REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE MOULOUD MAMMERI DE TIZI OUZOU

Faculté du Génie de la Construction

Département de Génie Civil

Laboratoire de Recherche en Géo Matériaux Environnement et Aménagement (LGEA)

MEMOIRE DE MASTER 2

Spécialité : Génie Civil

Option : Géotechnique et environnement

Présenté par :

GUILALI KAHINA

Thème :

Etude expérimentale du comportement des sols à multicouches à la boite de cisaillement et à l'œdométre

Devant le jury, composé de :

Mr GABI Smail, professeur à l'UMMTO, Mr MELBOUCI Bachir, professeur à l'UMMTO, Mr BOUDLAL Omar, maitre assistant (A) à l'UMMTO, M^{me} BAIDI Fawzia, maitre assistante (A) à l'UMMTO, M^{me} MOBAREK Horia, maitre assistante (A) à l'UMMTO,

PROMOTION: 2011/2012

Président. Rapporteur. Co-rapporteur. Examinatrice. Examinatrice.

Remerciements

Je suis très honoré d'être encadré par Monsieur MELBOUCI Bachir, professeur à l'université Mouloud Mammeri de Tizi-Ouzou Je tiens à le remercier pour m'avoir guidé le long de ce travail de recherche, et surtout pour ses conseils.

J'adresse mes síncères remerciements à Monsieur BOUDLAL Omar pour avoir proposé le thème et accepté d'être le Co-Rapporteur de ce mémoire, pour ses efforts fournit, pour son soutien, sa patience et sa disponibilité tout en suivant de prés l'élaboration de ce travail.

Un remerciement très spécial pour Monsieur BOUKHERROUB Med Ameziane responsable du laboratoire pédagogique de MDS qui étais derrière moi et qui a mis à ma disposition tous les moyens nécessaires pendant les 2 mois passés au laboratoire.

Je tiens à remercier également Monsieur GABI Smail Professeur à l'UMMTO qui m'a honoré de présider le jury de ce mémoire, ainsi que M^{me} BAIDI Fawzia et M^{me} MOBAREK Horia membres de ce même jury.

Mes remerciements vont particulièrement à AMEL et KAMEL membres du laboratoire LGEA de m'avoir encouragé durant ce travail.

Mes remerciements sont adressés à tous ceux qui m'ont aidé pendant la réalisation des essais au laboratoire MDS, notamment et particulièrement Toufik, YACINE, SOFIANE, FOUZIA et DJAMILA. Se dédie ce travail à

Mes très chers parents, Ma sœur Fatiha, Mes frères Mourad, Mustapha et Omar, Mon frère Kassim, sa femme Sabrina, et Leur petite Alicia, À mes amies, Et L'ensemble des étudiants de la promotion Mastère2 (2011/2012) sans exception.

gures	I
ıbleaux	II
vmboles	
n générale	
ıbleaux ymboles ə générale	

CHAPITRE I : GENERALITES SUR LES SOLS

I.1. Introduction	
I .2. Définitions	
I. 3.Les sable	
I.3.1.Les origines du sable	5
I.3.2.Les caractéristiques du sable	
I.4. Les argiles	6
I.4.1. Structure des argiles	6
I.4.2. Propriétés mécaniques caractéristiques des argiles	7
I.5.Les marnes	
I.5.1. Genèse des marnes	
I.5.2. Caractéristiques des marnes	9
I.6. Classification des sols	9
I.6.1. Classification des sols grenus	
I.6.2. Classification des sols fins	
I.7.Comportement des sols	
I.7.1.Comportement des sols suivant leur degré de saturation	15
I.7.2.Comportement des sols en fonction de leur viscosité	
I.8.Comportement des sols saturés	15
I.8.1.Comportement d'un sol grenu saturé	
I.8.2.Comportement d'un sol fin saturé	
I.9. Tassement, compressibilité et consolidation des sols	
I.9.1 .Tassement	
I.9.2. Compressibilité	
I.9.3. Consolidation	
I.10. Résistance au cisaillement d'un sol	
I.10.1. Notion de résistance au cisaillement	
I.10.2. Paramètres C et Φ pour différents sols	
I.11. Conclusion	

CHAPITRE II : IDENTIFICATION DES MATERIAUX UTILISE

II.1. Introduction	
II.2. Origine des matériaux utilisés	
II.3. Essais d'identification réalisés	
II.3.1.Analyse granulométrique	
II.3.2. Analyse sédimentométrique	
II.4. Caractéristiques physiques	
II.4.1. Teneur en eau	
II.4.2. Masse volumique des grains solides	
II.4.3. Masse volumique sèche	
II.4.4. Indice des vides	
II.4.5. Porosité	
II.4.6. Détermination des limites d'Atterberg pour l'argile et la marne	
II.5. Conclusion	

CHAPITRE III : ESSAIS DE CISAILLEMENT DIRECT A LA BOITE

III.1. Introduction	13
III.2. Appareillage	13
III.3. Mode opératoire	14
III.4. Déroulement de l'essai	14
III.5.Exécution de l'essai	14
III.5. 1. Essai de cisaillement des trois matériaux séparément 4	14
III.5. 2. Essais de cisaillement avec combinaison horizontales 4	15
III.5. 3. Essai de cisaillement avec combinaison inclinées4	17
III.6. Expression des résultats 4	18
III.7.Présentation des résultats 4	18
III.7.1.Courbes contraintes déformations des matériaux (sable, argile et marne)4	18
III.7.2.Courbes de variation de volume des trois matériaux (sable, argile et marne) 4	19

III.7.3.Droites intrinsèques	50
III.7.4. Courbes contraintes déformations des combinaisons horizontales	54
III.7.5. Courbes contraintes déformations des combinaisons inclinées	55
III.7. 6. Courbes de variation de volume des combinaisons horizontales	56
III.7.7.Courbes variations du volume des combinaisons inclinées	58
III.7.8.Droites intrinsèques des combinaisons horizontales	59
III.7.9. Droites intrinsèques des combinaisons inclinées	60
III.8. Conclusion	68

CHAPITRE IV : ESSAIS OEDOMETRIQUES

IV.1. Introduction
IV.2. Appareillage
IV.3. Déroulement des essais
IV.4. Caractéristiques obtenues à l'œdométre
IV.4. 1.Indice des vides74
IV.4.2.Paramètres d'identification75
IV.4.3. Caractéristiques de compressibilité75
VI.5.présentation des résultats
VI.6.Exploitation des résultats
VI.7.Conclusion
Conclusion générale
Références bibliographiques
Annexes

LISTE DES FIGURES

Figure 1.I : Multicouches naturels (Sable – Argile)	4
Figure 2.I : Multicouches naturels (Sable – Marne)	4
Figure 3.I : Multicouches naturels (Argile– Marne).	4
Figure 4.I: les limites d'Atterberg	12
Figure 5.I : Diagramme de casagrande	13
Figure 6.I : Notion de contrainte effective dans un massif de gravier saturé	15
Figure 7.I : Notion de contrainte effective dans un massif d'argile saturé	18
Figure.8.I : Comparaison entre la compressibilité des sols fins et pulvérulents	21
Figure .9.I: Phénomène de consolidation	22
Figure .10.I: Courbe contrainte-déformation	24
Figure .11.I : Droite intrinsèque	24
Figure 1. II : Site ; «Boulevard Krim Belkacem»	29
Figure 2. II : Site ; «Boulevard Krim Belkacem»	29
Figure 3. II : Courbe granulométrique du sable étudié	31
Figure 4. II : Courbe analyse sédimentométrique de l'argile	32
Figure 5. II : Analyse sédimentométrique de la marne.	33
Figure.6. II : Droite $w = f (\log N)$ pour le materiau argile	38
Figure. 7. II : Droite $w = f(\log N)$ pour le materiau marne	40
Figure 1.III: appareillage de cisaillement direct à la boite de cisaillement	43
Figure.2. III : Echantillon N°1 après cisaillement.	44
Figure.3. III : Echantillon N°2 après cisaillement	44
Figure.4. III : Echantillon N°3 après cisaillement	45
Figure.5.III : Echantillon N°4 après cisaillement	45
Figure.6.III : Echantillon N°5 après cisaillement	45
Figure.7. III : Echantillon N°6 après cisaillement.	46
Figure.8. III : Echantillon N°7 après cisaillement	46
Figure.9. III : Echantillon N°8 après cisaillement	46
Figure.10.III : Echantillon N°9 après cisaillement.	46
Figure.11.III: Echantillon N°8 après cisaillement	
Figure.12.III: Echantillon N°9 après cisaillement	
Figure.13.III: Echantillon N°12 après cisaillement	47
Figure.14.III:Echantillon N°13 après cisaillement	47

Figure.15.III :Echantillon N°14 après cisaillement	. 47
Figure.16.III:Echantillon N°15 après cisaillement	. 47
Figure.17. III : Echantillon N°16 après cisaillement	. 48
Figure.18. III : Courbe $\tau = f(\Delta L/L)$;(échantillon n°1 : l'argile)	. 48
Figure.19. III : Courbe $\tau = f (\Delta L/L)$; (échantillon n°2 : marne)	. 48
Figure.20. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°3 : sable)	. 49
Figure.21. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°1 : argile)	. 49
Figure.22. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°2 : marne)	. 49
Figure.23. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°3 : sable)	. 50
Figure.24. III : Droite intrinsèque, $\tau = f(\sigma)$; (échantillon n°1 : argile)	. 50
Figure.25. III : Droite intrinsèque, $\tau = f(\sigma)$; (échantillon n°2 : marne)	. 50
Figure.26. III : Droite intrinsèque, $\tau = f(\sigma)$; (échantillon n°3 : sable)	. 50
Figure.27. III : Comparaison entre la résistance des matériaux (argile, sable et marne)	. 52
Figure.28. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°4 : argile/ marne)	. 54
Figure.29. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°5 : marne/argile)	. 54
Figure.30. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°6 : argile/sable)	. 54
Figure.31. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°7 : sable/argile)	. 54
Figure.32. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°8 : sable/marne)	. 54
Figure.33. III : Courbe $\tau = f(\Delta L/L)$;(échantillon n°9 : marne/sable)	. 54
Figure.34. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°10 : sable/argile/sable)	. 55
Figure.35. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°11 : sable/marne/sable)	. 55
Figure.36. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°12 : argile/ marne)	. 55
Figure.37. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°13 : sable/argile)	. 55
Figure.38. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°14 : sable/marne)	. 55
Figure.39. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°15 : sable/argile/sable)	. 55
Figure.40. III : Courbe $\tau = f(\Delta L/L)$;(échantillon n°16 : sable/marne/sable)	. 56
Figure.41. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°4 : argile/marne)	. 56
Figure.42. III : Courbe $\Delta V/V = f(\Delta L/L)$;(échantillon n°5 : marne/argile)	. 56
Figure.43. III : Courbe $\Delta V/V = f(\Delta L/L)$;(échantillon n°6 : argile/sable)	. 57
Figure.44. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°7 : sable/argile)	. 57
Figure.45. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°8 : sable/marne)	. 57
Figure.46. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°9 : marne/sable)	. 57
Figure.47. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°10 : sable/argile/sable)	. 57
Figure.48. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°11: sable/marne/sable)	. 57

Figure.49. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°12 : argile/marne)	58
Figure.50. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°13 : sable/ argile)	58
Figure.51. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°14 : sable/ marne)	58
Figure.52. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°15 : sable/ argile/sable)	58
Figure.53. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°16 : sable/ marne/sable)	58
Figure.54. III : Droite intrinsèque, $\tau = f(\sigma)$, (Échantillon n°5 : marne/argile),	
(Échantillon n°4 : argile/marne)	59
Figure.55. III : Droite intrinsèque, $\tau = f(\sigma)$., (Échantillon n°6 : argile/sable),	
(Échantillon n°7 : sable/argile).	59
Figure.56. III : Droite intrinsèque, $\tau = f(\sigma)$. (Échantillon n°8 : sable/marne). (Échantillon n	n°9:
marne/sable)	59
Figure.57. III : Droite intrinsèque, $\tau = f(\sigma)$. (Échantillon n°10 : able/argile/sable),	
(Échantillon n°11 : sable/marne/sable).	60
Figure.58. III : Droite intrinsèque, $\tau = f(\sigma)$. (Échantillon n°12 : argile/marne). (Échant	illon
n°13 : sable/argile).	60
Figure.59. III : Droite intrinsèque, $\tau = f(\sigma)$. (Échantillon n°14 : sable/marne). (Échant	illon
n°15 : sable/argile/sable)	61
Figure.60. III : Droite intrinsèque, $\tau = f(\sigma)$, (échantillon n°16 : sable/marne/sable)	61
Figure.61. III : Comparaison entre la résistance des combinaisons (argile, marne).	64
Figure.62. III : Comparaison entre la résistance des combinaisons (argile, sable)	65
Figure.63. III : Comparaison entre la résistance des combinaisons (sable, marne).	66
Figure .1.IV: Echantillon n°1	70
Figure .2.IV: Echantillon n°2	70
Figure .3.IV : Echantillon n°3	71
Figure .4.IV : Echantillon n°4	71
Figure .5.IV : Echantillon n°5	71
Figure .6.IV : Echantillon n°6	71
Figure .7.IV : Echantillon n°7	72
Figure .8.IV: Echantillon n°8	72
Figure .9.IV: Appareillage de l'œdométre	73
Figure .10.IV: Détermination graphique de σ_P '	75
Figure .11.IV: Courbe de compressibilité : argile sur marne	78
Figure .12.IV: Courbe de compressibilité : marne sur argile	78
Figure .13.IV: Courbe de compressibilité : sable sur argile sur sable	78

Figure .14.IV: Courbe de compressibilité : sable sur marne sur sable	78
Figure .15.IV: Courbe de compressibilité : sable sur argile	79
Figure .16.IV : Courbe de compressibilité : argile sur sable	79
Figure .17.IV: Courbe de compressibilité : sable sur marne	79
Figure .18.IV: Courbe de compressibilité : marne sur sable	79
Figure .19.IV: Exemple d'évaluation des caractéristiques de compressibilité	80

LISTE DES TABLEAUX

Tableau 1.I : Classification USCS des sols grenus Tableau 2 I : quelques valeurs indicatives (d'après Boeck cité par Filliat)	11
Tableau 3.I: Limites d'Atterberg pour les minéraux argileux	14
Tableau1. II : Résultats de l'analyse granulométrique par tamisage	31
Tableau 2.II : Résultats de l'analyse sédimentométrique, argile	32
Tableau 3.II : Résultats de l'analyse sédimentométrique, marne	32
Tableau 4.II : Résultats de la détermination de la masse volumique sèche, sable	35
Tableau 5.II : Synthèse des résultats (caractéristiques physiques du sable)	35
Tableau 6.II : Résultats de la détermination de la masse volumique sèche ; argile	36
Tableau 7.II : Résultats de la détermination de la masse volumique sèche, marne	36
Tableau 8.II : Limite de liquidité, argile	38
Tableau 9.II : Limite de plasticité, argile	39
Tableau 13.II : Synthèse des résultats (limites d'Atterberg, argile)	39
Tableau 11.II : Limite de liquidité, marne	40
Tableau 12.II : Limite de plasticité, marne	41
Tableau 13.II : Synthèse des résultats (limites d'Atterberg, marne)	41
Tableau 1. III : Caractéristiques mécaniques des trois matériaux séparément	51
Tableau 2. III : Caractéristiques mécaniques des combinaisons horizontales	62
Tableau 3. III : Caractéristiques mécaniques des combinaisons inclinées	62
Tableau 1.IV : Variations de l'indice des vides (Δe) en fonction log σ '	77
Tableau 2.IV : Variations de l'indice des vides (Δe) en fonction log σ '	77
Tableau 3.IV : Caractéristiques de compressibilité des échantillons	80

LISTE DES SYMBOLES

K : Coefficient de perméabilité ;

h : Charge hydraulique ;

n: Porosité ;

Cu : Coefficient d'uniformité ;

Cc : Coefficient de courbure ;

 w_{opt} : Teneur en eau optimale ;

W: Teneur en eau;

ps : Masse volumique des grains solides ;

 ρd : Masse volumique sèche ;

e : Indice des vides ;

 m_e : Masse de l'eau ;

m_s : Masse des grains solides ;

v_s : volume des particules solides ;

V_t : volume total ;

w_l : Limite de liquidité ;

w_p : Limite de plasticité ;

w_r : Limite de retrait ;

I_p : Indice de plasticité ;

 τ : Contrainte tangentielle ;

 $\Delta V/V$: Variation de volume ;

 $\Delta L/L$: Déformation horizontale ;

 $\boldsymbol{\sigma}: Contrainte \ normale \ ;$

C: Cohésion;

- Φ : Angle de frottement interne ;
- H_o : Hauteur initiale de l'échantillon ;

H : Hauteur de l'échantillon au moment considéré ;

 h_p : Hauteur équivalente du solide ou hauteur des grains solides ;

 γ_s : poids volumique des grains solides ;

 γ_w : poids volumique de l'eau ;

 C_c : Indice de compression ;

Cg, Cs : Indice de gonflement ;

Cr : Indice de recompression ;

 $\sigma p'$: Pression de préconsolidation.

Chapitre I Généralités sur les sols

I.1. Introduction

Le sol est un matériau constitué de particules. Les dimensions de ces particules peuvent être uniformes ou variables, allant des cailloux de 10 cm et s'étendant jusqu'aux particules fines de moins du micron. En plus de la taille, les grains possèdent d'autres caractéristiques telles que : la forme, la texture et la structure élémentaire. Toutes ces caractéristiques sont relativement liées et peuvent s'expliquer par l'histoire du matériau.

En gros, on peut distinguer :

- Les matériaux sablo-graveleux ;
- Les sols limoneux ;
- Les argiles, marnes et latérites ;
- Les vases ;
- Les matériaux tourbeux.

I.2. Définitions

Les sables, graviers et cailloux sont définis par un critère de dimension. On les appelle des matériaux pulvérulents ou grenus.

Les limons, essentiellement caractérisés par leur dimension, couvrent plusieurs types de matériaux. Certains ont été formés par l'altération d'une roche-mère en climat tempéré. D'autres sont d'origine fluviatile.

Les argiles désignent à la fois des minéraux très fins et les formations géologiques constituées avec ces minéraux. La principale caractéristique de l'argile est de pouvoir faire pâte avec l'eau. Les minéraux argileux sont formés d'empilement de feuillets extrêmement fins dont les micas peuvent donner une image.

Les marnes sont des formations argileuses contenant plus ou moins de calcaire et de la silice, d'origine détritique ou de précipitation chimique.

Les latérites sont en fait des argiles d'altération; elles proviennent de la décomposition des roches en climat tropical, chaud et humide.

La vase est un sédiment fin, mou et compressible, de teinte foncée souvent grise et dont le liant est à la fois minéral et organique; ce liant emprisonne une grande quantité d'eau.

La tourbe est également molle et compressible, sa couleur est brune à noire. Elle provient de la décomposition sous eau de végétaux souvent visibles; alors la structure peut être fibreuse. Elle contient souvent des sédiments détritiques interstratifiés. (*Laboratoire national du bâtiment et des travaux publics d'haïti, dossier 2*).

Dans la nature, ces sols se trouvent sous forme d'une couche continue constituée d'un seul matériau ou en multicouches c'est-à-dire formés par deux matériaux différents, ou encore en trois couches de trois matériaux différents, comme le montre les figures 1, 2 et 3.

Figure 1.I : Multicouches naturels (Sable – Argile).

Figure 2.I : Multicouches naturels (Sable – Marne).

Figure 3.I : Multicouches naturels (Argile–Marne).

I. 3.Les sable

I.3.1.Les origines du sable

Les sources de sable peuvent être d'origine locale ou mixte (autochtone ou allochtone). Le sable peut également provenir de la dégradation du couvert végétal, d'anciennes dunes remises en mouvement, d'apports actuels provenant des épandages de crues, des terrasses alluviales ou des oueds.

On dit que :

- Le sable autochtone: Quand les sources de sable peuvent être locales.
- Le sable est allochtone: Quand l'origine du sable est lointaine.
- Le sable est auto-allochtone : Quand l'origine du sable est mixte.

Les particules de sable sont transportées par les vents ou par les eaux et s'accumulent quelque part :

- sur le littoral: Lorsque le sable est apporté par des courants marins et que son accumulation sur le rivage est importante, il forme des dunes littorales.
- au bord d'un cours d'eau. (<u>www.ma.auf.org</u>).

I.3.2.Les caractéristiques du sable

Les sables présentent les caractéristiques physiques et mécaniques suivantes :

- a. La granulométrie : jusqu' à présent, les critères de choix d'un sable se basaient essentiellement sur la connaissance de la granulométrie, et éventuellement la forme des agrégats de ce dernier.
- b. La densité apparente et la densité réelle : la densité apparente d'un sable correspond à sa masse volumique. Cette mesure tient compte non seulement de la matière, mais aussi des espaces lacunaires présents dans cet échantillon ; par contre, la densité réelle ne tient compte que de la partie solide de l'échantillon.
- c. Le foisonnement : est la capacité d'un échantillon à augmenter ou diminuer de volume après avoir été mis en place. Les résultats sont liés au volume occupé par l'air, volume directement dépendant de la forme et de l'agencement des grains.
- d. La porosité: correspond à l'espace non occupé par le sable, les limons, l'argile, l'humus et la matière organique. Elle est de deux types : la microporosité comprenant de petits espaces lacunaires et la macroporosité comprenant de grands espaces lacunaires. L'addition des deux représente la porosité totale.

L'étude de la porosité totale peut être complétée par l'étude de la mobilité de l'eau ou de la perméabilité.

- e. La perméabilité : est la plus ou moins grande facilité que présente le sol à laisser l'eau descendre vers les couches inférieures. Cette propriété est donc bien en relation avec l'importance des espaces lacunaires.
- **f. La forme :** l'étude de la forme des grains, qui peut sembler superflue au premier abord, donne néanmoins sept catégories de formes différentes :
- Rond : les grains sont lisses et ressemblent à des billes. Ils roulent dans la capsule.
- Rond à semi-angulaire : la forme de la plupart des grains, encore très arrondis, commence à devenir semi-angulaire.
- Semi-angulaire à rond : Il y a davantage de grains à tendance semi- angulaires que de grains à tendance sphériques.
- Semi-angulaire : grains dont la surface présente des angles bien visibles mais dont l'aspect général revêt une forme arrondie.
- Semi-angulaire à angulaire : l'ensemble des grains tendent à devenir angulaire.
- Angulaire à semi-angulaire : les plus petits grains sont angulaires alors que les plus gros sont semi-angulaires (arrondis au lavage).
- Angulaire : les grains montrent des arêtes vives. Ils sont peu mobiles dans la capsule.

La forme des grains de sable a non seulement une influence sur le foisonnement, car les grains de forme arrondie empêchent le sable de se tasser, mais encore sur la perméabilité, car les espaces lacunaires sont plus étroits que dans les sables de forme angulaire à semi-angulaire.

I.4. Les argiles

I.4.1. Structure des argiles

Les argiles sont les particules fines dont la genèse est un processus plus ou moins accompli en partant de la roche mère. Le passage de la roche mère à l'argile est provoqué par un ensemble d'actions mécaniques, chimiques, et cristallographiques complexes connues sous le nom de processus pédo-génétique. Les grains argileux sont constitués d'un empilement de feuillets chargés électriquement qui glissent les uns par rapport aux autres. On dit qu'ils ont des propriétés colloïdales. On distingue 3 groupes principaux d'argiles qui se différencient par la distance entre feuillets :

- les Kaolinites (distance entre feuillets 7 Å),
- les **Illites** (distance entre feuillets 10 Å) ;
- les Montmorillonites :(distance entre feuillets 15 Å à 25 Å).

Les deux premières dont les distances entre feuillets sont faibles ne laissent quasiment pas pénétrer l'eau entre les feuillets. On a des argiles non gonflantes. Par contre les montmorillonites laissent pénétrer l'eau : ce sont des argiles gonflantes.

I.4.2. Propriétés mécaniques caractéristiques des argiles

Les roches argileuses présentent toujours, à des degrés divers, les comportements suivants : plasticité, viscoplasticité, endommagement. Du moins les essais mettent-ils en évidence des déformations irréversibles et, par suite, des comportements que l'on peut décrire par ces termes.

Du point de vue du comportement à court terme, il est souvent difficile de juger s'il s'agit de plasticité ou d'endommagement. Les deux théories permettent en général de décrire les phénomènes observés, et le choix de l'une ou de l'autre dépend souvent de l'emploi qu'on veut faire des lois ainsi mises en place. Ainsi, bien souvent, c'est la plasticité qui prime dans les lois utilisées au niveau des calculs d'ouvrages.

Pour les argiles raides, on peut penser qu'il s'agit plutôt d'endommagement dans la mesure où :

- les essais rapides de laboratoire mettent généralement en évidence une augmentation de volume irréversible, signe pour les roches de l'apparition d'un endommagement diffus ;
- les déformations irréversibles s'accompagnent souvent d'une perte de résistance et des propriétés élastiques (mais tel n'est pas toujours le cas pour les argiles raides);
- des chargements plus marqués conduisent à la rupture, qu'on peut évidemment plus facilement qualifier d'endommagement que de plasticité.

En fait, les mécanismes microscopiques qui se traduisent par les déformations irréversibles ne sont pas toujours bien compris pour les roches, et le choix de la bonne théorie à appliquer est délicat. Il est en général difficile de juger, entre plasticité et endommagement, quel phénomène est effectivement le bon. Ces phénomènes sont parfois couplés dans les modèles rhéologiques. Parfois aussi, l'endommagement est décrit en utilisant le formalisme de la plasticité.

Par ailleurs, pratiquement toutes les roches argileuses présentent un comportement différé irréversible (Rousset, 1988). Ce comportement est très marqué pour des argiles plastiques,

7

nettement moins pour des argiles raides. Du fait de l'existence de déformations résiduelles après décharge, il ne s'agit pas (du moins pas seulement) de viscoélasticité, mais plutôt de viscoplasticité. Cette viscoplasticité ne doit pas non plus être confondue avec la consolidation ou le comportement différé lié à la dissipation de la pression de pores. (*Gaombalet. J, 2004*).

I.5.Les marnes

I.5.1. Genèse des marnes

Les argiles qui rentrent dans la constitution des marnes proviennent, soit de l'altération des massifs émergés, soit de la reprise des sols.

Après un transport plus ou moins long, les minéraux argileux arrivent au bassin de sédimentation.

Dans les étapes proprement chimiques du cycle sédimentaire, les néoformations dominent (carbonates, silex, phosphate). Au cours du dépôt, et après celui-ci, interviennent les phénomènes de diagenèses (somme de processus de formation des roches à partir des boues).

• Diagenèse des carbonates

L'étude de la sédimentologie des carbonates, distingue deux types de phénomènes diagénétiques :

- Ceux qui affectent la composition minéralogique et chimique (remplacement, recristallisation, dissolution, cimentation, formation de nodules).
- Ceux qui altèrent la structure (fracturation, déformation plastique, tassement par dessiccation).

• Diagenèse des minéraux argileux

Les transformations dia génétiques affectent particulièrement les minéraux argileux en raison de leur taille, de leur surface spécifique élevée, de leur structure feuilletée facilitant les échanges d'ions entre le minéral et son entourage.

L'ensemble des phénomènes dia génétiques conduit à la formation d'un matériau dont les propriétés dépendront, en grande partie de l'intensité du phénomène qui s'est produit.

8

I.5.2. Caractéristiques des marnes

Les marnes sont constituées de trois phases : phase carbonatée, phase sableuse et phase argileuse. Les caractéristiques mécaniques sont liées à l'importance respective de chacune des phases, mais aussi à la nature minéralogique de la phase argileuse. La présence d'argile montmorillonitique ou encore d'argiles fibreuses induit des caractéristiques mécaniques mauvaises. Cependant, cette influence particulière des argiles peut être tempérée ou au contraire exacerbée suivant les types de texture. Si les liaisons entre carbonates sont abondantes et fortes, le matériau aura un comportement de roche. Au contraire si les carbonates sont noyés dans une matrice argileuse, le matériau aura un comportement d'un sol. Le comportement du matériau dépend des proportions des composantes, de la texture initiale et de la nature de la fraction argileuse. (*Hammar. D et Meziani. S, 1996*).

I.6. Classification des sols

La classification des sols naturels est un moyen de créer des catégories de sol permettant de prédire leur comportement. En général, le simple examen visuel permet de donner un nom au matériau : marne bleu, argile jaune, sable fin,...Il faut toutefois compléter cette indication par :

- . Une analyse granulométrique
- . Détermination des limites d'Atterberg.
- . Teneur en eau, masse volumique.
- . Indice de densité pour les sols pulvérulents.
- . Résistance à la compression simple pour les sols cohérents.

Comme elle permet de fournir une définition rapide d'un terrain, mais ne donne qu'une idée globale de son comportement mécanique. En France, on utilise la classification du Laboratoire des Ponts et Chaussées (avec des mailles de tamis en mm, cm,). Cette classification est proche de celle utilisée aux USA : classification USCS (Unified Soil Classification System).

- \checkmark La coupure granulométrique à 80 μ permet de séparer les sols grenus des sols fins :
- Un sol grenu est constitué de plus de 50% de grains ayant un diamètre supérieur à 80 μ.
- Un sol fin est constitué de plus de 50% de grains ayant un diamètre inférieur à 80 µ.

On définit un sol par deux symboles. Le premier symbole tient compte de la nature des éléments constituant le sol : G : pour Grave, quand la grave constitue la fraction principale du sol;

S : pour Sable, quand le sable constitue la fraction principale du sol;

L : pour Limon, quand le limon constitue la fraction principale du sol;

A : pour Argile, quand l'argile constitue la fraction principale du sol;

T : pour Tourbe, quand la tourbe constitue la fraction principale du sol;

O : pour Organique, quand l'échantillon contient des éléments organiques, même en faible quantité.

Le deuxième symbole tient compte de la granulométrie :

b : bien graduée, c'est à dire granulométrie bien étalée, sans prédominance d'une fraction particulière;

m: pour mal graduée, c'est à dire pour une granulométrie discontinue avec prédominance d'une fraction particulière. (*Merrien-soukatchoff. V, 2010 – 2011*).

I.6.1. Classification des sols grenus

Les sols grenus sont ceux pour lesquels les caractéristiques géotechniques sont déterminées par des forces de volume ou de pesanteur. Ils sont en général pulvérulents. On distingue principalement deux sous-familles :

- Sables : 50% des grains supérieurs à 0,08 mm au moins ont un diamètre inferieur à 2 mm.
- Graviers: 50% des grains supérieurs à 0,08 mm au moins ont un diamètre supérieur à 2mm.

Les dimensions extrêmes varient légèrement suivant le système de classification, le tableau 1.I présente un exemple de classification des sols grenus selon le Laboratoire des Ponts et Chaussées.

CLASSIFICATION DES SOLS GRENUS					
	(plu	is de 50% des él	éments	> 0,08 mm)	
Définitions		Symb	Critères	Appellation	
			ole		
	Plus de 50% des	Moins de 5%	Gb	$C_{\mu} > 4 \text{ et } 1 < C_{\mu} < 3$	Grave propre
	éléments	d'éléments <	(GW)		bien graduée
GRAVES	> 0,08 mm ont	0,08 mm	Gm	Une des conditions	Grave propre
	un		(GP)	Gb non satisfaites	mal graduée
	diamètre > 2 mm	Plus de 12%	GL	Limites d'Atterberg au	Grave
		d'éléments <	(GM)	dessous de la ligne A	limoneuse
				(ligne A : cf. fig I.9)	
		0,08 mm	GA	Limites d'Atterberg au	Grave
			(GC)	dessus de A	argileuse
	Plus de 50% des	Moins de 5%	Sb	$C_{u} > 6 \text{ et } 1 < C_{z} < 3$	Sable propre
	éléments	d'éléments <	(SW)	_	bien graduée
SABLES	> 0,08 mm ont	0,08 mm	Sm	Une des conditions Sb	Sable propre
	un		(SP)	non satisfaites	mal graduée
	diamètre < 2 mm	Plus de 12%	SL	Limites d'Atterberg au	Sable
		d'éléments <	(SM)	dessous de la ligne A	limoneux
				(ligne A : cf. fig I.9)	
		0,08 mm	SA	Limites d'Atterberg au	Sable
			(SC)	dessus de la ligne A	argileux
				(ligne A : cf. fig I.9)	
Lorsque : 5% < % d'éléments inférieurs à 0,08 mm < 12% => on utilise un double symbole					

Tableau 1.I : Classification USCS des sols grenus. (D'après Holtz. R.D et Kovacs. W.D, 1991).

On peut ajouter pour préciser à ces sols, d'autres critères de nature minéralogique (composition chimique même de la roche mère). Forme des grains (liée à la genèse de l'altération mécanique), gisement et tri (ségrégation ou non). Ainsi de leurs altérations mécaniques. On distingue :

- * Les sables éoliens : transportés par le vent, se rencontrent généralement sous forme de dunes marines ou continentales.
- * Les sables fluviatiles : se rencontrent dans les alluvions fluviatiles quelques fois sous forme de terrasses.
- * Les sables marins : comprennent aussi bien les sables littoraux que les sables marins anciens.
- Les sables résiduels ou arènes : produit de la fragmentation sur place d'une roche mère propice, et donnant alors aux formes de grains les aspects suivants :
 - * Emoussés luisants : caractéristique du transport par l'eau ;
 - * Ronds mats, émoussés et piquetés caractéristiques du transport par le vent ;
 - * Non usé : caractéristiques des grains non transportés. (*Tchouani nana. J.* M.1999).

I.6.2. Classification des sols fins

Les sols fins ou encore les matériaux cohérents, sont essentiellement les argiles. L'argile est une roche sédimentaire terreuse faisant pate avec l'eau. Elle est donc plastique. La plasticité d'un matériau est caractérisée par le fait qu'il peut être déformé d'une façon permanente, à volume constant, sans perdre sa cohésion interne.

La classification des sols fins est basée généralement sur les limites d'Atterberg. Ces limites sont désignées par l'appellation de **limites d'Atterberg** (agronome suédois...). Elles sont mesurées sur la fraction de sol inférieure à 400 μ . Leur détermination va permettre la classification, la caractérisation de sol et de "prévoir" leur comportement.

solide	solide	Etat	Etat	_
sans retrait	avec retrait VS	plastique Wp	liquide WI	

Figure 4.I: les	limites d'Atterberg	(Merrien-soukatchoff.)	7. 2010 – 2011).
	minites a rationoris,		. 2010 2011).

Ces limites sont, pour des teneurs en eau croissantes :

- la limite de plasticité w_P qui sépare l'état solide de l'état plastique;
- la limite de liquidité w_L qui sépare l'état plastique de l'état liquide.

L'état solide peut être également séparé par la limite de retrait w_s entre un état solide sans retrait (ne contenant plus d'eau adsorbée) d'un état solide avec retrait, présentant donc une dimension de volume lié au départ d'eau adsorbée.

Figure 5.I : Diagramme de casagrande, (Gérard. D et Paul. R. 2005).

	Limite de	Limite de	Indice de
Matériau	liquidité	plasticité	plasticité
	wL en %	wp en %	Ip en %
Sable	10 à 25		
Limon	20 à 35	10 à 30	5 à 15
Argile	40 à 150	15 à 50	20 à 100
Colloïdes	150	50	100
Marnes vertes du Sannoisien			
- à Marne la vallée	79	36	43
- à Arcueil	69	32	37
Marne de Pantin			
- à Marne la vallée	55	27	28
- à Antony	81	41	36
Marne d'Argenteuil			
- à Arcueil	76	31	45
- à Marne la vallée	76,5	35,5	41
Marne de Saint Ouen			
- à Bobigny	57,5	41,5	16
Argile Plastique	78	36	42

Tableau 3.1: Limites d'Atterberg pour les minéraux argileux, (d'après Cornell, 1951).

Minéral	Limite de liquidité wL en %	Limite de plasticité wp en %
Montmorillonite	100-900	50-100
Nontronite (variété de	37-72	19-27
smectite)		
Illite	60-120	35-60
Kaolinite	30-110	25-40
Halloysite hydraté	50-70	47-60
Halloysite déshydraté	35-55	30-45
Attapulgite	160-230	100-120
Chlorite	44-47	36-40
Allophane	200-250	130-140

Il existe plusieurs systèmes de classification des sols. Leur inconvénient est qu'ils ne sont pas applicables dans tous les cas. Parmi les causes de leur limite d'usage, c'est qu'ils ne considèrent comme critère de classification que quelques paramètres si ce n'est pas un seulement tel que classification selon:

. L'analyse granulométrique.

. L'analyse granulométrique et les limites d'Atterberg.

I.7.Comportement des sols

Le sol se comporte de plusieurs manières à cause de sa structure complexe et de son anisotropie. Ce qui induit parfois à la difficulté d'estimer son comportement. La présence des sols en multicouches rend leur comportement encore de plus en plus complexe.

Le comportement des sols naturels dépend de plusieurs paramètres :

I.7.1.Comportement des sols suivant leur degré de saturation

Suivant leur degré de saturation, (sec, non saturé et saturé), les sols ont des comportements différents. Dans la nature, on rencontre rarement des sols secs. Toutefois les sols à faible surface spécifique tels que les graviers et jusqu'aux sables moyens peuvent atteindre quasiment cet état dans la nature.

A l'autre extrême, les sols sous la nappe sont saturés, y compris généralement les argiles.

Entre les deux, on a les sols non saturés, particulièrement répandus dans les pays arides. On les rencontre aussi dans les pays tempérés au-dessus de la nappe pour les sols naturels et dans les digues, barrages, remblais, pour les sols rapportés. Ce sont les sols fins non saturés qui présentent les comportements les plus complexes. (*Plumelle. C, 2002*).

I.7.2.Comportement des sols en fonction de leur viscosité

Comme tous les matériaux le sol est visqueux. Pour certains types de sol, il sera nécessaire de prendre en compte sa viscosité qui peut être un paramètre important vis à vis des contraintes et des déplacements et déformations. (*Plumelle. C, 2002*).

I.8.Comportement des sols saturés

On considère un sol totalement saturé (Sr = 100%) constitué donc de deux phases : solide (squelette de grains ou de particules) et eau. La pression interstitielle u est positive (convention de la mécanique des sols) si le sol sous la nappe. Le comportement d'un sol saturé dépend à la fois de sa perméabilité et de la vitesse de chargement. Il est donc nécessaire de distinguer les sols à forte perméabilité (sols grenus) et les sols à faible perméabilité (sols fins), ainsi que de tenir compte de la durée d'application des charges : très courte, en phase de chantier par exemple, très longue, en phase de service de l'ouvrage, plusieurs années après sa construction, par exemple. (*Plumelle. C, 2002*).

I.8.1.Comportement d'un sol grenu saturé

Quand on applique une contrainte sur un sol grenu, quelle que soit la durée de chargement, sa perméabilité k est assez grande pour que l'eau en surpression s'évacue pratiquement instantanément. La contrainte est transmise immédiatement aux grains (contrainte inter-granulaire σ) et l'eau n'est pas

mise en surpression. Le tassement se produit instantanément. On peut illustrer le comportement d'un sol grenu par la figure 6.I.

Etat final

Figure 6.I : Notion de contrainte effective dans un massif de gravier saturé. (Plumelle. C, 2002)

Dans cet exemple ; à l'état initial, on a une couche de gravier de 10m d'épaisseur, reposant sur un substratum incompressible; la nappe est affleurante.

On suppose que la couche de sol est semi – infinie et que la charge à laquelle il sera soumis est également semi-infinie. Dans ces conditions œdométriques, pour lesquelles les déformations latérales sont nulles, le sol aura un comportement unidimensionnel, il ne subit que des déformations verticales. On peut représenter, dans ces conditions, le sol saturé dans un cylindre à paroi infiniment rigide (pas de déplacement latéral) fermé par un piston muni d'un orifice important représentatif d'une très forte perméabilité k du gravier. Le sol est modélisé par un ressort simulant la raideur du squelette des grains en simplifiant dans un premier temps le comportement du squelette du sol. Ce ressort sera d'autant plus raide que le sol sera compact. Le cylindre est entièrement rempli d'eau puisque le sol est saturé.

Au milieu de la couche de gravier, à l'état initial la pression interstitielle est u_0 et la contrainte du ressort $\sigma'v_0$. Si on place un capteur de pression interstitielle au milieu de la couche de gravier le manomètre affichera 50 kPa.

On met en place un réservoir, de très grand diamètre par rapport à l'épaisseur de sol, rempli de 10m d'eau qui transmet donc une contrainte verticale de 100 kPa. L'analogie concernant le modèle consiste à mettre un poids apportant une contrainte $\Delta \sigma$ sur le piston. On comprend facilement que le poids est immédiatement équilibré par le ressort qui se comprime et se raccourcit. L'orifice du piston est assez grand pour permettre à l'eau qui a tendance à être en surpression, puisque le squelette de sol se comprime; la pression interstitielle ne varie donc pas, la pression interstitielle finale est égale à la pression interstitielle initiale, $u_f = u_0$. La couche de gravier saturé est immédiatement drainée. On a instantanément un état stable. Sur le chantier on constatera que la pression au manomètre est restée constante et que la couche de gravier a tassé instantanément, dans cet exemple de 0,05m, dès qu'on a mis en place le réservoir rempli d'eau.

En conclusion, dans le cas des sols grenus, la contrainte extérieure $\Delta \sigma$ qu'on appellera totale est immédiatement équilibrée par les contraintes entre les grains de gravier, qu'on appellera contrainte inter-granulaire $\Delta \sigma$ ' et plus généralement effective. (*Plumelle. C, 2002*).

I.8.2.Comportement d'un sol fin saturé

Quand on applique une contrainte sur un sol fin, parfaitement saturé, sans bulles d'air, de faible perméabilité, également dans des conditions oedométriques, on doit distinguer deux cas.

1. Si la durée de chargement est courte, ou si on est au début du chargement, l'eau ne peut pas s'évacuer instantanément, le module de l'eau étant généralement beaucoup plus grand (Kw = 2000 MPa) que le module du squelette du sol, surtout s'il s'agit d'une argile molle (Ks \approx 1MPa). L'eau se met en surpression et reprend la contrainte appliquée. Il n'y a pas de tassement instantané. Le comportement du sol fin saturé fait intervenir à la fois le comportement de l'eau et du squelette (phase de chantier rapide). Ce comportement sera qualifié de court terme, non drainé.

2. Si la vitesse de chargement est très lente, ou si la durée de chargement est longue, c'est à dire si on attend assez longtemps après l'application du chargement pour que l'eau en surpression se soit évacuée (peut être des années pour l'argile), la contrainte, comme pour les sols grenus, est transmise aux particules solides. Ce comportement sera qualifié de long terme, drainé.

On peut également illustrer le comportement d'un sol fin par l'exemple de la figure 7.I. A l'état initial on a une couche d'argile de 10m d'épaisseur sous la nappe affleurante. Avec les mêmes hypothèses que le cas précédent on considère qu'on est en conditions œdométriques. On peut reprendre le même modèle analogique avec les remarques suivantes :

La raideur du ressort peut être très faible (argile molle), l'orifice du piston, représentant la perméabilité de l'argile k sera infiniment petit, 5 à 8 ordres de grandeur plus petit que celui du gravier. (*Plumelle. C, 2002*)

I.9. Tassement, compressibilité et consolidation des sols

I.9.1 .Tassement

Les tassements sont par définition les déformations verticales du sol sous l'action des sollicitations diverses. Les causes du tassement sont :

- la compression du squelette solide ;
- le départ de l'eau et de l'air des pores qui s'accompagne d'un réarrangement des grains du sol et d'une diminution de l'indice des vides.

Les tassements peuvent être uniformes ou différents d'un point à l'autre selon la nature du sol en place. Les tassements des sols non saturés sont presque instantanés tandis que dans les sols saturés, ils peuvent s'étendre sur quelques secondes dans les sols sableux-graveuleux, jusqu'à plusieurs dizaines d'années dans les argiles peu perméables. Le calcul des tassements est nécessaire pour vérifier la conformité des structures vis-à-vis des conditions de sécurité et de service. (*Berga. A 2003 – 2004*).

Généralement, le tassement se décompose en trois termes :

- le tassement initial instantané, sans expulsion d'eau, qui a lieu au moment de l'application des surcharges;
- le tassement dû à la consolidation primaire (sans déformation latérale) qui correspond au départ d'eau du sol ;

 le tassement dû à la compression secondaire, plus complexe, plus lent et généralement de plus faible intensité. (*Merrien-soukatchoff.V. 2010 – 2011*).

- a. Le tassement immédiat est indépendant du temps, tandis que les tassements de consolidation et le tassement secondaire sont des fonctions du temps. En général, le tassement immédiat est évalué en se basant sur la théorie d'élasticité.
- b. Le tassement de consolidation se produit dans les sols à grains fins présentant un faible coefficient de perméabilité. La vitesse de tassement dépend du taux d'évacuation de l'eau interstitielle c'est à dire de la perméabilité. Dans ces conditions, le tassement de consolidation peut se prolonger pendant des mois, des années ou même des dizaines d'années.

Le tassement secondaire se produit à contrainte effective constante, sans variation de la pression interstitielle, on le définit alors comme un phénomène de fluage du sol. (*Arabet. L, 2010*).

I.9.2. Compressibilité

Un sol soumis à une sollicitation externe se comprimera à cause des facteurs suivants :

- * Déformation des grains de sol.
- * Expulsion de l'air et de l'eau contenus dans les vides.

Les charges que l'on rencontre ordinairement dans les applications du génie civil ne causent généralement qu'une très faible compression des grains individuels de sol et on peut ne pas en tenir compte. Les sols compressibles se trouvent le plus souvent sous la nappe phréatique et peuvent être considérés comme complètement saturés (le cas le plus défavorable).

On supposera donc un degré de saturation de 100% pour les besoins des calculs de tassement. De la même façon, on ne tiendra pas compte de la compressibilité du fluide interstitiel.

C'est donc le troisième facteur qui contribuera le plus au changement de volume des sols comprimés. À mesure que le fluide interstitiel est chassé, les grains de sol sont réarrangés suivant une configuration plus dense et par conséquent plus stable ; il en résulte une diminution de volume et un tassement de la surface. La vitesse à laquelle se produira ce tassement dépend de la perméabilité du sol. L'ampleur du réarrangement des grains et de la compression dépend de la rigidité du squelette, elle-même fonction de la structure du sol, qui dépend de l'histoire géologique du dépôt et de l'intervention humaine.

• Comparaison entre la compressibilité des sols pulvérulents et des sols fins

La compressibilité du sol dépend de sa structure et de sa perméabilité. Lorsque les sols fins subissent un chargement, leur compression est déterminée par la vitesse à laquelle l'eau est chassée des pores parce qu'elles ont une faible perméabilité. Ce phénomène, qu'on appelle la *« Consolidation »*, fait intervenir les effets de la contrainte et du temps sur la déformation.

La figure 8.I, montre la comparaison entre la compressibilité des sols fins et des sols pulvérulents.

Si l'on considère le cas d'un matériau soumis à une compression unidimensionnelle. Il exprime la compression en fonction du temps, on peut constater que la compression des sols pulvérulents se produit plus rapide que celle des sols fins.

Figure 8.I : Comparaison entre la compressibilité des sols fins et des sols pulvérulents. (*Arabet. L, 2010*).

Il arrive souvent que la compression des sols pulvérulents ait lieu pendant la construction; ainsi, la plupart de ces tassements se produisent avant que la structure ne soit érigée.

I.9.3. Consolidation

On définit, la consolidation (ou consolidation primaire) d'un sol fin comme le phénomène conduisant à la dissipation des surpressions interstitielles et à la diminution du volume du sol au cours du temps sous les charges qui lui sont appliquées.

L'application rapide d'une charge à la surface d'un massif ou d'une éprouvette de sol se traduit, à l'instant initial, par l'apparition de surpressions interstitielles (excès de pression par rapport à la distribution d'équilibre, généralement hydrostatique) dans la phase liquide du sol. S'il existe des possibilités de drainage aux limites du massif ou de l'éprouvette, il s'établit un écoulement transitoire régi :

* par l'équation générale de l'écoulement de l'eau dans les sols ;

* Avec :

n: la porosité,

K : le coefficient de perméabilité,

h : la charge hydraulique ;

Au cours de cet écoulement, les surpressions interstitielles diminuent, les contraintes effectives augmentent et le volume du sol diminue, à une vitesse compatible avec la vitesse d'écoulement de l'eau hors du sol. Le phénomène est illustré par l'analogie représentée sur la figure 9.I.

Figure 9.I: Phénomène de consolidation. (Magnan. J.P, Technique de l'ingénieur)

- le sol est chargé par l'intermédiaire d'une plaque percée d'un orifice de faible diamètre, muni d'un robinet.
- le comportement mécanique du squelette solide du sol est schématisé par un ressort.
- la phase liquide est représentée par de l'eau.

- la faible perméabilité du sol est simulée en restreignant la section de l'orifice permettant à l'eau de s'échapper à travers la plaque de chargement.
- À l'instant initial (a) t = 0 (robinet fermé), la charge σ_s appliquée à la plaque est transmise intégralement à l'eau, le ressort n'est pas sollicité.
- Après ouverture du robinet (b), l'eau s'échappe lentement au cours du temps, la charge étant reprise progressivement par le ressort.
- En fin de consolidation (c), la surpression dans l'eau est dissipée, l'écoulement s'arrête et la charge est entièrement transférée sur le ressort. (Magnan. J.P, Technique de l'ingénieur).

I.10. Résistance au cisaillement d'un sol

En géotechnique, on s'intéresse d'avantage à la résistance au cisaillement, car dans la majorité des situations, la rupture dans le sol est produite par l'application de contraintes de cisaillement excessives.

I.10.1. Notion de résistance au cisaillement

Lorsqu'un système de forces est appliqué à un volume déterminé d'un sol, il se développe en général des contraintes de cisaillement. Ces contraintes de cisaillement entraînent des déformations du sol. Ces déformations peuvent être importantes le long de certaines surfaces que l'on appelle surfaces de glissement ou surfaces de rupture.

La résistance au cisaillement d'un sol est définie comme étant la contrainte de cisaillement dans le plan de la rupture, au moment de la rupture. Cependant, cette notion de résistance au cisaillement n'est pas toujours facile à définir, que ce soit dans un essai de laboratoire, ou dans le sol sur lequel est construit l'ouvrage. (*Laboratoire centrale des ponts et chaussées, 1987*).

En effet, si on porte l'évolution de la contrainte de cisaillement (τ) en fonction de la déformation (ϵ) dans le plan de cette contrainte de cisaillement, on obtient le graphique indiqué sur la figure 10.I.

- La résistance au cisaillement peut être définie, sur ce graphique, comme étant:
- le maximum de la contrainte de cisaillement τ max,
- ou la contrainte de cisaillement correspondant à une déformation très grande,

- ou la contrainte de cisaillement correspondant à une déformation ϵ_1 plus ou moins arbitraire.

Figure 10.I: courbe contrainte-déformation. *(Laboratoire centrale des ponts et chaussées, 1987).*

Sauf dans des cas particuliers, on prendra comme résistance au cisaillement, le maximum de contrainte de cisaillement.

I.10.2. Paramètres C et Φ pour différents sols

Les valeurs de la résistance au cisaillement ainsi définies sont portées sur un graphique en fonction de la contrainte normale σ , s'appliquant sur le plan de rupture.

24
L'angle que fait cette droite avec l'axe des abscisses est appelé «angle Φ », c'est l'angle de frottement interne ; et l'ordonnée à l'origine de cette droite est appelée « la valeur C », c'est la cohésion.

L'équation de cette droite est donc :

$$\tau = c + \sigma \operatorname{tg} \Phi \qquad (2.1)$$

Elle exprime la loi de **Coulomb**.

a. Sols pulvérulents

Dans ce cas, la droite de Coulomb passe par l'origine, c'est-à-dire que le terme C est nul. L'équation de Coulomb devient :

$$\tau = \sigma \operatorname{tg} \Phi$$
(3.1)

Et l'angle de frottement Φ dépend principalement de la compacité du sol, de la forme et de l'état de surface des grains solides. (*Laboratoire centrale des ponts et chaussées, 1987*).

b. Sols cohérents

L'eau joue un rôle fondamental dans la résistance au cisaillement des sols cohérents. Pour simplifier le problème, seuls seront considérés les sols saturés.

Les valeurs de C et de Φ obtenues dépendent essentiellement de la vitesse de l'essai et de la perméabilité des sols, car l'un des paramètres déterminants est la pression interstitielle de l'eau « u », la pression qui est directement liée aux conditions de drainage de l'essai.

Dans la pratique de l'essai, des contraintes totales σ s'exerceront sur l'échantillon ; mais les caractéristiques de cisaillement de ce sol cohérent dépendront largement des contraintes effectives σ ' qui seront supportées par le squelette solide du sol, σ et σ ' sont liées par la relation fondamentale : $\sigma = \sigma' + u$

Trois types d'essais peuvent être définis suivant qu'il y a drainage ou non, consolidation ou non, la consolidation consistant à charger l'échantillon en le drainant jusqu'à ce que la pression interstitielle se soit totalement dissipée (u = 0). (*Laboratoire centrale des ponts et chaussées, 1987*).

Essai non consolidé - non drainé (essai UU) : l'éprouvette ne subit aucune consolidation, ni aucun drainage préalable, sous la contrainte normale de l'essai. C'est un essai rapide et sauf dans des cas très particuliers, la droite de Coulomb dans le diagramme (τ,σ) est horizontale (pour un sol cohérent saturé).

La rapidité de l'essai doit être telle qu'elle ne permette aucun drainage de l'échantillon. Ce type d'essai est le plus couramment utilisé pour les études de fondations.

Essai consolidé - non drainé (essai CU) : chaque éprouvette de sol est consolidée avant l'expérience, sous la même contrainte normale σ que celle qu'elle subira pendant l'essai. La contrainte de cisaillement est suffisamment rapide pour que le drainage n'ait pas le temps de s'effectuer, donc pour que la pression interstitielle de l'eau ne puisse pas se dissiper en cours d'essai. La contrainte de cisaillement la rupture est donnée par l'équation :

$$\tau = c_{cu} + \sigma \operatorname{tg} \Phi_{cu} = \tau = c_{cu} + (\sigma' + u) \operatorname{tg} \Phi_{cu}$$
.....(5.1)

> Essai consolidé - drainé (essai CD) : cet essai est mené comme l'essai du type consolidé - non drainé, mais la vitesse de cisaillement est suffisamment lente pour que la pression interstitielle de l'eau puisse se dissiper et être considérée comme nulle à chaque instant (u = 0).

Il en résulte que $\sigma = \sigma$ ' l'essai, se faisant en contraintes effectives, donne une cohésion et un angle de frottement effectifs.

L'équation de Coulomb devient :

I.11. Conclusion

Des généralités ont été exposées dans ce chapitre, sur les sols fins et les sols grenus tout en présentant leur comportement sous différentes sollicitations.

Le sol comme matériau hétérogène, présente lors de son étude un comportement complexe, cette complexité s'accentue d'avantage dans le cas d'un multicouche contenant plusieurs types de sols. Notre but est d'étudier expérimentalement le comportement des multicouches existants dans notre région (Grande Kabylie), constitués généralement par la combinaison de trois principaux types de sols, à savoir, l'argile, la marne et le sable. L'identification de ces matériaux fera l'objet du chapitre suivant.

Chapitre II

Identification des matériaux utilisés

II.1. Introduction

Identifier un sol, c'est déterminer un ensemble de propriétés physiques, mécaniques ou chimiques qui permettent de le caractériser. Ces propriétés sont déterminées par des essais simples et rapides, appelés «essais d'identification».

II.2. Origine des matériaux utilisés

Les matériaux étudiés dans ce travail sont des matériaux locaux souvent rencontrés dans la région de la Grande Kabylie. L'argile et la marne sont prélevées d'un site au «Boulevard Krim Belkacem» à 1 km de l'université Mouloud Mammeri (UMMTO), wilaya de Tizi-Ouzou. Le sable étudié est prélevé des flancs de l'oued Sébaou à 7 km environ de l'université (UMMTO).

Figure 1. II : Site ; «Boulevard Krim Belkacem»

Figure 2. II : Site ; «Boulevard Krim Belkacem»

II.3. Essais d'identification réalisés

Avant de procéder aux essais mécaniques, nous avons réalisé une série d'essais permettant l'identification des matériaux à étudier :

II.3.1.Analyse granulométrique

L'analyse granulométrique permet de déterminer la grosseur et les pourcentages pondéraux respectifs des différentes familles de grains constituant un sol. Elle s'applique pour déterminer des paramètres tels que : le diamètre maximal des grains, le coefficient d'uniformité Cu et le pourcentage des fines.

Le tamisage (NF P18-560)

L'essai consiste à classer les différents grains constituants l'échantillon en utilisant une série de tamis, emboîtés les uns sur les autres, dont les dimensions des mailles sont décroissantes du haut vers le bas. Le matériau étudié est placé en partie supérieure des tamis et le classement des grains s'obtient par vibration de la colonne des tamis. Afin de connaître l'étalement granulométrique des sols étudiés et pouvoir les classer, deux paramètres sont utilisés (Holtz. R.D et Kovacs. W.D, 1991 ; Schlosser. F, 1997) : le paramètre de la courbe ; appelé coefficient d'uniformité (Cu), dit coefficient de Hazen, donné par la relation :

$$Cu = \frac{D60}{D10}$$
 ... (1.11)

Le paramètre de courbure appelé coefficient de courbure (Cc), donné par la relation :

$$Cc = \frac{(D30)2}{(D10) \times (D60)} \dots \dots \dots \dots \dots (2. ||)$$

Avec : D10, D30, D60 représentent les diamètres correspondants respectivement à 10%, 30% et 60% du tamisât cumulé.

Par définition, un sol est dit à granulométrie étalée, lorsque celui-ci est constitué de particules dont les diamètres forment une gamme étendue et présente une courbe régulière et légèrement concave vers le haut. Contrairement, un sol peu étalé est celui qui affiche un excès ou un déficit de particules d'un diamètre donné (Holtz. R.D et Kovacs. W.D, 1991).

Le résultat de l'analyse granulométrique par voie sèche du sable utilisé est présenté sur le tableau suivant :

Diamètre tamis (mm)	Refus (gr)	Refus cumulées (gr)	Tamisât cumulés (%)
1,25	0	0	100
1	29,6	29,6	88,16
0,63	37,5	67,1	73,2
0,315	129,3	196,1	21,48
0,2	35	231,4	7,4
0,16	15,2	246,6	1,4
0,08	2,3	248,9	0,6
Fond du tamis	0,07	248,96	/

TT 1 1 TT	D/ 1/ / 1 1	7 1	1 74 *		, ·
Tableau I. H	: Resultats de l	analyse	granulometric	iue par	tamisage
	1 100000000000000		8-4		

Figure 3. II : Courbe granulométrique du sable étudié.

$$Cu = \frac{D60}{D10} = \frac{0.65}{0.22} = 2.95$$
; $Cc = \frac{(0.37)2}{(0.22) \times (0.65)} = 0.95$

D'après le système unifié des classifications des sols, le sable étudié est **propre mal gradué** de symbole **(SP).**

II.3.2. Analyse sédimentométrique (NF P 94-057)

Elle a pour objet la détermination de la distribution pondérale de la taille des particules fines d'un sol. Elle s'applique aux éléments d'un sol naturel passant à travers le tamis à maille carrée de 80 μ m d'ouverture. Les particules de taille inférieure à 1 μ m ne peuvent être différenciées par cet essai.

Tableau 2. II : Analyse sédimentom	étrique de l	l'argile.
------------------------------------	--------------	-----------

Diamètre équivalent (µm)	77	55	38	25	17	12	8	6	4	3	1,4
Pource ntage des éléments (%)	99	94	90	78	74	64	58	54	42	38	30

Figure 4. II : Courbe analyse sédimentométrique de l'argile.

Diamètre équivalent (µm)	66,8	48,8	34,7	22,4	16,1	11,6	8,2	5,9	3,4	1,4
Pource ntage des éléments (%)	97	84	75	60	51,6	40,7	34	27	24,7	12,6

Figure 5. II : Analyse sédimentométrique de la marne.

II.4. Caractéristiques physiques

II.4.1. Teneur en eau (W) :

La teneur en eau d'un matériau est le rapport de la masse de l'eau (mw) contenue dans ce matériau à la masse du même matériau à l'état sec après passage à l'étuve (NF P94-050).

$$\mathbf{w} = \mathbf{me} / \mathbf{ms} \dots (3.\mathrm{II})$$

Avec :

me : la masse de l'eau. **ms :** la masse de sèche.

□ □ Dans cette étude les échantillons sont humidifiés à la teneur en eau optimale:

- L'argile : **w**_{opt} = **19%**
- La marne : $\mathbf{w}_{opt} = 14\%$
- Le sable: $w_{opt} = 3\%$

II.4.2. Masse volumique des grains solides

La masse volumique des grains solides (ps) d'un sol est déterminée selon la norme (NF P94-054), elle est appelée aussi la masse volumique réelle. La masse volumique des particules solides est le quotient de la masse (ms) des particules solides par leur volume (vs).

$$\rho s = ms / vs \dots (4.II)$$

Avec :

ms : masse des particules solides.vs : volume des particules solides.

II.4.3. Masse volumique sèche

La masse volumique sèche (pd), est le quotient de la masse des particules de sol sec (ms) par le volume total de la même masse du sol (vt), y compris les vides.

$$\rho d = ms/vt \dots (5.II)$$

Avec :

ms : masse des particules solides. **vt :** volume total de la même masse.

II.4.4. Indice des vides (e)

L'indice des vides (e), est le rapport du volume des vides Vv sur le volume des grains solides (Vs). L'indice des vides dépend aussi des paramètres déjà définis (ps et pd) selon la formule :

$$e = (\rho s / \rho d) - 1 \dots (6.II)$$

Avec :

 ρs : masse volumique des grains solides . ρd : masse volumique sèche .

II.4.5. Porosité (n)

La porosité (n), est le rapport du volume des vides (volume occupé par l'air, l'eau ou les deux fluides simultanément) au volume total du sol. La porosité et l'indice des vides sont liés par la formule :

$$n = e/(e+1) \dots (7.II)$$

Avec :

e : indice des vides.

* Masse volumique des grains solides du sable

En utilisant le pycnomètre à eau :

- Masse du pycnomètre plein d'eau : $M_0 = 1,964$ kg. Masse du sable : $M_1 = 0,300$ kg.
- Masse du pycnomètre rempli d'eau + masse du sable : $M_2 = 2,1487$ kg.

$$\rho d = \frac{M1}{(M0+M1)-M2} = 2,6$$
 $\rho d = 2601 \text{ kg/m}^3$

N° du récipient	Masse tare (kg)	Volume du récipient (m3)	sable (kg)	ρd (kg/m3)
1	3,4586	0,001069	1,997	1850
2	3,4587	0,001069	1,978	1 850.7
3	3,4588	0,001069	1,977	1850.2
			La moyenne	1850,3

 Tableau 4.II : Masse volumique sèche du sable

Tableau 5.II : Synthèse des résultats (caractéristiques physiques du sable).

Caractéristiques déterminées	Moyenne
Masse volumique des graines solide ρs (gr/cm ³)	2,601
Masse volumique sèche pd (gr/cm ³)	1,85
Indices du vide e (%)	40
Porosité n (%)	28.57

* Masses volumiques sèches de l'argile et de la marne

La détermination de la masse volumique sèche du sol argileux et de la marne s'effectue en enrobant trois échantillons de chaque matériau avec la paraffine et en l'immergeant dans de l'eau. La mesure de la poussée hydrostatique permet de connaitre le volume des échantillons.

A partir de la pesée paraffinée, de la pesée hydrostatique et enfin de la pesée sèche, on peut calculer la Masse volumique sèche du sol argileux et de la marne.

pesée sec (g)	pesée paraffinée(g)	pesée dans l'eau(g)	Masse paraffine(g)	volume de la paraffine	volume de la carotte	Densité apparente (gr/cm ³)
89,9	90,7	42,8	0,8	0,88888889	46,2111111	1,94541957
105,3	106,1	49,2	0,8	0,88888889	55,2111111	1,90722479
85,4	86,3	40,8	0,9	1	43,6	1,9587156
	1				La moyenne	1936.6

Tableau	6.II	: Masse	volumic	iue sèche	de l'argile.
I unicuu	O THE	• 1.1u55c	vorunne	fue seeme	ac rungine.

Tableau 7.II : Masse volumique sèche de la marne.

pesée dans l'air (g)	pesée paraffinée(g)	pesée dans l'eau(g)	Masse paraffine (g)	volume de la paraffine	volume de la carotte	Densité apparente (gr/cm ³)
	100.1				15 500	
98,2	100,1	50,5	1,9	2,11111111	45,588	2,1540
101,3	102,5	51,7	1,2	1,33333333	48,2666	2,0987
97,4	98,6	48,8	1,2	1,33333333	47,2666	2,06064
					La moyenne	2104.4

II.4.6. Détermination des limites d'Atterberg pour l'argile et la marne

Limite de liquidité à la coupelle - limite de plasticité au rouleau (NF P94-051)

Cette norme destinée à la détermination des deux limites d'Atterberg (Wl et Wp) s'applique aux éléments d'un sol passant à travers le tamis de dimension nominale d'ouverture de maille 400 µm.

Les limites d'Atterberg sont des paramètres géotechniques destinés à identifier un sol et à caractériser son état. Ils ont été élaborés au début du 20ème siècle par A. Atterberg, un pédologue suédois, qui s'intéressait à la plasticité des argiles en vue de la fabrication des produits céramiques.

Les essais mis au point à cette époque ont été repris et modifiés par Casagrande, afin que leur interprétation puisse permettre d'établir un lien entre la teneur en eau du sol et son comportement.

a. **Définitions**

Limite de liquidité (wl)

Teneur en eau d'un sol remanié au point de transition entre les états liquide et plastique.

Limite de plasticité (wp)

Teneur en eau d'un sol remanié au point de transition entre les états plastique et solide.

Limite de retrait (wr)

Teneur en eau relativement inférieur à wp de tel sorte que si on sèche encore le sol on aura pas de retrait (pas de diminution de volume).

Indice de plasticité (Ip)

Différence entre les limites de liquidité et de plasticité. Cet indice définit l'étendue du domaine plastique.

Les teneurs en eau exprimées en pourcentage, l'indice de plasticité est un nombre sans dimension.

b. Résultats obtenus

> Argile

Tableau 8.II : Limite de liquidité de l'argile.

Nombre de coup	M.tare (g)	M. humide (g)	M.seche (g)	M.brute seche (g)	M.eau (g)	LOG N	w%
16	25,1	36,31	33,5	8,4	2,81	1,20411998	33,452381
21	21,86	35,27	32	10,14	3,27	1,32221929	32,22
27	20,52	36,49	32,7	12,18	3,79	1,43136376	31,11

Figure.6. II : Droite w = f (log N) de l'argile.

De la droite w = $f(\log N)$, la valeur de W₁est la teneur en eau qui correspond à N = 25 W₁= 31,5 %

M.tare (g)	M.humide (g)	M.seche (g)	M. seche brute (g)	M.d'eau (g)	teneur en eau (%)
8,5	9,22	9,11	0,61	0,11	18 ,03278
9,7	10,54	10,4	0,7	0,14	20
21,08	22,2	22	0,92	0,2	21,17391

Tableau 9.II : Limite de plasticité de l'argile.

Moyenne de la limite de plasticité : $W_P = 19.73\%$

 $Ip = W_1 - W_p = 11,77\%$

Tableau 10.II : Synthèse des résultats	(limites d	'Atterberg,	sol argileux)).
--	------------	-------------	---------------	----

Caractéristiques déterminées	Moyenne
W _L (%)	31,5
W _P (%)	19,73
I _P (%)	11, 77

➢ Marne

Tableau 11.II : Limite de liquidité du matériau marne.

nombre de coup (N)	M. tare (g)	M. humide (g)	M.seche (g)	M.brute seche (g)	M.eau (g)	LOG N	w%
17	8,6	21	18,2	9,6	2,8	1,23044892	29,1666667
23	9,4	20,3	18,2	8,8	2,1	1,36172784	23,8636364
27	6	18,3	16,2	10,2	2,1	1,43136376	20,5882353

Figure. 7. II : Droite $w = f(\log N)$ pour le materiau marne.

De la droite w = $f(\log N)$, la valeur de Wl est la teneur en eau qui correspond à N = 25 Wl = 22,97%

M.tare (g)	M.humide (g)	M.seche (g)	M.seche brute (g)	M.d'eau (g)	teneur en eau (%)
8,1	9,22	9,08	0,98	0,14	14,28571
9,5	10,54	10,4	0,9	0,14	15,55555
20,8	22,2	22	1,2	0,2	16,66666

Tableau 12.II : Limite de plasticité de la marne.

Moyenne de la limite de plasticité : Wp = 15.50 %

$I_P = Wl - Wp = 7.47\%$

Tableau 10.II : Synthèse des résultats (limites d'Atterberg de la marne).

Caractéristiques déterminées	Moyenne		
W _L (%)	22,67		
W_{P} (%)	15,5		
I _P (%)	7,47		

II.5. Conclusion

Dans ce chapitre nous avons identifié et présenté les caractéristiques physiques des matériaux utilisés considérées comme données indispensables pour toute étude géotechnique. La détermination des caractéristiques mécaniques à l'essai de cisaillement direct à la boite fera l'objet du chapitre suivant.

Chapitre II Essais de cisaillement direct à la boite

III.1. Introduction

La résistance au cisaillement d'un sol est un paramètre essentiel à connaitre dans tous travaux de génie civil, les caractéristiques mécaniques (c et Φ) déterminés par les essais de cisaillement rentrent directement dans les calculs de fondations et de stabilité des sols.

Dans cette étude, nous avons réalisé des essais de cisaillement sur les échantillons suivants :

- 1- Le cisaillement des matériaux séparément (sable, argile et marne);
- 2- Le cisaillement avec combinaison des matériaux en couches horizontales ;
- 3- Le cisaillement avec combinaison des matériaux en couches inclinées.

III.2. Appareillage

L'appareil comprend :

- La boîte de cisaillement de section intérieure $A = 1 \times 1 = (60 \times 60) \text{ mm}^2$, elle est composée de deux demi-boîtes ;

- Un système mécanique permettant d'appliquer les contraintes verticales désirées ;

- Un système mécanique permettant de déplacer horizontalement la demie- boîte inférieure ;

- Un anneau dynamométrique indiquant les efforts de cisaillement ;
- Un comparateur au 1/1000 de millimètres indiquant les déplacements horizontaux ;
- Un comparateur au 1/100 de millimètres indiquant les déplacements verticaux ;
- Un chronomètre pour prendre les mesures chaque 15 secondes.

Figure 1.III: appareillage de cisaillement direct à la boite de cisaillement.

III.3. Mode opératoire

Les essais sont réalisés selon la norme française (NF P94-071-1) sur des échantillons humidifiés à leurs teneurs en eau optimale.

Préparer l'échantillon et placer le dans la boite d'une façon à avoir le plan de cisaillement imposé juste au niveau du contact entre les différents matériaux mis en place dans la boîte.

III.4. Déroulement de l'essai

Après avoir préparé l'échantillon et mis dans la boite de cisaillement ;

- Appliquer sur la face supérieure de l'échantillon un effort vertical (N), résultant des poids placés sur le plateau, engendrant ainsi une contrainte normale σ = (100, 200, 300) kPa, maintenue constante tout le long de l'essai ;
- Mettre tous les comparateurs à zéro ;
- Régler la vitesse de la machine de façon à imposer un déplacement horizontal relatif entre les deux demies- boîte constant ;
- Démarrer la machine et prendre les lectures des trois comparateurs simultanément à des intervalles de temps réguliers ; toute les 15secondes ;
- La rupture est atteinte lorsqu'un pic ou un palier est obtenu du graphe $\tau = f(\Delta I)$, ce qui permet d'arrêter l'essai après quelques lectures décroissantes ou stabilisées, si non on ira jusqu'à la fin de la course ;
- Toutes les lectures obtenues par les comparateurs sont converties en unités de calcul.

III.5.Exécution de l'essai

III.5. 1.Essai de cisaillement des trois matériaux séparément

Dans cette partie trois échantillons ont été cisaillé :

- ➢ Echantillon N°1 : argile ;
- Echantillon N°2 : marne;
- Echantillon N°3 : Sable.

Les figures ci-après montrent le cisaillement des échantillons cité ;

Figure.2. III : Echantillon N°1 après cisaillement.

Figure.3. III : Echantillon N°2 après cisaillement.

Figure.4. III : Echantillon N°3 après cisaillement.

III.5. 2. Essais de cisaillement avec combinaison des sols en couches horizontales

Dans cette partie, des échantillons en bicouches ou tri-couches sont reconstitués selon les combinaisons suivantes :

- \blacktriangleright Echantillon N°4 : argile sur marne.
- Echantillon N°5 : marne sur argile.
- \blacktriangleright Echantillon N°6 : argile sur sable.
- \blacktriangleright Echantillon N°7 : sable sur argile.
- \blacktriangleright Echantillon N°8 : sable sur marne.
- \blacktriangleright Echantillon N°9 : marne sur sable.
- \blacktriangleright Echantillon N°10 : sable sur argile sur sable.
- \blacktriangleright Echantillon N°11: sable sur marne sur sable.

Les figures ci-après montrent le cisaillement des échantillons cité;

Figure.5.III : Echantillon N°4 après cisaillement.

Figure.6.III : Echantillon N°5 après cisaillement.

Chapitre III

Figure.7. III : Echantillon N°6 après cisaillement.

Essais de cisaillement direct à la boite

Figure.8. III : Echantillon N°7 après cisaillement.

Figure.9. III : Echantillon N°8 après cisaillement.

Figure.10.III : Echantillon N°9 après cisaillement.

Figure.11.III: Echantillon N°10 après cisaillement.

Figure.12.III: Echantillon N°11 après cisaillement.

III.5. 3. Essai de cisaillement avec combinaison des différents sols en couches inclinées Dans cette partie cinq échantillons ont été cisaillé :

- Echantillon N°12 : argile sur marne.
- > Echantillon $N^{\circ}13$: sable sur argile.
- \blacktriangleright Echantillon N°14 : sable sur marne.
- Echantillon N°15 : sable sur argile sur sable.
- Echantillon N°16: sable sur marne sur sable.

Les figures ci-après montrent le cisaillement des échantillons cité :

Figure.13.III: Echantillon N°12 après cisaillement.

Figure.14.III:Echantillon N°13 après cisaillement

Figure.15.III :Echantillon N°14 après cisaillement.

Figure.16.III:Echantillon N°15 après cisaillement

Figure.17. III : Echantillon N°16 après cisaillement.

III.6. Expression des résultats

L = longueur de la boite de cisaillement, L = (60mm);

 ΔL : déplacement horizontal mm ;

Sc : la section corrigée, Sc = L (L- Δ L) (mm²) ;

La variation de volume en pourcentage : $(\Delta V/V)$;

Avec ΔV : déplacement volumique vertical mm³

La contrainte tangentielle $\tau = T/Sc$ (kPa) ;

Avec T : force de cisaillement en (daN).

III.7.Présentation des résultats

Les résultats des essais de cisaillement direct à la boite sont représentés sous forme de courbes

- Contraintes déformations $\tau = f(\Delta L/L)$, τ étant la contraintes tangentielle ;
- Variations de volume $(\Delta V/V) = f(\Delta L/L)$;
- Droites intrinsèques $\tau = f(\sigma)$, σ étant la contrainte normale appliquée.

III.7.1.Courbes contraintes déformations des matériaux (sable, argile et marne)

 $\tau = f(\Delta L/L)$

Figure.18. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°1 : l'argile).

Figure.19. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°2 : marne).

Figure.20. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°3 : sable).

 $\Delta V/V = f (\Delta L/L)$

Figure.23. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°3 : sable).

III.7.3.Droites intrinsèques : $\tau = f(\sigma)$

Figure.24. III : Droite intrinsèque, $\tau = f(\sigma)$; (échantillon n°1 : argile).

Figure.26. III : Droite intrinsèque, $\tau = f(\sigma)$; (échantillon n°3 : sable).

Echantillon	C' (Kpa)	Φ' (°)
	- (- ()
Argile	58,88	16,3
Marne	40,7	21,7
Sable	11,8	41,34

Tableau 1. III : caractéristiques mécaniques des trois matériaux séparément(argile ; marne et sable).

* Comparaison entre la résistance des matériaux (argile, sable et marne)

Θ Interprétation des résultats

a. Courbes contraintes-déformations

D'après les courbes contraintes-déformations obtenus et représentées ci-dessus, nous constatons :

- Une augmentation sensible de la contrainte de cisaillement avec l'augmentation de la contrainte normale et cela pour les trois matériaux étudiés.
- Le sable présente les résistances les plus importantes, tandis que l'argile présente les résistances les plus faibles (voir figure 27.III). on peut dire ainsi que la résistance au cisaillement augmente avec l'augmentation de la taille des particules.

b. Courbes de variation de volumes

- Parmi les phénomènes qui ont une influence sur le comportement au cisaillement d'un matériau, on note le phénomène de la dilatance et de la contractance qui sont déterminés à partir des mesures de variation de volume de l'échantillon, (*Melbouci. 2002*) ; les courbes de variation de volumes sont liées aux courbes contraintes-déformations. C'est ce qui nous permet de parler de dilatance et de contractance.
- Les courbes représentant les déformations volumiques des matériaux argile, marne et sable ; nous permettent de déduire :
- Le comportement contractant et le comportement dilatant présentent entre eux un passage continu suivant la contrainte appliqué. La plupart des cas, lorsque la déformation horizontale augmente, pour une contrainte de compression, la déformation verticale est positive et il se produit une contractance de matériau jusqu'a avoir le moins de vides possible au sein de l'échantillon ensuite, il se produit une dilatance.
- Le sable et l'argile, présentent un comportement contractant depuis le début jusqu'à la fin d'essai.
- Notons toutefois qu'on a enregistré un comportement dilatant de la marne.

III.7.4.Courbes contraintes déformations des combinaisons horizontales

Figure.32. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°8 : sable/marne).

Figure.33. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°9 : marne/sable).

Figure.34. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°10 : sable/argile/sable).

(échantillon n°14 : sable/marne).

Figure.35. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°11 : sable/marne/sable).

(échantillon n°15 : sable/argile/sable).

III.7.5.Courbes contraintes déformations des combinaisons inclinées

 $\tau = f(\Delta L/L)$

111.7.5. Courses contraintes deformations des combinaisons inclinées

Figure.40. III : Courbe $\tau = f(\Delta L/L)$; (échantillon n°16 : sable/marne/sable).

III.7. 6. Courbes de variation de volume des combinaisons horizontales $\Delta V/V = f(\Delta L/L)$

Figure.41. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°4 : argile/marne).

Figure.42. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°5 : marne/argile).

Figure.43. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°6 : argile/sable).

Figure.45. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°8 : sable/marne).

Figure.47. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°10 : sable/argile/sable).

Figure.44. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°7 : sable/argile).

Figure.48. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°11: sable/marne/sable).

III.7.7.Courbes variations du volume des combinaisons inclinées

Figure.52. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°15 : sable/ argile/sable).

Figure.53. III : Courbe $\Delta V/V = f(\Delta L/L)$; (échantillon n°16 : sable/ marne/sable).

III.7.8.Droites intrinsèques : $\tau = f(\sigma)$ (combinaisons horizontales)

(Échantillon n°7 : sable/argile).

Figure.55. III : Droite intrinsèque, $\tau = f(\sigma)$.

(Échantillon n°10 : sable/argile/sable).

(Échantillon n°11 : sable/marne/sable).

Figure.57. III : Droite intrinsèque, $\tau = f(\sigma)$.

III.7.9.Droites intrinsèques des combinaisons inclinées $\tau = f(\sigma)$

(Échantillon n°12 : argile/marne).

Figure.58. III : Droite intrinsèque, $\tau = f(\sigma)$.

(Échantillon n°14 : sable/marne).

Figure.59. III : Droite intrinsèque, $\tau = f(\sigma)$.

Figure.60. III : Droite intrinsèque, $\tau = f(\sigma)$; (échantillon n°16 : sable/marne/sable).

Echantillon	C' (Kpa)	Φ' (°)
argile/marne	57,48	20,9
marne/argile	57,48	32,68
argile/Sable	36,18	27,67
sable/argile	51,39	31,63
sable/marne	54,56	25,28
marne/sable	32,47	26,9
sable/argile/sable	68,98	23,88
sable/marne/sable	61,21	40,3

Tableau 2. III : caractéristiques mécaniques des combinaisons horizontales.

Tableau 3. III : caractéristiques mécaniques des combinaisons inclinées.

Echantillon	C' (Kpa)	Φ' (°)
argile/marne	30,63	37,7
sable/argile	39,32	30,5
sable/marne	10,26	32
sable/argile/sable	62,68	31,5
sable/marne/sable	48,54	38,7

Θ Interprétation des résultats

a. Courbe contraintes-déformation

- Les courbes contraintes-déformations, représentées dans les figures précédentes montrent que la contrainte de cisaillement augmente en fonction de la contrainte normale appliquée pour tous les échantillons.
- Toutes les combinaisons de sols en couches horizontales présentent une cohésion importante et un angle de frottement moyen.
- Les combinaisons inclinées marquent des comportements variables.

Pour mieux comprendre le comportement des multicouches horizontales ou inclinés on a procédé à tracer les courbes contraintes-déformations qui présentent une comparaison entre le comportement des différentes combinaisons inclinés et horizontales à chaque contrainte appliqué. (Figure 61, 62, 63. III).

b. Courbe variation de volume

A partir des courbes de variation de volume en fonction des déformations horizontales, on peut déduire que :

- Pour les combinaisons horizontales :
- Les bicouches (argile sur marne, argile sur sable, sable sur marne) présentent un comportement contractant de début jusqu'à la fin d'essai, par contre (marne sur argile, sable sur argile, marne sur sable), leurs comportement est contractant.
- Pour les tricouches ; sable sur argile sur sable, sable sur marne sur sable ;on remarque :
- Sable sur argile sur sable : un comportement contractant.
- Sable sur marne sur sable : un comportement dilatant.
 - Pour les combinaisons inclinées :
- Les échantillons ; sable sur argile et sable sur argile sur sable ; présentent un comportement contractant de début jusqu'à la fin d'essai.
- Par contre ; argile sur marne, sable sur marne et sable sur marne sur sable présentent un comportement dilatant.

Comparaisons de comportement des différentes combinaisons des matériaux

Argile et Marne.

Comparaisons de comportement des différentes combinaisons des matériaux

Argile et Sable.

combinaisons (argile, sable).

Comparaisons de comportement des différentes combinaisons des matériaux
 Sable et Marne.

Θ Interprétation des résultats

a. Les combinaisons entre les matériaux : argile et marne

A partir de la figure 61.III ; il est constaté que :

- La bicouche argile sur marne en position incliné présente les meilleurs caractéristiques et la plus grande résistance au cisaillement paraport aux deux autres bicouches (argile sur marne et marne sur argile.
- Notons aussi ; que la combinaison argile sur marne a des caractéristiques plus satisfaisantes que celle de marne sur argile.
- Il a été constaté aussi lors de l'expérimentation qu'il y a plusieurs façon de disposé les couches inclinés par rapport au plan de cisaillement pour les cisaillé ensuite dans le sens désiré.

b. Les combinaisons entre les matériaux : argile et sable

A partir de la figure 62.III ; il est constaté que :

- Les tricouches ; sable sur argile sur sable en positions horizontales ou inclinés présentent les meilleurs caractéristiques et la plus grande résistance au cisaillement par rapport aux bicouches constitué de l'argile et de sable.
- Les bicouches ; sable sur argile en positions horizontales ou inclinés viennent en deuxième rang après les tricouches, et la bicouche ; argile sur sable prend les plus faibles caractéristiques dans tout les combinaisons entre l'argile et le sable.

c. Les combinaisons entre les matériaux : sable et marne

A partir de la figure 63.III ; il est constaté que :

- Les tricouches ; sable sur marne sur sable en positions horizontales ou inclinés présentent les meilleurs caractéristiques et la plus grande résistance au cisaillement par rapport aux bicouches constitué de la marne et de sable.
- Les bicouches ; sable sur marne en positions horizontales ou inclinés viennent en deuxième rang après les tricouches, et la bicouche marne sur sable prend les plus faibles caractéristiques dans tout les combinaisons entre la marne et le sable.
- La disposition de couches inclinées par rapport au plan de cisaillement influe sur le comportement des combinaisons marne-sable.

III.8. Conclusion

Les multicouches (bicouches et tricouches) ont été sujet de cisaillement sous les trois contraintes normales ; 100, 200 et 300 Kpa, ce qui nous a permis de constater que :

- La présence d'une couche mince d'argile ou de marne entre deux couches de sable fait augmenter la cohésion et donnent une bonne résistance des tricouches en positions horizontales ou inclinées.
- D'après la comparaison entre le comportement des différents bicouches, ont peut dire que les multicouches : sable sur argile, sable sur marne et argile sur marne présentent des caractéristiques plus fortes que les multicouches, argile sur sable, marne sur sable et marne sur argile ; ceci montre l'influence de la disposition des couches sur le comportement des bicouches.
- Les combinaisons inclinées ont présentées une résistance plus favorable que les combinaisons horizontales, que ça soit dans les bicouches ou dans les tricouches.

Pour la variation de volume il a été constaté que :

• La marne présente un comportement dilatant et ce comportement a été confirmé dans toutes les combinaisons contenant ce matériau.

Ces essais ont permit de définir les caractéristiques mécaniques au cisaillement des différents multicouches, cependant, pour évaluer leur paramètres de compressibilités nous allons entreprendre une séries d'essais œnométriques feront l'objet du prochain chapitre.

Chapitre IV Essais œdométriques

IV.1. Introduction

Afin de déterminer les caractéristiques de compressibilité des différentes multicouches du sol soumis à une augmentation de contrainte verticale, on procède à un essai œdométrique.

L'essai de compressibilité à l'œdomètre dit aussi essai œdométrique consiste à indiquer, à l'aide d'un comparateur, les tassements de l'échantillon sous des contraintes de compression uniaxiale qui lui sont appliquées à l'aide d'un piston.

Les essais œdométriques ont été réalisés sur les échantillons suivants :

- Echantillon N°1 : argile / marne;
- Echantillon N°2 : Marne / Argile ;
- ► Echantillon N°3 : Sable / Argile/ Sable ;
- Echantillon N°4 : Sable / Marne/ Sable ;
- Echantillon N°5 : Sable / Argile ;
- Echantillon N°6 : Argile / Sable ;
- Echantillon N°7 : Sable / Marne ;
- Echantillon N°8 : Marne / Sable ;

Les figures adaptées sont les suivantes :

Figure .1.IV: Echantillon n°1.

Figure .2.IV: Echantillon n°2.

Figure .3.IV : Echantillon n°3.

Figure .4.IV: Echantillon n°4.

Figure .5.IV: Echantillon n°5.

Figure .6.IV: Echantillon n°6.

Figure .7.IV: Echantillon n°7.

Figure .8.IV: Echantillon n°8.

IV.2. Appareillage

L'appareil œdométrique comporte :

- Un bâti métallique permettant par l'intermédiaire d'un bras de levier d'appliquer au piston les pressions de consolidation successives désirées.
- Une cellule ou enceinte œdométrique de consolidation : moule cylindrique rigide empêche toute déformations radiale lors des essais.
- Deux bases de pierres poreuses permettent le drainage de l'échantillon en cour d'essai et éviter au sein de matériau l'apparition de pression interstitielle.
- Un couvercle pour répartir l'effort de compression sur la surface totale de l'échantillon.
- Un comparateur pour mesurer les tassements ou les gonflements.

Figure .9.IV: Appareillage de l'œdométre

IV.3. Déroulement des essais

Les principaux points du déroulement des essais œdométriques sont :

- Une fois l'échantillon est prêt, placer le dans la cellule entre deux pierres poreuses ;
 l'ensemble est placé sur le bâti de consolidation.
- Appliquer, sur l'échantillon, des charges doublées toutes les 24 heures .
- Procéder ensuite, au déchargement par paliers stabilisés de contraintes décroissantes.
- La durée des paliers de chargement et de déchargement est de 24 heures.
- Effectuer les essais à 1 cycle de chargement-déchargement ; le cycle est le suivant :
 1Kg→2Kg→ 4 Kg→8 Kg→16 Kg →32 Kg→ 64 Kg→ 128 Kg→ 64 Kg →32 Kg
 16 Kg ← 8 Kg ← 4 Kg ← 2 Kg ← 1 Kg.
- Pour chaque palier, effectuer sur un comparateur fixé à l'appareil des lectures de tassement ou de gonflement de l'échantillon.
- Chaque essai a une durée de 15 jours.

IV.4. Caractéristiques obtenues à l'œdométre

L'essai œdométrique permet de déterminer les paramètres de compressibilité : indice de compression, indice de gonflement et la contrainte de préconsolidation. Il permet également de suivre l'évolution de l'indice des vides et du tassement du sol au cours des cycles de chargement déchargement que subit l'échantillon soumis à l'essai.

IV.4. 1.Indice des vides

L'indice des vides peut être calculé par deux méthodes, l'une nécessite la connaissance du poids volumique des grains solides et l'autre est basée sur la connaissance du poids volumique de l'échantillon sec et du poids volumique initial humide de l'éprouvette.

Avec :

H : hauteur de l'échantillon au moment considéré.

h_p : hauteur équivalente du solide ou hauteur des grains solides.

Dans la première méthode l'expression de h_p est donnée par la relation (IV.2), par (contre dans la seconde, elle est donnée par la relation (IV. 3).

Avec :

m_s : poids de l'échantillon sec,
γ_s : poids volumique des grains solides,
S: section droite de l'enceinte.

$$h_p = H_0 - \frac{m_h - m_s}{\gamma_w s}$$
.....(3.IV)

H₀: hauteur initiale de l'échantillon,

m_h : poids initial humide de l'échantillon,

m_s : poids de l'échantillon sec

 $\gamma_{\rm w}$: poids volumique de l'eau (1g/cm³),

S: section droite de l'enceinte.

IV.4.2.Paramètres d'identification

L'échantillon soumis à l'essai œdométrique sera caractérisé par les paramètres suivants:

Teneur en eau initiale de l'échantillon : w = m_h-m_s/m_s x100(IV.4).
 Poids volumique initial du sol sec : γ_d = m_s/H₀S(IV.5).
 Poids volumique initial : γ = W_h/H₀S(IV.6).

IV.4.3. Caractéristiques de compressibilité

a. Courbe de compressibilité

Les courbes de compressibilité sont représentées dans un diagramme e-Log σ ' en reliant les points (e_i, σ_i), e_i étant l'indice des vides atteint en fin de palier de chargement ou de déchargement sous la charge σ_i '; la figure 3 illustre l'allure d'une courbe de compressibilité e_i=f(σ_i). La courbe de chargement se présente, en général, en trois parties : une partie droite avec une faible pente suivie d'une partie courbe, puis d'une nouvelle droite possédant une pente beaucoup plus accentuée.

La détermination de la contrainte de préconsolidation notée σ_P ' se fait graphiquement : soit par la méthode de Casagrande ou alors par le point d'intersection des deux pentes de la courbe de compressibilité comme elle est représentée par la figure IV.10.

Figure .10.IV: Détermination graphique de σ_{P} '.

b. Indice de compression et de gonflement

Par définition, l'indice de compression, noté C_c , est la pente de la droite MN qui linéarise la partie droite assez rectiligne et de pente plus accentuée. L'expression de cette pente est donnée par la relation :

$$C_c = \frac{-\Delta e}{\Delta(Log\sigma')}\Big|_{MN}$$

L'indice de gonflement est, par définition, la pente de la droite DL parallèle à la droite AB de la figure 3 (AB représente la pente moyenne de la boucle de déchargement-rechargement). Notée C_g , son expression est donnée par la relation :

$$C_g = \frac{-\Delta e}{\Delta(Log\sigma')}\Big|_{DL}$$

c. Pression de préconsolidation

Les droites DL et MN de la figure 3 se coupent au point C. La contrainte σ ' correspondant au point C est appelée « Pression de préconsolidation » et notée σ p'.

VI.5.présentation des résultats

* variations de l'indice des vides (Δe) en fonction log σ '

Pour pouvoir tracer les courbes de compressibilité, il faut, en premier lieu calculer les variations de l'indice des vides (Δe) en fonction Δh (tassement ou gonflement des échantillons) puis calculer les indices des vides correspondants. Les tableaux 1et 2.IV nous donne les résultats obtenus.

Echantillon	Argile/marne	Marne/argile	Sable/argile/sable	Sable/marne/sable
$m_s(g)$	82,1	78,6	225,2	209,8
S (mm ²)	1962	1962	4415	4415
h ₀ (mm)	26	26	26	26
h _p (mm)	15,7	15,03	19,12	17,8
h (mm)	26 - Δh	26 - Δh	26 - Δh	26 - Δh
e	h – 15,7	h - 15,03	h – 19,12	h – 17,8

Tableau 1.IV : Variations de l'indice des vides (Δe) en fonction log σ '.

Tableau 2.IV : Variations de l'indice des vides (Δe) en fonction log σ' .

Echantillon	Sable/argile	Argile/sable	Sable/marne	Marne/sable
m _s (g)	79,5	80,3	89,4	84,6
S (mm ²)	1962	1962	4415	4415
h ₀ (mm)	26	26	26	26
h _p (mm)	14,5	15,27	7,55	7,15
h (mm)	26 - Δh	26 - Δh	26 - Δh	26 - Δh
e	h – 14,5	h - 15,27	h – 7,55	h – 7,15

* Courbes de compressibilités

Figure .11.IV: Courbe de compressibilité : argile sur marne.

Figure .12.IV: Courbe de compressibilité : marne sur argile.

Figure .13.IV: Courbe de compressibilité : sable sur argile sur sable.

Figure .14.IV: Courbe de compressibilité : sable sur marne sur sable.

Figure .15.IV : Courbe de compressibilité : Sable sur argile.

Figure .16.IV : Courbe de compressibilité : Argile sur sable.

Figure .17.IV: Courbe de compressibilité : sable sur marne.

Figure .18.IV: Courbe de compressibilité : marne sur sable.

Figure .19.IV: Exemple d'évaluation des caractéristiques de compressibilité (Échantillon n°1 : argile sur marne).

-Les caractéristiques de compressibilité sont évaluées de la même manière pour tous les échantillons.

Echantillon	Argile	marne	sable	sable	sable	Argile	sable	marne
n° :	Sur	Sur	argile	marne	Sur	Sur	Sur	Sur
	marne	argile	sable	sable	argile	sable	marne	sable
σ' _p (bars)	3	4	2	1	4	4	1	2
Cr	0,033	0,013	0,013	0,016	0,01	0,011	0,18	0,036
Cc	0,13	0,13	0,2	0,2	0,2	0,14	0,28	0,28
Cs	0,013	0,033	0,013	0,016	0,033	0,016	0,022	0,02

Tableau 3.IV : caractéristiques de compressibilité des échantillons.

* Interprétation des résultats

- Les courbes obtenus comportent trois segment, elles commencent par un segment de faible pente où la réduction des vides et le tassement de l'échantillon demeurent faibles ; pour ensuite s'incliner à l'approche d'une pression notée σ'_p (pressions de préconsolidation).
- Quand la pression dépasse la pression de préconsolidation, le tassement s'accentue et l'indice des vides diminue considérablement.
- La troisième partie met en évidence le gonflement de l'échantillon qui survient que la pression est relâchée. C'est un léger gonflement qui se traduit par une faible augmentation de l'indice des vides et une légère remontée de la courbe.
- D'après les résultats apporter par le tableau 2.IV et 3.IV nous pouvons classer les échantillons étudiées dans la catégorie des sols moyennement à fortement compressible car les indices de compressibilités obtenus se situent entre 0,1 et 0,3.
- Parmi les multicouches étudiés ; les bicouches de sable sur marne et marne sur sable sont caractérisé par des valeurs élevées d'indices des vides et une augmentation de compressibilité.
- Les bicouches marne sur argile et sable sur argile présentent un comportement gonflant par rapport aux autres bicouches ou tricouches.

VI.7.Conclusion

Les essais de compression unidimensionnel à l'œdométre expérimentées sur les multicouches composé de d'argile, marne et sable, exécuté avec un seul cycle de chargementdéchargement ont permis de conclure :

- Les combinaisons sable sur marne et marne sur sable sont caractérisées par des valeurs élevé d'indices des vides par rapport aux autres combinaisons ; comme elles présentent un indice de compressibilité le plus élevé ; donc on peut dire que ; sont les multicouches les plus susceptible de subir un tassement lors de chargement.
- Les deux combinaisons marne sur argile et sable sur argile présentent un indice de gonflement le plus élevé, donc sont les multicouches les plus gonflants.
- En générale, plus l'indice des vides est important, plus la compressibilité augmente, plus le tassement aura lieu.

Conclusion générale

CONCLUSION GENERALE

Les multicouches ; argile, marne et sable sont les plus rencontrés dans la région de Grande Kabylie lors des différents travaux de génie civil. Ces multicouches présentent diverses instabilités (cisaillement, glissement, tassement,...) sous différentes sollicitations avant ou après construction, notamment en périodes hivernales.

Dans le but de mieux connaitre leur comportement mécaniques, nous avant réalisé cette étude expérimentale en se basant sur des essais de cisaillement direct à la boite et des essais de compressibilité à l'œdométre.

Les résultats obtenus ont permit de tirer les conclusions suivantes:

Cas des essais de cisaillement direct à la boite;

- Les caractéristiques mécaniques obtenues au cisaillement (angle de frottement et cohésion) sont sensiblement influencées par la disposition et de l'inclinaison des couches.
- Les phénomènes de dilatance ou de contractance, liés à la variation de volume des échantillons, sont dus à des modifications de la structure des multicouches, au cours du cisaillement, cependant, les différents échantillons présentent généralement un comportement contractant, le phénomène de dilatance apparait dans le cas des échantillons contenant le matériau marne.
- Les multicouches en positions horizontales (sable sur marne sur sable) et (sable sur argile sur sable) présentent les comportements les plus favorables, tandis que les multicouches (argile sur sable) et (marne sur sable) sont les plus défavorables.

- En position inclinées, les multicouches (sable sur marne sur sable) et (sable sur argile sur sable) sont les combinaisons les plus favorables, tandis que les plus défavorable sont les multicouches (sable sur argile) et (sable sur marne).
- Pour une même combinaison de matériaux, les multicouches en positions inclinés présentent les meilleurs caractéristiques mécaniques par rapports à ceux en position horizontales, notamment dans le cas des tricouches.

Cas des essais œdométrique;

- Les multicouches les plus solliciter par le tassement sont celles constitue surtout de sable et de marne ; tel que, sable sur marne, marne sur sable et sable sur marne sur sable ; un résultat confirmé par leurs indice des vides le plus élevé et la valeur importante de l'indice de compressibilité calculé à partir de la courbe de compressibilité.
- Les multicouches les plus susceptible de subir un gonflement sont celles constitue surtout de l'argile ; tel que, marne sur argile et sable sur argile ; ce que a été confirmé par l'indice de compressibilité de ces multicouches.
- Pour une même combinaison de matériaux, les multicouches contenant de sable et de marne présentent les meilleurs caractéristiques mécaniques et une meilleure résistance au cisaillement, tandis que ces multicouches contenant les matériaux sont plus solliciter par le tassement.

Les résultats obtenus dans cette étude présentent des informations importantes pour l'ingénieur de génie civil sur le comportement des multicouches étudiés, néanmoins, compléter cette étude par d'autre essais tels que les essais triaxiaux est indispensable.

Ceci permettra de connaitre d'avantage leur comportement sous d'autres types de sollicitations afin de pouvoir élaborer un model fiable.

Références bibliographiques CS

RÉFÉRENCES BIBLIOGRAPHIQUES

ALKAMA F. (2003) Etude expérimentale de comportement mécanique du matériau schiste en géotechnique routier, MEMOIRE DE MAGISTER Université MOULOUD MAMMERI DE TIZI OUZOU.

ARABET L. (2010) Modélisation numérique du tassement et de la consolidation des sols sous l'oedomètre. MEMOIRE DE MAGISTER. Université 20 Août 1955 de SKIKDA.

BELAIDI M. (2011)

Application de l'essai de cisaillement direct dans l'étude des glissements de terrain le long des plans de stratification des sols, MEMOIRE DE MASTER 2. Université MOULOUD MAMMERI DE TIZI OUZOU.

BERGA A. (2003-2004) Eléments de Mécanique des Sols. Centre Universitaire de Béchar.

BOUSSAID K. (2005) Sols intermédiaire pour la modélisation physique ; application aux fondations superficiel. Thèse de doctorat. L'école Central de Nantes et université de Nantes.

CALLAUD (2004) Cours de mécanique des sols, Tome I : propriétés des sols. Institut International d'Ingénieur de l'Eau et de l'Environnement, groupe EIER - ETSHER.

CAMBOU B. (1972)

Compressibilité d'un milieu pulvérulent, influence de la dorme et de la dimension des particules sur les propriétés mécanique d'un milieu pulvérulent. Thèse de docteur de spécialité Université scientifique et médicale, Grenoble 1972.

CHALGHOUM N. (2006) Eléments de base en mécanique des sols. Publication de l'université Badji Mokhtar, Annaba, Algérie.

CHIKHI K. (2011) Etude expérimentale des matériaux non saturé au cisaillement et à l'œdomètre, MEMOIRE DE MAGISTER. Université MOULOUD MAMMERI DE TIZI OUZOU. CHRISTIAN. (2006) Étude du tassement différentiel sur sols hétérogènes. LA BORDERIE*ET DENYS BREYSSE.

COLLIAT DANGUS J. L. (1986)

Comportement des matériaux granulaires sous fortes contraintes-influence de la nature minéralogique du matériau étudié.

Thèse de l'université scientifique et médicale de l'institut polytechnique de Grenoble, 1986.

CORDARY D. (1994) Mécanique des sols. Edition Lavoisier, Paris 1994.

COSTET J. et SANGLERAT G. (1985) Cours pratique de mécanique des sols : Plasticité et calcul des tassements, Tome 1 3e édition. Dunod, Paris.

COSTET J. et SANGLERAT G. (1985) Cours pratique de mécanique des sols : Calcul des ouvrages, Tome 2 3e édition. Dunod, Paris.

DYSLI M. (1993) Compléments aux cours polycopiés de technologie et de mécanique des sols. 3e édition. Ecole polytechnique fédérale de Lausanne, Paris.

ERIC G. (1998) Géotechnique, Mécanique des sols. Paris. GBAGUIDI S. V. (1993) Etude expérimentales et théorique de comportement des matériaux granulaires calcaires. Thèse de doctorat de l'INPL en mécanique, octobre 1993.

GERRARD D, PAUL R. (2005) Aide-mémoire de mécanique des sols.

HABIB P. (1997) Génie géotechnique. Ellipse, Paris.

HAMMAR D. et MEZINI S. (1996)

Identification et caractérisation mécanique de la marne de Tizi-Ouzou : Application au Domaine Routier. Mémoire d'ingénieure d'état en Génie Civil. TIZI OUZOU 1996.

HATTAB M. (1995) Etude expérimentale de comportement dilatant des argiles surconsolidées. Thèse de doctorat de l'Ecole Centrale de Paris, octobre 1995.

HOLTZ R et KOVACKS W. (1991) Introduction à la géotechnique. Edition de l'école polytechnique de Montréal3 eme trimistre 1991.

JACQUES L. (2005- 2006) Géotechnique 1, cours chapitres 4. INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE.

JEROME G. (2004) Le gonflement des argiles et ses effets sur les ouvrages souterrains de stockage. Thèse présentée en vue de l'obtention du titre de docteur de l'Ecole Polytechnique.

JOSSEAUME H. HIENG I. O., STEMPFELET J. P. (1991) Détermination des paramètres de compressibilité d'une argile raide à partir d'essais œdométrique à haute pression. Bull. Liaison Labo. P. et Ch. -172-mars-avril 1991.

JRAD M. (1993) Etude expérimentale du comportement mécanique de granulats calcaires. Thèse de doctorat de l'INPL en génie civil et minier, octobre 1993.

KHARAGHANI S. (1991) Etude expérimentale du comportement des sols remaniés. Rapport de DEA-Ecole Centrale de Paris – septembre 1991.

KIM M. S. (1995)Etude expérimentale du comportement mécanique des matériaux granulaires sous fortes contraintes.Thèse de doctorat de l'Ecole Centrale de Paris – décembre 1995.

LABORATOIRE CENTRALE DES PONTS ET CHAUSSEES (LCPC, 1987) Essais de cisaillement à la boite. Méthodes d'essai LPC, N°21, Paris, février 1987.

LABORATOIRE CENTRALE DES PONTS ET CHAUSSEES (LCPC, 1985) Essai œdométrique. Méthodes d'essai LPC, N°13, Paris, juillet 1985. LABORATOIRE NATIONAL DU BÂTIMENT ET DES TRAVAUX PUBLICS D'HAÏTI. Les sols et leurs propriétés. Dossier 2.

LAFLEUR J. (1991) Introduction à la géotechnique. Edition de l'Ecole Polytechnique de Montréal, 1991.

LUONG M. P. (1978) Etat caractéristique du sol. C. R. Ac. Sc.T. 287 série B, 305 Paris 1978.

MELBOUCI B. (2002) Pegmatite de la Grande Kabylie : caractéristiques et comportement en géotechnique routière. Thèse de docteur d'Etat en Génie Civil, Tizi-Ouzou 2002.

MERRIEN-SOUKATCHOFF V. (2010 – 2011) Géotechnique, polycopie géotechnique. Ecole des Mines de Nancy.

PILOT G., AMAR S. et LE ROUX A. (1969)

Relations entre la composition minéralogique et les caractéristiques mécaniques de quelques sols argileux français, colloque de géotechnique.

PLUMELLE C. (2002) Chapitre 5. Lois de comportement des sols. Couplage hydromécanique. Postulat de Terzaghi. Cnam-Paris-Géotechnique.

ROBITAILLE V. et TREMBLAY D. (1997) Mécanique des sols, théorie et pratique. Mont-Royal, Québec.

SCHLOSSER (1992)

Eléments de mécanique des sols. Cours de l'Ecole Nationale des Ponts et Chaussées. Presses de l'Ecole Nationale des Ponts et Chaussées, Paris, octobre 1992.

ANNEXE I : Essais de cisaillement direct à la boite

ΔL/L (%)	σ = 100	O (KPa)	σ=20	0 (KPa)	$\sigma = 300$	$\sigma = 300 \text{ (KPa)}$		
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)		
0	0	0	0	0	0	0		
0,41666667	13,52859135	-0,11538462	21,64574616	-0,11538462	28,13947001	-0,11538462		
0,83333333	19,56302521	-0,15384615	34,77871148	-0,15384615	45,10364146	-0,23076923		
1,25	22,91983122	-0,23076923	43,65682138	-0,23076923	59,48241913	-0,34615385		
1,66666667	26,30508475	-0,26923077	49,8700565	-0,30769231	70,14689266	-0,42307692		
2,08333333	31,92056738	-0,30769231	56,68652482	-0,38461538	77,04964539	-0,5		
2,5	37,03133903	-0,30769231	64,11396011	-0,42307692	85,66951567	-0,53846154		
2,91666667	43,29613734	-0,34615385	66,60944206	-0,5	91,03290415	-0,61538462		
3,33333333	47,38505747	-0,38461538	71,35632184	-0,53846154	97	-0,73076923		
3,75	53,18903319	-0,38461538	73,9047619	-0,61538462	103,5786436	-0,73076923		
4,16666667	57,91884058	-0,42307692	76,47536232	-0,63461538	107,9652174	-0,76923077		
4,58333333	63,81950509	-0,44230769	80,76273654	-0,69230769	112,9548763	-0,80769231		
5	67,50292398	-0,46153846	83,38596491	-0,73076923	116,2865497	-0,84615385		
5,41666667	69,50954479	-0,46153846	86,6020558	-0,76923077	119,6475771	-0,88461538		
5,83333333	73,25073746	-0,46153846	90,41887906	-0,80769231	122,4660767	-0,92307692		
6,25	76,45037037	-0,46153846	95,41925926	-0,80769231	125,8844444	-0,96153846		
6,66666667	79,10119048	-0,48076923	95,8452381	-0,84615385	127,6011905	-1		
7,08333333	81,19581465	-0,48076923	98,01494768	-0,84615385	129,3333333	-1,03846154		
7,5	83,30930931	-0,48076923	99,62162162	-0,88461538	130,4984985	-1,07692308		
7,91666667	84,85671192	-0,5	103,5837104	-0,90384615	131,6742081	-1,11538462		
8,33333333	86,41818182	-0,5	107,5818182	-0,90384615	132,8606061	-1,13461538		
8,75	87,99391172	-0,5	109,8447489	-0,92307692	137,6012177	-1,15384615		
9,16666667	88,99082569	-0,53846154	111,5351682	-0,94230769	138,8256881	-1,19230769		
9,58333333	89,40092166	-0,55769231	113,2411674	-0,96153846	140,0614439	-1,19230769		
10	89,81481481	-0,57692308	113,7654321	-1	141,308642	-1,23076923		
10,4166667	90,23255814	-0,57692308	116,7007752	-1	141,9658915	-1,25		
10,8333333	90,65420561	-0,57692308	117,2461059	-1	143,2336449	-1,26923077		
11,25	91,07981221	-0,57692308	117,7965571	-1	144,513302	-1,30769231		
11,6666667	91,50943396	-0,57692308	118,3522013	-1	145,1949686	-1,30769231		
12,0833333	91,94312796	-0,57692308	118,9131122	-1,01923077	145,8830964	-1,30769231		
12,5	92,38095238	-0,57692308	119,4793651	-1,01923077	146,5777778	-1,30769231		
12,9166667	92,82296651	-0,57692308	120,0510367	-1,01923077	147,2791069	1-,30769231		

Echantillon n°2 : Marne

	$\sigma = 100 \text{ (KPa)}$		σ=20	0 (KPa)	σ = 300 (KPa)	
ΔL/L (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	15,693166	-0,07692308	43,29149233	-0,07692308	52,49093445	-0,11538462
0,83333333	19,5630252	-0,15384615	54,34173669	-0,23076923	66,84033613	-0,15384615
1,25	22,374121	-0,19230769	63,302391	-0,38461538	79,12798875	-0,23076923
1,66666667	30,1412429	-0,26923077	69,59887006	-0,46153846	98,6440678	-0,30769231
2,08333333	37,4241135	-0,32692308	74,84822695	-0,53846154	110,070922	-0,38461538
2,5	42,5584046	-0,34615385	78,48433048	-0,61538462	128,7806268	-0,42307692
2,91666667	49,4020029	-0,38461538	87,70243205	-0,61538462	144,3204578	-0,5
3,33333333	55,7471264	-0,38461538	94,21264368	-0,61538462	151,6321839	-0,53846154
3,75	64,3867244	-0,38461538	99,0995671	-0,61538462	156,7676768	-0,61538462
4,16666667	71,4144928	-0,38461538	104,5913043	-0,53846154	158,573913	-0,63461538
4,58333333	74,5502183	-0,38461538	111,8253275	-0,46153846	157,5720524	-0,69230769
5	76,5789474	-0,34615385	119,6900585	-0,42307692	157,6959064	-0,69230769
5,41666667	78,6255507	-0,34615385	124,7753304	-0,38461538	157,2511013	-0,67307692
5,83333333	77,8289086	-0,32692308	124,1828909	-0,30769231	156,8023599	-0,61538462
6,25	77,6	-0,30769231	124,16	-0,26923077	157,4992593	-0,57692308
6,66666667	76,7916667	-0,28846154	124,1369048	-0,19230769	158,202381	-0,55769231
7,08333333	77,715994	-0,26923077	124,1136024	-0,15384615	157,7518685	-0,53846154
7,5	76,3183183	-0,23076923	124,0900901	-0,15384615	157,8798799	-0,53846154
7,91666667	76,0784314	-0,23076923	124,066365	-0,15384615	158,0090498	-0,53846154

Echantillon n°3 : Sable

	$\sigma = 100$	0 (KPa)	$\sigma = 200 \text{ (KPa)}$		$\sigma = 300 \text{ (KPa)}$	
ΔL/L	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	21,64574616	-0,03846154	37,88005579	-0,03846154	51,40864714	-0,11538462
0,83333333	41,29971989	-0,19230769	76,07843137	-0,07692308	114,1176471	-0,34615385
1,25	50,75105485	-0,26923077	95,49929677	-0,19230769	144,0675105	-0,69230769
1,66666667	59,73446328	-0,34615385	120,5649718	-0,26923077	164,4067797	-0,80769231
2,08333333	65,49219858	-0,42307692	137,5886525	-0,42307692	192,6241135	-0,92307692
2,5	73,50997151	-0,53846154	149,2307692	-0,53846154	208,3703704	-1
2,91666667	83,26180258	-0,55769231	157,0872675	-0,61538462	221,4763948	-1,11538462
3,33333333	90,31034483	-0,57692308	164,454023	-0,69230769	234,137931	-1,15384615
3,75	94,62049062	-0,69230769	167,965368	-0,80769231	241,8701299	-1,26923077
4,16666667	98,4057971	-0,73076923	169,8202899	-0,84615385	247,4202899	-1,30769231
4,58333333	101,0946143	-0,76923077	172,2561863	-0,88461538	254,1484716	-1,34615385
5	103,8070175	-0,80769231	176,4152047	-0,92307692	258,0994152	-1,38461538
5,41666667	103,6945668	-0,80769231	177,7621145	-0,96153846	266,0734214	-1,42307692
5,83333333	103,5811209	-0,82692308	180,2654867	-0,96153846	271,2566372	-1,46153846
6,25	103,4666667	-0,82692308	178,1925926	-1	275,9111111	-1,5
6,66666667	103,3511905	-0,82692308	178,9880952	-1,03846154	280,0297619	-1,53846154
7,08333333	103,2346786	-0,82692308	179,2107623	-1,07692308	279,5455904	-1,55769231
7,5	103,1171171	-0,84615385	179,4354354	-1,07692308	280,2222222	-1,57692308
7,91666667	102,9984917	-0,84615385	179,6621418	-1,11538462	279,1493213	-1,61538462
8,3333333333333333333333333333333333333	102,8787879	-0,84615385	179,3030303	-1,11538462	279,2424242	-1,61538462
8,75	102,7579909	-0,84615385	180,1217656	-1,15384615	279,9269406	-1,63461538
9,16666667	102,6360856	-0,84615385	180,9480122	-1,19230769	280,617737	-1,65384615
9,58333333	102,5130568	-0,84615385	181,781874	-1,23076923	280,718894	-1,65384615

Echantillon n°4 : Argile/Marne.

	$\sigma = 100$	0 (KPa)	$\sigma = 200 \text{ (KPa)}$		$\sigma = 300 \text{ (KPa)}$	
ΔL/L	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	21,64574616	-0,03846154	37,88005579	-0,03846154	51,40864714	-0,11538462
0,83333333	41,29971989	-0,19230769	76,07843137	-0,07692308	114,1176471	-0,34615385
1,25	50,75105485	-0,26923077	95,49929677	-0,19230769	144,0675105	-0,69230769
1,66666667	59,73446328	-0,34615385	120,5649718	-0,26923077	164,4067797	-0,80769231
2,08333333	65,49219858	-0,42307692	137,5886525	-0,42307692	192,6241135	-0,92307692
2,5	73,50997151	-0,53846154	149,2307692	-0,53846154	208,3703704	-1
2,91666667	83,26180258	-0,55769231	157,0872675	-0,61538462	221,4763948	-1,11538462
3,33333333	90,31034483	-0,57692308	164,454023	-0,69230769	234,137931	-1,15384615
3,75	94,62049062	-0,69230769	167,965368	-0,80769231	241,8701299	-1,26923077
4,16666667	98,4057971	-0,73076923	169,8202899	-0,84615385	247,4202899	-1,30769231
4,58333333	101,0946143	-0,76923077	172,2561863	-0,88461538	254,1484716	-1,34615385
5	103,8070175	-0,80769231	176,4152047	-0,92307692	258,0994152	-1,38461538
5,41666667	103,6945668	-0,80769231	177,7621145	-0,96153846	266,0734214	-1,42307692
5,83333333	103,5811209	-0,82692308	180,2654867	-0,96153846	271,2566372	-1,46153846
6,25	103,4666667	-0,82692308	178,1925926	-1	275,9111111	-1,5
6,66666667	103,3511905	-0,82692308	178,9880952	-1,03846154	280,0297619	-1,53846154
7,08333333	103,2346786	-0,82692308	179,2107623	-1,07692308	279,5455904	-1,55769231
7,5	103,1171171	-0,84615385	179,4354354	-1,07692308	280,2222222	-1,57692308
7,91666667	102,9984917	-0,84615385	179,6621418	-1,11538462	279,1493213	-1,61538462
8,33333333	102,8787879	-0,84615385	179,3030303	-1,11538462	279,2424242	-1,61538462
8,75	102,7579909	-0,84615385	180,1217656	-1,15384615	279,9269406	-1,63461538
9,16666667	102,6360856	-0,84615385	180,9480122	-1,19230769	280,617737	-1,65384615
9,58333333	102,5130568	-0,84615385	181,781874	-1,23076923	280,718894	-1,65384615

Echantillon n°5 : Marne/Argile

	σ = 100) (KPa)	$\sigma = 200 \text{ (KPa)}$		$\sigma = 2$	$\sigma = 300 \text{ (KPa)}$		
ΔL/L (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)		
0	0	0	0	0	0	0		
0,41666667	24,40167364	-0,03846154	37,05439331	-0,03846154	56,48535565	-0,03846154		
0,83333333	47,19327731	-0,07692308	75,32773109	-0,11538462	95,29411765	-0,15384615		
1,25	54,6835443	-0,11538462	93,41772152	-0,15384615	116,2025316	-0,26923077		
1,66666667	66,3559322	-0,15384615	102,5084746	-0,23076923	130,4237288	-0,34615385		
2,08333333	73,53191489	-0,19230769	111,6765957	-0,26923077	147,0638298	-0,42307692		
2,5	83,07692308	-0,23076923	120,9230769	-0,34615385	161,5384615	-0,5		
2,91666667	84,36051502	-0,23076923	125,1502146	-0,38461538	174,7467811	-0,53846154		
3,33333333	86,12068966	-0,23076923	130,3448276	-0,42307692	181,5517241	-0,55769231		
3,75	87,42857143	-0,23076923	132,3116883	-0,46153846	189,3506494	-0,57692308		
4,16666667	88,74782609	-0,23076923	136,173913	-0,48076923	194,8695652	-0,57692308		
4,58333333	89,6069869	-0,23076923	137,2401747	-0,5	198,0786026	-0,57692308		
5	90,47368421	-0,23076923	139,7368421	-0,5	201,3157895	-0,57692308		
5,41666667	92,29955947	-0,25	142,7312775	-0,5	205,5330396	-0,57692308		
5,83333333	94,14159292	-0,25	146,2300885	-0,5	206,920354	-0,57692308		
6,25	97,92	-0,25	147,84	-0,5	208,32	-0,57692308		
6,66666667	98,83928571	-0,25	148,9821429	-0,5	209,7321429	-0,57692308		
7,08333333	99,28251121	-0,26923077	151,5874439	-0,5	212,1255605	-0,55769231		
7,5	99,72972973	-0,26923077	154,2162162	-0,5	213,5675676	-0,55769231		
7,91666667	100,6696833	-0,26923077	155,4027149	-0,51923077	215,0226244	-0,53846154		
8,33333333	102,1090909	-0,28846154	156,6	-0,51923077	216,4909091	-0,53846154		
8,75	104,0547945	-0,30769231	158,3013699	-0,51923077	217,4794521	-0,53846154		
9,16666667	105,5229358	-0,30769231	159,5229358	-0,51923077	218,9724771	-0,53846154		
9,58333333	107,0046083	-0,32692308	161,2534562	-0,51923077	220,4792627	-0,51923077		
10	108	-0,32692308	163	-0,51923077	221,5	-0,51923077		
10,4166667	108,5023256	-0,32692308	164,7627907	-0,51923077	222,5302326	-0,51923077		
10,8333333	109,0093458	-0,32692308	167,046729	-0,51923077	223,5700935	-0,5		
11,25	110,028169	-0,30769231	168,3380282	-0,53846154	224,6197183	-0,5		
11,6666667	110,5471698	-0,30769231	169,1320755	-0,53846154	225,6792453	-0,5		
12,0833333	111,5829384	-0,30769231	169,9336493	-0,53846154	226,7488152	-0,5		
12,5	112,1142857	-0,28846154	170,7428571	-0,53846154	227,8285714	-0,5		
12,9166667	112,6507177	-0,28846154	172,076555	-0,53846154	228,9186603	-0,5		
13,3333333	113,7115385	-0,26923077	172,9038462	-0,51923077	230,0192308	-0,48076923		
13,75	114,2608696	-0,26923077	173,7391304	-0,51923077	231,1304348	-0,46153846		
14,1666667	114,815534	-0,26923077	174,5825243	-0,51923077	232,2524272	-0,44230769		
14,5833333	115,3756098	-0,25	175,4341463	-0,51923077	233,3853659	-0,44230769		
15	116,4705882	-0,23076923	176,2941176	-0,5	235,5882353	-0,44230769		
------------	-------------	-------------	-------------	-------------	-------------	-------------		
15,4166667	117,044335	-0,23076923	177,1625616	-0,5	236,7487685	-0,44230769		
15,8333333	117,6237624	-0,23076923	179,1089109	-0,48076923	237,9207921	-0,42307692		
16,25	118,2089552	-0,21153846	181,0746269	-0,48076923	239,1044776	-0,42307692		
16,6666667	118,8	-0,19230769	183,6	-0,48076923	240,3	-0,42307692		
17,0833333	119,3969849	-0,19230769	184,5226131	-0,48076923	241,5075377	-0,40384615		
17,5	120,5454545	-0,17307692	185,4545455	-0,46153846	242,7272727	-0,40384615		
17,9166667	121,1573604	-0,15384615	186,3959391	-0,46153846	243,9593909	-0,38461538		
18,3333333	121,7755102	-0,15384615	187,8979592	-0,46153846	245,2040816	-0,38461538		
18,75	122,4	-0,13461538	188,8615385	-0,46153846	246,4615385	-0,38461538		
19,1666667	123,0309278	-0,11538462	189,8350515	-0,44230769	248,8453608	-0,38461538		
19,5833333	123,6683938	-0,11538462	190,8186528	-0,42307692	250,134715	-0,34615385		
20	124,3125	-0,11538462	191,8125	-0,42307692	251,4375	-0,34615385		
20,4166667	124,9633508	-0,11538462	192,8167539	-0,42307692	252,7539267	-0,34615385		

Echantillon	n°6:	Argile	/ Sable
-------------	------	--------	---------

ΔL/L (%)	$\sigma = 100 \text{ (KPa)}$		σ=2	$\sigma = 200 \text{ (KPa)}$		σ = 300 (KPa)	
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	
0	0	0	0	0	0	100	
0,41666667	35,24686192	-0,07692308	35,69874477	-0,03846154	36,1506276	99,9615385	
0,83333333	47,19327731	-0,11538462	58,08403361	-0,11538462	68,9747899	99,8846154	
1,25	53,3164557	-0,15384615	76,55696203	-0,38461538	88,8607595	99,6153846	
1,66666667	59,49152542	-0,19230769	83,28813559	-0,46153846	102,050847	99,5384615	
2,08333333	65,71914894	-0,19230769	87,31914894	-0,53846154	111,676596	99,4615385	
2,5	69,69230769	-0,19230769	95,07692308	-0,57692308	120	99,4230769	
2,91666667	72,77253219	-0,19230769	103,3648069	-0,61538462	126,540773	99,3846154	
3,33333333	74,94827586	-0,19230769	110,3275862	-0,65384615	132,206897	99,3461538	
3,75	77,14285714	-0,19230769	117,8181818	-0,69230769	138,38961	99,3076923	
4,16666667	77,94782609	-0,19230769	123,026087	-0,76923077	143,217391	99,2307692	
4,58333333	79,23144105	-0,23076923	127,8078603	-0,78846154	147,144105	99,2115385	
5	81	-0,23076923	131,2105263	-0,80769231	149,684211	99,1923077	
5,41666667	81,83259912	-0,25	135,1189427	-0,80769231	151,770925	99,1923077	
5,83333333	83,15044248	-0,25	137,1504425	-0,80769231	152,920354	99,1923077	
6,25	84	-0,26923077	139,2	-0,80769231	155,04	99,1923077	
6,66666667	84,375	-0,26923077	140,3035714	-0,80769231	156,696429	99,1923077	
7,08333333	84,75336323	-0,28846154	141,4170404	-0,80769231	158,852018	99,1923077	
7,5	85,13513514	-0,28846154	142,0540541	-0,80769231	162	99,1923077	
7,91666667	85,52036199	-0,28846154	143,1855204	-0,84615385	163,710407	99,1538462	
8,33333333	85,90909091	-0,30769231	143,8363636	-0,84615385	165,927273	99,1538462	
8,75	86,30136986	-0,34615385	144,4931507	-0,84615385	168,164384	99,1538462	
9,16666667	86,69724771	-0,40384615	145,6513761	-0,84615385	170,422018	99,1538462	
9,58333333	87,09677419	-0,42307692	146,3225806	-0,86538462	172,700461	99,1346154	
10	87,5	-0,44230769	147	-0,88461538	174	99,1153846	
10,4166667	87,90697674	-0,44230769	147,6837209	-0,88461538	175,813953	99,1153846	
10,8333333	88,31775701	-0,46153846	148,3738318	-0,88461538	177,140187	99,1153846	
11,25	88,73239437	-0,46153846	149,0704225	-0,88461538	177,971831	99,1153846	
11,6666667	89,1509434	-0,48076923	150,2830189	-0,88461538	179,320755	99,1153846	
12,0833333	89,57345972	-0,5	150,9952607	-0,88461538	180,682464	99,1153846	
12,5	90	-0,5	151,7142857	-0,88461538	182,057143	99,1153846	
12,9166667	90,43062201	-0,51923077	152,4401914	-0,88461538	184,478469	99,1153846	
13,3333333	90,86538462	-0,51923077	153,1730769	-0,88461538	186,923077	99,1153846	
13,75	91,30434783	-0,53846154	153,9130435	-0,88461538	188,869565	99,1153846	
14,1666667	91,74757282	-0,53846154	154,6601942	-0,88461538	189,262136	99,1153846	
14,5833333	92,19512195	-0,55769231	155,4146341	-0,88461538	190,185366	99,1153846	
15	92,11764706	-0,55769231	156,1764706	-0,88461538	191,117647	99,1153846	
15,4166667	92,57142857	-0,57692308	156,9458128	-0,88461538	190,995074	99,1153846	

15,8333333	93,02970297	-0,59615385	157,7227723	-0,90384615	191,940594	99,0961538
16,25	93,49253731	-0,61538462	158,5074627	-0,92307692	192,895522	99,0769231
16,6666667	93,96	-0,63461538	159,3	-0,94230769	193,32	99,0576923
17,0833333	94,4321608	-0,65384615	160,1005025	-0,96153846	194,291457	99,0384615
17,5	94,90909091	-0,65384615	160,9090909	-0,96153846	195,272727	99,0384615
17,9166667	95,39086294	-0,69230769	161,7258883	-0,96153846	196,263959	99,0384615
18,3333333	95,87755102	-0,71153846	162,5510204	-0,96153846	196,714286	99,0384615
18,75	95,81538462	-0,73076923	163,3846154	-0,96153846	197,723077	99,0384615
19,1666667	96,30927835	-0,76923077	164,2268041	-0,96153846	198,742268	99,0384615
19,5833333	96,80829016	-07,8846154	165,0777202	-0,96153846	199,772021	99,0384615
20	97,3125	-0,80769231	165,9375	-0,96153846	200,8125	99,0384615
20,4166667	97,82198953	-0,80769231	166,8062827	-0,96153846	201,863874	99,0384615

Echantillon n°7 : Sable/Argile

Г

Echantilion n°/: Sable/Arglie							
	σ = 10	0 (KPa)	$\sigma = 20$	00 (KPa)	$\sigma = 300$	0 (KPa)	
ΔL/L (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	
0	0	0	0	0	0	0	
0,41666667	24,40167364	-0,01923077	38,41004184	-0,07692308	43.83263598	-0,03846154	
0,83333333	50,3697479	-0,03846154	56,72268908	-0,15384615	81,68067227	-0,15384615	
1,25	63,79746835	-0,15384615	70,63291139	-0,23076923	113,9240506	-0,26923077	
1,666666667	77,79661017	-0,19230769	86,49152542	-0,5	125,3898305	-0,46153846	
2,08333333	85,0212766	-0,23076923	98.80851064	-0,61538462	137,412766	-0,61538462	
2,5	92,30769231	-0,30769231	110,7692308	-0,73076923	147,2307692	-0,73076923	
2,91666667	97,33905579	-0,34615385	118,1974249	-0,76923077	154,8154506	-0,84615385	
3,33333333	100,5517241	-0,38461538	126,1551724	-0,84615385	161,5344828	-0,92307692	
3,75	102,3896104	-0,42307692	133,2467532	-0,88461538	167,3766234	-1,03846154	
4,16666667	104,7130435	-0,42307692	139,4608696	-0,92307692	171,8608696	-1,11538462	
4,58333333	105,6419214	-0,42307692	145,2576419	-0,94230769	174,9694323	-1,15384615	
5	106,5789474	-0,44230769	150,6315789	-0,96153846	178,1052632	-1,19230769	
5,41666667	107,5242291	-0,44230769	152,246696	-1	181,7444934	-1,26923077	
5,83333333	108,4778761	-0,44230769	160,0884956	-1,01923077	184,460177	-1,30769231	
6,25	110,4	-0,46153846	164,16	-1,01923077	186,72	-1,32692308	
6,66666667	111,375	-0,46153846	166,8214286	-1,03846154	188,5178571	-1,34615385	
7,08333333	111,8744395	-0,5	169,5067265	-1,03846154	191,3004484	-1,36538462	
7,5	112,3783784	-0,53846154	171,2432432	-1,03846154	193,6216216	-1,38461538	
7,91666667	112,39819	-0,55769231	172,9954751	-1,05769231	196,9411765	-1,40384615	
8,33333333	112,9090909	-0,57692308	174,2727273	-1,05769231	198,3272727	-1,40384615	
8,75	112,9315068	-0,61538462	175,0684932	-1,05769231	199,7260274	-1,42307692	
9,16666667	113,4495413	-0,65384615	175,8715596	-1,05769231	200,6422018	-1,44230769	
9,58333333	113,9723502	-0,65384615	176,6820276	-1,05769231	201,5668203	-1,46153846	
10	114,5	-0,65384615	178	-1,05769231	202,5	-1,46153846	
10,4166667	115,0325581	-0,65384615	178,827907	-1,05769231	203,4418605	-1,48076923	
10,8333333	115,5700935	-0,67307692	179,6635514	-1,05769231	204,8971963	-1,48076923	
11,25	116,1126761	-0,67307692	180,5070423	-1,05769231	206,3661972	-1,48076923	
11,6666667	116,6603774	-0,69230769	181,3584906	-1,05769231	207,3396226	-1,5	
12,0833333	117,2132701	-0,69230769	182,2180095	-1,03846154	208,3222749	-1,5	
12,5	117,7714286	-0,69230769	183,0857143	-1,03846154	209,8285714	-1,5	
12,9166667	118,3349282	-0,69230769	183,4449761	-1,01923077	211,8660287	-1,5	
13,3333333	118,9038462	-0,69230769	183,8076923	-1,01923077	212,8846154	-1,5	
13,75	119,4782609	-0,69230769	184,6956522	-1,01923077	213,9130435	-1,48076923	
14,1666667	120,0582524	-0,69230769	185,592233	-1,01923077	214,9514563	-1,48076923	
14,5833333	120,6439024	-0,69230769	186,497561	-1,01923077	216	-1,48076923	
15	120,7058824	-0,69230769	187,4117647	-1,01923077	217,0588235	-1,46153846	

15,4166667	121,3004926	-0,73076923	188,3349754	-1	218,1280788	-1,46153846
15,8333333	121,9009901	-0,73076923	18,92673267	-1	219,7425743	-1,46153846
16,25	122,5074627	-0,73076923	190,2089552	-1	220,8358209	-1,46153846
16,6666667	123,12	-0,73076923	191,16	-1	222,48	-1,44230769
17,0833333	123,1959799	-0,76923077	192,120603	-1	223,5979899	-1,44230769
17,5	123,8181818	-0,76923077	193,0909091	-1	225,2727273	-1,44230769
17,9166667	124,4467005	-0,76923077	194,071066	-0,96153846	226,4162437	-1,44230769
18,3333333	125,0816327	-0,80769231	195,0612245	-0,96153846	227,5714286	-1,42307692
18,75	125,7230769	-0,80769231	196,0615385	-0,96153846	228,7384615	-1,42307692
19,1666667	126,371134	-0,80769231	197,0721649	-0,96153846	229,9175258	-1,42307692
19,5833333	127,0259067	-0,80769231	198,0932642	-0,96153846	231,6683938	-1,42307692
20	127,6875	-0,80769231	199,125	-0,96153846	232,875	-1,42307692
20,4166667	128,3560209	-0,80769231	200,1675393	-0,96153846	234,6596859	-1,42307692

Echantillon n°8 : Sable/Marne

	σ = 10	0 (KPa)	σ=20	0 (KPa)) $\sigma = 300 (\text{KPa})$		
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	
0	0	0	0	0	0	0	
0.41666667	5.411436541	-0,11538462	10.8228731	-0,19230769	13.5285914	-0,07692308	
0.83333333	30.97478992	-0,19230769	26.0840336	-0,23076923	11,4117647	-0,19230769	
1.25	40,92827004	-0,32692308	52,9338959	-0,38461538	49,6596343	-0,46153846	
1,666666667	50,96610169	-0,44230769	71,2429379	-0,53846154	83,299435	-0,73076923	
2,08333333	61,63971631	-0,57692308	82,5531915	-0,65384615	106,768794	-0,96153846	
2,5	69,08831909	-0,65384615	97,8290598	-0,76923077	121,595442	-1,15384615	
2,91666667	76,04577969	-0,69230769	99,9141631	-0,84615385	133,218884	-1,26923077	
3,33333333	80,27586207	-0,73076923	103.689655	-0,92307692	142,712644	-1,38461538	
3,75	83,42279942	-0,76923077	106,378066	-1	148,929293	-1,46153846	
4,16666667	86,59710145	-0,78846154	112,463768	-1,07692308	151,826087	-1,5	
4,58333333	88,66957787	-0,78846154	118,037846	-1,11538462	156,442504	-1,53846154	
5	90,76023392	-0,78846154	120,824561	-1,15384615	159,964912	-1,59615385	
5,41666667	92,86930984	-0,78846154	124,77533	-1,19230769	161,809104	-1,61538462	
5,83333333	93,85250737	-0,78846154	126,471976	-1,26923077	163,669617	-1,65384615	
6,25	94,8444444	-0,78846154	130,482963	-1,28846154	166,121481	-1,67307692	
6,66666667	95,8452381	-0,78846154	132,797619	-1,30769231	169,172619	-1,69230769	
7,08333333	98,59491779	-0,78846154	136,292975	-1,32692308	171,091181	-1,73076923	
7,5	99,62162162	-0,78846154	138,654655	-1,34615385	172,444444	-1,75	
7,91666667	100,0723982	-0,80769231	141,037707	-1,36538462	174,980392	-1,76923077	
8,33333333	101,1151515	-0,80769231	142,266667	-1,38461538	175,775758	-1,80769231	
8,75	101,5768645	-0,82692308	143,506849	-1,40384615	177,16895	-1,84615385	
9,16666667	102,0428135	-0,82692308	144,75841	-1,42307692	179,168196	-1,88461538	
9,58333333	102,5130568	-0,82692308	146,021505	-1,44230769	181,185868	-1,92307692	
10	102,9876543	-0,82692308	148,493827	-1,46153846	182,623457	-1,92307692	
10,4166667	102,8651163	-0,82692308	150,387597	-1,5	184,074419	-1,92307692	
10,8333333	103,3457944	-0,82692308	150,485981	-1,51923077	184,934579	-1,92307692	
11,25	103,8309859	-0,82692308	151,192488	-1,53846154	185,802817	-1,92307692	
11,6666667	104,3207547	-0,80769231	151,90566	-1,55769231	186,679245	-1,92307692	
12,0833333	104,8151659	-0,80769231	152,625592	-1,57692308	187,563981	-1,94230769	
12,5	105,3142857	-0,80769231	152,736508	-1,59615385	189,073016	-1,94230769	
12,9166667	105,8181818	-0,80769231	152,848485	-1,61538462	189,977671	-1,94230769	
13,3333333	106,3269231	-0,82692308	152,961538	-1,63461538	190,891026	-1,94230769	
13,75	106,215781	-0,82692308	153,700483	-1,65384615	191,813205	-1,94230769	
14,1666667	106,7313916	-0,82692308	154,446602	-1,67307692	194	-1,96153846	
14,5833333	107,2520325	-0,82692308	154,569106	-1,69230769	195,577236	-1,96153846	
15	107,7777778	-0,84615385	155,326797	-1,73076923	195,901961	-1,96153846	
15,4166667	108,3087028	-0,84615385	156,091954	-1,76923077	196,229885	-1,98076923	
15,8333333	108,8448845	-0,84615385	156,864686	-1,80769231	196,561056	1-,98076923	
16,25	109,3864013	-0,84615385	157,001658	-1,84615385	197,538972	-1,98076923	

16,6666667	109,2866667	-0,84615385	157,786667	-1,88461538	198,526667	-1,98076923
17,0833333	109,8358549	-0,84615385	158,579564	-1,92307692	199,524288	-2
17,5	110,3905724	-0,84615385	158,727273	-1,94230769	200,531987	-2
17,9166667	110,9509306	-0,84615385	159,532995	-1,96153846	201,549915	-2
18,3333333	111,5170068	-0,84615385	160,346939	-1,96153846	202,578231	-2

Echantillon n°9 : Marne/Sable

ΔL/L (%)	σ = 10	0 (KPa)	σ = 20	00 (KPa)	σ = 300 (KPa)		
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	
0	0	0	0	0	0	0	
0,41666667	17,3165969	-0,19230769	13,5285914	-0,19230769	28,13947001	-0,15384615	
0,83333333	26,627451	-0,38461538	35,8655462	-0,15384615	49,99439776	-0,34615385	
1,25	38,1997187	-0,5	56,7538678	-0,30769231	67,66807314	-0,53846154	
1,66666667	49,8700565	-0,57692308	73,9830508	-0,46153846	83,29943503	-0,65384615	
2,08333333	58,3375887	-0,61538462	85,3049645	-0,53846154	96,86241135	-0,88461538	
2,5	66,3247863	-0,61538462	96,7236467	-0,61538462	107,2250712	-0,96153846	
2,91666667	71,0500715	-0,57692308	107,685265	-0,69230769	113,7911302	-1	
3,33333333	74,7011494	-0,53846154	112,609195	-0,73076923	126,545977	-1,07692308	
3,75	75,024531	-0,53846154	120,37518	-0,76923077	133,8124098	-1,11538462	
4,16666667	75,9130435	-0,53846154	124,272464	-0,78846154	140,5797101	-1,13461538	
4,58333333	76,2445415	-0,51923077	132,157205	-0,78846154	147,4061135	-1,15384615	
5	76,5789474	-0,5	135,573099	-0,78846154	153,1578947	-1,17307692	
5,41666667	77,4860499	-0,48076923	138,449339	-0,78846154	158,3906021	-1,19230769	
5,83333333	77,8289086	-0,46153846	139,634218	-0,78846154	162,5250737	-1,19230769	
6,25	78,1748148	-0,44230769	142,554074	-0,78846154	166,1214815	-1,19230769	
6,66666667	78,5238095	-0,40384615	143,767857	-0,78846154	168,5952381	-1,19230769	
7,08333333	78,8759342	-0,36538462	144,412556	-0,78846154	171,671151	-1,19230769	
7,5	79,2312312	-0,34615385	145,645646	-0,78846154	174,7747748	-1,19230769	
7,91666667	79,5897436	-0,34615385	146,304676	-0,78846154	179,0769231	-1,19230769	
8,33333333	79,9515152	-0,34615385	146,969697	-0,78846154	179,8909091	-1,19230769	
8,75	79,7260274	-0,34615385	147,640791	-0,80769231	180,7123288	-1,19230769	
9,16666667	80,0917431	-0,34615385	148,318043	-0,80769231	180,9480122	-1,19230769	
9,58333333	80,4608295	-0,34615385	149,001536	-0,80769231	181,781874	-1,19230769	
10	80,8333333	-0,32692308	149,691358	-0,80769231	182,6234568	-1,21153846	
10,4166667	81,2093023	-0,30769231	150,387597	-0,80769231	182,8713178	-1,21153846	
10,8333333	81,588785	-0,28846154	151,090343	-0,80769231	183,7258567	-1,21153846	
11,25	81,3646322	-0,26923077	151,799687	-0,84615385	183,9812207	-1,21153846	
11,6666667	81,7484277	-0,25	152,515723	-0,86538462	184,8490566	-1,21153846	
12,0833333	82,135861	-0,25	153,238547	-0,88461538	185,1121643	-1,21153846	
12,5	82,5269841	-0,25	153,968254	-0,90384615	185,9936508	-1,23076923	
12,9166667	82,9218501	-0,25	154,704944	-0,92307692	186,8835726	-1,23076923	
13,3333333	82,6987179	-0,25	154,826923	-0,96153846	187,1602564	-1,23076923	
13,75	83,0982287	-0,25	155,574879	-1	188,0644122	-1,25	
14,1666667	83,5016181	-0,26923077	156,330097	-1,03846154	188,9773463	-1,25	
14,5833333	83,9089431	-0,26923077	157,092683	-1,07692308	189,899187	-1,25	
15	83,6862745	-0,26923077	157,228758	-1,11538462	190,8300654	-1,25	
15,4166667	84,0985222	-0,26923077	158,003284	-1,15384615	191,7701149	-1,26923077	

15,8333333	84,5148515	-0,25	158,785479	-1,19230769	192,7194719	-1,26923077
16,25	84,9353234	-0,25	159,575456	-1,23076923	193,6782753	-1,26923077
16,6666667	85,36	-0,25	160,373333	-1,26923077	194,6466667	-1,30769231
17,0833333	85,7889447	-0,25	161,179229	-1,30769231	195,6247906	-1,30769231
17,5	86,2222222	-0,23076923	161,993266	-1,34615385	196,6127946	-1,30769231
17,9166667	86,0033841	-0,23076923	162,815567	-1,36538462	197,6108291	-1,30769231
18,3333333	86,4421769	-0,23076923	163,646259	-1,38461538	198,6190476	-1,30769231

$E chantillon \ n^\circ 10: Sable/Argile/Sable$

ΔL/L (%)	σ=10	0 (KPa)	σ=20	0 (KPa)	σ = 300 (KPa)	
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	23,0460251	0	38,4100418	-0,11538462	46,0920502	-0,03846154
0,83333333	58,7447699	-0,03846154	69,1380753	-0,23076923	84,5020921	-0,11538462
1,25	72,3012552	-0,30769231	89,0209205	-0,42307692	112,970711	-0,23076923
1,66666667	80,8870293	-0,42307692	104,83682	-0,57692308	136,468619	-0,34615385
2,08333333	87,2133891	-0,46153846	118,393305	-0,73076923	151,380753	-0,38461538
2,5	92,6359833	-0,46153846	129,690377	-0,84615385	162,677824	-0,46153846
2,91666667	97,1548117	-0,46153846	136,468619	-0,92307692	172,619247	-0,5
3,33333333	100,317992	-0,46153846	140,987448	-1	176,686192	-0,53846154
3,75	102,125523	-0,46153846	144,60251	-1,03846154	183,916318	-0,57692308
4,16666667	103,029289	-0,46153846	147,76569	-1,11538462	187,983264	-0,61538462
4,58333333	103,933054	-0,46153846	150,025105	-1,15384615	191,146444	-0,63461538
5	103,933054	-0,46153846	151,832636	-1,19230769	194,309623	-0,65384615
5,41666667	105,288703	-0,46153846	152,736402	-1,19230769	196,569038	-0,65384615
5,83333333	105,740586	-0,46153846	153,640167	-1,21153846	197,472803	-0,65384615
6,25	106,192469	-0,5	154,543933	-1,23076923	198,376569	-0,67307692
6,66666667	106,644351	-0,5	155,447699	-1,23076923	198,828452	-0,67307692
7,08333333	107,096234	-0,5	155,447699	-1,23076923	200,1841	-0,69230769
7,5	107,548117	-0,5	155,447699	-1,25	200,1841	-0,69230769
7,91666667	108	-0,5	155,447699	-1,26923077	200,1841	-0,69230769
8,33333333	108,451883	-0,5	155,447699	-1,26923077	200,635983	-0,69230769
8,75	108,903766	-0,5	155,447699	-1,26923077	201,539749	-0,69230769
9,16666667	109,355649	-0,5	155,447699	-1,28846154	201,991632	-0,69230769
9,58333333	109,807531	-0,5	155,447699	-1,28846154	201,991632	-0,71153846
10	110,259414	-0,51923077	155,447699	-1,30769231	202,443515	-0,71153846
10,4166667	110,711297	-0,51923077	155,447699	-1,30769231	202,443515	-0,73076923
10,8333333	111,16318	-0,51923077	154,995816	-1,30769231	202,443515	-0,73076923
11,25	111,615063	-0,51923077	154,995816	-1,30769231	202,443515	-0,73076923
11,66666667	112,066946	-0,51923077	154,995816	-1,34615385	202,443515	-0,73076923
12,0833333	112,518828	-0,53846154	154,995816	-1,34615385	202,443515	-0,76923077
12,5	112,518828	-0,53846154	154,995816	-1,34615385	202,443515	-0,76923077
12,9166667	112,518828	-0,53846154	154,995816	-1,34615385	202,895397	-0,76923077
13,3333333	112,518828	-0,53846154	154,995816	-1,36538462	202,895397	-0,76923077
13,75	112,970711	-0,53846154	154,995816	-1,36538462	202,895397	-0,76923077
14,1666667	112,970711	-0,55769231	154,995816	-1,36538462	202,895397	-0,76923077
14,5833333	112,970711	-0,55769231	154,543933	-1,38461538	202,895397	-0,80769231
15	113,874477	-0,55769231	154,543933	-1,38461538	202,443515	-0,80769231
15,4166667	113,874477	-0,57692308	154,543933	-1,38461538	202,443515	-0,80769231

15,8333333	113,874477	-0,57692308	154,543933	-1,40384615	202,443515	-0,80769231
16,25	113,874477	-0,57692308	154,543933	-1,40384615	202,443515	-0,82692308
16,6666667	113,874477	-0,57692308	154,543933	-1,40384615	202,443515	-0,82692308
17,0833333	114,32636	-0,57692308	154,543933	-1,42307692	202,443515	-0,82692308
17,5	114,32636	-0,57692308	154,543933	-1,42307692	202,443515	-0,84615385
17,9166667	114,32636	-0,61538462	154,09205	-1,44230769	202,443515	-0,84615385
18,3333333	114,32636	-0,61538462	154,09205	-1,46153846	201,991632	-0,84615385
18,75	114,32636	-0,61538462	154,09205	-1,46153846	201,991632	-0,86538462
19,1666667	114,32636	-0,61538462	154,09205	-1,48076923	201,991632	-0,86538462
19,5833333	114,32636	-0,61538462	154,09205	-1,5	201,991632	-0,86538462
20	114,32636	-0,61538462	154,09205	-1,53846154	201,991632	-0,88461538
20,4166667	114,32636	-0,61538462	154,09205	-1,57692308	201,991632	-0,88461538

Echantillon n°11: Sable/Marne/Sable

	σ=10	0 (KPa)	σ=200	O (KPa)	$\sigma = 300 \text{ (KPa)}$	
ΔL/L (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	38,41004184	0	42,92887029	0	51,9665272	-0,03846154
0,83333333	61,2605042	-0,03846154	68,97478992	-0,03846154	86,21848739	-0,15384615
1,25	77,46835443	-0,07692308	87,03797468	-0,07692308	132,1518987	-0,30769231
1,66666667	91,52542373	-0,15384615	110,7457627	-0,15384615	170,2372881	-0,38461538
2,08333333	103,4042553	-0,23076923	126,3829787	-0,19230769	197,6170213	-0,5
2,5	112,1538462	-0,26923077	137,5384615	-0,23076923	221,5384615	-0,57692308
2,91666667	118,1974249	-0,26923077	145,5450644	-0,23076923	238,7124464	-0,61538462
3,33333333	121,5	-0,26923077	152,2241379	-0,23076923	251,3793103	-0,65384615
3,75	126,2337662	-0,26923077	155,6883117	-0,26923077	262,2857143	-0,67307692
4,16666667	128,6608696	-0,26923077	159,1826087	-0,26923077	272,3478261	-0,69230769
4,58333333	131,580786	-0,26923077	162,2358079	-0,26923077	278,7248908	-0,73076923
5	133,1052632	-0,26923077	170,5263158	-0,26923077	287,5263158	-0,73076923
5,41666667	134,6431718	-0,26923077	171,277533	-0,26923077	294,5022026	-0,73076923
5,83333333	136,6725664	-0,26923077	172,0353982	-0,26923077	298,1946903	-0,73076923
6,25	138,24	-0,26923077	175,68	-0,26923077	302,4	-0,73076923
6,66666667	139,3392857	-0,26923077	180,8035714	-0,30769231	306,1607143	-0,73076923
7,08333333	141,9013453	-0,26923077	181,6143498	-0,30769231	308,9865471	-0,73076923
7,5	143,027027	-0,26923077	182,4324324	-0,30769231	311,3513514	-0,73076923
7,91666667	144,1628959	-0,28846154	183,2579186	-0,34615385	313,7375566	-0,73076923
8,33333333	145,3090909	-0,28846154	186,5454545	-0,34615385	319,0909091	-0,73076923
8,75	145,9726027	-0,28846154	189,8630137	-0,34615385	320,5479452	-0,75
9,16666667	147,1376147	-0,28846154	193,2110092	-0,38461538	322,0183486	-0,75
9,58333333	148,3133641	-0,28846154	194,5990783	-0,42307692	323,5023041	-0,75
10	149	-0,30769231	196	-0,42307692	325	-0,75
10,4166667	149,6930233	-0,30769231	197,4139535	-0,5	326,5116279	-0,76923077
10,8333333	150,8971963	-0,30769231	198,8411215	-0,5	327,5327103	-0,78846154
11,25	151,6056338	-0,30769231	200,7887324	-0,53846154	328,5633803	-0,80769231
11,6666667	152,3207547	-0,34615385	203,7735849	-0,57692308	329,6037736	-0,84615385
12,0833333	153,042654	-0,34615385	212,4170616	-0,61538462	330,6540284	-0,84615385
12,5	153,7714286	-0,38461538	221,1428571	-0,65384615	331,2	-0,84615385
12,9166667	154,507177	-0,42307692	222,2009569	-0,69230769	331,7511962	-0,88461538
13,3333333	155,25	-0,42307692	223,2692308	-0,73076923	332,3076923	-0,88461538
13,75	156	-0,46153846	224,3478261	-0,76923077	332,8695652	-0,88461538
14,1666667	156,2330097	-0,46153846	225,4368932	-0,80769231	333,4368932	-0,88461538
14,5833333	156,995122	-0,46153846	226,5365854	-0,84615385	334,5365854	-0,90384615
15	157,7647059	-0,5	227,6470588	-0,92307692	335,1176471	-0,90384615
15,4166667	158,5418719	-0,5	228,2364532	-0,96153846	335,1724138	-0,90384615

15,8333333	159,3267327	-0,5	228,8316832	-1	335,2277228	-0,90384615
16,25	160,119403	-0,5	229,4328358	-1,03846154	335,2835821	-0,92307692
16,6666667	160,92	-0,53846154	230,04	-1,11538462	335,34	-0,92307692
17,0833333	161,1859296	-0,53846154	230,6532663	-1,15384615	337,0251256	-0,92307692
17,5	162	-0,57692308	231,2727273	-1,19230769	338,7272727	-0,96153846
17,9166667	162,822335	-0,57692308	231,8984772	-1,26923077	340,4467005	-0,96153846
18,3333333	163,6530612	-0,57692308	232,5306122	-1,30769231	342,1836735	-0,96153846
18,75	164,4923077	-0,61538462	233,1692308	-1,34615385	343,9384615	-1
19,1666667	165,3402062	-0,61538462	233,814433	-1,38461538	345,1546392	-1
19,5833333	166,1968912	-0,61538462	235,0259067	-1,42307692	346,9430052	-1
20	167,0625	-0,65384615	236,25	-1,46153846	348,75	-1
20,4166667	167,9371728	-0,65384615	237,486911	-1,5	350,5759162	-1

ΔL/L (%)) $\sigma = 100 (KPa)$ $\sigma = 200 (KPa)$		0 (KPa)	σ = 300 (KPa)		
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	36,15062762	-0,03846154	43,83263598	-0,07692308	51,9665272	-0,03846154
0,83333333	46,7394958	-0,07692308	58,99159664	-0,15384615	86,21848739	-0,07692308
1,25	61,51898734	-0,11538462	89,7721519	-0,23076923	123,0379747	-0,23076923
1,66666667	70,93220339	-0,15384615	109,8305085	-0,34615385	145,0677966	-0,30769231
2,08333333	75,82978723	-0,19230769	132,8170213	-0,38461538	160,8510638	-0,42307692
2,5	81,69230769	-0,19230769	144	-0,42307692	180	-0,53846154
2,91666667	86,67811159	-0,19230769	151,5708155	-0,44230769	190,0429185	-0,57692308
3,33333333	89,37931034	-0,17307692	156,8793103	-0,46153846	200,1724138	-0,61538462
3,75	95,37662338	-0,15384615	165,038961	-0,46153846	208,987013	-0,65384615
4,16666667	101,426087	-0,15384615	169,0434783	-0,46153846	216,9391304	-0,69230769
4,58333333	103,2838428	-0,13461538	173,0829694	-0,46153846	224,9606987	-0,73076923
5	105,1578947	-0,11538462	177,1578947	-0,46153846	231,6315789	-0,76923077
5,41666667	106,0969163	-0,07692308	179,8414097	-0,46153846	237,8854626	-0,76923077
5,83333333	107,5221239	-0,05769231	182,0707965	-0,44230769	243,7168142	-0,76923077
6,25	108	-0,03846154	184,32	-0,42307692	248,64	-0,78846154
6,66666667	108,4821429	-0,03846154	186,1071429	-0,42307692	253,6071429	-0,78846154
7,08333333	108,9686099	0	186,941704	-0,40384615	256,6816143	-0,80769231
7,5	108,972973	0	187,7837838	-0,38461538	258,8108108	-0,80769231
7,91666667	109,4660633	0	188,1447964	-0,38461538	260,4705882	-0,80769231
8,33333333	108,9818182	0	187,5272727	-0,38461538	262,1454545	-0,80769231
8,75	108,9863014	0	187,890411	-0,38461538	263,3424658	-0,80769231
9,16666667	108,9908257	-0,03846154	188,7522936	-0,38461538	264,5504587	-0,80769231
9,58333333	108,9953917	-0,03846154	189,6221198	-0,38461538	265,2718894	-0,82692308
10	109	-0,03846154	190,5	-0,38461538	266	-0,84615385
10,4166667	109,0046512	-0,05769231	191,3860465	-0,42307692	266,7348837	-0,84615385
10,8333333	109,5140187	-0,07692308	192,2803738	-0,42307692	267,9813084	-0,86538462
11,25	110,028169	-0,09615385	193,1830986	-0,42307692	268,2253521	-0,86538462
11,6666667	110,0377358	-0,09615385	193,5849057	-0,44230769	268,9811321	-0,88461538
12,0833333	110,5592417	-0,11538462	194,5023697	-0,46153846	269,2322275	-0,92307692
12,5	111,0857143	-0,11538462	195,4285714	-0,46153846	270	-0,92307692
12,9166667	111,1004785	-0,11538462	195,84689	-0,48076923	270,7751196	-0,96153846
13,3333333	111,6346154	-0,11538462	196,7884615	-0,5	272,0769231	-1
13,75	112,173913	-0,11538462	197,7391304	-0,5	272,8695652	-1,03846154
14,1666667	112,7184466	-0,11538462	198,6990291	-0,5	273,6699029	-1,07692308
14,5833333	113,2682927	-0,11538462	199,6682927	-0,5	274,4780488	-1,11538462

ΔL/L (%)	$\sigma = 10$	00 (KPa)	σ = 20	00 (KPa)	$\sigma = 30$	00 (KPa)
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	12,20083682	-0,15384615	48,3514644	-0,03846154	54,2259414	-0,01923077
0,83333333	16,78991597	-0,26923077	73,0588235	-0,07692308	82,5882353	-0,07692308
1,25	29,62025316	-0,38461538	87,0379747	-0,19230769	104,810127	-0,19230769
1,66666667	37,98305085	-0,46153846	99,3050847	-0,26923077	118,983051	-0,34615385
2,08333333	50,55319149	-0,57692308	108	-0,34615385	133,276596	-0,46153846
2,5	60	-0,61538462	115,384615	-0,42307692	145,384615	-0,53846154
2,91666667	66,2832618	-0,65384615	120,515021	-0,5	154,351931	-0,65384615
3,33333333	73,0862069	-0,69230769	126,62069	-0,53846154	162	-0,73076923
3,75	79,48051948	-0,73076923	130,909091	-0,57692308	169,246753	-0,80769231
4,16666667	83,11304348	-0,73076923	136,173913	-0,61538462	175,147826	-0,88461538
4,58333333	86,77729258	-0,73076923	139,126638	-0,65384615	180,157205	-0,92307692
5	90	-0,73076923	142,105263	-0,69230769	185,210526	-1
5,41666667	92,7753304	-0,73076923	145,110132	-0,73076923	188,405286	-1,03846154
5,83333333	94,61946903	-0,75	146,230088	-0,73076923	192,584071	-1,07692308
6,25	96	-0,75	148,8	-0,73076923	196,32	-1,11538462
6,66666667	96,42857143	-0,75	151,392857	-0,76923077	199,607143	-1,15384615
7,08333333	96,86098655	-0,75	152,556054	-0,76923077	201,955157	-1,19230769
7,5	97,2972973	-0,75	154,702703	-0,78846154	205,783784	-1,30769231
7,91666667	97,73755656	-0,75	155,891403	-0,80769231	208,180995	-1,26923077
8,33333333	98,18181818	-0,75	157,090909	-0,80769231	209,618182	-1,26923077
8,75	98,63013699	-0,75	158,30137	-0,84615385	211,068493	-1,30769231
9,16666667	99,08256881	-0,75	159,522936	-0,86538462	212,53211	-1,30769231
9,58333333	99,53917051	-0,75	160,75576	-0,88461538	214,009217	-1,34615385
10	100	-0,76923077	162	-0,88461538	215	-1,34615385
10,4166667	99,9627907	-0,76923077	162,753488	-0,90384615	216	-1,38461538
10,8333333	100,4299065	-0,78846154	163,514019	-0,90384615	217,009346	-1,42307692
11,25	100,9014085	-0,78846154	164,28169	-0,92307692	218,028169	-1,42307692
11,6666667	101,3773585	-0,78846154	165,056604	-0,92307692	219,056604	-1,46153846
12,0833333	101,8578199	-0,78846154	165,838863	-0,92307692	220,094787	-1,46153846
12,5	101,8285714	-0,78846154	166,628571	-0,92307692	221,142857	-1,46153846
12,9166667	102,3157895	-0,78846154	167,425837	-0,92307692	222,200957	-1,5
13,3333333	102,8076923	-0,78846154	168,230769	-0,92307692	223,269231	-1,5
13,75	103,3043478	-0,80769231	169,043478	-0,94230769	224,347826	-1,5
14,1666667	103,8058252	-0,80769231	169,864078	-0,94230769	225,436893	-1,53846154
14,5833333	104,3121951	-0,80769231	170,692683	-0,94230769	226,536585	-1,53846154

15	104,2941176	-0,80769231	171,529412	-0,94230769	227,647059	-1,53846154
15,4166667	104,8078818	-0,82692308	172,374384	-0,96153846	228,768473	-1,57692308
15,8333333	105,3267327	-0,82692308	173,227723	-0,96153846	229,90099	-1,57692308
16,25	105,8507463	-0,82692308	174,089552	-0,96153846	231,044776	-1,61538462
16,6666667	106,38	-0,82692308	174,96	-0,96153846	232,2	-1,61538462
17,0833333	106,3718593	-0,82692308	175,839196	-0,96153846	232,824121	-1,65384615
17,5	106,3636364	-0,82692308	176,727273	-1	234	-1,65384615
17,9166667	106,9035533	-0,84615385	177,076142	-1	235,187817	-1,65384615
18,3333333	017,4489796	-0,84615385	177,979592	-1,03846154	236,387755	-1,69230769
18,75	108	-0,84615385	178,892308	-1,03846154	237,6	-1,69230769
19,1666667	108,556701	-0,84615385	179,814433	-1,07692308	238,824742	-1,73076923
19,5833333	109,119171	-0,84615385	180,746114	-1,07692308	240,062176	-1,76923077
20	109,6875	-0,84615385	181,125	-1,07692308	241,3125	-1,76923077
20,4166667	110,2617801	-0,84615385	182,073298	-1,07692308	242,575916	-1,76923077

Annexe I

ΔL/L (%)	$\sigma = 100 \text{ (KPa)}$		$\sigma = 200 \text{ (KPa)}$		$\sigma = 300 \text{ (KPa)}$	
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	12,2008368	-0,03846154	35,2468619	-0,03846154	44,7364017	-0,03846154
0,83333333	14,9747899	-0,26923077	57,6302521	-0,19230769	72,605042	-0,07692308
1,25	20,0506329	-0,30769231	75,6455696	-0,34615385	92,0506329	-0,26923077
1,66666667	31,1186441	-0,38461538	88,779661	-0,46153846	100,677966	-0,42307692
2,08333333	35,387234	-0,42307692	98,8085106	-0,57692308	112,595745	-0,53846154
2,5	40,1538462	-0,46153846	103,384615	-0,61538462	120,461538	-0,57692308
2,91666667	48,2060086	-0,46153846	109,854077	-0,65384615	127,93133	-0,61538462
3,33333333	54,4655172	-0,46153846	113,12069	-0,69230769	133,603448	-0,65384615
3,75	59,3766234	-0,46153846	117,818182	-0,69230769	139,324675	-0,65384615
4,16666667	65,7391304	-0,46153846	120,678261	-0,69230769	146,504348	-0,65384615
4,58333333	70,7423581	-0,44230769	123,091703	-0,67307692	150,917031	-0,67307692
5	73,4210526	-0,44230769	124,578947	-0,67307692	157,736842	-0,65384615
5,41666667	75,1718062	-0,42307692	125,603524	-0,65384615	158,907489	-0,65384615
5,83333333	75,9823009	-0,38461538	126,637168	-0,63461538	161,044248	-0,61538462
6,25	76,32	-0,34615385	127,68	-0,61538462	163,2	-0,61538462
6,66666667	76,6607143	-0,32692308	128,732143	-0,59615385	168,267857	-0,61538462
7,08333333	77,0044843	-0,30769231	129,309417	-0,57692308	171,928251	-0,59615385
7,5	77,3513514	-0,26923077	129,891892	-0,53846154	176,108108	-0,57692308
7,91666667	77,2126697	-0,25	130,479638	-0,51923077	182,280543	-0,57692308
8,33333333	77,0727273	-0,19230769	131,072727	-0,5	185,563636	-0,55769231
8,75	77,4246575	-0,19230769	131,178082	-0,5	187,39726	-0,53846154
9,16666667	77,2844037	-0,19230769	131,779817	-0,5	189,247706	-0,53846154
9,58333333	77,640553	-0,17307692	131,889401	-0,5	193,603687	-0,53846154
10	77,5	-0,15384615	132,5	-0,5	197,5	-0,53846154
10,4166667	77,3581395	-0,15384615	133,116279	-0,5	200,930233	-0,53846154
10,8333333	77,2149533	-0,15384615	133,738318	-0,5	201,869159	-0,53846154
11,25	77,0704225	-0,15384615	134,366197	-0,5	202,816901	-0,51923077
11,6666667	76,9245283	-0,15384615	135	-0,5	203,773585	-0,51923077
12,0833333	77,2890995	-0,15384615	135,63981	-0,51923077	204,739336	-0,51923077
12,5	77,1428571	-0,15384615	135,771429	-0,53846154	205,714286	-0,51923077
12,9166667	76,9952153	-0,17307692	136,421053	-0,53846154	206,181818	-0,51923077
13,3333333	76,8461538	-0,17307692	137,076923	-0,53846154	207,173077	-0,51923077
13,75	76,6956522	-0,19230769	137,73913	-0,53846154	208,173913	-0,51923077
14,1666667	77,0679612	-0,19230769	138,407767	-0,53846154	208,660194	-0,53846154
14,5833333	77,4439024	-0,21153846	138,556098	-0,53846154	209,678049	-0,53846154
15	77,2941176	-0,23076923	139,235294	-0,55769231	210,705882	-0,53846154
15,4166667	77,6748768	-0,23076923	139,389163	-0,55769231	211,743842	-0,53846154

15,8333333	78,0594059	-0,23076923	140,079208	-0,57692308	212,257426	-0,53846154
16,25	77,9104478	-0,23076923	140,776119	-0,57692308	213,313433	-0,53846154
16,6666667	78,3	-0,25	141,48	-0,59615385	214,38	-0,53846154
17,0833333	78,6934673	-0,26923077	142,190955	-0,61538462	215,457286	-0,53846154
17,5	79,0909091	-0,28846154	142,909091	-0,61538462	216,545455	-0,53846154
17,9166667	79,4923858	-0,30769231	143,634518	-0,61538462	217,64467	-0,55769231
18,3333333	79,8979592	-0,30769231	144,367347	-0,61538462	218,755102	-0,55769231
18,75	80,3076923	-0,32692308	145,107692	-0,61538462	219,876923	-0,55769231
19,1666667	80,7216495	-0,34615385	145,85567	-0,63461538	221,010309	-0,55769231
19,5833333	81,1398964	-0,34615385	146,611399	-0,63461538	222,15544	-0,55769231
20	81,5625	-0,34615385	147,375	-0,63461538	223,3125	-0,55769231
20,4166667	81,9895288	-0,34615385	148,146597	-0,63461538	224,481675	-0,55769231

ΔL/L (%)	σ = 100 (KPa)		$\sigma = 200 \text{ (KPa)}$		$\sigma = 300 \text{ (KPa)}$	
(70)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)
0	0	0	0	0	0	0
0,41666667	23,9497908	0	42,4769874	-0,03846154	43,832636	0
0,83333333	58,9915966	-0,03846154	74,8739496	-0,07692308	75,7815126	-0,15384615
1,25	74,278481	-0,07692308	95,6962025	-0,19230769	97,9746835	-0,34615385
1,66666667	82,3728814	-0,15384615	108,457627	-0,23076923	118,983051	-0,42307692
2,08333333	89,6170213	-0,19230769	119,489362	-0,26923077	135,114894	-0,53846154
2,5	95,0769231	-0,23076923	129,230769	-0,34615385	146,307692	-0,57692308
2,91666667	98,7296137	-0,23076923	134,420601	-0,42307692	157,596567	-0,61538462
3,33333333	103,810345	-0,23076923	140,586207	-0,42307692	165,258621	-0,69230769
3,75	106,597403	-0,25	146,337662	-0,5	170,649351	-0,82692308
4,16666667	110,347826	-0,25	150,26087	-0,5	177,495652	-0,84615385
4,58333333	111,772926	-0,26923077	155,633188	-0,53846154	182,9869	-0,84615385
5	113,684211	-0,26923077	157,736842	-0,53846154	188,526316	-0,86538462
5,41666667	115,612335	-0,30769231	159,859031	-0,57692308	195,066079	-0,88461538
5,83333333	117,079646	-0,30769231	162,955752	-0,57692308	198,318584	-0,88461538
6,25	118,56	-0,34615385	168	-0,57692308	203,04	-0,88461538
6,66666667	120,053571	-0,38461538	174,535714	-0,57692308	208,285714	-0,88461538
7,08333333	120,591928	-0,40384615	179,192825	-0,57692308	213,09417	-0,92307692
7,5	121,621622	-0,42307692	180	-0,57692308	216,972973	-0,92307692
7,91666667	122,171946	-0,46153846	180,81448	-0,57692308	219,909502	-0,92307692
8,33333333	122,727273	-0,46153846	181,636364	-0,63461538	223,854545	-0,94230769
8,75	123,287671	-0,5	182,465753	-0,63461538	226,849315	-0,94230769
9,16666667	123,357798	-0,53846154	184,293578	-0,63461538	229,87156	-0,94230769
9,58333333	123,428571	-0,57692308	185,142857	-0,63461538	231,926267	-0,96153846
10	124	-0,61538462	186	-0,65384615	234	-0,96153846
10,4166667	124,576744	-0,63461538	186,865116	-0,65384615	236,093023	-0,96153846
10,8333333	125,158879	-0,65384615	187,738318	-0,65384615	237,196262	-0,96153846
11,25	125,239437	-0,65384615	190,140845	-0,65384615	238,816901	-0,96153846
11,6666667	125,830189	-0,67307692	191,037736	-0,65384615	240,45283	-0,96153846
12,0833333	125,914692	-0,67307692	191,943128	-0,65384615	242,616114	-0,96153846
12,5	126,514286	-0,67307692	192,857143	-0,69230769	244,285714	-0,98076923
12,9166667	127,119617	-0,67307692	193,779904	-0,69230769	245,454545	-0,98076923
13,3333333	127,730769	-0,69230769	194,192308	-0,69230769	246,634615	-0,98076923
13,75	128,347826	-0,69230769	195,130435	-0,69230769	247,826087	-0,98076923
14,1666667	128,446602	-0,69230769	196,07767	-0,71153846	248,504854	-1
14,5833333	128,546341	-0,69230769	196,507317	-0,73076923	249,717073	-1

Echantillon n°15	Sable/Argile/Sable	(incliné)
------------------	--------------------	-----------

15	128,647059	-0,73076923	197,470588	-0,76923077	250,941176	-1
15,4166667	128,748768	-0,73076923	198,44335	-0,76923077	252,17734	-1,03846154
15,8333333	129,386139	-0,73076923	199,425743	-0,84615385	253,425743	-1,03846154
16,25	130,029851	-0,73076923	199,880597	-0,88461538	254,686567	-1,03846154
16,6666667	130,68	-0,76923077	200,88	-0,92307692	255,42	-1,07692308
17,0833333	131,336683	-0,80769231	201,889447	-0,96153846	256,703518	-1,11538462
17,5	132	-0,84615385	202,909091	-1	258	-1,15384615
17,9166667	132,670051	-0,88461538	203,939086	-1,01923077	259,309645	-1,19230769
18,3333333	133,346939	-0,92307692	204,428571	-1,03846154	260,632653	-1,23076923
18,75	134,030769	-0,92307692	205,476923	-1,03846154	261,415385	-1,26923077
19,1666667	134,721649	-0,96153846	206,536082	-1,03846154	262,762887	-1,30769231
19,5833333	135,419689	-1	207,606218	-1,05769231	264,124352	-1,34615385
20	136,125	-1,03846154	208,6875	-1,07692308	265,5	-1,38461538
20,4166667	136,837696	-1,03846154	209,780105	-1,07692308	266,890052	-1,38461538

Echantillon n°	³ 16 : Sable	e/Marne/Sabl	e (incliné)
----------------	-------------------------	--------------	-------------

ΔL/L (%)	σ = 10	0 (KPa)	σ=20	0 (KPa)	$\sigma = 300 (KPa)$		
	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	τ(KPa)	ΔV/V (%)	
0	0	0	0	0	0	0	
0,41666667	34,79497908	-0,03846154	42,47698745	-0,07692308	54,22594142	-0,03846154	
0,83333333	63,52941176	-0,07692308	86,21848739	-0,30769231	108,907563	-0,23076923	
1,25	75,18987342	-0,23076923	125,7721519	-0,46153846	141,2658228	-0,46153846	
1,66666667	85,11864407	-0,30769231	148,2711864	-0,57692308	154,220339	-0,69230769	
2,08333333	98,80851064	-0,38461538	163,1489362	-0,73076923	177,3957447	-0,84615385	
2,5	105,2307692	-0,5	173,5384615	-0,80769231	194,7692308	-1	
2,91666667	111,2446352	-0,57692308	178,4549356	-0,92307692	210,4377682	-1,07692308	
3,33333333	117,7758621	-0,61538462	186,2068966	-1	221,1206897	-1,15384615	
3,75	123,8961039	-0,65384615	193,0909091	-1,01923077	230,961039	-1,19230769	
4,16666667	124,4347826	-0,67307692	197,2173913	-1,01923077	240,8869565	-1,23076923	
4,58333333	124,9781659	-0,69230769	201,8515284	-1,01923077	247,1266376	-1,25	
5	125,5263158	-0,69230769	203,6842105	-1,01923077	252,9473684	-1,25	
5,41666667	126,0792952	-0,73076923	208,3876652	-1,01923077	258,8193833	-1,25	
5,83333333	126,6371681	-0,73076923	210,2654867	-1,03846154	262,8318584	-1,21153846	
6,25	127,2	-0,73076923	212,64	-1,03846154	267,36	-1,19230769	
6,66666667	127,2857143	-0,71153846	215,0357143	-1,03846154	270,9642857	-1,15384615	
7,08333333	127,8565022	-0,67307692	216,4843049	-1,03846154	273,632287	-1,11538462	
7,5	128,4324324	-0,65384615	218,4324324	-1,03846154	276,3243243	-1,07692308	
7,91666667	129,0135747	-0,65384615	219,4208145	-1,03846154	278,0633484	-1,03846154	
8,33333333	129,6	-0,65384615	220,4181818	-1,01923077	279,8181818	-1	
8,75	129,6986301	-0,65384615	221,4246575	-1	281,0958904	-0,96153846	
9,16666667	130,293578	-0,63461538	222,440367	-0,98076923	282,3853211	-0,92307692	
9,58333333	130,3963134	-0,61538462	223,4654378	-0,96153846	284,1843318	-0,88461538	
10	131	-0,59615385	224	-0,94230769	285	-0,84615385	
10,4166667	131,6093023	-0,57692308	224,5395349	-0,92307692	285,8232558	-0,80769231	
10,8333333	131,7196262	-0,57692308	225,0841121	-0,92307692	287,1588785	-0,76923077	
11,25	132,3380282	-0,57692308	225,6338028	-0,90384615	287,4929577	-0,76923077	
11,6666667	132,9622642	-0,57692308	226,1886792	-0,88461538	288,3396226	-0,73076923	
12,0833333	133,5924171	-0,57692308	226,7488152	-0,86538462	289,1943128	-0,73076923	
12,5	134,2285714	-0,57692308	227,3142857	-0,84615385	290,0571429	-0,73076923	
12,9166667	134,8708134	-0,57692308	227,8851675	-0,84615385	291,4449761	-0,73076923	
13,3333333	134,4807692	-0,57692308	228,4615385	-0,84615385	292,8461538	-0,76923077	
13,75	135,1304348	-0,57692308	229,5652174	-0,84615385	293,7391304	-0,76923077	
14,1666667	135,7864078	-0,57692308	230,6796117	-0,84615385	294,6407767	-0,76923077	
14.5833333	136,4487805	-0,57692308	231,2780488	-0,84615385	295,5512195	-0,76923077	

ANNEXE II: Essais oedométriques

						Contraintes		
Ech A/M	Lec (mm)	h0 (mm)	Hp (mm)	h=h0 - Δh	Sec (cm)	(bars)	Logo'	e
1	1,8	26	15,7	24,2	19,62	0,509684	0,1	0,54140127
2	1,88	26	15,7	24,12	19,62	1,01936799	0,2	0,53630573
4	2	26	15,7	24	19,62	2,03873598	0,30936099	0,52866242
8	2,28	26	15,7	23,72	19,62	4,07747197	0,61039098	0,51082803
16	2,77	26	15,7	23,23	19,62	8,15494393	0,91142098	0,47961783
32	3,36	26	15,7	22,64	19,62	16,3098879	1,21245098	0,44203822
64	3,99	26	15,7	22,01	19,62	32,6197757	1,51348097	0,40191083
128	4,7	26	15,7	21,3	19,62	65,2395515	1,81451097	0,3566879
64	4,62	26	15,7	21,38	19,62	32,6197757	1,51348097	0,36178344
32	4,53	26	15,7	21,47	19,62	16,3098879	1,21245098	0,36751592
16	4,43	26	15,7	21,57	19,62	8,15494393	0,91142098	0,37388535
8	4,35	26	15,7	21,65	19,62	4,07747197	0,61039098	0,37898089
4	4,24	26	15,7	21,76	19,62	2,03873598	0,30936099	0,38598726
2	4,2	26	15,7	21,8	19,62	1,01936799	0,22	0,38853503
1	4,16	26	15,7	21,84	19,62	0,509684	0,1	0,3910828

 $E chantillon \ n^\circ 1: Argile/Marne.$

 $E chantillon \ n^{\circ}2: Marne/Argile.$

Ech M/A	Lec (mm)	h0	hp	h=h0 - Δh	sec	contraintes	Logo'	е
1	2,6	26	15,03	23,4	19,62	0,509684	0,1	0,55688623
2	2,66	26	15,03	23,34	19,62	1,01936799	0,2	0,55289421
4	2,72	26	15,03	23,28	19,62	2,03873598	0,30936099	0,5489022
8	2,86	26	15,03	23,14	19,62	4,07747197	0,61039098	0,53958749
16	3,35	26	15,03	22,65	19,62	8,15494393	0,91142098	0,50698603
32	3,93	26	15,03	22,07	19,62	16,3098879	1,21245098	0,46839654
64	4,55	26	15,03	21,45	19,62	32,6197757	1,51348097	0,42714571
128	5,24	26	15,03	20,76	19,62	65,2395515	1,81451097	0,38123752
64	5,16	26	15,03	20,84	19,62	32,6197757	1,51348097	0,38656021
32	5,08	26	15,03	20,92	19,62	16,3098879	1,21245098	0,3918829
16	4,94	26	15,03	21,06	19,62	8,15494393	0,91142098	0,4011976
8	4,89	26	15,03	21,11	19,62	4,07747197	0,61039098	0,40452428
4	4,78	26	15,03	21,22	19,62	2,03873598	0,30936099	0,41184298
2	4,7	26	15,03	21,3	19,62	1,01936799	0,22	0,41716567
1	4,66	26	15,03	21,34	19,62	0,509684	0,1	0,41982701

Ech S/A/S	Lec (mm)	h0	hp	h=h0 - Δ h	sec	contraintes	Logo'	е
1	0,31	26	17,8	25,69	19,62	0,509684	0,1	0,44325843
2	0,4	26	17,8	25,6	19,62	1,01936799	0,2	0,43820225
4	0,57	26	17,8	25,43	19,62	2,03873598	0,30936099	0,42865169
8	1,14	26	17,8	24,86	19,62	4,07747197	0,61039098	0,39662921
16	1,68	26	17,8	24,32	19,62	8,15494393	0,91142098	0,36629213
32	2,56	26	17,8	23,44	19,62	16,3098879	1,21245098	0,31685393
64	3,66	26	17,8	22,34	19,62	32,6197757	1,51348097	0,25505618
128	5,17	26	17,8	20,83	19,62	65,2395515	1,81451097	0,17022472
64	5,1	26	17,8	20,9	19,62	32,6197757	1,51348097	0,1741573
32	5,01	26	17,8	20,99	19,62	16,3098879	1,21245098	0,17921348
16	4,88	26	17,8	21,12	19,62	8,15494393	0,91142098	0,18651685
8	4,7	26	17,8	21,3	19,62	4,07747197	0,61039098	0,19662921
4	4,59	26	17,8	21,41	19,62	2,03873598	0,30936099	0,20280899
2	4,54	26	17,8	21,46	19,62	1,01936799	0,22	0,20561798
1	4,45	26	17,8	21,55	19,62	0,509684	0,1	0,21067416

 $E chantillon \ n^{\circ}3: Sable/Argile/Sable.$

Echantillon n°4 : Sable/Marne/Sable.

Ech S/M/S	Lec (mm)	h0	hp	$h=h0 - \Delta h$	sec	contraintes	Logo'	е
1	0,4	27	19,12	26,6	19,62	0,509684	0,1	0,39121339
2	0,48	27	19,12	26,52	19,62	1,01936799	0,2	0,38702929
4	0,59	27	19,12	26,41	19,62	2,03873598	0,30936099	0,38127615
8	0,94	27	19,12	26,06	19,62	4,07747197	0,61039098	0,36297071
16	1,47	27	19,12	25,53	19,62	8,15494393	0,91142098	0,33525105
32	2,28	27	19,12	24,72	19,62	16,3098879	1,21245098	0,29288703
64	3,33	27	19,12	23,67	19,62	32,6197757	1,51348097	0,23797071
128	4,85	27	19,12	22,15	19,62	65,2395515	1,81451097	0,1584728
64	4,83	27	19,12	22,17	19,62	32,6197757	1,51348097	0,15951883
32	4,77	27	19,12	22,23	19,62	16,3098879	1,21245098	0,1626569
16	4,71	27	19,12	22,29	19,62	8,15494393	0,91142098	0,16579498
8	4,64	27	19,12	22,36	19,62	4,07747197	0,61039098	0,16945607
4	4,58	27	19,12	22,42	19,62	2,03873598	0,30936099	0,17259414
2	4,53	27	19,12	22,47	19,62	1,01936799	0,22	0,17520921
1	4,45	27	19,12	22,55	19,62	0,509684	0,1	0,17939331

Ech S/A	Lec (mm)	h0	hp	h=h0 - Δh	sec	contraintes	Logo'	е
1	1,7	26	15,27	24,3	19,62	1,5	0,17609126	0,5913556
2	1,75	26	15,27	24,25	19,62	2,3	0,36172784	0,5880812
8	2,03	26	15,27	23,97	19,62	4,07747197	0,61039098	0,5697446
32	2,98	26	15,27	23,02	19,62	16,3098879	1,21245098	0,50753111
64	3,93	26	15,27	22,07	19,62	32,6197757	1,51348097	0,44531762
128	5,12	26	15,27	20,88	19,62	65,2395515	1,81451097	0,36738703
64	5,05	26	15,27	20,95	19,62	32,6197757	1,51348097	0,37197119
32	4,96	26	15,27	21,04	19,62	16,3098879	1,21245098	0,37786509
4	4,56	26	15,27	21,44	19,62	2,03873598	0,30936099	0,40406025
1	4,52	26	15,27	21,48	19,62	1,5	0,17609126	0,40667976

Echantillon $n^{\circ}5$: Sable/Argile.

Echantillon n°6 : Argile/Sable.

Ech A/S	Lec (mm)	h0	hp	h=h0 - Δ h	sec	contraintes	Logσ	e
1	1,5	26	14,5	24,5	19,62	1,5	0,17609126	0,68965517
2	1,55	26	14,5	24,45	19,62	2,3	0,36172784	0,6862069
8	1,76	26	14,5	24,24	19,62	4,07747197	0,61039098	0,67172414
32	2,78	26	14,5	23,22	19,62	16,3098879	1,21245098	0,60137931
64	3,93	26	14,5	22,07	19,62	32,6197757	1,51348097	0,52206897
128	5,12	26	14,5	20,88	19,62	65,2395515	1,81451097	0,44
64	4,96	26	14,5	21,04	19,62	32,6197757	1,51348097	0,45103448
32	4,7	26	14,5	21,3	19,62	16,3098879	1,21245098	0,46896552
4	4,3	26	14,5	21,7	19,62	2,03873598	0,30936099	0,49655172
1	4,2	26	14,5	21,8	19,62	1,5	0,17609126	0,50344828

							-	
Ech S/M	Lec (mm)	h0	hp	h=h0 - Δh	sec	contraintes	Logσ	e
1	1,2	26	7,15	24,8	44,15	1,075	0,03140846	2,46853147
2	1,62	26	7,15	24,38	44,15	1,4	0,14612804	2,40979021
8	1,78	26	7,15	24,22	44,15	1,81200453	0,25815928	2,38741259
32	5,45	26	7,15	20,55	44,15	7,24801812	0,86021927	1,87412587
64	6,86	26	7,15	19,14	44,15	14,4960362	1,16124927	1,67692308
128	9	26	7,15	17	44,15	28,9920725	1,46227926	1,37762238
64	8,49	26	7,15	17,51	44,15	14,4960362	1,16124927	1,44895105
32	8	26	7,15	18	44,15	7,24801812	0,86021927	1,51748252
4	7.96	26	7.15	18.04	44.15	5	0.69897	1.52307692
1	7	26	7,15	19	44,15	1,075	0,03140846	1,65734266

Echantillon n°7 : Sable/Marne.

Echantillon n°8 : Marne/Sable.

Ech M/S	Lec (mm)	h0	hp	h=h0 - Δh	sec	contraintes	Logσ	e
1	1,9	26	7,55	24,1	44,15	1,075	0,03140846	2,19205298
2	1,95	26	7,55	24,05	44,15	1,2	0,07918125	2,18543046
8	2,33	26	7,55	23,67	44,15	1,81200453	0,25815928	2,13509934
32	3,5	26	7,55	22,5	44,15	7,24801812	0,86021927	1,98013245
64	4,91	26	7,55	21,09	44,15	14,4960362	1,16124927	1,79337748
128	6,46	26	7,55	19,54	44,15	28,9920725	1,46227926	1,58807947
64	6,34	26	7,55	19,66	44,15	14,4960362	1,16124927	1,60397351
32	6,26	26	7,55	19,74	44,15	7,24801812	0,86021927	1,61456954
4	6,2	26	7,55	19,8	44,15	5	0,69897	1,62251656
1	5,69	26	7,55	20,31	44,15	1,075	0,03140846	1,69006623