matrices Ĝ11
j , G22

j , matrices K̃ j, L̂ j and positive scalars γ j, ε, with l, j ∈ Λ, such that
LMI (5.28) holds for all l, j ∈ Λ and A (ρ) ∈ VB. Hence, the stabilizing observer-based
control gains are given by

L j = (G22
j )−1L̂ j, K j = K̃ j(Ĝ11

j )−T .
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





−P̃11
j −P̃12

j Ĝ11
j AT

j + K̃T
j BT 0 0 0

(?) −P22
j 0 Θ

j
24 −CT L̂T

j 0

(?) (?) P̃11
l −He

(
Ĝ11

l

)
P̃12

l 0
√

εI

(?) (?) (?) P22
l −2G22

j 0 0

(?) (?) (?) (?) −G22
j 0

(?) (?) (?) (?) (?) −G22
j







−Ĝ11
j A T (ρ) 0

0 0

0 0

0 G22
j

0 0

0 0




(?)



(γ j−2

√
ε)I 0

(?) −γ jI







< 0.

(5.28)
where :

Θ
j
24 =(A j +A (ρ))T G22

j −CT L̂T
j .

5.3.3 A relaxed LMI Design Procedure

In what follows, we will discuss a new way to choose judiciously the matrix G jl that al-
lows to convexity inequality (5.29). Our strategy consists in analyzing how to eliminate
the bilinear terms coming from a more general structure of G jl, without imposing a dia-
gonal structure. By substituting (5.19) in inequality (5.18) and after some mathematical
developments, one obtains the following detailed version of (5.18) :




−P11
j −P12

j ω
jl

13 ω
jl

14

(?) −P22
j ω

jl
23 ω

jl
24

(?) (?) ω
jl

33 P12
l −He(G12

jl )

(?) (?) (?) P22
l −He(G22

jl )


< 0, (5.29)

for all j, l ∈ Λ, where

ω
jl

13 = AT
j (G

11
jl )

T +KT
j BT (G11

jl )
T −∆AT (G12

jl )
T ,

ω
jl

14 = AT
j (G

21
jl )

T +KT
j BT (G21

jl )
T −∆AT (G22

jl )
T ,

ω
jl

23 =−CT LT
j (G

11
jl +G12

jl )
T +(A j +∆A)T (G12

jl )
T ,

ω
jl

24 = (∆A+A j)
T (G22

jl )
T −CT LT

j (G
21
jl +G22

jl )
T ,

ω
j

33 = P11
l −He(G11

jl ).

We begin by dealing with terms coupled with L j, j ∈Λ, namely the bilinear terms in ω
jl

23
and ω

jl
24. Our first strategy consists in choosing G11

jl = G11
l (independent of j) and G22

jl =
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G22
j (independent of l) and eliminate the remining bilinear terms by setting G11

jl +G12
jl = 0

or G21
jl +G22

jl = 0. But since G21
jl is also coupled with the matrices K j, it should be taken

null. So the following structure of

G jl =

[
G11

l −G11
l

0 G22
j

]
(5.30)

is suitable. An alternative choice consists in choosing G11
jl = G11

l , G22
jl = G22

j and G21
jl = 0

as symmetric matrices, but for the choice of G12
jl , we use at first the congruence principal

(we pre- and post- multiply (5.29) by diag
(
(G11

j )−1, I,(G11
l )−1, I

)
. One obtains by taking

into account the following changes of variables and notations :

G̃11
j = (G11

j )−1, P̃11
j = G̃11

j P11
j (G̃11

j )T ,

K̃ j = K j(G̃11
j )T , P̃12

j = G̃11
j P12

j ,

that (5.29) holds if (and only if)



−P̃11
j −P̃12

j ω̃
jl

13 −G̃11
j ∆AT (G22

j )T

(?) −P22
j ω̃

jl
23 ω̃

j
24

(?) (?) ω̃ l
33 P̃12

l − G̃11
l G12

jl
(?) (?) (?) P22

l − (G22
j )T −G22

j


< 0, (5.31)

where :

ω̃
jl

13 = G̃11
j AT

j + K̃T
j BT − G̃11

j ∆AT
(

G̃11
l G12

jl

)T
,

ω̃
jl

23 =−CT LT
j (I + G̃11

l G12
jl )

T +(A j +∆A)T
(

G̃11
l G12

jl

)T
,

ω̃
j

24 = (∆A+A j)
T (G22

j )T −CT LT
j (G

22
j )T ,

ω̃
l
33 = P̃11

l − G̃11
l − (G̃11

l )T .

So in order to eliminate the remaining terms in (5.31), and since the term L j attached
I + G̃11

l G12
jl and G22

j , we set

L̂ j = G22
j L j and G12

jl = G11
l G22

j −G11
l .

This leads to the following structure of G jl :

G jl =

[
G11

l G11
l G22

j −G11
l

0 G22
j

]
. (5.32)

Both choices (5.30) and (5.32) allow to simplify the complexity of the initial bilinear
problem. So our idea consists in combining the two choices (5.30) and (5.32) by intro-
ducing another scalar variable α jl satisfying :

G12
jl = α jlG11

l G22
j −G11

l (5.33)
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which means that

G jl =

[
G11

l α jlG11
l G22

j −G11
l

0 G22
j

]
. (5.34)

Observe that if α jl = 0, for all j, l ∈ Λ, we get the structure (5.30), and if α jl = 1, for all
j, l ∈ Λ, we get the structure (5.32). On the other hand, the combination (5.34) is more
than a convex combination since the scalar variable that we introduced, α jl, is a free
parameter (and is not necessarily in [0,1]).
At this stage, we complete our design methodology by linearizing the uncertain terms
∆A. By virtue of the convexity principale, we get that (5.31) with (5.34) holds for each
l, j ∈ Λ, if and only if it holds for each l, j ∈ Λ, and each A (ρ) ∈ VB.

Linearization of (5.31) with respect to the uncertainty.

Taking into account (5.34), inequality (5.31) can be rewritten under the following more
suitable from :

Ξ jl(A (ρ))+He(ZT
1 j Z2 jl)< 0,∀l, j ∈ Λ, ∀A (ρ) ∈ VB. (5.35)

where :

Ξ jl(A (ρ)) =




−P̃11
j −P̃12

j Ω
j
13 0

(?) −P22
j Ω

jl
23 Ω

j
24

(?) (?) Ωl
33 P̃12

l + I−α jlG22
j

(?) (?) (?) P22
l −G22

j − (G22
j )T


 ,

Ω
j
13 =G̃11

j AT
j + K̃T

j BT ,

Ω̃
jl
23 =−α jlCT L̂T

j +(A j +A (ρ))T (α jlG22
j − I)T ,

Ω̃
j
24 =(A j +A (ρ))T (G22

j )T −CT L̂T
j ,

Ω̃
l
33 =P̃11

l − G̃11
l − (G̃11

l )T ,

Z1 j =
[−A (ρ)(G̃11

j )T 0 0 0
]
,

Z2 jl =
[
0 0 (α jlG22

j − I)T (G22
j )T ] .

By using Young relation, and Schur complement Lemma, we obtain that inequalities
(5.35) hold, if the following inequalities




Ξ jl ZT
1 jA

T (ρ) ZT
2 j

(?) − 1
ε j

I 0
(?) (?) −ε jI


< 0,∀l, j ∈ Λ, ∀A (ρ) ∈ VB, (5.36)

are fulfilled. We just prove the following theorem :

Theorem 5.3.4. The observer-based controller (5.5) stabilizes asymptotically the system
(5.1) if, for some scalars fixed a priori α j,l, ε j > 0, there exist symmetric positive definite
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matrices Dl =

[
P̃11

l P̃12
l

(?) P22
l

]
∈R2n×2n, invertible matrices G̃11

j , G22
j , and matrices K̃ j, L̂ j, with

l, j ∈ Λ, such that LMI (5.37) holds for all l, j ∈ Λ. Hence, the stabilizing observer-based
control gains are given by L j = (G22

j )−1L̂ j and K j = K̃ j(G̃11
j )−T .




−P̃11
j −P̃12

j G̃11
j AT

j + K̃T
j BT 0 −G̃11

j A T (ρ) 0

(?) −P22
j Θ

jl
23 (A j +A (ρ))T (G22

j )
T −CT L̂T

j 0 0

(?) (?) P̃11
l − G̃11

l − (G̃11
l )T P̃12

l + I−α jlG22
j 0 α jlG22

j − I

(?) (?) (?) P22
l −G22

j − (G22
j )

T 0 G22
j

(?) (?) (?) (?) − 1
ε j

I 0

(?) (?) (?) (?) (?) −ε jI




< 0.

(5.37)

Θ
jl
23 =−α jlCT L̂T

j +(A j +A (ρ))T (α jlG22
j − I)T .

Remark 5.3.5. Notice (5.37) is an LMI if we fix a priori αl, ε j. Thus it’s resolution involves
the gridding method with respect to α j,l, ε j, for each j and l. From a numerical point of
view, this may generate some complexity, but an interesting results are obtained when we
take α j,l and ε j independent of j (see Table 2 in the following section). We can also linearize
(5.37) with respect to ε j by using the estimation − 1

ε j
I ≤ (ε j−2)I.

5.4 Numerical examples

In this section, we provide numerical examples and simulations. The first example is
taken from [37]. The goal of this example is to show that the proposed design metho-
dology tolerates larger uncertainty level ∆. The second example is taken from [38]. We
propose to compare the performance of our methods and those proposed in [37–39].

Example 5.4.1. Consider the following discrete-time LPV system [37]

xt+1 =




0.25 1 0
0 0.1 0
0 0 0.6+ρt


xt +




1
0
1


ut (5.38a)

yt =
[
1 0 2

]
xt (5.38b)

with ρ ∈ [0,0.5], k ∈ N. In this case, we can take the functions ξ1(ρ) = (0.5−ρ)/0.5 and
ξ2(ρ) = ρ/0.5 and A1 = A(0), A2 = A(0.5). The LMIs (5.37) return simultaneously for
ε j = 0.03, j = 1,2 and (α j)

2
j=1 = (100,130), the controller gains

K1 = 10−2 ∗
[
0.0019 0.0005 −58.8554

]
,
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5.4. Numerical examples

TABLE 5.1 – The DC Motor Model Parameters
Moment of inertia of the rotor J = 0.01 kg.m2

Motor viscous friction constant b = 0.1 N.m.s
Electromotive force constant Ke = Km = 0.01 V/rad/s
Motor torque constant Kt = Km = 0.01 N.m/Amp
Electric resistance Rm = 1Ω

Electric inductance Lm = 0.5 H

K2 = 10−2 ∗
[
−0.0001 0.0006 −133.5613

]

and the observer gains given by

L1 =



−0.0054
0.0055
0.2273


 ,L2 =



−0.0284
0.0112
0.4598


 .

These observer-based controller gains are obtained for the largest value of uncertainty level
∆max = 0.4441, while the other methods in [37], [38] and [39] are found infeasible for this
uncertainty level. The simulation results corresponding to these observer-based controller
gains are given in Figure 5.1 with x0 =

[
1 1 1

]T and x̂0 =
[
5 5 5

]T .

Example 5.4.2. Now, we consider the DC motor model given in [38] and defined by the
following continuous-time equations :

ẋ(t) = ACx(t)+BCu(t)

y(t) =CCx(t)

with

AC =

[ −b
J

Km
J

−Km
Lm

−Rm
Lm

]
, BC =

[
0
1

Lm

]
,CC =

[
1 0

]
.

The parameters of the DC motor are presented in Table 5.1.
The resistance Rm is assumed to be a time-varying, which leads to an LPV system. That is,
Rm(.) = ρ(.). As in [38], we assume that ρ(.) ∈

[
1 5

]
. Approximating the derivative with

Euler method and choosing a sampling period Ts = 0.1, we obtain the discredited version of
the system, described by the following parameters :

C ,CC =
[
1 0

]
, B, BC =

[
0

0.2

]
,

A(ρ), I +TsAC(ρ) =

[
0 0.1

−0.002 1− Ts
Lm

ρ

]
.

Hence, we can compute A1 and A2 as

A1 = A(5) =
[

0 0.1
−0.002 0

]
,
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FIGURE 5.1 – The controlled states x, its estimate x̂ and the estimation error e

A2 = A(1) =
[

0 0.1
−0.002 0.8

]
.

We have compared the feasibility of the proposed design methods and those established in
[37–39], by increasing the uncertainty level ∆ until obtaining infeasibility. The superiority
of the proposed LMIs (5.37) is quite clear from the results presented in Table (5.2).
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5.5. Conclusion

TABLE 5.2 – ∆max tolerated for different methods in Example 1 and 2
Method ∆max in Example 1 ∆max in Example 2
LMI in [37] 0.1786 1.0855
LMI in [38] ( !) 0.0800
LMI 18 in [39] 0.2123 0.9999
LMI 24 in [39] 0.3107 0.9999
LMI (5.28) 0.3415 1.22

(α j) j=1,2 = (100,130) (α j) j=1,2 = 1
(ε j) j=1,2 = 0.03 (ε j) j=1,2 = 24

LMI (5.37) 0.4441 1.4

With ∆max = 1.4, LMIs (5.37) return simultaneously the observer-based controller gains

K1 =
[
0.0100 −4.0310

]
,K2 =

[
0.0100 −0.0067

]
,

and

L1 =

[
0.3031
1.9758

]
,L2 =

[
0.2415
−0.0407

]
.

We see through these comparisons that the proposed method solves the stabilization pro-
blem with a maximum uncertainty level. The gains of the observer-based controller are
computed by solving only a single set of LMIs running with only one-step algorithm. This
demonstrates the simplicity and the efficiency of the proposed methodology.

5.5 Conclusion

In this chapter, we have presented two new LMI synthesis methods to design observer-
based controllers for a class of LPV systems with inexact but bounded parameters. The
first approach is based on the use of Young’s relation, while the second one uses a new
congruence principle by pre- and post-multiplying the basic BMI by new and ingenious
matrices. Thanks to these matrices, some bilinear terms vanish from the BMI, which
becomes more flexible for the linearization. To show the validity and superiority of the
proposed design methods, two numerical examples from the literature have been recon-
sidered in this paper. The comparisons show that the proposed methodologies provide
less conservative LMI conditions compared to LMI techniques reported previously in the
literature.
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Conclusion and Future Works

Through this thesis, we have been interested in the problem of robust stability analysis
and control design for both switched linear systems and LPV systems, with uncertain
parameters. We addressed this problem by using the approach of Finsler’s Lemma. The
aim was to reduce the conservatism of some existing methods in the literature. We have
proposed several scenarios of linearization of the Finsler inequality. We have shown
analytically that our judicious choices of the slack variables coming from Finsler’s lemma
eliminate some bilinear terms. A numerical evaluation of the complexity of the proposed
LMIs methods has been carried out. We also tested the validity and superiority of the
proposed methods on several practical examples.

Perspectives

Many questions remain in this area. As future research perspectives on the results pre-
sented in this manuscript, we intend to develop and improve the following points :

— Extend the applicability of our approach to other types of systems, such as conti-
nuous time switching systems, Lipschitz nonlinear switching systems, switching
systems without a priori knowledge of mode and switching law , and intercon-
nected systems.

— Search for new Lyapunov functions resulting in less conservative synthesis condi-
tions.

— Issues related to the observability of nonlinear systems.
— Study of stochastic systems.
— Study of T-S fuzzy switched system.

Finally, we would like our contribution is of some interest and be the subject of further
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Conclusion and Future Works

studies in this area, where, as we said, many fundamental questions remain open.
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Résumé

Le problème de stabilisation par retour d’état dynamique pour les systèmes linéaires
à paramètres incertains se traduit par la résolution d’une inégalité bilinéaire matri-
cielle (BMI), qui, d’un point de vue numérique, est un problème NP-difficile. Cette thèse
aborde ce problème pour des systèmes à commutations à temps discrets et à paramètres
incertains, en se basant sur le Lemme de Finsler. Un scénario de méthodes d’optimisa-
tion exprimées par des inégalités linéaires matricielles (LMIs) sont développées. La su-
périorité des méthodes proposées par rapport aux résultats existants dans la littérature
est démontrée analytiquement. Une application aux systèmes Linéaires à Paramètres
Variants (LPV) est aussi abordée.

Mots-clés: Systèmes à commutations à temps discret ; Fonction de Lyapunov commu-
tée ; Lemme de Finsler ; Observateur de Luenberger ; Stabilisation ; Inégalités Matri-
cielles Linéaires (LMI) ; Incertitudes

Abstract

The problem of stabilization by dynamic state feedback for linear systems with uncertain
parameters is expressed by a bilinear matrix inequality (BMI), which, from a numeri-
cal point of view, is an NP-hard problem. This thesis addresses this issue for switched
discrete-time linear systems with with l2-bounded disturbances and parameter uncer-
tainties, using the Finsler Lemma. A scenario of optimization methods expressed by
linear matrix inequalities (LMIs) is developed. The superiority of the proposed meth-
ods with respect to previous results in the literature is analytically demonstrated. An
application to Linear Parameters Variant Systems (LPV) is also discussed.
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