7 00116

République Algérienne Démocratique Et Populaire
Ministère De L'enseignement Supérieure De La Recherche Scientifique
Université Mouloud Mammeri De Tizi-Ouzou
Faculté Du Génie De la Construction
Département De Génie Civil.

Mémoire

Pour obtenir le titre de Master en Génie Civil **Option** : Construction métallique

Thème

Etude d'un hangar en charpente métallique en décrochement avec mezzanine

Présenté par :

Mme. BOUNOUARA Lamia
Mlle. DENDANI Sabira

Examinateurs:

Promoteur:

Mr. ILLOULI

Mr. DAHMANI Lahlou

Mr. IDIR

Remerciement

Au terme de ce travail, nous remercions DIEU le tout puissant de nousavoir permis d'accomplir ce travail qui présente le fruit de plusieurs années de sacrifice.

En seconde, nos chers parents de nous avoir aidé pour arriver au termede ce travail qui est la récolte de long cursus.

C'est avec une profonde reconnaissance et considération particulière quenous remercions notre promoteur M^r **DAHMANI Lahlou** qui est le guide et le bon exemple dans le travail et surtout pour la sollicitude avec laquelle elle a suivi notre travail.

Nous remercions les membres de jurys qui nous font l'honneur deprésider et d'examiner ce travail.

Les seraient incomplets sans ceux, les plus sincères adressés à tous lesenseignants qui ont contribué à notre formation.

Toute personne ayant contribué de près ou de loin à la réalisation de cemémoire qu'elle trouve ici l'expression de nos plus profonds sentiments.

Dédicaces

Je tiens à exprimer ma profonde reconnaissance et gratitude envers mes très chers parents pour leurs sacrifices et soutien, je leur souhaite une longue vie.

A ma grand-mère 'Fatima', que Dieu la protège et nous la garde.

A ma grande sœur 'Sabrina', ma petite sœur 'Siham', que dieu les garde pour nous.

A ma chère et unique tante 'Nadia', son mari Mohamed ainsi que toute sa famille.

Je tiens aussi à dédier ce modeste travail à mes beauxparents surtout ma belle-mère adorée qui as été toujours à mes côte.

A celui qui a arrosé ma vie d'amour, à celui qui a donné un sens à ma vie, à toi mon cher mari 'Yassine'.

A mon beau-frère 'Zizou' que dieu le protège pour nous.

A mes belles sœurs 'Chabha, Ghenima, Yasmine 'que le bon dieu les protège et les gardes pour nous.

A ma chère sœur et binôme 'sabira', ainsi que toute sa famille

A mes amis (Foufouche, Kenza, Samir, Ryma, Sofiane, Massi, Arezki, Salima, Khokha, Hocine, Célia).

Dédicaces

Je tiens à exprimer ma profonde reconnaissance et gratitude envers mes très chers parents pour leurs sacrifices et soutien, je leur souhaite une longue vie.

A ma grand-mère 'Tassadit', que Dieu la protège et nous la garde.

A ma grande sœur 'Hassiba', son mari'Anis' et spécialement les petites anges 'Islam',

A ma sœur 'Cherifa 'que dieu la protège pour nous.

A mes frangins 'Yahia', 'Abd Allah' que le bon dieu les gardes pour nous.

A ma camarade et ma sœur 'Lamia' ainsi que toute sa famille.

A mes amis (Ryma, Foufouche, Salima, Samir)

Sabira

Liste des notations

Dimensions et caractéristiques de calcul		
Notation	Signification	
A	Aire de la section brute.	
Anet	Aire de la section nette.	
Aeff	Aire de la section efficace (section4).	
Afr	Aire de l'élément de surface balayé par le vent.	
A_s	Section résistant de la tige d'un boulon en fond de filet.	
A_v	Aire de cisaillement.	
h	Hauteur.	
Z _{min}	Hauteur minimale.	
b	Largueur.	
L	Longueur.	
l	Largeur.	
l_k	Longueur de flambement.	
d	Diamètre du fut du goujon.	
S	Surface.	
L_0	La portée de la poutre.	
t	Epaisseur.	
t_w	Epaisseur de l'âme.	
t_f	Epaisseur de la semelle.	
r	Rayon de raccordement.	
t_p	Epaisseur platine d'extrémité.	
d	Diamètre nominal du trou.	
d_0	Diamètre du trou.	
e	Pince longitudinale ou transversale.	

р	Entraxe des boulons.
I_y	Moment d'inertie de flexion maximale.
I_z	Moment d'inertie de flexion maximale.
W_{pl}	Module de résistance plastique de la section.
W_{el}	Module de résistance élastique.
W_{eff}	Module de résistance efficace.
i	Rayon de gyration.
I_t	Moment d'inertie de torsion.
F_v	Résistance des boulons au cisaillement par plan de cisaillement.
$\boldsymbol{F_t}$	Résistance des boulons en traction.
F_B	Résistance à la pression diamétrale des pièces assemblées.
	Coefficients et grandeurs sans dimensions
C_t	Coefficient de topographie.
C_d	Coefficient dynamique.
C_p	Coefficient de pression.
Ce	Coefficient d'exposition au vent.
C_r	Coefficient de rugosité.
\mathcal{C}_{fr}	Coefficient de frottement.
C_T	Coefficient, fonction du système de contreventement.
S	Coefficient utilisé pour le calcul du coefficient dynamique C _d .
γм	Coefficient partiel de sécurité.
γ_v	Coefficient partiel de sécurité.
μ	Coefficient de frottement / Coefficient de forme.
R	Coefficient de comportement de la structure.
λ	Élancement.
λ_k	Élancement eulérien.
$\bar{\lambda}$	Élancement réduit.

λ_{LT}	Élancement de l'élément vis-à-vis du déversement.
χ	Coefficient de réduction pour le flambement.
χ_{LT}	Coefficient de réduction pour le déversement.
K_T	Facteur de terrain.
<i>C</i> ₁	Facteur sans dimension qui dépend de la nature du diagramme des moments.
Q_{My}	Facteur de moment uniforme équivalent pour le flambement.
С	Facteur de résistance du béton.
Q	Facteur de qualité.
D	Facteur d'amplification dynamique moyen.
η	Facteur de correction d'amortissement.
I_w	Facteur de gauchissement.
	Sollicitations et contraintes
М	Moment sollicitant.
M_{sd}	Moment fléchissant.
M_{cr}	Moment critique élastique de déversement.
M_{pl}	Moment fléchissant de résistance plastique.
M_{el}	Le moment de résistance élastique.
M_b	Moment résistant de déversement.
Mr	Moment de renversement.
M_s	Moment stabilisant.
V_{sd}	Effort tranchant sollicitant.
V_{pl}	Résistance plastique de la section à l'effort tranchant.
N	Effort normal.
N_{pl}	Effort normal de plastification.
F_u	La résistance à la traction.
f _y	Limite d'élasticité.
F _{Cj}	Résistance caractéristique à la compression.
F_{tj}	Résistance caractéristique à la traction.

$F_{t,Rd}$	Résistance de l'âme du poteau à la traction.		
F _{PC}	Précontrainte de frottement.		
F_{fr}	Force de frottements (d'entraînement) éventuelles.		
qp	Pression dynamique de pointe.		
W	Pression aérodynamique du vent.		
$q_{r \in f}$	Pression dynamique de référence.		
ρ	Masse volumique.		
E	Module d'élasticité longitudinale.		
G	Module cisaillement / Charge permanente.		
Q	Surcharge d'exploitation.		
Not	Notes de calcul ROBOT (Dimensions, Sollicitations et coefficients)		
N _{sd}	Effort axial.		
$N_{t,rd}$	Résistance ultime plastique en traction.		
V_{sd}	Effort de cisaillement.		
$V_{pl,rd}$	Résistance ultime en cisaillement.		
M_{sd}	Moment fléchissant.		
M_{cr}	Moment critique pour le déversement.		
$M_{b,rd}$	Moment ultime pour le déversement.		
$M_{pl,rd}$	Moment ultime plastique.		
$M_{el,rd}$	Moment ultime élastique.		
$M_{y,rd}$	Moment ultime compte tenu de l'interaction.		
L_{fy}	Longueur de flambement.		
ID_sup	Longueur de déversement de la semelle supérieure.		
ID_inf	Longueur de déversement de la semelle inférieure.		
Lambda y	Elancement de la barre.		
Lambda_y	Elancement relatif de la barre.		
Lambda_LT	Elancement fictif de la barre pour le déversement.		
X_y	Coefficient de flambement.		

X_{LT}	Coefficient de déversement.
K_{LT}	Coefficient de réduction pour le déversement.
M_{iy}	Coefficient pour le calcul de K_{fy} .
M_{iLT}	Coefficient pour le calcul de K_{LT} .
K_y	Coefficient de reduction en flexion.
C ₁	Coefficient pour le calcul du moment critique.
Beta M _y	Coefficient dépendant du diagramme des moments.
Beta_MLT	Coefficient dépendant du diagramme des moments.
u	Flèche.
u _{max}	Flèche admissible.
u _{inst}	Flèche due aux charges variables.
u _{inst,max}	Flèche admissible due aux charges variables en z.
	Show table ROBOT (Solicitations et déplacements)
EX	Spectre de réponse selon la direction X.
EY	Spectre de réponse selon la direction Y.
P	Poids de la structure.
VX	Effort tranchant en X.
VY	Effort tranchant en Y.
UX	Déplacement de la barre en X.
UY	Déplacement de la barre en Y.

Liste des tableaux

Tableau II-1: Les valeurs des pressions dynamiques de pointe $q_p(z)$.

Tableau II-2 : les coefficients de pression Cpe dans chaque zone.

Tableau II-3 : Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de long pan.

Tableau II-4 : Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de long pan.

Tableau II-5 : Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de pignon.

Tableau II-6 : Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de pignon.

Tableau II-7: Valeurs des forces horizontal et vertical.

Tableau II-8: Valeurs des forces horizontal et vertical.

Tableau II-9: Valeurs des forces horizontal et vertical.

Tableau II-10: Valeurs des forces horizontal et vertical.

Tableau III-1: Dimension et caractéristique d'IPE 120

Tableau III-2: Facteur d'imperfection α_{LT} .

Tableau III-3 : Choix du type de courbe de déversement.

Tableau III-4: Caractéristiques géométriques d'UPN120.

Tableau III-5 : Caractéristiques géométriques de l'IPE 270.

Tableau IV-1: Caractéristique et dimension de L 45 x 45 x 4

Tableau IV-2: Dimension et caractéristique de l'UPN 180

Tableau IV-3: Dimension et caractéristique de l'HEA160

Tableau IV-4: Dimension et caractéristique de l'HEA180

Tableau V-1: Dimension et caractéristique de l'IPE 180

Tableau V-2: Dimension et caractéristique de l'IPE 330

Tableau V-3: Dimension et caractéristique de l'IPE 360

Tableau VI-1: Coefficients minorateurs β 1 et β 2

Tableau VI-2 : Dimension et caractéristique d'IPE 120.

Tableau VII-1: valeurs des pénalités

Tableau VII-2: Charges permanentes W_{Gi} de toute la structure.

Tableau VII-3: poids total de la structure

TableauVIII-1 : Valeurs de la pression aérodynamique sur les parois verticales et La toiture en daN/m^2 , cas de vent le plus défavorable.

Tableau VIII-2: Efforts au pied de poteaux aux l'ELU.

Tableau VIII-3: Prise en compte des défauts d'aplomb.

TableauVIII-4: Efforts équivalent en tète poteaux.

Tableau VIII-5: Dimension et caractéristique de l'IPE 360

Tableau IX-1:Liste des profilés utilisé.

Tableau XI-1: tableaux de l'effort normal

Liste des figures

- **Figure I-1**: PERSPECTIVE.
- **Figure I-2:** IMPLANTATION.
- **Figure I-3 :** Plan en élévation Axe 12.
- Figure I-4: Plan en élévation Fille A.
- Figure I-5: les composants d'une dalle mixte (Plancher Collaborant).
- Figure I-6 : Représentation de Plancher Collaborant.
- **Figure I-7:** Panneau sandwich TL 75.
- Figure I-8: Escalier droit avec deux paliers de repos.
- Figure I-9 : diagramme déformation de l'acier.
- Figure II-1 : Hauteur de référence Z et le profil correspondant de la pression dynamique.
- Figure II-2: Répartition des pressions sur la toiture —Direction du vent V1.
- **Figure II-3:** Répartition des pressions sur la toiture –Direction du vent V1.
- **Figure II-4 :** Répartition des pressions sur la toiture –Direction du vent V2.
- **Figure II-5 :** Répartition des pressions sur la toiture —Direction du vent V2.
- Figure II-6 : Représentation des charges provoquant un moment de renversement au long-pan
- Figure II-7: Représentation des charges provoquant un moment de renversement au pignon
- Figure II-8: Représentation des charges statique de neige sur la toiture et sur le sol.
- Figure II-9: Charges de neige.
- **Figure III-1 :** Disposition de la panne sur la toiture.
- Figure III-2: Chargement permanant au niveau de la toiture.
- Figure III-3: moment due à la charge d'entretient
- Figure III-4 : Charge du vent de soulèvement au niveau de la toiture
- **Figure III-5 :** Charge de neige sur la toiture.
- Figure III-6: Panne de toiture en flexion.
- **Figure III-7 :** Panne de toiture en flexion sous les différents plans de chargement.
- Figure III-8 : Panne de toiture en cisaillement sous les différents plans de chargement.
- Figure III-9 : Déversement d'une panne de toiture.
- Figure III-10 : Vérification de la flèche.
- Figure III-11: Dispositions des liernes.

Figure III-12 : Efforts dans les liernes.

Figure III-13 : Déposition de l'échantignole

Figure III-14: Disposition de la lisse de bardage.

Figure III-15: pression de vent sur la lisse.

Figure III-16 : Disposition des lisses de bardages.

Figure III-17: La répartition des charges sur les lisses de long pan.

Figure III-18 : Semelle comprimée soutenue sur toute sa longueur.

Figure III-19 : flèche de la lisse.

Figure III-20: flèche horizontale.

Figure III-21: flèche verticale.

Figure III-22 : efforts de traction dans le tronçon de lierne.

Figure III-23: flèche horizontale.

Figure III-24 : Flèche verticale.

Figure III-25 : efforts de traction dans le tronçon de lierne.

Figure III-26 : charges de vent et charges permanentes revenant au potelet.

Figure III-27: Déversement du potelet.

Figure IV-1 : vue 3D de l'escalier.

Figure IV-2 : disposition des cornières.

Figure IV-3 : Charge appliqué sur la cornière.

Figure IV-4: Distribution des charges sur un limon.

Figure IV-5 : charge équivalente(G)

Figure IV-6 : charge équivalente (Q)

Figure IV-7: Schéma statique de la poutre palière.

Figure V-1 : Eléments constructifs d'un plancher collaborant

Figure V-2: Schéma de la trame supportant les planchers.

Figure V-3: Présentation de l'ensemble (solive-dalle)

Figure V-4: Distribution plastique des contraintes normales : cas de l'axe neutre plastique dans la dalle (flexion positive).

Figure V-5 : La position d'un connecteur.

Figure V-6 : Caractéristiques des connecteurs.

Figure V-7: Distance entre goujons

Figure VI-1: Dispositions des contreventements.

Figure VI-2: Effort du vent sur le pignon.

Figure VI-3: Schéma statique de la poutre au vent.

Figure VI-4: L'effort F_d dans la diagonale d'extrémité.

Figure VI- 5: Palier de stabilité suivant le long pan.

Figure VII-1 : distribution de palée de stabilité sur l'ouvrage.

Figure VII-2: Distribution des forces sismique par portique mixte (sens transversal).

Figure VII-3: Distribution des forces sismique par files (sens longitudinale).

Figure VII-4 : les déformations due à la combinaison G+Q+1.2EX

Figure VII-5 : les déformations due à la combinaison G+Q+1.2EY

Figure VII-6: les déformations due à la combinaison 1,35G+1,5Vpignon

Figure VII-7 : les déformations due à la combinaison 1,35G+1,5Vlong-pan

Figure VIII-1: Vue du portique en 3D

Figure VIII-2: efforts internes.

Figure VIII-3: charges verticales vers le bas (efforts internes).

Figure VIII-4: charges verticales vers le haut (efforts internes).

Figure VIII-5: charges horizontales.

Figure VIII-6: charges horizontales (dépression).

Figure VIII-7 : Effort tranchant dans le plan de l'âme et la section cisaillée.

Figure IX-1: Etape de modélisation à l'aide de logiciel ROBOT

Figure IX-2: Vue en 3D de la structure

Figure IX-3: Vue en plan du plancher

Figure IX-4: Vue en élévation de la face longue pan

Figure IX-5: Vue en élévation de la face pignon

Figure X-1 : Structure vue en 3D

Figure X-2 : Vue 3D de l'assemblage traverse poteau

Figure X-3: Detail sur l'assemblage traverse poteau

Figure X-4 : Vue 3D de l'assemblage au niveau de faitage.

Figure X-5 : Détail de l'assemblage au niveau de faitage

Figure X-6 : Vue 3D de l'assemblage poteau poutre

Figure X-7 : Détail sur l'assemblage poteau-poutre.

Figure X-8: Vue en 3D de l'assemblage solive-poutre maitresse

Figure X-9 : Détail de l'assemblage solive-poutre maitresse

Figure X-10: Vue 3D de l'assemblage au niveau de pied de poteau

Figure X-11 : Détail de l'assemblage au niveau de pied de poteau

Figure X-12 : Détail de l'assemblage au gousset

Figure XI-1: Diagramme des contraintes agissant sur les fondations

Figure XI-2: Ferraillage des longrines.

Introduction générale

Chapitre I : Généralités.

I.1. Intr	oduction:	1
I.2. Pré	sentation du projet :	2
I.1.1.	Caractéristiques:	2
I.1.2.	Les données concernant le site :	4
I.1.3.	Étude de sol:	4
I.1.4.	Plancher:	4
I.1.5.	Toiture:	5
I.1.6.	L'escalier:	5
I.3. Ma	tériaux utilisés :	6
I.3.1.	Acier:	6
I.3.1.1	1. Propriété de l'acier :	6
I.3.2.	Le béton :	7
I.3.2.1	1. Propriétés du béton :	8
I.4. No	mes et règlement utilisés :	8
I.5. Les	assemblages:	8
I.5.1.	Le boulonnage :	8
I.5.2.	Le soudage :	8
I.6. Log	giciels utilisés :	9
I.7. Les	Actions prises en compte :	9
I.8. Les	états limites :	9
I.8.1.	Etat limite ultime (E.L.U):	9
I.8.2.	Etat limite de service (E.L.S.):	9
I 9 Pré	sentation des systèmes du contreventement :	10

Chapitre II: Etude Climatique.

II.1. Introduction:
II.2. Etude au vent :
II.2.1. Détermination des différents paramètres des coefficients de calcul :
II.2.2. Calcul de la pression :
II.2.2.1. Détermination de la pression dynamique de pointe <i>qpz</i> :
II.2.2.2. Détermination de coefficient de pression extérieur <i>Cpe</i> (Décrochement en
L):
II.2.2.4. Détermination de coefficient de pression intérieur <i>Cpi</i> :
II.3. Calcul des forces de frottement :
II.4. Action de la neige :
II.3.1. Charge de neige sur le sol:
II.3.2. La charge de neige appliquée sur la toiture :
Chapitre III: Pré dimensionnement des éléments.
•
III.1. Pré-dimensionnement des pannes
III.1.1.Définition
III.1.2. Evaluation des charges et surcharges :
I. Combinaison de charge les plus défavorables :
III.2. Vérification à la sécurité :
III.2.1. Vérification a l'état limite ultime
III.2.1.1. Classification de la section
III.2.1.2. Vérification de la section à la résistance
III.2.1.2. Vérification à la flexion :
III.2.1.3. Vérification au cisaillement :
III.2.1.4. Vérification au déversement
III.2.2. Vérification à l'état limite de service :
III.2.2.1. Vérification de la flèche :
III.3. Dimensionnement des liernes de pannes :
III.3.1. Définition:
III.3.2. Calcul de l'effort maximal revenant aux liernes :
III.4. Calcul de l'échantignole :
III.4.1. Définition:
III.4.2. Calcul des charges revenant à l'échantignole :
III.4.3. Calcul des moments de renversement :

III.4.4. Dimensionnement de l'échantignolle :	51
III.5. Etude des lisses de bardages :	51
III.5.1. Définition:	51
III.5.2.1. Evaluation des charges et surcharges :	53
III. 5.2.3. Vérification à l'état limite de service (ELS):	57
III. 5.3. Calculs des liernes de long-pan :	
III. 5.3.1. Calcul de l'effort de traction dans le lierne le plus sollicité :	59
Chapitre IV : Dimensionnement des éléments secondaires	5.
IV. Etude des escaliers :	77
IV.1. Introduction:	77
IV.2. Définition des éléments constituant les escaliers :	77
IV.3. Choix des dimensions :	78
IV.4. Dimensionnement de la cornière (support):	78
IV.4.1. Détermination de la section de cornière:	79
IV.4.2. Vérification à la flèche :	80
IV.4.3. Vérification de l'effort tranchant (cisaillement):	81
IV.4.4. Vérification du moment fléchissant (résistance):	81
IV.5. Dimensionnement de limon :	82
IV.5.1. Evaluation des charges :	82
IV.5.2. Calcul de la charge équivalente :	83
IV.5.3. Vérification de la flèche :(ELS)	84
IV.5.4. Vérification à la résistance : (ELU)	84
IV.5.5. Vérification à l'effort tranchant :	84
IV.5.6. Vérification à la compression :	84
IV.6. Etude de la poutre palière des limons :	85
IV.6.1. Evaluation de charges :	85
IV. 6.2. Condition de la flèche	86
IV.6.3. Conclusion:	91
	91
Chapitre V: Etude de Plancher collaborant.	0.2
V. Introduction:	
V.1. Calcul des planchers mixte à dalle collaborant	
V.2. Disposition des solives (poutrelles):	
V.3. Vérification au stade de montage	94

V.3.1.	Evaluation des charges :
V.3.2.	Les combinaisons des charges :
V.3.3.	Condition de flèche :
V.3.4.	Vérification a l'ELU :95
V.3.5.	Vérification à l'ELS :96
V.3.6.	Conclusion:96
V.4. Vér	ification au stade finale:96
V.4.1.	Evaluation des charges :
V.4.2.	Combinaisons des charges :
V.4.3.	Caractéristique de la dalle mixte :
V.4.4.	Vérification à L'ELU:
V.4.5.	Vérification à L'ELS:
V.5. Pré	dimensionnement des poutres principales du plancher intermédiaire : 101
V.5.1.	Evaluation des charges et surcharges :
V.5.2.	Combinaisons de charges :
V.5.3.	Condition de la flèche :
V.5.4.	Vérification à l'ELU :
V.5.5.	Vérification à l'ELS :
V.5.6.	Conclusion :
V.6. Pré	dimensionnement des poutres secondaire
V.7. Calo	cul des connexions acier-béton :
V.7.1. In	atroduction:
V.7.2.	Choix des dimensions des connecteurs
V.7.3.	Calcul de nombre de connecteur (goujon):106
V.7.4.	Calcul de l'espacement entre les goujons (EC4 6.1.3) :
V.7.5.	Conclusion :
Chapitre	VI : Etude des Contreventements.
VI. Introd	uction:
	ôle des systèmes de contreventement :
VI.2. C	ontreventements de toiture (poutre au vent) :
VI.2.1.	Calcul de la poutre au vent en pignon :
VI.3.1.	Conclusion:
VI.3. V	érification des pannes (montant de la poutre au vent) à la sécurité :
VI.4.1.	flexion composée déviée (bi axiale) :
VI.4. V	érification des pannes (montants de la poutre au vent) à l'instabilité :117

VI.6.1. conclusion:	122
VI.9. Calcul de la palée de stabilité en long pan :	122
VI.12.1. Vérification à la résistance ultime de la sec	tion nette : 123
VI.5.2. Conclusion:	124
Chapitre VII : Action d'ensemble et étude	e Sismique.
VII. Introduction:	125
VII.1. Notions de sismologie :	125
VII.2. Méthode de calcul :	126
VII.3. Spectre de réponse de calcul :	127
VII.4. Calcul de la force sismique totale :	
VII.4.1. Le tableau suivant donne les valeurs de pénal	ité Pq:130
VII.5. Distribution de la résultante des forces sismique	e selon la hauteur :134
VII.5.1. Les sollicitations dues au vent plus défavorab	le (sens pignon) :135
VII.6. Conclusion:	140
Chapitre VIII : Etude des portiques VIII. Introduction :	141
VIII. Introduction:	
VIII. Introduction:	141
VIII. Introduction :	
VIII. Introduction: VIII.1. Evaluation des charges: VIII.2. Calcul des efforts internes: VIII.3. Calcul de l'imperfection géométrique globale (d'union vec les imperfections: VIII.3.1. Modélisation avec les imperfections: VIII.3.2. Calcul des efforts internes additionnels: VIII.4. Pré-dimensionnement de la traverse:	
VIII. Introduction: VIII.1. Evaluation des charges: VIII.2. Calcul des efforts internes: VIII.3. Calcul de l'imperfection géométrique globale (d'analyse) VIII.3.1. Modélisation avec les imperfections: VIII.3.2. Calcul des efforts internes additionnels: VIII.4. Pré-dimensionnement de la traverse: VIII.4.1. Choix de la méthode d'analyse:	
VIII. Introduction: VIII.1. Evaluation des charges: VIII.2. Calcul des efforts internes: VIII.3. Calcul de l'imperfection géométrique globale (de VIII.3.1. Modélisation avec les imperfections: VIII.3.2. Calcul des efforts internes additionnels: VIII.4. Pré-dimensionnement de la traverse: VIII.4.1. Choix de la méthode d'analyse: VIII.4.2. Dimensionnement de la traverse:	
VIII. Introduction:	

VIII.6.1. Calcul des coefficients d'interaction kij : (EC3, Annexe	В)163
VIII.7. Etude numérique de portique avec logiciel ROBOT :	165
VIII.7.1. Introduction:	
VIII.7.2. Logiciel de calcul et l'optimisation des structures :	166
VIII.7.3. Description du logiciel ROBOT :	166
VIII.8. Etape à suivre dans le logiciel :	166
Chapitre IX : Vérification des éléments structuraux	
IX. Introduction:	180
IX.1. Méthodedetravail:	180
IX.2. Lesétapesdemodélisation:	181
IX.2.1. Matériauxutilisé	181
IX.2.2. Profiléutilisé:	181
IX.2.3. Modélisationgéométrique :	
IX.3. Les combinaisons de charge	
IX.4. Les résultats de vérifications de l'ossature à l'aide du logiciel RO	BOT184
IX.4.1. Vérification des pannes	
IX.4.2. Vérification des lisses de bardages :	
IX.4.3. Vérificationdespotelets:	186
IX.4.4. Vérificationdessolives :	
IX.4.5. Vérificationdespoutresmaitresse :	189
IX.4.6. Vérificationdestraverses :	
IX.4.7. Vérification des poteaux :	191
IX.4.8. Vérification des palé de stabilité :	193
IX.4.9. Vérification des contreventements :	193
Chapitre IX : Calcul des assemblages.	
X. Introduction:	195
X.1. Assemblagedes poutresmaitresse-poteauauniveaudespignonsde rive	e195
X.2. Assemblagedesdeux traverseau niveaudefaitage	
X.3. Assemblage Poteau-Poutre	
X.4. Assemblage Poutre-Poutre	
X.5. Encastrementenpiedsdepoteau	
X.6. Assemblagegousset	

L'assemblage c'est fait avec l'EXEL.	239
Chapitre X : Etude des Fondations.	
XI. Introduction:	242
XI.1. Les types des fondations :	242
XI.2. Choix des fondations :	242
XI.3. Etude des semelles :	243
XI.3.1. Dimensionnement de la semelle :	243
XI.3.2. Calcul de ferraillage :	244
XI.3.3. Détermination de la hauteur du patin 'e':	245
XI.4. Calculs des longrines :	245
Conclusion générale	
0 0110100101101010101010101010101010101	

Introduction Générale

Le domaine de construction est très vaste, il est envisagé en plusieurs manière de conception et d'exécution, il diffère selon les matériaux constitutifs et les types des structures, mais le but de ces études reste le même qui est de concevoir des bâtiments capables de résister aux efforts qui sont lui appliqués, et aux multiples phénomènes naturels (séisme, vent extrême.....etc).

La structure assure principalement le cheminement des efforts extérieurs appliqués jusqu'aux fondations. La connaissance de ce cheminement est essentielle quant à l'étude d'éléments constitutifs de la structure ainsi que de leurs liaisons.

Pour ces nouvelles techniques de construction, l'acier est le matériau le plus utilisé et cela pour ses nombreux avantages à savoir : la fiabilité, la capacité portante, la rapidité d'exécution et ces propriétés mécaniques qui nous permettent de concevoir des poutres de très grande portée.

Les ossatures et les toitures en charpente métalliques sont généralement souples et constituées de barres élancées ou d'éléments minces. Ces caractéristiques spécifiques sont à garder présents à l'esprit lors des études, les problèmes de flexibilité, voilement, déversement de poutres fléchies et flambement d'éléments comprimés étant déterminants dans la justification et le dimensionnement des structures métalliques.

Afin d'exploiter nos connaissances acquise durant notre formation on s'est intéresser à l'étude d'un hangar en charpente métallique à usage de stockage avec la mezzanine implanté à Boghni wilaya de Tizi-Ouzou, et ce en utilisant les règles de construction actuellement en vigueur en Algérie, ainsi que le moyen de calcul informatique (logiciel Robot). Le but de ce projet est d'être conformé à une situation professionnelle concrète et réelle.

I.1. Introduction:

L'ouvrage faisant l'objet de notre étude est un hangar de forme rectangulaire à deux versants avec un décrochement d'une surface de $920 \, m^2$.il est constitué d'un RDC à usage stockage et d'un niveau à usage bureau.

Figure I-1: PERSPECTIVE

I.2. Présentation du projet :

Le projet sera implanté au niveau de la commune de Boghni dans la wilaya de TIZI-OUZOU qui est classée selon le règlement parasismique algérien (RPA 99 version 2003) comme zone de moyenne sismicité (II).

I.1.1. Caractéristiques :

Caractéristiques géométriques de l'ouvrage :

•	Longueur totale	44.00 m
---	-----------------	---------

- Largeur totale23 m
- Hauteur des poteaux8 m
- Hauteur de l'étage (Mezzanine).....5 m
- La pente de versant:.... $\alpha = 11.31^{\circ}$

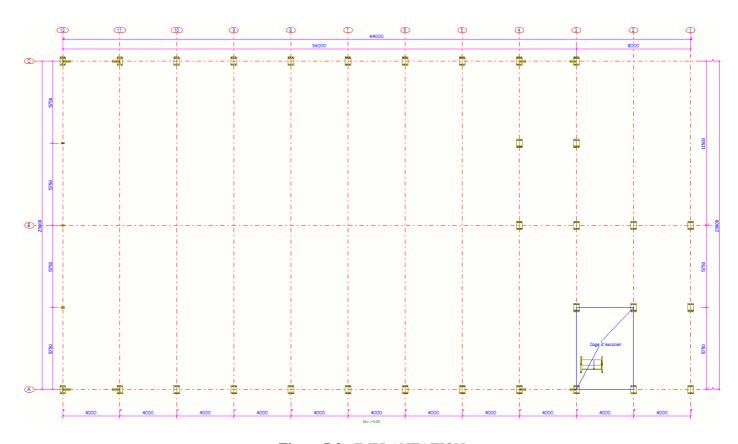


Figure I-2: IMPLANTATION

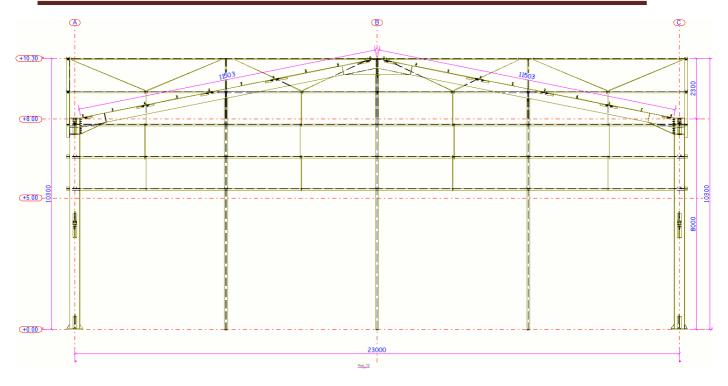


Figure I-3 : Plan en élévation Axe 12

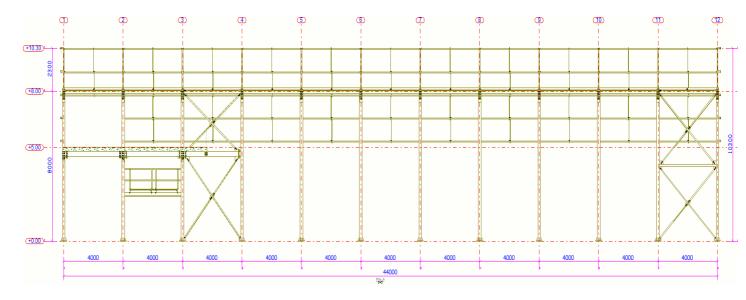


Figure I-4 : Plan en élévation Fille A

I.1.2. Les données concernant le site :

Le projet est implanté dans un terrain plat à la commune De Boghni Wilaya de « TiziOuzou »

- Altitude: 289 m.

- Zone de neige : Zone A

- Zone du vent : Zone I

- Zone sismique : Zone II, groupe d'usage 2.

I.1.3. Étude de sol :

Les études faites sur le sol ou le projet sera implanté nous renseignent sur :

- La contrainte admissible du sol tirée de la portance : σ adm = 2 bar
- La description des couches du sol nous montre que le terrain est d'agressivité chimique nulle (absence de sulfates).
- -un système de fondation en semelles superficiel à une profondeur d'ancrage de 1.40m

I.1.4. Plancher:

Le plancher composant les structures horizontales sont des planchers mixtes acier béton à dalle collaborant dont la composition est illustrée sur la figure suivante :

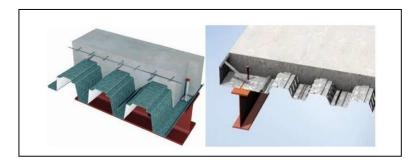


Figure I-5: les composants d'une dalle mixte (Plancher Collaborant)

Le bac d'acier est un profile en tôle nervurée laminée à froid (HI-BOND 55-750). Cet élément sert non seulement armature mais aussi de coffrage pour la dalle en béton armé.

A cet effet, il permet:

- D'assurer un coffrage efficace et étanche en supprimant les opérations de décoffrage.
- De constituer une plateforme de travail avant la mise en œuvre du béton.
- · Les planchers reposant sur un ensemble de poutres (principales-secondaires ainsi

les solives) de type IPE ou HEA.

La liaison entre la dalle mixte collaborant et les poutres porteuses est assurée par des connecteurs.

(Goujons).

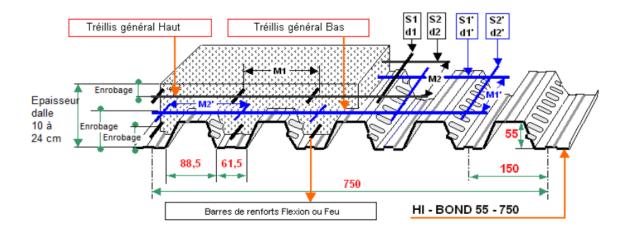


Figure I-6 : Représentation de Plancher Collaborant.

I.1.5. Toiture:

La toiture est en charpente métallique à deux versants. Elle est constituée de bacs de couverture en panneaux sandwichs du type TL75 reposant sur des pannes en IPE.

Les panneaux sandwichs nous offre plusieurs avantages on site :

- · L'isolation thermique et phonique
- Une bonne capacité portante
- · Un gain de temps appréciable au montage.
- · La rapidité d'exécution

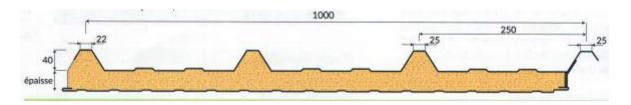


Figure I.7: Panneau sandwich TL 75

I.1.6. L'escalier:

Les escaliers sont des éléments composes d'une succession de marches permettant le passage d'un niveau à un autre, dans notre cas elles sont réalisées avec des éléments métalliques (limon et marches)

Il existe plusieurs types d'escalier (escalier droit, escalier balancé, escalier circulaire.). Le choix du type d'escalier dépend de plusieurs paramètres (hauteur à franchir, espace disponible...).

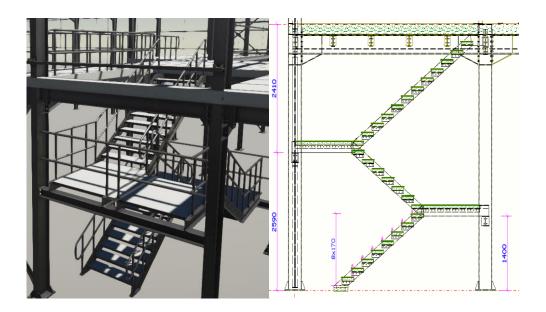


Figure I-8 : Escalier droit avec deux paliers de repos

I.3. Matériaux utilisés :

I.3.1. Acier:

L'acier est un matériau constitué essentiellement de fer et d'un peu de carbone, qui sont extraits de matières premières naturelles tirées du sous-sol (mines de fer et de charbon). Le carbone n'intervient dans la composition, que pour une très faible part (généralement inférieur 1%).

Outre le fer et le Carbonne, l'acier peut comporter d'autre éléments qui lui sont associés soit :

- · Involontairement comme le phosphore et le soufre qui sont les impuretés qui altèrent les propriétés des aciers.
- Volontairement comme le silicium, le manganèse, le nickel, le chrome...etc. ces derniers ont pour propriétés d'améliorer les caractéristiques mécaniques des aciers

(Résistance a la rupture, dureté, ductilité, résistance vis-à-vis de la corrosion,...).

I.3.1.1. Propriété de l'acier :

a. Résistance:

Les nuances d'acier courantes et leurs résistances limites sont données par le régalement La nuance choisie pour la réalisation de cet ouvrage est l'acier S 275.

b. Ductilité:

L'acier de construction choisi doit satisfaire les conditions suivantes :

- Le rapport fu/fy > 1.2
- La déformation ultime doit être supérieure à 20 fois la déformation élastique $(\varepsilon u \ge 20 \ \varepsilon y)$
- A la rupture l'allongement relatif ultime εu doit être supérieure ou égal à 15%.

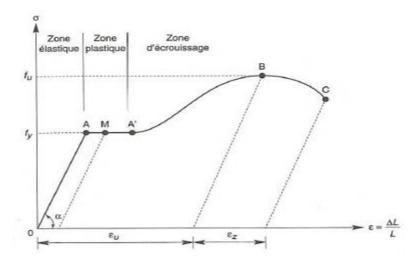


Figure I-9 : diagramme déformation de l'acier.

c. Propriétés mécaniques:

- Masse volumique: $\rho = 7850 Kg/m^3$
- Module d'élasticité longitudinal: E = 210000MPa.
- Module d'élasticité transversaleG = E/2(1 + v)
- Coefficient de Poisson:v = 0.3
- Coefficient de dilatation thermique: $\alpha = 12.10^{-6} / {}^{\circ}C$

I.3.2. Le béton :

Le béton est un matériau de construction Composé de granulats, de sable, ciment, d'eau et éventuellement d'adjuvant pour en modifier les propriétés.

Le béton présente une excellente résistance à la compression jusqu'à 450daN/cm² mais 10 fois moindre en traction ou en cisaillement.

I.3.2.1. Propriétés du béton :

Le béton utilisé sera de classe C25 avec :

- Une résistance à la compression à 28 jours: $f_{c28} = 25MPa$.
- La résistance à la traction à 28 jours : $f_{t28} = 2.1 MPA$.
- Le poids spécifique : $\rho = 25KN / m3$
- Coefficient de retrait : $\varepsilon = 4.10^{-6}$

I.4. Normes et règlement utilisés :

Afin de garantir la sécurité de l'ouvrage, notre conception est essentiellement basée sur les règlements et normes suivants :

- Règles Neige et Vent (RNV2013)
- Règles parasismiques algériennes (RPA99 version 2003)
- Règles de conception des structures en acier (CCM97)
- Règles de calcul des structures en acier EC3. ENV 1993-1-1 Eurocode 3 (partie 1 règles générales et règles pour les bâtiments)
- Béton armée aux états limites (BAEL 91 version 99)
- Règles de calcul des fondations superficiels (DTR-BC 2.331)
- Eurocode 4 (structure mixte)
- Charge permanentes et charges d'exploitation (DTR-BC 2.2)
- L'annexe Nationale de laNFEN1991-1-4[1]. Pour le traitement des bâtiments avec décrochement en plan ou en élévation.

I.5. Les assemblages :

I.5.1. Le boulonnage :

Le boulonnage est le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur site.

Pour notre cas on a utilisé des boulons hauts résistance (HR) classe : 10.9 pour les assemblages rigides des portiques auto stable et de tiges d'ancrage (M20) de forme courbe classe : 10.9.

I.5.2. Le soudage :

Le soudage est une opération qui consiste à joindre deux parties d'un même matériau avec un cordon de la soudure constituée 'un métal d'apport, ce dernier sert de liant entre les deux pièces à assembler

I.6. Logiciels utilisés:

- -Tekla Structures V2018- Autocad V 2004: Elaboration des Plans (Ensemble-Croquis d'assemblages-Croquis Débitage)
- -Robot Autodesk V2019: Modélisation de la structures (Modelé analytique).

I.7. Les Actions prises en compte :

Ce sont l'ensemble des forces et des couples dus aux charges auxquelles l'ouvrage sera soumis :

- Charges Permanentes : G
- Charges d'exploitations : Q
- Charges climatiques : le vent W et la neige S.
- Charges Sismiques : E.

I.8. Les états limites :

Un état limite est un état au-delà duquel la structure ne satisfait plus aux exigences pour lesquelles elle a été conçue. On distingue :

I.8.1. Etat limite ultime (E.L.U):

Les états limites ultimes sont associés à la ruine de la structure, ils comprennent :

- ✓ La perte d'équilibre de la structure ou de l'une de ses parties.
- ✓ La ruine de la structure ou de l'un de ses éléments.

I.8.2. Etat limite de service (E.L.S.):

Les états limites de service correspondent au dépassement des critères spécifiés d'exploitation, ils comprennent :

- ✓ Les déformations et les flèches affectant l'aspect ou l'exploitation de la construction, ou provoquant des dommages à des éléments non structuraux.
- ✓ Les vibrations incommodant les occupants, endommageant le bâtiment ou son contenu.

I.9. Présentation des systèmes du contreventement :

- ✓ Les contreventements sont des dispositifs conçus pour reprendre les efforts du vent et du Séisme dans la structure et les transmettre aux fondations.
- ✓ La structure est contreventée par des palées de stabilité verticales dans chaque direction.
- ✓ Transversale el longitudinale en croix de Saint André. Elles sont posées entre deux files de poteaux et poutre et liées à ceux-ci par un assemblage.

II. Introduction:

Tout ouvrage doit résister aux actions verticales et horizontales. Parmi les actions horizontales on peut citer le vent. L'effet du vent sur une construction métallique est généralement prépondérant. Par conséquent, Le calcul doit être effectué séparément pour chacune des directions perpendiculaires aux différentes parois de la construction

Le calcul des actions dues au vent sera calculé par le règlement Neige et Vent du RNVA2013. En effet, ce document technique règlementaire (DTR) fournit les procédures et principes généraux pour la détermination des actions du vent sur l'ensemble d'une construction et sur ces différentes parties

Les valeurs de pressions du vent dépendent d'un certain nombre de facteurs

- de la région
- du site d'implantation
- de la hauteur de la construction
- de la forme géométrique de la construction
- Et de la rigidité de la construction

II.1. Etude au vent :

Cette étude est réalisée à partir des caractéristiques dépendant de la structure ainsi que le site d'implantation. Dans notre cas ces caractéristiques sont les suivantes :

- Wilaya de Tizi-Ouzou appartient à la zone de vent III. (Tableau A.2-RNV2013).
- La zone industrielle est classée comme un terrain de catégorie III. (Tableau 2.4-RNV2013).

II.2.1. Détermination des différents paramètres des coefficients de calcul :

• Effet de la région :

Notre structure est située dans la zone I, dont la pression de référence est donnée par le tableau 2-2 du $RNVA2013: qréf = 37,5 \, daN/m^2$.

• Effet du site :

La structure sera implantée en zone industrielle, donc d'après les données de tableau 2-4 dans le RNVA2013, la catégorie de terrain est III.

D'où:

Le facteur de terrain $K_T = 0.215$

Le paramètre de rugosité z = 0.3m

La hauteur minimale $z_{min} = 5$ m

• Le coefficient topographique :

La structure est implantée dans un site plat donc : Ct = 1 (Chapitre II RNVA2013)

• Le coefficient dynamique Cd :

Cd est donné en fonction des dimensions de la structure (la hauteur et la largeur), ainsi que du matériau constituant la structure. La structure du bâtiment étant une structure métallique, dont la hauteur est inférieure à 15m (H=10.30m)

On prend : Cd=1 (§ 3.2, chapitre2 RNV 2013). On a : Cd < 1,2 Donc : la construction est peu sensible aux excitations dynamiques

• Le coefficient d'exposition Ce (ze) :

Le coefficient d'exposition au vent Ce(z) tient compte des effets de la rugosité du terrain de la topographie du site et de la hauteur au-dessus du sol, il tient compte de la nature turbulente du vent.

(RNV2013; paragraphe 2.4.1).

Ce(z) est donné par la formule suivante :

$$Ce(z) = Ct^2(z) * Cr^2(z) + [1+7*Iv(z)]$$

. D'où;

Cr : coefficient de rugosité.

Ct : coefficient de topographie.

Iv(z): l'intensité de la turbulence.

z (en m) est la hauteur considérée.

(RNV2013; paragraphe 2.4.2).

II.2.2. Calcul de la pression :

II.2.2.1. Détermination de la pression dynamique de pointe $q_p(\mathbf{z})$:

La pression dynamique de pointe $q_p(z)$ à la hauteur de référence z est donnée par :

$$q_p(z) = q_{r \in f} * C_e(z) daN/m^2$$
 (RNV2013; Paragraphe 2.3)

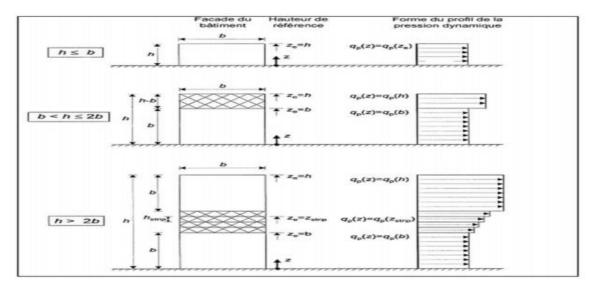


Figure II-1: Hauteur de référence Z et le profil correspondant de la pression dynamique

Remarque

Dans notre cas $z_e = h < b \rightarrow q_p(z) = q_p(h)$ (la pression dynamique de pointe est uniforme sur toute la hauteur

• Le coefficient de rugosité C_r :

Le coefficient de rugosité Cr(z) traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent.il définit par la loi logarithmique (logarithme népérien).

(RNV2013; Paragraphe 2.4.4)

$$\begin{cases} \boldsymbol{C_r(z)} = K_T * ln\left(\frac{Z}{Z_0}\right) & si & Z_{min} \leq Z \leq 200m \\ \boldsymbol{C_r(z)} = K_T * ln\left(\frac{Z_{min}}{Z_0}\right) & si & Z < Z_{min} \end{cases}$$

Les valeurs du coefficient de rugosité sont données par le tableau 2.5 du RNV 2013 en fonction de la catégorie du terrain et de la hauteur.

Dans notre cas on a $Z_{min} \le Z \le 200m$:

$$ightharpoonup Cr(10,30) = 0.215 \times ln(10,30/0,3) = 0.760$$

• Le coefficient d'exposition $C_e(z)$:

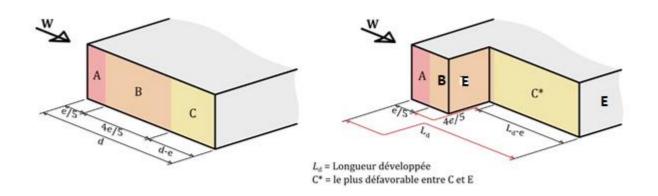
Le coefficient d'exposition au vent Ce(z) tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol, en outre il tient compte de la nature turbulente du vent.

Dans notre cas, la structure est peu sensible aux excitations :

$$C_{ex} = C_t^2 * C_r^2 * \left[1 + \frac{7*K_T}{C_r*C_t}\right]$$

le coefficient d'exposition sera donc :

$$\sim C_{ex}(10,30) = 0.760^2 * 1^2 * \left[1 + \frac{7*0,215}{0,760*1}\right] = 1,721.$$


Tableau II-1: Les valeurs des pressions dynamiques de pointe $q_p(z)$.

Niveau	z(m)	$q_{r \in f(daN/m^2)}$	$C_{ex}(z)$	$q_p(daN/m^2)$
Parois verticale	4	37,5	1,721	64,54
Toiture	10,30	37,5	1,721	64,54

II.2.2.2. Détermination de coefficient de pression extérieur C_{pe} (Décrochement en L) :

Généralement en construction métallique, les éléments individuels de structure sont affectés par des surfaces de paroi supérieures à 10 m2, et seuls les coefficients $c_{\rm pe, 10}$ sont donc à considérer dans les calculs de dimensionnement.

Pour le traitement des bâtiments avec décrochement en plan ou en élévation comme dans notre cas, l'Annexe Nationale de la NF EN 1991-1-4 [1] propose au chapitre 7.2.2 (2) de se reporter aux recommandations de la CECM [3].

(a) Distribution des pressions sur une face latérale suivant la NF EN 1991-1-4

(b) Distribution des pressions suivant la longueur développée sur une face latérale avec décrochement

Les coefficients de pression extérieure **Cpe** applicables aux bâtiments et aux parties de bâtiments dépendent de la dimension de la surface chargée A, qui est la surface de la construction produisant l'action du vent dans la section à calculer. Les coefficients de pression extérieure sont donnés pour des surfaces chargées A de 1 m²et 10 m² dans les tableaux relatifs aux configurations de bâtiment appropriées ; ils sont notés Cpe1 pour les coefficients locaux, et Cpe10 pour les coefficients globaux, respectivement.(chapitre 5:coefficient dépression page 80 RNVA2013).

$$ightharpoonup$$
 Cpe = Cpe1 si S \leq 1 m²

$$ho$$
 Cpe = Cpe1 + (Cpe10 - Cpe1) log 10 (s) si 1 m² \leq S \leq 10 m²

$$ightharpoonup$$
 Cpe = Cpe10 si S \geq 10 m²

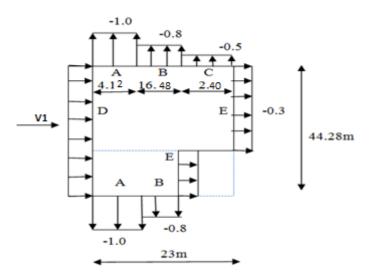
Avec : S est la surface chargé de la paroi considérer

II.2.2.3. Vent perpendiculaire a la grande face ($\theta = 0^{\circ}$):

Paroi verticales:

Pour cette direction du vent on a b=23m, d=44,28m, h=10,32m. e = min [b; 2*h] = min [23; 2*10,30]=20,60m.

Zone A:
$$\frac{e}{5} = \frac{20,60}{5} = 4,12$$
m.


Zone B:
$$\frac{4e}{5} = \frac{4*20,60}{5} = 16,48m$$
.

Zone C:
$$d-e = 23-20,6 = 2.4 \text{ m}.$$

On a : e=20,64m

Tableau II-2: les coefficients de pression Cpe dans chaque zone.

Zone	A	В	C	D	E
Cpe	-1.0	-0.8	-0.5	+0.8	-0.3

• Versant de toiture :

$$tg\alpha = \frac{2.3}{11.5} \rightarrow \alpha = 11.31^{\circ}$$

$$e/10 = 2,06 \text{ m}.$$

$$e/4 = 5,16 \text{ m}.$$

Les valeurs de C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour

 α =5° et α =15° tirées du (tableau 5.3 RNVA2013).

♣ Action vers le haut :↑

Zone F: la surface de la zone F est de A = 2,06 * 5,16 = 10,63 > 10 m²

Zone G: $A_G = 33,96 * 2,06 = 69,96m^2$.

Zone H: $A_H = 44,28 * 9,44 = 418 m^2$.

Zone J: $A_I = 36,28 * 2,06 = 74,74 m^2$.

Zone I: $A_I = 36,28 * 9,44 = 342,48 m^2$.

Donc tout les surface des zones F ;G ;H ;J ;I dépassent $10\ m^2$ on utilise les valeurs de C_{pe10} dans les interpolations .

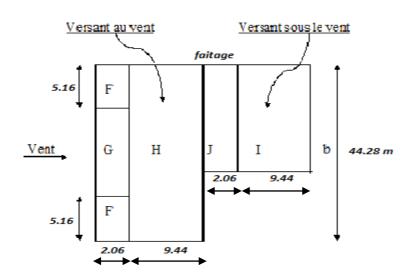
Interpolation linéaire:
$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

Pour $\alpha = 11.31$:

Zone F:
$$C_{\text{pe10}} = -1.7 + \frac{-0.9 + 1.7}{15 - 5} (11.31 - 5) = -1.195 \uparrow$$

Zone G: :
$$C_{\text{pe10}} = -1.2 + \frac{-0.8 + 1.2}{15 - 5} (11.31 - 5) = -0.947 \uparrow$$

Zone H : :
$$C_{\text{pe10}} = -0.6 + \frac{-0.3 + 0.6}{15 - 5} (11.31 - 5) = -0.410 \uparrow$$


Zone J: :
$$C_{\text{pe10}} = -0.3 + \frac{-0.4 + 0.3}{15 - 5} (11.31 - 5) = -0.363 \uparrow$$

Zone I:
$$C_{\text{pe10}} = -0.3 + \frac{-1+0.3}{15-5} (11.31 - 5) = -0.742 ↑$$

4 Action vers le bas ↓ :

Zone: F, G et H:
$$C_{pe10} = 0 + \frac{0.2 - 0}{15 - 5} (11.31 - 5) = -0.126 \downarrow$$

Zone : I et J :
$$C_{pe10} = 0 \downarrow$$

II.2.2.4. Détermination de coefficient de pression intérieur C_{pi} :

Les valeurs recommandées lorsqu'on connais pas la perméabilité des parois du bâtiment. (note 2 paragraphe 7.2.9 NF EN 1991-1-4) sont les suivantes :

- Pression intérieure : $C_{pi} = +0.2$.

- Dépression intérieure : $C_{pi} = -0.3$

• Direction du vent $\theta = 0$ avec pression intérieure $C_{pi} = +0.2$:

Tableau II-3: Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de long pan

	Paroi v	erticale			Versants de toitures				
zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$	zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$
D	64,54	+0,8	+0,2	38,72	F	64,54	-1,195	+0,2	-90,03
							+0,126		-4,78
A	64,54	-1,0	+0,2	-77,45	G	64,54	-0,947	+0,2	-74,03
							+0,126		-4,78
В	64,54	-0,8	+0,2	-64,54	Н	64,54	-0,410	+0,2	-39,36
							+0,126		-4,78
C	64,54	-0,5	+0,2	-45,17	I	64,54	-0,363	+0,2	-53,96
							+0,00		-12,91
E	64,54	-0,3	+0,2	-32,27	J	64,54	-0,742	+0,2	-60,80
							+0,00		-12,91

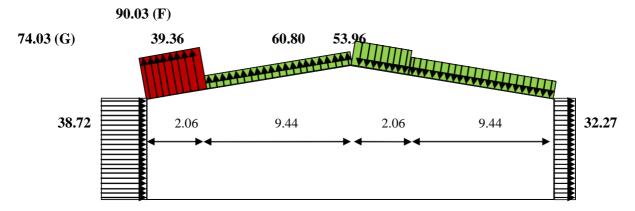


Figure II-1: Répartition des pressions sur la toiture -Direction du vent V1

• Direction du vent $\theta = 0$ avec pression intérieure $C_{pi} = -0.3$:

Tableau II-4 : Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de long pan

	Paroi vo	erticale			Versa	Versants de toitures					
zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$	zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$		
D	64,54	+0,8	-0,3	70,99	F	64,54	-1,195	-0,3	-57,76		
									27,49		
A	64,54	-1,0	-0,3	-45,18	G	64,54	-0,947	-0,3	-41,75		
							+0,126		27,49		
В	64,54	-0,8	-0,3	-32,27	Н	64,54	-0,410	-0,3	-7,09		
							+0,126		27,49		
C	64,54	-0,5	-0,3	-12,91	I	64,54	-0,363	-0,3	-4,06		
							+0,00		19,36		
E	64,54	-0,3	-0,3	0	J	64,54	-0,742	-0,3	-28,53		
							+0,00		19,36		

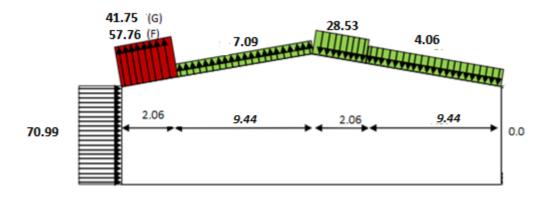
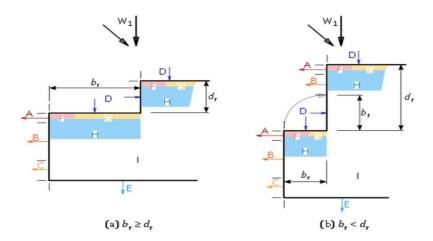



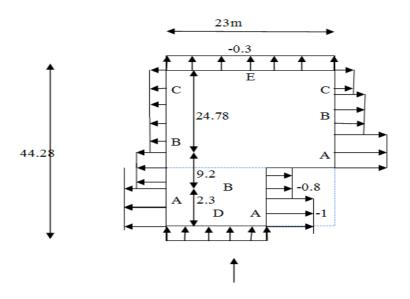
Figure II-2 : Répartition des pressions sur la toiture –Direction du vent V1

II.2.2.5. Vent perpendiculaire a la petite face $(\theta = 90)$:

Suivant l'importance de la distance d, les façades du renfoncement parallèles à la direction du vent, comportent des zones A et B ou A, B et C.

Il convient de distinguer les deux configurations suivantes en fonction des dimensions du bâtiment :

- Configuration n°1 caractérisée par $d \ge e$ (la direction du vent comporte les zones A B C):


Pour cette direction du vent :

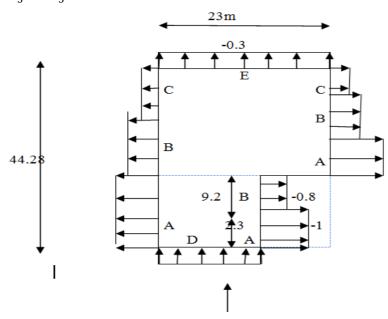
$$b=23m$$
, $d=44,28 m$, $h=10,30 m$

$$\boldsymbol{e}_1 = \min \left(\; \boldsymbol{b}_1 \; , \; 2 \boldsymbol{h} \; \right) = \min \left(\; 11.5 \; , \; 2^* \; 10.30 \right) = 11.5 \; \mathrm{m}$$

Zone A:
$$\frac{e}{5} = \frac{11.5}{5} = 2.3 \text{ m}.$$

Zone B:
$$\frac{4e}{5} = \frac{4*11.5}{5} = 9.2m$$
.

— Configuration n°2 caractérisée par d < 2e (la direction du vent comporte seulement les zone A et B):


Pour cette direction du vent :

$$b=23m$$
, $d=44,28 m$, $h=10,30 m$

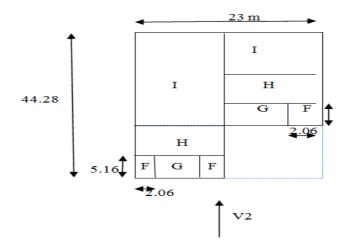
$$e_2 = \min (b_2, 2h) = \min (11.5, 2*10.30) = 11.5 m$$

Zone A:
$$\frac{e}{5} = \frac{11.5}{5} = 2.3 \text{ m}.$$

Zone B:
$$\frac{4e}{5} = \frac{4*11.5}{5} = 9.2m$$
.

• Paroi verticales :

On tire directement les valeurs de Cpe du tableau.


• Versant de toiture :

On procède de la même manière que précédemment les valeurs deC_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour $\alpha=5^{\circ}$ et $\alpha=15^{\circ}$ tirées du (tableau 5.3 RNVA2013).

Interpolation linéaire : $f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$

Pour $\alpha = 11.31$:

 $C_{\text{pe10}} = -1.6 + \frac{-1.3 + 1.6}{15 - 5} (11.31 - 5) = -1.410$ **Zone F:**

Direction du vent $\theta = 90^{\circ}$ avec pression intérieure $C_{pi} = +0.2$:

Tableau II-5: Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de pignon

		Par	oi verti	cale	Versants de toitures				
zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$	zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$
D	64,54	+0,8	+0,2	38,72	F	64,54	-1,410	+0,2	-103,90
A	64,54	-1,0	+0,2	-77,45	G	64,54	-1,3	+0,2	-96,81
В	64,54	-0,8	+0,2	-64,54	Н	64,54	-0,637	+0,2	-54,02
C	64,54	-0,5	+0,2	-45,18	I	64,54	-0,537	+0,2	-47,56
E	64,54	-0,3	+0,2	-32,27					

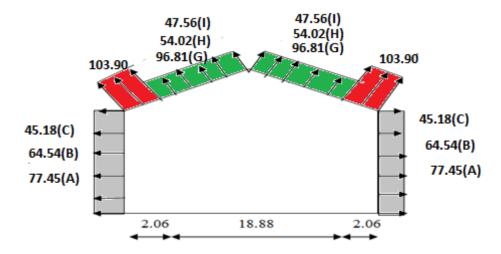


Figure II-3: Répartition des pressions sur la toiture –Direction du vent V2

• Direction du vent $\theta = 90^{\circ}$ avec pression intérieure $C_{pi} = -0.3$:

Tableau II-6: Valeurs de la pression aérodynamique sur les parois verticales, cas de vent dans le sens de pignon

Paroi verticale						Versants de toitures				
zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN)$ / m^2)	zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$	
D	64,54	+0,8	-0,3	70,99	F	64,54	-1,410	-0,3	-71,63	
A	64,54	-1,0	-0,3	-45,18	G	64,54	-1,3	-0,3	-64,54	
В	64,54	-0,8	-0,3	-32,27	Н	64,54	-0,637	-0,3	-21,74	
C	64,54	-0,5	-0,3	-12,91	I	64,54	-0,537	-0,3	-15,29	
E	64,54	-0,3	-0,3	0						

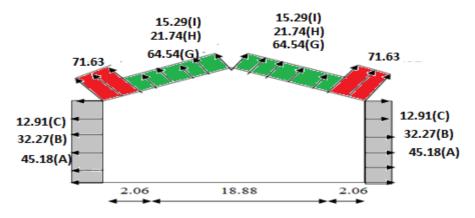


Figure II-4: Répartition des pressions sur la toiture –Direction du vent V2

II.2. Calcul des forces de frottement :

Selon le paragraphe 1.4.2 du chapitre 2 du RNVA99V2013, les constructions pour lesquelles les forces de frottements doivent être calculées sont celles pour lesquelles : Le rapport d/b < 3 et Le rapport d/b > 3 est vérifié,

Avec:

b: dimension de la construction perpendiculaire au vent

· d : dimension de la construction parallèle au vent

• h : hauteur de la construction.

❖ Pour la direction V1 (long pan):

On a b=23, d=44,28m, h= 10,32m

$$\begin{cases} \frac{d}{b} = \frac{44,28}{23} = 1,92 < 3 \\ \frac{d}{h} = \frac{44,28}{10,30} = 4,29 > 3 \end{cases}$$

L'une des conditions est verifiee.il Ya donc lieu de considérer les forces de frottement Selon (RNVA99-chapitre 2 § 1.4.3) la force de frottement F_{fr} est donnée par :

$$F_{fr} = \sum (q_p(\mathbf{z}) * C_{fr} * A_{fr})$$

Ou:

 q_p : est la pression dynamique du vent

 A_{fr} : (en m^2) est l'aire de élément de surface

 C_{fr} : est le coefficient de frottement pour élément de surface

La force de frottement est applicable aux surfaces totales des parois parallèles au vent Dont notre cas les ondulations est perpendiculaire aux vents $C_{fr} = 0.04$ (tableau 8).

Pour la direction V2 (pignon) :

On a b=23, d=44,28m, h= 10,32m

$$\begin{cases} \frac{d}{b} = \frac{23}{44,28} = 0,519 < 3 \\ \frac{d}{h} = \frac{23}{10,30} = 2,23 > 3 \end{cases}$$

L'une des conditions est verifiee.il Ya donc lieu de considérer les forces de frottement Selon (RNVA99-chapitre 2 § 1.4.3

la force des frottement est donc :

***** Toiture droite:

$$\overline{F_{fr}} = 64,54 * 0,04 * \left(36,28 * \frac{11,5}{\cos 11,31}\right) = 1098,42 \ daN$$

***** Toiture gauche:

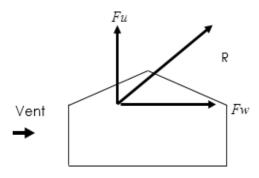
$$F_{fr} = 64,54 * 0,04 * \left(44,28 * \frac{11,5}{\cos 11,31}\right) = 1340,63 \ daN$$

Paroi verticale droite:

$$F_{fr} = 64,54 * 0,04(36,28 * 8) = 749,28 \, daN$$

Paroi verticale gauche:

$$F_{fr} = 64,54 * 0,04(44,28 * 8) = 914,5 \, daN$$


La force du frottement total : $F_{fr} = 4102,83 \ daN$

Action d'ensemble :

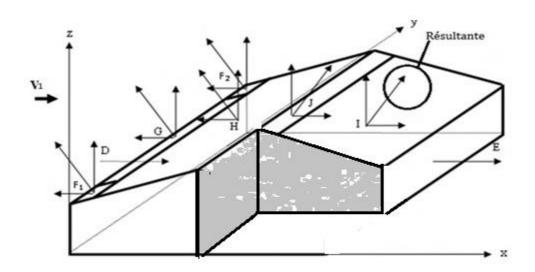
La force résultante se décompose en deux forces :

- Une force globale horizontale Fw (Traînée) qui correspond à la résultante des forces horizontales agissant sur les parois verticales de la construction et de la composante horizontale des forces appliquées à la toiture ;
- Une force de soulèvement Fu (Portance) qui est la composante verticale des forces appliquées à la toiture.

La force résultante R est donnée par : $R = \sum (p_{hi} * S_i) + \sum F_{fr}$

Force résultante R

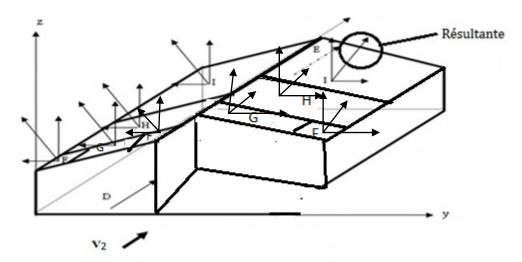
Avec:


 $\boldsymbol{p_{hi}}$: La pression du vent qui s'exerce sur un élément de surface

S_i: L'aire de l'élément de surface.

 F_{fr} : La force de frottement éventuelle.

- Direction du vent gauche /droite
- •


Pente du versant $\alpha = 11.31^{\circ}$

Calcul des surfaces tributaires de chaque zone : (projection horizontale)

Zone F1:
$$S_{F1} = 2,06 * 5,16 = 10,63 \text{ m}^2$$

Zone F1: $S_{F1} = 2,06 * 5,16 = 10,63 \text{ m}^2$
Zone G: $S_G = 33,96 * 2,06 = 69,96 \text{ m}^2$
Zone H: $S_H = 9,44 * 44,28 = 418,0m^2$
Zone J: $S_J = 2,06 * 36,28 = 74,74m^2$
Zone I: $S_J = 9,44 * 36,28 = 342,48m^2$

• Direction du vent avant /arrière :

Calcul des surfaces tributaires de chaque zone : (projection horizontale)

Versant gauche:

Zone F1:
$$S_{F1} = 2,06 * 5,16 = 10,63 \text{ m}^2$$

Zone G: $S_G = 7,38 * 5,16 = 38,08 \text{ m}^2$ $> 10m^2$
Zone H: $S_H = 8,26 * 11,5 = 94,99m^2$
Zone I: $S_I = 30,86 * 11,5 = 354,89m^2$

♦ Versant droit :

Zone F2:
$$S_{F1} = 2,06 * 5,16 = 10,63 \text{ m}^2$$

Zone G: $S_G = 7,38 * 5,16 = 38,08 m^2$
Zone H: $S_H = 8,26 * 11,5 = 94,99m^2$
Zone I: $S_I = 22,84 * 11,5 = 262,66m^2$

Tableau II-7: Valeurs des forces horizontal et vertical :

• Direction du vent avant /arrière : $C_{pi} \, = -0$, 3 :

zone	Composantes horizontale (daN)	Composantes verticale (daN)
D	$70,99*210,91=14972,5 \rightarrow$	0
Е	0	0
F ₁	0	71,63 * 10,63 cos(11,31) = 746,64 ↑
F ₂	0	71,63 * 10,63 $\cos(11,31)$ = 746,64 ↑
F ₃	0	$71,63*10,63\cos(11,31)$ = $746,64\uparrow$
G ₁	0	64, 54 * 38, 08 cos(11, 31) = 2409, 95 ↑
G ₂	0	64, 54 * 38, 08 cos(11, 31) = 2409, 95 ↑
H ₁	0	$21,74*94,99\cos(11,31) = 2024,97 \uparrow$
H ₂	0	$21,74 * 94,99 \cos(11,31)$ = 2024,97 \(\gamma\)
I_1	0	$15,29 * 354,89 \cos(11,31) = 5320,89 \uparrow$
I ₂	0	$15,29*354,89\cos(11,31) = 5320,89 \uparrow$
F_{fr}	4102,83 →	
$\sum R$	$R_X = 19075, 33 \rightarrow$	$R_z = 21751,54 \uparrow$

Tableau II-8: Valeurs des forces horizontal et vertical :

 • Direction du vent avant /arrière : $C_{pi} \, = +0.2$:

Zone	Composantes horizontale (daN)	Composantes verticale (daN)
D	$38,72*210,91=8166,43 \rightarrow$	0
Е	$32,27*210,91=6806,06 \rightarrow$	0
F ₁	0	$103,90*10,63\cos(11,31) = 1083,01 \uparrow$
F ₂	0	$103,90 * 10,63 \cos(11,31)$ = 1083,01 \(\gamma\)
F ₃	0	$103,90*10,63\cos(11,31) = 1083,01 \uparrow$
G ₁	0	$96,81*38,08\cos(11,31) = 3614,93 \uparrow$
G_2	0	96,81 * 38,08 cos(11,31) = 3614,93 ↑
H ₁	0	$54,02*94,99\cos(11,31) = 5031,71 \uparrow$
H ₂	0	$54,02*94,99\cos(11,31) = 5031,71 \uparrow$
<i>I</i> ₁	0	47,56 * 354,89 cos(11,31) = 16550,79 ↑
I ₂	0	47, 56 * 354, 89 cos(11, 31) = 16550, 79 ↑
F_{fr}	4102,83 →	
$\sum R$	$R_X = 19075, 32 \rightarrow$	$R_z = 53643,89 \uparrow$

Tableau II-7: Valeurs des forces horizontal et vertical :

• Direction du vent gauche /droite : $C_{pi} \, = -0$, 3:

Zone	Composantes horizontale (daN)	Composantes verticale (daN)
D	70 , 99 * 355, 13 = 25210, 68 →	0
Е	0	0
F ₁	57, 76 * 10, 63 * tan 11, 31 = 122, 79 ←	57 , 76 * 10 , 63 = 613, 99 ↑
F ₂	57, 76 * 10, 63 * tan 11, 31 = 122, 79 ←	57 , 76 * 10 , 63 = 613, 99 ↑
G_1	41, 75 * 69, 96 tan 11, 31 = 584, 16 ←	41 , 75 * 69 , 96 = 2920 , 83 ↑
H_1	7,09 * 418 tan 11,31 = 592,73 ←	7,09 * 418 = 2963,62 ↑
I_1	4, 06 * 342, 48 tan 11, 31 = 278, 09 →	4 , 06 * 342 , 48 = 1390 , 47 ↑
J	28, 53 * 74, 74 tan 11, 31 = 426, 47 →	28, 53 * 74, 74 = 2132, 33 ↑
$\sum R$	$R_X = 25661,09 \rightarrow$	$R_Z=10635,23\uparrow$

Tableau II-8: Valeurs des forces horizontal et vertical :

Zone	Composantes horizontale (daN)	Composantes verticale (daN)
D	$38,72*355,13=13750,63 \rightarrow$	0
Е	$32,27*355,13=11460,04 \rightarrow$	0
F ₁	$90,03*10,63*tan11,31 = 191,40 \leftarrow$	90,03 * 10,63 = 957,02 ↑
F ₂	$90,03*10,63*tan11,31 = 191,40 \leftarrow$	90,03 * 10,63 = 957,02 ↑
G_1	74, 03 * 69, 96 tan 11, 31 = 1035, 83 ←	74 , 03 * 69 , 96 = 5197 , 14 ↑
<i>H</i> ₁	39,36*418 an 11,31 = 3290,52	39,36 * 418 = 16452,48 ↑
I_1	53, 96 * 342, 48 tan 11, 31 = 3696, 06 →	53 , 96 * 342, 48 = 18480, 22 ↑
J	60, 80 * 74, 74 tan 11, 31 = 908, 84 →	60,80 * 74,74 = 4544,19 ↑
$\sum R$	$R_X = 25106, 42 \rightarrow$	$R_Z = 46588,07\uparrow$

Calcule de la stabilité d'ensemble :

• Vérification de la stabilité transversale : grande face au vent

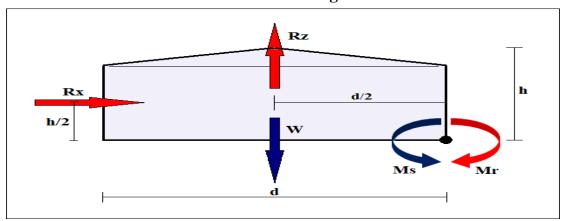


Figure II-5: Représentation des charges provoquant un moment de renversement au long-pan

Calcule de moment de renversement :

$$M_R = R_X * h/2 + R_Z * d/2$$

 $M_R = 25661,09 * 5,16 + 10635,23 * 11,5$

 $\rightarrow M_R = 254713,72 \; daN. \, m$

Calcule du moment stabilisant :

$$\mathsf{M}_{\mathsf{S}} = \mathsf{W} * ^{d} \! /_{2}$$

Avec: W est le poids de la structure

 $Ms = 550922 \times 11.5 = 585603 \, daN.m$

Conclusion

 $Mr \ll Ms \longrightarrow$ La stabilité transversale est vérifier

Vérification de la stabilité longitudinale : petite face au vent

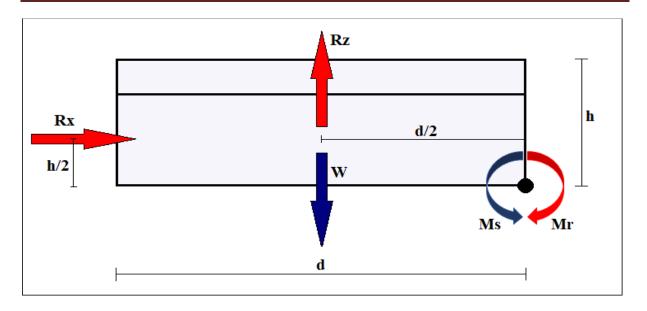


Figure II-6 : Représentation des charges provoquant un moment de renversement aupignon

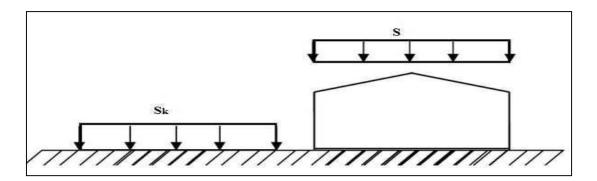
Calcule de moment de renversement :

$$M_R = R_X * \frac{h}{2} + R_Z * \frac{d}{2}$$
 $MR = 19075,33 * (23/2) + 21751,54 x (44,28/2)$
 $\Rightarrow MR = 700945,39 \ daN \cdot m$

Calcule du moment stabilisant

$$M_S = W \times d/2$$

Avec: W est le poids de la structure
 $M_S = 50922 \times 22,14$
 $= 1127413,08$


Conclusion

 $MR \ll M_S$ la stabilité longitudinale est vérifier

II.3. Action de la neige :

> Objet et domaine d'application

Le RNV Algérien définit les valeurs représentatives de la charge statique de neige sur toute surface située au dessus du sol et soumise à l'accumulation de la neige et notamment sur les toitures. Il s'applique sur l'ensemble de construction en Algérie situées à une altitude inferieur à 2000 mètre. Au-delà de 2000 mètre le marcher doit préciser la valeur de charge de neige à prendre en compte.

Figure II-7 : Représentation des charges statique de neige sur la toiture et sur le sol.

Donnés:

 \sim $\alpha = 11.31$

> zone : A (selon l'annexe 1 du RNVA 2013 : zone de neige par commune page 37)

> altitude: 249 m.

II.3.1. Charge de neige sur le sol :

La charge de neige sur le sol **SK** par unité de surface est fonction de la localisation géographique et de l'altitude du lieu considéré. La valeur de SK est déterminée par la loi de variation suivante en fonction de l'altitude du point considéré (RNV2013 article 4 page 21).

Zone A
$$S_K = \frac{0.07H + 15}{100} = \frac{0.07 * 249 + 15}{100} = 0.32 \ kN/m^2$$
.

II.3.2. La charge de neige appliquée sur la toiture :

La charge caractéristique de neige S par unité de surface en projection horizontale de toiture

soumise à l'accumulation de la neige s'obtient par la formule suivante (RNVA 2013. Art.3.1.1):

$$S = \mu * S_K$$
 en KN/m²

Avec : - μ : Coefficient de forme (a déterminer en fonction de la forme de la toiture)

 $-S_K$: Charge de neige sur le sol en KN/m^2

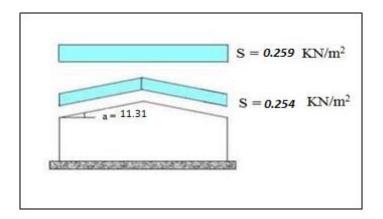
.

Le coefficient de forme de toitures μ (RNV 2013. Art.6)

Notre ouvrage a une toiture simple à deux versants sans obstacle de retenus avec unepente de $\alpha=11.31^\circ$

Donc selon L'RNVA 2013 partie I-6-2-2 pour une valeur de ° 0° < α = 11.31° < 30° on adopte une valeur de 0.8 pour le coefficient de forme

$$\mu_1 = 0.8$$


$$\mathbf{A.N}: S = 0.8 \times 0.32 = 0.259 \, KN/m^2$$

Disposition de charge sans accumulation:

$$0 < \alpha_1 = \alpha_2 = 11.31^{\circ} < 15^{\circ}$$

$$\mu_1 = 0.8$$

$$\begin{cases} S = \mu_1 x S_k = 0.8 x 0.32 = 0.259 KN/m^2 \text{: par projection horizontale} \\ S = 0.259 \cos 11.31^\circ = 0.254 KN/m^2 \text{: suivant rampant} \end{cases}$$

❖ Disposition de charge avec accumulation

$$0 < \alpha_1 = \alpha_2 = 11.31^{\circ} < 15^{\circ}$$

 $\mu_2 = 0.8x S = 0.8 x 0.32 = 0.259 KN/m^2$
 $0.5 \mu_1 = 0.5x S = 0.5 x 0.259 = 0.129 KN/m^2$

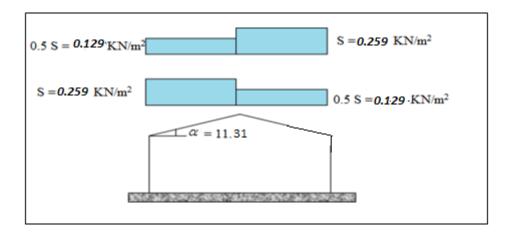


Figure II-8 : Charges de neige

III. Introduction:

Dans ce chapitre on s'intéresse à définir les profiles qui devront résister aux différentes sollicitations suivant les règlements de l'EUROCOD.3, le principe de la vérification nécessite la résistance et la stabilité. Les profile concernés par cette étude sont : les pannes, les lisses de bardages et les potelets

III.1. Pré-dimensionnement des pannes

III.1.1. Définition :

Les pannes de couvertures sont des poutrelles laminées généralement en «I, ou en U» Elles sont soumises à la flexion déviée sous l'effet du poids propre de la couverture, aux actions climatiques et à la surcharge d'entretien. Elles sont disposées parallèlement au faitage.

4 Donnés de calcul :

- ➤ Chaque panne repose sur 2 appuis de distance L=4m.
- Le porté entre axe des pannes e=1,5 m (espace entre 2 pannes).
- ➤ On dispose de 08 lignes de pannes sur chaque versant de toiture
- \triangleright La pente de chaque versant est $\alpha=11.31^{\circ}$.
- Les pannes sont en acier S235.
- ➤ Le coefficient partiel de sécurité : Ym0= 1.1
- ➤ fy =235 N/mm2 (la limite d'élasticité de l'acier)

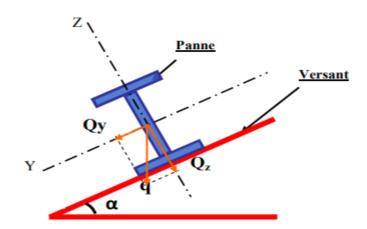


Figure III-1: Disposition de la panne sur la toiture

III.1.2. Evaluation des charges et surcharges :

a- la charge permanente :

$$G_{p=}[(P_{tole} + P_{accessoires}) \times e] + P_{pannes}$$

$$G_p = [(12 + 5) \times 1, 5] + 10.4 = 35,9 \ daN/ml \downarrow$$

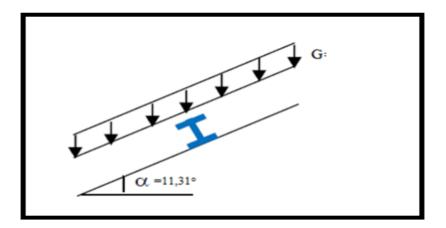


Figure III-2: Chargement permanant au niveau de la toiture

b- La surcharge d'entretien (p)

Dans le cas des toitures inaccessible on considéré uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente à deux charges concentrées de 100Kg chacune située à 1/3 et 2/3 de la portée de la panne. (D'après le DTR BC 2.2 article 7.3.1).

La charge uniformément repartie P due aux surcharges d'entretien est obtenue en égalisant les deux moments maximaux dus à P et aux charges ponctuelles P':

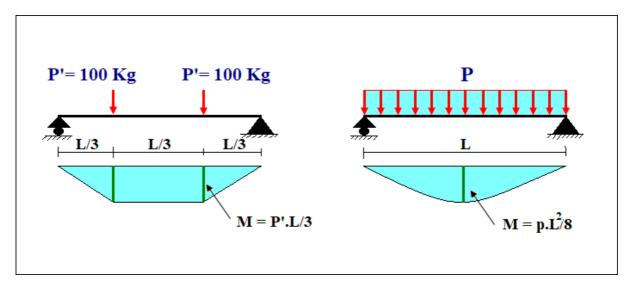


Figure III-3: moment due à la charge d'entretient

$$M_{max} = \frac{P*l}{3} = \frac{P*l^2}{8} \rightarrow P = \frac{8*P}{3*l} = \frac{8*100}{3*4} = 66,67 \ daN/ml$$

Donc la charge d'entretien P = 66,67 da N/ml

c- Surcharge climatique du vent :

Les pannes les plus sollicitées se trouvent dans la zone F et G de la toiture :

$$V_f = -103, 90 \ daN/m^2 \uparrow$$
: plus défavorable.

$$ightharpoonup V_g = -96, 81 \, \mathrm{d}aN \, / \, m^2 \uparrow$$

$$\Rightarrow$$
 V = - 103,90 x 1,5 =- 155,85 daN/ml

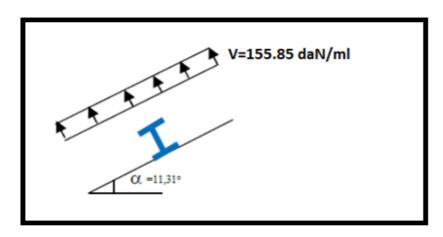


Figure III-4 : Charge du vent de soulèvement au niveau de la toiture

d- Surcharge climatique de neige :

La surcharge de neige est en fonction de site d'implantation de la construction (région, altitude) et de la forme de toiture.

N = 25.9 daN/m2 (chapitre II charge de neige sur la toiture)

$$N = 25.9 \text{ x } 1.47 = 38.07 \text{ daN/ml}$$

Avec : $d = 1.5 \cos \alpha = 1.47 \text{ m}$

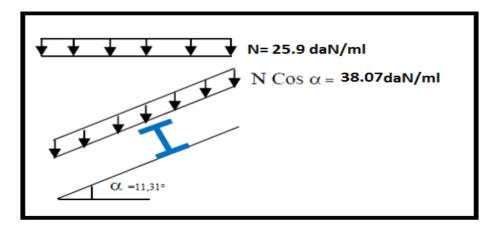


Figure III-5 : Charge de neige sur la toiture.

I. Combinaison de charge les plus défavorables :

a- Action vers le bas :↓

$$Q_{sd1}$$
= 1.35 G + 1.5 P = 1.35 x 35,9 + 1.5 x 66,67 **=148,47 daN/ml**

$$Q_{sd2}$$
= 1.35G + 1.5 N = 1.35 x 35,9 + 1.5 x 38,07= **105,57daN /ml**

b- Action vers le haut : ↑

$$Q_{z.sd}$$
 = G cos $\alpha - 1.5$ V = 35,9 x cos (11,31) – 1.5 x 155,85 = **-198,57 daN/ml** \uparrow

$$Q_{v.sd}$$
 = 1.35 G sin α = 1.35 x 35,9 x sin (11,31) = 9,50 daN/ml \leftarrow

On retient la combinaison la plus défavorable pour les calculs :

$$Q_{sd} = \max (Q_{sd1}, Q_{sd2}, Q_{z.sd}, Q_{y.sd}) = \max (148,47; 105,57; -198,57; 9,50)$$

$$\Rightarrow$$
 $Q_{sd} = -198,57 \text{ daN/m}$

III.2. Vérification à la sécurité :

III.2.1. Vérification a l'état limite ultime :

Pour commencer, nous allons étudier le cas d'un profilé IPE120, puisque les efforts appliqués sont très importants.

Tableau III-1: Dimension et caractéristique de IPE 120

Profilé			Dime	nsions				Caractér	ristiques	decalcu	1
IPE	h	b	tw	tf	d	Wpl.y	Wpl.z	A_{VZ}	Avy	Iy	$I_{\mathbf{Z}}$
120	mm	mm	mm	mm	m m	cm ³	cm ³	cm ²	cm ²	cm ⁴	cm ⁴
	120	55	7.0	9.0	82	72.6	21.2	8.8	9.9	364	43.2

III.2.1.1. Classification de la section

a- Classification de la semelle :

$$\frac{c}{t_f} = \frac{b/2}{t_f} \le 10\varepsilon$$

Avec
$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1.0$$

$$\frac{b/2}{t_f} = \frac{64/2}{6.3} = 5.08 < 10 \implies$$
la semelle de classe 1

b- Classification de l'âme :

$$\frac{c}{t_f} = \frac{d}{t_w} \le 72\varepsilon$$

$$\frac{d}{t_w} = \frac{93.4}{4.4} = 21.23 < 72 \Longrightarrow$$
 l'ame de classe 1

La section est de classe 1

III.2.1.2. Vérification de la section à la résistance :

Dans la condition de résistance à l'ELU, il faut faire les vérifications suivantes :

III.2.1.2. Vérification à la flexion :

Les pannes travaillent à la flexion déviée. Pour ce cas de flexion travaillant suivant les

Deux axes «Y-Y et Z-Z », l'Eurocode 3 « Art.5.4.5.4 » recommande l'utilisation de la même

Méthode exposée dans l'article 5.4.8 pour la flexion composée.

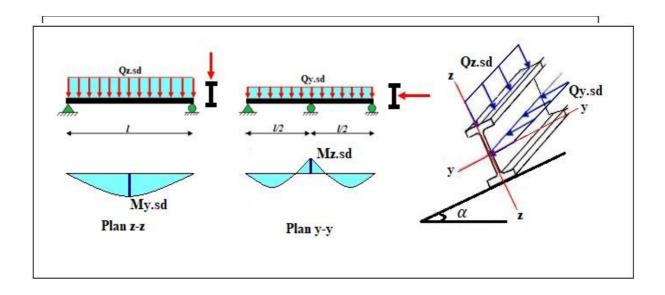


Figure III.6: Panne de toiture en flexion.

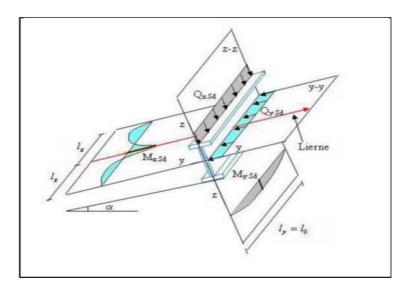


Figure III.7 : Panne de toiture en flexion sous les différents plans de chargement.

La panne travail en flexion déviée ce qui nous amène à vérifier la formule (5-35) de

L'Eurocode 03 (Page 163), pour cette vérification on utilise la condition suivante pour les Sections de classe 1 et 2 :

$$\left[\frac{_{M_{y.sd}}}{_{M_{ply.Rd}}}\right]^{\alpha} + \left[\frac{_{M_{z.sd}}}{_{M_{plz.Rd}}}\right]^{\beta} \leq 1.0$$

Pour les sections en **I** et **H**: $\alpha = 2$ et $\beta = 5n \ge 1$

Avec: n = Nsd / Npl, Rd

Dans notre cas l'effort normal N = 0 donc $\beta = 1$

My, sd: Moment fléchissant de calcul autour de l'axe y-y causé par la charge Qz, sd.

Mz, sd: Moment fléchissant de calcul autour de l'axe z-z causé par la charge Qy, sd.

Mply, Rd: Moment fléchissant de résistance plastique suivant l'axe y-y.

Mplz, Rd: Moment fléchissant de résistance plastique suivant l'axe z-z.

Qy, sd: Charge appliquée dans le plan perpendiculaire à l'âme.

Qz, sd : Charge appliquée dans le plan de l'âme.

Wpl, y: Module de résistance plastique de la section suivant l'axe y-y.

Wpl, z: Module de résistance plastique de la section suivant l'axe z-z.

$$Q_{sd} = -198,57 \text{ daN/ml}$$
 (Combinaison de charge maximale)

$$Q_{z.sd} = Q_{sd} \times \cos \alpha = -198,57 \times \cos(11,31) = 194,71 \text{ daN / ml}$$

$$Q_{y.sd} = Q_{sd} \times \sin \alpha = -198,57 \times \sin(11,31) = 38,94 \text{ daN / ml}$$

$$M_{y.sd} = \frac{Q_{z.sd} \times l^2}{8} = \frac{194,71 \times (4)^2}{8} = 389,42 \text{ daN.m}$$

$$M_{z.sd} = \frac{Q_{y.sd \times (l/2)^2}}{8} = \frac{38,94 \times (2)^2}{8} = 19,47 \text{ daN.m}$$

$$M_{ply.Rd} = \frac{W_{pl.y \times f_y}}{\gamma_{M0}} = \frac{60.7 \times 2350 \times 10^{-2}}{1.1} = 1296,8 \text{ daN.m}$$

$$M_{plz.Rd} = \frac{W_{pl.z \times f_y}}{\gamma_{M0}} = \frac{13.6 \times 2350 \times 10^{-2}}{1.1} = 290.54 \text{ daN.m}$$

$$\Rightarrow \left[\frac{389,42}{1296,8}\right]^2 + \left[\frac{19,47}{290,54}\right]^1 = 0.16 < 1.0$$

Conclusion

La résistance en flexion pour le profilé IPE 120 est vérifiée

III.2.1.3. Vérification au cisaillement :

La vérification est donnée par les formules suivantes (Eurocode 03):

$$V_{z.sd} \le V_{plz.Rd}$$
 et $V_{y.sd} \le V_{ply.Rd}$

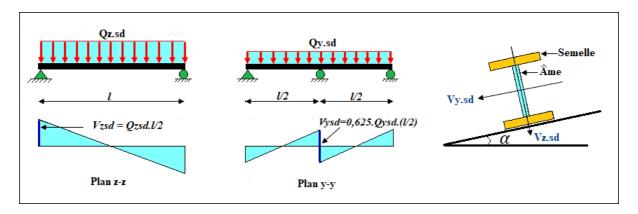


Figure III.8 : Panne de toiture en cisaillement sous les différents plans de chargement.

La vérification au cisaillement est donnée par les formules suivantes (Eurocode 03):

$$V_{z.sd} \le V_{plz.Rd} \Longrightarrow V_{z.sd} = \frac{Q_{z.sd \times l}}{2} \quad \text{et} V_{plz.Rd} = \frac{A_{vz \times (f_y/\sqrt{3})}}{\gamma_{M0}}$$

$$V_{y.sd} \le V_{ply.Rd} \longrightarrow V_{y.sd} = 0.625 Q_{y.sd} \times (l/2) \text{ et } V_{ply.Rd} = \frac{A_{vy \times (f_y/\sqrt{3})}}{\gamma_{M0}}$$

Vy.sd :Effort tranchant dans le plan des semelles.

Vz.sd : Effort tranchant dans le plan de l'âme.

Vply.Rd : Résistance plastique de la section à l'effort tranchant.

Vplz.Rd: Résistance plastique de la section à l'effort tranchant.

Avz etAvy : Aire de cisaillement (profilé IPE120) en cm^2 .

 γ_{M0} : Facteur de résistance en section ($\gamma_{M0} = 1.1$).

 f_y :Limite d'élasticité d'acier ($fy = 2350 \text{ daN } /cm^2$).

$$V_{z.sd} = \frac{194,71 \times 4.0}{2} = 389,42 \text{ daN}$$

$$V_{y.sd} = 0.625 \times 38.94 (4/2) = 48.68 \text{ daN}$$

$$V_{plz.Rd} = \frac{6.3 (2350/\sqrt{3})}{1.1} = 7771 \text{ daN}$$

$$V_{ply.Rd} = \frac{8,6(2350/\sqrt{3})}{1.1} = 10607 \text{ daN}$$

$$V_{z.sd} = 389,42 \text{ daN} < V_{plz.Rd} = 7771 \text{ daN}$$

$$V_{y.sd} = 48,68 \text{ daN } < V_{ply.Rd} = 10607 \text{ daN}$$

Conclusion

La résistance au cisaillement de profile IPE120 est vérifier.

III.2.1.4. Vérification au déversement

Déversement = flambement latéral + rotation de la section transversale

Semelle supérieure :

La semelle supérieure qui est comprimée sous l'action des charges descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture, il n'y a donc pas de risque de déversement.

Semelle inferieure:

La semelle inferieure qui est comprimée sous l'action du vent de soulèvement et qui est quant à elle susceptible de déverser du moment qu'elle est libre tout au long de sa portée.

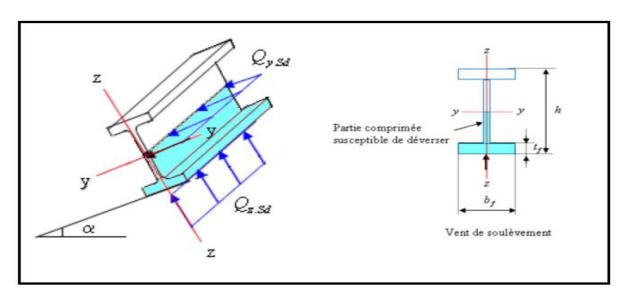


Figure III-9 : Déversement d'une panne de toiture

Les formules de vérification au déversement sont les suivantes : (Formule 5.48 page 79 ; CCM97).

$$\left[\frac{M_{y.sd}}{M_{b.Rd}}\right] + \left[\frac{M_{z.sd}}{M_{plz.Rd}}\right] \leq 1.0$$

• Calcul du moment ultime :

$$Q_{z.sd} = G \cos \alpha - 1.5V = 35.9 \cos(11.31) - 1.5 \times 155.85 = -198.57 \text{ daN/ml}$$

$$M_{y.sd} = \frac{Q_{z.sd \times l^2}}{8} = \frac{198,57 \times (4.0)^2}{8} = 397,14 \text{ daN.m}$$

$$Q_{v.sd}$$
= 1,35Gsin α = 1,35× 35,9 sin(11,31) = 9,50 daN/ml

$$M_{z.sd} = \frac{Q_{y.sd \times (l/2)^2}}{8} = \frac{9,50 \times (2.0)^2}{8} = 4,75 \text{ daN.m}$$

$$M_{ply.Rd} = \frac{W_{pl.y \times fy}}{\gamma_{M0}} = 1296, 8 \text{ daN.m}$$

$$M_{plz.Rd} = \frac{W_{pl.z \times fy}}{v_{M0}} = 290,54 \text{ daN.m}$$

• Calcul du moment résistant au déversement : $M_{b.Rd}$

$$M_{b.Rd} = \chi_{LT} \cdot \beta_w \frac{W_{pl,y \times f_y}}{\gamma_{M1}} = \chi_{LT} \cdot M_{ply.Rd}$$
 (Eurecode 3 : art 5.5.2)

Avec: $\beta_w = 1.0$ pour les sections de classe 1 et 2.

L'élancement réduit $\bar{\lambda}_{LT}$ est déterminé par la formule suivante (annexe F à l'Eurocode, §F.2).

$$\bar{\lambda}_{LT} = \left[\frac{\beta_{w \times W_{pLy} \times f_y}}{M_{cr}} \right]^{0.5} = \left[\frac{\lambda_{LT}}{\lambda_1} \right] \times [\beta_w]^{0.5}$$

Où :
$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9\varepsilon$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}} [f_y \ en \ N/mm^2]$

$$\lambda_1 = 93.9\varepsilon$$
 avec : $\varepsilon = \sqrt{\frac{235}{235}} = 1.0 \Longrightarrow \lambda_1 = 93.9$

Pour les poutres à section constante et doublement symétriques (profilés laminés \mathbf{I} et \mathbf{H}), l'élancement λ_{LT} vaut :

$$\lambda_{LT} = \frac{L/i_z}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f}\right)^2\right]^{0.25}}$$
 [Annexe F EC03 partie 1-1]

Avec : pour **IPE 120 :** i_z = 1.45 cm; h = 12 cm ; t_f =0.63 cm

L:longueur de maintient latérale à mi-travée = 200 cm

C1 = 1.132 [tableau B.1.2 CM97 page 144]

$$\lambda_{LT} = \frac{200/1.45}{1.132^{0.5} \left[1 + \frac{1}{20} \left(\frac{200/1.45}{12/0.63} \right)^2 \right]^{0.25}} = 93,97$$

Donc :
$$\bar{\lambda}_{LT} = \left[\frac{93.97}{93.9} \right] = 1.00$$

• Calcule de χ_{LT}

$$\chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^2 - \bar{\lambda}_{LT}^2\right]^{0.5}}$$

Avec :
$$\varphi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$$

 $Où\alpha_{LT}$: facteur d'imperfection pour le déversement.

Les valeurs recommandées pour les facteurs d'imperfection des courbes de déversement

Tableau III-2: Facteur d'imperfection α_{LT}

Courbe de déversement	a	b	c	d
α_{LT}	0.21	0 .35	0.49	0.76

Le choix des courbes de déversement est précisé dans le tableau ci-dessous :

Tableau III-3 : Choix du type de courbe de déversement.

Section transversales	Limites	Courbes de déversement
Sections en I laminées	h/b ≤ 2	a
	h/b ≥ 2	b
Section en I soudées	h/b ≤ 2	С
	h/b ≥ 2	d
Autres section	_	d

On a : h/b = 120/64 = 1.88 < 2 \implies Courbe de déversement a $\implies \alpha_{LT} = 0.21$

$$\varphi_{LT} = 0.5[1 + 0.21(1.00 - 0.2) + 1.00^2] = 1.084$$

Donc :
$$\chi_{LT} = \frac{1}{1.084 + [1.084^2 - 1.00^2]^{0.5}} = 0.6656$$

• A.N pour calcul $deM_{b.Rd}$

$$M_{b.Rd} = 0.6656 \times 1296.8 = 863.15 \text{ daN.m}$$

$$\left[\frac{M_{y.sd}}{M_{b.Rd}}\right] + \left[\frac{M_{z.sd}}{M_{plz.Rd}}\right] = \frac{397.14}{863.15} + \frac{4.75}{290.54} = 0.48 < 1.0$$

Donc la résistance au déversement est vérifiée.

Conclusion

Le profilé IPE 120 est vérifié à l'état limite ultime.

III.2.2. Vérification à l'état limite de service :

III.2.2.1. Vérification de la flèche:

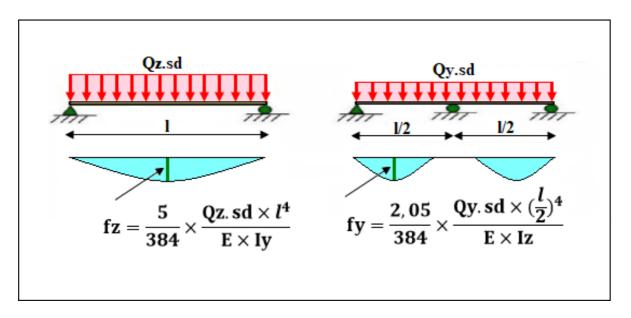


Figure III-10 : Vérification de la flèche.

Le calcul de la flèche se fait par la combinaison de charges et surcharges de services.

Action vers le bas:

$$Q_{Sd1} = G + N = 35.9 + 38.07 = 73.97 \text{ daN/ml}$$

$$Q_{Sd2} = G + P = 35.9 + 66.67 = 102.57 \text{ daN/ml}$$

Action vers le haut :

$$Q_{Sd3} = G \cos \alpha - V = 35.9 \cos (11.31^{\circ}) - 155.85 = -120.65 \text{ daN/ml}$$

Donc:
$$Q_{Sd} = \max(Q_{Sd1}; Q_{Sd2}; Q_{Sd3}) = -120.65 \text{ daN/ml}$$

$$Q_{z.sd} = Q_{Sd} \times \cos\alpha = -120.65 \cos (11.31^{\circ}) = -118.31 \text{ daN/ml}$$

$$Q_{y.sd} = Q_{Sd} \times \sin\alpha = -120.65 \sin(11.31^{\circ}) = -23.66 \text{ daN/ml}$$

• Condition de vérification

$$f \le fad$$
 avec $f_{ad} = \frac{l}{200}$

> Flèche vertical (suivant zz'): sur deux appuis

$$f_{ad} = \frac{l}{200} = \frac{400}{200} = 2.0$$

$$f_{z} = \frac{5}{384} \times \frac{Q_{z.sd \times l^{4}}}{E \times I_{v}}$$

$$f_z = \frac{5}{384} \cdot \frac{118.31 \times 10^{-2} \cdot (400)^4}{2.1 \times 10^6 \times 318} = 0.59 \text{ cm} < f_{ad} = 2.0 \dots$$
 condition vérifiée

➤ La flèche latérale (suivant yy') : sur 3 appuis

$$f_{ad} = \frac{l/2}{200} = \frac{200}{200} = 1.0$$

$$f_y = \frac{2.05}{384} \cdot \frac{Q_{y.sd \times (l/2)^4}}{E \times I_z}$$

$$f_y = \frac{2.05}{384} \cdot \frac{23.66 \times 10^{-2} \cdot (200)^4}{2.1 \times 10^6 \times 27.7} = 0.035 \text{ cm} < f_{ad} = 1.0 \dots \text{condition vérifiée}$$

Donc le profile choisis **IPE 120**convient pour les pannes.

III.3. Dimensionnement des liernes de pannes :

III.3.1. Définition :

Les liernes sont des tirants qui travaillent en traction disposés à mi-portée des pannes perpendiculairement à ces dernières dans le plan de la toiture, ils sont généralement formés de barres rondes ou de petites cornières. Leurs rôle principale est d'éviter la déformation la latérale des pannes, mais aussi à limiter la longueur de déversement et le flambement latérale pour les parties comprimées.

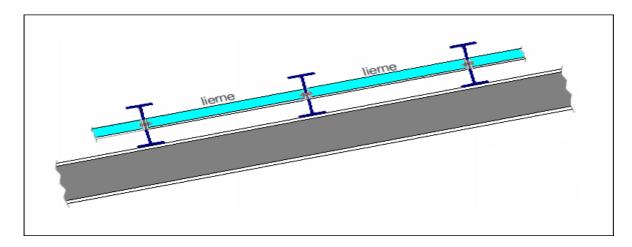
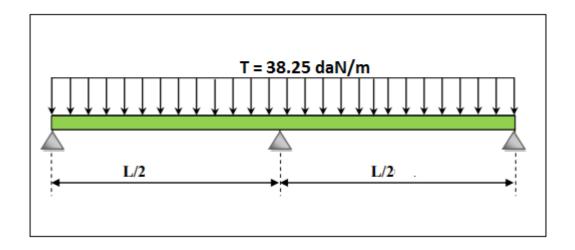



Figure III-11: Dispositions des liernes.

III.3.2. Calcul de l'effort maximal revenant aux liernes :

La réaction R au niveau des liernes :

$$R = 1.25 Q_{v.Sd} x l/2 = 1.25 x 38.94$$

L'effort de traction dans le tronçon de lierne L_1 provenant de la panne sablière :

$$T_1 = \frac{R}{2} = \frac{97.35}{2} = 48.68 \text{ daN}$$

L'effort dans le tronçon $L_2: T_2 = R + T_1 = 97.35 + 48.68 = 146.03 daN$

L'effort dans le tronçon L_3 : $T_3 = R + T_2 = 97.35 + 146.03 = 243.38 daN$

L'effort dans le tronçon $L_4: T_4 = R + T_3 = 97.35 + 243.38 = 340.73 \text{ daN}$

L'effort dans le tronçon L_5 : $T_5 = R + T_4 = 97.35 + 340.73 = 438.08 daN$

L'effort dans le tronçon L_6 : $T_6 = R + T_5 = 97.35 + 438.08 = 535.43 daN$

L'effort dans le tronçon L_7 : $T_7 = R + T_6 = 97.35 + 535.43 = 632.78 daN$

L'effort dans le tronçon L_8 : $T_8 = R + T_7 = 97.35 + 632.78 = 730.13 daN$

L'effort dans le tronçon L_9 : $T_9 = R + T_8 = 97.35 + 730.13 = 827.48 daN$

L'effort dans le tronçon $L_{10}: 2T_{10}.\sin\theta = T_9$

Avec :
$$\theta = \arctan \times \frac{1}{2} = 26.57^{\circ}$$

$$T_{10} = \frac{T_9}{2 \times \sin \theta} = \frac{827.48}{2 \times \sin(26.57)} = 925 \text{ daN}$$

> Dimensionnement des liernes :

Le tronçon le plus sollicité est L_{10} :

$$T_{10} = N_{Sd} = 925 \text{ daN}$$

Les liernes travaillent en traction : $N_{Sd} \le N_{pl.Rd}$

Avec : $N_{pl.Rd} = \frac{A.f_y}{\gamma_{M0}}$: Résistance plastique de la section brute

$$N_{Sd} = T_{10} \le \frac{A.f_y}{\gamma_{MO}} \Longrightarrow A \ge \frac{T_{10} \times \gamma_{M0}}{f_y}$$

$$A > \frac{925 \times 1.1}{2350} = 0.433 \ cm^2$$

$$A = \pi \emptyset^2 / 4 \ge 0.433 \ cm^2 \Longrightarrow \emptyset \ge \sqrt{\frac{4 \times 0.433}{\pi}} = 0.74 \ cm$$

Soit une barre ronde de diamètre $\emptyset = 0.74$ cm = 7.4 mm

Pour des raisons pratiques et pour plus de sécurité, on opte pour une barre ronde de diamètre

$$\emptyset = 8 \text{ mm}$$

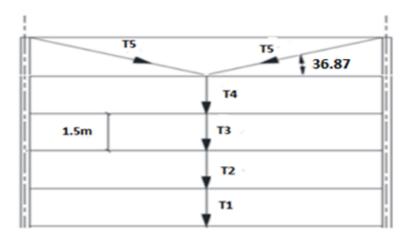


Figure III.12: Efforts dans les liernes.

III.4. Calcul de l'échantignole :

III.4.1. Définition :

L'échantignole est un dispositif de fixation qui permet de fixer les pannes sur les fermes ou les traverses de portiques. Elle s'oppose aux charges tangentielles dues aux poids des charges permanentes et de la neige.

Elle s'oppose aussi à l'action de soulèvement due au vent. Elles sont fixées soit par boulonnage soit par soudage.

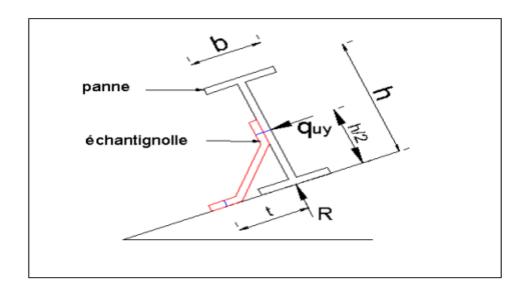


Figure III-13 : Déposition de l'échantignole

III.4.2. Calcul des charges revenant à l'échantignole :

• Effort de soulèvement :

$$Q_{z,Sd} = G \times \cos(\alpha) - 1.5V = -198.57 \text{ daN}/m_l$$

• Effort suivant le rampant:

$$Q_{y.Sd} = 1.35 \text{G} \times \sin(\alpha) = 9.50 \text{ daN}/m_l$$

L'excentrement « t » est limité par la condition suivante :

$$2(b/2) \le \mathfrak{t} \le 3(b/2)$$

Pour **IPE 120**: on a b = 6.4 cm et h = 12 cm

Donc :6.4 $\le t \le 9.6$ soit : $\implies t = 8 \text{ cm}$

• Echantignole de rive :

$$R_z = Q_{z.Sd} \times (l/2) = 198.57 \times (4/2) = 397.14 \text{ daN}$$

$$R_y = Q_{y.Sd} \times (l/2) = 9.50 \times (4/2) = 19.0 \text{ daN}$$

• Echantignole intermédiaire:

$$R_z = 2 \times 397.14 = 794.28 \text{ daN}$$

$$R_{\nu} = 2 \times 19.0 = 38.0 \text{ daN}$$

III.4.3. Calcul des moments de renversement :

$$M_R = R_z \times t + R_y \times h/2 = 794.28 \times 8 + 38.0 \times 6 = 6582.24 \text{ daN.cm}$$

III.4.4. Dimensionnement de l'échantignolle :

Dans la construction métallique, généralement les échantignoles sont des éléments formés à froid. La classe de la section est au moins une classe3. Selon l'Eurocode 03 la section transversale travaillant en flexion simple doit satisfaire la formule suivante :

$$M_{Sd} \leq M_{el,Rd}$$

Avec: $M_{el.Rd} = \frac{W_{el} \times f_y}{\gamma_{M0}}$: moment de résistance élastique de la section brute.

$$M_{Sd} = M_R \le \frac{W_{el} \times f_y}{\gamma_{Mo}}$$

Calcul de l'épaisseur de l'échantignolle :

$$W_{el} \ge \frac{M_R \times \gamma_{M0}}{f_{\gamma}}$$

$$W_{el} \ge \frac{6582.24 \times 1.1}{2350} = 3.08 \ cm^2$$

On a pour les sections rectangulaires : $W_{el} = \frac{b \times e^2}{6}$

$$e > \sqrt{\frac{6 \times W_{el}}{b}}$$

La largeur de l'échantignole est prise en fonction de la largeur de la semelle du portique sur laquelle va être soudée l'échantignole.

- Traverse IPE 360
- b = 17 cm

Donc:
$$e \ge \sqrt{\frac{6 \times W_{el}}{b}} = \sqrt{\frac{6 \times 3.08}{17}} = 1.04 \text{ cm}$$
; soit $e = 10.4 \text{ mm}$

⇒ On adopte une échantignollede 11 mm d'épaisseur

III.5. Etude des lisses de bardages :

III.5.1. Définition :

Les lisses sont des poutrelles qui ont pour fonction de supporter les couvertures de façades (bardages) et les charges s'appliquent sur ces bardages (pression ou dépression du vent). Elles sont disposées horizontalement à l'entre-axe courant, portant sur les poteaux de portiques ou potelets intermédiaires. Elles sont réalisées soit en profilés laminés (IPE, UAP) ou en éléments formés par des tôles pliées.

➤ Modes de fonctionnement :

Les lisses, ont pour rôle de rependre les efforts du vent exercés sur le bardage. Elles sont posées (ou orientées) dans le sens d'une plus grande inertie (maximale) dans le plans horizontal. Autrement dit ; l'âme doit être placée horizontalement.

Par ailleurs, la lisse doit reprendre son poids propre et le poids du bardage qu'elle supporte. De ce fait, elle fléchit verticalement sous l'effet de ces actions permanentes par rapport à son axe faible inertie. En présence simultanée du vent et de ces actions permanentes, elle fonctionne à la flexion bi-axiale ou déviée.

Pour les lisses de bardage, dans la quasi-totalité des cas, ce sont les conditions, de limitation de flèches (calculs à l'ELS) qui sont les plus défavorables (ou bien qui dimensionnent) .par conséquent, la vérification à L'ELS ne doit jamais être omise.

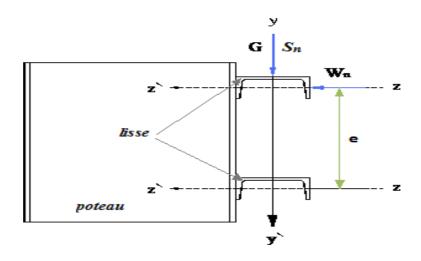


Figure III-14 : Disposition de la lisse de bardage

> La pression engendrée par le vent :

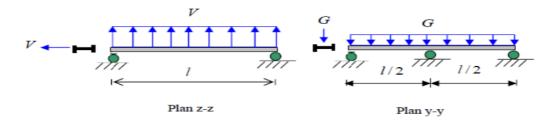


Figure III-15: pression de vent sur la lisse.

III.5.2. Vérification de la lisse de long-pan :

> Données de calcul :

- Chaque lisse repose sur 2 appuis.
- Le porté entre axe des lisses e=1.5m (espace entre 2 lisse).
- La pente de chaque versant est α =11.31°.
- Les pannes sont en acier S235
- Les lisses sont simplement appuyées sur deux poteaux de portée L =4m.
- Nombre des lisses pour chaque paroi (n=5)

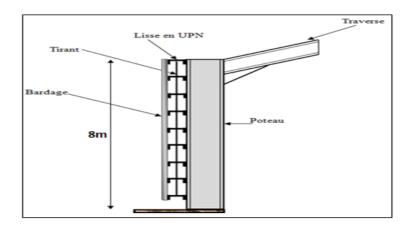


Figure III-16: Disposition des lisses de bardages

III.5.2.1. Evaluation des charges et surcharges :

a) Charges permanentes: (perpendiculaire à l'âme)

$$G = (P_{couverture} + P_{isolants} + P_{accesoire}) \times e + P_{lisse}$$

$$G = (12 + 5 + 5) \times 1.5 + 13.4$$

$$G = 46.4 \, daN/ml$$

b) Surcharges climatiques du vent : (suivant le plan de l'âme)

$$V = 70.99 daN/m^2$$

$$V = 70.99 \times 1.5$$

$$V = 106.49 \frac{daN}{ml} (pression)$$

Combinaison: 1.35G + 1.5V

$$Q_{y,sd}$$
=1.35 G = 1.35 (46.4)

$$Q_{y,sd} = 62.64 daN/ml$$

$$Q_{z,sd}$$
=1.5V =1.5 *106.49

$$Q_{z,sd} = 159.74 \text{ daN/ml}$$

De charges les plus défavorables :

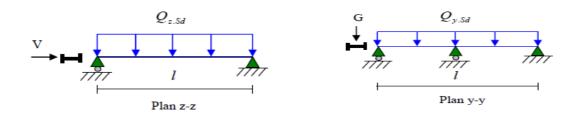


Figure III-17: La répartition des charges sur les lisses de long pan.

III.5.2.2. Vérification à l'état limite ultime (ELU) :

Par tâtonnement on choisit l'UPN120

Tableau III-4: Caractéristiques géométriques d'UPN120.

Profilé			Dime	nsions		Caractéristiquesdecalcul					
UPN	h	b	t_{W}	tf	d	Wpl.y	Wpl.z	Avz	Avy	Iy	$I_{\mathbf{Z}}$
120	mm	mm	mm	mm	m m	cm ³	cm ³	cm ²	cm ²	cm ⁴	cm ⁴
	120	55	7.0	9.0	82	72.6	21.2	8.8	9.9	364	43.2

a) Classe de la section :

On a la semelle comprimée et l'âme fléchie :

Classe de la semelle :

$$\frac{c}{t_f} = \frac{b/2}{t_f} < 9\varepsilon \text{ Avec } \varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

$$\frac{b/2}{t_f} = \frac{27.5}{9} = 3.05 < 9$$

semelledeclassse 01.

❖ Classe de l'âme :

$$\frac{C}{t_f} = \frac{d}{t_w} < 72\varepsilon$$

$$\frac{d}{t_w} = \frac{82}{7} = 11.71 < 72$$

âme*declassse* 01.

⇒ Sectiondeclassse01.

• Vérification de la résistance en section :

Dans la condition de résistance à l'ELU, il faut faire les vérifications suivantes :

1. vérification à la flexion :

La lisse travail en flexion déviée ce qui nous amène a vérifié la formule de l'Eurocode 3 «Art.5.4.5.4» recommande l'utilisation de la même méthode exposée dans l'article 5.4.8 :

$$\left(\frac{M_{y,sd}}{M_{ply,Rd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{ply,Rd}}\right)^{\beta} \leq 1$$

On a choisi une section en U : $\alpha = 1$ et $\beta = 5n \ge 1$ avec $n = N/N_{PL}$

Pas d'effort normal : $N = 0 donc n = 0 \implies \beta = 1$

$$\mathbf{M_{y,sd}} = \frac{Q_{z,sd} * l^2}{8} = \frac{159.74 * 4^2}{8} = 319.48 \text{ daN. m}$$

$$\mathbf{M_{z,sd}} = \frac{Q_{y,sd}*(\frac{1}{2})^2}{8} = \frac{62.64*2^2}{8} = 31.32 \text{ daN} \cdot \text{m}$$

Nous avons: $Wpl.y = 72.6cm^3$; $Wpl.z = 21.2cm^3$;

$$\begin{cases} \mathbf{M_{ply,Rd}} = \frac{w_{ply,Rd}*f_y}{\gamma_{M0}} = \frac{(72.6)(2350)*10^{-2}}{1.1} = 1551 \text{ daN. m} \\ \\ \mathbf{M_{plz,Rd}} = \frac{w_{plz,Rd}*f_y}{\gamma_{M0}} = \frac{(21.2)(2350)*10^{-2}}{1.1} = 452.91 \text{daN. m} \end{cases}$$

$$\left(\frac{M_{y,sd}}{M_{ply,Rd}}\right)^{\alpha} \underbrace{\stackrel{M}{\underset{z,sd}{\longleftarrow}} M_{z,sd}}_{M_{ply,Rd}}\right)^{\beta} = \left(\frac{319.48}{1551}\right)^{1} + \left(\frac{31.32}{452.91}\right)^{1}$$

 $= 0.28 < 1 \dots \dots \dots$ section verifiée en flexion bi - axial

1. Vérification au cisaillement :

La vérification au cisaillement est donnée par les formules suivantes :

$$V_{z,sd} \leq V_{plz,Rd}$$
 et $V_{y,sd} \leq V_{ply,Rd}$

On a
$$A_{vz} = 8.8cm^2$$
 ; $A_{vy} = 9.9cm^2$

$$\begin{cases} V_{z,sd} = \frac{Q_{z,sd}*l}{2} = \frac{159.74*4}{2} = 319.48 \text{daN} \\ V_{y,sd} = 0.625 * Q_{y,sd} \left(\frac{l}{2}\right) = 78.3 \text{ daN} \end{cases}$$

$$\begin{cases} V_{plz,Rd} = \frac{A_{vz} \binom{f_y}{\sqrt{3}}}{\gamma_{M0}} = \frac{8.8 \binom{2350}{\sqrt{3}}}{1.1} = 10854.19 \text{ daN} \\ V_{ply,Rd} = \frac{A_{vy} \binom{f_y}{\sqrt{3}}}{\gamma_{M0}} = \frac{9.9 \binom{2350}{\sqrt{3}}}{1.1} = 12210.95 \text{ daN} \end{cases}$$

$$\begin{cases} V_{z,sd} = 319.48 <<< V_{plz,Rd} = 10854.19 \\ V_{y,sd} = 78.3 <<< V_{ply,Rd} = 12210.95 \end{cases}$$

 \Rightarrow Lasectionen **UPN120** est vérifiée.

1. Vérification au déversement:

Il n'y a pas le risque de déversement de la lisse du moment que la semelle comprimée est soutenue latéralement sur toute sa longueur (cas de vent de pression).

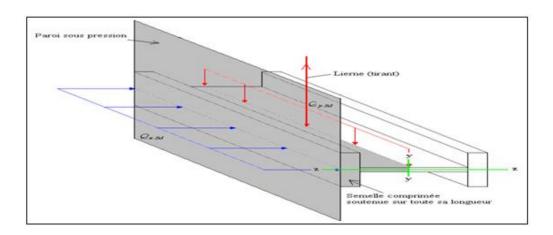


Figure III-18: Semelle comprimée soutenue sur toute sa longueur.

III.5.2.3. Vérification à l'état limite de service (ELS) :

1. Vérification de la flèche :

Le calcul de la flèche se fait par la combinaison de charge et surcharge de service (non pondérées).

$$Q = G + V$$

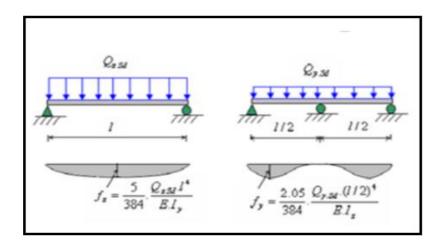


Figure III-19: flèche de la lisse.

• Condition de vérification:

$$f \le f_{adm}$$
 Avec $f_{adm} = \frac{l}{200}$

Flèche verticale suivant (Z-Z) sur deux appuis :

$$f_{adm} = \frac{l}{200} = \frac{400}{200} = 2 \ cm$$

$$f_z = \frac{5}{384} \frac{V*l^4}{EI_y} = \frac{5}{384} \frac{106.49*10^{-2}*400^4}{2.1*10^6*364} = 0.46 < 2cm \dots v\acute{e}rifi\acute{e}e$$

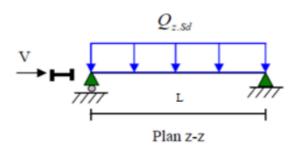


Figure III-20 : flèche horizontale.

- Flèche latérale suivant (Y-Y) sur trois appuis :
$$f_{adm} = \frac{l}{200} = \frac{200}{200} = 1 \ cm$$

$$f_y = \frac{2.05}{384} \frac{V*l^4}{EI_y} = \frac{2.05}{384} \frac{46.4*10^{-2}*200^4}{2.1*10^6*43.2} = 0.044cm < 1cm \dots v\acute{e}rifi\acute{e}e$$

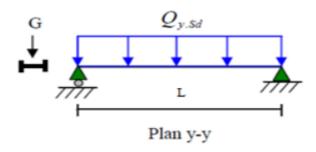


Figure III-21: flèche verticale.

- ⇒Flèchevérifié.
- \Rightarrow La lisse de long pan en **UPN120** est vérifiée à la sécurité.

III.5.3. Calculs des liernes de long-pan :

III.5.3.1. Calcul de l'effort de traction dans le lierne le plus sollicité :

La Réaction R au niveau du lierne :

$$R = 1.25Q_{y,sd} * \frac{1}{2} = 1.25(62.64) * 2 = 156.6 \text{ daN}$$

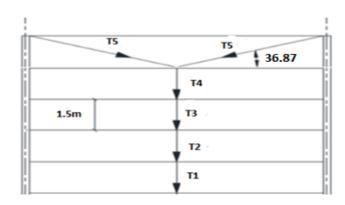


Figure III-22: efforts de traction dans le tronçon de lierne.

Effort de traction dans le tronçon de lierne L1 provenant de la panne sablière :

$$T_1 = \frac{R}{2} = \frac{156.6}{2} = 78.3 \text{ daN}$$

Effort dans les tronçons L2, L3, L4

$$T_n = R + T_n - 1$$

$$T_2 = 156.6 + 78.3 = 234.9 \, daN$$

$$T_3 = 156.6 + 234.9 = 391.5 daN$$

$$T_4 = 156.6 + 391.5 = 548.1 \, daN$$

Effort dans les diagonales L_5

$$\varphi = artg \frac{1.5}{2} = 36.87^{\circ}$$

$$T_5 = \frac{T_4}{2\sin 36.87} = \frac{548.1}{2\sin 36.87} = 456.75 \ daN$$

• Calcul de la section des liernes :

Le tronçon le plus sollicité est L4

$$T_4 = N_{sd} = 548.1 daN$$

Les liernes travaillent en traction : $N_{sd} \leq N_{pl,Rd}$

$$N_{pl,Rd} = \frac{A * f_y}{\gamma_{M0}} A \ge \frac{N_{sd} * \gamma_{M0}}{f_y} = \frac{548.1 * 1.1}{2350} = 0.257 \text{ cm}^2$$

$$A = \frac{\pi * \emptyset^2}{4} \ge 0.257 \text{cm}^2 \emptyset \ge \sqrt{4 * 0.257/3.14} = 0.58 \text{ cm}$$

Pour raison sécuritaire et pratique, on opte pour une barre ronde de diamètre $\emptyset = 8 \ mm$

I.1.1. Vérification de la lisse de pignon :

On choisit UPN 120

- Les données :
- Les lisses sont simplement appuyées sur deux poteaux de portée L =5.75m.
- Nombre des lisses pour chaque paroi (n=5)

- Poids propre d'accessoires de pose..... $5daN/m^2$
- Poids propre de la lisse estimé (UPN120)13.4daN/ml

I.1.1.1. Evaluation des charges et surcharges :

a) Charges permanentes : (perpendiculaire à l'âme)

$$G = (P_{couverture} + P_{isolants} + P_{accesoire}) \times e + P_{lisse}$$

$$G = (12 + 5 + 5) \times 1.5 + 13.4$$

 $G = 46.4 \, daN/ml$

b) Surcharges climatiques du vent : (suivant le plan de l'âme)

$$V = -64.54 daN/m^2 (dépression)$$

$$V = -64.54 \times 1.5$$

$$V = 96.81 daN/ml$$

III.5.4.2. Vérification de la résistance en section :

Dans la condition de résistance à l'ELU, il faut faire les vérifications suivantes :

1. vérification à la flexion :

Pour cette vérification on utilise la condition suivante pour les sections de classes 1 et 2

$$\left(\frac{M_{y,sd}}{M_{ply,Rd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{ply,Rd}}\right)^{\beta} \leq 1$$

On a choisi une section en U : $\alpha = 1$ et $\beta = 5n \ge 1$ avec $n = N/N_{PL}$

Pas d'effort normal : $N = 0 donc n = 0 \implies \beta = 1$

$$\mathbf{M_{y,sd}} = \frac{Q_{z,sd} * l^2}{8} = \frac{96.81 * 5.75^2}{8} = 400.09 \text{ daN. m}$$

$$\begin{cases} \mathbf{M_{z,sd}} = \frac{\mathbf{Q_{y,sd}} * (\frac{l}{2})^2}{8} = \frac{62.64 * 2.86^2}{8} = 64.72 \text{ daN.m.} \end{cases}$$

Nous avons: $Wpl.y = 72.6cm^3$; $Wpl.z = 21.2cm^3$;

$$\begin{cases} \mathbf{M_{ply,Rd}} = \frac{w_{ply,Rd}*f_y}{\gamma_{M0}} = \frac{(72.6)(2350)*10^{-2}}{1.1} = 1551 \text{ daN. m} \\ \mathbf{M_{plz,Rd}} = \frac{w_{plz,Rd}*f_y}{\gamma_{M0}} = \frac{(21.2)(2350)*10^{-2}}{1.1} = 452.91 \text{daN. m} \\ \rightarrow \left(\frac{\mathbf{M_{y,sd}}}{\mathbf{M_{ply,Rd}}}\right)^{\alpha} + \left(\frac{\mathbf{M_{z,sd}}}{\mathbf{M_{ply,Rd}}}\right)^{\beta} = \left(\frac{400.09}{1551}\right)^{1} + \left(\frac{64.72}{452.91}\right)^{1} \end{cases}$$

 $= 0.40 < 1 \dots \dots \dots$ section verifiée en flexion biaxial

2. Vérification au cisaillement :

La vérification au cisaillement est donnée par les formules suivantes :

$$V_{z,sd} \le V_{plz,Rd}$$
 et $V_{y,sd} \le V_{ply,Rd}$

On a
$$A_{vz} = 8.8cm^2$$
 ; $A_{vy} = 9.9cm^2$

$$\begin{cases} V_{z,sd} = \frac{Q_{z,sd}*l}{2} = \frac{96.81*5.75}{2} = 278.33 \text{daN} \\ V_{y,sd} = 0.625 * Q_{y,sd} \left(\frac{l}{2}\right) = 112.56 \text{ daN} \end{cases}$$

$$\begin{cases} V_{plz,Rd} = \frac{A_{vz} \binom{f_y}{\sqrt{3}}}{\gamma_{M0}} = \frac{8.8 \binom{2350}{\sqrt{3}}}{1.1} = 10854.19 \text{ daN} \\ V_{ply,Rd} = \frac{A_{vy} \binom{f_y}{\sqrt{3}}}{\gamma_{M0}} = \frac{9.9 \binom{2350}{\sqrt{3}}}{1.1} = 12210.95 \text{ daN} \end{cases}$$

$$\begin{cases} V_{z,sd} = 278.33 <<< V_{plz,Rd} = 10854.19.....OK \\ V_{y,sd} = 112.56 <<< V_{ply,Rd} = 12210.95....OK \end{cases}$$

⇒Lasectionen**UPN120**estvérifiée.

3. Vérification au déversement :

$$w_{ply} = 72.6 \text{cm}^3$$
; $t_f = 0.90 \text{ cm}$; $i_z = 1.59 \text{ cm}$; $w_{plz} = 21.2 \text{ cm}^3$

$$\frac{M_{y,sd}}{M_{h,Rd}} + \frac{M_{z,sd}}{M_{nlz,Rd}} \le 1$$

$$\mathbf{M_{b,Rd}} = \chi_{LT} * \beta_w * \frac{W_{ply} * f_y}{\gamma_{M1}} = \chi_{LT} * \mathbf{M_{ply,Rd}}$$
 (Formule 5,48 de l'eurocode3)

 $\beta_w = 1$; Section de classe 01.

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{\text{ply}} * f_{\text{y}}}{M_{\text{cr}}}}$$

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} * (\sqrt{\beta_w}) Avec \qquad \beta_w = 1$$

$$\lambda_1 = 0.93\epsilon$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}}$

$$\lambda_{LT} = \frac{\frac{L_{/i_{Z}}}{C_{1}^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{/i_{Z}}}{h_{/t_{f}}}\right)^{2}\right]^{0.25}}$$

$$\Rightarrow \lambda_{LT} = \frac{\frac{287.5}{1.65}}{1.132_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{287.5}{12/0.9}\right)^2\right]^{0.25}} = 93.19$$

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} = \frac{93.19}{93.9} = 0.99 \approx 1 > 0.4$$

il y'a risque de déversement

Le choix des courbes de déversement :

Section en UPN
$$= \alpha = 0.76$$
 $\Rightarrow courbedeflambemebent(d)$

La valeur $de\chi_{LT}$ pour l'élancement réduit $\overline{\lambda_{LT}}$ est déterminée à partir de la formule (5.49) de l'Eurocode3 :

$$\chi_{LT} = \frac{_1}{_{\emptyset_{LT} + \left[\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}}} \qquad \text{Avec} \qquad \chi_{LT} < 1$$

$$\mathrm{Et}: \emptyset_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right] = 0.5 [1 + 0.76 (1 - 0.2) + 1^2] = 1.30$$

$$\Rightarrow \chi_{LT} = \frac{1}{1.30 + [1.30^2 - 1^2]^{0.5}} = 0.47$$

Afin de vérifier notre résultat on utilise tableau de l'Eurocode 3 qui donne Les valeurs du coefficient de réduction χ_{LT} pour un élancement réduit de $\overline{\lambda_{LT}}=1$.

$$\overline{\lambda_{LT}} = 1 \Longrightarrow \chi_{LT} = 0.4671$$

$$M_{b,Rd} = \chi_{LT} * M_{ply,Rd} = 0.4671 * 1551 = 724.47 daN. m$$

$$\frac{M_{y,sd}}{M_{b,Rd}} + \frac{M_{z,sd}}{M_{plz,Rd}} = \frac{400.09}{724.47} + \frac{64.72}{452.91} = 0.69 \leq 1.....$$
déversement vérifiée

III.5.4.3. Vérification à l'état limite de service (ELS) :

• Vérification de la flèche :

Le calcul de la flèche se fait par la combinaison de charge et surcharge de service (non pondérées).

$$Q = G + V$$

• Condition de vérification:

$$f \le f_{adm} \text{Avec} f_{adm} = \frac{l}{200}$$

- Flèche verticale suivant (Z-Z) sur deux appuis :

$$f_{adm} = \frac{l}{200} = \frac{575}{200} = 2.87 \ cm$$

$$f_z = \frac{5}{384} \frac{V*l^4}{EI_y} = \frac{5}{384} \frac{96.81*10^{-2}*575^4}{2.1*10^6*364} = 1.80 < 2.87 cm \dots v\'erifi\'ee$$

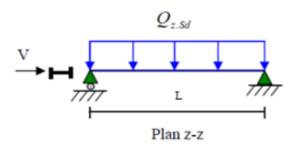


Figure III-23 : flèche horizontale.

- Flèche latérale suivant (Y-Y) sur trois appuis :

$$f_{adm} = \frac{l}{200} = \frac{287}{200} = 1.43 cm$$

$$f_y = \frac{2.05}{384} \frac{V * l^4}{EI_y} = \frac{2.05}{384} \frac{46.4 * 10^{-2} * 287^4}{2.1 * 10^6 * 43.2} = 0.18 cm < 1.43 cm \dots vérifiée$$

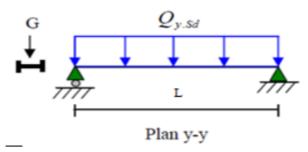


Figure III-24: Flèche verticale.

- ⇒*Flèchevérifi*é.
- ⇒ La lisse de long pan en **UPN120** est vérifiée à la sécurité.
 - III.5.5. Calculs des liernes de long-pan :
 - > Calcul de l'effort de traction dans le lierne le plus sollicité :

La Réaction R au niveau du lierne :

$$R = 1.25Q_{y,sd} * \frac{1}{2} = 1.25(62.64) * 2.87 = 224.72 \text{ daN}$$

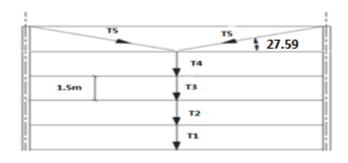


Figure III-25 : efforts de traction dans le tronçon de lierne.

Effort de traction dans le tronçon de lierne L1 provenant de la panne sablière :

$$T_1 = \frac{R}{2} = \frac{224.72}{2} = 112.36 \text{ daN}$$

Effort dans les tronçons L2, L3, L4

$$T_n = R + T_n - 1$$

$$T_2 = 224.72 + 112.36 = 337.8 \, daN$$

$$T_3 = 224.72 + 337.8 = 561.8 daN$$

$$T_4 = 224.72 + 561.8 = 786.52 \, daN$$

Effort dans les diagonales L_5

$$\varphi = artg \frac{1.5}{2.87} = 27.59^{\circ}$$

$$T_5 = \frac{T_4}{2\sin 27.59} = \frac{786.52}{2\sin 27.59} = 849.11 \, daN$$

• Calcul de la section des liernes :

Le tronçon le plus sollicité est L5

$$T_5 = N_{sd} = 849.11 \text{ daN}$$

Les liernes travaillent en traction : $N_{sd} \le N_{pl,Rd}$

$$N_{pl,Rd} = \frac{A * f_y}{\gamma_{M0}} A \ge \frac{N_{sd} * \gamma_{M0}}{f_y} = \frac{849.11 * 1.1}{2350} = 0.397 \text{ cm}^2$$

$$A = \frac{\pi * \emptyset^2}{4} \ge 0.397 \text{cm}^2 \emptyset \ge \sqrt{4 * 0.397/3.14} = 0.71 \text{ cm}$$

Pour raison sécuritaire et pratique, on opte pour une barre ronde de diamètre $\emptyset = 8 \ mm$

III.6. Etude des potelets :

III.6.1. Définition :

Les potelets sont le plus souvent des profilés en I ou en H destinés à rigidifier la clôture (bardage) et résister aux efforts horizontaux du vent. Leurs caractéristiques varient en fonction de la nature du bardage (en maçonnerie ou en tôle ondulée) et de la hauteur de la construction. Ils sont considérés comme articulés aux extrémités.

Détermination des sollicitations :

Le potelet travaille à la flexion sous action de l'effort du vent provenant du bardage etdes lisses, et à la compression sous l'effet de son poids propre, du poids du bardage et des lisses qui lui est associé, et de ce fait fonctionne à la flexion composé.

Par conséquent le potelet risque de :

- Subir une flèche importante sous les pressions due au vent
- Flamber lorsqu'il est très élancé
- Déverser sous les dépressions dus au vent.

Les données :

- La hauteur de potelet le plus chargé L =10.30m.
- La longueur de la lisse L =5.75m
- L'entre axe des potelets e= 5.75m
- Nombre de lisses supportées par le potelet (n=5)

- Poids propre d'accessoires de pose...... $5daN/m^2$

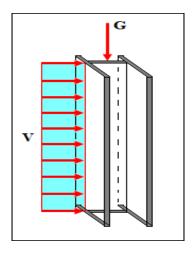


Figure III-26: charges de vent et charges permanentes revenant au potelet.

III.6.2. Calcul des charges et surcharges revenants au potelet le plus chargé (potelet du milieu) :

a) Charges permanents G:

$$G = (P_{lisse} * L_{lisse} * N_{lisse}) + (P_{bardage} + P_{isolants} + P_{accesoire}) * S_{tributaire}$$

$$G = (13.4 * 5.75 * 5) + (12 + 5 + 5) * (10.30 * 5.75)$$

G = 1688.2 daN.

b) Surcharges climatiques V:

$$V = 64.54 \, daN/m^2$$

$$V = 64.54 * 5.75$$

 $V = 371.1 \, daN/ml.$

III.6.2.1. Dimensionnement du potelet :

Sous la condition de la flèche :

La vérification de la flèche se fait sous les charges non pondérées : V = 371.1 daN/ml

$$f_y = \frac{5}{384} \frac{V * l^4}{E * I_y} \le f_{adm} = \frac{l}{200}$$

$$I_{y} \ge \frac{5}{384} \ \frac{371.1 * 10^{-2} * 1030^{4}}{2.1 * 10^{6} * 5.15} = 5028.66 cm^{4}$$

On choisit la section du profilé dans les tableaux ayant au moins la valeur de I_y supérieure ou égale à la valeur trouvée.

On opte pour un IPE270 $(I_y = 5790cm^4 \ge 5028.66cm^4)$

Données concernant ce profilé:

	Dimensions								Caractéristiques de calcul					
Profilé	G Kg/ m	h m m	b m m	tw m m	tf mm	d mm	A cm2	Wpl,	Wpl, z cm ³	iz cm	iy cm	Iz cm	Iy cm ⁴	
IPE270	36.1	27 0	13 5	6.6	10.2	219.6	45.94	484	96.95	3.0	11.23	419.9	5790	

Tableau III-5: Caractéristiques géométriques de l'IPE 270.

➤ Calcul de la charge permanent G (avec IPE270) :

$$G = 1688.2 + (L_{profilé} * P_{profilé}) = 1688.2 + (36.1 * 10.30)$$

 $G = 2060.03 \ daN.$

III.6.2.2. Vérification de la section à la résistance :

a) Incidence de l'effort tranchant :

Si : $V_{Sd} \le 0.5 V_{pl,Rd}$. Il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant

$$Q_{z,sd} = 1.5 * 371.1 = 556.65 daN/ml$$

$$V_{z,sd} = \frac{Q_{z,sd} * l}{2} = \frac{556.65 * 10.30}{2} = \frac{5733.49}{2} = 2866.75 daN$$

$$A_{vz} = 22.14 cm^2$$

$$V_{\text{plz,Rd}} = \frac{22.14 \left(\frac{2350}{\sqrt{3}}\right)}{1.1} = \frac{30038.95}{1.1} = 27308.14 \text{ daN}$$

$$V_{z,sd} = 2866.03 \le 0.5 V_{plz,Rd} = 13654.07 \text{ daN}.....$$
vérifiée

La condition est vérifiée donc il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant

b) Incidence de l'effort normal:

Si : $N_{Sd} \le Min \ (0.25 \ N_{pl,Rd}; 0.5 A_W.f_y/\gamma_{M0})$. Il n'y a pas d'interaction entre le moment résistant et l'effort normal.

$$N_{sd} = 1.35G = 1.35 * 2060.03 = 2781.04 \, daN$$

$$N_{pl,Rd} = \frac{A(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{45.94(2350/\sqrt{3})}{1.1} = 56663.78 \, daN$$

$$0.25N_{pl,Rd} = 0.25 * 56663.78 = 14165.95 \, daN$$

$$\frac{0.5A_w f_y}{\gamma_{M0}} = \frac{0.5 * 18.4 * 2350}{1.1} = 19654.54 \ daN$$

Avec:
$$A_w = (A - 2bt_f) = 45.94 - 2(13.5 * 1.02) = 18.4 cm^4$$

$$N_{sd} = 2781.04 <<< 19654.95 \ daN.....$$
Vérifiée.

c) Vérification à la flexion :

$$M_{v,sd} \leq M_{cv,Rd}$$

 $M_{cy,Rd}$: C'est le moment résistant qui dépend de la classe de la section.

Classe de la section :

Classe de la semelle(semelle comprimée):

$$\frac{c}{t_f} = \frac{b/2}{t_f} \le \mathbf{10} \varepsilon \mathbf{A} \mathbf{vec} \varepsilon = \sqrt{\frac{235}{235}} = \mathbf{1}$$

$$\frac{b/2}{t_f} = \frac{135/2}{10.2} = 6.62 \le 10$$
 la semelle est de classe 01

Classe de l'âme (flexion composée):

$$\alpha = \frac{1}{d} \left(\frac{d + d_c}{2} \right) \le 1$$

$$d_c = \frac{N_{sd}}{t_w f_y} = \frac{2781.04}{1551} = 1.79 \text{ cm}$$

$$\alpha = \frac{1}{219.6} \left(\frac{219.6 + 17.9}{2} \right) = 0.54 \le 1$$

$$\frac{d}{t_w} = \frac{219.6}{66} = 33.27 \le \frac{396\varepsilon}{13\alpha - 1} = 65.78 \implies \text{l'ame est de classe } 01$$

≥ La section est de classe 01.

$$M_{\text{cy,Rd}} = M_{\text{ply,Rd}} = \frac{w_{\text{ply}} * f_{\text{y}}}{\gamma_{\text{M0}}} = \frac{484 * 2350 * 10^{-2}}{1.1} = 10340 \text{ daN. m}$$

$$M_{y,sd} = \frac{Q_{z,sd} * l^2}{8} = \frac{556.65 * 10.3^2}{8} = 7381.87 \text{ daN. m}$$

$$M_{y,sd} = 7381.87 \ daN.m \le M_{cy,Rd} = 10340 \ daN.m$$
......condition vérifiée

III.6.2.3. Vérification de l'élément aux instabilités :

Le potelet est sollicité à la flexion (due au vent) et à la compression (due à son poids propre, au poids des bacs de bardage et des lisses). En aucun cas, il ne supporte pas la toiture (il est assujetti au portique par appui glissant). Il travaille à la flexion composée.

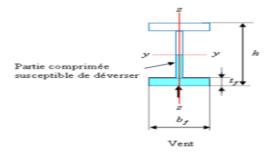


Figure III-27: Déversement du potelet.

La vérification aux instabilités est donnée par les formules suivantes :

a) Flexion composée avec risque de flambement :

$$\frac{N_{sd}}{N_{by,Rd}} + \frac{k_{yy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

b) Flexion composée avec risque de déversement :

$$\frac{N_{sd}}{N_{bz,Rd}} + \frac{k_{zy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

Calcul des coefficients de réduction pour le flambement χ_y et χz :

Flambement par rapport à l'axe fort Y-Y (dans le plan du portique) :

$$\chi_{y} = \frac{1}{\emptyset_{y} + \left[\emptyset_{y}^{2} - \overline{\lambda_{y}^{2}}\right]^{0.5}}$$

Avec

•
$$\phi_y = 0.5 \left[1 + \alpha_y \left(\overline{\lambda_y} - 0.2 \right) + \overline{\lambda_y^2} \right]$$

•
$$\overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} \sqrt{(\beta w)}$$
; $(\beta_w = 1)$ car la section est de classe 01

 α : facteurd 'imperfectioncorrespondant à lacourbe de flambement appropriée, donné par le table au 5.5.1 de l'euroco de 03

Et:

$$\lambda_1 = \pi \left[\frac{E}{f_v} \right]^{0.5} = \pi \left[\frac{2.1 * 10^4}{2350} \right]^{0.5} = 93.9 :$$
Élancement Eulérien

$$\lambda_y = \frac{l_y}{l_y} = \frac{1030}{11.23} = 91.71$$

$$\overline{\lambda_y} = \frac{91.71}{93.9} = 0.97$$

Courbe de flambement :

$$\begin{cases} h/_b = \frac{270}{135} = 2 > 1.2 \\ \rightarrow \text{Courbe de flambement (a) } (\alpha = 0.21) \\ t_f = 10.2 < 40 \ mm \rightarrow axe \ du \ flambement \ y - y \end{cases}$$

(Tableau (5-5-1) Eurocode 03

•
$$\emptyset_v = 0.5[1 + 0.21(0.97 - 0.2) + 0.97^2] = 1.05$$

•
$$\chi_y = \frac{1}{1.05 + [1.05^2 - 0.97^2]^{0.5}} = 0.69$$

> Facteur de réduction :

 $\chi_y = 0.6865$ (Tableau du coefficient de flambement χ de la courbe a)

Flambement par rapport à l'axe faible Z-Z (hors du plan du portique) :

$$\chi_z = \frac{1}{\emptyset_z + \left[\emptyset_z^2 - \overline{\lambda_z^2}\right]^{0.5}}$$

Avec

•
$$\emptyset_y = 0.5 \left[1 + \alpha_z \left(\overline{\lambda_z} - 0.2 \right) + \overline{\lambda_z^2} \right]$$

•
$$\overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} \sqrt{(\beta w)}$$
; $(\beta_w = 1)$ car la section est de classe 01

Et:

$$\lambda_1 = \pi \left[\frac{E}{f_y} \right]^{0.5} = \pi \left[\frac{2.1*10^4}{2350} \right]^{0.5} = 93.9 :$$
Élancement Eulérien

 $l_z = 1.5$ m.....entre axe des lisses

$$\lambda_z = \frac{l_z}{i_z} = \frac{150}{3.02} = 49.67$$

$$\overline{\lambda_z} = \frac{49.67}{93.9} = 0.53$$

Courbe de flambement :

$$\begin{cases} h/_b = \frac{270}{135} = 2 > 1.2 \\ \rightarrow \text{Courbe de flambement (b) } (\alpha = 0.34) \end{cases}$$

$$t_f = 10.2 < 40 \text{ mm} \rightarrow \text{axe du flambement } z - z$$

$$t_f = 10.2 < 40 \ mm \rightarrow axe \ du \ flambement \ z - z$$

(Tableau (5-5-1) Eurocode 03

•
$$\emptyset_z = 0.5[1 + 0.34(0.53 - 0.2) + 0.53^2] = 0.69$$

•
$$\chi_Z = \frac{1}{0.69 + [0.69^2 - 0.53^2]^{0.5}} = 0.88$$

> Facteur de réduction :

 $\chi_z=0.8707 ({
m Tableau} \ {
m du} \ {
m coefficient} \ {
m de} \ {
m flambement} \chi {
m de} \ {
m la} \ {
m courbe} \ {
m b}).$

Calcul les coefficients d'interactionkij :

$$k_{yy} = min \left[C_{my} \left(1 + \left[\overline{\lambda_y} - 0.2 \right] \frac{N_{sd}}{\chi_y * N_{pl,Rd}} \right); C_{my} \left(1 + 0.8 \frac{N_{sd}}{\chi_y * N_{pl,Rd}} \right) \right]$$

$$k_{zy} = 0.6k_{yy}$$

Avec:

 C_{my} : est le facteur de moment équivalent pour tenir compte de la forme du diagramme du moment fléchissant

Charge uniformément répartie : $\rightarrow C_{mv} = 0.95$

$$\bullet \quad k_{yy} = min \left[0.95 \left(1 + \left[0.97 - 0.2 \right] \frac{2781.04}{0.70*56663.78} \right); 0.95 \left(1 + 0.8 \frac{2781.04}{0.70*56663.78} \right) \right]$$

•
$$k_{yy} = min[1; 1] = 1$$

•
$$k_{zy} = 0.6k_{yy} = 0.6 * 1 = 0.6$$

•
$$N_{by,Rd} = \chi_y * N_{pl,Rd} = 0.70 * 56663.78 = 39664.64 \text{ daN}$$

•
$$N_{bz,Rd} = \chi_z * N_{pl,Rd} = 0.88 * 56663.78 = 49864.12 \text{ daN}$$

$$M_{b,Rd} = \chi_{LT} * \beta_w * \frac{W_{ply}*f_y}{\gamma_{M1}} = \chi_{LT} * M_{ply,Rd} (Formule 5,48 de l'eurocode3)$$

 $\beta_w = 1$; Section de classe 01.

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} * (\sqrt{\beta_w}) A vec \beta_w = 1$$

•
$$\lambda_1 = 0.93\epsilon$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}}$

$$\lambda_{LT} = \frac{\frac{L_{/i_{Z}}}{C_{1}^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{/i_{Z}}}{h_{/t_{f}}}\right)^{2}\right]^{0.25}}$$

$$\Rightarrow \lambda_{LT} = \frac{\frac{150}{3.02}}{1.132_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{150}{36}\right)_{1.02}^{2}\right]^{0.25}} = 45.59$$

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} = \frac{45.59}{93.9} = 0.48$$

• Le choix des courbes de déversement :

$$\frac{h}{b} = \frac{270}{135} = 2 > 1.2$$

$$\rightarrow \text{courbe de flambement (b) } (\alpha = 0.34)$$

 $t_f = 10.2 < 40 \text{ mm} \rightarrow \text{axe du flambement } y - y$

(Tableau (5-5-1) Eurocode 03

La valeur $de\chi_{LT}$ pour l'élancement réduit $\overline{\lambda_{LT}}$ est déterminée à partir de la formule (5.49) de l'Eurocode3 :

$$\chi_{LT} = \frac{_1}{_{\emptyset_{LT} + \left[\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}}} \qquad \text{Avec} \qquad \chi_{LT} < 1$$

$$\begin{split} \text{Et}: \emptyset_{LT} &= 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right] = 0.5 [1 + 0.34 (048 - 0.2) + 0.48^2] = 0.66 \\ & \Rightarrow \ \chi_{LT} = \frac{1}{0.66 + [0.66^2 - 0.48^2]^{0.5}} = 0.89 \end{split}$$

$$M_{b,Rd} = \chi_{LT} * M_{ply,Rd} = 0.89 * 10340 = 9202.6 \text{ daN.} \, m$$

Vérification au flambement (dans le plan) avec risque de flambement :

$$\begin{split} \frac{N_{sd}}{N_{by,Rd}} + \frac{k_{yy} * M_{y,sd}}{M_{b,Rd}} &\leq 1 \\ \frac{2781.04}{39664.64} + \frac{1*7381.87}{9202.6} &= 0.87 \leq 1. \end{split}$$
 condition vérifiée.

> Vérification au déversement (hors le plan) avec risque de déversement :

$$\frac{N_{sd}}{N_{bz,Rd}} + \frac{k_{zy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

$$\frac{2781.04}{49864.12} + \frac{0.6*7381.87}{9202.6} = 0.53 \le 1$$
.....condition vérifiée.

Donc: L'IPE270 convient comme potelet.

IV.Etude des escaliers :

IV.1. Introduction:

L'escalier est un ouvrage constitué d'une suite régulière de plans horizontaux (marches et paliers) permettant, dans une construction, de passer à pied d'un étage à un autre.

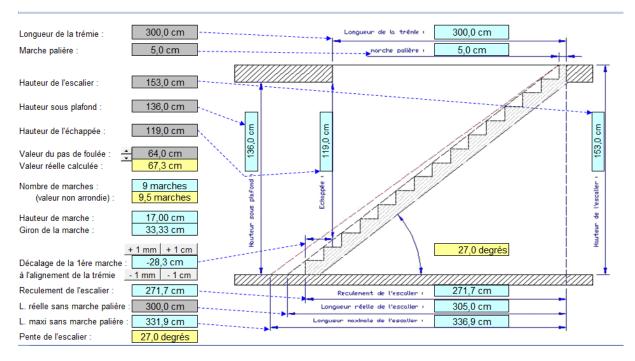
Notre structure contient un plancher en Mezzanine, ou des bureaux et des sanitaires sont installés, et pour y'accéder on prévoit un escalier comprise entre deux paliers successifs.

IV.2. Définition des éléments constituant les escaliers :

- ➤ Cage d'escalier: Pièce dans laquelle se trouve l'escalier.
- ➤ Palier: Est un espace plat et spacieux qui marque un étage après une série des marches, dont la fonction est de permettre un repos pendant la montée.
- ➤ **Giron:** Est une largeur d'une marche d'escalier mesurée entre l'aplomb de deux contremarches successives.
- ➤ Volée: Est une partie droite ou courbé d'escalier comprise entre deux paliers successifs.
- ➤ **Limon:** Est un élément incliné supportant les marches, pour les limons on emplois des profiles ou de la tôle, le dispositif le plus simple consiste à utiliser un profile en U sur l'âme verticale, situé sur le "côté" de l'escalier, parallèle au mur.
- Marche: Est la partie sur laquelle on pose les pieds. Elle est parallèle au sol.
- **Contremarche:** Est la partie verticale de la marche

Figure IV-1: vue 3D de l'escalier

IV.3. Choix des dimensions :


Le dimensionnement des marches et des contre marches sera déterminé à l'aide de la formule de BLONDEL : $59cm \le g + 2h \le 66cm$

h: Hauteur de la contre marche.

g: Giron.

Calcul d'un escalier droit :

Le calcul est fait avec un fichier EXEL

IV.4. Dimensionnement de la cornière (support) :

Les marches sont construites par des tôles striées, d'épaisseur 5 mm rigidifiés par des cornières jumelées soudées au milieu des tôles. Les cornières jumelées sont soudées avec les cornières d'attaches, ces derniers sont boulonnés avec le limon

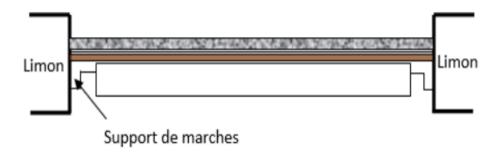


Figure IV-2 : disposition des cornières.

- La longueur de la marche L= 1,40 m
- La largeur de la marche l = G = 0.3 m
- Les cornières sont en acier S275 :
- $> fy = 23.5 \, daN/mm^2 / \text{(la limite élasticité d'acier)}.$
- $E = 21000 \, daN/mm^2$ (le module d'élasticité longitudinale de l'acier)

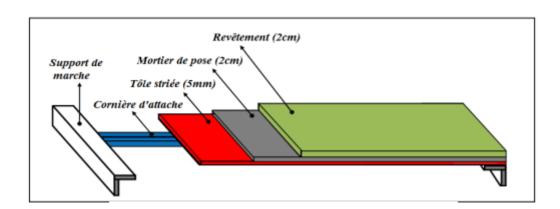


Figure IV-3 : Charge appliqué sur la cornière

IV.4.1. Détermination de la section de cornière:

Evaluation des charges:

a) Les charges permanentes : (Sans poids de profile)

 $G = (G_1 + G_2 + G_3) * d = (40 + 40 + 40) * 0.3 = 36 \, daN/m$

b) Les charges d'exploitations :

Pour la charge d'exploitation des escaliers $Q = 2.5 kN/m^2$

$$Q = 250 * 0.3 = 75 \ daN/m$$

> Les combinaisons des charges : (ELS)

$$q = G + Q = 36 + 75 = 111 \, daN/m$$

• Condition de flèche :

La flèche doit satisfaire la condition suivante :

$$f_y = \frac{5}{384} \frac{q * l^4}{E * I_y} < f_{adm} = \frac{l}{300}$$

$$I_{y} \ge \frac{5 * q * l^{3} * 300}{384 * E} = \frac{5 * 111 * 140^{3} * 300 * 10^{-2}}{384 * 2100000} = 5.66m^{4}$$

- ✓ La cornière qui correspond est : L 45 x 45 x 4
- ✓ Les caractéristiques sont :

Tableau IV-1: Caractéristique et dimension de L 45 x 45 x 4

$h = b \ (mm)$	t (mm)	$r_1 (mm)$	$r_2 (mm)$	d (mm)	
45	4	7	3.5	1.23	
$A(cm^2)$	G(daN/m)	$I_y = I_z \ (cm^4)$	$W_{el,y} = Wel, z (cm^3)$	$i_y = i_z \ (cm)$	
3.49	2.74	6.63	1.97	1.36	

Donc la charge permanente G devient (on inclue le poids de la cornière)

$$G = (G_1 + G_2 + G_3) * d * G = (40 + 40 + 40) * 0.3 + 2.74 = 38.74 \ daN/m$$

$$G = 38.74 \, daN/m$$

> Les combinaisons des charges :

• **ELS**:

$$q = G + Q = 38.74 + 75 = 113.74 \, daN/m$$

• ELU:

$$q = 1.35G + 1.5Q = 1.35 * 38.74 + 1.5 * 75 = 164.79 \, daN/m$$

IV.4.2. Vérification à la flèche :

La condition ce fait a l'ELS : $f_{max} < f_{adm}$

$$f_{max} = \frac{5}{384} \frac{q * l^4}{E * I_y} = \frac{5 * 113.74 * 1400^4}{384 * 21000 * 6.63 * 10^7} = 4.08 \ mm$$

$$f_{adm} = \frac{l}{300} = \frac{1400}{300} = 4.66 \, mm$$

o
$$f_{max} = 4.08mm < f_{adm} = 4.66mm.$$
 vérifiée

IV.4.3. Vérification de l'effort tranchant (cisaillement):

Pour cette vérification on utilise la condition suivante :

$$V_{sd} \leq V_{pl,Rd}$$

$$V_{sd} = \frac{q * L}{2} = \frac{164.79 * 1.4}{2} = 115.35 \ daN$$

$$V_{pl,Rd} = \frac{A(f_y)}{\gamma_{M0}\sqrt{3}} = \frac{3.49 * 2350}{1.1 * \sqrt{3}} = 4304.67 \text{ daN}$$

IV.4.4. Vérification du moment fléchissant (résistance) :

La condition a vérifiée : $M_{sd} \leq M_{c,Rd}$

$$M_{sd} = \frac{q*l^2}{8} = \frac{164.79*1.4^2}{8} = 40.37 \ daN.m$$

$$M_{c,Rd} = \frac{W_{el,y} * f_y}{\gamma_{M0}} = \frac{1.97 * 10^{-6} * 23.5 * 10^{6}}{1.1} = 42.08 \, daN. \, m$$

$$\circ \quad M_{sd} = 40.37 \; da N. \\ m \leq M_{c,Rd} = 42.08 \; \text{daN .m....} \\ \text{v\'erifi\'ee}$$

Conclusion:

Les cornières L 45 x 45 x 4 convient comme cornière d'attache.

IV.5. Dimensionnement de limon :

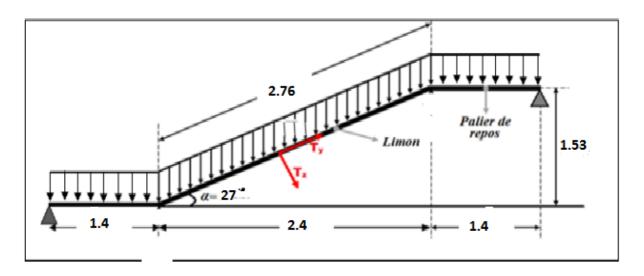


Figure IV-4: Distribution des charges sur un limon.

IV.5.1. Evaluation des charges :

> Sur la volée :

A1) Les charges permanentes :

•	Tôle striée ep = 5mm	$\rightarrow G1 = 40 daN/m^2$
•	Mortier de pose	$\rightarrow G2 = 40 daN/m^2$
•	Revêtement de carrelage	$\rightarrow G3 = 40 daN/m^2$
•	Cornier de support 7 45×45×4	$\rightarrow G4 = 2.74 daN/m$
•	Garde de corps	$\rightarrow G5 = 100 \ daN/m^2$

$$G = (G1 + G2 + G3) * d + P_c + P_G$$

$$= (45 + 40 + 40)x 1.4 + 2.74 + 100 = 277.72 \, daN/m$$

$$\rightarrow G = 277.72 \, daN/m$$

La charge totale pour 1 Limon: $G = \frac{G_T}{2} = \frac{277.72}{2} = 138.86 \, daN/m$

> Sur le palier :

A2) Les charges permanentes :

•	Tôle striée ep $= 7 \text{ mm}$	$\rightarrow G1 = 58.5 daN/m^2$
•	Mortier de pose	$\rightarrow G2 = 40 daN/m^2$
•	Revêtement de carrelage	$\rightarrow G3 = 40 daN/m^2$
•	Dalle en béton (8 cm)	$\rightarrow G4 = 200 daN/m^2$

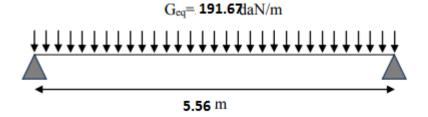
La charge totale :
$$G = (G1 + G2 + G3 + G4) * d = (58.5 + 40 + 40 + 200) * 1.4$$

$$G = 473.9 \, daN/m$$

La charge total pour 1 limon : $G_T = \frac{G}{2} = 236.95 \ daN/m$

a) Charge d'exploitation :

 $P = 250 daN/m^2$


$$Q = P.d = 250.\frac{1.4}{2} = 175 \ daN/m$$

IV.5.2. Calcul de la charge équivalente :

On peut exprimer les différentes charges par une charge équivalente.

> Charges permanentes:

$$G_{eq} = \frac{236.95(1.4 + 1.4) + (138.86 * 2.4)}{5.2} = 191.67 \,\text{daN/m}$$

Figure IV-5 : charge équivalente(G)

> Charge d'exploitation

$$Q_{eq} = 250 * \frac{1.4}{2} = 175 \ daN/m$$

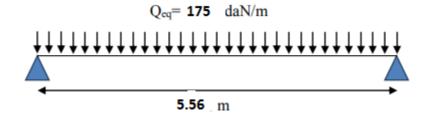


Figure IV-6 : charge équivalente (Q)

À l'ELU:

$$1.35G + 1.5Q = 1.35 * 191.67 + 1.5 * 175 = 521.25 \, daN/m$$

À L'ELS:

$$G + Q = 366.67 \, daN/m$$

IV.5.3. Vérification de la flèche :(ELS)

$$f_y = \frac{5 * q * l^4}{384EI_y} \le f_{adm} = \frac{l}{300}$$
$$I_y \ge \frac{5 * 3.66 * 556^3 * 300}{384 * 2.1 * 10^6} = 1170.16 cm^4$$

On opte un UPN 180

Tableau IV-2: Dimension et caractéristique de l'UPN 180

h (mm)	b (mm)	tw (mm)	tf (mm)	d (mm)	A (cm2)	P (daN	<i>Iy</i> (<i>cm</i> 4)
						/ m)	
180	70	8	11	133	28	22	1350
Wel, y(cm3)	iy (cm)	Wpl, y(cm3)	Iz (cm4)	Wel, z(cm3)	iz (cm)	Wpl,z(cm3)	
150	6.95	179	114	22.4	2.02	42.9	

IV.5.4. Vérification à la résistance : (ELU)

Pour cette vérification on utilise la condition suivante :

$$M_{sd} \leq M_{ply,Rd}$$

IV.5.5. Vérification à l'effort tranchant :

$$V_{sd} \leq V_{ply,Rd}$$

$$\begin{cases} V_{sd} = \frac{q_u * l}{2} = \frac{521.25 * 5.56}{2} = 1449.07 \ daN \\ V_{ply,Rd} = \frac{A_{vy} * f_y}{\gamma_{M0} \sqrt{3}} = \frac{12.9 * 2350}{1.1 \sqrt{3}} = 15911.24 \ daN \end{cases}$$

Avec :
$$A_{vy} = A - A_{vz} = 28 - 15.1 = 12.9 \text{ cm}^2$$

Donc:

$$V_{sd} = \ 1449.07 \ daN \leq V_{ply,Rd} = \ 15911.24 \ daN \ ...$$
vérifiée

IV.5.6. Vérification à la compression :

Pour cette vérification on utilise la condition suivante :

$$\begin{cases}
N_{sd} < N_{plrd} \\
N_{sd} = q_u * l = 521.25 * 5.56 = 2898.15 daN \\
N_{plrd} = \frac{A * f_y}{\gamma_{M0}} = \frac{28 * 2350}{1.1} = 59818.18 daN
\end{cases}$$

$$\Rightarrow N_{sd} < N_{plrd}$$
 vérifiée

Remarque:

Selon l'EUROCODE -3- il faut vérifier le limon sous la condition d'un élément comprimé et fléchie (flexion composée), la formule suivante doit être vérifiée pour la sécurité :

$$\begin{split} \frac{N_{sd}}{N_{plrd}} + \frac{M_{sd}}{M_{ply,Rd}} &\leq 1.0\\ \frac{2898.15}{59818.18} + \frac{2014.21}{3824.09} &= 0.57 \leq 1.0 \end{split}$$

Donc : la condition est vérifiée, le limon en UPN 180 est vérifié a la sécurité.

IV.6. Etude de la poutre palière des limons :

IV.6.1. Evaluation de charges :

Détermination de la réaction du limon sur la poutre palière « R »

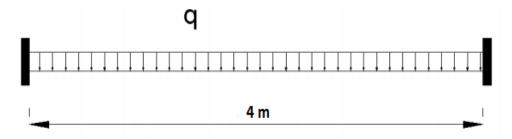


Figure IV-7: Schéma statique de la poutre palière

La réaction du limon sur la poutre palière est donnée par la formule suivante :

> ELU:
$$R = (1,35Geq + 1,5Qeq) \times L/2$$

$$R = (1,35 * 191.67 + 1,5 * 175) * \frac{5.56}{2} = 1449.08 daN$$

> ELS:

$$R = (G_{eq} + Q_{eq}) x L/2$$

$$R = (191.67 + 175)x \frac{5.56}{2} = 1019.34 daN$$

Charge équivalente :

• **ELS**:

$$\frac{4*R}{4}$$
 + Garde corps = 1019.34 + 100 = 1119.34 daN/ml

• **ELU**:

$$\frac{4*R}{4} + 1.35 \ Garde \ corps = 1449.08 + 135*100 = 1584.08 \ daN/ml$$

IV.6.2. Condition de la flèche

Pour une poutre bi articulée : La flèche doit satisfaire la condition suivante :

$$f_y = \frac{5 * q * l^4}{384EI_y} \le f_{adm} = \frac{l}{300}$$

Avec:

q: la charge non pondéré

$$q = 1119.34 \, daN/m$$

Le module d'élasticité $E = 2.1x10^6 daN / cm2$

L=4 m = 400 cm

■
$$I_y \ge \frac{5*11.19*400^3*300}{384*2.1*10^6} = 1332.14 \text{ cm}^4$$
 on opte un HEA 160

Tableau IV-3: Dimension et caractéristique de l'HEA160

h (mm)	b (mm)	tw (mm)	tf (mm)	d (mm)	A (cm2)	P (daN	<i>Iy</i> (<i>cm</i> 4)
						/ m)	
152	160	6	9	104	38.8	30.4	1673
Wel, y(cm3)	iy (cm)	<i>Wpl</i> , y(cm3)	<i>Iz</i> (<i>cm</i> 4)	Wel, z(cm3)	iz (cm)	Wpl,z(cm3)	
220.1	6.57	245.1	615.6	76.95	3.98	117.6	

La classe de la section

Semelle comprimée :

$$C = \frac{(b/2)}{t_f} = 8.88 \text{ mm}$$

 $8 < 9\varepsilon \rightarrow \text{La semelle est de classe } \mathbf{1}$

Ame fléchi:

$$d/t_w = 104/_6 = 17.33 < 72\varepsilon \rightarrow L$$
'âme est de classe 1

La section globale étant de classe1 le calcul peut amener à la plasticité.

> Vérification du moment fléchissant :

Pour cette vérification on utilise la condition suivante :

$$\begin{split} \mathbf{M}_{sd} & \leq \mathbf{M}_{ply,Rd} \\ \mathbf{M}_{sd} & = \frac{q_u * l^2}{8} = \frac{1584.08 * 4^2}{8} = 3168.16 \ daN.m \\ \mathbf{M}_{ply,Rd} & = \frac{W_{ply} * f_y}{\gamma_{M0}} = \frac{245.1 * 10^{-2} * 2350}{1.1} = 5236.22 \ daN.m \\ \mathbf{M}_{sd} & = 3168.16 \ \leq \mathbf{M}_{ply,Rd} = 5236.22 \ \dots \ \text{v\'erifi\'ee} \end{split}$$

> Vérification de l'effort tranchant :

On doit vérifier la condition suivante :

$$V_{sd} \le V_{ply,Rd}$$

$$\begin{cases} V_{sd} = \frac{q_u * l}{2} = \frac{1584.08 * 4}{2} = 3168.16 \ daN \\ V_{ply,Rd} = \frac{A_{vy} * f_y}{v_{MO}\sqrt{3}} = \frac{13.21 * 2350}{1.1\sqrt{3}} = 16293.61 \ daN \end{cases}$$

Donc:

$$V_{sd} = 3168.16 \ daN \le V_{ply,Rd} = 16293.61 \ daN \dots$$
vérifiée

Vérification au déversement :

La vérification au déversement est effectuée avec la formule suivante :

$$M_{sd} \leq M_{b,rd} = \chi_{LT} * \beta_{w} * w_{ply} * \frac{f_{y}}{\gamma_{MO}}$$

- Calcul du moment critique au déversement :

$$M_{cr} = C_1 \frac{\pi^2 * E * I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 * G * I_t}{\pi^2 * E * I_z}}$$

Ou :
$$G = \frac{E}{2(1+\nu)} = \frac{2.1*10^5}{2(1+0.3)} = 80769.23 \ N/mm^2$$

It : Moment d'inertie de torsion

Iw: Moment d'inertie de gauchissement

I_z: Moment d'inertie de flexion suivant l'axe de faible inertie

$$M_{cr} = 1.13 \frac{3.14^2 * 2.1 * 10^5 * 615.6 * 10^4}{4000^2} \sqrt{\frac{31.41 * 10^9}{615.6 * 10^4} + \frac{4000^2 * 80769.23 * 12.19 * 10^4}{3.14^2 * 2.1 * 10^5 * 615.6 * 10^4}}$$

$$M_{cr} = 118953618.2 \text{ N. mm}$$

\triangleright Calcul de l'élancement géométrique λ_{LT} :

$$\lambda_{LT} = \sqrt{\frac{\pi^2 * E * w_{ply}}{M_{cr}}}$$

$$\lambda_{LT} = \sqrt{\frac{3.14^2 * 2.1 * 10^5 * 245.1}{118953618.2}} = 65.31$$

\triangleright Calcul de l'élancement réduit $\overline{\lambda_{LT}}$:

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

La valeur de χ_{LT} pour l'élancement réduit $\overline{\lambda_{LT}}$ est déterminée à partir de la formule (5.49) de l'Eurocode3 :

$$\chi_{LT} = \frac{1}{\emptyset_{LT} + \left[\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}} \qquad \text{Avec} \qquad \chi_{LT} < 1$$

Ou:

$$\emptyset_{LT} = 0.51 + \left[\alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) \overline{\lambda_{LT}}^2 \right]$$

 $\alpha_{LT} = 0.21$ Pour les profiles laminées.

 $\alpha_{LT} = 0.49$ Pour les sections soudées

AN:
$$\emptyset_{LT} = 0.51 + [0.21(0.69 - 0.2) \ 0.69^2] = 1.08$$

$$\chi_{LT} = \frac{1}{1.08 + [1.08^2 - 0.69]^{0.5}} = 0.52$$

Donc
$$M_{b,rd} = 052 * 245.1 * 10^{-2} * \frac{2350}{1.1} = 2722.83 \ daN.m$$

$$\longrightarrow M_{sd} > M_{b,rd}$$
 non vérifiée

On opte un HEA180

Tableau IV-4: Dimension et caractéristique de l'HEA180

h (mm)	b (mm)	tw (mm)	<i>tf</i> (<i>mm</i>) <i>d</i> (<i>mm</i>)		A (cm2)	P (daN	<i>Iy</i> (<i>cm</i> 4)
						/ m)	
171	180	6	9.5	122	45.3	35.5	2510
Wel, y(cm3)	iy (cm)	<i>Wpl, y(cm3)</i>	Iz (cm4)	Wel, z(cm3)	iz (cm)	Wpl,z(cm3)	
293.6	7.45	324.9	924.6	102.7	4.52	156.5	

La classe de la section

Semelle comprimée :

$$C = \frac{(b/2)}{t_f} = 9.47 \text{ mm}$$

 $9.47 < 10\varepsilon \rightarrow \text{la semelle est de classe } \mathbf{1}$

Ame fléchi:

$$d/t_{w} = \frac{122}{6} = 20.33 < 72\varepsilon \rightarrow \text{L'âme est de classe 1}$$

La section globale étant de classe1 le calcul peut amener à la plasticité.

> Vérification du moment fléchissant :

Pour cette vérification on utilise la condition suivante :

$$M_{sd} \leq M_{ply,Rd}$$

$$M_{sd} = \frac{q_u * l^2}{8} = \frac{1584.08 * 4^2}{8} = 3168.16 \ daN.m$$

$$M_{ply,Rd} = \frac{W_{ply} * f_y}{\gamma_{M0}} = \frac{324.9 * 10^{-2} * 2350}{1.1} = 6941.04 \ daN.m$$

$$\boldsymbol{M_{sd}} = 3168.16 \leq \boldsymbol{M_{ply,Rd}} = 6941.04$$
vérifiée

Vérification de l'effort tranchant :

On doit vérifier la condition suivante :

$$V_{sd} \leq V_{ply,Rd}$$

$$\begin{cases} V_{sd} = \frac{q_u * l}{2} = \frac{1584.08 * 4}{2} = 3168.16 \ daN \\ V_{ply,Rd} = \frac{A_{vz} * f_y}{\gamma_{M0}\sqrt{3}} = \frac{14.47 * 2350}{1.1\sqrt{3}} = 16293.61 \ daN \end{cases}$$

Donc:

$$V_{sd} = 3168.16 \; daN \leq V_{ply,Rd} = 16293.61 \;\;\; daN \; ...$$
vérifiée

Vérification au déversement :

La vérification au déversement est effectuée avec la formule suivante :

$$M_{sd} \leq M_{b,rd} = \chi_{LT} * \beta_{W} * W_{ply} * \frac{f_{y}}{\gamma_{MO}}$$

- Calcul du moment critique au déversement :

$$M_{cr} = C_1 \frac{\pi^2 \cdot E \cdot I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z}}$$

$$Ou: G = \frac{E}{2(1+\nu)} = \frac{2.1 \cdot 10^5}{2(1+0.3)} = 80769.23 \ N/mm^2$$

I_t: Moment d'inertie de torsion

I_w: Moment d'inertie de gauchissement

I_z: Moment d'inertie de flexion suivant l'axe de faible inertie

$$M_{cr} = 1.13 \frac{3.14^2 * 2.1 * 10^5 * 924.6 * 10^4}{4000^2} \sqrt{\frac{60.21 * 10^9}{924.6 * 10^4} + \frac{4000^2 * 80769.23 * 14.80 * 10^4}{3.14^2 * 2.1 * 10^5 * 924.6 * 10^4}}$$

$$M_{cr} = 173687387.3 \text{ N. mm}$$

\succ Calcul de l'élancement géométrique λ_{LT} :

$$\lambda_{LT} = \sqrt{\frac{\pi^2 * E * w_{\text{ply}}}{M_{cr}}}$$

$$\lambda_{LT} = \sqrt{\frac{3.14^2 * 2.1 * 10^5 * 324.9 * 10^3}{173687387.3}} = 62.23$$

ightharpoonup Calcul de l'élancement réduit $\overline{\lambda_{LT}}$:

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} * \left(\sqrt{\beta_w}\right) \qquad \text{Avec} \qquad \beta_w = 1$$

•
$$\lambda_1 = 0.93\epsilon$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}}$

La valeur de χ_{LT} pour l'élancement réduit $\overline{\lambda_{LT}}$ est déterminée à partir de la formule (5.49) de l'Eurocode3 :

$$\chi_{LT} = \frac{_1}{_{\emptyset_{LT} + \left[\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}}} \qquad \text{Avec} \qquad \chi_{LT} < 1$$

Ou:

$$\emptyset_{LT} = 0.51 + \left[\alpha_{LT} \big(\overline{\lambda_{LT}} - 0.2\big) \, \overline{\lambda_{LT}}^2\right]$$

 $\alpha_{LT} = 0.21$ Pour les profiles laminées.

 $\alpha_{LT} = 0.49$ Pour les sections soudées

AN:
$$\emptyset_{LT} = 0.51 + [0.21(0.66 - 0.2) \ 0.66^2] = 1.04$$

$$\chi_{LT} = \frac{1}{1.04 + [1.04^2 - 0.66]^{0.5}} = 0.54$$

Donc
$$M_{b,rd} = 054 * 324.9 * 10^{-2} * \frac{2350}{1.1} = 3748.16 \ daN.m$$

IV.6.3. Conclusion:

HEA180 convient comme poutre palière

V. Introduction:

Le plancher mixte est un système porteur formé par les poutres, la tôle profilée et la dalle de béton armé coulé dessus. Le béton remplit la fonction de membrure supérieure comprimée, la tôle profilée sert d'armature et garantit par sa forme l'adhérence au béton. Un léger treillis d'armature dans la dalle est destiné à limiter la fissuration du béton. Lorsque la dalle est liée à la poutre principale par des connecteurs, l'ensemble constitue un plancher mixte acier-béton. Ce système est très économique.

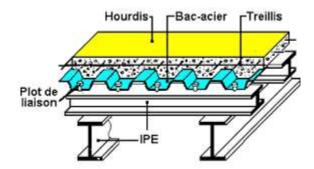


Figure V-1: Eléments constructifs d'un plancher collaborant

V.1. Calcul des planchers mixte à dalle collaborant

Le calcul des planchers mixte se fait en deux phases :

- Phase de construction
- Phase finale

1) Phase de construction :

Dans cette phase c'est le profilé seul qui travaille et les charges prises en compte dans cette

Phase sont les suivantes :

- Poids propre du profilé
- Poids propre du béton frais
- Poids propre de la tôle
- Surcharge chantier (ouvrier)

2) Phase finale:

Le béton ayant durci, donc la section mixte acier béton (profilé et la dalle) travaillant ensemble en doit tenir compte des charges suivantes :

- Le poids propre du profilé
- Le poids propre du béton sec
- Le poids propre de la tôle HIBOU 55

Surcharge d'exploitation

Dans notre cas on considère le plancher à usage bureau

V.2. Disposition des solives (poutrelles) :

Dans notre cas les démentions les plus défavorable pour le dimensionnement des éléments de plancher sont montrer sur figure ci-après :

- distance entre les solives est d=2 m.
- la longueur de solives est 1 = 4,00m.

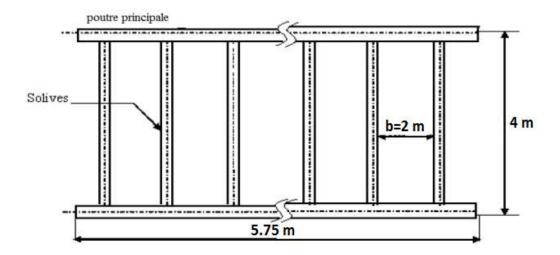


Figure V-2: Schéma de la trame supportant les planchers.

La Caractéristique des éléments constructifs :

> L'acier:

On utilise des poutres IPE, comme solives qui ont les caractéristiques suivantes :

- Module de YOUNG (module d'élasticité longitudinal) $\rightarrow Ea = 21.10^4 Mpa$
- La limite élastique de traction

 $\rightarrow fy = 235 Mpa$

> Béton:

Pour les planchers, on utilise un béton C25/30 de épaisseur (e=14 cm) qui ont les caractéristiques suivantes :

La résistance caractéristique à la compression

$$\rightarrow fc_{28} = 25 Mpa$$

• La masse volumique

$$\rightarrow \rho = 2500 Kg/m^3 = 2.5 KN/m^2$$

• Le module d'élasticité longitudinale

$$\rightarrow E_b = 14000 \, Mpa$$

.• le coefficient de retrait du béton

$$\rightarrow \varepsilon = 2.10^{-4}$$

• le coefficient d'équivalence acier/béton :

$$\rightarrow n = \frac{E_a}{E_h} = 15$$

V.3. Vérification au stade de montage

V.3.1. Evaluation des charges :

Ce sont les actions correspondant aux mobiliers et aux personnes qui habites ou fréquemment L'immeuble. Pour cela le règlement technique DTR-BC 2.2 (charges et surcharges) nous fixe Les valeurs des charges et surcharges.

a) Les charges permanentes :

- Poids de la dalle en béton (épaisseur 14 cm) : $G_1 = \rho \cdot e = 2500 \times 0.14 = 350 daN/m^2$
- Poids de la tôle (HIBOU 55) : $G_2 = 12 daN/m^2$
- Poids du treillis soudé :..... $G_3 = 1 daN/m^2$

$$G = (G_1 + G_2 + G_3) * d = (350 + 12 + 1) * 2$$

 $G = 726 \, daN/ml$

b) Les charges variables :

Charge des ouvriers : $P = 100 \, daN/m^2$

$$Q = P \cdot d = 100 \times 2 = 200 \ daN/ml$$

V.3.2. Les combinaisons des charges :

• **ELS**:

$$q = G + Q = 417.47 + 200 = 926 \, daN/ml$$

• ELU:

$$q = 1.35G + 1.5Q = 1.35 * 417.47 + 1.5 * 115 = 1280.1 daN/ml$$

V.3.3. Condition de flèche:

La flèche doit satisfaire la condition suivante :

$$f_y = \frac{5}{384} \frac{q * l^4}{E * l_y} < f_{adm} = \frac{l}{250}$$

$$I_y \ge \frac{5 * q * l^3 * 300}{384 * E} = \frac{5 * 926 * 400^3 * 250 * 10^{-2}}{384 * 2100000}$$

$$I_{\nu} = 918.65 \ cm^4$$

On choisit la section du profilé dans les tableaux ayant une valeur de I_y supérieure ou égale à la valeur trouvée.

✓ On opte un IPE 180

Tableau V-1: Dimension et caractéristique de l'IPE 180

	Dimensions								Caractéristiques de calcul						
Profilé IPE140	G Kg/m	h mm	b mm	tw mm	tf mm	d mm	A cm ²	Wpl, y	Wpl, z cm³	iz cm	iy cm	Iz cm	Iy cm ⁴		
II L140	12.9	14 0	73	4.7	6.9	112.9	16.4	88.3	19.3	1.6 5	5.74	44.9	541		

On ajoute le poids propre de l'IPE 140 à la charge permanente :

$$G = (G_1 + G_2 + G_3) * d + G_P = (350 + 12 + 1) * 2 + 12.9$$

 $G = 738.9 \, daN/$

• **ELS**:

$$q = G + Q = 738.9 + 200 = 938.9 \, daN/ml$$

• ELU:

$$q = 1.35G + 1.5Q = 1.35 * 738.9 + 1.5 * 200 = 1297.51 daN/ml$$

V.3.4. Vérification a l'ELU:

V.3.4.1. Vérification du moment fléchissant (résistance) :

Pour cette vérification on utilise la condition suivante :

$$M_{sd} \leq M_{pl,Rd}$$

$$M_{sd} = \frac{q * l^2}{8} = \frac{1297.51 * 4^2}{8} = 2595.02 \ daN.m$$

$$M_{c,Rd} = \frac{W_{pl,y} * f_y}{\gamma_{M0}} = \frac{166 * 23.5}{1.1} = 3546.36 \, daN. m$$

$$\circ \quad M_{sd} = 2595.02 \geq M_{pl,Rd} = 3546.36.... \text{vérifiée}$$

V.3.4.2. Vérification de la section à l'effort tranchant (cisaillement) :

Pour cette vérification on utilise la condition suivante :

$$V_{sd} \leq V_{pl,Rd}$$

$$V_{sd} = \frac{q * L}{2} = \frac{1297.51 * 4}{2} = 2595.02 \, daN$$

$$V_{pl,Rd} = \frac{A(f_y)}{\gamma_{Mo}\sqrt{3}}$$

$$> \gamma_{M0} = 1.1$$

$$A_v = A - 2b * t_f + (t_w + 2r)t_f$$

$$A_v = 1640 - 2 * 112.9 * 6.9 + (4.7 + 2 * 7) * 6.9 = 211.01 \, mm^2$$

$$V_{pl,Rd} = \frac{211.01(23.5)}{1.1\sqrt{3}} = 4958.73 \text{ daN}$$

$$V_{sd} = 2595.\,02~daN \le V_{\rm pl,Rd} = 4958.\,73~{\rm daN}.....$$
vérifier

V.3.5. Vérification à l'ELS:

•
$$f_{adm} = \frac{l}{250} = \frac{400}{250} = 1.6cm$$

•
$$f_{max} = \frac{5}{384} \frac{q \cdot l^4}{E \cdot l_y} = \frac{5 \cdot 9.38 \cdot 400^4}{384 \cdot 2.1 \cdot 10^6 \cdot 1943} = 0.44 \ cm$$

$$f_{max} = 0.44 < f_{adm} = 1.6...$$
 vérifier

V.3.6. Conclusion:

L'IPE 180 est vérifié au stade de montage.

V.4. Vérification au stade finale :

V.4.1. Evaluation des charges :

i. Les charges permanentes :

Le béton ayant durci donc la section mixte (le profilé dans la dalle) travaillant ensemble donc les charges de la phase finale sont :

- ✓ Cloison de réparation90 daN/m^2
- ✓ Revêtement en carrelage40 daN/m^2
- ✓ Mortier de pose40 daN/m^2

- ✓ Poids de la dalle $350 daN/m^2$
- ✓ Isolation thermique16 daN/m^2
- ✓ Poids de la solive (IPE 140)12.9 daN/m

$$G = (G1 + G2 + G3 + G5 + G6 + G7) \times d + P$$

 $G = (90 + 350 + 40 + 40 + 16 + 12) * 1.15 + 12.9$

G = 643.1 daN/ml

ii. Les charges variables :

Plancher courant : $P = 250 \, daN/m^2$ (DTR tableau 7.2.4)

$$Q = P \times d = 250 \times 1,15 = 287.5 \, daN/ml$$

V.4.2. Combinaisons des charges :

& ELS:

$$q = 1,35.G + 1,5.Q = 1,35 \times 643 + 1,5 \times 287.5 = 1299.3 \,\mathrm{daN/ml}$$

Après le durcissement du béton, l'inertie de la dalle I1 participe avec l'inertie des solives I2, ce qui donne une inertie équivalente I.

V.4.3. Caractéristique de la dalle mixte :

V.4.3.1. Calcul de la largeur efficace du béton :

La largeur efficace du béton qui participe à l'inertie équivalente I, de la section mixte notée par B_{eff} est donnée selon EC4.4.2.2.1 par:

$$b_{\text{eff}} = min(2\frac{l_0}{8};b)$$
 EU 4.2.2.1- page 4-7

 ℓ_o : est la longueur de solive.

$$b_{eff} = min\left(2\frac{4}{8}; 2\right) \qquad \Longrightarrow \quad b_{eff} = \mathbf{1m}$$

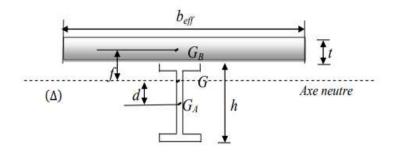


Figure V-3 : Présentation de l'ensemble (solive-dalle)

V.4.3.2. Calcul de la section équivalente :

La formule de calcul de la section équivalente acier-béton est :

$$S = A + \frac{B}{n}$$

Avec: A: section d'acier

B : section de la dalle en béton

n: facteur d'équivalence (n = 15)

AN:
$$A = 16.4 cm^{2}$$

$$B = b x h = 100 x 14 = 1400 cm^{2}$$

$$S = 16.4 + \frac{100*14}{15} = 109.73 cm^{2}$$

V.4.3.3. Position de l'axe neutre :

$$d = \frac{b.t}{n} \cdot \frac{t+h}{2S} \to d = \frac{1000}{15} \frac{14+14}{2*109.73} = 83.46 \ mm$$

$$d = 83.46 mm$$

Donc l'axe neutre de la section mixte se trouve au niveau de l'âme du profilé.

> Résistance de la section d'acier :

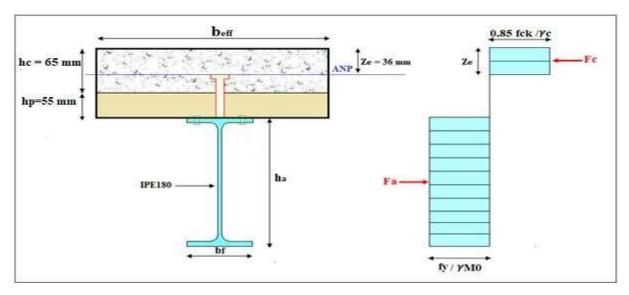
$$F_a = \frac{A_a * f_y}{\gamma_a} = \frac{16.4 * 2350}{1.1} = 35036.36 \text{ daN}$$

Résistance de la section du béton :

$$F_b = \frac{0.85 * b_{\text{eff}} * h_c * f_{ck}}{v_b}$$

Avec:

-
$$h_c = 140 - 55 = 85 \text{ mm}$$


$$- \gamma_b = 1.5$$

-
$$f_{ck} = f_{28} = 25 \text{ MPa}$$

AN:

$$F_b = \frac{0.85 * 8.5 * 100 * 250}{1.5} = 120416.6 \text{ daN}$$

 $F_b > F_a$ Donc l'axe neutre plastique se situe dans la dalle en béton

Figure V-4: Distribution plastique des contraintes normales : cas de l'axe neutre plastique dans la dalle (flexion positive)

V.4.4. Vérification à L'ELU:

V.4.4.1. Vérification du moment de résistance plastique :

On doit vérifier la condition suivante:

$$M_{sd} \leq M_{pl,Rd}$$

$$M_{sd} = \frac{q * l^2}{8} = \frac{1299.3 * 4^2}{8} = 2598.6 \ daN.m$$

Dans le cas d'une flexion positive avec un axe neutre dans la dalle Le moment de résistance plastique est donné par la formule suivante :

$$M_{pl,Rd} = F_a \left(\frac{h_c}{2} + h_c + h_p - \frac{Z}{2} \right) = \frac{A_a * f_y}{\gamma_2} \left(\frac{h_c}{2} + h_c + h_p - \frac{Z}{2} \right)$$

Avec:

$$\textbf{\textit{Z}} = \left[\frac{A_a*f_y}{\gamma_a}\right] / \left[\frac{0.85*b_{eff}*f_{ck}}{\gamma_b}\right]$$

Chapitre V

Plancher mixte

$$\mathbf{Z} = \left[\frac{16.4*2350}{1.1}\right] / \left[\frac{0.85*100*250}{1.5}\right] = 2.47 \ cm$$

$$\implies M_{pl,Rd} = 35036.36 \left(\frac{0.14}{2} + 0.085 + 0.055 - \frac{0.0247}{2} \right) = 6924.93 \ daN. m$$

 $M_{sd} = 2598.6 \le M_{pl,Rd} = 6924.93....$ vérifier.

V.4.4.2. Vérification de l'effort tranchant :

On doit vérifier la condition suivante:

$$V_{sd} \leq V_{pl,Rd}$$

$$V_{sd} = \frac{q*L}{2} = \frac{1299.3*4}{2} = 2598.6 \ daN$$

$$ightharpoonup V_{pl,Rd} = \frac{A(f_y)}{\gamma_{Mo}\sqrt{3}}$$

Avec : $A_v = A_{vz} = 7.64 \ cm^2$

Donc:
$$V_{pl,Rd} = \frac{7.64*2350}{1.1\sqrt{3}} = 9423.40 \text{ daN}$$

 $V_{sd} = 2598.6 \le V_{\rm pl,Rd} = 9423.40...$ vérifier

V.4.5. Vérification à L'ELS:

> Vérification de la flèche :

On doit vérifier la condition suivante : $fmax < \overline{f}$

$$f_{max} = \frac{5}{384} \, \frac{q * l^4}{E * I_y}$$

Avec:

L : la portée de la solive.

I : Le moment d'inertie de la section mixte par rapport à l'axe neutre élastique.

E : module d'élasticité de l'acier.

> Calcul du moment d'inertie I :

$$I_y = I_A + Ad^2 + \frac{I_B}{n} + \frac{b_{eff} * h_c}{n} * (\frac{t+h}{2} - d)^2$$

Avec:

I_A: Inertie propre de l'IPE140

h_c: Hauteur de la dalle seule

I_B : Inertie de la section en béton

$$I_{B} = \frac{b_{eff} * h_{c}^{3}}{12} = \frac{100 * 8.5^{3}}{12} 5117.70 \text{ cm}^{4}$$

d : distance du centre de gravité du profilé (GA) a l'axe neutre élastique qui sera calculé en égalisons les moments statiques de la dalle en béton et le profilé par rapport à cet axe :

$$d = \left[\frac{b_{\text{eff}} * h_{\text{c}}}{n} \left(t + \frac{h}{2}\right)\right] / \left[A_a + \frac{b_{\text{eff}} * h_{\text{c}}}{n}\right]$$
$$d = \left[\frac{100 * 8.5}{15} \left(14 + \frac{14}{2}\right)\right] / \left[16.4 + \frac{100 * 8.5}{15}\right] = 16.28 \text{ cm}$$

Donc:

$$I_{y} = 541 + 16.4 * 16.28^{2} + \frac{5117.70}{15} + \frac{100 * 8.5}{15} \left(\frac{14 + 14}{2} - 16.28\right)^{2} = 5523.38 \text{ cm}^{4}$$

$$\begin{cases} f_{max} = \frac{5}{384} \frac{q * l^{4}}{E * I_{y}} = \frac{5 * 1103.1 * 10^{-2} * 400^{4}}{384 * 2.1 * 10^{6} * 5523.38} = 0.31 \text{ cm} \\ \bar{f} = \frac{1}{250} = \frac{400}{250} = 1.6 \text{ cm} \end{cases}$$

$$\implies f_{max} < \bar{f}$$
 vérifier

V.5. Pré dimensionnement des poutres principales du plancher intermédiaire :

V.5.1. Evaluation des charges et surcharges :

> Charges permanentes:

- Poids propre du plancher : $G_P = 548 * 4 = 2192 \ daN/ml$
- Poids propre de la solive : $G_S = 12.9 * 4 = 51.6 \ daN/ml$

> Charges variables :

- Surcharge d'exploitation : $P = 250 \, daN/ml$ (DTR tableau 7.2.4)

$$\rightarrow Q = P * d = 250 * 4 = 1000 \, daN/ml$$

V.5.2. Combinaisons de charges :

✓ ELS:

$$q = G_t + Q = (2192 + 51.6) + 1000 = 3243.6 \, daN/ml$$

✓ ELU:

$$q = 1.35G_t + 1.5Q = 1.35(2243.6) + 1.5(1000) = 4528.86 \, daN/ml$$

V.5.3. Condition de la flèche :

La vérification de la flèche se fait sous les charges $q = 3243.6 \ daN/ml$

La flèche doit satisfaire la condition suivante :

$$f_y = \frac{5}{384} \frac{q \cdot l^4}{E \cdot l_y} < f_{adm} = \frac{l}{200} \text{ avec } f_{adm} = \frac{575}{200} = 2.875 \text{ cm}$$

avec : l = 575cm: longueur de la poutre principale

$$I_{y} \ge \frac{5*q*l^{3}*200}{384*E} = \frac{1250}{384}*\frac{3243.6*10^{-2}*575^{3}}{2.1*10^{6}} = 9558.51 \, cm^{4}$$

On choisit la section du profilé dans les tableaux ayant une valeur de Iy supérieure ou égale à la valeur trouvée.

✓ On opte un IPE 330

Tableau V-2: Dimension et caractéristique de l'IPE 330

	Dimensions							Caractéristiques de calcul						
Profilé IPE330	G Kg/m	h mm	b mm	tw mm	tf mm	d mm	A cm ²	Wpl, y cm ³	Wpl, z cm³	iz cm	iy cm	Iz cm	Iy cm ⁴	
IPE330	49.1	33	16 0	7.5	11.5	271	62.6	804	154	3.5 5	13.7	788	11770	

V.5.4. Vérification à l'ELU:

Classification de la section

Semelle comprimée :

$$C = (b/2) - (r + tw/2) = 67.25 mm$$

$$C/tf = 67.25/11.5 = 5.84$$

 $5.84 < 9\varepsilon = 9$; donc la semelle est de classe 1.

Ame fléchi:

 $d / tw = 271 / 7.5 = 36.13 < 72\varepsilon = 72$ Donc l'âme est de classe 1.

La section globale étant de classe1 le calcul peut amener à la plasticité.

Vérification de la section à la résistance :

$$M_{sd} \leq M_{pl,Rd}$$

$$M_{sd} = \frac{q * l^2}{8} = \frac{4528.86 * 5.75^2}{8} = 18716.92 \ daN.m$$

$$M_{pl,Rd} = \frac{W_{pl,y} * f_y}{\gamma_{M0}} = \frac{804 * 23.5}{1.1} = 17176.36 daN/m$$

$$M_{sd} > M_{pl,Rd}$$
condition n'est pas vérifiée

Donc on change le profilé et on opte IPE360

Tableau V-3: Dimension et caractéristique de l'IPE 360

	Dimensions							Caractéristiques de calcul						
Profilé IPE360	G Kg/m	h mm	b mm	tw mm	tf mm	d mm	A cm ²	Wpl, y	Wpl, z cm³	iz cm	iy cm	lz cm	Iy cm ⁴	
H L300	57.1	36 0	17 0	8.0	12.7	298.6	72.7	101 9	191	3.7 9	15	1043	16270	

Classification de la section

Semelle comprimée :

$$C = (b/2) - (r + tw/2) = 72 mm$$

$$C/tf = 67.25/11.5 = 5.66$$

 $5.66 < 9\varepsilon = 9$; Donc la semelle est de classe 1.

Ame fléchi:

$$d / tw = 298.6 / 8 = 37.32 < 72\varepsilon = 72$$
 donc l'âme est de classe 1.

La section globale étant de classe1 le calcul peut amener à la plasticité.

Vérification de la section à la résistance :

$$M_{sd} \leq M_{pl,Rd}$$

$$M_{sd} = \frac{q*l^2}{8} = \frac{4528.86*5.75^2}{8} = 18716.92 \ daN.m$$

$$M_{pl,Rd} = \frac{W_{pl,y} * f_y}{v_{M0}} = \frac{1019 * 23.5}{1.1} = 21769.54 \ daN/m$$

$$M_{sd} \leq M_{pl,Rd}$$
..... vérifiée

↓ Vérification de la section à l'effort tranchant

On doit vérifier la condition suivante:

$$V_{sd} \leq V_{pl,Rd}$$

$$V_{sd} = \frac{q*L}{2} = \frac{4528.86*5.75}{2} = 13020.47 \ daN$$

$$V_{pl,Rd} = \frac{A(f_y)}{\gamma_{Mo}\sqrt{3}}$$

$$\gamma_{M0} = 1.1$$

$$A_v = A - 2b*t_f + (t_w + 2r)t_f$$

$$A_v = 8450 - 2 * 180 * 13.5 + (8.6 + 2 * 21) * 13.5 = 4273.1 \, mm^2$$

$$V_{pl,Rd} = \frac{4273.1(23.5)}{1.1\sqrt{3}} = 52705.70 \text{ daN}$$

$$V_{sd} = 13020.47 \;\; daN \leq V_{\rm pl,Rd} = 52705.70 \; {\rm daN}.....$$
vérifier

V.5.5. Vérification à l'ELS:

•
$$f_{adm} = \frac{l}{250} = \frac{575}{250} = 2.3cm$$

•
$$f_{max} = \frac{5}{384} \frac{q \cdot l^4}{E \cdot l_y} = \frac{5 \cdot 32.43 \cdot 575^4}{384 \cdot 2.1 \cdot 10^6 \cdot 23130} = 0.95 \ cm$$

$$f_{max} = 0.95 < f_{adm} = 2.3....$$
 vérifier

V.5.6. Conclusion:

L'IPE 360 convient comme poutre principale pour le planché

V.6. Pré dimensionnement des poutres secondaire

Les poutres secondaires sont sollicitées de la même façon que les solives, donc on utilise la même section donc on utilise l'IPE180

V.7. Calcul des connexions acier-béton :

V.7.1. Introduction:

Les connecteurs sont utilisés pour renforcer le comportement mixte entre la poutre en acier et le béton. La connexion est essentiellement prévue pour résister au cisaillement horizontal et est appelée « connexion au cisaillement ». Ils s'opposent des sections en contact. Avec cette interaction les deux éléments (acier, béton) travaillent comme une section homogène.

Deux types de connecteurs principaux sont disponibles, les goujons soudés et les connecteurs cloués.

Dans les pays industriels, le goujon soudé est le plus usuel des connecteurs de cisaillements. Il peut être soudé sur la semelle supérieure de manière semi-automatique soit directement à l'atelier, soit au travers des tôles profilées en acier sur chantier.

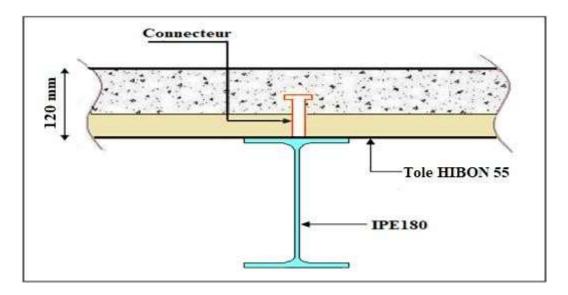


Figure V-5: La position d'un connecteur.

V.7.2. Choix des dimensions des connecteurs suivant « l'Eurocode4 »

il convient de choisir des goujons soudés tels que la tête de goujon soit d'un diamètre

(D) d'au moins 1,5d et d'une hauteur (h_t) d'au moins 0,4d et de hauteur totale (H \geq 4d), où d est le diamètre du fut du goujon (d \geq 16mm).

On utilise des goujons en acier de diamètre d = 22 mm Et de hauteur totale "H = 90 mm". D'où l'acier a une résistance ultime en traction spécifiée de $f_u = 360 \text{MPa}$.

On adopte alors comme connecteurs des goujons à têtes ductiles de :

- D = $1.5 \times d = 1.5 \times 22 = 33mm$
- H> $4d \rightarrow H > 4 \times 22 = 88mm$ soit H= 90mm
- h_t = 8.8mm

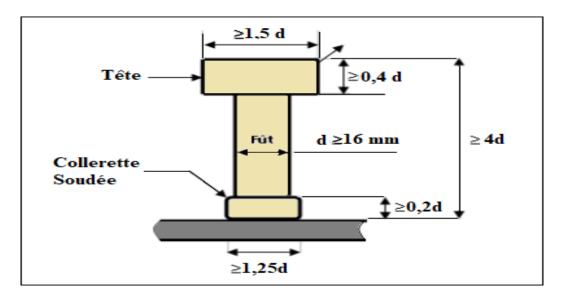


Figure V-6 : Caractéristiques des connecteurs.

V.7.3. Calcul de nombre de connecteur (goujon) :

Le nombre de connecteur doit être égal au moins à l'effort de cisaillement de calcul déterminé (Section 6.2 EC 4), devisé par la résistance de calcul d'un connecteur P_{Rd} (section 6.3 ou 6.5 EC 4) :

$$N \ge \frac{V_l}{P_{Rd}}$$

Avec:

- V_l : l'effort de cisaillement longitudinal.
- P_{Rd} : La résistance au cisaillement d'un connecteur.

> Calcul de l'effort de cisaillement longitudinal :

L'effort total de cisaillement longitudinal V_l s'exerçant sur chaque longueur antique (c'est àdire chaque demi travée de la poutre) est donnée par :

$$V_l = F_{cf}$$
 (EC4 Formule 6.6).

$$F_{cf} = min$$

$$\frac{A_a \times f_y}{\gamma_a}$$

$$\frac{0.85 \times b_{eff} \times t \times f_{ck}}{\gamma_c}$$

- A_a : aire de l'élément structural **IPE180** (23.9 cm^2)
- $f_v : 235MPa (S235)$
- γ_a : coefficient de sécurité pour l'acier soit 1.1
- γ_c : coefficient de sécurité pour le béton soit 1.5
- $f_{ck} = 25N/mm^2$: la résistance caractéristique sur cylindre du béton à l'âge considéré

$$F_{cf} = \min \begin{cases} \frac{23.9 \times 235 \times 10^2}{1.1} = 51059.09 \ daN \\ \frac{0.85 \times 100 \times 14 \times 25 \times 10^2}{1.5} = 198333.33 \ daN \end{cases}$$

Donc : $V_l = F_{cf} = 51059.09 \ daN$

\triangleright Calcul de la résistance au cisaillement d'un connecteur P_{Rd} :

Selon l'article **3-10-2** (*Eurocode* **4**), elle est donnée par la plus petite valeur des deux résistances suivantes :

$$\begin{cases} P_{Rd1} = 0.8 \times F_u \times \frac{\pi \times d^2}{4} \times \frac{1}{\gamma_v} \dots \dots \dots \dots (1) \\ P_{Rd2} = 0.29 \times \alpha \times d^2 \times \sqrt{f_{ck} \times E_{cim}} \times \frac{1}{\gamma_v} \dots \dots \dots \dots (2) \end{cases}$$

Avec:

- f_{ck} : résistance caractéristique à la compression du béton (25MPa)
- F_u : la contrainte résistante ultime de l'acier du goujon (360MPa)
- γ_{ν} : le coefficient partiel de sécurité à l'état limite ultime soit 1.25
- E_{cim} : la valeur moyenne du model sécant du béton.
- d = 22 mm : le diamètre du fût du goujon.

$$\alpha = \begin{cases} \alpha = 1 & \text{Pour } \frac{h}{d} > 4 \\ \alpha = 0.2 \left(\frac{h}{d} + 1\right) & \text{Pour } 3 \le \frac{h}{d} \le 4 \end{cases}$$

On a:
$$\frac{h}{d} = \frac{90}{22} = 4.09 \ge 4 \rightarrow \alpha = 1$$

$$P_{Rd} = \min \qquad 0.8 \times 360 \times \frac{\pi \times (22)^2}{4} \times \frac{1}{1.25} = 8753.82 \ daN$$

$$0.29 \times 1 \times (22)^2 \times \sqrt{25 \times 30500} \times \frac{1}{1.25} = 9805.12 \ daN$$

Donc: $P_{Rd} = 8753.82 daN$

D'où le nombre des connecteurs N est :

$$N = \frac{V_l}{P_{Rd}} = \frac{51059.09}{8753.82} = 5.8 = 6$$
 goujon

Soit N = 6 goujons sur la demi longueur de la poutre ; c'est-à-dire 12 goujons sur la longueur totale de la poutre.

V.7.4. Calcul de l'espacement entre les goujons (EC4 6.1.3) :

Le nombre de connecteur N est uniformément réparti sur une longueur critique L_{cr}.

Cette dernière est la longueur entre deux sections transversales critiques.

Selon l'EC4.4.1.2, une section transversale critique comprend :

- Une section de moment fléchissant maximum.
- Une section sur appuis

Le moment fléchissant max se trouve au milieu des solives.

Donc: $L_{cr} = \frac{L}{2}$ Alors l'espacement des connecteurs S est :

$$S = \frac{L_{cr}}{N} = \frac{L}{2N} = \frac{400}{2 \times 6} = 33.33cm$$

Donc l'espacement entre les goujons est S = 33.33 cm.

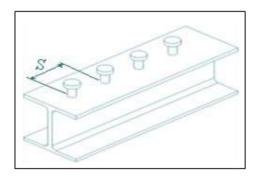


Figure V-7: Distance entre goujons

V.7.5. Conclusion:

A travers cette étude nous avons calculé le plancher mixte réalisé avec une dalle en bétond'épaisseur14cm posée sur des solives **IPE180.**

La liaison entre la dalle et les solives est assurée par des connecteurs de diamètre 22mm, espacées de **33.33**cm entre eux.

VI.Introduction:

Les contreventements sont des dispositifs conçus pour reprendre les efforts dus au vent, séisme, freinage longitudinal du pont roulant et de les acheminer vers les fondations. Ils sont disposés en toiture, dans le plan des versants (poutres au vent), et en façade (palées de stabilité).

VI.1. Rôle des systèmes de contreventement :

Les contreventements ont pour fonctions principales de :

- Reprendre et de transmettre jusqu'aux fondations les efforts dus aux actions latérales ou horizontales causés par : le vent, le séisme, les explosions, les chocs de véhicules, la poussée des terres...
- Empêcher de grandes déformations (ou de limiter les déplacements horizontaux) sous l'effet de ces actions.
- Jouer un rôle important vis-à-vis des phénomènes d'instabilité en réduisant les risques de flambement et de déversement. En effet, ils diminuent les longueurs de flambement des poteaux, et ils constituent parfois des appuis latéraux intermédiaires pour les membrures comprimées de poutres et de portiques vis-à-vis du déversement.
- Possèdent un rôle important dans les problèmes de vibration de la construction, dans son ensemble ou dans des éléments élancés de cette construction et ce, en modifiant la période fondamentale. Ce qui permet d'éviter le phénomène de résonnance.

Figure VI-1: Dispositions des contreventements vus en 3D

VI.2. Contreventements de toiture (poutre au vent) :

Les contreventements sont disposés généralement suivant les versants de la toiture. Ils sont placés le plus souvent dans les travées de rive. Leurs diagonales sont généralement des cornières doubles qui sont fixées sur la traverse (ou ferme). Leur rôle principal est de transmettre les efforts du vent du pignon aux fondations.

VI.2.1. Calcul de la poutre au vent en pignon :

Elle sera calculée comme une poutre à treillis reposant sur deux appuis et soumises aux réactions horizontales supérieures des potelets auxquelles on adjoint l'effort d'entraînement. Le calcul des poutres à treillis repose sur les hypothèses suivantes :

- -Les nœuds sont considérés comme des articulations, même si les barres sont assemblées par des cordons de soudure qui sont loin d'une articulation.
- -Les axes des barres sont concourants aux nœuds.
- -Les charges sont considérées concentrées et appliquées au droit des nœuds (pour n'avoir que des barres sollicitées par des efforts normaux).

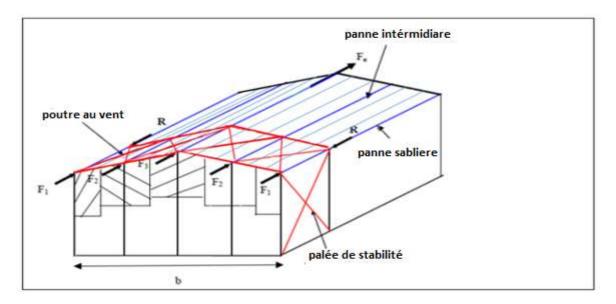


Figure VI-2 : Effort du vent sur le pignon

5.75 m 5.75 m 5.75 m 5.75 m F₂

VI.2.1.1. Evaluation des efforts dans la poutre au vent :

Figure VI-3: Schéma statique de la poutre au vent

D'après l'étude au vent (chapitre2):

- La valeur de *Cpe* est donnée ci-dessous

> Le coefficient de réduction :

$$\Sigma Cr = Cpe(d) + Cpe(E) = 0.8 + 0.3 = 1.1$$

> La pression du vent :

$$V = Ph = Cd * qh * \Sigma Cr = 1 * 64.54 * 1.1 = 70.99 daN Avec : Cd = 1$$

a- Calcul des efforts horizontaux Fi:

$$F_1 = \left(V * \frac{h_1}{2} * \frac{b}{8}\right) + \frac{F_e}{8} = \left(70.99 * \frac{8}{2} * \frac{23}{8}\right) + \frac{2439.05}{8} = 1121.26 \text{ daN}$$

$$F_2 = \left(V * \frac{h_2}{2} * \frac{b}{4}\right) + \frac{F_e}{4} = \left(70.99 * \frac{8.75}{2} * \frac{23}{4}\right) + \frac{2439.05}{4} = 2395.60 \text{ daN}$$

$$F_3 = \left(V * \frac{h_3}{2} * \frac{b}{4}\right) + \frac{F_e}{4} = \left(70.99 * \frac{9.64}{2} * \frac{23}{4}\right) + \frac{2439.05}{4} = 2577.25 \text{ daN}$$

VII.2.1.2. Calcul des réactions d'appuis :

• Par la méthode des coupures :

Par la méthode de coupures, on établit que l'effort \mathcal{F}_d dans les diagonales d'extrémité (les plus

sollicitées) est donné comme suit : $F_d \cdot \cos \theta + F_1 = R$

Avec :
$$R = \frac{2F_1 + 2F_2 + F_3}{2}$$

= $\frac{2 * 1121.26 + 2 * 2395.6 + 2577.25}{2}$

 $R = 4805.48 \, daN$

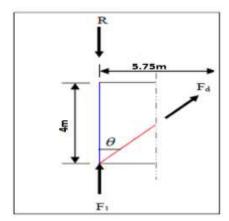


Figure VI-4: L'effort F_d dans la diagonale d'extrémité

• Effort de traction dans les diagonales :

On ne fait travailler que les diagonales tendues et on considère que les diagonales comprimées ne reprennent aucun effort, car du fait de leurs grands élancements, elles tendent flamber sous faibles efforts. Suivant le sens du vent (paroi D ou paroi E), c'est l'une ou l'autre des diagonales qui est tendue. Le contreventement du versant est une poutre à treillis supposée horizontal.

$$F_d \cdot \cos \theta + F_1 = R$$
 avec $R = 4805.48 \ daN$ et $F_1 = 1121.26 \ daN$

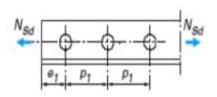
$$\tan \theta = \frac{5.75}{4} \to \theta = arctg \frac{5.75}{4} = 55.17^{\circ}$$

D'où:

$$F_d = \frac{R - F_1}{\cos \theta} = \frac{4805.48 - 1121.26}{\cos 55.17} = 6450.60 \ daN$$

$$N_{sd} = 1.5 * F_d = 1.5 * 6450.6 = 9675.9 \ daN$$

- Section diagonale:


Calcul de la section brute A:

$$N_{sd} \le N_{pl,Rd} = \frac{A. f_y}{\gamma_{M0}} \to A \ge \frac{N_{sd} * \gamma_{M0}}{f_y} = \frac{96.75 * 1.1}{23.5} = 4.52 \text{cm}^2$$

Donc on opte une barre de cornière égale : L60*60*4 ($A=4.71~cm^2$) avec un boulon de 12 mm et trous de 13 mm

- Section nette

$$A_{net} = 4.71 - 0.4 * 1.3 = 4.19 \text{ cm}^2$$

VII.2.1.3. Vérification à la résistance ultime de la section nette :

Cas de cornières assemblées par une seule aile, pour une attache avec deux boulons ou plus

$$N_{u,Rd} = \frac{\beta A_{net} f_u}{\gamma_{M2}}$$

Où β est le coefficient min orateur donné dans le tableau-1- en fonction de l'entraxe P1 des trous.

Tableau VI-1: Coefficients minorateurs β 1 et β 2

i abieau –	coefficients minorateurs β	i et p 2
Entraxe p ₁	$\leq 2.5 \ d_0$	≥ 5.0 d ₀
β ₂ (boulons)	0.4	0.7
3 2 (3 boulons ou plus)	0.5	0.7

On prend : une attache de 2 boulon avec $p_1 = 100 \ mm$; $e_1 = 25 \ mm$

$$p_1 = 100 \ mm > 5.0 \ d_0 = 5x13 = 65 \ mm$$

Avec : $d_0 = 13 \ mm$ diamètre des trous $\beta = \beta \ 2 = 0.7$

$$\Longrightarrow N_{u,Rd} = \frac{\beta A_{net} f_u}{\gamma_{M2}} = \frac{0.7*4.19*3600}{1.25} = 8447.04 \ daN$$

On a
$$N_{sd} = 9675.9 \ daN > N_{u,Rd} = 8447.04 \ daN$$
.....non vérifié

Donc dans ce cas en augmente la section de la cornière

Soit : une cornière égale : L60*60*5 (A = 5.82 cm²)

Avec :
$$A_{net} = 5.82 - 0.5 * 1.3 = 5.17 \text{ cm}^2$$

$$N_{u,Rd} = \frac{\beta A_{net} f_u}{v_{M2}} = \frac{0.7*5.17*3600}{1.25} = 10422.72 \ daN$$
.

On a $N_{sd} = 9675.9 \ daN < N_{u,Rd} = 10422.72 \ daN \dots$ vérifié .

VI.3.1. Conclusion:

Une cornière isolée de L60×60×5 avec boulon de 12 mm et trous de 13 mm convient pour les barres de contreventement de la poutre au vent.

VI.3. Vérification des pannes (montant de la poutre au vent) à la sécurité :

Les montants de la poutre au vent sont des pannes qui travaillent à la flexion déviée sous l'action de charge verticales, et en outre à la compression sous (F), on doit donc vérifier les pannes à la flexion déviée composée. Les formules de vérification sont les suivantes :

VI.4.1.flexion composée déviée (bi axiale) :

Vérification de la section a la résistance :

Section de classes 1 et 2 :

$$\left(\frac{M_{y,sd}}{M_{Ny,Rd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{Nz,Rd}}\right)^{\beta} \le 1.0$$

Avec :
$$\alpha=2$$
 Et $\beta=5n\geq1$

$$\checkmark M_{Ny,Rd} = M_{ply,Rd} \left[\frac{1-n}{1-0.5a} \right]$$

$$\checkmark M_{Nz,Rd} = M_{plz,Rd}[1 - ((n-a)/(1-a))^2]$$

$$A_w = A - 2bt_f$$
 (aire de l'âme)

$$\alpha = \min(A_w/A; 0.5)$$

$$M_{ply,Rd} = \frac{W_{ply} * f_y}{\gamma_{Mo}}$$
 et $M_{plz,Rd} = \frac{W_{plz} * f_y}{\gamma_{Mo}}$

• Charges et surcharges revenant à la panne intermédiaire :

Flexion déviée : (voir calcul des pannes)

$$G = 35 \, daN/ml$$

$$N = 38.07 \, daN/ml$$

Compression: (voir les calculs de contreventement)

$$V = F2 = 2395.6 \, daN$$

a- Combinaison des charges :

$$\bullet$$
 1.35*G* + 1.35*N* + 1.35*V*

•
$$Q_{sd} = 1.35G + 1.35N$$

•
$$N_{sd} = 1.35V$$

 $Q_{sd} = 1.35G + 1.35N = 1.35 * 35 + 1.35 * 38.07 = 98.64 \, daN/ml$
 $Q_{z,sd} = Q_{sd} \cos \alpha = 96.72 \, daN/ml$
 $Q_{y.sd} = Q_{sd} \times \sin \alpha = 19.34 \, daN/ml$
 $M_{y.sd} = \frac{Q_{z.sd} \times l^2}{8} = \frac{96.72 \times (4)^2}{8} = 193.44 \, daN.m$
 $M_{z.sd} = \frac{Q_{y.sd} \times (l/2)^2}{8} = \frac{19.34 \times (2)^2}{8} = 9.67 \, daNm$
 $N_{sd} = 1.35V = 1.35 * 2395.6 = 3234.06 \, daN$

Tableau VI-2 : Dimension et caractéristique de IPE 120

Profi lé IPE	Dimensions							Caractéristiques de calcul					Mome nt D'iner tie De torsion	moment d'inertie de gauchisse- ment
120	Н	b	t_w	t_f	r	d	$W_{pl.y}$	$W_{pl.z}$	$A_{v.z}$	$A_{v.y}$	I_y	I_z	I_t	I_{w}
	mm	mm	mm	mm	mm	mm	cm^3	cm ³	cm ²	cm^2	cm^4	cm^4	cm^4	cm^4
	120	64	4.4	6.3	7.0	93.4	60.7	13.6	6.31	8.6	318	27.7	1.74	0.89

$$N_{pl,Rd} = \frac{A. f_y}{\gamma_{M0}} = \frac{13.2 * 2350}{1.1} = 28200 \text{ daN}$$

$$M_{ply,Rd} = \frac{W_{pl,y \times f_y}}{\gamma_{M0}} = \frac{60.7 \times 2350 \times 10^{-2}}{1.1} = 1296 ,8 \text{ daN.m}$$

$$M_{plz,Rd} = \frac{W_{pl,z \times f_y}}{\gamma_{M0}} = \frac{13.6 \times 2350 \times 10^{-2}}{1.1} = 290,54 \text{ daN.m}$$

b- Incidence de l'effort tranchant :

Si $Vsd < 0.5 Vplrd \implies$ il n y a pas d'interaction entre le moment fléchissant et l'effort tranchant

Remarque : à mi- travée la valeur du moment fléchissant est maximale et la valeur de l'effort tranchant est nulle, donc il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant.

c- Incidence de l'effort normal:

Si $N_{Sd} \le \min(0.25N_{pl,Rd}, 0.5A_w f_y/\gamma_{M0})$: il n' ya pas d'interaction entre le moment résistant et l'effort normal

$$0.25N_{pl,Rd} = 0.25 * 28200 = 7050daN$$

$$A_w = A - 2bt_f = 13.2 - 2 * 6.4 * 0.63 = 5.13cm^2$$

$$\frac{0.5A_w f_y}{\gamma_{M0}} = \frac{0.5 * 5.136 * 2350}{1.1} = 5486.2 \, daN$$

$$N_{Sd} = 3234.06 \, daN \le \min(7050; 5486.2) = 5486.2 \, daN$$

L'incidence de l'effort normal sur le moment résistance peut être négligée. Pas de réduction de moment de résistance plastique :

$$M_{Ny,Rd} = M_{ply,Rd}$$

$$M_{Nz,Rd} = M_{plz,Rd}$$

• La formule de vérification est la suivante :

$$\left[\frac{M_{y.sd}}{M_{ply.Rd}}\right]^{\alpha} + \left[\frac{M_{z.sd}}{M_{plz.Rd}}\right]^{\beta} \leq 1.0$$

Pour les sections en **I** et **H**: $\alpha = 2$ et $\beta = 5n \ge 1$

Avec:
$$n = \frac{Nsd}{Mpl_{,R}d} = \frac{3234.06}{28200} = 0.11$$

$$\beta = 5n = 5x0.11 = 0.57$$

$$\left[\frac{193.44}{1296.8}\right]^2 + \left[\frac{9.67}{290.54}\right]^1 = 0.055 \le 1.0.$$
 vérifiée

VI.4. Vérification des pannes (montants de la poutre au vent) à l'instabilité :

Déversement = Flambement latéral + Rotation de la section transversale.

• Semelle supérieure :

La semelle supérieure qui est comprimée sous l'action des charges verticales descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture, il n'y a donc pas risque de déversement.

• Semelle inférieure :

La semelle inférieure qui est comprimée sous l'action du vent de soulèvement est susceptible de déverser du moment qu'elle est libre tout au long de sa portée.

Combinaison à l'ELU:

 Q_{zsd} =Gxcoslpha -1.5V Q_{ysd} =1.35Gxsin lpha

Avec:

 $G = 35 \, daN \, /ml$ charge permanente

 $V = -155.85 \, daN/ml$: vent de soulèvement (voir calcul des pannes)

 $V' = 2395.6 \, daN$: effort de compression du vent revenant à la panne intermédiaire (motant de la poutre au vent)

Charge de flexion : voir calcul des pannes

$$Q_{y,sd} = 1.35G \sin \alpha = 1.35 * 35 \sin 11.31 = 9.26 daN/ml \leftarrow$$

$$Q_{z,sd} = G \cos \alpha - 1.5V = 35 \cos 11.31 - 1.5*155.85 = -199.45 \frac{daN}{ml} \uparrow \text{(soulèvement)}$$

$$M_{y.sd} = \frac{Q_{z.sd} \times l^2}{8} = \frac{199.45 \times (4)^2}{8} = 398.9 \text{ daN.m}$$

 $M_{z.sd} = \frac{Q_{y.sd \times (l/2)^2}}{8} = \frac{9.26 \times (2)^2}{8} = 4.63 \text{ daNm}$

Charge de compression :

(voir calcul des contreventements)

$$V' = F_2 = 2395.6 \, daN$$

$$Nsd = 1.5V' = 1.5 * 2395.6 = 3593.4 \, daN$$

- Les formules de vérification aux instabilités sont les suivantes :
- Flexion déviée composée avec risque de flambement :

$$\frac{Nsd}{\chi_{min}.N_{pl.Rd}} + \frac{k_y.M_{y.sd}}{M_{ply.Rd}} + \frac{k_z.M_{z.sd}}{M_{plz.Rd}} \leq 1.0$$

- Flexion déviée compose avec risque de déversement :

$$\frac{Nsd}{\chi_z.N_{pl.Rd}} + \frac{k_{LT}.M_{y.sd}}{\chi_{LT}M_{ply.Rd}} + \frac{k_z.M_{z.sd}}{M_{plz.Rd}} \leq 1.0$$

✓ Calcul de coefficient de réduction Xmin :

$$\chi_{min} = Min(\chi_y; \chi_z)$$

♣ Flambement par rapport à l'axe fort yy' (dans le plan) :

$$\chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^2 - \overline{\lambda}_{LT}^2\right]^{0.5}}$$

Avec :
$$\varphi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\bar{\lambda}_{LT} - 0.2 \right) + \bar{\lambda}_{LT}^{2} \right]$$

$$\overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} \sqrt{(\beta w)}$$
; $(\beta_w = 1)$ car la section est de classe 01

$$\lambda_y = \frac{l_y}{i_y} = \frac{400}{4.90} = 81.63$$

Et:

$$\lambda_1 = \pi \left[\frac{E}{f_y}\right]^{0.5} = \pi \left[\frac{2.1*10^4}{2350}\right]^{0.5} = 93.9$$
: élancement Eulérien $\overline{\lambda_y} = \frac{81.63}{93.9} = 0.86$

courbe de flambement :

$$\begin{cases} h/_b = \frac{120}{64} = 1.875 > 1.2 \\ t_f = 6.4 < 40 \ mm \rightarrow axe \ du \ flambement \ y-y \end{cases}$$
 \rightarrow courbe de flambement (**a**) (α = 0.21)

•
$$\emptyset_y = 0.5[1 + 0.21(0.86 - 0.2) + 0.86^2] = 0.93$$

•
$$\chi_y = \frac{1}{0.93 + [0.93^2 - 0.86^2]^{0.5}} = 0.7788$$

♣ Flambement par rapport à l'axe faible Z-Z (hors du plan)

$$\chi_z = \frac{1}{\emptyset_z + \left[\emptyset_z^2 - \overline{\lambda_z^2}\right]^{0.5}}$$

Avec

•
$$\emptyset_z = 0.5 \left[1 + \alpha_z \left(\overline{\lambda_z} - 0.2 \right) + \overline{\lambda_z^2} \right]$$

•
$$\overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} \sqrt{(\beta w)}$$
; $(\beta_w = 1)$ car la section est de classe 01

Et:

$$\lambda_1 = \pi \left[\frac{E}{f_V} \right]^{0.5} = \pi \left[\frac{2.1 \times 10^4}{2350} \right]^{0.5} = 93.9 :$$
 élancement Eulérien

$$\lambda_z = \frac{l_z}{l_z} = \frac{200}{1.45} = 137.93$$

$$\overline{\lambda_z} = \frac{137.93}{93.9} = 1.46$$

Le tableau 5.5.3 de l'eurocode 3 ; partie 1-1 nous donne le choix de la courbe de flabement en fonction du type de la section :

> Courbe de flambement :

$$\begin{cases} h/_b = 120/_{64} = 1.875 > 1.2 \\ t_f = 6.4 < 40 \ mm \rightarrow axe \ du \ flambement \ z-z \end{cases}$$
 \rightarrow courbe de flambement (**b**) ($\alpha = 0.34$)

(Tableau (5- 5-1) Eurocode 03

•
$$\emptyset_z = 0.5[1 + 0.34(1.46 - 0.2) + 1.46^2] = 1.78$$

•
$$\chi_z = \frac{1}{1.78 + [1.78^2 - 1.46^2]^{0.5}} = 0.3573$$

$$\chi_{min} = Min(\chi_{v}; \chi_{z}) = min(0.7788; 0.3573) = 0.3573$$

calcul de l'élancement réduit vis-à-vis de déversement :

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} * \left(\sqrt{\beta_w} \right) \qquad \text{avec} \qquad \beta_w = 1$$

$$\lambda_{LT} = \frac{\frac{L_{/i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{/i_z}}{h_{/t_f}} \right)^2 \right]^{0.25}} }$$
 avec $i_z = 1.45$, $h = 12 \text{ cm}$, $t_f = 0.63$

$$\lambda_{LT} = \frac{200/1.45}{1.88^{0.5} \left[1 + \frac{1}{20} \left(\frac{200/1.45}{12/0.63}\right)^{2}\right]^{0.25}} = 72.92$$

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} = \frac{72.92}{93.9} = 0.7765 > 0.4.$$
 il y'a risque de déversement

C1 = 1.88 (poutre simplement appuyée avec une charge uniformément répartie)

section laminée:
$$\alpha_{LT} = 0.21$$

$$h/_b = \frac{120}{64} = 1.875 < 2$$

Courbe du flambement a

La valeur de χ_{LT} pour l'élancement réduit $\overline{\lambda_{LT}}$ est déterminée à partir de la formule (5.49) de l'Eurocode3 :

$$\chi_{LT} = \frac{1}{{{\emptyset _{LT}} + {\left[{{\emptyset _{LT}}^2 - \overline{\lambda_{LT}}^2} \right]}^{0.5}}} \qquad \quad Avec \qquad \quad \chi_{LT} < 1$$

Et:
$$\emptyset_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right] = 0.5 \left[1 + 0.21 (0.77 - 0.2) + 0.77^2 \right] = 1.21$$

$$\Rightarrow \chi_{LT} = \frac{1}{1.21 + \left[1.21^2 - 0.77^2 \right]^{0.5}} = 0.46$$

Calcul des coefficients Ky:

$$k_{yy} = min\left[C_{my}\left(1 + \left[\overline{\lambda_y} - 0.2\right] \frac{N_{sd}}{\chi_y * N_{pl,Rd}}\right); C_{my}\left(1 + 0.8 \frac{N_{sd}}{\chi_y * N_{pl,Rd}}\right)\right]$$

 $k_{zy} = 0.6k_{yy}$

Avec:

 C_{my} : est le facteur de moment équivalent pour tenir compte de la forme du diagramme du moment fléchissant

Charge uniformément répartie : $C_{my} = 0.95$

•
$$k_{yy} = min \left[0.95 \left(1 + \left[0.86 - 0.2 \right] \frac{3593.4}{0.77*28200} \right); 0.95 \left(1 + 0.8 \frac{3593.4}{0.77*28200} \right) \right]$$

•
$$k_{yy} = min[1.05; 1.07] = 1.05$$

•
$$k_{zy} = 0.6k_{yy} = 0.6 * 1.05 = 0.63$$

•
$$N_{bv,Rd} = \chi_v * N_{pl,Rd} = 0.77 * 28200 = 19740 \text{ daN}$$

•
$$N_{bz,Rd} = \chi_z * N_{pl,Rd} = 0.35 * 28200 = 9870 \text{ daN}$$

$$\mathbf{M_{b,Rd}} = \chi_{LT} * \beta_w * \frac{W_{ply} * f_y}{\gamma_{M1}} = \chi_{LT} * \mathbf{M_{ply,Rd}}$$
 (Formule 5,48 de l'eurocode3)

 $\beta_{\rm w}=1$; Section de classe 01.

$$M_{b,Rd} = \chi_{LT} * M_{ply,Rd} = 0.46 * 1296.8 = 596.52 \text{ daN. m}$$

> Vérification au flambement (dans le plan) avec risque de flambement :

Vérification au déversement (hors le plan) avec risque de déversement :

$$\begin{split} \frac{N_{sd}}{N_{bz,Rd}} + \frac{k_{zy} * M_{y,sd}}{M_{b,Rd}} &\leq 1 \\ \frac{3593.4}{9870} + \frac{0.63*398.9}{596.52} &= 0.78 \leq 1.... & condition vérifiée. \end{split}$$

VI.6.1. conclusion:

Les pannes en IPE120 sont vérifiée a la sécurité.

VI.9. Calcul de la palée de stabilité en long pan :

Les palées de stabilité doivent reprendre les efforts du vent sur pignons transmis par le contreventement des versants (poutre au vent). On ne fait travailler que les diagonales tendues, comme dans le cas de la poutre au vent.

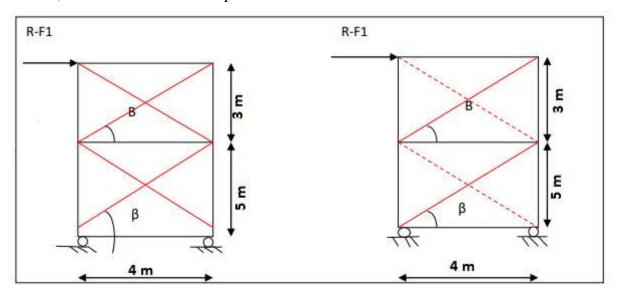


Figure VI- 5: Palier de stabilité suivant le long pan.

> Effort de traction dans les diagonales :

Par la méthode des coupures

$$N \cdot \cos \theta = R - F_1$$
 avec $R = 4805.48 \, daN \, \text{et} \, F_1 = 1121.26 \, \text{daN}$

$$\tan \beta = \frac{5}{4} \rightarrow \beta = arctg \frac{5}{4} = 51.34^{\circ}$$

D'où:

$$N = \frac{R - F_1}{\cos \beta} = \frac{4805.48 - 1121.26}{\cos 51.34} = 5897.62 \ daN$$

- Section diagonale:

Calcul de la section brute A :

$$N_{sd} = 1.5 * N = 1.5 * 5897.62 = 8846.43 \, daN$$

$$N_{sd} \le N_{pl,Rd} = \frac{A. f_y}{\gamma_{M0}} \to A \ge \frac{N_{sd} * \gamma_{M0}}{f_y} = \frac{88.46 * 1.1}{23.5} = 4.14 \text{ cm}^2$$

Donc on opte une barre de cornière égale : L45*45*5 ($A=4.30~cm^2$) avec un boulon de 12 mm et trous de 13 mm .

- Section nette

$$A_{net} = 4.30 - 0.5 * 1.3 = 3.65 \text{ cm}^2$$

VI.12.1. Vérification à la résistance ultime de la section nette :

Cas de cornières assemblées par une seule aile, pour une attache avec deux boulons ou plus

$$N_{u,Rd} = \frac{\beta A_{net} f_u}{\gamma_{M2}}$$

Où β est le coefficient min orateur donné dans le tableau-1- en fonction de l'entraxe P1 des trous.

Exemple : une attache de 3 boulon ou plus avec $p_1 = 100 \ mm$; $e_1 = 25 \ mm$

$$p_1 = 100 \ mm > 5.0 \ d_0 = 5x13 = 65 \ mm$$

Avec : $d_0 = 13 \ mm$ diamètre des trous $\beta = \beta \ 2 = 0.7$

$$N_{u,Rd} = \frac{\beta A_{net} f_u}{\gamma_{M2}} = \frac{0.7*3.65*3600}{1.25} = 7358.4 \ daN$$

On a
$$N_{sd} = 8846.43 \ daN > N_{u,Rd} = 7358.4 \ daN$$
.....non vérifié

Donc dans ce cas en augmente la section de la cornière

Soit : une cornière égale : L50*50*6 (A = 5.69 cm²)

Avec :
$$A_{net} = 5.69 - 0.6 * 1.3 = 4.91 \text{cm}^2$$

$$N_{u,Rd} = \frac{\beta A_{net} f_u}{\gamma_{M2}} = \frac{0.7*4.91*3600}{1.25} = 9898.56 \; daN \; .$$

On a
$$N_{sd} = 8846.43 \; daN < N_{u,Rd} = 9898.56 \; daN$$
 vérifié .

VI.5.2. Conclusion:

Une cornière isolée de L50*50*6 avec des boulons de 12 mm et des trous de 13 mm convient pour les barres de contreventement de la palée de stabilité.

VII. Introduction:

L'étude sismique à pour but de déterminer les sollicitations engendrées par un éventuel séisme à chaque niveau de notre structure afin d'assurer une protection acceptable des vies humaines et de la construction vis-à-vis des effets de l'action sismique par une conception et un dimensionnement appropriés. Cette étude s'appuie sur les règles parasismiques algériennes RPA /2003.

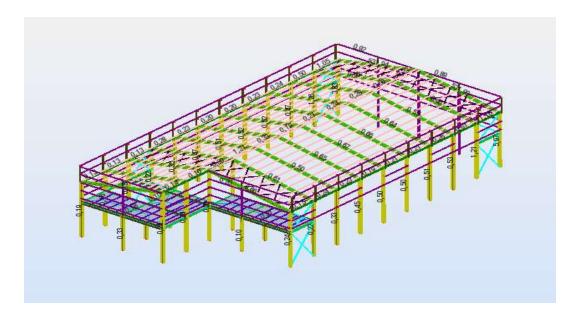


Figure VII.1 : distribution de palée de stabilité sur l'ouvrage

VII.1. Notions de sismologie :

Un séisme correspond à une vibration du sol provoquée par une libération soudaine d'énergie de déformation.

L'activité sismique est due principalement à la nature géologique de la région maghrébine et à ses caractéristiques tectoniques à la frontière des plaques africaines et eurasiennes qui est en mouvement compressif permanent.

Le séisme se manifeste par une série de secousses brutales et violentes qui ébranlent le sol, leurs effets sont souvent catastrophiques. Ces secousses sismiques imposent aux constructions des accélérations particulières, il en résulte des efforts pouvant s'exercer suivant des directions quelconques.

VII.2. Méthode de calcul:

Pour le calcul et la vérification des bâtiments courants, le Règlement Parasismique Algérien (RPA99. VERSION 2003.Art 4.1.2) nous propose trois méthodes de calcul pour évaluer la force sismique.

- ❖ La méthode statique équivalente (MSE).
- ❖ La méthode d'analyse spectrale.
- ❖ La méthode d'analyse dynamique par accélérographes.

a) Choix de la méthode :

Dans le cas de notre hangar étudié vu l'irrégularité en plan, nous utiliserons la méthode d'analyse modale spectrale pour l'analyse sismique. Cette dernière d'après le RPA99/version 2003 peut être utilisée dans tous les cas et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

Rappelons que le principe de la méthode d'analyse modale spectrale est de rechercher pour chaque mode de vibration, le maximum des effets engendrés dans la structure parles forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

L'action sismique est simulée grâce à un spectre de réponse. Le comportement supposé élastique de la structure, permet le calcul des modes propres.

b) Caractéristiques du hangar étudié :

- ✓ Wilaya d'implantation : Tizi-ouzou ,commune de Boghni.
- ✓ Zone IIa : sismicité moyenne.
- ✓ Groupe d'usage 2 : Ouvrages courants ou d'importance moyenne.
- ✓ Catégorie du site : Site 3 (sol meuble).

c) Nombre des modes considérer (RPA99/2003) :

D'après le RPA99/2003 (article 4.3.4 [2]) : pour les structures représentées par des modèles plans dans deux directions orthogonale, le nombre de modes de vibration à retenir dans chacune des deux directions l'excitation doit être tel que :

➤ Lasommedesmassesmodaleseffectivespourlesmodesretenussoitégaleà

90% aumoinsdela masse totale de la structure.

Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de structure soient retenus pour la détermination de la réponse totale de la structure. Le minimum de modes à retenir est de trois dans chaque direction considérée.

Cas/Mode	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modele IIX [%]	Masse Modwie UY [%]	Masse Modele UZ [%]	Tot.mas.UX [kg]	Totmas.UY (kg)	Tot.mas.UZ (kg)
21/ 7	2,42	0,41	42.76	0,97	Binds	0.01	0.00	#Ind#	94814,15	94014,15	0,0
21/ 8	2,45	0,41	42,78	0,97	#ind#	0.00	0,01	#610#	94814,15	94814,15	0,0
21/ 9	2,77	9,36	47,72	0,68	Windf	4,98	0.00	Windf	94814.15	94814,15	0,0
21/ 18	3,26	9,30	50,42	1,03	#ind#	2,69	0,05	#ing#	94814,15	94814,15	0,0
21/ 11	3,77	0,27	50.46	79,52	Windk	0.04	78.50	#ind#	94814,15	94814,15	0,0
21/ 12	4,01	9,25	86.74	79,71	Mode	16.26	0.19	#Ind#	94814,15	94814,15	0.0
21/ 13	4,35	0,23	91,02	79,71	Find#	24,28	0,00	#6:0#	94814,15	94814,15	0.0
21/ 14	4,89	0,20	93.37	79,76	Wind#	2,35	0,65	Wind®	94014,15	94014,15	0.0
21/ 15	4,98	0,20	90,78	82,34	#ind#	0,40	2,58	#Ind#	94814,15	94814,15	0,0
21/ 16	5,42	0,18	93.92	82,36	Wind#	0,14	0.02	Wind#	94814,15	94814,15	0.0
217 17	5,63	9,18	93.93	82,36	#ind#	0.02	0.00	#ind#	94814,15	94814,15	0,0
21/ 18	5,75	0,17	93,94	81,28	#ind#	0.01	0,93	#ind#	94814,15	94814,15	0,0
21/ 19	6,46	0,15	93,94	82,43	Find#	0.00	0,15	Bind#	94014,15	94014,15	0,0
21/ 20	7,36	0,14	94,33	85,41	No. #	0.39	1,98	#ing#	94814,15	94814,15	0,0
21/ 21	7,75	8,13	94.33	85,41	Wind#	0,00	0.00	#Ind#	34814,15	94814,15	0,0
21/ 23	7,88	0,13	94,45	85,42	#ind#	0.12	0,01	#ind#	94814,15	94814,15	0,0
21/ 23	7,96	0,13	94,85	85,49	Winds	0.39	0,06	#ind#	94814,15	94814,15	0,0
21/ 24	8,05	0,12	95,26	85,67	Windf	0.41	0,19	Wind®	94814,15	94014,15	0,0
21/ 25	8,15	0,12	95,41	85,68	Ends	0,15	-0,01	#ind#	94814,15	94814,15	0,0
21/ 26	8,24	0,12	95,41	85,88	Wind#	0.01	0,00	Wind®	94814,15	94814,15	0,0
21/ 27	8,36	9,12	95,68	85,71	#ind#	0.27	0,03	#ind#	94814,15	94814,18	0,0
21/ 28	8,58	0,12	95,68	85,76	#ind#	0.00	0,05	\$61.0\$	94814,15	94914,15	0,0
21/ 29	0.58	0,12	95,68	85,78	Wind#	0.00	0.62	Findle	94814,15	94814,15	0.0
21/ 30	8,80	0,11	95,69	86,04	和维	0.01	0,26	#81(\$#	94814,18	84814,15	0.0
21/ 31	9.12	8,11	95,86	86,04	Wodf	0.17	0,00	#ind#	94814,15	94814,15	0.0
21/ 32	9,43	0.11	95,92	86,27	#ind#	0.06	0,23	#ind#	94814,15	94814,15	0.0
21/ 33	9,61	0,10	96,01	87,26	#Ind#	0.09	2,99	#ind#	94814,15	94814,15	0,0
21/ 34	9,67	8,10	96.12	87,82	World	0.11	0.56	World	94814,15	94814,15	0,0
217 35	10,08	0,10	96,22	88,74	#ind#	0.10	0,92	#810#	94814,15	54814,15	0,0
21/ 36	10,67	0,09	96.27	89,24	₩nd#	0.05	0,50	#ind#	94814,15	94814,15	
21/ 37	10,83	0,09	96,33	89,66	Find#	0.05	0,42	#Ind#	94614,15	94814,15	0.0
21/ 38	11,21	0,09	96.96	97,21	#ind#	0.63	7,56	#ind#	94814.15	94814,15	0,0

Le nombre de mode à prendre en considération et de 38 modes, car c'est à ce mode que le 90% de mobilisation de masse modale effective dans les deux directions sont atteinte (Art 4.3.4 du RPA 2003).

VII.3. Spectre de réponse de calcul :

Le RPA99/version 2003 impose un spectre de réponse de calcul défini par la fonction suivante :

$$\frac{S_a}{g} = \begin{cases}
1.25 \, A \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \eta \left(1.25 \, A\right) \frac{Q}{R} & T_1 \le T \le T_2 \\
2.5 \eta \left(1.25 \, A\right) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 0.3s \\
2.5 \eta \left(1.25 \, A\right) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 0.3s
\end{cases}$$

Avec:

A : coefficient d'accélération de zone.

 η : Facteur de correction d'amortissement.

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

R: coefficient de comportement de la structure. Il est fonction du système de contreventement.

T₁, T₂ : périodes caractéristiques associées à la catégorie de site.

Q : facteur de qualité.

Dans notre cas ,on a un portique en acier et un remplissage léger donc:ξ=4%

D'où: $\eta = 1.08$ Vérifié

A =0.15 (tableau 4.1 RPA99/version2003).

R= 4 (ossature contreventé par palées triangulées en X - tableau 4.3 RPA99/version2003).La structure à étudier est implantée dans un site de catégorieS3 (site meuble).

 $T_1 = 0.15s$ Et $T_2 = 0.15s$ (tableau 4.7RPA99/version 2003).

VII.4. Calcul de la force sismique totale :

D'après l'article **4.2.3 de RPA99 version 2003**, la force sismique totale V qui s'applique a la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec:

- ✓ *V* : Effort tranchant à la base du bâtiment.
- ✓ A: coefficient d'accélération des zones.
- ✓ *D*: facteur d'amplification dynamique moyen.
- ✓ *Q*: facteur de qualité.
- ✓ R: coefficient de comportement global de la structure.

 \checkmark W: poids de la structure.

1. Coefficient d'accélération de zone A :

Le coefficient "A" dépend du groupe d'usage de l'ouvrage et de la zone sismique, où il sera implanté.

- Groupe d'usage de l'ouvrage: groupe 2.
- Zone sismique: Zone IIa.

D'après le tableau 4.1 de RPA 99 version 2003

On obtient A = 0.15

2. Facteur d'amplification dynamique moyen D :

Le facteur d'amplification dynamique moyen est donné en fonction de la catégorie du site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T)

$$D = \begin{cases} 2.5\eta 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3 \text{sec} \end{cases}$$

$$2.5\eta \left(\frac{T_2}{3}\right)^{2/3} \cdot \left(\frac{3}{T}\right)^{5/3} T \ge 3 \text{ sec} \qquad \text{Tableau } .4.2 \text{ page } 38 \text{ RPA99}$$

Avec:

 \checkmark T_2 : Période caractéristique, associée à la catégorie du site

 S_3 : Site meuble d'après le tableau 4-7 $\rightarrow T_2 = 0.5 \; (s)$

 $\checkmark \eta$: Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$
 Formule 4.3 page 38 RPA99V2003

Avec:

 \checkmark ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages. (tableau 4.2) page 38.

Dans notre cas:

Nous avons un portique en acier avec remplissage léger $\rightarrow \xi = 4\%$

D'où:
$$\eta = \sqrt{7/(2+\xi)} = \sqrt{7/(2+4)} = 1.08 \ge 0.7$$

Calcul du période fondamental à l'aide des formules empirique :

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculée par des méthodes analytiques ou numériques.

La formule empirique à utiliser selon les cas est la suivante :

$$T = C_{\text{t}} \times h^{3/4}$$

Avec:

- h: La hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau (N). h = 10.30m.
- C_t : coefficient en fonction de système de contreventement et du type de remplissage. Donné par le tableau (4.6).

On a Portiques autostables en acier sans remplissage en maçonnerie : $C_t = 0.085$

Donc:
$$T = 0.085 \times 10.30^{3/4}$$
T = **0.49s**

Calcul du T_2 :

T₂ est la période caractéristique, associée à la catégorie du site, donnée par le tableau 4.7

On a un sol de catégorie de 3 (S_3)

$$T_2 = 0.5(s)$$

$$T < T_2 D = 2.5 \eta$$

Donc: D = 2.7

3. Facteur de qualité Q:

La valeur de Q est déterminée par la formule :

$$\mathbf{Q} = \mathbf{1} + \sum \mathbf{P_q}(\text{Formule } (4.4))$$

 P_q : est la pénalité à retenir selon le critère de qualité q " satisfait ou non".

VII.4.1. Le tableau suivant donne les valeurs de pénalité P_q :

Tableau VII.1 : valeurs des pénalités

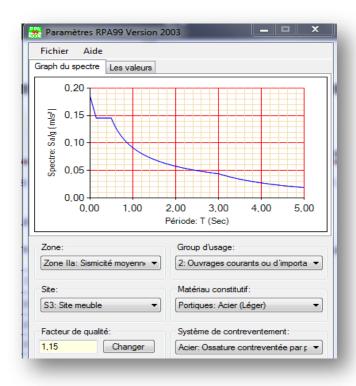
Critère Q	P_q
1. Conditions minimales sur les files de contreventement	0.05
2. Redondance en plan	0.05
3. Régularité en plan	0
4. Régularité en élévation	0.05
5. Contrôle de la qualité des matériaux	0
6. Contrôle de la qualité de l'exécution	0
$\sum P_q$	0.15

Q = 1 + 0.15 = 1.15 Donc : Q = 1.15

4- Coefficient de comportement global de la structure R :

R=4(ossaturecontreventéparpaléestrianguléesenX-tableau4.3RPA99/version2003).Et (Art. 8-4-2 RPA99 version2003).

 T_1,T_2 : Périodes caractéristiques associées à la catégorie de site (Art 4.13 du RPA99/2003).


Site meuble *S*3

$$T_1 = 0.15s$$

$$T_2 = 0.50s$$

•Le spectre de réponse résultant est donné par le tableau et la figure ci-dessous :

T	S_a/g	T	S_a/g
0.00	0.188	2.45	0.05
0.01	0.185	2.50	0.05
0.05	0.174	2.95	0.045
0.10	0.160	3.00	0.044
0.50	0.146	3.45	0.035
0.55	0.137	3.50	0.034
0.95	0.095	3.95	0.028
1.00	0.092	4.00	0.027
1.45	0.072	4.45	0.023
1.50	0.070	4.50	0.022
1.95	0.059	4.95	0.019
2.00	0.058	5.00	0.019

5- Le poids de la structureW:

Il est égal à la somme des poids W_i , calculés à chaque étage (i):

$$W = \sum W_i = \sum (W_{Gi} + \beta W_{Qi})$$

Avec:

 W_{Gi} : Poids du aux charges permanentes et à celle des équipements fixés éventuels.

 W_{Oi} : Poids du aux charges d'exploitations.

 β : Coefficient de pondération en fonction de la nature de l'ouvrage donné par le tableau 4.5 Du RPA 99 V2003.

Avec : $\beta = 0.5$ (hangars; entrepôts).

♣ A l'aide de logiciel robot on peut déterminer directement le poids de la structure:

$$W_{Gi} = 59544 \text{ daN}$$

Tableau VII.2: Charges permanentes W_{Gi} de toute la structure.

Туре	Nombre	Longueur [m]	Poids unitaire [kG/m]	Poids pièce [kG]	Poids total [kG]
ACIER					
CAE 60x6	32	4,96	5,43	26,91	861
IPE 120	4	1,15	10,37	11,93	48
IPE 120	22	2,3	10,37	23,86	525
IPE 120	171	4	10,37	41,5	7096
IPE 180	5	2,8	18,81	52,66	263
IPE 180	19	4	18,81	75,22	1429
IPE 180	2	8	18,81	150,44	301
IPE 180	1	11,5	18,81	216,26	216
IPE 270	2	4,15	36,08	149,73	299
IPE 270	2	9,15	36,08	330,13	660
IPE 270	1	10,3	36,08	371,62	372
IPE 360	2	5,5	57,11	314,12	628
IPE 360	6	5,75	57,11	328,4	1970
IPE 360	2	6	57,11	342,68	685
IPE 360	22	11,73	57,11	669,94	14739
IPE 400	9	5	66,33	331,64	2985
IPE 400	4	5,3	66,33	351,54	1406
IPE 400	22	8	66,33	530,62	11674
UPN 120	78	4	13,26	53,04	4137
UPN 120	20	11,5	13,26	152,48	3050
PS 2 CAE 70x7	8	2,5	14,76	36,9	295
PS 2 CAE 70x7	8	3,21	14,76	47,37	379
PS 2 CAE 70x7	4	5	14,76	73,79	295
PS 2 CAE 70x7	4	6,41	14,76	94,6	378
CAE 60x6	32	158,72	5,43	861,1	861
IPE 120	197	739,2	10,37	7668,28	7668
IPE 180	27	117,5	18,81	2209,64	2210
IPE 270	5	36,9	36,08	1331,35	1331
IPE 360	32	315,56	57,11	18022,59	18023
IPE 400	35	242,2	66,33	16064,61	16065
UPN 120	98	542	13,26	7186,61	7187
Totaux nets:					59544

A Charge d'exploitation :

	W_{Gi} (daN)	W _{Qi} (daN)	$\beta W_{Qi}(daN)$	W_i (daN)
En tête de poteau	59544	103.6	51.8	59595.8
Plancher (mezzanine)	59544	250	125	59669

 $\sum_{i=119234.8} W_i$

Tableau VII.3: poids total de la structure.

❖ La force sismique à la base de la structure est :

• Sens transversal

$$V_X = \frac{A \times D \times Q}{R} \times W = \frac{0.15 \times 2.7 \times 1.15}{4} \times 119234.8 = 13883.4$$

Donc l'effort sismique global agissant à la base $V_X=13883.4\ daN$

• Sens longitudinal

$$V_Y = \frac{A \times D \times Q}{R} \times W = \frac{0.15 \times 2.7 \times 1.15}{4} \times 119234.8 = 13883.4$$

Donc l'effort sismique global agissant à la base $V_Y = 13883.4 \, daN$

VII.5. Distribution de la résultante des forces sismique selon la hauteur :

On a la formule(4-11) de l'article 4.2.5del'RPA99version 2003.

$$F_i = \frac{(V - F_t)W_ih_i}{\sum_{i=1}^n W_ih_i}$$

 F_i : Force horizontale appliquée au niveau i

 F_t : La force concentrée au sommet de la structure ($F_t = 0$ car : 0 < T = 0,49s < 0,7)

W: poids total de la structure.

V : la force sismique totale.

h: la hauteur de chaque niveau.

Et au niveau du plancher (mezzanine)W1= 59669 daN.

Au niveau de tête de poteau W2= 59595.8 daN.

1. Suivant le sens X :

Au niveau du plancher (mezzanine):

$$F_{1X} = \frac{13883.4 \times 59669 \times 5}{59669 \times 5 + 59595.8 \times 3} = 8681.11 \text{ daN}$$

Au niveau de tête de poteau :

$$F_{2X} = \frac{13883.4 \times 59595.8 \times 3}{59669 \times 5 + 59595.8 \times 3} = 5202.28 \text{ daN}$$

2. Suivant le sens Y:

Au niveau du plancher (mezzanine):

$$F_{1Y} = \frac{13883.4 \times 59669 \times 5}{59669 \times 5 + 59595.8 \times 3} = 8681.11 \text{ daN}$$

Au niveau de tête de poteau :

$$F_{2Y} = \frac{13883.4 \times 59595.8 \times 3}{59669 \times 5 + 59595.8 \times 3} = 5202.28 \text{ daN}$$

VII.5.1. Les sollicitations dues au vent plus défavorable (sens pignon) :

1. Suivant le sens X (face pignon):

Au niveau du plancher (mezzanine) :

La surface d'influence $S_1 = 23 \times 5 = 115 \text{ } m^2$

 $V = 103.90 \text{ daN/}m^2$ (chapitre 02)

 $V_{1x} = 103.90 \times 115 = 11948.5 \text{ daN}$

Au niveau de tête de poteau :

La surface d'influence $S_2 = 26.45 + 23 \times 1.5 = 60.95m^2$

 $V = 103.90 \text{ daN/}m^2$ (chapitre 02)

 $V_{2x} = 103.90 \times 60.95 = 10073.10 \,\mathrm{daN}$

2. Suivant le sens Y (face long pan) :

Au niveau du plancher (mezzanine) :

La surface d'influence
$$S_1 = 44 \times 5 = 220 \text{ m}^2$$

 $V = 103.90 \text{ daN/}m^2$ (chapitre 02)

$$V_{1v} = 103.90 \times 220 = 22858 \text{ daN}$$

Au niveau de tête de poteau :

La surface d'influence
$$S_2 = 44 \times 1.5 + 581.9 = 647.9m^2$$

$$V = 103.90 \text{ daN/}m^2$$
 (chapitre 02)

$$V_{2\nu} = 103.90 \times 647.9 = 67316.81 \, daN$$

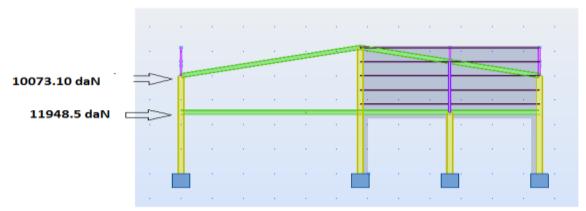


Figure VII.2:Distribution des forces sismique par portique mixte (sens transversal).

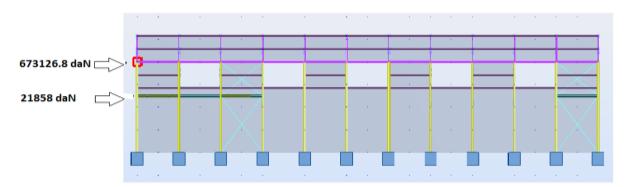


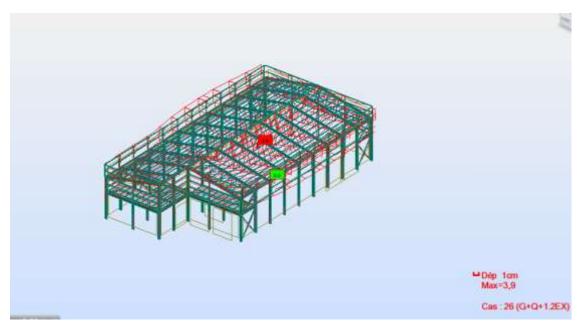
Figure VII.3: Distribution des forces sismique par files (sens longitudinale).

Analyse des résultats

Il y a lieu de constater que la structure présente des translations suivant les deux directions horizontales et une rotation autour de l'axe verticale.

Les combinaisons de calcul:

Combinaison	Nom	Type d'analyse	Nature de la combinaison	Définition
28 (C) (CQC)	0.8G+Ex	Combinaison linéaire	ACC	1*0.80+22*1.00
29 (C) (CQC)	0.8G+EY	Combinaison linéaire	ACC	23*1.00+1*0.80
30 (C) (CQC)	0.8G-Ex	Combinaison linéaire	ACC	1*0.80+22*-1.00
31 (C) (CQC)	0.8G-EY	Combinaison linéaire	ACC	1*0.80+23*-1.00
7 (C)	1.35G+1.5N	Combinaison linéaire	ELU	1*1.35+3*1.50
6 (C)	1.35G+1.5Q	Combinaison linéaire	ELU	1*1.35+2*1.50
9 (C)	1.35G+1.5VLong-Pan	Combinaison linéaire	ELU	1*1.35+5*1.50
8 (C)	1.35G+1.5Vpignon	Combinaison linéaire	ELU	1*1.35+4*1.50
14 (C)	1.35G+1.5x0.9(Q+NVlong-p	Combinaison linéaire	ELU	(1+2+5)*1.35
13 (C)	1.35G+1.5x0.9(Q+Vpig)	Combinaison linéaire	ELU	(1+2+4)*1.35
12 (C)	1.35G+1.5x0.9(Q+N)	Combinaison linéaire	ELU	(1+2+4)*1.35
11 (C)	1.35G+1.5x0.9(N+Vlong)	Combinaison linéaire	ELU	(1+3+5)*1.35
10 (C)	1.35G+1.5x0.9(N+Vpig)	Combinaison linéaire	ELU	(1+3+4)*1.35
16 (C)	G+1.5Vlong-pan	Combinaison linéaire	ELU	1*1.00+5*1.50
15 (C)	G+1.5Vpignon	Combinaison linéaire	ELU	1*1.00+4*1.50
20 (C)	G+N	Combinaison linéaire	ELS	(1+3)*1.00
17 (C)	G+Q	Combinaison linéaire	ELS	(1+2)*1.00
26 (C) (CQC)	G+Q+1.2EX	Combinaison linéaire	ACC	(1+2)*1.00+22*1.2 0
27 (C) (CQC)	G+Q+1.2EY	Combinaison linéaire	ACC	(1+2)*1.00+23*1.2 0
19 (C)	G+Vlong-pan	Combinaison quadratique	ELS_QUAD	SQRT((1;5)*1.00)
18 (C)	G+Vpigno	Combinaison linéaire	ELS	(1+4)*1.00


Réaction à la base selon la combinaison la plus défavorable :

	FX [daN]	FY [daN]	FZ [daN]	MX [daNm]	MY [daNm]	MZ [daNm]
MAX	6463,39	4258,7	14303,61	1390,86	16333,26	136,15
Noeud	3	6	1	8	3	6
Cas	16 (C)	19 (C)	9 (C)	9 (C)	16 (C)	16 (C)
MIN	-6836,13	-6418,17	-15753,45	-1895,95	-18096,64	-125,64
Noeud	1	6	393	3	1	8
Cas	16 (C)	9 (C)	16 (C)	9 (C)	16 (C)	16 (C)

- Les résultats sont donnés dans les tableaux suivants calculés par **ROBOT**:
- ❖ Les déplacements selon la combinaison G+Q+1.2EX et G+Q+1.2EY

	UX [cm]	UY [cm]	UZ [cm]	RX [Rad]	RY [Rad]	RZ [Rad]
MAX	1,9	0,1	0	0,004	0,005	0,002
Noeud	383	370	369	162	189	333
Cas	G+Q+1.2EX	G+Q+1.2EX	G+Q+1.2EX	G+Q+1.2EX	G+Q+1.2EX	G+Q+1.2EX
MAX	2,4	0,1	0,1	0,004	0,005	0,003
Noeud	383	370	85	162	189	333
Cas	G+Q+1.2EY	G+Q+1.2EY	G+Q+1.2EY	G+Q+1.2EY	G+Q+1.2EY	G+Q+1.2EY

- > Les déformations :
- Pour la structure entière

Figure VII.4 : les déformations due à la combinaison G+Q+1.2EX

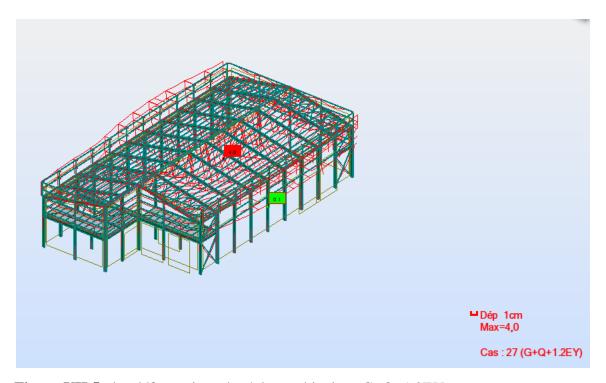


Figure VII.5 : les déformations due à la combinaison G+Q+1.2EY

- Pour la mezzanine :

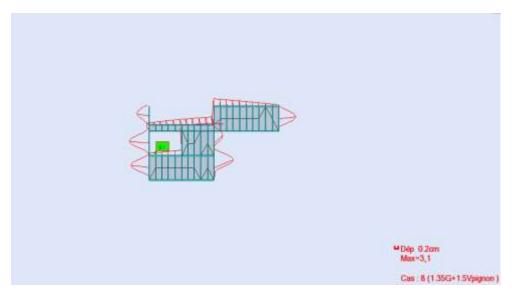


Figure VII.6: les déformations due à la combinaison 1,35G+1,5Vpignon

Figure VII.7: les déformations due à la combinaison 1,35G+1,5Vlong-pan

VII.6. Conclusion:

Les sollicitations dues au vent sont plus importantes que celles dues au Séisme dans les deux sens X ; Y ainsi nous retiendrons uniquement l'action du vent pour le dimensionnement des portiques et du contreventement de l'ouvrage.

VIII. Introduction:

Les portiques qui constituent l'ossature principale des bâtiments, sont supposés composés de traverses qui supportent les pannes, et des poteaux qui supportent les traverses, cette ossature a pour fonction première de supporter les charges et les actions agissants sur la structure et les transmettre aux fondations. Elle doit ensuite permettre la fixation des éléments d'enveloppe (toiture et façade) et de séparation intérieure.

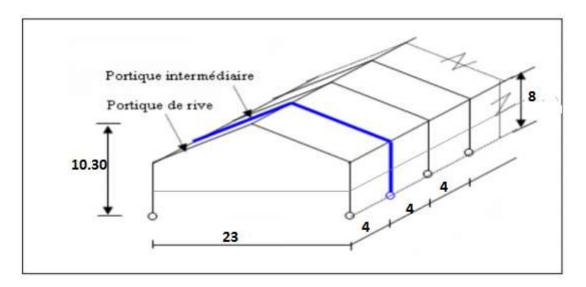


Figure VIII-1: Vue du portique en 3D

VIII.1. Evaluation des charges :

1- Les charges permanentes revenant à la traverse de la toiture :

$$G = 12.0 + 5.0 + 7.0 + 14.275 = 38.275 \, daN/m^2$$

$$G = 38.275 \times 4 = 153.1 \ daN/ml$$

2- Effet de la neige :

Les résultats sont obtenus d'après le chapitre (II-3)

 $N = 25.9 \, daN/m^2$ (Par projection horizontale)

$$N = 25.9 \times 4 = 103.6 \, daN/ml$$

N = 103.6 daN/ml

3- Effet du vent :

Résultats du vent : (voir tableau 3 ; CH 2)

TableauVIII-1 : Valeurs de la pression aérodynamique sur les parois verticales et La toiture en daN/m^2 , cas de vent le plus défavorable.

zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$	zone	$q_p(z)$	C_{pe}	C_{pi}	$W_z(daN/m^2)$
D	64,54	+0,8	+0,2	38,72	F	64,54	-1,410	+0,2	-103,90
A	64,54	-1,0	+0,2	-77,45	G	64,54	-1,3	+0,2	-96,81
В	64,54	-0,8	+0,2	-64,54	Н	64,54	-0,637	+0,2	-54,02
С	64,54	-0,5	+0,2	-45,18	I	64,54	-0,537	+0,2	-47,56
E	64,54	-0,3	+0,2	-32,27					

Le portique intermédiaire est le plus chargé vis-à-vis de la charge du vent car la surface tributaire du portique intermédiaire est le double de celle du portique de rive. Pour simplifier les calculs, on transforme la charge du vent sur la toiture en une charge équivalente uniformément réparti.

- (+) pression; action du vent vers la paroi
- (-) dépression ; action du vent hors de la paroi

$$q_i(daN/ml) = q_i(daN/m^2) \times entraxe$$
 Avec : L'entraxe = 4m

Remarque:

Etant donné que les actions du vent sur les deux versants sont identiques, on retiendra directement la charge agissant sur la zone I comme charge équivalente sur les deux versants de toiture.

Charge équivalente du vent :W =-190.24 daN/ml

VIII.2. Calcul des efforts internes :

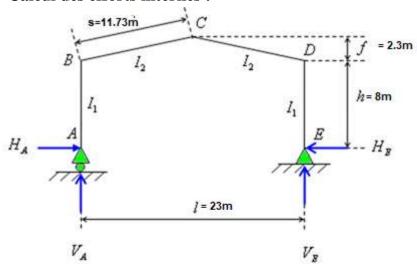


Figure VIII-2: efforts internes.

On assume que : $I_1 \cong I_2$

$$K = \frac{raideur - rampant}{raideur - bequille} = K = \frac{I_2 \times h}{I_1 \times s} = \frac{h}{s} = \frac{8}{11.5/\cos(11.31^\circ)} = 0.682$$

$$K = 0.682$$

$$\Phi = \frac{f}{h} = \frac{2.3}{8} = 0.288$$

$$\Phi = 0.288$$

$$\Delta = K + 3 + 3\Phi + \Phi^2 = 0.682 + 3 + 3 \times 0.288 + 0.288^2 = 4.628$$

$$\Delta = 4.628$$

Charge verticale vers le bas : (Charges permanente et surcharge de neige).

$$H_A = H_E = \beta \frac{q l^2}{8h}$$

$$\beta = \frac{8 + 5\Phi}{4\Delta} = \frac{8 + 5 \times 0.288}{4 \times 4.628} = 0.509$$

$$\beta = \mathbf{0.509}$$

$$H_A = H_E = 0.509 \frac{1.0 \times 23^2}{8 \times 8} = 4.21 \text{ daN}$$

$$V_A = V_E = \frac{ql}{2} = \frac{1.0 \times 23}{2} = 11.5 \text{ daN}$$

$$M_B = M_D = -\beta \frac{q l^2}{8} = -0.509 \frac{1.0 \times 23^2}{8} = -33.66 \text{ daN. m}$$

$$M_C = \gamma \frac{q l^2}{8}$$

$$\gamma = 1 - \beta (1 + \Phi) = 1 - 0.509 (1 + 0.288) = \mathbf{0.344}$$

$$M_C = 0.344 \frac{1.0 \times 23^2}{8} = \mathbf{22.75 \text{ daN. m}}$$

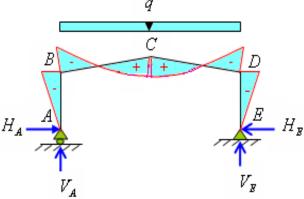


Figure VIII.3: charges verticales vers le bas(efforts internes).

Charges verticales vers le haut : (Vent de soulèvement).

$$H_A = H_E = \beta \frac{ql^2}{8h} = 0.509 \frac{1.0 \times 23^2}{8 \times 8} = 4.21 \text{ daN}$$
 $V_A = V_E = \frac{ql}{2} = \frac{1.0 \times 23}{2} = 11.5 \text{ daN}$
 $M_B = M_D = \beta \frac{ql^2}{8} = 0.509 \frac{1.0 \times 23^2}{8} = 33.66 \text{ daN. m}$
 $M_C = -\gamma \frac{ql^2}{8} = -0.344 \frac{1.0 \times 23^2}{8} = -22.77 \text{ daN. m}$

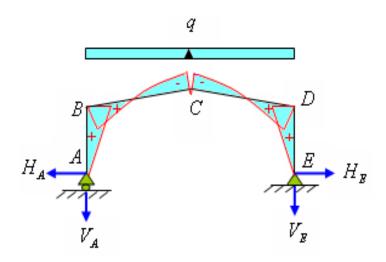


Figure VIII.4: charges verticales vers le haut (efforts internes).

Vent horizontal (pression):

$$\delta = \frac{5\mathsf{K} + 12 + 6\Phi}{8\Delta} = \frac{5 \times 0.682 + 12 + 6 \times 0.288}{8 \times 4.628} = \mathbf{0.463}$$

$$H_E = 0.463 \, \frac{1.0 \times 8}{2} = \mathbf{1.852} \, \mathbf{daN}$$

$$H_A = qh - H_E = 1.0 \times 8 - 1.852 = \mathbf{6.148} \, \mathbf{daN}$$

$$V_A = -V_E = -\frac{qh^2}{2l} = -\frac{1.0 \times 8^2}{2 \times 23} = -\mathbf{1.391} \, \mathbf{daN}$$

$$M_B = \beta \frac{qh^2}{2} = 0.537 \, \frac{1.0 \times 8^2}{2} = \mathbf{17.18} \, \mathbf{daN.m}$$

$$\mathbf{Avec} : \beta = 1 - \delta = 1 - 0.463 = \mathbf{0.537}$$

$$M_D = -\delta \frac{qh^2}{2} = -0.463 \, \frac{1.0 \times 8^2}{2} = -\mathbf{14.82} \, \mathbf{daN.m}$$

$$M_C = -\gamma \frac{qh^2}{2} = -0.096 \, \frac{1.0 \times 8^2}{2} = -\mathbf{3.07} \, \mathbf{daN.m}$$

$$\mathbf{Avec} : \gamma = \frac{(1+\Phi)(5\mathsf{K}+12+6\Phi)}{8\Delta} - \frac{1}{2} = \frac{(1+0.288)(5 \times 0.682 + 12 + 6 \times 0.288)}{8 \times 4.628} - \frac{1}{2} = \mathbf{0.096}$$

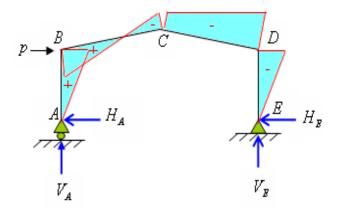


Figure VIII.5: charges horizontales.

Vent horizontal (dépression):

$$H_A = \delta \frac{qh}{2} = 1.852 \text{ daN}; H_E = qh - H_A = 6.148 \text{ daN}$$

$$V_E = -V_A = \ -\frac{qh^2}{2l} = \textbf{1.391 daN}$$

$$M_B = \delta \frac{qh^2}{2} = 14.82 \text{ daN. m}$$

$$M_D = -\beta \frac{qh^2}{2} = -17.18 \text{ daN. m}$$

$$M_C = \gamma \frac{qh^2}{2} = 3.07 \text{ daN. m}$$

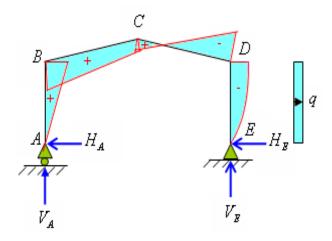
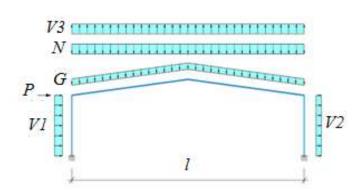


Figure VIII.6: charges horizontales(dépression).

• Effort horizontale en tête du poteau :

$$\begin{split} \beta &= \frac{1}{2} \bigg[1 + \frac{\phi(3+2\phi)}{2\Delta} \bigg] = \frac{1}{2} \bigg[1 + \frac{0.288(3+2\times0.288)}{2\times4.628} \bigg] = \textbf{0.555} \\ \delta &= \frac{1}{2} \bigg[1 - \frac{\phi(3+2\phi)}{2\Delta} \bigg] = \frac{1}{2} \bigg[1 - \frac{0.288(3+2\times0.288)}{2\times4.628} \bigg] = \textbf{0.444} \\ \gamma &= \frac{\phi}{2} \bigg[1 - \frac{(1+\phi)(3+2\phi)}{2\Delta} \bigg] = \frac{0.288}{2} \bigg[1 - \frac{(1+0.288)(3+2\times0.288)}{2\times4.628} \bigg] = \textbf{0.072} \\ H_E &= P - H_A \\ H_A &= \frac{P}{2} \bigg[1 + \frac{\phi(3+2\phi)}{2\Delta} \bigg] = \frac{38.21}{2} \bigg[1 + \frac{0.288(3+2\times0.288)}{2\times4.628} \bigg] = \textbf{21.23 daN} \\ H_E &= P - H_A = 38.21 - 21.23 = \textbf{16.98 daN} \\ V_A &= -V_E = -\frac{Ph}{l} = -\frac{38.21\times8}{23} = -\textbf{13.29 daN} \\ M_B &= \beta Ph = 0.555 \times 38.21 \times 8 = \textbf{169.65 daNm} \\ M_D &= -\delta Ph = -0.444 \times 38.21 \times 8 = -\textbf{135.72 daNm} \end{split}$$

 $M_C = -\gamma Ph = -0.072 \times 38.21 \times 8 = -22.01 \text{ daNm}$


Combinaison de charge :

COMB 1 :1.35 G +1.5 N

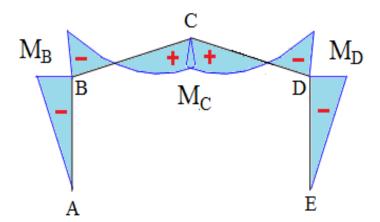
COMB 2:1.35 *G* +1.5 *N*+*P*

COMB 3:1.35 G +1.35 N +1.35 V

Avec: V = V1 + V2 + V3

• Efforts internes sous les charges actuelles :

Charge unitaire :


	Réa	actions d'a	ppuis (da	Moments (daN.m)			
	H_{A}	H_{E}	V_{A}	$V_{\rm E}$	M_{B}	M _C	M_{D}
G	4.21	-4.21	11.5	11.5	-33.66	22.75	-33.66
N	4.21	-4.21	11.5	11.5	-33.66	22.75	-33.66
V ₁ (pression)	-6.148	-1.852	1.391	1.391	17.18	-3.07	-14.82
V ₂ (depression)	-1.852	-6.148	1.391	1.391	14.82	3.07	-17.18
V ₃ (soulevement)	-4.21	4.21	-11.5	-11.5	33.66	-22.75	33.66

Charge actuelles :

		Réact	ions d'app	ouis (daN		Moments (daN.m)			
	q	H_A	H_{E}	V_{A}	$V_{\rm E}$	M_{B}	M_{C}	M_{D}	
	= 1kg /ml								
G	153.1	644.55	-644.55	1760.65	1760.65	-5153.34	3483.02	-5153.34	
N	103.6	436.15	-436.15	1191.4	1191.4	-3487.17	2356.9	-3487.17	
V ₁ (pression)	154.88	-952.20	-286.83	215.44	215.44	2660.83	-475.48	-2295.32	
V ₂ (depression)	129.08	-239.05	-793.58	179.55	179.55	1912.96	396.27	-2217.59	
V ₃ (soulevement)	190.24	-800.91	800.91	-2187.76	-2187.76	6403.47	-4327.96	6403.47	
$V = V_1 + V_2 + V_3$		-1992.16	-279.5	-1792.77	-1792.77	10977.26	-4407.17	1890.56	

❖ Combinaison à l'ELU :

		Ré	actions d'	appuis (da	Moments (daN.m)			
		H_{A}	H_{E}	V_{A}	$V_{\rm E}$	M_{B}	M_{C}	M_{D}
1,35G +1	,5N	1524.36	-1524.36	4163.97	4163.97	-12187.76	8237.42	-12187.76
P		21.23	16.98	-13.29	13.29	169.65	-135.72	-22.01
1,35G + 1,	5N+P	1545.59	-1507.38	4150.68	4177.26	-12018.11	8101.17	-12209.77
1,35 (G+N	V+V)	-1230.47	-137.91	1565.02	1565.02	3154.62	1934.21	-9112.42
G+1	1.5V	-2343.69	-1063.81	-928.50	-928.50	11312.55	-3127.73	-2317.5

VIII.3. Calcul de l'imperfection géométrique globale (défauts d'aplomb) :

Elles sont prises en compte lorsque la somme des efforts horizontaux est inférieure à 15% de la somme des efforts verticaux. Elles peuvent être remplacées par un système de forces équivalentes calculées pour chaque poteau.

$$H_{eq} = \phi N_{sd}$$

$$\phi = \phi_0 \cdot \alpha_h \cdot \alpha_m$$

$$\phi_0 = 1/200$$

$$\alpha_h = 2/\sqrt{h}$$

$$\alpha_m = \sqrt{0.5[1 + (1/m)]}$$

$$\phi \text{ en radian}$$

Avec:

- \succ H_{eq} : Effort horizontale équivalent appliqué en tête de chaque poteau.
- \triangleright N_{set} : Effort normal de compression dans le poteau.
- \triangleright ϕ : Défaut initial d'aplomb. $\triangleright \phi_0$: Valeur de base.
- \triangleright α_h : Coefficient de réduction qui tient compte de la hauteur applicable au poteau.
- \triangleright α_m : Coefficient de réduction qui tient du nombre de poteaux dans une rangée.

H=10.30 m : Hauteur de la structure.

m = 2: Nombre de poteaux dans une file.

$$\alpha_h = \frac{2}{\sqrt{10.30}} = \mathbf{0.62}$$

$$\alpha_m = \sqrt{0.5(1+1/m)} = \sqrt{0.5(1+1/2} = 0.866$$

$$\varphi = 0.005 \times 0.66 \times 0.866 = \textbf{0}.\,\textbf{0028}$$

VIII.3.1. Modélisation avec les imperfections :

Efforts au pied de poteaux aux l'ELU:

Tableau VIII-2: Efforts au pied de poteaux aux l'ELU.

Combinaisons (ELU)	Poteau 01(d	laN)	Poteau 02(d	laN)	Somme(daN)		
	H _A	V _A	H _E	$V_{\rm E}$	Н	V	
Combe 01	1524.36	4163.97	-1524.36	4163.97	0	8327.94	
Combe 02 -1230		1565.02	137.91	1565.02	-1092.09	3130.04	
Combe 03 -2343.69		-928.50	-1063.81	-928.50	-3407.5	-1857	

Les défauts d'aplomb ne sont pas à considérer si : $|H| \ge 0.15 |V|$

Tableau VIII-3: Prise en compte des défauts d'aplomb.

Combinaisons	0,15 V	H ≥ 0,15 V
(ELU)		
Combe 01	1249.19	Non
Combe02	469.50	Oui
Combe 03	-278.55	Oui

Remarque:

Les défauts d'aplomb ne sont pas à considérer pour les combinaisons 02 & 03 car la condition $|H| \ge 0.15 |V|$ est vérifiée.

Efforts équivalent en tète poteaux :

TableauVIII-4: Efforts équivalent en tète poteaux.

Combinaisons	Poteau 01(daN)		Poteau 02(daN)			
	Nsd	Heq	Nsd	Heq		
Combe 01	4163.97	19.1	4163.97	19.1		
1.35G+1.5N						

VIII.3.2. Calcul des efforts internes additionnels :

Efforts horizontale en tète poteaux :

$$P = 2x 19.1 = 38.2 \text{ daN}$$

VIII.4. Pré-dimensionnement de la traverse :

Nous pouvons admettre les éléments porteurs suivants basés sur des règles empiriques de pré dimensionnement de l'annexe A6.1 :

Pour la traverse :
$$h = \frac{l}{30} = \frac{11730}{30} = 391 \text{ mm} \rightarrow \text{on prend l'IPE400}$$

L= la longueur de la traverse

VIII.4.1. Choix de la méthode d'analyse :

Le choix de la méthode d'analyse est conditionné par la valeur du coefficient d'éloignement critique α_{cr}

$$\alpha_{cr} < 10 \dots \dots \Rightarrow$$
Structure souple: prise en compte des effets du second ordre $\alpha_{cr} \geq 15 \dots \dots \Rightarrow$ Structure rigide: analyse plastique

Détermination du facteur d'éloignement critique minimum :

 α_{cr} : L'importance des effets du second ordre sur une ossature est mesurée par sa déformabilité latérale a travers le coefficient d'amplification critique α_{cr} ; Dans le cas de portique a faible pente, ce dernier peut être calculé avec la formule approchée suivante pour la combinaison d'action considérée.

$$\alpha_{\rm cr} = \frac{H}{\delta h} \times \frac{h}{V}$$

Avec:

H:action horizontal total.

V : action vertical total (prise égale a 10kN : charge horizontale arbitraire).

 $\delta_{\rm h}$:déplacement horizontal.

h:hauteur du poteau.

Ou bien par la relation suivante :

$$\frac{1}{\propto cr} = \frac{Vsd}{Vcr} = \frac{Nsd.t}{Ncr.t} + (4 + 3.3.R) \frac{Nsd.p}{Nsd.p}$$

NSd.p: effort axial de compression dans le poteau

Ncr.p: effort critique d'Euler dans le poteau

NSd.t: effort axial de compression dans la traverse

Ncr.t: effort critique d'Euler dans la traverse

I : le moment d'inertie de l'IPE 360 suivant l'axe yy (estimé)

$$R = \frac{I_1 * S}{I_2 * h} = \frac{S}{h} = \frac{11.730}{8} = 1.47 \dots \dots \dots I_1 = I_2$$

$$N_{cr.t} = \frac{\pi^2 * I * E}{S^2} = \frac{\pi^2 * 2.1 * 10^4 * 16720}{1173^2}$$
$$= 244833.09 \, daN$$

$$N_{cr.P} = \frac{\pi^2 * I * E}{h^2} = \frac{\pi^2 * 2.1 * 10^4 * 16720}{800^2}$$
$$= 526363.98 \ daN$$

Sous la combinaison 1.35G+1.5N:

Nsd. t = 4163.97sin11.31 + 1524.36 cos11.31 = 2311.38 daN

 $Nsd. p = 4163.97 \ daN$

$$\frac{1}{\alpha_{cr}} = \frac{V_{sd}}{V_{cr}} = \frac{2311.38}{244833.09} + (4 + 3.3 * 1.47) \frac{4163.97}{526363.98} = 0.07$$

$$\alpha_{cr} = 12.58 > 10$$

Donc la structure est rigide.

On opte pour la méthode élastique au 1^{er} ordre.

a) Moments sollicitant la traverse :

Actions vers le bas : charges gravitationnelles :

Sous la combinaison: 1,35G+1,5N+P

Aux appuis :

 $M_D = -12187.76 \text{ daN.m}$

Au faitage : $M_C = 8237.42 \text{ daN.m}$

Actions vers le haut : Vent de soulèvement :

Sous la combinaison : G+1,5V

> Aux appuis

 $M_D = -2317.5 \text{ daN.m}$

 $M_B = 11312.55 \text{daN.m}$

Au faitage : $M_C = -2317.5$ daN.m

Calcul préliminaire :

$$M_{y.sd} \leq M_{ply.Rd} = \frac{W_{ply}.f_y}{\gamma_{M_0}} \iff W_{ply} \geq \frac{M_{y.sd}.\gamma_{M_0}}{f_y}$$

$$W_{ply} \ge \frac{12187.76 * 1.1}{23.5} = 570.49 \ cm^3$$

Soit un $IPE 300 \quad Wply = 628 \, cm^3$

Remarque:

Les profilés choisis sont surestimés pour tenir compte des effets de flambement, de déversement et de la flèche.

VIII.4.2. Dimensionnement de la traverse :

VIII.4.2.1. Vérification a la flèche :

Vérification a la flèche (IPE300) :

Le calcul de la flèche est réalisé au faitage de la traverse (au point C) ; la flèche maximale est donnée par la formule suivante :

Soit un *IPE* 300.; $Wply = 628 cm^3$

$$\delta = \frac{1}{384 \, E \, I_{\nu}} (5q l^4 - 48 M_B \, . \, l^2)$$

$$q = G + N = 153.1 + 103.6 = 256.7 \text{daN}/ml$$

- $F = 2,1 \cdot 10 \, \text{da} N/cm^2$
- $I_v = 8356 \ cm^4$
- $\geq l = 23 m$
- \rightarrow $M_B = -8640.51 \text{daN.m}$ (Sous la combinaison de service G+N)

Sachant que:

$$\delta_{max} = \frac{l}{200} = 11.5 cm$$

$$\delta = \frac{1}{384 * 2.1 * 10^4 * 8356} (5 * 2.56 * 10^{-2} * 2300^4 - 48(8640.51)(2300)^2)$$

On augmente la section, on passe à un IPE360

 $\delta = 20.59 \ cm > \delta_{max} \dots \dots \dots \dots non \ v\'erifi\'ee$

Soit un IPE $360Wply = 1019 cm^3$

> Vérification a la flèche (IPE360) :

$$\delta = \frac{1}{384 E I_y} (5ql^4 - 48M_B . l^2)$$

$$\delta = \frac{1}{384 * 2.1 * 10^4 * 16270} (5 * 2.56 * 10^{-2} * 2300^4 - 48(8640.51)(2300)^2)$$

$$\delta = 10.57 cm > \delta_{max} \dots \dots \dots v\acute{e}rifi\acute{e}e$$

VIII.5. Vérification de l'IPE 360 pour la traverse a (l'ELU) :

VIII.5.1. Vérification de la section a la résistance :

Bilan des efforts :

$$\Rightarrow M_{v,sd} = 12187.76 \ daN. m$$

$$\Rightarrow N_{sd} = 4177.26 \sin 11.31 + 1545.59 \cos 11.31 = 2334.80 \ daN$$

$$\Rightarrow V_{z,sd} = 4177.26 \cos 11.31 - 1545.59 \sin 11.31 = 3793.02 \, daN$$

> Classe de la section :

Section sollicitée en flexion composé⇒ Sectionde classse 01.

VIII.5.2. Vérifications des efforts tranchants :

Tableau VIII-5: Dimension et caractéristique de l'IPE 360

Dimensions					Caractéristiques de calcul								
Profilé IPE360	G Kg/m	h mm	b mm	tw mm	tf mm	d mm	A cm ²	Wpl, y	Wpl,z cm³	iz cm	iy cm	<i>Iz</i> cm	Iy cm ⁴
	57.1	360	170	8	12.7	298.6	72.7	1019	191	3.79	15	1043	12187.76

$$A_v = A - 2b * t_f + (t_w + 2r)t_f = 35.10$$

$$V_{z,sd} = 3793.02 \, daN$$

$$V_{\text{plz,Rd}} = \frac{A(f_y)}{\gamma_{M0}\sqrt{3}} = \frac{3510(23.5)}{1.1\sqrt{3}} = 43293.39 \text{ daN}$$

 $\dots \dots pas d'interaction entre le moment résistant et l'effort tranchant$

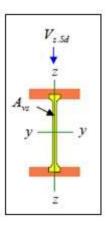


Figure VIII.7: Effort tranchant dans le plan de l'âme et la section cisaillée.

VIII.5.3. Vérifications de l'effort normal :

$$N_{sd} = 4177.26 \ daN$$

$$ho N_{pl,Rd} = \frac{Af_y}{\gamma_{M0}} = \frac{72.70*2350}{1.1} = 155313.6 \ daN$$

$$N_{sd} = 4177.26 \, daN < N_{pl,Rd} = 155313.6 \, daN$$
.....vérifiée

 $\dots pas d'interaction entre le moment r\'esistant et l'effort normal$

VIII.5.4. Vérifications du moment fléchissant :

On doit vérifier que : $M_{y.sd} \le M_{c.Rd}$

$$M_{v,sd} = 12187.76 \, daN. m$$

$$M_{c,Rd} = M_{pl,Rd} = \frac{W_{ply}f_y}{\gamma_{M0}} = \frac{1019*2350*10^{-2}}{1.1} = 21769.54 \ daN.m$$

$$M_{y,sd} = 12187.76 \; daN. \, m < M_{c,Rd} = 21769.54 \; daN. \, m$$
..... vérifiée

⇒LasectionenIPE360 estvérifiée.

VIII.5.5. Vérification de l'élément aux instabilités :

a)Vis-à-vis du flambement :

Action vers le bas:

Bilan des efforts :

$$M_{y,sd} = 12187.76 \, daN. \, m$$

$$> N_{sd} = 4177.26 \, daN$$

$$V_{z,sd} = 3793.02 \, daN$$

La vérification de l'élément sous une flexion composée avec risque de flambement se fait suivant la formule suivante :

a) Flexion composée avec risque de flambement :

$$\frac{N_{sd}}{N_{by,Rd}} + \frac{k_{yy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

b) Flexion composée avec risque de déversement :

$$\frac{N_{sd}}{N_{bz,Rd}} + \frac{k_{zy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

> Calcul du coefficient de réduction minimale pour le flambement Xmin:

$$\chi_{min} = \min(\chi_{v}; \chi_{z})$$

✓ Flambement par rapport à l'axe fort Y-Y (dans le plan du portique) :

$$\chi_{y} = \frac{1}{\emptyset_{y} + \left[\emptyset_{y}^{2} - \overline{\lambda_{y}^{2}}\right]^{0.5}}$$

Avec

• $\emptyset_y = 0.5 \left[1 + \alpha_y \left(\overline{\lambda_y} - 0.2 \right) + \overline{\lambda_y^2} \right]$

• $\overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} \sqrt{(\beta w)}$; $(\beta_w = 1)$ car la section est de classe 01

α: facteurd 'imperfectioncorrespondant à lacourbede flambement appropriée, donné parletable au 5.5.1 del 'eurocode03

Et:

$$\lambda_1 = \pi \left[\frac{E}{f_y} \right]^{0.5} = \pi \left[\frac{2.1*10^4}{2350} \right]^{0.5} = 93.9$$
 :élancement Eulérien

$$\lambda_y = \frac{l_y}{i_y} = \frac{1173}{15} = 78.2$$

$$\overline{\lambda_y} = \frac{78.2}{93.9} = 0.83$$

> Courbe de flambement :

$$\begin{cases} h/_b = \frac{360}{170} = 2.1 > 1.2 \\ t_f = 12.7 < 40 \ mm \to axe \ du \ flambement \ y - y \end{cases}$$

 \rightarrow courbe de flambement (a) ($\alpha = 0.21$)

(Tableau (5-5-1) Eurocode 03

•
$$\emptyset_y = 0.5[1 + 0.21(0.83 - 0.2) + 0.83^2] = 0.91$$

•
$$\chi_y = \frac{1}{0.91 + [0.91^2 - 0.83^2]^{0.5}} = 0.779$$

✓ Flambement par rapport à l'axe faible Z-Z (hors du plan du portique) :

$$\chi_z = \frac{1}{\emptyset_z + \left[\emptyset_z^2 - \overline{\lambda_z^2}\right]^{0.5}}$$

Avec

•
$$\emptyset_y = 0.5 \left[1 + \alpha_z \left(\overline{\lambda_z} - 0.2 \right) + \overline{\lambda_z^2} \right]$$

• $\overline{\lambda_z} = \frac{\lambda_z}{\lambda_z} \sqrt{(\beta w)}$; $(\beta_w = 1)$ car la section est de classe 01

$$\lambda_1=\pi\left[rac{E}{f_y}
ight]^{0.5}=\pi\left[rac{2.1*10^4}{2350}
ight]^{0.5}=93.9$$
 :élancement Eulérien

$$\lambda_z = \frac{l_z}{i_z} = \frac{586.5}{3.79} = 154.7$$

$$\overline{\lambda_z} = \frac{154.7}{93.9} = 1.64$$

$$\begin{cases} h/_b = \frac{360}{170} = 2.1 > 1.2 \end{cases}$$

$$t_f = 12.7 < 40 \; mm \rightarrow axe \; du \; flambement \; z-z$$

courbe de flambement (b) ($\alpha = 0.34$)

(Tableau (5- 5-1) Eurocode 03

•
$$\emptyset_z = 0.5[1 + 0.34(1.64 - 0.2) + 1.64^2] = 2.08$$

•
$$\chi_z = \frac{1}{2.08 + [2.08^2 - 1.64^2]^{0.5}} = 0.297$$

✓ Coefficient de réduction minimale pour le flambement X_{min} :

$$\chi_{min} = min(\chi_y; \chi_z) = min(0.779; 0.297) = 0.297$$

Calcul les coefficients d'interactionkij :

$$k_{yy} = min\left[C_{my}\left(1 + \left[\overline{\lambda_y} - 0.2\right] \frac{N_{\rm sd}}{\chi_y * N_{\rm pl,Rd}}\right); C_{my}\left(1 + 0.8 \frac{N_{\rm sd}}{\chi_y * N_{\rm pl,Rd}}\right)\right]$$

$$k_{zy} = 0.6k_{yy}$$

Avec:

 \mathcal{C}_{my} : est le facteur de moment équivalent pour tenir compte de la forme du diagramme du moment fléchissant

Charge uniformément répartie : $C_{mv} = 0.95$

•
$$k_{yy} = min \left[0.95 \left(1 + \left[0.83 - 0.2 \right] \frac{4177.26}{0.77*155313.6} \right); 0.95 \left(1 + 0.8 \frac{4177.26}{0.77*155313.6} \right) \right]$$

•
$$k_{yy} = min[0.97; 0.97] = 0.97$$

•
$$k_{zy} = 0.6k_{yy} = 0.6 * 0.97 = 0.58$$

•
$$N_{by,Rd} = \chi_y * N_{pl,Rd} = 0.77 * 155313.6 = 119591.47 \text{ daN}$$

•
$$N_{bz,Rd} = \chi_z * N_{pl,Rd} = 0.29 * 155313.6 = 45040.94 \text{ daN}$$

$$M_{b,Rd} = \chi_{LT} * \beta_w * \frac{W_{ply}*f_y}{\gamma_{M1}} = \chi_{LT} * M_{ply,Rd}$$
 (Formule 5,48 de l'eurocode3)

 $\beta_w=1$; Section de classe 01.

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} * (\sqrt{\beta_w}) avec \beta_w = 1$$

$$\lambda_1 = 0.93\epsilon$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}}$

$$\lambda_{LT} = \frac{\frac{L_{/i_{Z}}}{C_{1}^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{/i_{Z}}}{h_{/t_{f}}}\right)^{2}\right]^{0.25}}$$

$$\Rightarrow \lambda_{LT} = \frac{586.5/_{3.79}}{1.132_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{586.5/_{3.79}}{36/_{12.7}}\right)^2\right]^{0.25}} = 41.55$$

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} = \frac{41.55}{93.9} = 0.44$$

Le choix des courbes de déversement :

$$\frac{h}{b} = \frac{360}{170} = 2.1 > 1.2$$

$$\rightarrow \text{courb}$$

$$t_f = 12.7 < 40 \text{ mm} \rightarrow \text{axe du flambement } y - y$$

 \rightarrow courbe de flambement (**b**) ($\alpha = 0.34$)

(Tableau (5-5-1) Eurocode 03

La valeur de χ_{LT} pour l'élancement réduit $\overline{\lambda_{LT}}$ est déterminée à partir de la formule (5.4.9) de l'Eurocode3:

$$\chi_{LT} = \frac{_1}{_{\emptyset_{LT} + \left[\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}}} \qquad \text{Avec} \qquad \chi_{LT} < 1$$

$$\begin{aligned} \text{Et}: & \emptyset_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right] = 0.5 [1 + 0.34 (0.44 - 0.2) + 0.44^2] = 0.78 \\ & \Rightarrow \ \chi_{LT} = \frac{1}{0.78 + [0.78^2 - 0.44^2]^{0.5}} = 0.70 \end{aligned}$$

$$M_{b,Rd} = \chi_{LT} * M_{ply,Rd} = 0.70 * 21769.54 = 15238.67 \text{ daN. m}$$

Vérification au flambement (dans le plan) avec risque de flambement :

$$\frac{N_{sd}}{N_{by,Rd}} + \frac{k_{yy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

$$\frac{_{4177.26}}{_{119591.47}} + \frac{_{0.97*12187.76}}{_{15238.67}} = 0.81 \leq 1$$
.....condition vérifiée.

Vérification au déversement (hors le plan) avec risque de déversement :

$$\frac{N_{sd}}{N_{bz,Rd}} + \frac{k_{zy} * M_{y,sd}}{M_{b,Rd}} \le 1$$

$$\frac{4177.26}{45040.94} + \frac{0.58*12187.76}{15238.67} = 0.55 \le 1$$
.....condition vérifiée.

VIII.5.6. Conclusion:

Le profilé laminé choisi (IPE360) est vérifié aux états limites ultimes et de services donc vérifié a la sécurité et convient comme Traverse du portique.

VIII.6. Vérification des poteaux (IPE400) :

Dans notre cas, on choisit un IPE 400 comme poteau de portique.

- **Bilan des efforts :**
- $M_{v.sd} = 12187.76 \ daN.m$
- $N_{sd} = 4177.26 \, daN$
- $V_{z,sd} = 3793.02 \, daN$
- ✓ Résistance au flambement par rapport à l'axe fort yy (dans le plan du portique)

Remarque:

L'ossature n'est pas sensible aux effets du second ordre ($\alpha_{cr} = 12.58 > 10$) la longueur de flambement du poteau pour le flambement dans le plan du portique peut donc être prise comme étant égale à la longueur d'épure : $l_v = 8.0 m$

$$\lambda_y = \frac{l_y}{i_y} = \frac{800}{16.6} = 48.19$$

$$\overline{\lambda_y} = \frac{48.19}{93.9} = 0.51$$

Courbe de flambement :

$$\begin{cases} h/_b = 400/_{180} = 2.2 > 1.2 \\ t_f = 13.5 < 40 \ mm \rightarrow axe \ du \ flambement \ y - y \end{cases}$$

 \rightarrow courbe de flambement (a) ($\alpha = 0.21$)

•
$$\emptyset_{\gamma} = 0.5[1 + 0.21(0.48 - 0.2) + 0.48^2] = 0.64$$

•
$$\chi_y = \frac{1}{0.64 + [0.64^2 - 0.51^2]^{0.5}} = 0.97$$

•
$$N_{pl,Rd} = \frac{Af_y}{\gamma_{M0}} = \frac{84.5*2350}{1.1} = 180522.72 \ daN.m$$

•
$$N_{by,Rd} = \chi_y * N_{pl,Rd} = 175107.03 \text{ daN}$$

✓ Flambement par rapport à l'axe faible Z-Z (hors du plan du portique) :

 $l_z = 1.5 m$ (entraxe des lisses)

$$\lambda_z = \frac{l_z}{i_z} = \frac{150}{3.95} = 37.97$$

$$\overline{\lambda_z} = \frac{37.97}{93.9} = 0.40$$

$$\begin{cases} h/b = \frac{\text{Courbe de flambement :}}{400}/180 = 2.2 > 1.2 \end{cases}$$

$$t_f = 13.4 < 40 \ mm \rightarrow axe \ du \ flambement \ z - z$$

courbe de flambement (b) ($\alpha = 0.34$)

•
$$\emptyset_z = 0.5[1 + 0.34(0.40 - 0.2) + 0.40^2] = 0.74$$

•
$$\chi_z = \frac{1}{0.74 + [0.74^2 - 0.40^2]^{0.5}} = 0.73$$

•
$$N_{bz,Rd} = \chi_z * N_{pl,Rd} = 0.73 * 180522.72 = 132486.41 \, daN$$

Calcul de la résistance au déversement :

$$\chi_{LT} = \frac{_1}{_{\emptyset_{LT} + \left[\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}}} \qquad \text{Avec} \qquad \chi_{LT} < 1$$

$$\text{Et}: \emptyset_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right]$$

Avec:

 α_{LT} : facteur d'imperfection pour déversement $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$^h/_b={}^{400}/_{180}=$$
 2.2 $>$ 1.2 ; courbe de flambement b ; $lpha_{
m LT}=$ 0.49

Pour les sections laminées :

 $\beta_{\rm w}=1$; Section de classe 01.

L'élancement réduit sera $\overline{\lambda_{LT}}$ sera déterminé par la formule suivante :

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} * \left(\sqrt{\beta_w}\right) a vec \beta_w = 1$$

•
$$\lambda_1 = 0.93\epsilon$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}}$

$$\lambda_{LT} = \frac{\frac{L_{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{i_z}}{h_{f_t}} \right)^2 \right]^{0.25}}$$

IPE 400 : $i_z = 3.95 \text{ cm}$; h = 40 cm ; $t_f = 1.38 \text{ cm}$

L = 150 cm : maintien latéraux (entraxe des lisses de bardage)

$$C_1 = 1.88 - 1.40 \Psi + 0.52 \Psi^2 \leq 2.7$$

$$\Psi = \frac{M_a}{M_b}$$
 avec $-1.0 \le \Psi \le 1.0$

 $M_a < M_b$ moments aux extrémités du troncon le plus chargé .

$$M_b = 12209.77 \ daN.m \ ; \frac{12209.77}{8} = \frac{M_{y,sd}(h=6 \ m)}{6}$$

$$M_a = M_{y,sd}(h = 6 m) = \frac{12209.77 * 6}{8} = 9157.32 \, daN.m$$

$$\Psi = \frac{M_a}{M_b} = \frac{9157.32}{12209.77} = 0.75$$

$$C_1 = 1.88 - 1.40 * 0.75 + 0.52 * 0.75^2 = 1.122 \le 2.7$$

On prend $C_1 = 1.122$

$$\lambda_{LT} = \frac{\frac{L_{/i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{/i_z}}{h_{/t_f}} \right)^2 \right]^{0.25}} = \frac{\frac{150_{/3.95}}{1.122_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{150_{/3.95}}{40_{/1.35}} \right)^2 \right]^{0.25}} = 35.15$$

$$\star \overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} = \frac{35.15}{93.9} = 0.374$$

$$\emptyset_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right] = 0.5 \left[1 + 0.49(0.374 - 0.2) + 0.374^2 \right] = 0.612$$

$$\Rightarrow \chi_{LT} = \frac{1}{0.61 + \left[0.61^2 - 0.37^2 \right]^{0.5}} = 0.913$$

$$M_{pl,Rd} = \frac{W_{ply}f_y}{\gamma_{M0}} = \frac{1307 * 2350 * 10^{-2}}{1.1} = 27922.27 \ daN.m$$

$$M_{b,Rd} = \chi_{LT} * M_{ply,Rd} = 0.913 * 27922.27 = 25493.03 daN. m$$

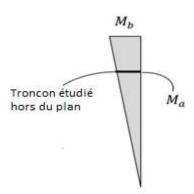
VIII.6.1. Calcul des coefficients d'interaction k_{ij} : (EC3, Annexe B)

♣ Interaction effort normal et moment fléchissant – flambement hors plan zz :

le flambement hors-plan du à l'interaction d'un effort normal et d'un moment fléchissant est vérifié si l'expression suivante est satisfaite :

$$\frac{N_{sd}}{N_{hzRd}} + \frac{k_{zy} * M_{y,sd}}{M_{hRd}} \le 1$$

 $\overline{\lambda_z} = 0.404 \ge 0.4$, le facteur d'interaction k_{zy} est calculé d'après :


$$k_{zy} = max \left[\left(1 - \frac{0.1\overline{\lambda_z}}{C_{mLT} - 0.25} * \frac{N_{sd}}{N_{bz,Rd}} \right) ; \left(1 - \frac{0.1}{C_{mLT} - 0.25} * \frac{N_{sd}}{N_{bz,Rd}} \right) \right]$$

Ou:

 C_{mLT} : est facteur de moment équivalent pour tenir compte de forme du diagramme du moment fléchissant entre les points de maintien latéraux (voir : ANNEXE 4)

$$C_{mLT} = 0.6 + 0.4\Psi$$
; $\Psi = \frac{M_a}{M_b} = \frac{9157.32}{12209.77} = 0.75$

$$C_{mLT} = 0.6 + 0.4 * 0.75 = 0.9$$

$$k_{zy} = max \left[\left(1 - \frac{0.1 * 0.4}{0.9 - 0.25} * \frac{4177.26}{132486.41} \right); \left(1 - \frac{0.1}{0.9 - 0.25} * \frac{4177.26}{132486.41} \right) \right]$$

$$k_{zy} = max(0.998; 0.995) = 0.998$$

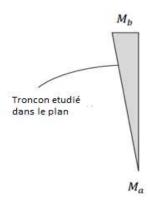
$$\frac{N_{sd}}{N_{bz,Rd}} + \frac{k_{zy} * M_{y,sd}}{M_{b,Rd}} = \frac{4177.26}{132486.41} + \frac{0.998 * 12187.76}{25493.03} = 0.50 \le 1 \dots \dots OK$$

♣ Interaction effort normal et moment fléchissant – flambement dans plan yy :

le flambement dans plan du à l'interaction d'un effort normal et d'un moment fléchissant est vérifié si l'expression suivante est satisfaite :

$$\frac{N_{sd}}{N_{bv,Rd}} + \frac{k_{yy} * M_{y,sd}}{M_{b,Rd}} \le 1.0$$

$$\boldsymbol{k_{yy}} = min\left[C_{my}\left(1+\overline{(\lambda_y}-0.2)\frac{N_{sd}}{N_{by,Rd}}\right);C_{my}\left(1+0.8\frac{N_{sd}}{N_{by,Rd}}\right)\right]$$


 C_{my} : est facteur de moment équivalent pour tenir compte de forme du diagramme du moment fléchissant entre les points de maintien latéraux (voir : ANNEXE)

Remarque:

les facteurs C_{my} et C_{mLT} doivent être calculés en considérant le diagramme de moment fléchissant sur la longueur du tronçon entre points de maintien au flambement dans le plan considéré . Dans cette vérification le tronçon de barre pour le calcul de C_{mLT} peut ne pas être le même que celui pour le calcul de C_{my}

$$C_{my} = 0.6 + 0.4 \Psi$$
; $\Psi = \frac{M_a}{M_b} = \frac{0}{12209.77} = 0.0$

$$C_{my} = 0.6 + 0.4 * 0.0 = 0.6$$

$$\mathbf{k}_{yy} = min \left[0.6 \left(1 + [0.51 - 0.2] \frac{4177.26}{175107.03} \right) ; 0.6 \left(1 + 0.8 \frac{4177.26}{175107.03} \right) \right]$$

$$\mathbf{k}_{yy} = min(0.604; 0.611) = 0.604$$

$$\frac{4177.26}{175107.03} + \frac{0.604 * 12187.76}{25493.03} = 0.31 \le 1.0 \dots \dots \dots \dots \dots \mathbf{0K}$$

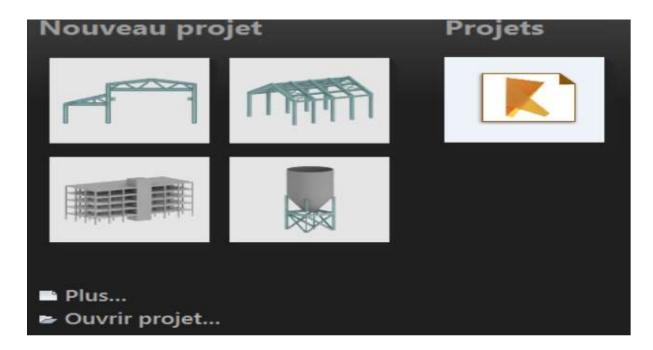
VIII.7. Etude numérique de portique avec logiciel ROBOT :

VIII.7.1. Introduction:

Pour faire l'étude d'un système il y a plusieurs méthodes manuelles classiques, mais vu la disponibilité d'un logiciel ROBOT millenium notre tâche consiste a introduit les données suivantes :

- -les données pour définir la géométrie de la structure.
- -Les informations concernant les propriétés des matériaux.
- -Les sollicitations au qu'elle la structure est soumise.

Nous avants choisi le calcul par ordinateur ; pour la rapidité, et l'exactitude des résultats.


VIII.7.2. Logiciel de calcul et l'optimisation des structures :

ROBOT millenium est un logiciel de calcul et l'optimisation des structures.

Il utilise la méthode d'analyse par éléments finis pour étudier les structures planes et spatiales de type : Treillis, portique, structures mixtes

VIII.7.3. Description du logiciel ROBOT :

Après le lancement d'un système ROBOT, la fenêtre représentée ci-après s'affiche, elle Permet de définir le type de structure à étudier, d'ouvrir un dimensionnement de la structure.

VIII.8. Etape à suivre dans le logiciel :

La première étape :

La modélisation:

La définition d'une structure commence par la définition des nœuds et des barres. Dans ROBOT Millenium, seule la définition des barres est nécessaire puisque les nœuds sont alors automatiquement crée aux extrémités de ces dernières. ROBOT Millenium propose de nombreuses fonctionnalités qui permettent une modélisation avancée.

> La deuxième étape :

Application des efforts (neige, vent, séisme, charge d'exploitation, les combinaisons des efforts ...etc.) à la structure.

> Type de chargements :

Toutes les charges dans le logiciel ROBOT sont groupées en cas de charge, chaque cas possède un numéro et un nom. Dans le même cas de charge, vous pouvez définir un nombre quelconque de charge, les cas de charge peuvent être ensuite composés en combinaisons.

Pour le cas de charges définir dans ROBOT Millenium, vous pouvez par exemple, définir les natures suivantes : neige, vent, permanentes et d'exploitations.

Combinaisons de charges :

La génération automatique des pondérations ROBOT Millenium permet de crée une combinaison de cas de charge crée. Les combinaisons seront du type ELU, ELS au accidentelle. Cette fonctionnalité de base permet à utilisateur de déclarer ces propres combinaisons et enveloppes de cas de charges.

La troisième étape :

Vérification et analyse :

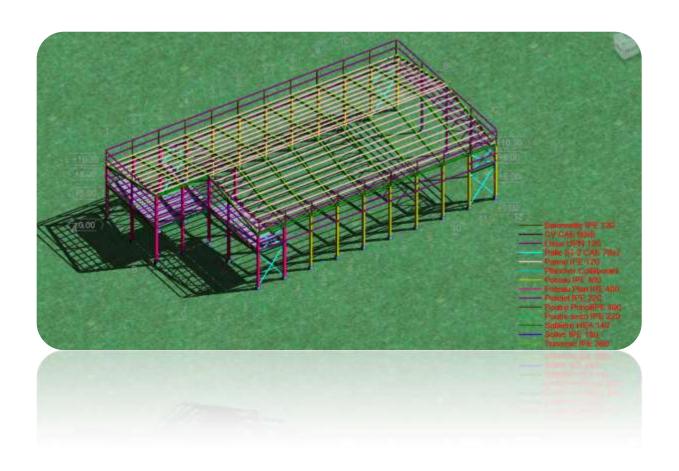
Après la modélisation et l'application des charges on lance l'analyse et l'optimisation des familles. On obtient trois profiles :

- -Le premier représente la plus basse limite et qu'il ne faut pas franchir.
- -Le deuxième c'est le profil optimal.
- -Le troisième représente le profile surdimensionné.

> Affichage des résultats :

Tableau des résultats :

Les tableaux présentent les déférent résultats des calculs de la structure (déplacements, contraintes, réactions aux appuis, efforts,....etc.).


> Analyse graphique pour les barres :

Par l'option d'analyse graphique, il est possible d'afficher les déformées de la structure ainsi que les déférents diagrammes d'efforts et de contraintes.

Résultats de logicielle :

Vérification des éléments :

Perspective de la Structure :

Tableau des éléments :

Barre	Section	matériaux	Longueur	Type de barre
1	IPE400	S275	8.00	Poteau
2	IPE360	S275	11.73	Traverse
3	UPN120	S275	4.00	Lisse
4	IPE180	S275	4.00	Solive
5	IPE120	S275	4.00	Panne
6	IPE180	S275	4.00	PT secondaire
7	IPE360	S275	5.83	PT principale
8	CAE60x6	S275	4.61	CV
9	CAE70x7	S275	6.4	Palle de
				stabilité
10	CAE70x7	S275	5.00	Palle de
				stabilité
11	IPE120	S275	2.3	Baïonnette
12	IPE270	S275	4.17	potelet

Tableau de chargement :

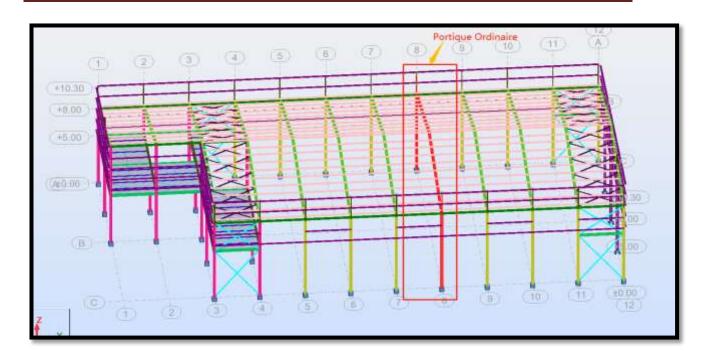
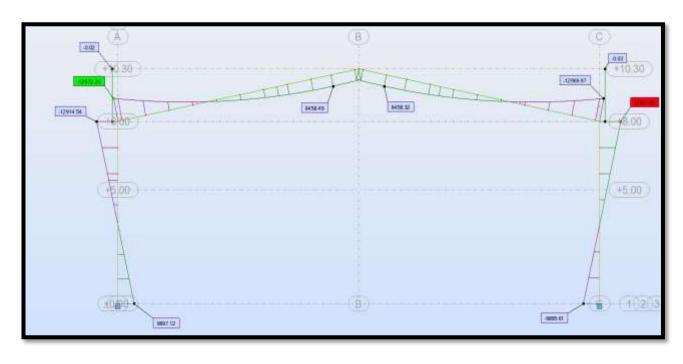
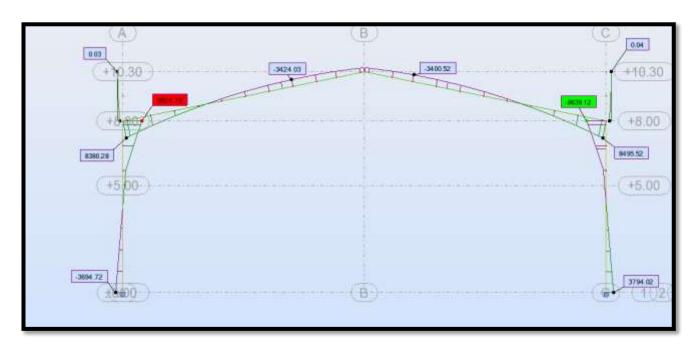

1:G	poids propre	1A47 49A119	Structure en	#NOM?	Coef=1.00	MEMO :
1:G	(EF) surfacique uniforme	550 551	PX=0.0	PY=0.0	PZ=-17.00	global
2:Q	force sur barre	3A35P4 4A40	FX=0.0	FY=0.0	FZ=-100.00	CX=0.0
2:Q	force sur barre	3A35P4 4A40	FX=0.0	FY=0.0	FZ=-100.00	CX=0.0
2:Q	(EF) surfacique uniforme		PX=0.0	PY=0.0	PZ=-250.00	global
3:N	(EF) surfacique uniforme	550 551	PX=0.0	PY=0.0	PZ=-25.00	global
4:Vent sur Pignon	(EF) surfacique uniforme	552 555	PX=0.0	PY=38.72	PZ=0.0	global
4:Vent sur Pignon	(EF) surfacique uniforme	556	PX=0.0	PY=-32.27	PZ=0.0	global
4:Vent sur Pignon	(EF) surfacique uniforme	549 554	PX=77.45	PY=0.0	PZ=0.0	global
4:Vent sur Pignon	(EF) surfacique uniforme	557	PX=-77.45	PY=0.0	PZ=0.0	global
4:Vent sur Pignon	(EF) surfacique uniforme	550 551	PX=0.0	PY=0.0	PZ=103.90	global
5:Vent sur Long-pan	(EF) surfacique uniforme	550 551	PX=0.0	PY=0.0	PZ=90.03	global
5:Vent sur Long-pan	(EF) surfacique uniforme	557	PX=38.02	PY=0.0	PZ=0.0	global
5:Vent sur Long-pan	(EF) surfacique uniforme	549 554	PX=-32.28	PY=0.0	PZ=0.0	global
5:Vent sur Long-pan	(EF) surfacique uniforme	552 555	PX=0.0	PY=-77.45	PZ=0.0	global
5:Vent sur Long-pan	(EF) surfacique uniforme	556	PX=0.0	PY=77.45	PZ=0.0	global

Tableau des Combinaisons:

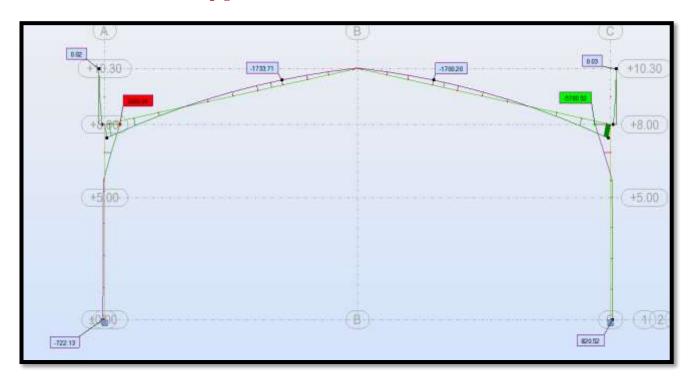
Combinaison	Nom	Type d'analyse	Natur e	Définition
6 (C)	1.35G+1.5Q	Combinaison linéaire	ELU	1*1.35+2*1.50
7 (C)	1.35G+1.5N	Combinaison linéaire	ELU	1*1.35+3*1.50
8 (C)	1.35G+1.5Vpignon	Combinaison linéaire	ELU	1*1.35+4*1.50
9 (C)	1.35G+1.5VLong-Pan	Combinaison linéaire	ELU	1*1.35+5*1.50
10 (C)	1.35G+1.5x0.9(N+Vpig)	Combinaison linéaire	ELU	(1+3+4)*1.35
11 (C)	1.35G+1.5x0.9(N+Vlong)	Combinaison linéaire	ELU	(1+3+5)*1.35
12 (C)	1.35G+1.5x0.9(Q+N)	Combinaison linéaire	ELU	(1+2+4)*1.35
13 (C)	1.35G+1.5x0.9(Q+Vpig)	Combinaison linéaire	ELU	(1+2+4)*1.35
14 (C)	1.35G+1.5x0.9(Q+Vlong-p)	Combinaison linéaire	ELU	(1+2+5)*1.35
15 (C)	G+1.5Vpignon	Combinaison linéaire	ELU	1*1.00+4*1.50
16 (C)	G+1.5Vlong-pan	Combinaison linéaire	ELU	1*1.00+5*1.50
17 (C)	G+Q	Combinaison linéaire	ELS	(1+2)*1.00
18 (C)	G+Vpigno	Combinaison linéaire	ELS	(1+4)*1.00
19 (C)	G+VLong-pan	Combinaison quadratique	ELS	((1;5)*1.00)
20 (C)	G+N	Combinaison linéaire	ELS	(1+3)*1.00
24 (C) (CQC)	G+Q+EX	Combinaison linéaire	ACC	(1+2+22)*1.00
25 (C) (CQC)	G+Q+EY	Combinaison linéaire	ACC	(1+2+23)*1.00
26 (C) (CQC)	G+Q+1.2EX	Combinaison linéaire	ACC	(1+2)*1.00+22*1.20
27 (C) (CQC)	G+Q+1.2EY	Combinaison linéaire	ACC	(1+2)*1.00+23*1.20
28 (C) (CQC)	0.8G+Ex	Combinaison linéaire	ACC	1*0.80+22*1.00
29 (C) (CQC)	0.8G+EY	Combinaison linéaire	ACC	23*1.00+1*0.80
30 (C) (CQC)	0.8G-Ex	Combinaison linéaire	ACC	1*0.80+22*-1.00
31 (C) (CQC)	0.8G-EY	Combinaison linéaire	ACC	1*0.80+23*-1.00

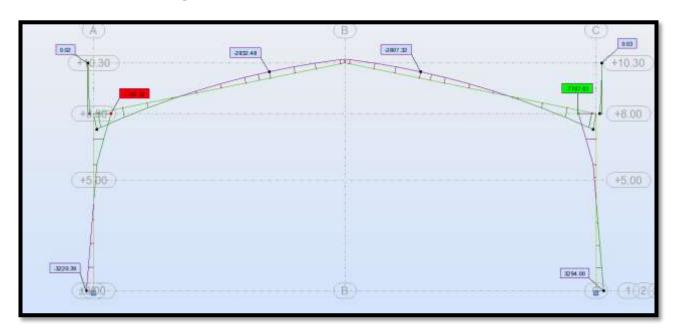
Vérification des éléments de la structures :


1.Poteau ordinaire(hangar):


Diagrammes des moments fléchissant M_y :

Selon les combinaisons :(ELU)


> 1.35G+1.5N:


> 1.35G+1.5N+P:

> 1.35 (G+N+V pignon) :

➤ G+1.5V Pignon :

> 1.35 (G+N+V Long-Pan):

Verification des pieces

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)	Ratio(vx	Cas (vx)	Ratio(vy	Cas (vy)
17 Poteau Ordin	Poteau PE 400	\$ 275	24.17	101.27	0.52	16 G+1.5Vlong-pan			E.	2	0.36	19 G+Vlong-pan	0.01	19 G+Vlong-pan
18 Poteau Ordin	Poteau PE 400	\$ 275	24.17	101.27	0.50	16 G+1.5Vlong-pan		- 5:		59 0	0.30	19 G+Vlong-pan	0.01	19 G+Vlong-pan
19 Traverse_19	Traverse PE 360	S 275	78,42	309.62	0.66	7 1.35G+1.5N	0.01	19 G+Vlong-pan	0.21	19 G+Vlong-pan		- 52		
20 Traverse_20	Traverse IPE 360	\$ 275	78.42	309.62	0.66	7 1.35G+1.5N	0.01	19 G+Vlong-pan	0.20	19 G+Vlong-pan	· .	8/	18	80

> Note de calcul Poteau le plus sollicité :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE :17 PoteauOrdinaire _17 POINT :3COORDONNEE : x = 1.00 L = 8.00 m

CHARGEMENTS:

Cas de charge décisif :16 G+1.5Vlong-pan 1*1.00+5*1.50

MATERIAU:

S 275 (S 275) fy = 275.00 MPa

PARAMETRES DE LA SECTION: Poteau IPE 400

h=40.0 cm

gM0=1.00 gM1=1.00 Ay=56.00 cm2 Az=42.69 cm2 Iy=23128.40 cm4 Iz=1317.82 cm4 Wply=1307.26 cm3 Wplz=229.01 cm3 b=18.0 cm Ax=84.46 cm2 tw=0.9 cm Ix=46.80 cm4

tf=1.4 cm

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -4392.17 daN My,Ed = 14286.61 daN*m Mz,Ed = 744.95 daN*mVy,Ed = -604.77 daNMz,pl,Rd = 6297.72

Nt,Rd = 232274.90 daNMy,pl,Rd = 35949.65 daN*mdaN*m Vy,T,Rd = 88869.44 daN

My,c,Rd = 35949.65 daN*mMz,c,Rd = 6297.72 daN*m

Vz,Ed = 2357.43 daN

My,N,Rd = 35949.65 daN*mMz,N,Rd = 6297.72 daN*m

Vz,T,Rd = 67767.99 daN

Mb,Rd = 29838.28 daN*mTt,Ed = 0.60 daN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT :

Mcr = 95376.42 daN*m Courbe,LT - b XLT = 0.83

Lcr,upp=4.00 m $Lam_LT = 0.61$ fi,LT = 0.76

PARAMETRES DE FLAMBEMENT :

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

 $N,Ed/Nt,Rd = 0.02 < 1.00 \quad (6.2.3.(1))$

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.52 < 1.00 (6.2.5.(1))

Vy,Ed/Vy,T,Rd = 0.01 < 1.00 (6.2.6-7)

Vz, Ed/Vz, T, Rd = 0.03 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6) Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6) Contrôle de la stabilité globale de la barre : $My,Ed/Mb,Rd = 0.48 < 1.00 \quad (6.3.2.1.(1))$

DEPLACEMENTS LIMITES

Flèches Non analysé

Déplacements

vx = 1.9 cm < vx max = L/150.00 = 5.3 cm

Vérifié

Cas de charge décisif: 19 G+Vlong-panSQRT(1;5)*1.00)

vy = 0.1 cm < vy max = L/150.00 = 5.3 cm

Vérifié

Cas de charge décisif : 19 G+Vlong-panSQRT(1;5)*1.00)

Profil correct !!!

Note de calcul de la traverse le plus sollicité :

CALCUL DES STRUCTURES ACIER

NORME : EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE :20 Traverse $_20$ POINT :1COORDONNEE : x = 0.00 L = 0.00 m

CHARGEMENTS:

*Cas de charge décisif :*7 1.35G+1.5N 1*1.35+3*1.50

MATERIAU:

S 275 (S 275) fy = 275.00 MPa

PARAMETRES DE LA SECTION: Traverse IPE 360

h=36.0 cmgM0=1.00gM1=1.00b=17.0 cmAy = 48.84 cm 2Az=35.14 cm2Ax = 72.73 cm 2

tw=0.8 cm Iy=16265.60 cm4 Iz=1043.45 cm4 Ix=36.20 cm4

Wply=1019.22 cm3 tf=1.3 cm Wplz=191.10 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 3642.02 daNMy,Ed = -12972.20 daN*m Mz,Ed = 68.03 daN*mVy,Ed = 47.18 daNNc,Rd = 200005.30 daNMz,pl,Rd = 5255.36My,pl,Rd = 28028.55 daN*m

daN*m Vy,T,Rd = 77523.41 daN

Nb,Rd = 200005.30 daNMz,c,Rd = 5255.36 daN*mMy,c,Rd = 28028.55 daN*m

Vz,Ed = 3762.72 daN

My,N,Rd = 28028.55 daN*mMz,N,Rd = 5255.36 daN*m

Vz,T,Rd = 55777.64 daN

Mb,Rd = 20523.83 daN*mTt,Ed = -0.33 daN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT :

z = 1.00Mcr = 45217.01 daN*mCourbe,LT - b XLT = 0.73

Lcr,low=5.86 m Lam LT = 0.79fi,LT = 0.91

PARAMETRES DE FLAMBEMENT:

- 1 00

kyy = 1.00 kzz = 1.00

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

N,Ed/Nc,Rd = 0.02 < 1.00 (6.2.4.(1))

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.48 < 1.00 (6.2.5.(1))

Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.07 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

My,Ed/Mb,Rd = 0.63 < 1.00 (6.3.2.1.(1))

 $N, Ed/(Xmin*N, Rk/gM1) + kyy*My, Ed/(XLT*My, Rk/gM1) + kyz*Mz, Ed/(Mz, Rk/gM1) = 0.66 < 1.00 \\ (6.3.3.(4))$

 $N, Ed/(Xmin*N, Rk/gM1) + kzy*My, Ed/(XLT*My, Rk/gM1) + kzz*Mz, Ed/(Mz, Rk/gM1) = 0.66 < 1.00 \\ (6.3.3.(4))$

DEPLACEMENTS LIMITES

= $_{Fl}$

Flèches

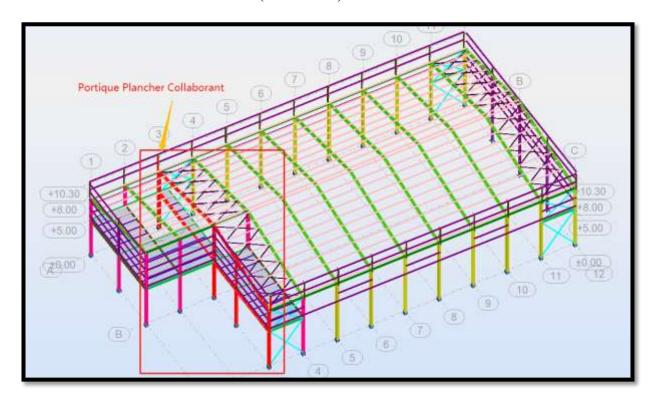
uy = 0.1 cm < uy max = L/200.00 = 5.9 cm

Vérifié

Cas de charge décisif: 19 G+Vlong-panSQRT(1;5)*1.00)

uz = 1.1 cm < uz max = L/200.00 = 5.9 cm

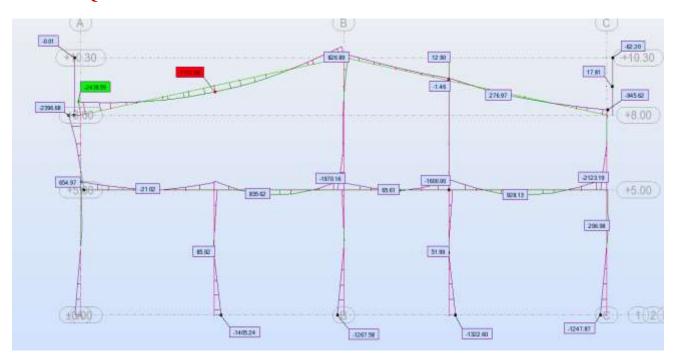
Vérifié

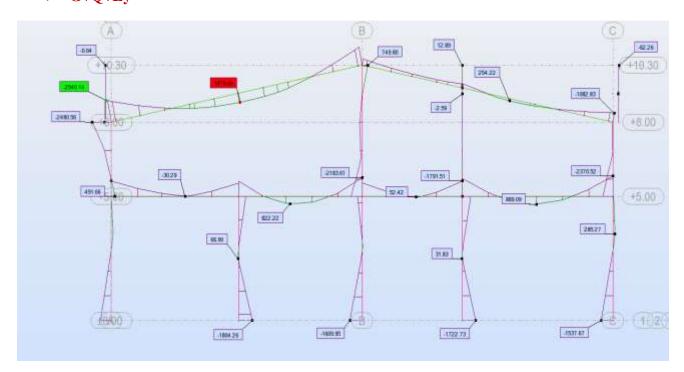

Cas de charge décisif: 19 G+Vlong-panSQRT(1;5)*1.00)

Déplacemen

Déplacements Non analysé

Profil correct !!!


1.Poteaux du Plancher Collaborant(Mezzanine) :


Diagrammes des moments fléchissant M_y :

Selon les combinaisons :(ELA-Les combinaisons sismiques)

\rightarrow G+Q+Ex

ightharpoonup G+Q+Ey

Vérification des piècesvis-à-vis les combinaisons sismiques (ELA) :

Pièce		Profil	Profil Matériau		Laz	Ratio	Cas
37 Poteau Planc	OK	Poteau Plan IPE 40	S 275	24.17	101.27	0.12	27 G+Q+1.2EY
38 Poteau Planc	OK	Poteau Plan IPE 40	S 275	24.17	101.27	0.10	27 G+Q+1.2EY
40 Traverse _40	OK	Traverse IPE 360	S 275	78.42	309.62	0.27	27 G+Q+1.2EY
84 Poteau Planc	ОK	Poteau Plan IPE 40	S 275	31.12	130.38	0.15	27 G+Q+1.2EY
427 Poteau Plan	OK	Poteau Plan IPE 40	S 275	15.11	63.29	0.10	27 G+Q+1.2EY
428 Traverse _4	OK	Traverse IPE 360	S 275	78.42	309.62	0.11	27 G+Q+1.2EY
589 Poteau Plan	OK	Poteau Plan IPE 40	S 275	15.11	63.29	0.10	27 G+Q+1.2EY

Vérification des pièces vis-à-vis les Combinaisons ELU et ELS :

Pièce	Profil	Materiau	Lay	Laz	Ratio	Cas	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)	Ratio(vx	Cas (vx)	Ratio(vy	Cas (vy)
37 Poteau Planc	Poteau Plan PE 400	\$ 275	24.17	101.27	0.18	15 G+1.5Vpignos		¥4	134	- 26	0.03	19 G+Vlong-pan	0.01	18 G+Vpigno
38 Poteau Planc	Poteau Plan PE 400	S 275	24.17	101.27	0.24	16 G+1.5Vlong-pan	125	- 8	82	20	0.02	18 G+Vpigno	0.01	18 G+Vpigna
40 Traverse_40	Traverse IPE 360	S 275	78.42	309.62	0.41	7 1.35G+1.5N	0.02	19 G+Vlong-pan	0.12	19 G+Vlong-pan	25	125	73	- 65
84 Poteau Planc	Poteau Plan PE 400	\$ 275	31,12	130.38	0.21	7 1.35G+1.5N		(4)	88	33	0.02	18 G+Vpigno	0.10	19 G+Vlong-pan
427 Poteau Plan	Poteau Plan PE 400	\$ 275	15.11	63.29	0.10	9 1.35G+1.5VLong-Pan	1.0	*	134	- 25	0.03	19 G+Vlong-pan	0.08	19 G+Vlong-pan
428 Traverse_4	Traverse IPE 360	S 275	78.42	309.62	0.66	9 1.35G+1.5VLong-Pan	0.02	19 G+Vlang-pan	0.01	19 G+Vlong-pan	<u></u>	120	15	[
589 Poteau Plan	Poteau Plan IPE 400	S 275	15.11	63.29	0.13	9 1.35G+1.5VLong-Pan	3.43	151	5.5	5.6	0.02	19 G+Vlong-pan	0.08	19 G+Vlong-pan

> Note de calcul Poteau le plus sollicité :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE :38 Poteau Plancher _38 POINT :1COORDONNEE : x = 0.63 L = 5.00 m

CHARGEMENTS:

Cas de charge décisif: 16 G+1.5Vlong-pan 1*1.00+5*1.50

MATERIAU:

S 275 (S 275) fy = 275.00 MPa

PARAMETRES DE LA SECTION: Poteau Plan IPE 400

tf=1.4 cm Wply=1307.26 cm3 Wplz=229.01 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -2742.79 daN My,Ed = 1531.40 daN*m Mz,Ed = 1273.51 daN*m Vy,Ed = 2822.76 daN Nt,Rd = 232274.90 daN My,pl,Rd = 35949.65 daN*m Mz,pl,Rd = 6297.72

daN*m Vy,T,Rd = 88761.24 daN My,c,Rd = 35949.65 daN*m Mz,c,Rd = 6297.72 daN*m

Vz,Ed = -1593.61 daN My,N,Rd = 35949.65 daN*m Vz,T,Rd = 67715.46 daN

Mb,Rd = 26952.36 daN*m

Mz,N,Rd = 6297.72 daN*m

Tt,Ed = 2.27 daN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT :

z = 0.00 Mcr = 45855.80 daN*m Courbe,LT - XLT = 0.69 Lcr,upp=4.00 m Lam_LT = 0.89 fi,LT = 1.00 XLT,mod = 0.75

PARAMETRES DE FLAMBEMENT:

Nen y:

FORMULES DE VERIFICATION :

Contrôle de la résistance de la section :

N,Ed/Nt,Rd = 0.01 < 1.00 (6.2.3.(1))

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.24 < 1.00 (6.2.5.(1))

Vy,Ed/Vy,T,Rd = 0.03 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.02 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

 $My,Ed/Mb,Rd = 0.06 < 1.00 \quad (6.3.2.1.(1))$

DEPLACEMENTS LIMITES

Flèches Non analysé

Déplacements

vx = 0.1 cm < vx max = L/150.00 = 5.3 cm Vérifié

Cas de charge décisif: 18 G+Vpigno (1+4)*1.00

vy = 0.0 cm < vy max = L/150.00 = 5.3 cm Vérifié

Cas de charge décisif: 18 G+Vpigno (1+4)*1.00

Profil correct !!!

> Note de calcul de la Traverse la plus sollicité :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE :428 Traverse $_428$ POINT :3COORDONNEE : x = 0.61 L = 7.10 m

CHARGEMENTS:

Cas de charge décisif :9 1.35G+1.5VLong-Pan 1*1.35+5*1.50

MATERIAU:

S 275 (S 275) fy = 275.00 MPa

PARAMETRES DE LA SECTION: Traverse IPE 360

h=36.0 cm gM0=1.00 gM1=1.00

b=17.0 cm	Ay=48.84 cm2	Az=35.14 cm2	Ax=72.73 cm2
tw=0.8 cm	Iy=16265.60 cm4	Iz=1043.45 cm4	Ix=36.20 cm4

Wely=903.64 cm3 tf=1.3 cm Welz=122.76 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES :

My,Ed = 103.65 daN*m Mz,Ed = -63.19 daN*mN,Ed = 7704.54 daNVy,Ed = 1311.55 daNMz,el,Rd = 3375.87 daN*mNc,Rd = 200005.30 daNMy,el,Rd = 24850.22 daN*m

Vy,T,Rd = 54083.96 daN

 $Nb_{\bullet}Rd = 200005.30 daN$ Mv,c,Rd = 24850.22 daN*mMz,c,Rd = 3375.87 daN*m

Vz,Ed = 15.62 daN

Vz.T.Rd = 45884.96 daNMb.Rd = 10562.95 daN*mTt.Ed = -290.53 daN*m

Classe de la section = 3

PARAMETRES DE DEVERSEMENT :

Mcr = 14619.14 daN*mCourbe,LT - b XLT = 0.43z = 1.00

 $Lam_LT = 1.30$ fi,LT = 1.54Lcr,low=5.86 m

PARAMETRES DE FLAMBEMENT:

kyy = 1.00kzz = 1.00

FORMULES DE VERIFICATION :

Contrôle de la résistance de la section :

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.02 < 1.00 (6.2.5.(1))

N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.06 < 1.00 (6.2.9.3.(1))

 $sqrt(Sig,x,Ed^2 + 3*(Tau,y,Ed+Tau,ty,Ed)^2)/(fy/gM0) = 0.66 < 1.00 \quad (6.2.1.(5))$

Vy,Ed/Vy,T,Rd = 0.02 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.00 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.64 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.40 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

My,Ed/Mb,Rd = 0.01 < 1.00 (6.3.2.1.(1))

N,Ed/(Xmin*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) + kyz*Mz,Ed/(Mz,Rk/gM1) = 0.07 < 1.00

N, Ed/(Xmin*N, Rk/gM1) + kzy*My, Ed/(XLT*My, Rk/gM1) + kzz*Mz, Ed/(Mz, Rk/gM1) = 0.07 < 1.00(6.3.3.(4))

DEPLACEMENTS LIMITES

Flèches

uy = 0.1 cm < uy max = L/200.00 = 5.9 cmVérifié

Cas de charge décisif: 19 G+Vlong-panSQRT(1;5)*1.00)

uz = 0.0 cm < uz max = L/200.00 = 5.9 cmVérifié

Cas de charge décisif: 19 G+Vlong-panSQRT(1;5)*1.00)

Déplacements Non analysé

Profil correct !!!

IX.Introduction:

Le but de tous calculs de structures est de vérifier tous les éléments aux sollicitations afin d'assurer la stabilité globale de l'ossature.

La vérification de l'ossature nécessite au préalable l'évaluation de toutes les charges (permanentes, d'exploitations, séismiques et climatiques) qui lui seraient appliquées.

Le calcul ce fait sous les combinaisons d'actions les plus défavorables auxquelles ils pourraient être soumis durant toute leur période d'exploitation de l'ouvrage.

Les sollicitations obtenues servent à la vérification des éléments (poteaux, poutres,...), elles servent également au calcul des assemblages, ainsi qu'à celui de l'infrastructure.

IX.1. Méthode de travail :

Après avoir pré dimensionné les éléments structuraux et secondaires de notre ouvrage, on passe à la vérification de ces éléments à l'aide de logiciel ROBOT.

On modélise notre structure sur ROBOT en utilisant les profilé déjà pré dimensionné puis on introduit les charge permanente, les surcharge d'exploitation et les combinaisons d'action puis on lance le calcul et on vérifier les éléments.

L'organigramme ci-dessous résume les étapes de travail:

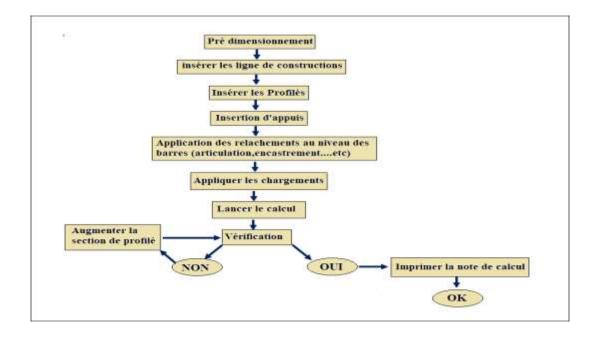


Figure IX-1: Etape de modélisation à l'aide de logiciel ROBOT

IX.2. Les étapes de modélisation :

IX.2.1. Matériaux utilisé

a) Acier:

- La limite d'élasticité de l'acier fy = 235 MPA
- ightharpoonup module d'élasticité longitudinal (module de YOUNG) $E=2,1\times 10^6 MP$ a
- \triangleright Module d'élasticité transversal G = 81000 MPA
- \triangleright La masse volumique de l'acier $\rho = 7850 \ daN/m^3$
- \triangleright Coefficient de poisson $\nu = 0.3$

b) Béton:

- La résistance à la compression du béton à 28 jours f_{t28} = 25 MPa
- \triangleright La résistance caractéristique à la traction ft28: donné par la formule suivante :

$$f_{t28} = 0.6 \times 0.06 \times fC28$$
(BAEL/A2.1 ,12)
 $f_{t28} = 0.6 \times 0.06 \times 25 = 2.1 MPa$

- \triangleright La masse volumique : $\rho = 2500 \ daN/m^3$
- \triangleright Le module d'élasticité longitudinale E = 32164.2 MPa
- > Coefficient de poisson :

$$\rightarrow \nu = 0$$
 à l'ELU

$$\rightarrow \nu = 0.2$$
 à l'ELS

IX.2.2. Profilé utilisé :

Tableau IX-1:Liste des profilés utilisé.

Elément	Typedeprofilé
Pannes	IPE120
Lisse de bardage long pan	UPN120
Lisse de bardage pignon	UPN120
Potelets	IPE270
Traverse	IPE360
Solives	IPE180
Poutres maitresses	IPE360
Poteaux	HEA400
Poteaux intermédiaire	HEA400
Poutres au vent	L60×60×5
Palées de stabilité	L70×70×7

IX.2.3. Modélisation géométrique :

❖ Vue en 3D

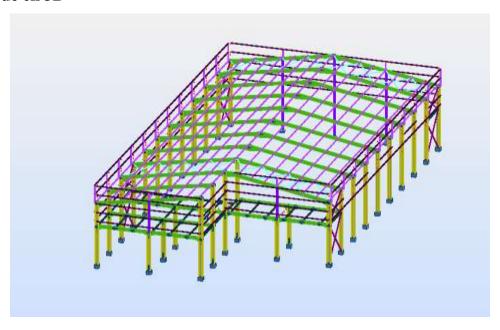


Figure IX-2: Vue en 3D de la structure

❖ Vue en plan du plancher

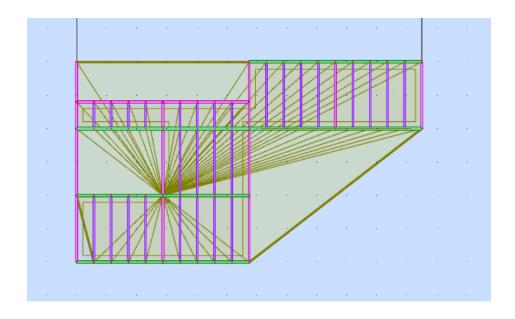


Figure IX-3: Vue en plan du plancher

❖ Vue en élévation de la face longue pan

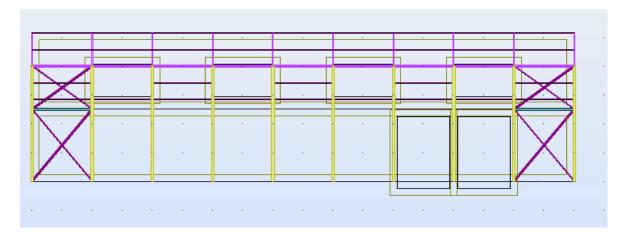


Figure IX-4: Vue en élévation de la face longue pan

❖ Vue en élévation de la face pignon

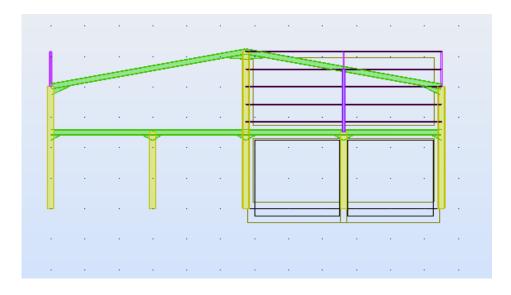


Figure IX-5: Vue en élévation de la face pignon

IX.3. Les combinaisons de charge

Nom	Type d'analyse	Nature de la combinaison
1.35G+1.5Q	Combinaison linéaire	ELU
1.35G+1.5N	Combinaison linéaire	ELU
1.35G+1.5Vpignon	Combinaison linéaire	ELU
1.35G+1.5Vlong-pan	Combinaison linéaire	ELU
1.35G+1.35 (N+Vpignon)	Combinaison linéaire	ELU
1.35G+1.35 (N+Vlong-	Combinaison linéaire	ELU
pan)		
1.35G+1.35 (N+Q)	Combinaison linéaire	ELU
1.35G+1.35 (Q+Vpignon)	Combinaison linéaire	ELU
1.35G+1.35 (Q+Vlong-	Combinaison linéaire	ELU
pan)		
G+1.5Vpignon	Combinaison linéaire	ELU
G+1.5Vlong-pan	Combinaison linéaire	ELU
G+Q	Combinaison linéaire	ELS
G+Vpignon	Combinaison linéaire	ELS
G+Vlong-pan	Combinaison linéaire	ELS
G+N	Combinaison linéaire	ELS

Les résultats de vérifications de l'ossature à l'aide du logiciel IX.4. **ROBOT**

IX.4.1. Vérification des pannes

CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

POINT:4 PIECE:137 Panne _137 COORDONNEE: x = 0.50 L =

CHARGEMENTS:

Cas de charge décisif:10 G+1.5V1 1*1.00+4*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Panne IPE 120

h=12.0 cmgM0=1.00gM1=1.00 b=6.4 cm Ay=9.10 cm2Az=6.31 cm2

 $Ax=13.21 \text{ cm}^2$ tw=0.4 cm Iy=317.75 cm4 Iz=27.67 cm4 Ix=1.74 cm4

Wply=60.73 cm3 Wplz=13.58 cm3 tf=0.6 cm

EFFORTS INTERNES ET RESISTANCES ULTIMES:

My,Ed = -294.41 daN*m Mz,Ed = 58.88 daN*mVy,Ed = -0.59 daNN,Ed = 128.62 daN

Nc,Rd = 31043.50 daNMy,Ed,max = -294.44 daN*mMz,Ed,max = 58.89 daN*m

Vy,c,Rd = 12347.18 daN

Nb,Rd = 31043.50 daNMy,c,Rd = 1427.16 daN*m Mz,c,Rd = 319.13 daN*m Vz,Ed = -2.94 daN

> MN,y,Rd = 1427.16 daN*mMN,z,Rd = 319.13 daN*m

Vz,c,Rd = 8554.73 daNMb,Rd = 615.29 daN*m

Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

z = 1.00Mcr = 729.40 daN*mCourbe,LT -XLT = 0.43Lcr,low=4.00 m $Lam_LT = 1.40$ fi,LT = 1.59XLT,mod = 0.43

PARAMETRES DE FLAMBEMENT:

kzz = 1.00kyy = 1.00

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

 $N,Ed/Nc,Rd = 0.00 < 1.00 \quad (6.2.4.(1))$

 $(My,Ed/MN,y,Rd)^2 2.00 + (Mz,Ed/MN,z,Rd)^1.00 = 0.23 < 1.00$ (6.2.9.1.(6))

Vy,Ed/Vy,c,Rd = 0.00 < 1.00 (6.2.6.(1))

Vz,Ed/Vz,c,Rd = 0.00 < 1.00 (6.2.6.(1))

Contrôle de la stabilitéglobale de la barre:

My,Ed,max/Mb,Rd = 0.48 < 1.00 (6.3.2.1.(1))

N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) + kyz*Mz,Ed,max/(Mz,Rk/gM1) = 0.67 < 1.00 (6.3.3.(4))

 $N, Ed/(Xz*N, Rk/gM1) + kzy*My, Ed, max/(XLT*My, Rk/gM1) + kzz*Mz, Ed, max/(Mz, Rk/gM1) = 0.67 < 1.00 \\ (6.3.3.(4))$

DEPLACEMENTS LIMITES

Flèches (REPERE LOCAL):

uy = 1.2 cm < uy max = L/200.00 = 2.0 cm Vérifié

Cas de charge décisif: 23 G+Q+N (1+2+3)*1.00

uz = 0.5 cm < uz max = L/200.00 = 2.0 cm Vérifié

Cas de charge décisif: 23 G+Q+N (1+2+3)*1.00

Déplacements (REPERE GLOBAL): Non analysé

Profil correct !!!

IX.4.2. Vérification des lisses de bardages :

CALCUL DES STRUCTURES ACIER

NORME:NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: lisse 128 POINT: 4 COORDONNEE: x = 0.50 L =

2.88 m

CHARGEMENTS:

Cas de charge décisif:7 1.35G+1.5V1 1*1.35+4*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Lisse UPN 120

h=12.0 cm gM0=1.00 gM1=1.00

b=5.5 cm Ay=11.12 cm2 Az=8.54 cm2 Ax=17.00 cm2 tw=0.7 cm Iy=368.00 cm4 Iz=43.20 cm4 Ix=4.15 cm4

tf=0.9 cm Wely=61.33 cm3 Welz=11.11 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 210.97 daN My,Ed = 203.18 daN*m Mz,Ed = -73.04 daN*m

Nc,Rd = 39950.00 daN My,el,Rd = 1441.33 daN*m Mz,el,Rd = 260.98 daN*m

Nb,Rd = 39950.00 daN My,c,Rd = 1441.33 daN*m Mz,c,Rd = 260.98 daN*m

Classe de la section = 3

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

Nen y:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.43 < 1.00 (6.2.1(7))

DEPLACEMENTS LIMITES

Flèches (REPERE LOCAL):

uy = 2.1 cm < uy max = L/200.00 = 2.9 cmVérifié

Cas de charge décisif: 17 G+Q (1+2)*1.00

uz = 0.6 cm < uz max = L/200.00 = 2.9 cmVérifié

Cas de charge décisif: 19 G+V1 (1+4)*1.00

Déplacements (REPERE GLOBAL): Non analysé

Profil correct !!!

IX.4.3. Vérification des potelets :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE: 1213 potelet_1213 **POINT**: 1 COORDONNEE: x = 0.00 L =

CHARGEMENTS:

Cas de charge décisif: 9 1.35G+1.5Vlong-pan 1*1.35+4*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION : IPE 270

h=27.0 cm gM0=1.10gM1=1.15

Ay=31.45 cm2 b=13.5 cm Ax=45.94 cm2 Az=22.14 cm2Ay=31.43 cm2 Iy=5789.78 cm4 Wply=484.03 cm3 Iz=419.87 cm4 Wplz=96.95 cm3 tw=0.7 cm Ix=14.93 cm4

tf=1.0 cm

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -29.79 daNMy,Ed = 1529.46 daN*m Mz,Ed = -173.14 daN*m Vy,Ed = -255.59 daNNt,Rd = 98155.23 daNMy,pl,Rd = 10340.75 daN*mMz,pl,Rd = 2071.27

daN*m Vy,T,Rd = 38765.62 daN

My,c,Rd = 10340.75 daN*mMz,c,Rd = 2071.27 daN*m

Vz,Ed = -1593.99 daN

My,N,Rd = 10340.75 daN*mMz,N,Rd = 2071.27 daN*m

Vz,T,Rd = 27293.41 daN

Tt,Ed = 0.32 daN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT :

PARAMETRES DE FLAMBEMENT :

enz:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

 $N,Ed/Nt,Rd = 0.00 < 1.00 \quad (6.2.3.(1))$

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.23 < 1.00 (6.2.5.(1))

Vy,Ed/Vy,T,Rd = 0.01 < 1.00 (6.2.6-7) Vz,Ed/Vz,T,Rd = 0.06 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6) Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

DEPLACEMENTS LIMITES

Flèches Non analysé

Déplacements

vx = 0.0 cm < vx max = L/150.00 = 2.8 cmVérifié

Cas de charge décisif: 19 G+Vlong-pan (1+4)*1.00

vy = 0.3 cm < vy max = L/150.00 = 2.8 cmVérifié

Cas de charge décisif: 19 G+Vlong-pan (1+4)*1.00

Profil correct !!!

IX.4.4. Vérification des solives :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE: 286 solives 286 POINT: 1 COORDONNEE: x = 0.70 L =

2.80 m

CHARGEMENTS:

Cas de charge décisif: 8 1.35G+1.5Vpignon 1*1.35+5*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: IPE 180

h=18.0 cmgM0=1.10gM1=1.15

Ay=16.21 cm2 Iy=1316.96 cm4 Ax=23.95 cm2 b=9.1 cm Az=11.25 cm2tw=0.5 cm Iz=100.85 cm4 Ix=4.90 cm4

Wplz=34.60 cm3 tf=0.8 cm

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 1059.76 daNVy,Ed = -268.55 daNMy,Ed = 1851.94 daN*m Mz,Ed = -38.92 daN*mNc,Rd = 51160.14 daNMy,pl,Rd = 3555.42 daN*mMz,pl,Rd = 739.19 daN*m

Vy,T,Rd = 19866.68 daN

Nb,Rd = 9593.54 daNMy,c,Rd = 3555.42 daN*m Mz,c,Rd = 739.19 daN*m Vz,Ed = -2602.30 daN

> My,N,Rd = 3555.42 daN*mMz,N,Rd = 739.19 daN*m

Vz,T,Rd = 13819.65 daN

Mb,Rd = 2180.97 daN*m

Tt,Ed = 1.19 daN*m Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

kzy = 0.93

z = 1.00 Mcr = 3737.09 daN*m Courbe,LT - XLT = 0.61 Lcr,upp=4.00 m Lam_LT = 1.02 fi,LT = 1.14 XLT,mod = 0.64

PARAMETRES DE FLAMBEMENT :

1.0

Ly = 4.00 m

Lcr, y = 4.00 m

Lamy = 53.94

en y:

 $Lam_y = 0.57$ Xy = 0.90

en z:

Lz = 4.00 m $Lam_z = 2.08$ Lcr, z = 4.00 m Xz = 0.20Lamz = 194.92 kzz = 0.46

FORMULES DE VERIFICATION :

Contrôle de la résistance de la section :

N,Ed/Nc,Rd = 0.02 < 1.00 (6.2.4.(1))

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.57 < 1.00 (6.2.5.(1))

$$\label{eq:Vy,Ed/Vy,T,Rd} \begin{split} Vy, &Ed/Vy, T, Rd = 0.01 < 1.00 \quad (6.2.6\text{-}7) \\ Vz, &Ed/Vz, T, Rd = 0.19 < 1.00 \quad (6.2.6\text{-}7) \end{split}$$

$$\begin{split} &Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.02 < 1.00 \quad (6.2.6) \\ &Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 \quad (6.2.6) \end{split}$$

Contrôle de la stabilité globale de la barre :

 $Lambda, y = 53.94 < Lambda, max = 210.00 \qquad Lambda, z = 194.92 < Lambda, max = 210.00 \qquad STABLE$

 $My,Ed/Mb,Rd = 0.85 < 1.00 \quad (6.3.2.1.(1))$

N,Ed/(Xmin*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) + kyz*Mz,Ed/(Mz,Rk/gM1) = 0.47 < 1.00

(6.3.3.(4))

 $N, Ed/(Xmin*N, Rk/gM1) + kzy*My, Ed/(XLT*My, Rk/gM1) + kzz*Mz, Ed/(Mz, Rk/gM1) = 0.92 < 1.00 \\ (6.3.3.(4))$

DEPLACEMENTS LIMITES

→

Flèches Non analysé

Déplacements

vx = 0.1 cm < vx max = L/150.00 = 2.7 cm Vérifié

Cas de charge décisif: 18 G+Vpignon (1+5)*1.00

vy = 0.0 cm < vy max = L/150.00 = 2.7 cm Vérifié

Cas de charge décisif: 19 G+Vlong-pan (1+4)*1.00

Profil correct !!!

IX.4.5. Vérification des poutres maitresse :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: 1507 PT principale_1507 POINT: 3 COORDONNEE: x = 1.00 L =

5.50 m

5.50 II.

CHARGEMENTS:

Cas de charge décisif: 9 1.35G+1.5Vlong-pan 1*1.35+4*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: IPE 360

h=72.0 cmgM0=1.10gM1=1.15b=17.0 cmAy=43.18 cm2Az=55.57 cm2Ax=122.10 cm2tw=0.8 cm Iy=77973.15 cm4 Iz=1564.89 cm4 Ix=53.10 cm4

tf=1.3 cm Wely=2135.26 cm3 Welz=184.10 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 0.00 daNMy,Ed = -3897.12 daN*m Mz,Ed = -0.00 daN*mVy,Ed = 0.00 daN

Nc,Rd = 260856.84 daNMy,el,Rd = 45616.85 daN*mMz,el,Rd = 3933.15 daN*m

Vy,T,Rd = 53095.45 daN

Nb,Rd = 249515.23 daNMy,c,Rd = 45616.85 daN*mMz,c,Rd = 3933.15 daN*m

Vz,Ed = -3269.76 daN

Vz,T,Rd = 68406.32 daN Mb,Rd = 18504.09 daN*mTt.Ed = -2.62 daN*m

Classe de la section = 3

PARAMETRES DE DEVERSEMENT :

Mcr = 40727.29 daN*mCourbe,LT - d XLT = 0.41z = 1.00fi,LT = 1.46Lcr,low=2.75 m $Lam_LT = 1.11$ XLT,mod = 0.42

PARAMETRES DE FLAMBEMENT :

en y:

enz:

kzy = 1.00kzz = 0.47

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.09 < 1.00 (6.2.5.(1))

N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.09 < 1.00 (6.2.9.3.(1))

 $sqrt(Sig,x,Ed*^2 + 3*(Tau,z,Ed+Tau,tz,Ed)^2)/(fy/gM0) = 0.10 < 1.00 \quad (6.2.1.(5))$

 V_{y} , E_{d}/V_{y} , T_{y} , $R_{d} = 0.00 < 1.00 \quad (6.2.6-7)$

Vz,Ed/Vz,T,Rd = 0.05 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

My,Ed/Mb,Rd = 0.21 < 1.00 (6.3.2.1.(1))

N,Ed/(Xmin*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) + kyz*Mz,Ed/(Mz,Rk/gM1) = 0.20 < 1.00

(6.3.3.(4))

N,Ed/(Xmin*N,Rk/gM1) + kzy*My,Ed/(XLT*My,Rk/gM1) + kzz*Mz,Ed/(Mz,Rk/gM1) = 0.21 < 1.00(6.3.3.(4))

DEPLACEMENTS LIMITES

Flèches

uy = 0.0 cm < uy max = L/200.00 = 2.8 cmVérifié

Cas de charge décisif: 19 G+Vlong-pan (1+4)*1.00

uz = 0.1 cm < uz max = L/200.00 = 2.8 cmVérifié

Cas de charge décisif: 18 G+Vpignon (1+5)*1.00

Déplacements Non analysé

Profil correct !!!

IX.4.6. Vérification des traverses :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: 50 traverse_50 POINT: 3 COORDONNEE: x = 1.00 L =

11.73 m

CHARGEMENTS:

Cas de charge décisif: 16 G+1.5Vlong-pan 1*1.00+4*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION : IPE 360

tf=1.3 cm Wely=2135.26 cm3 Welz=184.10 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 9797.31 daN My,Ed = 185.69 daN*m Mz,Ed = 2210.14 daN*m Vy,Ed = -1076.72 daN Nc,Rd = 260856.84 daN My,el,Rd = 45616.85 daN*m Mz,el,Rd = 3933.15 daN*m

Nc,Rd = 260856.84 daN My,el,Rd = 45616.85 daN*m Vy,T,Rd = 51693.96 daN

Nb,Rd = 249515.23 daN My,c,Rd = 45616.85 daN*m Mz,c,Rd = 3933.15 daN*m

Vz, Ed = 401.75 daN

Vz,T,Rd = 67277.18 daN

enz:

Classe de la section – 5

PARAMETRES DE DEVERSEMENT :

z = 1.00 Mcr = 10498.81 daN*m Courbe,LT - d XLT = 0.15 Lcr,upp=5.86 m Lam_LT = 2.19 fi,LT = 3.64 XLT,mod = 0.15

PARAMETRES DE FLAMBEMENT:

ARAMETRES DE FLAMBEMENT :

kzy = 1.00 kzz = 0.44

FORMULES DE VERIFICATION:

en y:

Contrôle de la résistance de la section :

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.57 < 1.00 (6.2.5.(1))

N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.60 < 1.00 (6.2.9.3.(1))

 $sqrt(Sig,x,Ed^2 + 3*(Tau,y,Ed+Tau,ty,Ed)^2)/(fy/gM0) = 0.10 < 1.00$ (6.2.1.(5))

Vy,Ed/Vy,T,Rd = 0.02 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.01 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.07 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.05 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

My,Ed/Mb,Rd = 0.03 < 1.00 (6.3.2.1.(1))

N, Ed/(Xmin*N, Rk/gM1) + kyy*My, Ed/(XLT*My, Rk/gM1) + kyz*Mz, Ed/(Mz, Rk/gM1) = 0.32 < 1.00

(6.3.3.(4))

N, Ed/(Xmin*N, Rk/gM1) + kzy*My, Ed/(XLT*My, Rk/gM1) + kzz*Mz, Ed/(Mz, Rk/gM1) = 0.32 < 1.00

(6.3.3.(4))

Chapitre IX

DEPLACEMENTS LIMITES

Flèches

uy = 0.2 cm < uy max = L/200.00 = 5.9 cmVérifié

Cas de charge décisif: 19 G+Vlong-pan (1+4)*1.00

uz = 0.0 cm < uz max = L/200.00 = 5.9 cmVérifié

Cas de charge décisif: 19 G+Vlong-pan (1+4)*1.00

Déplacements Non analysé

Profil correct !!!

IX.4.7. Vérification des poteaux :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

COORDONNEE: x = 0.63 L =PIECE: 4 Poteau 01_4 POINT: 1

5.00 m

CHARGEMENTS:

Cas de charge décisif: 8 1.35G+1.5Vpignon 1*1.35+5*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: IPE 400

gM1=1.15 h=40.0 cmgM0=1.10b=18.0 cmAy = 56.00 cm 2Az=42.69 cm2

tw=0.9 cm Iy=23128.40 cm4 Iz=1317.82 cm4 Ix=46.80 cm4

tf=1.4 cm Wply=1307.26 cm3 Wplz=229.01 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

My,Ed = 1948.04 daN*m Mz,Ed = -127.60 daN*m Vy,Ed = -184.94 daNN,Ed = 70.89 daNNc,Rd = 180444.96 daNMy,pl,Rd = 27927.83 daN*mMz,pl,Rd = 4892.44

daN*m Vy,T,Rd = 68758.24 daN

Nb,Rd = 94635.25 daNMy,c,Rd = 27927.83 daN*mMz,c,Rd = 4892.44 daN*m

Vz,Ed = -1505.15 daN

My, N, Rd = 27927.83 daN*mMz,N,Rd = 4892.44 daN*m

> Vz,T,Rd = 52509.93 daN Mb.Rd = 16562.13 daN*m

Classe de la section = 1

Tt.Ed = -4.80 daN*m

Ax=84.46 cm2

PARAMETRES DE DEVERSEMENT:

z = 0.00Mcr = 30287.85 daN*mCourbe,LT -XLT = 0.62 $Lam_LT = 1.01$ fi,LT = 1.12XLT,mod = 0.62Lcr,upp=4.00 m

PARAMETRES DE FLAMBEMENT:

Ly = 8.00 m

en y:

 $Lam_y = 0.26$ Lcr, y = 4.00 mXy = 0.99Lamy = 24.17kzy = 1.00

en z:

Lz = 8.00 m $Lam_z = 1.08$ Xz = 0.55Lcr, z = 4.00 mLamz = 101.27kzz = 0.46

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

 $N,Ed/Nc,Rd = 0.00 < 1.00 \quad (6.2.4.(1))$

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.10 < 1.00 (6.2.5.(1))

Vy, Ed/Vy, T, Rd = 0.00 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.03 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6) Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

Lambda, y = 24.17 < Lambda, max = 210.00 Lambda, z = 101.27 < Lambda, max = 210.00 STABLE

My,Ed/Mb,Rd = 0.12 < 1.00 (6.3.2.1.(1))

N, Ed/(Xmin*N, Rk/gM1) + kyy*My, Ed/(XLT*My, Rk/gM1) + kyz*Mz, Ed/(Mz, Rk/gM1) = 0.12 < 1.00

(6.3.3.(4))

N, Ed/(Xmin*N, Rk/gM1) + kzy*My, Ed/(XLT*My, Rk/gM1) + kzz*Mz, Ed/(Mz, Rk/gM1) = 0.13 < 1.00

(6.3.3.(4))

DEPLACEMENTS LIMITES

*

Flèches Non analysé

Déplacements

vx = 0.0 cm < vx max = L/150.00 = 5.3 cm Vérifié

Cas de charge décisif: 18 G+Vpignon (1+5)*1.00

vy = 0.1 cm < vy max = L/150.00 = 5.3 cm Vérifié

Cas de charge décisif: 18 G+Vpignon (1+5)*1.00

Profil correct !!!

IX.4.8. Vérification des palé de stabilité :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: 1 POINT: 3 COORDONNEE: x = 1.00 L =

3.20 m

CHARGEMENTS .

.....

CHARGEMENTS:

Cas de charge décisif : 6 1.35G+1.5Q 1*1.35+2*1.50

MATERIAU:

ACIER E24 fy = 235.00 MPa

PARAMETRES DE LA SECTION : PS 2 CAE 70x7

EFFORTS INTERNES ET RESISTANCES ULTIMES :

Classe de la section = 1

\	/
1	١

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

en 7 :

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

Profil correct !!!

IX.4.9. Vérification des contreventements :

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: 300 CV_300 POINT: 3 COORDONNEE: x = 1.00 L =

4.96 m

CHARGEMENTS:

Cas de charge décisif: 61.35G+1.5Q 1*1.35+2*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: CAE 60x6

tf=0.6 cm Wply=9.82 cm3 Wplz=9.82 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Classe de la section = 1

PARAMETRES DE DEVERSEMENT :

PARAMETRES DE FLAMBEMENT:

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

DEPLACEMENTS LIMITES

Flèches

uy = 0.0 cm < uy max = L/200.00 = 2.5 cmCas de charge décisif: 17 G+Q (1+2)*1.00 Vérifié

 $D\acute{e}placements$ vx = 0.0 cm < vx max = L/150.00 = 3.3 cm Cas de charge décisif : 17 G+Q (1+2)*1.00

Vérifié

Profil correct !!!

IX.Introduction:

Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations entre les pièces, sans générer des sollicitations parasites notamment de torsions.

La conception et le calcul des assemblages revêtent en construction métallique , une importance équivalente à celle du dimensionnement des pièces pour la sécurité finale de la construction ,les ossatures ne présentent généralement pas de redondances importantes et les assemblages constituent donc le point de passage obligé pour les sollicitations régnant dans les différents composants structurels, en cas de défaillance d'un assemblage , c'est bien le fonctionnement global de la structure qui est en cause .

Il existe plusieurs modes d'assemblages fondamentales utilisés dans la construction métallique, dont les principaux modes sont :

- Le rivetage
- Le boulonnage
- Le soudage
- Le collage

Nous dans notre cas on utilise des assemblages par boulonnage Le logiciel ROBOT nous permet de calculé automatiquement les différents assemblageset les résultats des calculs sont comme suite :

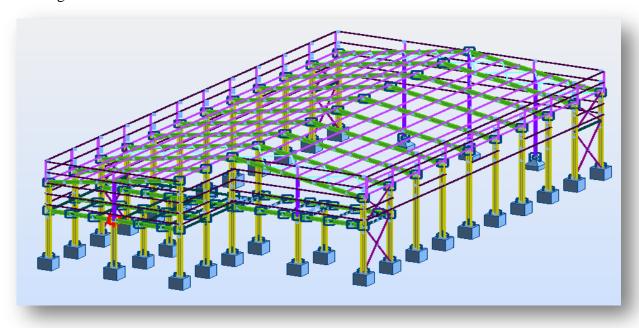
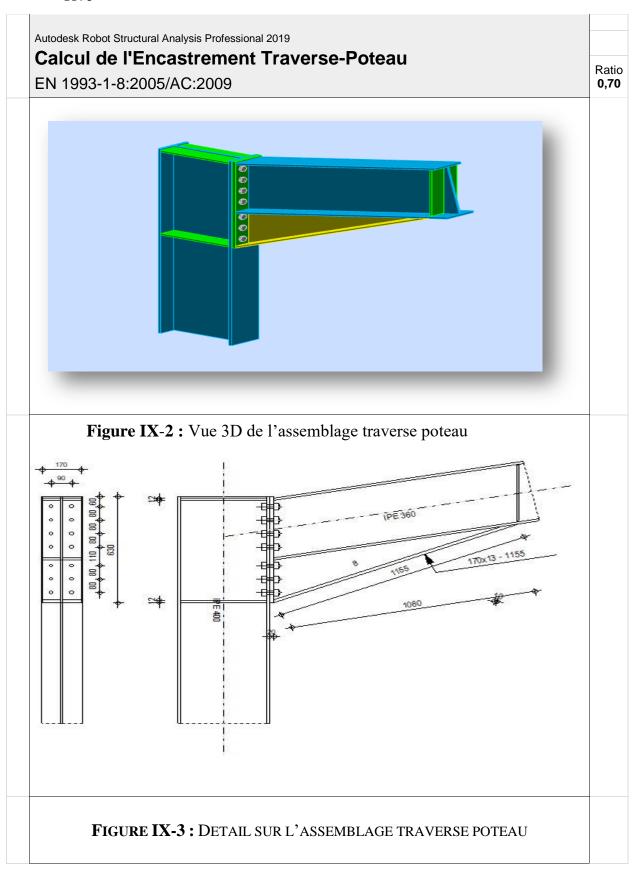



Figure IX-1: Structure vue en 3D

IX.1. Assemblage des poutres maitresse –poteau au niveau des pignons de rive

GENERAL

Assemblage N°: 60

Nom de l'assemblage : Angle de portique

Noeud de la structure: 39 Barres de la structure: 1504, 31

GEOMETRIE

POTEAU

Profilé: IPE 400 Barre N°: 1504

 $\alpha = -90, 0$ [Deg] Angle d'inclinaison

 $h_c = 400$ [mm] Hauteur de la section du poteau $b_{fc} = 180$ [mm] Largeur de la section du poteau

 $\begin{array}{llll} t_{\text{wc}} = & 9 & \text{[mm]} & \text{Epaisseur de l'âme de la section du poteau} \\ t_{\text{fc}} = & 14 & \text{[mm]} & \text{Epaisseur de l'aile de la section du poteau} \\ r_{\text{c}} = & 21 & \text{[mm]} & \text{Rayon de congé de la section du poteau} \\ \end{array}$

 $A_c = 84,46$ [cm²] Aire de la section du poteau

 $I_{xc} = 23128,40$ [cm⁴] Moment d'inertie de la section du poteau

Matériau: ACIER

 $f_{yc} = 235,00$ [MPa] Résistance

POUTRE

Profilé: IPE 360 Barre N°: 31

 $\alpha = 11,3$ [Deg] Angle d'inclinaison

 $h_b = 360$ [mm] Hauteur de la section de la poutre $b_f = 170$ [mm] Largeur de la section de la poutre

8 Epaisseur de l'âme de la section de la poutre [mm] $t_{wb} =$ 13 Epaisseur de l'aile de la section de la poutre [mm] $t_{fb} =$ $r_b =$ 18 [mm] Rayon de congé de la section de la poutre 18 [mm] Rayon de congé de la section de la poutre $r_b =$

 $A_b = 72,73$ [cm²] Aire de la section de la poutre $I_{xb} = 16265,60$ [cm⁴] Moment d'inertie de la poutre

Matériau: ACIER

 $f_{yb} = 235,00$ [MPa] Résistance

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d = 20 [mm] Diamètre du boulon Classe = HR 10.9 Classe du boulon

h₁ = 60 [mm] Pince premier boulon-extrémité supérieure de la platine d'about

Ecartement $e_i = 90 \text{ [mm]}$

Entraxe $p_i = 80;80;80;110;80;80$ [mm]

PLATINE

 $\begin{array}{llll} h_p = & 630 & [mm] & \text{Hauteur de la platine} \\ b_p = & 170 & [mm] & \text{Largeur de la platine} \\ t_p = & 20 & [mm] & \text{Epaisseur de la platine} \end{array}$

Matériau: S 275

```
275,00 [MPa] Résistance
f_{yp} =
```

JARRET INFERIEUR

$w_d =$	170	[mm]	Largeur de la platine
$t_{\text{fd}} =$	13	[mm]	Epaisseur de l'aile
$h_d =$	250	[mm]	Hauteur de la platine
$t_{\text{wd}} =$	8	[mm]	Epaisseur de l'âme
$I_d =$	1080	[mm]	Longueur de la platine
$\alpha =$	23,6	[Deg]	Angle d'inclinaison
	7.0		

Matériau: ACIER

235,00 [MPa] Résistance $f_{ybu} =$

RAIDISSEUR POTEAU

Supérieur

4 25	7 F O O	FN 4D - 1	D / - ! - !
Matériau:	S 275	5	
$t_{hu} =$	12	[mm]	Epaisseur du raidisseur
$b_{su} =$	86	[mm]	Largeur du raidisseur
h _{su} =	3/3	[mm]	Hauteur du raidisseur

 $f_{ysu} = 275,00$ Résistance [MPa]

Inférieur

373 Hauteur du raidisseur $h_{sd} =$ [mm] Largeur du raidisseur $b_{sd} =$ 86 [mm] $t_{hd} =$ 12 [mm] Epaisseur du raidisseur

Matériau: S 275

 $f_{ysu} = 275,00$ [MPa] Résistance

SOUDURES D'ANGLE

$a_w =$	6	[mm]	Soudure âme
a _f =	9	[mm]	Soudure semelle
a _s =	6	[mm]	Soudure du raidisseur
Ard =	5	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

$\gamma_{MO} =$	1,00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M1} =$	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]
$\gamma_{M3} =$	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

12: 1.35G+1.35(N+Q) (1+2+3)*1.35

M_{b1.Ed} = 18237, 92 [daN*m] Moment fléchissant dans la poutre droite $V_{\text{b1,Ed}} = 6011$, 09 [daN] Effort tranchant dans la poutre droite $N_{b1,Ed} = -3889,04$ [daN] Effort axial dans la poutre droite

 $M_{c1,Ed} = -18167$, 53 [daN*m] Moment fléchissant dans la poteau inférieur $V_{c1,Ed} = 3893,73$ [daN] Effort tranchant dans le poteau inférieur $N_{c1,Ed} = -6508,47$ [daN] Effort axial dans le poteau inférieur

 $M_{c2,Ed} = 10,26$ [daN*m] Moment fléchissant dans la poteau supérieur -4,69 [daN] Effort tranchant dans le poteau supérieur $V_{c2,Ed} =$ $N_{c2,Ed} = -172$, 44 [daN] Effort axial dans le poteau supérieur

RESULTATS

RESISTANCES DE LA POUTRE

COMPRESSION	
$A_b = 72,73$ [cm ²] Aire de la section	EN1993-1-1:[6.2.4]
$N_{cb,Rd} = A_b f_{yb} / \gamma_{M0}$	
$N_{cb,Rd} = 170913$, 62 [daN] Résistance de calcul de la section à la compression	EN1993-1-1:[6.2.4]
CISAILLEMENT	
$A_{vb} = 55,14$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$V_{cb,Rd} = A_{vb} \left(f_{yb} / \sqrt{3} \right) / \gamma_{M0}$	
V _{cb,Rd} = 74808, 67 [daN] Résistance de calcul de la section au cisaillement	EN1993-1-1:[6.2.6.(2)]
$V_{b1,Ed} / V_{cb,Rd} \le 1,0$ 0,08 < 1,00 vérifié	(0,08)
FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)	EN4000 4 4 [0 0 F (0)]
$W_{plb} = 1019, 22$ [cm ³] Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{b,pl,Rd} = W_{plb} f_{yb} / \gamma_{M0}$ $M_{b,pl,Rd} = 23951, 67 [daN*m]$ Résistance plastique de la section à la flexion (sans renfo	rte) FN1003-1-1:[6 2 5 (2)]
FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE	113) [111393-1-1.[0.2.3.(2)]
$W_{pl} = 1820,24$ [cm ³] Facteur plastique de la section	EN1993-1-1:[6.2.5]
$M_{cb,Rd} = W_{pl} f_{yb} / \gamma_{M0}$	LIN1995-1-1.[0.2.5]
$M_{cb,Rd} = 42775,55$ [daN*m] Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
AILE ET AME EN COMPRESSION	2111000 1 1.[0.2.0]
$M_{cb,Rd} = 42775$, 55 [daN*m] Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
h _f = 604 [mm] Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
$F_{c,fb,Rd} = M_{cb,Rd} / h_f$	[
F _{c,fb,Rd} = 70852,58 [daN] Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE	_ : :=
Pression diamétrale:	
$\beta = 11,3$ [Deg] Angle entre la platine d'about et la poutre	
$\gamma = 23$, 6 [Deg] Angle d'inclinaison du renfort	
b _{eff,c,wb} = 239 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vb} = 35,14$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$\omega = 0,85$ Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 172,75$ [MPa] Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
k _{wc} = 0,96 Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$A_s = 16,20$ [cm ²] Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]
$F_{c,wb,Rd1} = [\omega k_{wc} b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M0} + A_s f_{yb} / \gamma_{M0}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd1} = 323519,20$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Flambement:	
d _{wb} = 299 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p = 1,04$ Elancement de plaque	[6.2.6.2.(1)]
$\rho = 0,78$ Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$\lambda_s = 5,94$ Elancement du raidisseur	EN1993-1-1:[6.3.1.2]
$\chi = 1,00$ Coefficient de flambement du raidisseur	EN1993-1-1:[6.3.1.2]
$F_{c,wb,Rd2} = [\omega \text{ k}_{wc} \rho \text{ b}_{eff,c,wb} \text{ t}_{wb} \text{ f}_{yb} / \gamma_{M1} + A_s \chi \text{ f}_{yb} / \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd2} = 287927,98$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Résistance de l'aile du renfort	
$F_{c,wb,Rd3} = b_b t_b f_{yb} / (0.8^* \gamma_{M0})$	50 0 0 7 (4)1
F _{c,wb,Rd3} = 63420, 63 [daN] Résistance de l'aile du renfort	[6.2.6.7.(1)]
Résistance finale:	
F _{c,wb,Rd,low} = Min (F _{c,wb,Rd1} , F _{c,wb,Rd2} , F _{c,wb,Rd3})	[0 0 0 0 (4)]
F _{c,wb,Rd,low} = 63420, 63 [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
RESISTANCES DU POTEAU	
PANNEAU D'AME EN CISAILLEMENT	
$M_{b1,Ed} = 18237,92$ [daN*m] Moment fléchissant dans la poutre droite	[5.3.(3)]
$M_{b2,Ed} = 0,00 \text{ [daN*m]}$ Moment fléchissant dans la poutre gauche	[5.3.(3)]

PANNEAU D'AME EN CISAILLEMENT	
$M_{b1,Ed} = 18237,92$ [daN*m] Moment fléchissant dans la poutre droite	[5.3.(3)]
V _{c1,Ed} = 3893,73 [daN] Effort tranchant dans le poteau inférieur	[5.3.(3)]
V _{c2,Ed} = -4,69 [daN] Effort tranchant dans le poteau supérieur	[5.3.(3)]
z = 520 [mm] Bras de levier	[6.2.5]
$V_{wp,Ed} = (M_{b1,Ed} - M_{b2,Ed}) / z - (V_{c1,Ed} - V_{c2,Ed}) / 2$	
V _{wp,Ed} = 33110,11 [daN] Panneau d'âme en cisaillement	[5.3.(3)]
	EN1993-1-
$A_{vs} = 42,69 \text{ [cm}^2\text{]}$ Aire de cisaillement de l'âme du poteau	1:[6.2.6.(3)]
$A_{vc} = 42,69$ [cm ²] Aire de la section au cisaillement	EN1993-1-
A _{vc} = 42,69 [cm ²] Aire de la section au cisaillement	1:[6.2.6.(3)]
$d_s = 598$ [mm] Distance entre les centres de gravités des raidisseurs	[6.2.6.1.(4)]
$M_{pl,fc,Rd} = {192,7 [daN^*m \atop 3}$ Résistance plastique de l'aile du poteau en flexion	[6.2.6.1.(4)]
M _{pl,stu,Rd} 178,2 [daN*m Résistance plastique du raidisseur transversal supérieur en = 0] flexion	[6.2.6.1.(4)]
178 2 IdaN*m Résistance plastique du raidisseur transversal inférieur en	
$M_{pl,stl,Rd} = \begin{bmatrix} 17.072 [daily in Resistance plastique du l'aldissedi transversai interieur en$	[6.2.6.1.(4)]
$V_{wp,Rd} = 0.9 \; (\; A_{vs} * f_{y,wc} \;) \; / \; (\sqrt{3} \; \gamma_{M0}) \; + \; Min(4 \; M_{pl,fc,Rd} \; / \; d_s \; , \; (2 \; M_{pl,fc,Rd} \; + \; M_{pl,stu,Rd} \; + \; M_{pl,stl,Rd}) \; / \; d_s)$	
V _{wp,Rd} = 53374,76 [daN] Résistance du panneau d'âme au cisaillement	[6.2.6.1]
$V_{wp,Ed} / V_{wp,Rd} \le 1,0$ 0,62 < 1,00 vérifié	(0,62)
AME EN COMPRESSION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA	POUTRE
Pression diamétrale:	
t _{wc} = 9 [mm] Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
b _{eff.c.wc} = 252 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vc} = 42,69$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$\omega = 0,87$ Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 137,71$ [MPa] Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
$k_{wc} = 1,00$ Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$A_s = 20,57$ [cm ²] Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]
$F_{c,wc,Rd1} = \omega \text{ kwc b}_{eff,c,wc} \text{ twc fyc} / \gamma_{M0} + A_s \text{ fys} / \gamma_{M0}$	
F _{c,wc,Rd1} = 100616, 27 [daN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
Flambement:	
d _{wc} = 331 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p = 1,05$ Elancement de plaque	[6.2.6.2.(1)]
ρ = 0,77 Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$\lambda_s = 6,22$ Elancement du raidisseur	EN1993-1-1:[6.3.1.2]
$\chi_s = 1,00$ Coefficient de flambement du raidisseur	EN1993-1-1:[6.3.1.2]
$F_{c,wc,Rd2} = \omega \ k_{wc} \ \rho \ b_{eff,c,wc} \ t_{wc} \ f_{yc} \ / \gamma_{M1} + A_s \ \chi_s \ f_{ys} \ / \gamma_{M1}$	
$F_{c,wc,Rd2} = 90610$, 31 [daN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
Résistance finale:	[0.2.0.2.(1)]
F _{c,wc,Rd,low} = Min (F _{c,wc,Rd1} , F _{c,wc,Rd2})	
F _{c,wc,Rd} = 90 610, 31 [daN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
AME EN TRACTION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA POU	
Pression diamétrale:	
t _{wc} = 9 [mm] Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
b _{eff,c,wc} = 251 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vc} = 42,69 \text{ [cm}^2\text{]}$ Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$A_{vc} = 42,69 \text{ [cm}^2\text{]}$ Aire de la section au cisaillement $\omega = 0,87$ Coefficient réducteur pour l'interaction avec le cisaillement	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)]
$A_{vc} = 42,69 \text{ [cm}^2\text{]}$ Aire de la section au cisaillement $\omega = 0,87$ Coefficient réducteur pour l'interaction avec le cisaillement $\sigma_{\text{com,Ed}} = 137,71$ [MPa] Contrainte de compression maximale dans l'âme	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)] [6.2.6.2.(2)]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)] [6.2.6.2.(2)] EN1993-1-1:[6.2.4]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)] [6.2.6.2.(2)]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)] [6.2.6.2.(2)] EN1993-1-1:[6.2.4] [6.2.6.2.(1)]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] [6.2.6.2.(1)] [6.2.6.2.(2)] [6.2.6.2.(2)] EN1993-1-1:[6.2.4]

Flambement:

 $d_{wc} =$ 331 [mm] Hauteur de l'âme comprimée [6.2.6.2.(1)] 0,77 Coefficient réducteur pour le flambement de l'élément $\rho =$ [6.2.6.2.(1)]6,22 Elancement du raidisseur EN1993-1-1:[6.3.1.2] $\lambda_s =$ 1,00 Coefficient de flambement du raidisseur EN1993-1-1:[6.3.1.2] $\chi_s =$

 $F_{c,wc,Rd2} = \omega \ k_{wc} \ \rho \ b_{eff,c,wc} \ t_{wc} \ f_{yc} \ / \ \gamma_{M1} + A_s \ \chi_s \ f_{ys} \ / \ \gamma_{M1}$

 $F_{c,wc,Rd2} = 90565,27$ [daN] Résistance de l'âme du poteau [6.2.6.2.(1)]

Résistance finale:

 $F_{c,wc,Rd,upp} = Min (F_{c,wc,Rd1}, F_{c,wc,Rd2})$

 $F_{c.wc,Rd,upp} = 90565,27$ [daN] Résistance de l'âme du poteau [6.2.6.2.(1)]

PARAMETRES GEOMETRIQUES DE L'ASSEMBLAGE

LONGUEURS EFFICACES ET PARAMETRES - SEMELLE DU POTEAU

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	I _{eff,1,g}	I _{eff,2,g}
1	24	-	45	_	80	150	167	150	167	155	131	131	131
2	24	-	45	-	80	150	152	150	152	160	80	80	80
3	24	-	45	-	80	150	152	150	152	160	80	80	80
4	24	-	45	-	95	150	152	150	152	190	95	95	95
5	24	-	45	-	95	150	152	150	152	190	95	95	95
6	24	-	45	-	80	150	152	150	152	160	80	80	80
7	24	-	45	-	80	150	161	150	161	155	125	125	125

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	I _{eff,1,g}	I _{eff,2,g}
1	34	-	40	-	80	215	218	215	218	187	164	164	164
2	34	-	40	-	80	215	187	187	187	160	80	80	80
3	34	-	40	-	80	215	187	187	187	160	80	80	80
4	34	-	40	-	95	215	187	187	187	190	95	95	95
5	34	-	40	-	95	215	187	187	187	190	95	95	95
6	34	-	40	-	80	215	187	187	187	160	80	80	80
7	34	-	40	-	80	215	187	187	187	187	133	133	133

m - Distance du boulon de l'âme

m_x – Distance du boulon de l'aile de la poutre
 e – Pince entre le boulon et le bord extérieur

e_x – Pince entre le boulon et le bord extérieur horizontal

p – Entraxe des boulons

 $l_{\text{eff,cp}}$ — Longueur efficace pour un boulon dans les mécanismes circulaires — Longueur efficace pour un boulon dans les mécanismes non circulaires

 $\begin{array}{ll} I_{\text{eff,1}} & & -\text{Longueur efficace pour un boulon pour le mode 1} \\ I_{\text{eff,2}} & & -\text{Longueur efficace pour un boulon pour le mode 2} \end{array}$

 $\begin{array}{ll} I_{\text{eff,cp,g}} & -\text{Longueur efficace pour un groupe de boulons dans les mécanismes circulaires} \\ I_{\text{eff,nc,g}} & -\text{Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires} \end{array}$

 $\begin{array}{ll} l_{\text{eff,1,g}} & & -\text{Longueur efficace pour un groupe de boulons pour le mode 1} \\ l_{\text{eff,2,g}} & & -\text{Longueur efficace pour un groupe de boulons pour le mode 2} \end{array}$

RESISTANCE DE L'ASSEMBLAGE A LA COMPRESSION

 $N_{j,Rd} = Min (N_{cb,Rd} 2 F_{c,wb,Rd,low}, 2 F_{c,wc,Rd,low}, 2 F_{c,wc,Rd,upp})$

 $N_{i,Rd} = 126841, 25$ [daN] Résistance de l'assemblage à la compression [6.2]

 $N_{b1,Ed} / N_{i,Rd} \le 1,0$ 0,03 < 1,00 vérifié (0,03)

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

 $F_{t,Rd} = 21168,00$ [daN] Résistance du boulon à la traction [Tableau 3.4]

 $B_{p,Rd} = 22291, 48$ [daN] Résistance du boulon au cisaillement au poinçonnement [Tableau 3.4]

 $F_{t,fc,Rd}$ – résistance de la semelle du poteau à la flexion $F_{t,wc,Rd}$ – résistance de l'âme du poteau à la traction

 $F_{t,fc,Rd}$ - résistance de la semelle du poteau à la flexion

 $F_{t,ep,Rd}$ - résistance de la platine fléchie à la flexion

 $F_{t,wb,Rd}$ – résistance de l'âme à la traction

 $F_{t,fc,Rd} = Min \; (F_{T,1,fc,Rd} \; , \; F_{T,2,fc,Rd} \; , \; F_{T,3,fc,Rd})$

 $F_{t,wc,Rd} = \omega b_{eff,t,wc} t_{wc} f_{yc} / \gamma_{M0}$

 $F_{t,ep,Rd} = Min \; (F_{T,1,ep,Rd} \; , \; F_{T,2,ep,Rd} \; , \; F_{T,3,ep,Rd})$

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / \gamma_{M0}$

[6.2.6.4], [Tab.6.2] [6.2.6.3.(1)] [6.2.6.5], [Tab.6.2] [6.2.6.8.(1)]

RESISTANCE DE LA RANGEE DE BOULONS N° 1

F _{t1,Rd,comp} - Formule	$F_{t1,Rd,comp}$	Composant
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	26910,10	Résistance d'une rangée de boulon
$F_{t,fc,Rd(1)} = 26910,10$	26910,10	Aile du poteau - traction
$F_{t,wc,Rd(1)} = 28690,59$	28690,59	Ame du poteau - traction
$F_{t,ep,Rd(1)} = 38952,99$	38952,99	Platine d'about - traction
$F_{t,wb,Rd(1)} = 40412,28$	40412,28	Ame de la poutre - traction
$B_{p,Rd} = 44582,97$	44582,97	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta = 53374,76$	53374,76	Panneau d'âme - compression
F _{c,wc,Rd} = 90610,31	90610,31	Ame du poteau - compression
$F_{c,fb,Rd} = 70852,58$	70852,58	Aile de la poutre - compression
F _{c,wb,Rd} = 63420,63	63420,63	Ame de la poutre - compression

RESISTANCE DE LA RANGEE DE BOULONS N° 2

F _{t2,Rd,comp} - Formule	F _{t2,Rd,comp}	Composant
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	10975,49	Résistance d'une rangée de boulon
$F_{t,fc,Rd(2)} = 26910,10$	26910,10	Aile du poteau - traction
$F_{t,wc,Rd(2)} = 28690,59$	28690,59	Ame du poteau - traction
$F_{t,ep,Rd(2)} = 36666,68$	36666,68	Platine d'about - traction
$F_{t,wb,Rd(2)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 44582,97$	44582,97	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{1} F_{ti,Rd} = 53374,76 - 26910,10$	26464,67	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{1} F_{tj,Rd} = 90610,31 - 26910,10$	63700,21	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 70852,58 - 26910,10$	43942,48	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 63420,63 - 26910,10$	36510,53	Ame de la poutre - compression
$F_{t,fc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 37885,59 - 26910,10$	10975,49	Aile du poteau - traction - groupe
$F_{t,wc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 38435,81 - 26910,10$	11525,72	Ame du poteau - traction - groupe
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 63741,65 - 26910,10$	36831,56	Platine d'about - traction - groupe
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 45923,31 - 26910,10$	19013,22	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 3

F _{t3,Rd,comp} - Formule	F _{t3,Rd,comp}	Composant
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	11058,87	Résistance d'une rangée de boulon
$F_{t,fc,Rd(3)} = 26910,10$	26910,10	Aile du poteau - traction
$F_{t,wc,Rd(3)} = 28690,59$	28690,59	Ame du poteau - traction
$F_{t,ep,Rd(3)} = 36666,68$	36666,68	Platine d'about - traction
$F_{t,wb,Rd(3)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 44582,97$	44582,97	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{2} F_{ti,Rd} = 53374,76 - 37885,59$	15489,17	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{2} F_{tj,Rd} = 90610,31 - 37885,59$	52724,71	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 70852,58 - 37885,59$	32966,98	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 63420,63 - 37885,59$	25535,03	Ame de la poutre - compression
$F_{t,fc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 28671,97 - 10975,49$	17696,47	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 30351,66 - 10975,49$	19376,16	Ame du poteau - traction - groupe
$F_{t,fc,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 52221,58 - 37885,59$	14335,98	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 48944,47 - 37885,59$	11058,87	Ame du poteau - traction - groupe
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 51444,28 - 10975,49$	40468,78	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 30080,00 - 10975,49$	19104,51	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 92489,65 - 37885,59$	54604,06	Platine d'about - traction - groupe

F _{t3,Rd,comp} - Formule	F _{t3,Rd,comp}	Composant
$F_{t,wb,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 60963,31 - 37885,59$	23077,72	Ame de la poutre - traction - groupe
RESISTANCE DE LA RANGEE DE BOULONS N° 4		
F _{t4,Rd,comp} - Formule	F _{t4,Rd,comp}	Composant
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	4430,30	Résistance d'une rangée de boulon
$F_{t,fc,Rd(4)} = 26910,10$	26910,10	Aile du poteau - traction
$F_{t,wc,Rd(4)} = 28690,59$	28690,59	Ame du poteau - traction
$F_{t,ep,Rd(4)} = 36666,68$	36666,68	Platine d'about - traction
$F_{t,wb,Rd(4)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 44582,97$	44582,97	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{3} F_{ti,Rd} = 53374,76 - 48944,47$	4430,30	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{3} F_{tj,Rd} = 90610,31 - 48944,47$	41665,84	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 70852,58 - 48944,47$	21908,11	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 63420,63 - 48944,47$	14476,16	Ame de la poutre - compression
$F_{t,fc,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 31359,96 - 11058,87$	20301,09	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 32816,17 - 11058,87$	21757,30	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 45695,95 - 22034,37$	23661,58	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 44470,39 - 22034,37$	22436,03	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 69245,56 - 48944,47$	20301,09	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 58409,85 - 48944,47$	9465,39	Ame du poteau - traction - groupe
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 56267,18 - 11058,87$	45208,30	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 32900,00 - 11058,87$	21841,13	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 81989,32 - 22034,37$	59954,95	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 47940,00 - 22034,37$	25905,63	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 122349,33 - 48944,47$	73404,87	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 78823,31 - 48944,47$	29878,85	Ame de la poutre - traction - groupe
RESISTANCE DE LA RANGEE DE BOULONS N° 5		
F _{t5,Rd,comp} - Formule	$F_{t5,Rd,comp}$	Composant
$\begin{aligned} &\textbf{F}_{t5,Rd,comp} \textbf{-} \textbf{Formule} \\ &\textbf{F}_{t5,Rd} = \text{Min} \ (\textbf{F}_{t5,Rd,comp}) \end{aligned}$	F _{t5,Rd,comp}	Composant Résistance d'une rangée de boulon
	0,00 26910,10	
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	0,00 26910,10 28690,59	Résistance d'une rangée de boulon
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$ $F_{t,fc,Rd(5)} = 26910,10$	0,00 26910,10	Résistance d'une rangée de boulon Aile du poteau - traction
$\begin{aligned} F_{t5,Rd} &= Min \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \end{aligned}$	0,00 26910,10 28690,59	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction
$\begin{aligned} F_{t5,Rd} &= \text{Min } (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \end{aligned}$	0,00 26910,10 28690,59 36666,68	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction
$\begin{split} F_{t5,Rd} &= Min \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} &= 53374,76 - 53374,76 \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction
$\begin{split} F_{t5,Rd} &= Min \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 90610,31 - 53374,76 \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement
$\begin{split} F_{t5,Rd} &= Min \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} &= 53374,76 - 53374,76 \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 63420,63 - 53374,76 \\ \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression
$\begin{split} F_{t5,Rd} &= \text{Min } (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 70852,58 - 53374,76 \\ \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,wb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,wb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,wc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression
$\begin{split} F_{t5,Rd} &= \text{Min } (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1{}^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1{}^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1{}^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,wb,Rd} - \sum_1{}^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,wb,Rd} - \sum_1{}^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,fc,Rd(5+4)} - \sum_4{}^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,wc,Rd(5+4)} - \sum_4{}^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,fc,Rd(5+4+3)} - \sum_4{}^4 F_{tj,Rd} &= 48383,94 - 15489,17 \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= \text{Min} \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,tc,Rd(5+4)} - \sum_{1}^{4} F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,wc,Rd(5+4)} - \sum_{1}^{4} F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 48383,94 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_{1}^{4} F_{t,Rd(5+4+3)} - \sum_{1}^{4$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= \text{Min} \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,wb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,fc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 48383,94 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^3 F_{tj,Rd} &= 62719,93 - 26464,67 \\ \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,wb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,wc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 48383,94 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{t,wc,Rd(5+4+3+2)} - \sum_4^2 F_{t,wc,Rd(5+4+3$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,wb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,tb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 48383,94 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 86269,54 - 53374,76 \\ \end{split}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Aile de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1{}^4F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1{}^4F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1{}^4F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,wb,Rd} - \sum_1{}^4F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^4F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^4F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4{}^3F_{tj,Rd} &= 48383,94 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4{}^3F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4{}^2F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4F_{tj,Rd} &= 65263,36 - 5$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,fc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4^4 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4^4 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,ep,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 59719,36 - 4430,30 \\ \end{bmatrix}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(6)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,fc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,wc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 59719,36 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07 31289,70	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Aile de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe
$\begin{split} F_{t5,Rd} &= \text{Min} \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,tb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^4 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^4 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4^4 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,wc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 59719,36 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,ep,Rd(5+4+3)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,ep,Rd(5+4+3)} - \sum_4^4 F_{tj,Rd} &= 86812,22 - 15489,17 \\ \end{bmatrix}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07 31289,70 71323,04	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Aile de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Platine d'about - traction - groupe Platine d'about - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,tb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 59719,36 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 50760,00 - 15489,17 \\ \hline \end{tabular}$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07 31289,70 71323,04 35270,83	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Aile de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Platine d'about - traction - groupe Platine d'about - traction - groupe Ame de la poutre - traction - groupe Ame de la poutre - traction - groupe
$\begin{split} F_{t5,Rd} &= \text{Min} \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1{}^4 \; F_{ti,Rd} = 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1{}^4 \; F_{tj,Rd} = 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1{}^4 \; F_{tj,Rd} = 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1{}^4 \; F_{tj,Rd} = 63420,63 - 53374,76 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^3 \; F_{tj,Rd} = 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4{}^2 \; F_{tj,Rd} = 62719,93 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^2 \; F_{tj,Rd} = 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4 \; F_{tj,Rd} = 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4 \; F_{tj,Rd} = 86263,36 - 53374,76 \\ F_{t,wc,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 59719,36 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^4 \; F_{tj,Rd} = 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^4 \; F_{tj,Rd} = 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 112534,35 - 26464,67 \\ F_{t,w$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07 31289,70 71323,04 35270,83 86069,69	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Platine d'about - traction - groupe
$\begin{split} F_{t5,Rd} &= Min \ (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(6)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1^4 F_{ti,Rd} &= 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1^4 F_{tj,Rd} &= 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{c,tb,Rd} - \sum_1^4 F_{tj,Rd} &= 63420,63 - 53374,76 \\ F_{t,fc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4^4 F_{tj,Rd} &= 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 46374,59 - 15489,17 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 62719,93 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^2 F_{tj,Rd} &= 55131,55 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 86269,54 - 53374,76 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,tc,Rd(5+4+3+2+1)} - \sum_4^1 F_{tj,Rd} &= 65263,36 - 53374,76 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^4 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 35720,00 - 4430,30 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 86812,22 - 15489,17 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 86812,22 - 15489,17 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 86812,22 - 15489,17 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 50760,00 - 15489,17 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 50760,00 - 15489,17 \\ F_{t,tc,Rd(5+4+3)} - \sum_4^3 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd(5+4+3+2)} - \sum_4^2 F_{tj,Rd} &= 65800,00 - 26464,67 \\ F_{t,tc,Rd$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07 31289,70 71323,04 35270,83 86069,69 39335,33	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Aile de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Platine d'about - traction - groupe Ame de la poutre - traction - groupe Platine d'about - traction - groupe Ame de la poutre - traction - groupe Ame de la poutre - traction - groupe Platine d'about - traction - groupe Ame de la poutre - traction - groupe
$\begin{split} F_{t5,Rd} &= \text{Min} \; (F_{t5,Rd,comp}) \\ F_{t,fc,Rd(5)} &= 26910,10 \\ F_{t,wc,Rd(5)} &= 28690,59 \\ F_{t,ep,Rd(5)} &= 36666,68 \\ F_{t,wb,Rd(5)} &= 35127,25 \\ B_{p,Rd} &= 44582,97 \\ V_{wp,Rd}/\beta - \sum_1{}^4 \; F_{ti,Rd} = 53374,76 - 53374,76 \\ F_{c,wc,Rd} - \sum_1{}^4 \; F_{tj,Rd} = 90610,31 - 53374,76 \\ F_{c,tb,Rd} - \sum_1{}^4 \; F_{tj,Rd} = 70852,58 - 53374,76 \\ F_{c,tb,Rd} - \sum_1{}^4 \; F_{tj,Rd} = 63420,63 - 53374,76 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 34047,96 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 35194,17 - 4430,30 \\ F_{t,tc,Rd(5+4)} - \sum_4{}^3 \; F_{tj,Rd} = 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 46374,59 - 15489,17 \\ F_{t,wc,Rd(5+4+3+2)} - \sum_4{}^2 \; F_{tj,Rd} = 62719,93 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^2 \; F_{tj,Rd} = 55131,55 - 26464,67 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4 \; F_{tj,Rd} = 86269,54 - 53374,76 \\ F_{t,wc,Rd(5+4+3+2+1)} - \sum_4{}^4 \; F_{tj,Rd} = 86263,36 - 53374,76 \\ F_{t,wc,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 59719,36 - 4430,30 \\ F_{t,wb,Rd(5+4)} - \sum_4{}^4 \; F_{tj,Rd} = 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^4 \; F_{tj,Rd} = 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^4 \; F_{tj,Rd} = 35720,00 - 4430,30 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 86812,22 - 15489,17 \\ F_{t,wb,Rd(5+4+3)} - \sum_4{}^3 \; F_{tj,Rd} = 112534,35 - 26464,67 \\ F_{t,w$	0,00 26910,10 28690,59 36666,68 35127,25 44582,97 0,00 37235,54 17477,81 10045,86 29617,66 30763,87 32894,77 30885,41 36255,26 28666,89 32894,77 11888,59 55289,07 31289,70 71323,04 35270,83 86069,69	Résistance d'une rangée de boulon Aile du poteau - traction Ame du poteau - traction Platine d'about - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Panneau d'âme - compression Ame du poteau - compression Aile de la poutre - compression Ame de la poutre - compression Aile du poteau - traction - groupe Ame du poteau - traction - groupe Aile du poteau - traction - groupe Aile du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Ame du poteau - traction - groupe Platine d'about - traction - groupe

Les autres boulons sont inactifs (ils ne transfèrent pas de charges) car la résistance d'un des composants de l'assemblage s'est épuisée ou ces boulons sont situés au-dessous du centre de rotation.

TABLEAU RECAPITULATIF DES EFFORTS

Nr	h j	$F_{tj,Rd}$	$F_{t,fc,Rd}$	$F_{t,wc,Rd}$	$F_{t,ep,Rd}$	$F_{t,wb,Rd}$	$F_{t,Rd}$	$B_{p,Rd}$
1	560	26910,10	26910,10	28690,59	38952,99	40412,28	42336,00	44582,97
2	480	10975,49	26910,10	28690,59	36666,68	35127,25	42336,00	44582,97
3	400	11058,87	26910,10	28690,59	36666,68	35127,25	42336,00	44582,97
4	320	4430,30	26910,10	28690,59	36666,68	35127,25	42336,00	44582,97
5	210	_	26910,10	28690,59	36666,68	35127,25	42336,00	44582,97
6	130	_	26910,10	28690,59	36666,68	35127,25	42336,00	44582,97
7	50	_	26910,10	28690,59	36666,68	35127,25	42336,00	44582,97

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

 $M_{j,Rd} = \sum h_j F_{tj,Rd}$

 $M_{j,Rd} = 26189, 91$ [daN*m] Résistance de l'assemblage à la flexion

[6.2]

 $M_{b1,Ed} / M_{i,Rd} \le 1,0$

0,70 < 1,00

vérifié

(0,70)

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

$\alpha_{v} =$	0,60		Coefficient pour le calcul de F _{v,Rd}	[Tableau 3.4]
$\beta_{Lf} =$	0,95		Coefficient réducteur pour les assemblages longs	[3.8]
$F_{v,Rd} =$	17145,56	[daN]	Résistance d'un boulon au cisaillement	[Tableau 3.4]
$F_{t,Rd,max}$:	=21168,00	[daN]	Résistance d'un boulon à la traction	[Tableau 3.4]
$F_{b,Rd,int} =$: 18963,41	[daN]	Résistance du boulon intérieur en pression diamétrale	[Tableau 3.4]
F _{b,Rd,ext} =	= 17918 , 18	[daN]	Résistance du boulon de rive en pression diamétrale	[Tableau 3.4]

Nr	$F_{tj,Rd,N}$	$F_{tj,Ed,N}$	$F_{tj,Rd,M}$	$F_{tj,Ed,M}$	$F_{tj,Ed}$	$F_{vj,Rd}$
1	42336,00	-555 , 58	26910,10	18739,44	18183,86	23770,77
2	42336,00	-555 , 58	10975,49	7643,03	7087,45	30190,64
3	42336,00	-555 , 58	11058,87	7701,09	7145,51	30157,05
4	42336,00	-555 , 58	4430,30	3085,14	2529,56	32827,63
5	42336,00	-555 , 58	0,00	0,00	-555,58	34291,11
6	42336,00	-555 , 58	0,00	0,00	-555 , 58	34291,11
7	42336,00	-555,58	0,00	0,00	-555 , 58	34291,11

F_{ti,Rd,N} – Résistance d'une rangée de boulons à la traction pure

 $F_{tj,Ed,N}$ – Effort dans une rangée de boulons dû à l'effort axial

 $F_{tj,Rd,M} \quad - \, R\acute{e}sistance \, d'une \, rang\'ee \, de \, boulons \, \grave{a} \, \, la \, flexion \, pure$

F_{ti,Ed,M} – Effort dans une rangée de boulons dû au moment

F_{ti.Ed} – Effort de traction maximal dans la rangée de boulons

F_{vj,Rd} - Résistance réduite d'une rangée de boulon

 $F_{tj,Ed,N} = N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd}$

 $F_{tj,Ed,M} = M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd}$

 $F_{tj,Ed} = F_{tj,Ed,N} + F_{tj,Ed,M} \\$

 $F_{vi,Rd} = Min (n_h F_{v,Ed} (1 - F_{ti,Ed} / (1.4 n_h F_{t,Rd,max}), n_h F_{v,Rd}, n_h F_{b,Rd}))$

 $\begin{array}{lll} V_{j,Rd} = n_h \sum_1^n F_{v_j,Rd} & & & & & & & & & & \\ V_{j,Rd} = & 219819,42 & & & & & & & & & & \\ V_{b1,Ed} / V_{j,Rd} \leq & 1,0 & & & & & & & & \\ \end{array}$

RESISTANCE DES SOUDURES

A _w =	129,86	[cm ²]	Aire de toutes les soudures	[4.5.3.2(2)]
$A_{wy} =$	64,98	[cm ²]	Aire des soudures horizontales	[4.5.3.2(2)]
$A_{wz} =$	64,88	[cm ²]	Aire des soudures verticales	[4.5.3.2(2)]
$I_{wy} =$	54950,10	[cm ⁴]	Moment d'inertie du système de soudures par rapport à l'axe horiz.	[4.5.3.2(5)]
$\sigma_{\perp max} = \tau_{\perp max} =$	-77,32	[MPa]	Contrainte normale dans la soudure	[4.5.3.2(6)]
$\sigma_{\perp} = \tau_{\perp} =$	-77 , 32	[MPa]	Contraintes dans la soudure verticale	[4.5.3.2(5)]
$\tau_{II} =$	9,27	[MPa]	Contrainte tangentielle	[4.5.3.2(5)]
$\beta_w =$	0,80		Coefficient de corrélation	[4.5.3.2(7)]

$\sqrt{[\sigma_{\perp max}^2 + 3^*(\tau_{\perp max}^2)]} \le f_u/(\beta_w^*\gamma_{M2})$	154,64 < 365,00	vérifié	(0,42)
$\sqrt{[\sigma_{\perp}^{2} + 3*(\tau_{\perp}^{2} + \tau_{II}^{2})]} \le f_{u}/(\beta_{w}*\gamma_{M2})$	155,47 < 365,00	vérifié	(0,43)
$\sigma_{\perp} \leq 0.9 f_{\text{U}}/\gamma_{\text{M2}}$	77,32 < 262,80	vérifié	(0,29)

RIGIDITE DE L'ASSEMBLAGE

t _{wash} =	4	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
$h_{head} =$	14	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
$h_{nut} =$	20	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
$L_b =$	59	[mm]	Longueur du boulon	[6.2.6.3.(2)]
$k_{10} =$	7	[mm]	Coefficient de rigidité des boulons	[6.3.2.(1)]

RIGIDITES DES RANGEES DE BOULONS

Nr	hj	k ₃	k 4	k ₅	$\mathbf{k}_{eff,j}$	$\mathbf{k}_{eff,j} \mathbf{h}_{j}$	$\mathbf{k}_{eff,j} \mathbf{h_{j}}^{z}$
					Somme	23,84	990,34
1	560	2	21	30	1	7,99	447,37
2	480	1	13	14	1	4,49	215,44
3	400	1	13	14	1	3,74	149,64
4	320	2	15	17	1	3,46	110,86
5	210	2	15	17	1	2,27	47,77
6	130	1	13	14	1	1,22	15,84
7	50	2	20	24	1	0,68	3,42

7 50	2	20	24	1	0,68	3,42	
$k_{eff,j} = 1 / (\sum_{3}^{5} (1 / k_{i,j}))$	$k_{\text{eff},j} = 1 / (\sum_{3}^{5} (1 / k_{i,j}))$ [6.3.3.1.(2)]						
$z_{eq} = \sum_{j} k_{eff,j} h_j^2 / \sum_{j} k_{eff}$	_{f,j} h _j						
$z_{eq} = 415$	[mm] Bras de	e levier équival	lent			[6.3.3.1.(3)]	
$k_{eq} = \sum_{j} k_{eff,j} h_j / z_{eq}$							
$k_{eq} = 6 [mm]$	Coefficient de i	rigidité équivale	ent du système	de boulons		[6.3.3.1.(1)]	
$A_{vc} = 42,69 \text{ [cm}^2\text{]}$	Aire de la secti	on au cisaillen	nent		EN19	993-1-1:[6.2.6.(3)]	
$\beta = 1,00$	Paramètre de	transformation				[5.3.(7)]	
z = 415 [mm]						[6.2.5]	
$k_1 = 4 [mm]$	Coefficient de	rigidité du panı	neau d'âme du	poteau en cisail	lement	[6.3.2.(1)]	
$k_2 = \infty$	Coefficient de	rigidité du panı	neau d'âme du	poteau en comp	ression	[6.3.2.(1)]	
$S_{j,ini} = E z_{eq}^2 / \sum_i (1 / k)$	$k_1 + 1 / k_2 + 1 / k_3$	(eq)				[6.3.1.(4)]	
$S_{j,ini} = 8421094,72$	[daN*m] Rigid	dité en rotation	initiale			[6.3.1.(4)]	
$\mu = 1,12$	Coeffic	ient de rigidité	de l'assemblaç	ge		[6.3.1.(6)]	
$S_j = S_{j,ini} / \mu$						[6.3.1.(4)]	
$S_j = 7486013,68$	[daN*m] Rigid	dité en rotation	finale			[6.3.1.(4)]	
Classification de l'as	ssemblage par	rigidité.					
$S_{j,rig} = 5465241,60$	[daN*m] Rigid	dité de l'assem	blage rigide			[5.2.2.5]	
$S_{j,pin} = 341577,60$	[daN*m] Rigid	dité de l'assem	blage articulé			[5.2.2.5]	
$S_{j,ini} \geq S_{j,rig} \; RIGIDE$							

COMPOSANT LE PLUS FAIBLE:

PANNEAU D'AME DU POTEAU EN CISAILLEMENT

Assemblage satisfaisant vis à vis de la Norme	Ratio	0,70
---	-------	------

IX.2. Assemblage des deux traverse au niveau de faitage

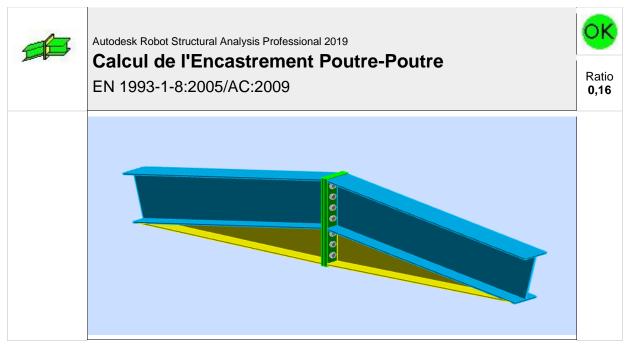


Figure IX-4 : Vue 3D de l'assemblage au niveau de faitage

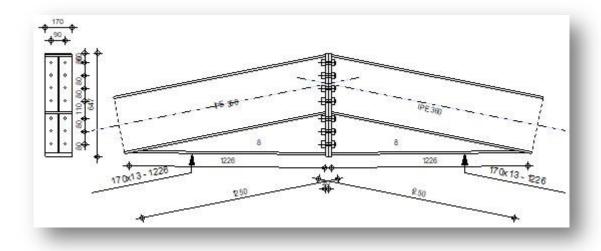


Figure IX-5 : Détail de l'assemblage au niveau de faitage

GENERAL

Assemblage N°: 24

Nom de l'assemblage : Poutre - poutre

Noeud de la structure: 25

Barres de la structure: 39, 1494

GEOMETRIE

GAUCHE

POUTRE

Profilé: IPE 360 Barre N°: 39 [Deg] -168,7 Angle d'inclinaison $\alpha =$ 360 Hauteur de la section de la poutre $h_{bl} =$ [mm] $b_{fbl} =$ 170 [mm] Largeur de la section de la poutre 8 [mm] Epaisseur de l'âme de la section de la poutre $t_{wbl} =$ 13 [mm] Epaisseur de l'aile de la section de la poutre $t_{fbl} =$ 18 Rayon de congé de la section de la poutre [mm] $r_{bl} =$ 72,73 [cm²] Aire de la section de la poutre $A_{bl} =$ 16265,60 [cm⁴] Moment d'inertie de la poutre $I_{xbl} =$ ACIER Matériau: 235,00 **[MPa]** Résistance $f_{yb} =$

DROITE

POUTRE

Profilé: IPE 360 Barre N°: 1494 -11,3 Angle d'inclinaison $\alpha =$ [Deg] 360 [mm] Hauteur de la section de la poutre $h_{br} =$ Largeur de la section de la poutre $b_{fbr} =$ 170 [mm] 8 [mm] Epaisseur de l'âme de la section de la poutre $t_{wbr} =$ Epaisseur de l'aile de la section de la poutre $t_{\text{fbr}} =$ 13 [mm] 18 [mm] Rayon de congé de la section de la poutre $r_{br} =$ 72,73 [cm²] Aire de la section de la poutre $A_{br} =$ 16265,60 [cm⁴] Moment d'inertie de la poutre $I_{xbr} =$ ACIER Matériau: 235,00 **[MPa]** Résistance

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

 n_h = 2 Nombre de colonnes des boulons n_v = 7 Nombre de rangéss des boulons

h₁ = 60 [mm] Pince premier boulon-extrémité supérieure de la platine d'about

Ecartement $e_i = 90 \text{ [mm]}$

Entraxe $p_i = 80;80;80;110;80;80$ [mm]

<u>PLATINE</u>

 $\begin{array}{llll} h_{pr} = & 647 & [mm] & \text{Hauteur de la platine} \\ b_{pr} = & 170 & [mm] & \text{Largeur de la platine} \\ t_{pr} = & 20 & [mm] & \text{Epaisseur de la platine} \end{array}$

Matériau: S 275

 $f_{ypr} = 275,00$ [MPa] Résistance

JARRET INFERIEUR

$W_{rd} =$	170	[mm]	Largeur de la platine
$t_{frd} =$	13	[mm]	Epaisseur de l'aile
$h_{rd} =$	260	[mm]	Hauteur de la platine
$t_{wrd} =$	8	[mm]	Epaisseur de l'âme

JARRET INFERIEUR

 $\begin{array}{lll} \textbf{W}_{\text{rd}} = & 170 & \text{[mm]} & \text{Largeur de la platine} \\ \textbf{I}_{\text{rd}} = & 1250 & \text{[mm]} & \text{Longueur de la platine} \\ \alpha_{\text{d}} = & 0,7 & \text{[Deg]} & \text{Angle d'inclinaison} \end{array}$

Matériau: ACIER

 $f_{ybu} = 235,00$ [MPa] Résistance

SOUDURES D'ANGLE

 $a_w =$ 6 [mm] Soudure âme $a_f =$ 9 [mm] Soudure semelle $a_{fd} =$ 5 [mm] Soudure horizontale

COEFFICIENTS DE MATERIAU

$\gamma_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]
γмз =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: 16: G+1.5Vlong-pan 1*1.00+4*1.50

 $M_{b1,Ed} = -2442$, 66 [daN*m] Moment fléchissant dans la poutre droite $V_{b1,Ed} = -4326$, 61 [daN] Effort tranchant dans la poutre droite $N_{b1,Ed} = -11037$, 88 [daN] Effort axial dans la poutre droite

RESULTATS

RESISTANCES DE LA POUTRE

COMPRESSION

 $A_b = 72,73$ [cm²] Aire de la section EN1993-1-1:[6.2.4]

 $N_{cb,Rd} = A_b f_{vb} / \gamma_{M0}$

N_{cb,Rd} = 170913, 62 [daN] Résistance de calcul de la section à la compression EN1993-1-1:[6.2.4]

CISAILLEMENT

 $A_{vb} = 55,94$ [cm²] Aire de la section au cisaillement EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \sqrt{3}) / \gamma_{M0}$

 $V_{cb,Rd} = 75894$, 09 [daN] Résistance de calcul de la section au cisaillement EN1993-1-1:[6.2.6.(2)]

 $V_{b1,Ed} / V_{cb,Rd} \le 1,0$ 0,06 < 1,00 vérifié (0,06)

FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)

 $W_{olb} = 1019, 22$ [cm³] Facteur plastique de la section EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / \gamma_{M0}$

 $M_{b,pl,Rd} = 23951$, 67 [daN*m] Résistance plastique de la section à la flexion (sans renforts) EN1993-1-1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

 $W_{pl} = 1802,42$ [cm³] Facteur plastique de la section EN1993-1-1:[6.2.5]

 $M_{cb,Rd} = W_{pl} f_{yb} / \gamma_{M0}$

 $M_{cb,Rd} = 42356,93$ [daN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5]

AILE ET AME EN COMPRESSION

 $M_{cb,Rd}$ = 42356, 93 [daN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5] h_f = 614 [mm] Distance entre les centres de gravité des ailes [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

 $F_{c,fb,Rd} = 68951,19$ [daN] Résistance de l'aile et de l'âme comprimées [6.2.6.7.(1)]

AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

[6.2.6.7.(1)]

[6.2.6.2.(1)]

Pression diamétrale:

Résistance finale:

$\beta = 11,3$ [Deg] Angle entre la platine d'about et la poutre							
$\gamma = 0, 7$ [Deg] Angle d'inclinaison du renfort							
b _{eff,c,wb} = 240 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]						
$A_{vb} = 35,14$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]						
$\omega = 0,85$ Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]						
$\sigma_{\text{com,Ed}} = 0,00$ [MPa] Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]						
k _{wc} = 1,00 Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]						
$F_{c,wb,Rd1} = [\omega \ k_{wc} \ b_{eff,c,wb} \ t_{wb} \ f_{yb} \ / \ \gamma_{M0}] \ cos(\gamma) \ / \ sin(\gamma - \beta)$							
$F_{c,wb,Rd1} = 184123$, 57 [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]						
Flambement:							
d _{wb} = 299 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]						
$\lambda_p = 1,04$ Elancement de plaque	[6.2.6.2.(1)]						
ρ = 0,77 Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]						
$F_{c,wb,Rd2} = [\omega k_{wc} \rho b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$							
$F_{c,wb,Rd2} = 142648,46$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]						
Résistance de l'aile du renfort							
$F_{c,wb,Rd3} = b_b t_b f_{vb} / (0.8 \gamma_{M0})$							

PARAMETRES GEOMETRIQUES DE L'ASSEMBLAGE

 $F_{c,wb,Rd,low} = 63420$, 63 [daN] Résistance de l'âme de la poutre

 $F_{c,wb,Rd3} = 63420$, 63 [daN] Résistance de l'aile du renfort

 $F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1}, F_{c,wb,Rd2}, F_{c,wb,Rd3})$

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	I _{eff,1,g}	I _{eff,2,g}
1	34	-	40	-	80	215	199	199	199	187	145	145	145
2	34	_	40	-	80	215	187	187	187	160	80	80	80
3	34	_	40	-	95	215	187	187	187	190	95	95	95
4	34	_	40	_	95	215	187	187	187	190	95	95	95
5	34	-	40	_	80	215	187	187	187	160	80	80	80
6	34	-	40	_	80	215	187	187	187	160	80	80	80
7	34	_	40	_	80	215	187	187	187	187	133	133	133

m — Distance du boulon de l'âme

m_x – Distance du boulon de l'aile de la poutre
 e – Pince entre le boulon et le bord extérieur

e_x – Pince entre le boulon et le bord extérieur horizontal

p – Entraxe des boulons

 $\begin{array}{ll} I_{\text{eff,cp}} & -\text{Longueur efficace pour un boulon dans les mécanismes circulaires} \\ I_{\text{eff,nc}} & -\text{Longueur efficace pour un boulon dans les mécanismes non circulaires} \end{array}$

 $\begin{array}{ll} I_{\text{eff,1}} & & -\text{Longueur efficace pour un boulon pour le mode 1} \\ I_{\text{eff,2}} & & -\text{Longueur efficace pour un boulon pour le mode 2} \end{array}$

 $\begin{array}{ll} I_{\text{eff,cp,g}} & -\text{Longueur efficace pour un groupe de boulons dans les mécanismes circulaires} \\ I_{\text{eff,nc,g}} & -\text{Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires} \end{array}$

 $\begin{array}{ll} I_{\text{eff,1,g}} & & -\text{Longueur efficace pour un groupe de boulons pour le mode 1} \\ I_{\text{eff,2,g}} & & -\text{Longueur efficace pour un groupe de boulons pour le mode 2} \end{array}$

RESISTANCE DE L'ASSEMBLAGE A LA COMPRESSION

 $N_{j,Rd} = Min (N_{cb,Rd}2 F_{c,wb,Rd,low})$

 $N_{j,Rd} = 126841,25$ [daN] Résistance de l'assemblage à la compression [6.2] $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,09 < 1,00 vérifié (0,09)

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

 $F_{t,Rd} = 21168,00$ [daN] Résistance du boulon à la traction [Tableau 3.4]

 $F_{t,Rd} = 21168,00$ [daN] Résistance du boulon à la traction [Tableau 3.4] $B_{p,Rd} = 38905,48$ [daN] Résistance du boulon au cisaillement au poinçonnement [Tableau 3.4]

 $\begin{array}{ll} F_{t,fc,Rd} & -\text{ r\'esistance de la semelle du poteau à la flexion} \\ F_{t,wc,Rd} & -\text{ r\'esistance de l'âme du poteau à la traction} \end{array}$

F_{t,ep,Rd} – résistance de la platine fléchie à la flexion

F_{t,wb,Rd} – résistance de l'âme à la traction

 $F_{t,fc,Rd} = Min (F_{T,1,fc,Rd}, F_{T,2,fc,Rd}, F_{T,3,fc,Rd})$

 $F_{t,wc,Rd} = \omega \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ \gamma_{M0}$

 $F_{t,ep,Rd} = Min \; (F_{T,1,ep,Rd} \; , \; F_{T,2,ep,Rd} \; , \; F_{T,3,ep,Rd})$

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / \gamma_{M0}$

[6.2.6.4], [Tab.6.2] [6.2.6.3.(1)]

[6.2.6.5] , [Tab.6.2]

[6.2.6.8.(1)]

RESISTANCE DE LA RANGEE DE BOULONS N° 1

F _{t1,Rd,comp} - Formule	F _{t1,Rd,comp}	Composant
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	37372,48	Résistance d'une rangée de boulon
$F_{t,ep,Rd(1)} = 37551,78$	37551,78	Platine d'about - traction
$F_{t,wb,Rd(1)} = 37372,48$	37372,48	Ame de la poutre - traction
$B_{p,Rd} = 77810,97$	77810,97	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd} = 68951,19$	68951,19	Aile de la poutre - compression

RESISTANCE DE LA RANGEE DE BOULONS N° 2

F _{t2,Rd,comp} - Formule	F _{t2,Rd,comp}	Composant
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	4996,37	Résistance d'une rangée de boulon
$F_{t,ep,Rd(2)} = 36666,68$	36666,68	Platine d'about - traction
$F_{t,wb,Rd(2)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 77810,97$	77810,97	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 68951,19 - 37372,48$	31578,70	Aile de la poutre - compression
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 62340,44 - 37372,48$	24967,95	Platine d'about - traction - groupe
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 42368,86 - 37372,48$	4996,37	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 3

F _{t3,Rd,comp} - Formule	F _{t3,Rd,comp}	Composant
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	17860,00	Résistance d'une rangée de boulon
$F_{t,ep,Rd(3)} = 36666,68$	36666,68	Platine d'about - traction
$F_{t,wb,Rd(3)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 77810,97$	77810,97	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 68951,19 - 42368,86$	26582,33	Aile de la poutre - compression
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 56267,18 - 4996,37$	51270,80	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 32900,00 - 4996,37$	27903,63	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 92200,12 - 42368,86$	49831,26	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 60228,86 - 42368,86$	17860,00	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 4

F _{t4,Rd,comp} - Formule	F _{t4,Rd,comp}	Composant
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	8722,33	Résistance d'une rangée de boulon
$F_{t,ep,Rd(4)} = 36666,68$	36666,68	Platine d'about - traction
$F_{t,wb,Rd(4)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 77810,97$	77810,97	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 68951,19 - 60228,86$	8722,33	Aile de la poutre - compression
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 59719,36 - 17860,00$	41859,36	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 35720,00 - 17860,00$	17860,00	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 86812,22 - 22856,37$	63955,84	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 50760,00 - 22856,37$	27903,63	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 122059,80 - 60228,86$	61830,94	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 78088,86 - 60228,86$	17860,00	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 5

F _{t5,Rd,comp} - Formule	F _{t5,Rd,comp}	Composant
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	0,00	Résistance d'une rangée de boulon
$F_{t,ep,Rd(5)} = 36666,68$	36666,68	Platine d'about - traction

F _{t5,Rd,comp} - Formule	F _{t5,Rd,comp}	Composant
$F_{t,wb,Rd(5)} = 35127,25$	35127,25	Ame de la poutre - traction
$B_{p,Rd} = 77810,97$	77810,97	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 68951,19 - 68951,19$	0,00	Aile de la poutre - compression
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 56267,18 - 8722,33$	47544,85	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 32900,00 - 8722,33$	24177,67	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 86812,22 - 26582,33$	60229,89	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 50760,00 - 26582,33$	24177,67	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 112534,35 - 31578,70$	80955,65	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 65800,00 - 31578,70$	34221,30	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 150807,80 - 68951,19$	81856,61	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 93128,86 - 68951,19$	24177,67	Ame de la poutre - traction - groupe

Les autres boulons sont inactifs (ils ne transfèrent pas de charges) car la résistance d'un des composants de l'assemblage s'est épuisée ou ces boulons sont situés au-dessous du centre de rotation.

TABLEAU RECAPITULATIF DES EFFORTS

Nr	hj	$F_{tj,Rd}$	$F_{t,fc,Rd}$	$F_{t,wc,Rd}$	$F_{t,ep,Rd}$	$F_{t,wb,Rd}$	$F_{t,Rd}$	$B_{p,Rd}$
1	554	37372,48	_	_	37551 , 78	37372,48	42336,00	77810,97
2	474	4996,37	_	_	36666,68	35127,25	42336,00	77810,97
3	394	17860,00	-	-	36666,68	35127,25	42336,00	77810,97
4	284	8722,33	_	_	36666,68	35127,25	42336,00	77810,97
5	204	_	-	-	36666,68	35127,25	42336,00	77810,97
6	124	_	_	_	36666,68	35127,25	42336,00	77810,97
7	44	_	_	_	36666,68	35127 , 25	42336,00	77810,97

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{i,Rd}

 $M_{j,Rd}$ = $\sum h_j F_{tj,Rd}$

 $M_{j,Rd} = 32553,81$ [daN*m] Résistance de l'assemblage à la flexion [6.2] $M_{b1,Ed} / M_{j,Rd} \le 1,0$ 0,08 < 1,00 vérifié (0,08)

VERIFICATION DE L'INTERACTION M+N

 $\begin{aligned} & M_{b1,Ed} \, / \, M_{j,Rd} + N_{b1,Ed} \, / \, N_{j,Rd} \leq 1 \\ & M_{b1,Ed} \, / \, M_{j,Rd} + N_{b1,Ed} \, / \, N_{j,Rd} & 0,16 \, < \, 1,00 \end{aligned} \qquad \text{$v\'{e}rifi\'{e}$} \tag{0,16}$

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

$\alpha_{v} =$	0,60		Coefficient pour le calcul de F _{v,Rd}	[Tableau 3.4]
β_{Lf} =	0,95		Coefficient réducteur pour les assemblages longs	[3.8]
$F_{v,Rd} =$	17145,56	[daN]	Résistance d'un boulon au cisaillement	[Tableau 3.4]
$F_{t,Rd,max}$:	= 21168,00	[daN]	Résistance d'un boulon à la traction	[Tableau 3.4]
$F_{b,Rd,int} =$	33096,97	[daN]	Résistance du boulon intérieur en pression diamétrale	[Tableau 3.4]
F _{b,Rd,ext} =	= 31272,73	[daN]	Résistance du boulon de rive en pression diamétrale	[Tableau 3.4]

Nr	$F_{tj,Rd,N}$	$F_{tj,Ed,N}$	$F_{tj,Rd,M}$	$F_{tj,Ed,M}$	$F_{tj,Ed}$	$F_{vj,Rd}$
1	42336,00	-1576,84	37372,48	2804,22	1227,38	33581,01
2	42336,00	-1576,84	4996,37	374,90	-1201,94	34291,11
3	42336,00	-1576,84	17860,00	1340,11	-236,73	34291,11
4	42336,00	-1576,84	8722,33	654,48	-922 , 37	34291,11
5	42336,00	-1576,84	0,00	0,00	-1576,84	34291,11
6	42336,00	-1576,84	0,00	0,00	-1576,84	34291,11
7	42336,00	-1576,84	0,00	0,00	-1576,84	34291,11

F_{ti,Rd,N} – Résistance d'une rangée de boulons à la traction pure

 $F_{tj,Ed,N}$ – Effort dans une rangée de boulons dû à l'effort axial

 $F_{t_{j,Rd,M}}$ – Résistance d'une rangée de boulons à la flexion pure

 $F_{tj,Ed,M}~-$ Effort dans une rangée de boulons dû au moment

 $F_{tj,Ed}$ — Effort de traction maximal dans la rangée de boulons

F_{vj,Rd} – Résistance réduite d'une rangée de boulon

 $F_{tj,Ed,N} = N_{j,Ed} F_{tj,Rd,N} / N_{j,Rd}$

RESISTANCE DES SOUDURES

$A_w = 146$, 50 [[cm ²]	Aire de toutes les soudures		[4.5.3.2(2)]			
$A_{wy} = 80$,28 [[cm ²]	Aire des soudures horizontales		[4.5.3.2(2)]			
$A_{wz} = 66$,22 [[cm ²]	Aire des soudures verticales	Aire des soudures verticales				
$I_{wy} = 72821$,47 [[cm⁴]	Moment d'inertie du système de soudu	res par rapport à l'axe horiz.	[4.5.3.2(5)]			
$\sigma_{\perp max} = \tau_{\perp max} = -8$, 02 [I	MPa]	Contrainte normale dans la soudure		[4.5.3.2(6)]			
$\sigma_{\perp} = \tau_{\perp} = -7$, 73 [MPa]	Contraintes dans la soudure verticale		[4.5.3.2(5)]			
$\tau_{II} = -6$,53 [I	MPa]	Contrainte tangentielle		[4.5.3.2(5)]			
$\beta_{w} = 0$,80		Coefficient de corrélation		[4.5.3.2(7)]			
$\sqrt{\left[\sigma_{\perp \text{max}}^2 + 3^* \left(\tau_{\perp \text{max}}^2\right)\right]}$	$\leq f_u/(\beta_v)$	w*γ _{M2})	16,05 < 365,00	vérifié	(0,04)			
$\sqrt{[\sigma_{\perp}^{2} + 3^{*}(\tau_{\perp}^{2} + \tau_{ }^{2})]} \le$	$f_u/(\beta_w^*$	γ _{M2})	19,17 < 365,00	vérifié	(0,05)			
$\sigma_{\perp} \le 0.9 * f_u / \gamma_{M2}$			8,02 < 262,80	vérifié	(0,03)			

RIGIDITE DE L'ASSEMBLAGE

t _{wash} =	4	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
$h_{head} =$	14	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
$h_{nut} =$	20	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
$L_b =$	58	[mm]	Longueur du boulon	[6.2.6.3.(2)]
$k_{10} =$	7	[mm]	Coefficient de rigidité des boulons	[6.3.2.(1)]

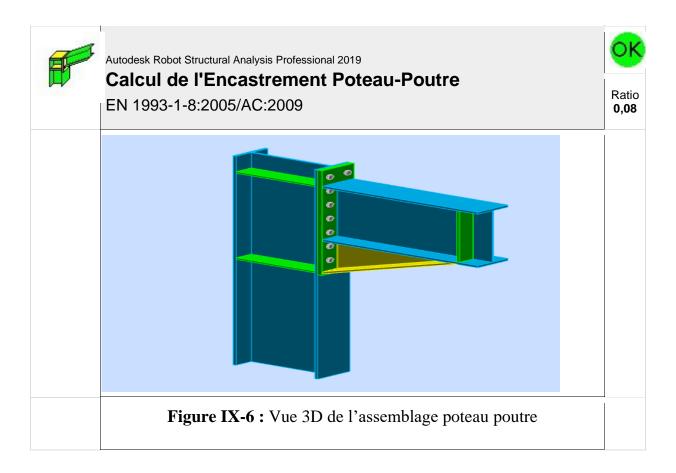
RIGIDITES DES RANGEES DE BOULONS

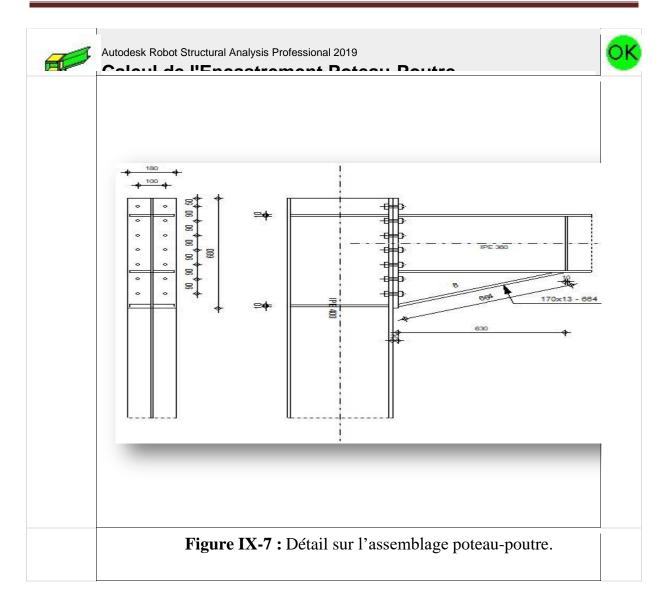
Nr	hj	k ₃	k ₄	k ₅	$\mathbf{k}_{eff,j}$	$k_{\text{eff},j} h_j$	$k_{eff,j} h_j^2$
					Somme	80,22	3249,33
1	554	∞	∞	26	4	24,74	1369,57
2	474	∞	∞	14	3	16,54	783 , 37
3	394	∞	∞	17	4	14,89	585,98
4	284	∞	∞	17	4	10,73	304,17
5	204	∞	∞	14	3	7,11	144,72
6	124	∞	∞	14	3	4,32	53,31
7	44	∞	∞	24	4	1,89	8,22

 $k_{eff,j} = 1 / (\sum_{3}^{5} (1 / k_{i,j}))$ [6.3.3.1.(2)] $z_{eq} = \sum_{j} k_{eff,j} h_j^2 / \sum_{j} k_{eff,j} h_j$ $z_{eq} = 405$ [mm] Bras de levier équivalent [6.3.3.1.(3)] $k_{eq} = \sum_{j} k_{eff,j} h_j / z_{eq}$ k_{eq} = 20 [mm] Coefficient de rigidité équivalent du système de boulons [6.3.3.1.(1)] $S_{j,ini} = E z_{eq}^2 k_{eq}$ [6.3.1.(4)] $S_{j,ini} = 68235904,75$ [daN*m] Rigidité en rotation initiale [6.3.1.(4)] 1,00 $\mu =$ Coefficient de rigidité de l'assemblage [6.3.1.(6)] $S_i = S_{i,ini} / \mu$ [6.3.1.(4)] 68235904,75 [daN*m] Rigidité en rotation finale [6.3.1.(4)] Classification de l'assemblage par rigidité. $S_{j,rig} = 5465241,60$ [daN*m] Rigidité de l'assemblage rigide [5.2.2.5] S_{j,pin} = 341577, 60 [daN*m] Rigidité de l'assemblage articulé [5.2.2.5]

COMPOSANT LE PLUS FAIBLE:

 $S_{j,ini} \geq S_{j,rig} \; RIGIDE$


AME DE LA POUTRE OU AILE DE LA CONTREPLAQUE EN COMPRESSION AU NIVEAU DE L'AILE INFERIEURE DE LA POUTRE


Assemblage satisfaisant vis à vis de la Norme Ratio 0,16
--

Conclusion

La vérification automatique le logiciel ROBOT de l'assemblage traverse est satisfaite, ou son détail est schématiser à la figure (figure IX-5).

IX.3. Assemblage Poteau-Poutre

GENERAL

Assemblage N°: 80

Nom de l'assemblage: Angle de portique

Noeud de la structure: 1068 Barres de la structure: 1218, 9

GEOMETRIE

POTEAU

Profilé: IPE 400 Barre N°: 1218

 $\alpha = -90, 0$ [Deg] Angle d'inclinaison

 $h_c = 400$ [mm] Hauteur de la section du poteau $b_{fc} = 180$ [mm] Largeur de la section du poteau

 t_{wc} = 9 [mm] Epaisseur de l'âme de la section du poteau

Profilé: IPE 400

 t_{fc} = 14 [mm] Epaisseur de l'aile de la section du poteau r_c = 21 [mm] Rayon de congé de la section du poteau

 $A_c = 84,46$ [cm²] Aire de la section du poteau

 $I_{xc} = 23128,40$ [cm⁴] Moment d'inertie de la section du poteau

Matériau: ACIER

 $f_{yc} = 235,00$ [MPa] Résistance

POUTRE

Profilé: IPE 360 Barre N°: 9

Danciv.

 α = -0,0 [Deg] Angle d'inclinaison

 $h_b = 360$ [mm] Hauteur de la section de la poutre $b_f = 170$ [mm] Largeur de la section de la poutre

Epaisseur de l'âme de la section de la poutre 8 [mm] $t_{wb} =$ Epaisseur de l'aile de la section de la poutre 13 [mm] $t_{fb} =$ 18 Rayon de congé de la section de la poutre [mm] $r_b =$ 18 Rayon de congé de la section de la poutre $r_b =$ [mm]

 $A_b = 72,73$ [cm²] Aire de la section de la poutre $I_{xb} = 16265,60$ [cm⁴] Moment d'inertie de la poutre

Matériau: ACIER

 $f_{yb} = 235,00$ [MPa] Résistance

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d = 16 [mm] Diamètre du boulon Classe = HR 10.9 Classe du boulon

 $F_{tRd} = 13564, 80$ [daN] Résistance du boulon à la traction $n_h = 2$ Nombre de colonnes des boulons $n_v = 7$ Nombre de rangéss des boulons

 $h_1 = 50$ [mm] Pince premier boulon-extrémité supérieure de la platine d'about

Ecartement $e_i = 100 \text{ [mm]}$

Entraxe $p_i = 90; 90; 90; 90; 90; 90 [mm]$

PLATINE

Matériau: ACIER

 $f_{yp} = 235,00$ [MPa] Résistance

JARRET INFERIEUR

170 Largeur de la platine $W_d =$ [mm] $t_{fd} =$ 13 [mm] Epaisseur de l'aile 210 Hauteur de la platine $h_d =$ [mm] Epaisseur de l'âme 8 [mm] $t_{wd} =$ 630 [mm] Longueur de la platine $I_d =$ 18,4 [Deg] Angle d'inclinaison $\alpha =$

Matériau: ACIER

f_{ybu} = 235,00 [MPa] Résistance

RAIDISSEUR POTEAU

Supérieur

 $h_{su} =$ 373 [mm] Hauteur du raidisseur $b_{su} =$ 86 [mm] Largeur du raidisseur

EN1993-1-1:[6.2.5]

$h_{su} =$	373	[mm]	Hauteur du raidisseur
$t_{hu} =$	10	[mm]	Epaisseur du raidisseur
Matériau	: ACIE	R	
$f_{ysu} =$	235,00	[MPa]	Résistance
Inférieur	•		
$h_{sd} =$	373	[mm]	Hauteur du raidisseur
$b_{sd} =$	86	[mm]	Largeur du raidisseur
$t_{hd} =$	10	[mm]	Epaisseur du raidisseur
Matériau	: ACIE	R	
$f_{vsu} =$	235,00	[MPa]	Résistance

SOUDURES D'ANGLE

$a_w =$	6	[mm]	Soudure âme
$a_f =$	9	[mm]	Soudure semelle
a _s =	6	[mm]	Soudure du raidisseur
$a_{fd} =$	5	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

$\gamma_{MO} =$	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]
γмз =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: 13: 1.35G+1.35 (Q+Vpignon) (1+2+5) *1.35 $M_{b1,Ed} = 2753$, 03 [daN*m] Moment fléchissant dans la poutre droite $V_{b1,Ed} = 2322$, 32 [daN] Effort tranchant dans la poutre droite $M_{b2,Ed} = 2921$, 35 [daN*m] Moment fléchissant dans la poutre gauche $V_{b2,Ed} = 3063$, 70 [daN] Effort tranchant dans la poutre gauche $M_{c1,Ed} = 109$, 52 [daN*m] Moment fléchissant dans la poteau inférieur $V_{c1,Ed} = 16$, 79 [daN] Effort tranchant dans le poteau inférieur $N_{c1,Ed} = -7138$, 25 [daN] Effort axial dans le poteau inférieur

RESULTATS

RESISTANCES DE LA POUTRE

CISAILLEMENT

$A_{vb} =$	51,94	[cm ²]	Aire de la section au cisaillement		EN1993-1-1:[6.2.6.(3)]
$V_{cb,Rd} = A_v$	$_{\rm vb}$ (f _{yb} / $\sqrt{3}$)	/ γ _{M0}			
$V_{cb,Rd} = 70$	0467 , 00 [c	daN] Rés	sistance de calcul de la section au cisaillem	ent	EN1993-1-1:[6.2.6.(2)]

FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)

W –	1019 22	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
VVnlh =	TOT5.44	ICIII I	racieul biasiluue ue la section	EN 1993-1-1.10.2.3.(Z)

 $M_{b,pl,Rd} = W_{plb} f_{yb} / \gamma_{M0}$

M_{b,pl,Rd} = 23951, 67 [daN*m] Résistance plastique de la section à la flexion (sans renforts) EN1993-1-1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

$W_{pl} =$	1826,27	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5]
$M_{cb,Rd} =$	$=$ W_{pl} f_{yb} / γ_{M0}			

 $M_{cb,Rd} = 42917,30$ [daN*m] Résistance de calcul de la section à la flexion

AILE ET AME EN COMPRESSION $M_{cb,Rd} = 42917, 30 \text{ [daN*m]}$ Résistance de calcul de la section à la flexion $h_f = 557 \text{ [mm]}$ Distance entre les centres de gravité des ailes

[6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F _{c,fb,Rd} = 77056,82 [daN] Résistance de l'aile et de l'âme comprimées AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE D	[6.2.6.7.(1)] E LA POUTRE
Pression diamétrale:	
$\beta = 0, 0$ [Deg] Angle entre la platine d'about et la poutre	
γ = 18,4 [Deg] Angle d'inclinaison du renfort	
b _{eff,c,wb} = 219 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vb} = 35,14$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$\omega = 1,00$ Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 25$, 27 [MPa] Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
k _{wc} = 1,00 Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$A_s = 16,20$ [cm ²] Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]
$F_{c,wb,Rd1} = [\omega k_{wc} b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M0} + A_s f_{yb} / \gamma_{M0}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd1} = 237791$, 86 [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Flambement:	
d _{wb} = 299 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p = 1,00$ Elancement de plaque	[6.2.6.2.(1)]
ρ = 0,80 Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$\lambda_s = 5,94$ Elancement du raidisseur	EN1993-1-1:[6.3.1.2]
$\chi = 1,00$ Coefficient de flambement du raidisseur	EN1993-1-1:[6.3.1.2]
$F_{c,wb,Rd2} = [\omega k_{wc} \rho b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M1} + A_s \chi f_{yb} / \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd2} = 213309,02$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Résistance finale:	
$F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1}, F_{c,wb,Rd2})$	
$F_{c,wb,Rd,low} = 213309,02$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
RESISTANCES DU POTEAU	
PANNEAU D'AME EN CISAILLEMENT	(-)
$M_{b1,Ed} = 2753,03$ [daN*m] Moment fléchissant dans la poutre droite	[5.3.(3)]
$M_{b2,Ed} = 2921,35$ [daN*m] Moment fléchissant dans la poutre gauche	[5.3.(3)]
$V_{c1,Ed} = 16,79$ [daN] Effort tranchant dans le poteau inférieur $V_{c2,Ed} = 0,00$ [daN] Effort tranchant dans le poteau supérieur	[5.3.(3)]
	[5.3.(3)]
z = 568 [mm] Bras de levier $V_{wp,Ed} = (M_{b1,Ed} - M_{b2,Ed}) / z - (V_{c1,Ed} - V_{c2,Ed}) / 2$	[6.2.5]
$V_{wp,Ed} = -304,57$ [daN] Panneau d'âme en cisaillement	[5.3.(3)]
	EN1993-1-
$A_{vs} = 42,69$ [cm ²] Aire de cisaillement de l'âme du poteau	1:[6.2.6.(3)]
A A C C Town 21 Aire de la continua	EN1993-1-
$A_{vc} = 42,69$ [cm ²] Aire de la section au cisaillement	1:[6.2.6.(3)]
d _s = 470 [mm] Distance entre les centres de gravités des raidisseurs	[6.2.6.1.(4)]
$M_{pl,fc,Rd} = \begin{cases} 192,7 & [daN^*m] \\ 3 &] \end{cases}$ Résistance plastique de l'aile du poteau en flexion	[6.2.6.1.(4)]
M _{pl,stu,Rd} 105, 7 [daN*m Résistance plastique du raidisseur transversal supérieur en = 5] flexion	[6.2.6.1.(4)]
$M_{pl,stl,Rd} = \begin{cases} 105, 7 \text{ [daN*m Résistance plastique du raidisseur transversal inférieur en} \\ 5 \text{]} flexion \end{cases}$	[6.2.6.1.(4)]
$V_{wp,Rd} = 0.9 \; (\; A_{vs} * f_{y,wc} \;) \; / \; (\sqrt{3} \; \gamma_{M0}) \; + \; Min(4 \; M_{pl,fc,Rd} \; / \; d_s \;, \; (2 \; M_{pl,fc,Rd} \; + \; M_{pl,stu,Rd} \; + \; M_{pl,stl,Rd}) \; / \; d_s)$	10 0 0 A
V _{wp,Rd} = 53404, 32 [daN] Résistance du panneau d'âme au cisaillement	[6.2.6.1]
$V_{wp,Ed} / V_{wp,Rd} \le 1,0$ 0,01 < 1,00 vérifié	(0,01)
AME EN COMPRESSION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA	POUTRE
Pression diamétrale:	
t _{wc} = 9 [mm] Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
b _{eff,c,wc} = 251 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vc} = 42,69$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
ω = 1,00 Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
σ _{com,Ed} = 9,23 [MPa] Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
k _{wc} = 1,00 Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]

$\mathbf{\nu}$	ression	dian	natra	IΔ.

t _{wc} = 9 [mm] Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]					
$A_s = 17,14$ [cm ²] Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]					
$F_{c,wc,Rd1} = \omega k_{wc} b_{eff,c,wc} t_{wc} f_{yc} / \gamma_{M0} + A_s f_{ys} / \gamma_{M0}$						
F _{c,wc,Rd1} = 91075, 38 [daN] Résistance de l'âme du poteau	[6.2.6.2.(1)]					
Flambement:						
d _{wc} = 331 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]					
$\lambda_p = 1,05$ Elancement de plaque	[6.2.6.2.(1)]					
ρ = 0,77 Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]					
$\lambda_s = 6,22$ Elancement du raidisseur	EN1993-1-1:[6.3.1.2]					
$\chi_s = 1,00$ Coefficient de flambement du raidisseur	EN1993-1-1:[6.3.1.2]					
$F_{c,wc,Rd2} = \omega k_{wc} \rho b_{eff,c,wc} t_{wc} f_{yc} / \gamma_{M1} + A_s \chi_s f_{ys} / \gamma_{M1}$						
$F_{c,wc,Rd2} = 79565,99$ [daN] Résistance de l'âme du poteau	[6.2.6.2.(1)]					
Pácietanes finale:						

Résistance finale:

 $F_{c,wc,Rd,low} = Min (F_{c,wc,Rd1}, F_{c,wc,Rd2})$

 $F_{c,wc,Rd} = 79565,99$ [daN] Résistance de l'âme du poteau

[6.2.6.2.(1)]

PARAMETRES GEOMETRIQUES DE L'ASSEMBLAGE

LONGUEURS EFFICACES ET PARAMETRES - SEMELLE DU POTEAU

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	I _{eff,1,g}	I _{eff,2,g}
1	29	-	40	-	113	182	143	143	143	0	0	0	0
2	29	-	40	-	90	182	213	182	213	181	176	176	176
3	29	-	40	-	90	182	166	166	166	180	90	90	90
4	29	-	40	-	90	182	166	166	166	180	90	90	90
5	29	-	40	-	90	182	166	166	166	180	90	90	90
6	29	-	40	-	90	182	166	166	166	180	90	90	90
7	29	_	40	_	90	182	170	170	170	181	132	132	132

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	I _{eff,1,g}	I _{eff,2,g}
1	39	40	40	50	113	205	90	90	90	_	_	-	_
2	39	-	40	_	90	246	274	246	274	213	216	213	216
3	39	-	40	_	90	246	207	207	207	180	90	90	90
4	39	-	40	_	90	246	207	207	207	180	90	90	90
5	39	-	40	_	90	246	207	207	207	180	90	90	90
6	39	-	40	_	90	246	207	207	207	180	90	90	90
7	39	_	40	_	90	246	207	207	207	213	148	148	148

- Distance du boulon de l'âme m

- Distance du boulon de l'aile de la poutre m_x

- Pince entre le boulon et le bord extérieur

e_x - Pince entre le boulon et le bord extérieur horizontal

- Entraxe des boulons

l_{eff,cp} - Longueur efficace pour un boulon dans les mécanismes circulaires

leff,nc – Longueur efficace pour un boulon dans les mécanismes non circulaires

- Longueur efficace pour un boulon pour le mode 1 $I_{eff,1}$ - Longueur efficace pour un boulon pour le mode 2 $I_{eff,2}$

l_{eff,cp,g} – Longueur efficace pour un groupe de boulons dans les mécanismes circulaires

l_{eff,nc,g} – Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires

 $I_{\text{eff,1,g}}$ – Longueur efficace pour un groupe de boulons pour le mode 1 l_{eff,2,g} – Longueur efficace pour un groupe de boulons pour le mode 2

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

 $F_{t,Rd} = 13564$, 80 [daN] Résistance du boulon à la traction [Tableau 3.4] B_{p,Rd} = 17833, 19 [daN] Résistance du boulon au cisaillement au poinçonnement [Tableau 3.4]

F_{t.fc.Rd} – résistance de la semelle du poteau à la flexion

F_{t.wc.Rd} – résistance de l'âme du poteau à la traction

 $F_{t,fc,Rd}$ - résistance de la semelle du poteau à la flexion

 $F_{t,ep,Rd}$ - résistance de la platine fléchie à la flexion

F_{t,wb,Rd} – résistance de l'âme à la traction

 $F_{t,fc,Rd} = Min \; (F_{T,1,fc,Rd} \; , \; F_{T,2,fc,Rd} \; , \; F_{T,3,fc,Rd})$

 $F_{t,wc,Rd} = \omega b_{eff,t,wc} t_{wc} f_{yc} / \gamma_{M0}$

 $F_{t,ep,Rd} = Min \; (F_{T,1,ep,Rd} \; , \; F_{T,2,ep,Rd} \; , \; F_{T,3,ep,Rd})$

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / \gamma_{M0}$

[6.2.6.4], [Tab.6.2] [6.2.6.3.(1)] [6.2.6.5], [Tab.6.2] [6.2.6.8.(1)]

RESISTANCE DE LA RANGEE DE BOULONS N° 1

F _{t1,Rd,comp} - Formule	F _{t1,Rd,comp}	Composant
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	19778,62	Résistance d'une rangée de boulon
$F_{t,fc,Rd(1)} = 19778,62$	19778,62	Aile du poteau - traction
$F_{t,wc,Rd(1)} = 27443,03$	27443,03	Ame du poteau - traction
$F_{t,ep,Rd(1)} = 19793,52$	19793,52	Platine d'about - traction
$B_{p,Rd} = 35666,38$	35666,38	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta = 926891,61$	926891,61	Panneau d'âme - compression
$F_{c,wc,Rd} = 79565,99$	79565,99	Ame du poteau - compression
$F_{c,fb,Rd} = 77056,82$	77056,82	Aile de la poutre - compression
$F_{c,wb,Rd} = 213309,02$	213309,02	Ame de la poutre - compression

RESISTANCE DE LA RANGEE DE BOULONS N° 2

F _{t2,Rd,comp} - Formule	F _{t2,Rd,comp}	Composant
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	22098,59	Résistance d'une rangée de boulon
$F_{t,fc,Rd(2)} = 22098,59$	22098,59	Aile du poteau - traction
$F_{t,wc,Rd(2)} = 33870,75$	33870,75	Ame du poteau - traction
$F_{t,ep,Rd(2)} = 27129,60$	27129,60	Platine d'about - traction
$F_{t,wb,Rd(2)} = 46318,47$	46318,47	Ame de la poutre - traction
$B_{p,Rd} = 35666,38$	35666,38	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{1} F_{ti,Rd} = 926891,61 - 19778,62$	907113,00	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{1} F_{tj,Rd} = 79565,99 - 19778,62$	59787,37	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 77056,82 - 19778,62$	57278,20	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 213309,02 - 19778,62$	193530,40	Ame de la poutre - compression

RESISTANCE DE LA RANGEE DE BOULONS N° 3

F _{t3,Rd,comp} - Formule	F _{t3,Rd,comp}	Composant
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	16791,08	Résistance d'une rangée de boulon
$F_{t,fc,Rd(3)} = 20525,63$	20525,63	Aile du poteau - traction
$F_{t,wc,Rd(3)} = 31281,71$	31281,71	Ame du poteau - traction
$F_{t,ep,Rd(3)} = 25972,97$	25972,97	Platine d'about - traction
$F_{t,wb,Rd(3)} = 38887,25$	38887,25	Ame de la poutre - traction
$B_{p,Rd} = 35666,38$	35666,38	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{2} F_{ti,Rd} = 926891,61 - 41877,21$	885014,40	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{2} F_{tj,Rd} = 79565,99 - 41877,21$	37688,78	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 77056,82 - 41877,21$	35179,61	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 213309,02 - 41877,21$	171431,81	Ame de la poutre - compression
$F_{t,fc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 38889,67 - 22098,59$	16791,08	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 45820,41 - 22098,59$	23721,82	Ame du poteau - traction - groupe
$F_{t,fc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 38889,67 - 22098,59$	16791,08	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 45820,41 - 22098,59$	23721,82	Ame du poteau - traction - groupe
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 45540,61 - 22098,59$	23442,02	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 57479,38 - 22098,59$	35380,79	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 45540,61 - 22098,59$	23442,02	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 57479,38 - 22098,59$	35380,79	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 4

F _{t4,Rd,comp} - Formule	F _{t4,Rd,comp}	Composant
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	9884,27	Résistance d'une rangée de boulon
$F_{t,fc,Rd(4)} = 20525,63$	20525,63	Aile du poteau - traction

F _{t4,Rd,comp} - Formule	F _{t4,Rd,comp}	Composant
$F_{t,wc,Rd(4)} = 31281,71$	31281,71	Ame du poteau - traction
$F_{t,ep,Rd(4)} = 25972,97$	25972,97	Platine d'about - traction
$F_{t,wb,Rd(4)} = 38887,25$	38887,25	Ame de la poutre - traction
$B_{p,Rd} = 35666,38$	35666,38	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{3} F_{ti,Rd} = 926891,61 - 58668,29$	868223,33	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{3} F_{tj,Rd} = 79565,99 - 58668,29$	20897,70	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 77056,82 - 58668,29$	18388,53	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 213309,02 - 58668,29$	154640,73	Ame de la poutre - compression
$F_{t,fc,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 26675,35 - 16791,08$	9884,27	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 33618,56 - 16791,08$	16827,48	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 52693,19 - 38889,67$	13803,52	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 55658,94 - 38889,67$	16769,27	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 52693,19 - 38889,67$	13803,52	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 55658,94 - 38889,67$	16769,27	Ame du poteau - traction - groupe
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 38079,79 - 16791,08$	21288,72	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 33840,00 - 16791,08$	17048,92	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 64580,51 - 38889,67$	25690,84	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 74399,38 - 38889,67$	35509,71	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 64580,51 - 38889,67$	25690,84	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 74399,38 - 38889,67$	35509,71	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 5

F _{t5,Rd,comp} - Formule	F _{t5,Rd,comp}	Composant
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	8504,27	Résistance d'une rangée de boulon
$F_{t,fc,Rd(5)} = 20525,63$	20525,63	Aile du poteau - traction
$F_{t,wc,Rd(5)} = 31281,71$	31281,71	Ame du poteau - traction
$F_{t,ep,Rd(5)} = 25972,97$	25972 , 97	Platine d'about - traction
$F_{t,wb,Rd(5)} = 38887,25$	38887,25	Ame de la poutre - traction
$B_{p,Rd} = 35666,38$	35666,38	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} = 926891,61 - 68552,56$	858339,06	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} = 79565,99 - 68552,56$	11013,43	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 77056,82 - 68552,56$	8504,27	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 213309,02 - 68552,56$	144756,46	Ame de la poutre - compression
$F_{t,fc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 26675,35 - 9884,27$	16791,08	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 33618,56 - 9884,27$	23734,29	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 40013,02 - 26675,35$	13337,67	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 46374,59 - 26675,35$	19699,24	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 66030,86 - 48773,94$	17256,92	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 62936,09 - 48773,94$	14162,16	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 66030,86 - 48773,94$	17256,92	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 62936,09 - 48773,94$	14162,16	Ame du poteau - traction - groupe
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 38079,79 - 9884,27$	28195,52	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 33840,00 - 9884,27$	23955,73	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 57119,69 - 26675,35$	30444,34	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 50760,00 - 26675,35$	24084,65	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 83620,40 - 48773,94$	34846,46	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 91319,38 - 48773,94$	42545,44	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 83620,40 - 48773,94$	34846,46	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 91319,38 - 48773,94$	42545,44	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 6

F _{t6,Rd,comp} - Formule	$F_{t6,Rd,comp}$	Composant
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	0,00	Résistance d'une rangée de boulon
$F_{t,fc,Rd(6)} = 20525,63$	20525,63	Aile du poteau - traction
$F_{t,wc,Rd(6)} = 31281,71$	31281,71	Ame du poteau - traction

F _{t6,Rd,comp} - Formule	F _{t6,Rd,comp}	Composant
$F_{t,ep,Rd(6)} = 25972,97$	25972 , 97	Platine d'about - traction
$F_{t,wb,Rd(6)} = 38887,25$	38887,25	Ame de la poutre - traction
$B_{p,Rd} = 35666,38$	35666,38	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{5} F_{ti,Rd} = 926891,61 - 77056,82$	849834,79	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{5} F_{tj,Rd} = 79565,99 - 77056,82$	2509,17	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 77056,82 - 77056,82$	0,00	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 213309,02 - 77056,82$	136252,20	Ame de la poutre - compression
$F_{t,fc,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 26675,35 - 8504,27$	18171,08	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 33618,56 - 8504,27$	25114,30	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 40013,02 - 18388,53$	21624,49	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 46374,59 - 18388,53$	27986,05	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 53350,69 - 35179,61$	18171,08	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 56072,50 - 35179,61$	20892,89	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 79368,53 - 57278,20$	22090,33	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 68279,10 - 57278,20$	11000,90	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 79368,53 - 57278,20$	22090,33	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 68279,10 - 57278,20$	11000,90	Ame du poteau - traction - groupe
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 38079,79 - 8504,27$	29575,53	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 33840,00 - 8504,27$	25335,73	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 57119,69 - 18388,53$	38731,16	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 50760,00 - 18388,53$	32371,47	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 76159,59 - 35179,61$	40979,97	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 67680,00 - 35179,61$	32500,39	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 102660,30 - 57278,20$	45382,10	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 108239,38 - 57278,20$	50961,18	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 102660,30 - 57278,20$	45382,10	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 108239,38 - 57278,20$	50961,18	Ame de la poutre - traction - groupe

Les autres boulons sont inactifs (ils ne transfèrent pas de charges) car la résistance d'un des composants de l'assemblage s'est épuisée ou ces boulons sont situés au-dessous du centre de rotation.

TABLEAU RECAPITULATIF DES EFFORTS

Nr	hj	$F_{tj,Rd}$	$F_{t,fc,Rd}$	$F_{t,wc,Rd}$	F _{t,ep,Rd}	$F_{t,wb,Rd}$	$F_{t,Rd}$	$B_{p,Rd}$
1	613	19778,62	19778,62	27443,03	19793,52	_	27129,60	35666,38
2	523	22098,59	22098,59	33870,75	27129,60	46318,47	27129,60	35666,38
3	433	16791,08	20525,63	31281,71	25972,97	38887,25	27129,60	35666,38
4	343	9884,27	20525,63	31281,71	25972,97	38887,25	27129,60	35666,38
5	253	8504,27	20525,63	31281,71	25972 , 97	38887,25	27129,60	35666,38
6	163	_	20525,63	31281,71	25972,97	38887,25	27129,60	35666,38
7	73	-	20666,81	31985,72	25972 , 97	38887,25	27129,60	35666,38

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION $M_{j,Rd}$

 $M_{j,Rd} = \sum h_j F_{tj,Rd}$

 $M_{j,Rd} = 36517,90$ [daN*m] Résistance de l'assemblage à la flexion [6.2] $M_{b1,Ed} / M_{j,Rd} \le 1,0$ 0,08 < 1,00 vérifié (0,08)

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

$\alpha_{v} =$	0,60		Coefficient pour le calcul de F _{v,Rd}	[Tableau 3.4]
β_{Lf} =	0,91		Coefficient réducteur pour les assemblages longs	[3.8]
$F_{v,Rd} =$	10495,43	[daN]	Résistance d'un boulon au cisaillement	[Tableau 3.4]
$F_{t,Rd,max}$	= 13564,80	[daN]	Résistance d'un boulon à la traction	[Tableau 3.4]
$F_{b,Rd,int} =$	15768,00	[daN]	Résistance du boulon intérieur en pression diamétrale	[Tableau 3.4]
Fh Rd ext =	= 14600,00	[daN]	Résistance du boulon de rive en pression diamétrale	[Tableau 3.4]

Nr	$F_{tj,Rd,N}$	$F_{tj,Ed,N}$	$F_{tj,Rd,M}$	$\mathbf{F}_{tj,Ed,M}$	$\mathbf{F}_{tj,Ed}$	$F_{vj,Rd}$
1	27129,60	0,00	19778,62	1491,08	1491,08	20166,80
2	27129,60	0,00	22098,59	1665,98	1665,98	20070,14

Nr	$F_{tj,Rd,N}$	$F_{tj,Ed,N}$	$F_{tj,Rd,M}$	$F_{tj,Ed,M}$	$F_{tj,Ed}$	$F_{vj,Rd}$
3	27129,60	0,00	16791,08	1265,85	1265,85	20291,28
4	27129,60	0,00	9884,27	745,16	745,16	20579,04
5	27129,60	0,00	8504,27	641,12	641,12	20636,54
6	27129,60	0,00	0,00	0,00	0,00	20990,87
7	27129,60	0,00	0,00	0,00	0,00	20990,87

 $F_{tj,Rd,N}~-$ Résistance d'une rangée de boulons à la traction pure

 $F_{tj,Ed,N}$ – Effort dans une rangée de boulons dû à l'effort axial

 $F_{tj,Rd,M}~-$ Résistance d'une rangée de boulons à la flexion pure

 $F_{tj,Ed,M}$ – Effort dans une rangée de boulons dû au moment

F_{tj,Ed} – Effort de traction maximal dans la rangée de boulons

 $F_{v_{j},Rd}$ — Résistance réduite d'une rangée de boulon

 $F_{tj,Ed,N} = N_{j,Ed} F_{tj,Rd,N} / N_{j,Rd}$

 $F_{tj,Ed,M} = M_{j,Ed} F_{tj,Rd,M} / M_{j,Rd}$

 $F_{tj,Ed} = F_{tj,Ed,N} + F_{tj,Ed,M} \\$

 $F_{vj,Rd} = Min \; (n_h \; F_{v,Ed} \; (1 \; - \; F_{tj,Ed} / \; (1.4 \; n_h \; F_{t,Rd,max}), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}))$

 $V_{j,Rd} = n_h \sum_{1}^{n} F_{vj,Rd}$ [Tableau 3.4]

 $V_{j,Rd} = 143725,54$ [daN] Résistance de l'assemblage au cisaillement [Tableau 3.4] $V_{b1,Ed} / V_{j,Rd} \le 1,0$ 0,02 < 1,00 vérifié (0,02)

RESISTANCE DES SOUDURES

A _w =	139,71	[cm ²]	Aire de toutes les soudures	[4.5.3.2(2)]			
A _{wy} =	80 , 28		Aire des soudures horizontales	[4.5.3.2(2)]			
$A_{wz} =$	59,43	[cm ²]	Aire des soudures verticales	[4.5.3.2(2)]			
$I_{wy} =$	58614,54	[cm ⁴]	Moment d'inertie du système de soudures par rapport à l'axe horiz.	[4.5.3.2(5)]			
$\sigma_{\perp max} = \tau_{\perp max} =$	10,24	[MPa]	Contrainte normale dans la soudure	[4.5.3.2(6)]			
$\sigma_{\perp} = \tau_{\perp} =$	9,07	[MPa]	Contraintes dans la soudure verticale	[4.5.3.2(5)]			
$\tau_{II} =$	3,91	[MPa]	Contrainte tangentielle	[4.5.3.2(5)]			
$\beta_w =$	0,80		Coefficient de corrélation	[4.5.3.2(7)]			
$\sqrt{\left[\sigma_{\perp \text{max}}^2 + 3^*\right]}$	$(\tau_{\perp \text{max}}^2)] \le f_u/c$	(β _w *γ _{M2})	20,48 < 365,00 vérifié	(0,06)			
$\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{II}^2)]} \le f_u/(\beta_w^* \gamma_{M2})$			19,36 < 365,00 vérifié	(0,05)			
$\sigma_{\perp} \leq 0.9 * f_u / \gamma_{N}$	12		10,24 < 262,80 vérifié				

RIGIDITE DE L'ASSEMBLAGE

$t_{wash} =$	4	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
$h_{head} =$	12	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
$h_{nut} =$	16	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
$L_b =$	56	[mm]	Longueur du boulon	[6.2.6.3.(2)]
$k_{10} =$	5	[mm]	Coefficient de rigidité des boulons	[6.3.2.(1)]

RIGIDITES DES RANGEES DE BOULONS

Nr	hj	k ₃	k ₄	k ₅	$\mathbf{k}_{eff,j}$	$\mathbf{k}_{eff,j}\mathbf{h}_{j}$	$\mathbf{k}_{eff,j}\mathbf{h}_{j}^{2}$
					Somme	19,25	764,90
1	613	0	0	10	0	0,00	0,00
2	523	3	16	25	1	7,75	405,57
3	433	1	8	11	1	3,86	167,11
4	343	1	8	11	1	3,06	104,90
5	253	1	8	11	1	2,25	57,11
6	163	1	8	11	1	1,45	23,74
7	73	2	12	18	1	0,88	6,48

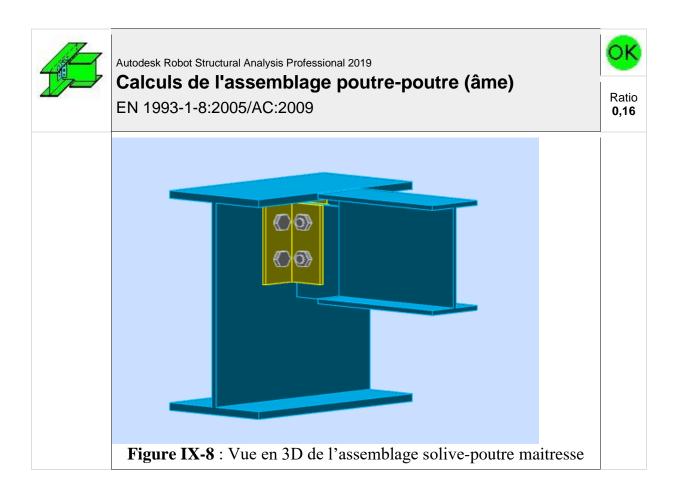
 $k_{\text{eff,j}} = 1 / (\sum_{3}^{5} (1 / k_{i,j}))$ [6.3.3.1.(2)]

 $z_{eq} = \sum_{j} k_{eff,j} h_j^2 / \sum_{j} k_{eff,j} h_j$

 $z_{eq} = 397$ [mm] Bras de levier équivalent [6.3.3.1.(3)]

 $k_{eq} = \sum_{j} k_{eff,j} h_j / z_{eq}$

k_{eq} = 5 [mm] Coefficient de rigidité équivalent du système de boulons [6.3.3.1.(1)]


$A_{vc} = 42,69$ [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$\beta = 0,06$ Paramètre de transformation	[5.3.(7)]
z = 397 [mm] Bras de levier	[6.2.5]
$k_1 = 71$ [mm] Coefficient de rigidité du panneau d'âme du poteau en cisaillement	[6.3.2.(1)]
$k_2 = \infty$ Coefficient de rigidité du panneau d'âme du poteau en compression	[6.3.2.(1)]
$S_{j,ini} = E z_{eq}^2 / \sum_i (1 / k_1 + 1 / k_2 + 1 / k_{eq})$	[6.3.1.(4)]
S _{j,ini} = 15034872, 98 [daN*m] Rigidité en rotation initiale	[6.3.1.(4)]
μ = 1,00 Coefficient de rigidité de l'assemblage	[6.3.1.(6)]
$S_j = S_{j,ini} / \mu$	[6.3.1.(4)]
$S_j = 15034872,98$ [daN*m] Rigidité en rotation finale	[6.3.1.(4)]
Classification de l'assemblage par rigidité.	
S _{j,rig} = 5465241,60 [daN*m] Rigidité de l'assemblage rigide	[5.2.2.5]
S _{j,pin} = 341577, 60 [daN*m] Rigidité de l'assemblage articulé	[5.2.2.5]
$S_{j,ini} \ge S_{j,rig}$ RIGIDE	

COMPOSANT LE PLUS FAIBLE:

AILE ET AME DE LA POUTRE EN COMPRESSION

Assemblage satisfaisant vis à vis de la Norme	Ratio	0,08
---	-------	------

IX.4. Assemblage Poutre-Poutre

GENERAL

Assemblage N°: 113

Nom de l'assemblage: Par cornières : poutre-poutre (âme)

Noeud de la structure: 257 Barres de la structure: 14, 328

GEOMETRIE

POUTRE PRINCIPALE

Profilé: IPE 360 Barre N°: 14 -90,0 [Deg] Angle d'inclinaison $\alpha =$ $h_g =$ 360 [mm] Hauteur de la section poutre principale [mm] Largeur de l'aile de la section de la poutre principale 170 $b_{fg} =$ [mm] Epaisseur de l'âme de la section de la poutre principale 8 $t_{wg} =$ 13 [mm] Epaisseur de l'aile de la section de la poutre principale $t_{fg} =$ Rayon de congé de l'âme de la section de la poutre principale 18 [mm] $r_g =$ Aire de la section de la poutre principale $A_p =$ 72,73 [cm²] 16265, 60 [cm⁴] Moment d'inertie de la section de la poutre pricnipale $I_{yp} =$ ACIER Matériau:

$f_{yg} =$	235,00	[MPa]	Résistance de calcul
$f_{ua} =$	365,00	[MPa]	Résistance à la traction

POUTRE

Profilé:	IPE 180		
Barre N°:	328		
$\alpha =$	0,0	[Deg]	Angle d'inclinaison
$h_b =$	180	[mm]	Hauteur de la section de la poutre
$b_b =$	91	[mm]	Largeur de la section de la poutre
$t_{wb} =$	5	[mm]	Epaisseur de l'âme de la section de la poutre
$t_{fb} =$	8	[mm]	Epaisseur de l'aile de la section de la poutre
$r_b =$	9	[mm]	Rayon de congé de la section de la poutre
$A_b =$	23,95	[cm ²]	Aire de la section de la poutre
$I_{yb} =$	1316,96	[cm ⁴]	Moment d'inertie de la poutre
Matériau:	ACIER		
$f_{yb} =$	235,00	[MPa]	Résistance de calcul
$f_{ub} =$	365,00	[MPa]	Résistance à la traction

ENCOCHE DE LA POUTRE

$h_1 =$	25	[mm]	Encoche supérieur
$h_2 =$	0	[mm]	Encoche inférieure
I =	80	[mm]	Longueur de l'encoche

CORNIERE

Profilé:			CAE 60x6		
$h_k =$	60	[mm]	Hauteur de la section de la cornière		
$b_k =$	60	[mm]	Largeur de la section de la cornière		
$t_{fk} =$	6	[mm]	Epaisseur de l'aile de la section de la cornière		
r _k =	8	[mm]	Rayon de congé de l'âme de la section de la cornière		
$I_k =$	130	[mm]	Longueur de la cornière		
Matériau	ACI	ER			
$f_{yk} =$	235,0	0 [M	Pa] Résistance de calcul		
$f_{uk} =$	365,0	0 [M	Pa] Résistance à la traction		

BOULONS

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE PRINCIPALE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

•			·
Classe =	8.8		Classe du boulon
d =	14	[mm]	Diamètre du boulon
$d_0 =$	15	[mm]	Diamètre du trou de boulon
$A_s =$	1,15	[cm ²]	Aire de la section efficace du boulon
$A_v =$	1,54	[cm ²]	Aire de la section du boulon
$f_{ub} =$	800,00	[MPa]	Résistance à la traction
k =	1		Nombre de colonnes des boulons
w =	2		Nombre de rangéss des boulons
$e_1 =$	30	[mm]	Niveau du premier boulon
$p_1 =$	60	[mm]	Entraxe

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

```
\begin{array}{lll} \text{Classe} = & 8.8 & \text{Classe du boulon} \\ \text{d} = & 14 & \text{[mm]} & \text{Diamètre du boulon} \\ \text{d}_0 = & 15 & \text{[mm]} & \text{Diamètre du trou de boulon} \end{array}
```

Le plan de cisaillement passe par la partie NON FILETEE du boulc	Le plan de cisaillement	passe par la partie N	ON FILETÉE du boulor
--	-------------------------	-----------------------	----------------------

Classe = 8.8 Classe du boulon

 $A_s = 1,15$ [cm²] Aire de la section efficace du boulon $A_v = 1,54$ [cm²] Aire de la section du boulon

 $A_v = 1,54$ [cm²] Aire de la section du boulor $f_{ub} = 800,00$ [MPa] Résistance à la traction

k = 1 Nombre de colonnes des boulons w = 2 Nombre de rangéss des boulons

 $e_1 = 30$ [mm] Niveau du premier boulon

 $p_1 = 60$ [mm] Entraxe

COEFFICIENTS DE MATERIAU

$\gamma_{MO} =$	1,00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas: 13: 1.35G+1.35(Q+Vpignon) (1+2+5)*1.35

 $\begin{array}{llll} N_{b,\text{Ed}} = & -0\,,00 & \text{[daN]} & \text{Effort axial} \\ V_{b,\text{Ed}} = & 128\,,69 & \text{[daN]} & \text{Effort tranchant} \\ M_{b,\text{Ed}} = & -27\,,17 & \text{[daN*m]} & \text{Moment fléchissant} \end{array}$

RESULTATS

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE PRINCIPALE

RESISTANCE DES BOULONS

$F_{v,Rd}$	5911, 2 [daN Résistance du boulon au cisaillement dans la partie non filetée d'un	$F_{v,Rd}=$
=	2] boulon	$0.6*f_{ub}*A_v*m/\gamma_{M2}$
$F_{t,Rd}$	6624, 0 [daN Résistance d'un boulon à la traction	$F_{t,Rd} = 0.9 f_u A_s / \gamma_{M2}$

Pression du boulon sur l'âme de la poutre principale

Direction x

$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1x} = min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	$\alpha_{bx}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bx} > 0.0$	1,00 > 0,00	vérifié
$F_{b,Rd1x} = 8176,00$	[daN] Résistance d'un boulon en pression dia	métrale $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1z}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1z} > 0.0$	2,50 > 0,00 vérifié	
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{bz} > 0.0$	1,00 > 0,00	vérifié
$F_{b.Rd1z} = 8176,00$	[daN] Résistance d'un boulon en pression diamét	trale $F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$

Pression du boulon sur la cornière

Direction x

Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k_{1x} =min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]
$k_{1x} > 0.0$	2,50 > 0,00 vérifié	
$\alpha_{bx} = 0,67$	Coefficient pour le calcul de F _{b,Rd}	$\alpha_{bx}=min[e_2/(3^*d_0), f_{ub}/f_u, 1]$
$\alpha_{bx} > 0.0$	0,67 > 0,00	vérifié
$F_{b,Rd2x} = 4088,00$	[daN] Résistance d'un boulon en pression dia	amétrale $F_{b,Rd2x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1z}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1z} > 0.0$	2,50 > 0,00 vérifié	
$\alpha_{bz} = 0,67$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]

(0,01)

$\alpha_{bz} > 0.0$	0,67 > 0,00	vérifié			
$F_{b,Rd2z} = 4088,00 \text{ [daN] } F_{b,Rd2z}$	Résistance d'un boulon en pression dia	métrale	$F_{b,Rd2z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$		
FORCES AGISSANT SUR LES BOULONS DANS L'ASSEMBLAGE POUTRE PRINCIPALE - CORNIERE					
cisaillement des boulons	S				
Distance	e du centre de gravité du groupe de bo	oulons de la cornière	e du centre		

e = 33 [n	Distance du centre de gravité du groupe de boulons de la cornière du centre de l'âme de la poutre	
$M_0 = 2, 10$ [d]	$M_0{=}0.5^*V_{b,Ed}^*e$	
F _{Vz} 32,17 [d	aN] Force résultante dans le boulon due à l'influence de l'effort tranchant	$F_{Vz}{=}0.5^* V_{b,Ed} /n$
F_{Mx} 35,01 [d	aN] Effort composant dans le boulon dû à l'influence du moment	$F_{Mx} = M_0 ^* z_i / \sum z_i^2$
$F_{x,Ed}$ 35,01 [d	aN] Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{Nx} + F_{Mx}$
$F_{z,Ed}$ 32,17 [d	aN] Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{Vz} + F_{Mz}$
F _{Ed} 47,55 [d	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$	
F_{Rdx} 4088, [d	F_{Rdx} =min(F_{bRd1x} , F_{bRd2x})	
	aN] Résistance résultante de calcul du boulon sur la direction z	F_{Rdz} =min(F_{bRd1z} , F_{bRd2z})
$ F_{x,Ed} \le F_{Rdx}$	35,01 < 4088,00	
$ F_{z,Ed} \le F_{Rdz}$	32,17 < 4088,00	
Fra < F. pa	47 55 < 5911 22 vérif (0.01)	

Traction des boulons

 $F_{Ed} \leq F_{v,Rd}$

e = 34	[mm] Distance du centre de gravité du groupe de boulons du centre de l'âme de la poutre principale	
M_{0t} 11,	[daN* m] Moment fléchissant réel	M_{0t} =0.5*($M_{b,Ed}$ + $V_{b,Ed}$ *e)
$F_{t,Ed}$ 189, = 99	[daN] Effort de traction dans le boulon extrême	$F_{t,Ed}=M_{0t}*z_{max}/\sum z_i^2 + 0.5*N_{b2,Ed}/n$
$F_{t,Ed} \leq F_{t,R}$	189,99 < 6624,00 vérif ié (0,03)	

Action simultanée de l'effort de traction et de cisaillement dans le boulon

47,55 < 5911,22

$F_{v,Ed} =$	47,55	[daN]	Effort tranchar	nt résulta	ant dans le b	oulon	$F_{v,Ed} = \sqrt{\left[F_{x,Ed}^2 + F_{z,Ed}^2\right]}$
$F_{v,Ed}/F_{v,Rd}$	$_{d}$ + $F_{t,Ed}/(1$	$.4^*F_{t,Rd})$	≤ 1.0	0,03	< 1,00	vérifié	(0,03)

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE

RESISTANCE DES BOULONS

$F_{v,Rd}$	11822,4[4	daN Résistance du boulon au cisailler] boulon	nent dans la	partie non filetée d'un	$F_{v,Rd}$ = 0.6* f_{ub} * A_v * m/γ_{M2}
Press	Pression du boulon sur la poutre				
Direct	ion x				
$k_{1x} =$	2,50	Coefficient pour le calcul de F _{b,R}	d	$k_{1x} = min[2.8*(e_1/d_0)-1.7, 1]$.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1x} > 0$	0.0	2,50 > 0,00	vérifié		
α_{bx} =	0,44	Coefficient pour le calcul de	$F_{b,Rd}$	α _{bx} =min	$[e_2/(3*d_0), f_{ub}/f_u, 1]$

 $\alpha_{\rm bx}$ > 0.0 0, 44 > 0,00 vérifié $F_{\rm b,Rd1x}$ = 2407,38 [daN] Résistance d'un boulon en pression diamétrale

 $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$

Direction z

 $\alpha_{bz} = 0,67 \qquad \qquad \text{Coefficient pour le calcul de } F_{b,Rd} \qquad \qquad \alpha_{bz} = \min[e_1/(3*d_0), \, p_1/(3*d_0) - 0.25, \, f_{ub}/f_u, \, 1]$

$\alpha_{bz} > 0.0$	0,67 > 0,00	vérifié
$F_{b,Rd1z} = 2937,00$	daN] Résistance d'un boulon en pression	on diamétrale $F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$
Pression du boulo	n sur la cornière	
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k_{1x} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$	2,50 > 0,00 V	vérifié
$\alpha_{bx} = 0,67$	Coefficient pour le calcul de F _{b,Rc}	$\alpha_{bx}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bx} > 0.0$	0,67 > 0,00	vérifié
$F_{b,Rd2x} = 8176,00$	[daN] Résistance d'un boulon en pres	ssion diamétrale $F_{b,Rd2x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de F	$k_{1z}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1z} > 0.0$	2,50 > 0,00	vérifié
$\alpha_{bz} = 0,67$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{bz} > 0.0$	0,67 > 0,00	vérifié
$F_{b,Rd2z} = 8176,00$ [daN] Résistance d'un boulon en pression	on diamétrale $F_{b,Rd2z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$
FORCES AGISSAN	NT OUR LES ROULONS RANGE LASSE	TMDL AGE GODNIEDE DOUTDE

FORCES AGISSANT SUR LES BOULONS DANS L'ASSEMBLAGE CORNIERE - POUTRE

cisaillement des boulons

disamentalit des bodions						
e = 34 [mm] Distance du d la poutre prin	34 [mm] Distance du centre de gravité du groupe de boulons du centre de l'âme de la poutre principale					
$M_0 = \frac{-[daN^*]}{22,80 m]}$ Moment fléch			$M_0 \hspace{-0.1cm}= \hspace{-0.1cm} M_{b,Ed} \hspace{-0.1cm}+ \hspace{-0.1cm} V_{b,Ed} \hspace{-0.1cm}^* \hspace{-0.1cm} e$			
F _{Nx} 0,00 [daN] Force résulta	nte dans le boulon due à l'inf	fluence de l'effort axial	$F_{Nx} = N_{b,Ed} /n$			
F _{vz} 64,35 [daN] Force résulta	nte dans le boulon due à l'int	fluence de l'effort tranchan	t $F_{Vz}= V_{b,Ed} /n$			
F_{Mx} 379, 9 [daN] Force résulta	nte dans le boulon due au m	oment sur la direction x	$F_{Mx}= M_0 ^*z_i/\sum_i(x_i^2+z_i^2)$			
E						
$F_{x,Ed}$ 379, 9 [daN] Effort de calc	[x,Ed 379, 9] [daN] Effort de calcul total dans le boulon sur la direction x					
F _{z,Ed} 64,35 [daN] Effort de calc	Ez,Ed 64, 35 [daN] Effort de calcul total dans le boulon sur la direction z					
F_{Ed} 385, 3 [daN] Effort trancha	F _{Ed} 385, 3 [daN] Effort tranchant résultant dans le boulon					
F_{Rdx} 2407, [daN] Résistance re	F _{Rdx} 2407, [daN] Résistance résultante de calcul du boulon sur la direction x					
F_{Rdz} 2937, [daN] Résistance re			F_{Rdz} =min(F_{bRd1z} , F_{bRd2z})			
$ F_{x,Ed} \le F_{Rdx}$	379,97 < 2407,38	vérif ié	(0,16)			
$ F_{z,Ed} \leq F_{Rdz}$	64,35 < 2937,00	vérif ié	(0,02)			
$F_{Ed} \le F_{v,Rd}$	385,38 < 11822,44	vérif ié	(0,03)			

VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT TRANSVERSAL)

CORNIERE

$A_{nt} =$	1,35 [cm ²] Aire nette de la	zone de la section en traction		
$A_{nv} =$	4,65 [cm ²] Aire de la zone de la section en traction			
V_{effRd}	8280, 0 [daN Résistance de calcul de la section affaiblie par les			$V_{effRd}=0.5*f_u*A_{nt}/\gamma_{M2}$ +
=	0] trous			$(1/\sqrt{3})^*f_y^*A_{nv}/\gamma_{M0}$
10.5*V _b	, _{Ed} ≤ V _{effRd}	64,35 < 8280,00	vérifié	(0,01)

POUTRE

<u>VERIFICATION DE LA RESISTANCE DE LA SECTION DE LA CORNIERE AFFAIBLIE PAR</u> LES TROUS

$A_t = 3,90 [cm^2]$	Aire de la zone tendue de la sectionu brutte	
$A_{t,net} = 3,00 [cm^2]$	Aire nette de la zone de la section en traction	
$0.9*(A_{t,net}/A_t) \ge (f_y*\gamma_{M2})/(f_u*\gamma_{M2})$	0,69 < 0,80	
$W_{net} = 16,09 \text{ [cm}^3$]	Facteur élastique de la section	
$M_{c,Rdnet} = 378,03 [daN*m]$	Résistance de calcul de la section à la flexion	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$	-11,40 < 378,03 vérifié	(0,03)
$A_v = 7,80 \text{ [cm}^2\text{]}$	Aire de la section efficace en cisaillement	$A_v = I_a^* t_{fa}$
$A_{v,net} = 6,00 \text{ [cm}^2]$	Aire de la section efficace nette en cisaillement	$A_{vnet}=A_v-n_v*d_0$
$V_{pl,Rd} = 10582,83$ [daN]	Résistance plastique de calcul pour le cisaillement	$V_{pl,Rd}=(A_{v,net}*f_y)/(\sqrt{3}*\gamma_{M0})$
$ 0.5^*V_{b,Ed} \le V_{pl,Rd}$	64,35 < 10582,83 vérifié	(0,01)

<u>VERIFICATION DE LA RESISTANCE DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS</u>

```
A_t =
               4,11
                         [cm<sup>2</sup>]
                                   Aire de la zone tendue de la sectionu brutte
A_{t,net} =
               3,31
                         [cm<sup>2</sup>]
                                   Aire nette de la zone de la section en traction
                                                      0,73 < 0,80
0.9*(A_{t,net}/A_t) \ge (f_y*\gamma_{M2})/(f_u*\gamma_{M0})
          19,95 [cm³] Facteur élastique de la section
M_{c,Rdnet} = 468, 84 [daN*m] Résistance de calcul de la section à la flexion
                                                                                                              M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}
                                                 |-22,80| < 468,84
|M_0| \le M_{c,Rdnet}
                                                                                    vérifié
                                                                                                                             (0,05)
A_v = 8,21 [cm<sup>2</sup>] Aire de la section efficace en cisaillement
               6, 62 [cm<sup>2</sup>] Aire de la section efficace nette en cisaillement
                                                                                                                       A_{vnet}=A_v-n_v*d_0
V<sub>pl,Rd</sub> = 11145,89 [daN] Résistance plastique de calcul pour le cisaillement
                                                                                                           V_{pl,Rd}=(A_{v,net}*f_y)/(\sqrt{3}*\gamma_{M0})
                                              |128,69| < 11145,89 vérifié
V_{b,Ed} \leq V_{pl,Rd}
                                                                                                                             (0,01)
```

Assemblage satisfaisant vis à vis de la Norme Ratio 0, 16

IX.5. Encastrement en pieds de poteau

Autodesk Robot Structural Analysis Professional 2019

Calcul du Pied de Poteau encastré

Eurocode 3: EN 1993-1-8:2005/AC:2009 + CEB Design Guide:

Design of fastenings in concrete

Ratio **0,82**

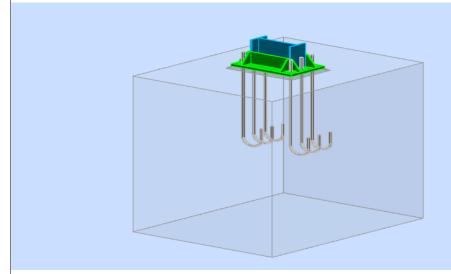


Figure IX-10: Vue 3D de l'assemblage au niveau de pied de poteau

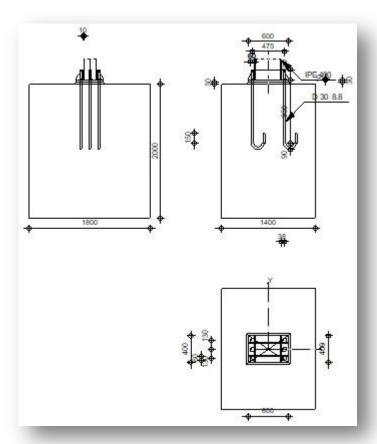


Figure IX-11 : Détail de l'assemblage au niveau de pied de poteau

GENERAL

Assemblage N°: 115

Nom de l'assemblage : Pied de poteau encastré

Noeud de la structure: 1483 Barres de la structure: 1505

GEOMETRIE

POTEAU

Profilé: IPE 400 Barre N°: 1505 5,00 Longueur du poteau $L_c =$ [m] Angle d'inclinaison 0,0 $\alpha =$ [Deg] 400 [mm] Hauteur de la section du poteau $h_c =$ 180 Largeur de la section du poteau $b_{fc} =$ [mm] 9 [mm] Epaisseur de l'âme de la section du poteau $t_{wc} =$ 14 Epaisseur de l'aile de la section du poteau $t_{fc} =$ [mm] 21 [mm] Rayon de congé de la section du poteau $r_c =$ 84,46 Aire de la section du poteau $A_c =$ [cm²] $I_{vc} =$ 23128,40 [cm⁴] Moment d'inertie de la section du poteau Matériau: ACIER 235,00 **[MPa]** Résistance $f_{vc} =$ 365,00 **[MPa]** Résistance ultime du matériau $f_{uc} =$

PLATINE DE PRESCELLEMENT

 $I_{pd} =$ 600 [mm] Longueur $b_{pd} =$ 400 [mm] Largeur $t_{pd} =$ 30 [mm] Epaisseur

Matériau: S 275

 $f_{ypd} = 275,00$ [MPa] Résistance

 $f_{upd} = 430,00$ [MPa] Résistance ultime du matériau

ANCRAGE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe = 8.8 Classe de tiges d'ancrage

 $f_{yb} = 550,00$ [MPa] Limite de plasticité du matériau du boulon $f_{ub} = 800,00$ [MPa] Résistance du matériau du boulon à la traction

d = 30 [mm] Diamètre du boulon

 $A_s = 5,61$ [cm²] Aire de la section efficace du boulon

 $\begin{array}{lll} A_v = & 7\,,07 & [cm^2] & \text{Aire de la section du boulon} \\ n_H = & 2 & \text{Nombre de colonnes des boulons} \\ n_V = & 3 & \text{Nombre de rangéss des boulons} \end{array}$

Ecartement $e_{Hi} = 475$ [mm] Entraxe $e_{Vi} = 130$ [mm]

Dimensions des tiges d'ancrage

Platine

 $I_{wd} = 60$ [mm] Longueur

$I_{wd} =$	60	[mm]	Longueur
$b_{wd} =$	60	[mm]	Largeur
twd =	10	[mm]	Epaisseur

RAIDISSEUR

l _s =	600	[mm]	Longueur
$W_s =$	400	[mm]	Largeur
$h_s =$	150	[mm]	Hauteur
$t_s =$	10	[mm]	Epaisseur
$d_1 =$	20	[mm]	Grugeage
$d_2 =$	20	[mm]	Grugeage

COEFFICIENTS DE MATERIAU

$\gamma_{M0} =$	1,00	Coefficient de sécurité partiel
γ _{M2} =	1,25	Coefficient de sécurité partiel
γ _C =	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	1400	[mm]	Longueur de la semelle
B =	1800	[mm]	Largeur de la semelle
H =	2000	[mm]	Hauteur de la semelle

Béton

Classe BETON35

 $f_{ck} = 35,00$ [MPa] Résistance caractéristique à la compression

Mortier de calage

 $t_g =$ 30 [mm] Epaisseur du mortier de calage

f_{ck,g} = 12,00 [MPa] Résistance caractéristique à la compression

 $C_{f,d} = 0$, 30 Coef. de frottement entre la plaque d'assise et le béton

SOUDURES

a_p = 6 [mm] Plaque principale du pied de poteau

 $a_s = 4$ [mm] Raidisseurs

EFFORTS

RESULTATS

ZONE COMPRIMEE

COMPRESSION DU BETON

f _{cd} = 23,33 [MPa] Résistance de calcul à la compression	EN 1992-1:[3.1.6.(1)]
$f_j = 41,16$ [MPa] Résistance de calcul du matériau du joint sous la plaque d'assis	se [6.2.5.(7)]
$c = t_p \sqrt{(f_{yp}/(3^*f_j^*\gamma_{M0}))}$	
c = 45 [mm] Largeur de l'appui additionnelle	[6.2.5.(4)]
b _{eff} = 103 [mm] Largeur efficace de la semelle de tronçon T	[6.2.5.(3)]
l _{eff} = 270 [mm] Longueur efficace de la semelle de tronçon en T	[6.2.5.(3)]
$A_{c0} = 277,75$ [cm ²] Zone de contact de la plaque d'assise avec la fondation	EN 1992-1:[6,7,(3)]

c = 45 [mm] Largeur de l'appui additionnelle $A_{c1} = 2499,76$ [cm ²] Aire de calcul maximale de la répartition de la charge	[6.2.5.(4)] EN 1992-1:[6.7.(3)]
$F_{\text{rdu}} = A_{\text{c0}} * f_{\text{cd}} * \sqrt{(A_{\text{c1}}/A_{\text{c0}})} \le 3 * A_{\text{c0}} * f_{\text{cd}}$ $F_{\text{cd}} = 1.94425 \cdot 9.7 \text{IdANI.} \text{Pécietanes du bétan à l'appui rigida}$	EN 1002 1:[6 7 /2\]
$F_{rdu} = 194425,97$ [daN] Résistance du béton à l'appui rigide $\beta_i = 0,67$ Coefficient réducteur pour la compression	EN 1992-1:[6.7.(3)] [6.2.5.(7)]
$f_{id} = \beta_i^* F_{rdu} / (b_{eff}^* I_{eff})$	[0.2.0.(1)]
f _{jd} = 46, 67 [MPa] Résistance de calcul du matériau du joint	[6.2.5.(7)]
$A_{c,n} = 1857, 26$ [cm ²] Aire de compression efficace	[6.2.8.2.(1)]
$A_{c,y} = 516,35$ [cm ²] Aire de flexion My	[6.2.8.3.(1)]
$A_{c,z} = 707,22$ [cm ²] Aire de flexion Mz	[6.2.8.3.(1)]
F _{c,Rd,i} = A _{C,i} *f _{jd}	[6 2 9 2 (4)]
$F_{c,Rd,n} = 866721,33$ [daN] Résistance du béton à la compression $F_{c,Rd,y} = 240962,43$ [daN] Résistance du béton à la flexion My	[6.2.8.2.(1)] [6.2.8.3.(1)]
$F_{c,Rd,z} = 330036, 17$ [daN] Résistance du béton à la flexion Mz	[6.2.8.3.(1)]
AILE ET AME DU POTEAU EN COMPRESSION	. (/,
CL = 1,00 Classe de la section	EN 1993-1-1:[5.5.2]
$W_{pl,y} = 3887,26$ [cm ³] Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,y} = 91350$, 61 [daN*m] Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
h _{f,y} = 421 [mm] Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
F _{c,fc,Rd,y} = M _{c,Rd,y} / h _{f,y} F _{c,fc,Rd,y} = 217202,04 [daN] Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
$W_{pl,z} = 1929,01$ [cm ³] Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,z} = 45331,69$ [daN*m] Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
$h_{f,z} = 214$ [mm] Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
$F_{c,fc,Rd,z} = M_{c,Rd,z} / h_{f,z}$	1 (71
$F_{c,fc,Rd,z} = 211768,33$ [daN] Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
RESISTANCE DE LA SEMELLE DANS LA ZONE COMPRIMEE	
$N_{j,Rd} = F_{c,Rd,n}$	
N _{j,Rd} = 866721, 33 [daN] Résistance de la semelle à l'effort axial	[6.2.8.2.(1)]
$F_{C,Rd,y} = min(F_{c,Rd,y},F_{c,fc,Rd,y})$ $F_{C,Rd,y} = 217202,04$ [daN] Résistance de la semelle dans la zone comprimée	[6.2.8.3]
$F_{C,Rd,z} = min(F_{c,Rd,z},F_{c,fc,Rd,z})$	[0.2.0.3]
F _{C,Rd,z} = 211768, 33 [daN] Résistance de la semelle dans la zone comprimée	[6.2.8.3]
ZONE TENDUE	
RUPTURE DU BOULON D'ANCRAGE	
$A_b = 5,61$ [cm ²] Aire de section efficace du boulon	[Tableau 3.4]
f _{ub} = 800,00 [MPa] Résistance du matériau du boulon à la traction	[Tableau 3.4]
Beta = 0,85 Coefficient de réduction de la résistance du boulon $F_{t,Rd,s1}$ = beta*0.9* f_{ub} * A_b/γ_{M2}	[3.6.1.(3)]
$F_{t,Rd,s1} = 27466,56$ [daN] Résistance du boulon à la rupture	[Tableau 3.4]
$\gamma_{Ms} = 1,20$ Coefficient de sécurité partiel	CEB [3.2.3.2]
f _{yb} = 550,00 [MPa] Limite de plasticité du matériau du boulon	CEB [9.2.2]
$F_{t,Rd,s2} = f_{yb}^* A_b / \gamma_{Ms}$	
$F_{t,Rd,s2} = 25712,50$ [daN] Résistance du boulon à la rupture	CEB [9.2.2]
$F_{t,Rd,s} = min(F_{t,Rd,s1},F_{t,Rd,s2})$	CEB [9.2.2]
$F_{t,Rd,s} = min(F_{t,Rd,s1},F_{t,Rd,s2})$ $F_{t,Rd,s} = 25712,50$ [daN] Résistance du boulon à la rupture	CEB [9.2.2]
$F_{t,Rd,s} = min(F_{t,Rd,s1},F_{t,Rd,s2})$ $F_{t,Rd,s} = 25712,50$ [daN] Résistance du boulon à la rupture ARRACHEMENT DU BOULON D'ANCRAGE DU BETON	
$\begin{aligned} &F_{t,Rd,s} = min(F_{t,Rd,s1},F_{t,Rd,s2}) \\ &F_{t,Rd,s} = 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ &\textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ &f_{ck} = 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \end{aligned}$	CEB [9.2.2] EN 1992-1:[3.1.2]
$\begin{split} F_{t,Rd,s} &= min(F_{t,Rd,s1},F_{t,Rd,s2}) \\ F_{t,Rd,s} &= 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ \textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ f_{ck} &= 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \\ f_{ctd} &= 0.7^*0.3^* f_{ck}^{2/3} / \gamma_C \end{split}$	EN 1992-1:[3.1.2]
$\begin{aligned} &F_{t,Rd,s} = min(F_{t,Rd,s1},F_{t,Rd,s2}) \\ &F_{t,Rd,s} = 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ &\textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ &f_{ck} = 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \end{aligned}$	
$\begin{split} F_{t,Rd,s} &= \text{min}(F_{t,Rd,s1},F_{t,Rd,s2}) \\ F_{t,Rd,s} &= 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ \textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ f_{ck} &= 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \\ f_{ctd} &= 0.7^*0.3^* f_{ck}^{2/3} / \gamma_C \\ f_{ctd} &= 1,50 [MPa] \text{Résistance de calcul à la traction} \end{split}$	EN 1992-1:[3.1.2] EN 1992-1:[8.4.2.(2)]
$\begin{split} F_{t,Rd,s} &= \text{min}(F_{t,Rd,s1},F_{t,Rd,s2}) \\ F_{t,Rd,s} &= 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ \textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ f_{ck} &= 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \\ f_{ctd} &= 0.7^*0.3^*f_{ck}^{2/3}/\gamma_C \\ f_{ctd} &= 1,50 [MPa] \text{Résistance de calcul à la traction} \\ \eta_1 &= 1,00 \text{Coef. dépendant des conditions du bétonnage et de l'adhérence} \end{split}$	EN 1992-1:[3.1.2] EN 1992-1:[8.4.2.(2)] EN 1992-1:[8.4.2.(2)]
$\begin{split} F_{t,Rd,s} &= \text{min}(F_{t,Rd,s1},F_{t,Rd,s2}) \\ F_{t,Rd,s} &= 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ \textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ f_{ck} &= 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \\ f_{ctd} &= 0.7^*0.3^* f_{ck}^{2/3}/\gamma_C \\ f_{ctd} &= 1,50 [MPa] \text{Résistance de calcul à la traction} \\ \eta_1 &= 1,00 \text{Coef. dépendant des conditions du bétonnage et de l'adhérence} \\ \eta_2 &= 1,00 \text{Coef. dépendant du diamètre du boulon d'ancrage} \\ f_{bd} &= 2.25^* \eta_1^* \eta_2^* f_{ctd} \\ f_{bd} &= 3,37 [MPa] \text{Adhérence de calcul admissible} \end{split}$	EN 1992-1:[3.1.2] EN 1992-1:[8.4.2.(2)] EN 1992-1:[8.4.2.(2)] EN 1992-1:[8.4.2.(2)]
$\begin{split} F_{t,Rd,s} &= \text{min}(F_{t,Rd,s1},F_{t,Rd,s2}) \\ F_{t,Rd,s} &= 25712,50 [daN] \text{Résistance du boulon à la rupture} \\ \textbf{ARRACHEMENT DU BOULON D'ANCRAGE DU BETON} \\ f_{ck} &= 35,00 [MPa] \text{Résistance caractéristique du béton à la compression} \\ f_{ctd} &= 0.7^*0.3^*f_{ck}^{2/3}/\gamma_C \\ f_{ctd} &= 1,50 [MPa] \text{Résistance de calcul à la traction} \\ \eta_1 &= 1,00 \text{Coef. dépendant des conditions du bétonnage et de l'adhérence} \\ \eta_2 &= 1,00 \text{Coef. dépendant du diamètre du boulon d'ancrage} \\ f_{bd} &= 2.25^*\eta_1^*\eta_2^*f_{ctd} \end{split}$	EN 1992-1:[3.1.2] EN 1992-1:[8.4.2.(2)] EN 1992-1:[8.4.2.(2)] EN 1992-1:[8.4.2.(2)]

$F_{t,Rd,p} = \pi^* d^* h_{ef}^* f_{bd}$	
F _{t,Rd,p} = 30177,55 [daN] Résistance de calc. pour le soulèvement	EN 1992-1:[8.4.2.(2)]
ARRACHEMENT DU CONE DE BETON	- \ /-
$h_{ef} = 513$ [mm] Longueur efficace du boulon d'ancrage $N_{Rk,c}^{0} = 7.5[N^{0.5}/mm^{0.5}]*f_{ck}*h_{ef}^{1.5}$	CEB [9.2.4]
$N_{Rk,c}^{0} = 51605$, 32 [daN] Résistance caractéristique du boulon d'ancrage	CEB [9.2.4]
s _{cr,N} = 1540 [mm] Largeur critique du cône de béton	CEB [9.2.4]
c _{cr,N} = 770 [mm] Distance critique du bord de la fondation	CEB [9.2.4]
$A_{c,N0} = 36270,00$ [cm ²] Aire de surface maximale du cône	CEB [9.2.4]
$A_{c,N} = 25200,00$ [cm ²] Aire de surface réelle du cône	CEB [9.2.4]
$\psi_{A,N} = A_{c,N}/A_{c,N0}$	
$\psi_{A,N} = 0$, 69 Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.2.4]
c = 463 [mm] Pince minimale boulon d'ancrage-extrémité	CEB [9.2.4]
$\psi_{s,N} = 0.7 + 0.3 \text{ c/c}_{cr.N} \le 1.0$	
$\psi_{s,N} = 0$, 88 Coef. dépendant du pince boulon d'ancrage-extrémité de la fondation	CEB [9.2.4]
$\psi_{ec,N}$ = 1 , 00 Coef. dépendant de la répartition des efforts de traction dans les boulons	d'ancrage CEB [9.2.4]
$\psi_{\text{re,N}} = 0.5 + \text{h}_{\text{ef}}[\text{mm}]/200 \le 1.0$	
$\psi_{\text{re,N}}$ = 1,00 Coef. dépendant de la densité du ferraillage dans la fondation	CEB [9.2.4]
$\psi_{\text{ucr},N} = 1$, 40 Coef. dépendant du degré de fissuration du béton	CEB [9.2.4]
$\gamma_{Mc} = 2,16$ Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{t,Rd,c} = N_{Rk,c}^{0*} \psi_{A,N}^* \psi_{s,N}^* \psi_{ec,N}^* \psi_{re,N}^* \psi_{ucr,N} / \gamma_{Mc}$	
F _{t,Rd,c} 20455, 0 [daN Résistance de calcul du boulon d'ancrage à l'arrachement du cône d	e EN 1992-
= 5] béton	1:[8.4.2.(2)]
FENDAGE DU BETON	
$h_{ef} = 950$ [mm] Longueur efficace du boulon d'ancrage $N_{Rk,c}^{0} = 7.5[N^{0.5}/mm^{0.5}]*f_{ck}*h_{ef}^{1.5}$	CEB [9.2.5]
$N_{Rk,c}^0 = 129921$, 40 [daN] Résistance de calc. pour le soulèvement	CEB [9.2.5]
$s_{cr,N} = 1900$ [mm] Largeur critique du cône de béton	CEB [9.2.5]
$c_{cr,N} = 950$ [mm] Distance critique du bord de la fondation	CEB [9.2.5]
$A_{c,N0} = 51300,00$ [cm ²] Aire de surface maximale du cône	CEB [9.2.5]
$A_{c,N} = 25200,00$ [cm ²] Aire de surface réelle du cône	CEB [9.2.5]
$\psi_{A,N} = A_{c,N}/A_{c,N0}$	
$\psi_{A,N} = 0$, 49 Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.2.5]
c = 463 [mm] Pince minimale boulon d'ancrage-extrémité	CEB [9.2.5]
$\psi_{s,N} = 0.7 + 0.3 \text{ c/c}_{cr.N} \le 1.0$	
$\psi_{s,N} = 0$, 85 Coef. dépendant du pince boulon d'ancrage-extrémité de la fondation	CEB [9.2.5]
$\psi_{ec,N}$ = 1 , 00 Coef. dépendant de la répartition des efforts de traction dans les boulons	d'ancrage CEB [9.2.5]
$\psi_{\text{re,N}} = 0.5 + \text{h}_{\text{ef}}[\text{mm}]/200 \le 1.0$	
$\psi_{\text{re,N}} = 1$, 00 Coef. dépendant de la densité du ferraillage dans la fondation	CEB [9.2.5]
$\psi_{\text{ucr,N}} = 1$, 40 Coef. dépendant du degré de fissuration du béton	CEB [9.2.5]
$\psi_{h,N} = (h/(2^*h_{ef}))^{2/3} \le 1.2$	
$\psi_{h,N}$ = 1,03 Coef. dépendant de la hauteur de la fondation	CEB [9.2.5]
$\gamma_{M,sp} = 2,16$ Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{t,Rd,sp} = N_{Rk,c}^{0*} \psi_{A,N}^* \psi_{s,N}^* \psi_{ec,N}^* \psi_{re,N}^* \psi_{ucr,N}^* \psi_{h,N} \gamma_{M,sp}$	
$F_{t,Rd,sp} = 36214,83$ [daN] Résistance de calcul du boulon d'ancrage au fendage du bétor	CEB [9.2.5]
RESISTANCE DU BOULON D'ANCRAGE A LA TRACTION	
$F_{t,Rd} = min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$	
F _{t,Rd} = 20455,05 [daN] Résistance du boulon d'ancrage à traction	
FLEXION DE LA PLAQUE DE BASE	
Moment fléchissant M _{j,Ed,y}	
l _{eff,1} = 333 [mm] Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]
l _{eff,2} = 333 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 83 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
M _{pl,1,Rd} = 2059, 49 [daN*m] Résistance plastique de la dalle pour le mode 1	[6.2.4]
M _{pl,2,Rd} = 2059, 49 [daN*m] Résistance plastique de la dalle pour le mode 2	[6.2.4]
F _{T,1,Rd} = 99000,00 [daN] Résistance de la dalle pour le mode 1	[6.2.4]
$F_{T,2,Rd} = 56091,75$ [daN] Résistance de la dalle pour le mode 2	[6.2.4]

l _{eff,1} = 333 [mm] Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]
F _{T,3,Rd} = 61365,15 [daN] Résistance de la dalle pour le mode 3	[6.2.4]
$F_{t,pl,Rd,y} = \min(F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd})$	
$F_{t,pl,Rd,y} = 56091,75$ [daN] Résistance de la dalle pour le mode à la traction	[6.2.4]
Moment fléchissant M _{j,Ed,z}	
l _{eff,1} = 209 [mm] Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]
l _{eff,2} = 220 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 33 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
$M_{pl,1,Rd} = 1291,18$ [daN*m] Résistance plastique de la dalle pour le mode 1	[6.2.4]
$M_{pl,2,Rd} = 1363,40$ [daN*m] Résistance plastique de la dalle pour le mode 2	[6.2.4]
F _{T,1,Rd} = 155508,84 [daN] Résistance de la dalle pour le mode 1	[6.2.4]
F _{T,2,Rd} = 57285, 35 [daN] Résistance de la dalle pour le mode 2	[6.2.4]
$F_{T,3,Rd} = 40910, 10$ [daN] Résistance de la dalle pour le mode 3	[6.2.4]
$F_{t,pl,Rd,z} = \min(F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd})$	
$F_{t,pl,Rd,z} = 40910,10$ [daN] Résistance de la dalle pour le mode à la traction	[6.2.4]
RESISTANCES DE SEMELLE DANS LA ZONE TENDUE	
$F_{T,Rd,y} = F_{t,pl,Rd,y}$	
F _{T,Rd,y} = 56091, 75 [daN] Résistance de la semelle dans la zone tendue	[6.2.8.3]
$F_{T,Rd,z} = F_{t,pl,Rd,z}$	
$F_{T,Rd,z} = 40910, 10$ [daN] Résistance de la semelle dans la zone tendue	[6.2.8.3]
CONTROLE DE LA RESISTANCE DE L'ASSEMBLAGE	
N (N 440 (00))	10.05
$N_{j,Ed} / N_{j,Rd} \le 1,0 $ (6.24) 0,01 < 1,00 vérifié	(0,01)
e _y = 1790 [mm] Excentricité de l'effort axial	[6.2.8.3]

$N_{j,Ed} / N_{j,Rd} \le 1.0 (6.2)$	24)	0,01 < 1,00	vérifié	(0,01)
$e_y = 1790$	[mm]	Excentricité de l'effort axial		[6.2.8.3]
$z_{c,y} = 210$	[mm]	Bras de levier F _{C,Rd,y}		[6.2.8.1.(2)]
$z_{t,y} = 238$	[mm]	Bras de levier F _{T,Rd,y}		[6.2.8.1.(3)]
$M_{j,Rd,y} = 28461,03$	[daN*m]	Résistance de l'assemblage à la flexion		[6.2.8.3]
$M_{j,Ed,y} / M_{j,Rd,y} \le 1,0$	(6.23)	0,46 < 1,00	vérifié	(0,46)
$e_z = 1$	[mm]	Excentricité de l'effort axial		[6.2.8.3]
$z_{c,z} = 107$	[mm]	Bras de levier F _{C,Rd,z}		[6.2.8.1.(2)]
$z_{t,z} = 130$	[mm]	Bras de levier F _{T,Rd,z}		[6.2.8.1.(3)]
$M_{j,Rd,z} = 546,47$	[daN*m]	Résistance de l'assemblage à la flexion		[6.2.8.3]
$M_{j,Ed,z} / M_{j,Rd,z} \le 1,0$	(6.23)	0,02 < 1,00	vérifié	(0,02)
$M_{j,Ed,y} / M_{j,Rd,y} + M_{j,Ed,y}$	_{d,z} / M _{j,Rd,z}	≤ 1,0 0,48 < 1,00	vérifié	(0,48)

CISAILLEMENT

 $F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{vb} / \gamma_{M2}$

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE

Cisaillement	par	l'effort	$V_{j,Ed,y}$
--------------	-----	----------	--------------

Cisaille	ment par l	effort V	j,Ed,y	
$\alpha_{d,y} = 0$,	73 C c	ef. d'emp	placement des boulons en direction du cisaillement	[Tableau 3.4]
$\alpha_{b,y} = 0$,	73 C c	ef. pour	les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
$k_{1,y} = 2$,	50 C c	ef. d'emp	placement des boulons perpendiculairement à la direction du cisaillemer	nt [Tableau 3.4]
$F_{1,vb,Rd,y}$	$=k_{1,y}^*\alpha_{b,y}^*$	$f_{up}*d*t_p$ /	Υм2	
$F_{1,vb,Rd,y}$	= 56437,	50 [daN	Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
Cisaille	ment par l	'effort V	j,Ed,z	
$\alpha_{d,z} = 0$,	65 C c	oef. d'emp	placement des boulons en direction du cisaillement	[Tableau 3.4]
$\alpha_{b,z} = 0$,	65 C c	ef. pour	les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
$k_{1,z} = 2$,	50 C c	oef. d'emp	placement des boulons perpendiculairement à la direction du cisaillemer	nt [Tableau 3.4]
$F_{1,vb,Rd,z}$	$=k_{1,z}^*\alpha_{b,z}^*$	$f_{up}*d*t_p$ /	Υм2	
$F_{1,vb,Rd,z}$	= 50390,	62 [daN	Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
CISAILI	LEMENT D	U BOUL	ON D'ANCRAGE	
$\alpha_b =$	0,28		Coef. pour les calculs de la résistance F _{2,vb,Rd}	[6.2.2.(7)]
$A_{vb} =$	7,07	[cm ²]	Aire de la section du boulon	[6.2.2.(7)]
$f_{ub} =$	800,00	[MPa]	Résistance du matériau du boulon à la traction	[6.2.2.(7)]
γ _{M2} =	1,25		Coefficient de sécurité partiel	[6.2.2.(7)]
_	40 40	,		

$F_{2,\text{vb},\text{Rd}} = 12^4$	440,71 [da	aN] Résistance du boulon au cisaillement - sans bras de levier	[6.2.2.(7)]							
	,00	Coef. dépendant de l'ancrage du boulon dans la fondation	CEB [9.3.2.2]							
$M_{Rk,s} = 155$	$M_{Rk,s} = 155$, 91 [daN*m] Résistance caractéristique de l'ancrage à la flexion CEB [9.3.2.2]									
I _{sm} =	60 [mm]	Longueur du bras de levier	CEB [9.3.2.2]							
$\gamma_{Ms} = 1$, 20	Coefficient de sécurité partiel	CEB [3.2.3.2]							
$F_{v,Rd,sm} = \alpha_M$		•	0 [00]							
		™s/ N] Résistance du boulon au cisaillement - avec bras de levier	CEB [0 2 1]							
			CEB [9.3.1]							
		PAR EFFET DE LEVIER								
$N_{Rk,c} = 441$	-	daN] Résistance de calc. pour le soulèvement	CEB [9.2.4]							
$k_3 =$	2,00	Coef. dépendant de la longueur de l'ancrage	CEB [9.3.3]							
$\gamma_{Mc} =$	2,16	Coefficient de sécurité partiel	CEB [3.2.3.1]							
$F_{v,Rd,cp} = k_3^*$	N _{Rk.c} /γ _{Mc}									
$F_{v,Rd,cp} = 409$		daN] Résistance du béton à l'effet de levier	CEB [9.3.1]							
	_	RD DU BETON	0== [0:0::]							
Cisaillemen										
			OED							
$V_{Rk,c,y}^0$ 284	4595,⊥[da 1 २	N Résistance caractéristique du boulon d'ancrage	CEB [9.3.4.(a)]							
$=$ $\psi_{A,V,y} =$	0,40	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]							
200 =	1,00	Coef. dépendant de l'épaisseur de la fondation	CEB							
$\psi_{h,V,y} =$	1,00	Coel. dependant de repaisseur de la fondation	[9.3.4.(c)]							
W =	0,82	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB							
$\psi_{s,V,y} =$	0,02	oder. d'illidence des bords parallèles à l'enort de disalliernent	[9.3.4.(d)]							
$\psi_{\text{ec,V,y}}$ =	1,00	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon d'ancrage	CEB [9.3.4.(e)]							
$\psi_{\alpha,V,y} =$	1,00	Coef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]							
Ψucr,V,y	1,00	Coef. dépendant du mode de ferraillage du bord de la fondation	CEB [9.3.4.(g)]							
γ _{Mc} =	2,16	Coefficient de sécurité partiel	CEB [3.2.3.1]							
•		\forall h,v,y * \forall s,v,y * \forall ec,v,y * \forall α ,v,y * \forall ucr,v,y $^/$ γ Mc	025 [0.2.0.1]							
			OED [0 0 4]							
· · · · · ·		daN] Résistance du béton pour l'écrasement du bord	CEB [9.3.1]							
Cisaillemen										
$V_{Rk,c,z}^{0}$ 132	2482 , 6 [da	^N Résistance caractéristique du boulon d'ancrage	CEB							
=	4]	resistance caracteristique du bouteri à anorage	[9.3.4.(a)]							
$\psi_{A,V,z} =$	1,00	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4] CEB							
$\psi_{h,V,z} =$	1,00	Coef. dépendant de l'épaisseur de la fondation	[9.3.4.(c)]							
$\psi_{s, V, z} =$	1,00	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]							
$\psi_{ec,V,z}$ =	1,00	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon	CEB							
1 00,1,2		d'ancrage	[9.3.4.(e)]							
$\psi_{\alpha,V,z} =$	1,00	Coef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]							
			- ::-							
Ψucr,V,z =	1,00	Coef. dépendant du mode de ferraillage du bord de la fondation	CEB [9.3.4.(g)]							
γ _{Mc} =	2,16	Coefficient de sécurité partiel	CEB [3.2.3.1]							
	0*1(^)/=*1	ν _{h,V,z} *Ψ _{s,V,z} *Ψ _{ec,V,z} *Ψ _{α,V,z} *Ψ _{ucr,V,z} /γ _{Mc}								
		daN] Résistance du béton pour l'écrasement du bord	CEB [9.3.1]							
	=		OLD [3.3.1]							
GLISSEMEI										
, .	,30	Coef. de frottement entre la plaque d'assise et le béton	[6.2.2.(6)]							
		Effort de compression	[6.2.2.(6)]							
$F_{f,Rd} = C_{f,d} * N$	$I_{c,Ed}$									
$F_{f,Rd} = 219$	94 , 18 [d :	aN] Résistance au glissement	[6.2.2.(6)]							
CONTROLE	DU CISAII	LLEMENT								
		$F_{2,vb,Rd}$, $F_{v,Rd,sm}$, $F_{v,Rd,cp}$, $F_{v,Rd,c,y}$) + $F_{f,Rd}$								
		T2,vb,Rd, Tv,Rd,sm, Tv,Rd,cp, Tv,Rd,c,y) T Tf,Rd daN] Résistance de l'assemblage au cisaillement	CEB IO 2 41							
	_		CEB [9.3.1]							
$V_{j,Ed,y} / V_{j,Rd,y}$		0,00 < 1,00 vérifié	(0,00)							
$V_{j,Rd,z} = n_b * m$	$nin(F_{1,vb,Rd,z},$	$F_{2,vb,Rd}$, $F_{v,Rd,sm}$, $F_{v,Rd,cp}$, $F_{v,Rd,c,z}$) + $F_{f,Rd}$								

$V_{j,Rd,z} = 28178,57$	[daN] R	ésistance de l'assemblage au cisailleme	ent	CEB [9.3.1]
$V_{i,Ed,z} / V_{i,Rd,z} \le 1,0$		0,14 < 1,00	vérifié	(0,14)
$V_{j,Ed,y} / V_{j,Rd,y} + V_{j,Ed,z} /$	$V_{j,Rd,z} \leq 1$	0,14 < 1,00	vérifié	(0,14)

CONTROLE DES RAIDISSEURS

Plaque	trapé	ézoïdale parallèle à l'âme du poteau
N.A	103	77 [doN*m] Momont fláchiceant du raidic

$M_1 =$	483,77	[daN*m] Moment fléchissant du raidisseur	
$Q_1 =$	12900,45	[daN]	Effort tranchant du raidisseur	
$z_s =$	33	[mm]	Position de l'axe neutre (à partir de la base de la plaque)	
$I_s =$	1298,25	[cm⁴]	Moment d'inertie du raidisseur	
$\sigma_d =$	1,12	[MPa]	Contrainte normale au contact du raidisseur et de la dalle	EN 1993-1-1:[6.2.1.(5)]
σ_g =	54,78	[MPa]	Contrainte normale dans les fibres supérieures	EN 1993-1-1:[6.2.1.(5)]
τ =	86,00	[MPa]	Contrainte tengentielle dans le raidisseur	EN 1993-1-1:[6.2.1.(5)]
$\sigma_z =$	148,97	[MPa]	Contrainte équivalente au contact du raidisseur et de la da	lle EN 1993-1-1:[6.2.1.(5)]
max (σα, τ / (0.58). 07) /	$(f_{\text{vp}}/v_{\text{MO}}) \le 1.0 (6.1) 0.54 < 1.00$ véi	rifié (0,54)

Raidis	seur perp	endicu	aire à l'âme (sur le prolongement des ailes du pot	eau)	
$M_1 =$	325,65	[daN*m	Moment fléchissant du raidisseur		
$Q_1 =$	6513,08	[daN]	Effort tranchant du raidisseur		
$z_s =$	28	[mm]	Position de l'axe neutre (à partir de la base de la plac	que)	
$I_s =$	1390,18	[cm ⁴]	Moment d'inertie du raidisseur		
σ_d =	0,50	[MPa]	Contrainte normale au contact du raidisseur et de la	dalle	EN 1993-1-1:[6.2.1.(5)]
σ_g =	35,64	[MPa]	Contrainte normale dans les fibres supérieures		EN 1993-1-1:[6.2.1.(5)]
$\tau =$	43,42	[MPa]	Contrainte tengentielle dans le raidisseur		EN 1993-1-1:[6.2.1.(5)]
$\sigma_z =$	75,21	[MPa]	Contrainte équivalente au contact du raidisseur et de	la dalle	EN 1993-1-1:[6.2.1.(5)]
max (d	σg, τ / (0.58), σ _z) /	$(f_{yp}/\gamma_{M0}) \le 1.0 (6.1) 0,27 < 1,00$	vérifié	(0,27)

SOUDURES ENTRE LE POTEAU ET LA PLAQUE D'ASSISE

σ_{\perp} =	32,12	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	32,12	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
$\tau_{yII} =$	-0,00	[MPa]	Contrainte tengentielle parallèle à V _{j,Ed,y}		[4.5.3.(7)]
$\tau_{zII} =$	- 2,79	[MPa]	Contrainte tengentielle parallèle à V _{j,Ed,z}		[4.5.3.(7)]
$\beta_W =$	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
	$f_u/\gamma_{M2})) \le 1$		0,12 < 1,00	vérifié	(0,12)
$\sqrt{(\sigma_{\perp}^2 + 3)}$	$3.0 (\tau_{yll}^2 + \tau_{yll}^2)$	$(1)^{2})) / (f_{u}/(1)^{2})$	$\beta_{W}^*\gamma_{M2}))) \le 1.0 (4.1) 0,19 < 1,00$	vérifié	(0,19)
$\sqrt{(\sigma_{\perp}^2 + 3)}$	$3.0 (\tau_{zII}^2 + \tau_{zII}^2)$	$(1)^{2})) / (f_{u}/($	$\beta_{W}^*\gamma_{M2}))) \le 1.0 (4.1) 0,17 < 1,00$	vérifié	(0,17)

SOUDURES VERTICALES DES RAIDISSEURS

Plaque trapézoïdale parallèle à l'âme du poteau

i laque	trapczoraa	ic paran	cic a raine da poteda		
σ_{\perp} =	0,00	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$ au_{\perp}$ =	0,00	[MPa]	Contrainte tengentielle perpendiculaire	[4.5.3.(7)]	
$\tau_{II} =$	162,83	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
$\sigma_z =$	0,00	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
$\beta_W =$	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ_{\perp}	, τ _{II} * √3, σ _z) / (f _u /(β _W	$^*\gamma_{M2})) \le 1.0 (4.1) 0,82 < 1,00$	vérifié	(0,82)

Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)

			• • •	• •	
σ_{\perp} =	76,76	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	76,76	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
$\tau_{II} =$	54,28	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
$\sigma_z =$	180,01	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
$\beta_W =$	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ	. τιι * √3. σ ₇) / (f _u /(ß _{w/}	$(*v_{M2}) \le 1.0 (4.1) 0,52 < 1,00$	vérifié	(0,52)

SOUDURES HORIZONTALES DES RAIDISSEURS

Plaque trapézoïdale parallèle à l'âme du poteau	
σ_{\perp} = 114,02 [MPa] Contrainte normale dans la soudure	[4.5.3.(7)]
τ_{\perp} = 114,02 [MPa] Contrainte tengentielle perpendiculaire	[4.5.3.(7)]
$\tau_{II} = 134,14$ [MPa] Contrainte tengentielle parallèle	[4.5.3.(7)]
$\sigma_z = 325,56$ [MPa] Contrainte totale équivalente	[4.5.3.(7)]
$\beta_W = 0.85$ Coefficient dépendant de la résistance	[4.5.3.(7)]
$\max (\sigma_{\perp}, \tau_{\text{II}} * \sqrt{3}, \sigma_{\text{z}}) / (f_{\text{U}}/(\beta_{\text{W}}*\gamma_{\text{M2}})) \le 1.0 (4.1) 0, 80 < 1,00$ vérifié	(0,80)
Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)	
σ_{\perp} = 57,57 [MPa] Contrainte normale dans la soudure	[4.5.3.(7)]
τ_{\perp} = 57,57 [MPa] Contrainte tengentielle perpendiculaire	[4.5.3.(7)]
$\tau_{II} = 64,98$ [MPa] Contrainte tengentielle parallèle	[4.5.3.(7)]
161 01 110 1 0 1 1 1 1 1 1 1 1	[4.5.3.(7)]
$\sigma_z = 0.85$ Coefficient dépendant de la résistance	[4.5.3.(7)]
$\max \left(\sigma_{\perp}, \tau_{\text{II}} * \sqrt{3}, \sigma_{\text{z}} \right) / \left(f_{\text{U}} / (\beta_{\text{W}} \gamma_{\text{M2}}) \right) \le 1.0 \ (4.1) \ 0, 40 \ < 1,00 $ vérifié	(0,40)
$\max_{i \in \mathcal{I}} \{O_{i}, t_{i} \mid V_{i}, O_{i}\} / \{I_{i} \setminus \{p_{i}\} \mid P_{i} \mid P_{i}\}\} \leq 1.0 (4.1) $	(0,10)
RIGIDITE DE L'ASSEMBLAGE	
Moment fléchissant M _{i,Ed,y}	
b _{eff} = 103 [mm] Largeur efficace de la semelle de tronçon T	[6.2.5.(3)]
l _{eff} = 270 [mm] Longueur efficace de la semelle de tronçon en T	[6.2.5.(3)]
$k_{13,y} = E_c^* \sqrt{(b_{eff}^* l_{eff})/(1.275^* E)}$	
$k_{13,y} = 22$ [mm] Coef. de rigidité du béton comprimé	[Tableau 6.11]
l _{eff} = 333 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 83 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
$k_{15,y} = 0.425 * l_{eff} * t_p^3 / (m^3)$	
$k_{15,y} = 7$ [mm] Coef. de rigidité de la plaque d'assise en traction	[Tableau 6.11]
$L_b = 325$ [mm] Longueur efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,y} = 1.6*A_b/L_b$	
k _{16,y} = 3 [mm] Coef. de rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,y} = 0$, 32 Elancement du poteau	[5.2.2.5.(2)]
$S_{j,ini,y} = 8367796, 87 $ [daN*m] Rigidité en rotation initiale	[Tableau 6.12]
$S_{j,rig,y} = 29141784,00$ [daN*m] Rigidité de l'assemblage rigide	[5.2.2.5]
$S_{j,ini,y} < S_{j,rig,y}$ SEMI-RIGIDE	[5.2.2.5.(2)]
Moment fléchissant M _{j,Ed,z}	
$k_{13,z} = E_c^* \sqrt{(A_{c,z})/(1.275^*E)}$	
k _{13,z} = 36 [mm] Coef. de rigidité du béton comprimé	[Tableau 6.11]
l _{eff} = 209 [mm] Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]
m = 33 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
$k_{15,z} = 0.425 * l_{eff} * t_p^3 / (m^3)$	
k _{15,z} = 65 [mm] Coef. de rigidité de la plaque d'assise en traction	[Tableau 6.11]
L _b = 325 [mm] Longueur efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,z} = 1.6*A_b/L_b$	
k _{16,z} = 3 [mm] Coef. de rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,z} = 1,35$ Elancement du poteau	[5.2.2.5.(2)]
$S_{j,ini,z} = 17203683,62$ [daN*m] Rigidité en rotation initiale	[6.3.1.(4)]
$S_{j,rig,z} = 1660453,20$ [daN*m] Rigidité de l'assemblage rigide	[5.2.2.5]
$S_{j,ini,z} \ge S_{j,rig,z}$ RIGIDE	[5.2.2.5.(2)]

COMPOSANT LE PLUS FAIBLE:

RAIDISSEUR - SOUDURES VERTICALES

REMARQUES

Distance du boulon d'ancrage du raidisseur trop faible.

41 [mm] < 45 [mm]

Assemblage satisfaisant vis à vis de la Norme Ratio 0,82

Conclusion

La vérification automatique le logiciel ROBOT de l'assemblage pieds de poteau estsatisfaite, ou son détail est schématiser à la figure (figureIX-11).

IX.6. Assemblage gousset

L'assemblage c'est fait avec l'EXEL.

Figure IX-12 : Détail de l'assemblage au gousset

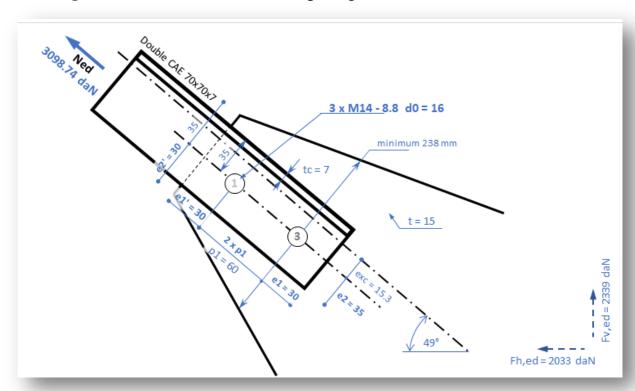


Figure IX-12 : Détail de l'assemblage au gousset

43

|--|

ELU Ned = 3098,74 daN

<u>Géométrie</u>

 Cornière
 Double Cornière
 CAE 70x70x7 - S275
 Trusquinage 35

 Section
 CAE 70x70x7
 b = 70
 tc = 7
 α = 49
 CdG = 19,7

 Nuance
 S275
 nc = 2
 fy [daN/mm²] = 27,5
 fu [daN/mm²] =

3 x M14 - 8,8 30-2x60-30 <u>Boulons</u> d0 = 16 Diamètre d = 14 nb= 3 A = 154 As = 115 Classe 8,8 As = 115 fyb [daN/mm 2] = 64,0 fub [daN/mm²] = 80 αb 0,6 Trusquinage = 35 e1= e1' = 30 p1 = 60 e2' = 30 e2= 35 exc = 15,3

 Gousset
 Gousset ép. 15 - S275

 Nuance
 S275
 fyp [daN/mm²] = 27,5
 fup [daN/mm²] = 43

 t = 15
 L = 238 ≥ Lmin = 60 OK!

Calculs préliminaires

<u>Dispositions constructives</u>

NF EN 1993-1-8 : §3.5 Tbl.3.3

Maximum

iviinimu	ım				ıvıaxımur	n	
19,2	>	e1=	30	≤	68,0 *	*Seulement exposé aux intempéries	OK!
19,2	>	e1' =	30	≤	68,0 *	ou aux milieux corrosifs selon EN	OK!
35,2	>	p1=	60	≤	98,0		OK!
19,2	>	e2=	35	≤	68,0 *		OK!
19,2	>	e2' =	30	≤	68,0 *		OK!

Efforts dans le boulon le plus solicité

Effort ⊥ dû à l'excentrement

 $Fex,ed = Ned*exc / ((nb-1)*p1) \qquad Fex,ed = 395 \qquad daN$ $\underline{Cisaillement normal par boulon} \qquad Vn,ed = Ned / nb \qquad Vn,ed = 1033 \qquad daN$ $\underline{Cisaillement dans le boulon le plus sollicité} \qquad Ved = V(Fex,ed^2 + Vn,ed^2) \qquad Ved = 1106 \qquad daN$

Composantes pour le calcul de l'assemblage du gousset

Gousset ép. 15 - S275				
Nuance S275 t = 15		mm²] = 27, 0 OK!	fup $[daN/mm^2] = 43$	
t = 13		o ok.		
<u>Calculs préliminaires</u>				
<u>Dispositions constructives</u> Minimum Maxim			NF EN 1993-1-8 : §3.5 Tbl.3.3	
19,2 > e1 = 30 ≤ 68,0 *		ent evnosé a	ux intempéries	OK!
$19,2$ > $e1 = 30$ $\leq 68,0$ $\leq 68,0$		•	osifs selon EN	OK!
$35,2$ > $p1 = 60$ $\leq 98,0$	ou aux	milieux corre	osijs seion eiv	OK!
•				OK!
•				OK!
19,2 > e2' = 30 ≤ 68,0 *				UK!
Efforts dans le boulon le plus solicité				
Effort \(\perp\) dû à l'excentrement				
Fex, ed = Ned*exc / ((nb-1) * p1)	Fex,ed =	395	daN	
Cisaillement normal par boulon	. 07,00			
Vn,ed = Ned / nb	Vn,ed=	1033	daN	
Cisaillement dans le boulon le plus sollicité	111,00			
$Ved = V(Fex, ed^2 + Vn, ed^2)$	Ved=	1106	daN	
100 1(101,000 111,000)				
Composantes pour le calcul de l'assemblage du gousset				
Horizontale	Fh,ed=	2033	daN	
Fh,ed = Ned * $cos(\alpha)$,			
Verticale	Fv,ed=	2339	daN	
Fv,ed = Ned * $\sin(\alpha)$,			
11)04 1104 511(4)				
Résultats				
Vérification de la Cornière				
Résistance de la section brute			NF EN 1993-1-1: §6.2.3 (6.6)	
$Npl,Rd = A * fy / ym0 \qquad A = $	Npl,Rd =	51700	daN ≥ Ned = 3 099 daN	0,06
Npi,Na - A Ty / yillo A - 1880 IIIII	Npi,Ru –	31700	dan 2 Ned - 3099 dan	0,00
Résistance de l'aire nette			NF EN 1993-1-1: §6.2.3 (6.7)	
Nu,Rd = $0.9*Anet*fu / ym2$ A = 1656 mm ²	Nu,Rd =	51270	$daN \ge Ned = 3.099 daN$	0,06
Nu, Nu = 0,5 Affet Tu / yill2 A = 1050 Illill	Nu, Nu –	31270	dan 2 Ned - 3099 dan	0,00
Résistance de l'aire efficace		B	NCM/CNC2M N0175 : §2.2 tbl.4 tbl.5	
Neff,Rd = β i*Anet*fu / γ m2 β 3 = ###	Neff,Rd =	#NOM?	daN ### Ned = 3 099 daN	###
Men, Nu - pr Anet Tu / ymz ps - mm	Neii, Ku –	#INCIVI:	uan mm Neu - 3099 uan	****
Cisaillement de bloc			NF EN 1993-1-8 : §3.10.2 (3.10)	
	nm²		WF EN 1555-1-8. 93.10.2 (3.10)	
Veff2,Rd = 0,5*fu Ant/ym2 + fy Anv/ym0 v3	Veff2,Rd =	30952	daN ≥ Ned = 3 099 daN	0,10
veliz, ku = 0,5 Tu Alit/ Yiliz + Ty Aliv/ Yilio V3	ve112, Nu =	30332	uan 2 Neu - 3099 uan	0,10
Cisaillement du boulon le plus sollicité			NF EN 1993-1-8 : §3.6.1 tbl.3.4	
Fv,Rd = α b As fub/ym2	Fv,Rd =	8832	daN ≥ Ved = 1106 daN	0,13
rv, ku – ab As Tuby yiliz	rv, ku –	8632	dan 2 ved - 1100 dan	0,13
Pression diamétrale longitudinale			NE EN 1002 1 9 · 82 6 1 +bl 2 4	
	1.1 -	2.5	NF EN 1993-1-8 : §3.6.1 tbl.3.4	
k1 = min{2,8*e2/d0-1,7; 2,5}	k1 = αb =			
$\alpha b = \min\{\text{fub/fu}; \text{e1/(3*d0)}; \text{p1/(3*d0)} - 0.25; 1\}$,	d-N > Va - d 1022 d-N	0.10
Fb,Rd = $(k1*\alpha b*fu*d*t) / \gamma m2$	Fbx,Rd =	10535	daN ≥ Vn,ed= 1033 daN	0,10
			NE 5N 4002 4 0 52 54 11 2 4	
Pression diamétrale transversale		2.5	NF EN 1993-1-8 : §3.6.1 tbl.3.4	
$k1 = min\{1,4*p1/d0-1,7; 2,5\}$	k1 =	•		
$\alpha b = \min\{fub/fu; e2/(3*d0); 1\}$	αb =			
Fb,Rd = $(k1*\alpha b*fu*d*t) / \gamma m2$	Fby,Rd =	12291	daN ≥ Fex,ed = 395 daN	0,03
Description disputational and the first			DNICHA/CNICONANIOATE CO 4/5	
<u>Pression diamétrale combinée</u>			BNCM/CNC2M N0175 : §2.1(5)	
			$\left(\frac{V_{n,ed}}{F_{n,ed}}\right)^2 + \left(\frac{F_{ex,ed}}{F_{n,ed}}\right)^2 =$	0.01
West and a second			$\left(\frac{F_{bx,Rd}}{F_{bx,Rd}}\right) + \left(\frac{F_{bx,Rd}}{F_{bx,Rd}}\right) =$	0,01
<u>Vérification du gousset</u>			(Same / \ Dynu/	
Cisaillement de bloc	2			
Ant = 1665 mm ² Anv = 1650 n	nm²			

XI. Introduction:

Les fondations d'une construction sont constituées par les parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure, elles constituent donc la partie essentielle de l'ouvrage puisque, de leur bonne conception et réalisation, découle la bonne tenue de l'ensemble.

Les éléments de fondation transmettent les charges au sol, soit directement (cas des semelles reposant sur le sol ou cas des radiers), soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

Les fondations doivent assurer deux fonctions essentielles :

- Reprendre les charges et surcharges supportées par la structure.
- Transmettre ces charges et surcharges au sol dans les bonnes conditions, de façon à assurer la stabilité de l'ouvrage.

La fondation doit être en équilibre sous :

- Les sollicitations dues à la superstructure.
- les sollicitations dues au sol.

XI.1. Les types des fondations :

- **♣** Fondation superficielle :
- > Semelle isolée sous Poteau.
- > Semelle filante continue sous mur.
- > Semelle filante sous plusieurs poteaux.
- Radiers généraux ou nervurés.
- ♣ Fondation profonde : (semelle sous pieux).

XI.2. Choix des fondations :

- -Un certain nombre des problèmes se pose, lorsqu'il s'agit de choisir un type de fondation, qui dépend essentiellement de la contrainte du sol.
- -Le choix du type de fondation se fait suivant trois paramètres :
 - ✓ La nature et le poids de la superstructure.
 - ✓ La qualité et la quantité des charges appliquées sur la construction
 - ✓ La qualité du sol de fondation.

Donc son calcul ne peut être effectue que lorsqu'on connaît : -La superstructure et ces charges.

-Les caractéristiques du sol (concernant le projet la contrainte admissible du sol = 0.2MPa)

XI.3. Etude des semelles :

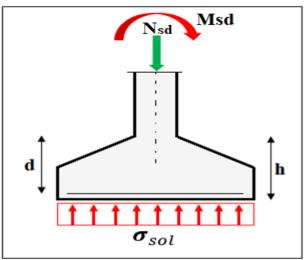


Figure XI-1: Diagramme des contraintes agissant sur les fondations.

Charges à prendre en considération :

	Effort	ELU (sous la combinaison 1.35G+1.35 (N+Q)
Semelles	N _{Sd} (daN)	247
$\overline{\sigma_{sol}}$	2 bar = 0	$0.2 \ Mpa = 20000 \ daN/m^2$

Tableau XI-1: tableaux de l'effort normal.

XI.3.1.Dimensionnement de la semelle :

a) Détermination de A et B:

$$\frac{A}{B} = \frac{a}{b} \rightarrow \begin{cases} A = \frac{a \times B}{b} \rightarrow B \ge \sqrt{\frac{b}{a} \times \frac{N_{sd}}{\sigma_{SOL}}} \\ A = \frac{b \times A}{a} \rightarrow A \ge \sqrt{\frac{a}{b} \times \frac{N_{sd}}{\sigma_{SOL}}} \end{cases}$$

On a: b = 600 mm et a = 400 mm

$$\sigma_{\text{sol}} = \frac{\text{Nsd}}{\text{A.B}}$$
 $A \times B \geq \frac{\text{Nsd}}{\sigma_{\text{sol}}}$ \longrightarrow

$$B^2 \times \frac{a}{b} = \frac{N_{Sd}}{\sigma_{sol}} \to \frac{0.4}{0.6} \times B^2 = \frac{247}{200}$$

$$0.667 \times B^2 = 1.235$$
 $\implies B = 1.361 \approx 1.40 \, m$

$$A = \frac{a}{b} \times B$$
 \longrightarrow $A = \frac{0.4}{0.6} \times 1.361 = 0.9074 \approx 1 m$

On prend:

$$A = 1 \text{ m}$$
 Et $B = 1.40 \text{ m}$

Donc on prend une semelle de dimensions (1×1.40) m².

b) Détermination de d et h :

$$h = d + 5 cm$$

$$\frac{B-b}{4} \le d \le A-a$$

$$\frac{1.40 - 0.6}{4} \le d \le 1 - 0.4$$

$$0.2m \le d \le 0.6 m$$
 $20cm \le d \le 60cm$

Donc:
$$d = 40 \text{ cm}$$
 $h = 40 + 5 = 45 \text{ cm}$

XI.3.2. Calcul de ferraillage :

> l'ELU:

$$A_{u} = \frac{N_{u} \times (A - a)}{8 \times d \times \sigma_{Ct}}$$

$$\sigma_{St} = \frac{f_e}{\gamma_c} = \frac{400}{1.15} = 347.83 \text{ MPa}$$

$$A_u = \frac{247 \times (1 - 0.4)10^{-3}}{8 \times 0.40 \times 347.83 \times 10^{-2}} = 0.0133 \ m^2 = 1.33 \ \text{cm}^2$$

> l'ELS:

$$A_S = \frac{N_S \times (A - a)}{8 \times d \times \sigma_{St}}$$

$$\sigma_{St} = min\left(\frac{2}{3}f_e; 110\sqrt{n \times f_{c28}}\right) = 201.63 MPa$$

n: coefficient de fissuration = 1.6

$$A_S = \frac{247 \times (1 - 0.4)10^{-3}}{8 \times 0.40 \times 201.63 \times 10^{-2}} = 0.0229 \text{ m}^2 = \textbf{2}.\,\textbf{29 cm}^2$$

Nous avons $A_S > A_u$ donc on prend un ferraillage de **6HA12** Avec : $A_S = 6.78 \text{ cm}^2$

XI.3.3.Détermination de la hauteur du patin 'e':

$$e \ge max (6\acute{Q} + 6cm, 15cm)$$

$$e \ge max (13.2cm; 15) donc on prend e = 15 cm$$

XI.4. Calculs des longrines :

Les longrines ont pour rôle de relier les semelles entres elles, elles sont soumises à un effort de traction.

Une longrine est posée directement sur un béton de propreté pour empêcher la pollution du béton frais de la longrine par le sol. Le béton de propreté offre également un support uniforme à la longrine.

a) Dimensionnement des longrines :

Selon le RPA99, pour un sol de type S3 les dimensions minimales de la section transversale des longrines sont : $(25 \times 30) \text{ cm}^2$

• Tableau récapitulatif pour les autres semelles isolées :

Le tableau c'est fait avec un fichier Excel.

semelle	N (kN)	a(m)	B(m)	a/b	B(m)	A(m)
S1	247	0.4	0.6	0.6667	1.361	0.907

b) Calcul du ferraillage:

Les longrines doivent être calculées pour résister à la traction sous l'action d'une force égale à :

$$F = \max \left[\frac{N}{\alpha} \right] \ge 20 \ KN$$

Avec:

α : Coefficient fonction de la zone sismique et de la catégorie de site considérée
 a = 12 (site S3, zone IIa).

N : égale à la valeur maximale des charges verticales de gravité apportées par les points d'appui solidarisés (N = 247.5 KN).

$$F = 20.63 \, KN > 20 \, KN$$

c) Calcul ferraillage longitudinal:

$$A_{St} = \frac{F}{\sigma_{St}} = \frac{20.63 \times 10}{347.83} = 0.59 \text{ cm}^2$$

Le RPA99 exige une section minimale :

$$A_{min}$$
= 0.6% B = 0.6% (25x30) = 4,5 cm²

Donc: On prend 6HA12 avec: $A_{St} = A_{min} = 6.78 \text{ cm}^2$

d) Vérification de condition de non-fragilité:

$$A_{St} \ge B \times \frac{f_{tj}}{f_e}$$

$$A_{St} = 6.78 cm^2$$

$$\rightarrow \text{ condition v\'erifi\'ee}$$

$$A_{St} \ge B \times \frac{f_{tj}}{f_e} = (25 \times 30) \times \frac{2.1}{400} = 3.94 cm^2$$

e) Calcul d'armatures transversales :

$$\varphi_t \le \min(h/35; \varphi \min; b/10) = \blacktriangleright \quad \varphi_t \le \min(8.5; 10; 25) \le 10 \text{ mm}$$

Alors on prend: $\varphi_t = 10 \text{ mm}$

f) Calcul d'espacement des cadres :

Le RPA99 exige des cadres dont l'espacement ne doit pas dépasser :

$$S_t \leq (20\,;15\phi_t) \ \rightarrow \ S_t \leq (20\;cm\,;15\times1cm) \ \rightarrow \ S_t \leq (\ 20\;cm\ ;\ 15\;cm\)$$

Alors on adopte un espacement $S_t = 15 \text{ cm}$

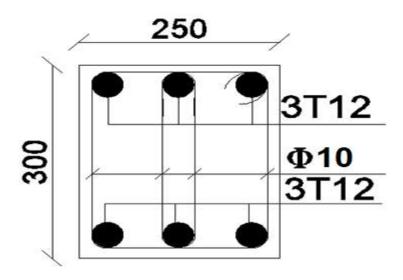


Figure XI-2: Ferraillage des longrines.

Conclusion générale

Ce projet de fin d'étude est une phase très importante dans le cycle deformation de l'ingénieur, il nous a permis de nous familiariser avec les différentes normes et règlements régissant le domaine de la construction métallique tel que les Eurocodes, le CCM97, le RNVA2013, le RPA2003,... etaussi les différents logiciels de calcul et du dessin (ROBOT, TEKLA, AUTOCAD).

La complexité et la variabilité de l'ouvrage étudié nous ont permis d'avoir une approche globale sur la façon de faire la conception et le dimensionnementd'une structure métallique y compris la structure mixte, les assemblages et les fondations.

Notre projet de fin d'études nous a permis également d'avoir un aperçu sur la construction métallique et surtout d'appliquer les connaissances acquises durantnotre cursus sur un projet réel.

Aussi, il faut mentionner que beaucoup reste à faire pour enrichir nous connaissances dans ce domaine, et que seul un travail acharné et une volontécontinue pourront nous aider à réaliser nos objectifs.

En dernier, ce travail nous a permis de mettre en œuvre nous modestes connaissances du génie civil, et de les élargir, chose qui nous aidera dans notrevie professionnelle.

Bibliographie

Réglemente

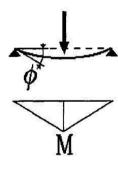
- **1-** DTR C 2-4.7 : « Règlement Neige et Vent version 2013 (RNV2013) » Centre National d'Etude et de Recherche Intégrés du Bâtiment ;
- **2-** DTR B.C 2.2 : « Charges permanentes et charges d'exploitions » Centre National de Recherche Appliquée en Génie-Parasismique CGS ;
- **3-** EUROCODE 3 : « Calcul des structures métalliques et document d'application nationale » Éditée et diffusée par l'Association Française de Normalisation (AFNOR)
- **4-** EUROCODE 4 : « Calcul des structures mixtes acier-béton et document d'application nationale » Éditée et diffusée par l'Association Française de Normalisation (AFNOR)
- 5- DTR B.C 2.44 : « Règles de Conception et de Calcul des Structures en Acier (CCM97) » Centre National de Recherche Appliquée en Génie-Parasismique CGS ;
- **6-** DTR B.C 2.48 : « Règlement Parasismiques Algériennes (RPA99/version2003) » Centre National de Recherche Appliquée en Génie-Parasismique CGS ;
- 7- BAEL 91/99 : « Règles techniques de construction et de calcul des ouvrages en constructions en Béton Armé suivant la méthode des Etats Limites BAEL 91 révisé 99 » Avril 99 ;

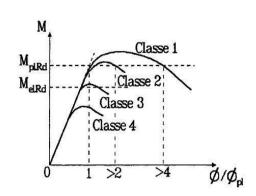
Ouvrages

1- DAHMANI Lahlou, « Calcul des éléments résistants d'une construction métallique », Office des publications universitaires.

Logiciels

1- ROBOT: « Autodesk Robot Structural Analyses Professional version 2019 ».


Catégories de terrain


Catégorie de terrain	K_T	$z_0(m)$	$z_{\min}(m)$	3
0				
mer, ou zone côtière exposée aux vents	0.156	0.003	1	0.38
de mer.				
I				
Lacs ou zone plate et horizontale à	0.170	0.01	1	0.44
végétation négligeable et libre de tout obstacle.				
II				
Zone à végétation basse telle que l'herbe,				
avec ou non quelques obstacles isolés				
(arbres, bâtiments) séparés les uns des	0.190	0.05	2	0.52
autres d'au moins de 20 fois leur hauteur.	0.150	0.03	_	0.52
III				
Zones à couverture végétale régulière ou				
des bâtiments, ou avec des obstacles	1	0.3	5	0.61
isolés séparés d'au plus de 20 fois leur				
hauteur (par exemple des villages, des				
zones suburbaines, des forêts				
permanentes).				
IV				
Zones urbaines dont au moins 15% de la				
surface est occupée par des bâtiments de	0.234	1	10	0.67
hauteur moyenne supérieure à 15 m.				

Principe de classification des sections (cas de la flexion simple)

- (1) Quatre classes de sections transversales sont définies:
 - Classe 1 Sections transversales pouvant former une rotule plastique avec la capacité de rotation requise pour une analyse plastique.
 - Classe 2 Sections transversales pouvant développer leur moment de résistance plastique, mais avec une capacité de rotation limitée.
 - Classe 3 Sections transversales dont la contrainte calculée dans la fibre extrême comprimée de l'élément en acier peut atteindre la limite d'élasticité, mais dont le voilement local est susceptible d'empêcher le développement du moment de résistance plastique.
 - Classe 4 Sections transversales dont la résistance au moment fléchissant ou à la compression doit être déterminée avec prise en compte explicite des effets dévoilement local.

(1) C Des lois types de comportement moment-rotation correspondant à chaque classe de section sont présentées cidessous, mettant en évidence la résistance et la capacité de rotation qui peuvent être atteintes avant apparition du phénomène de voilement local (correspondant à l'affaissement de la loi de comportement), tout risque de déversement étant empêché.

Activer Windows

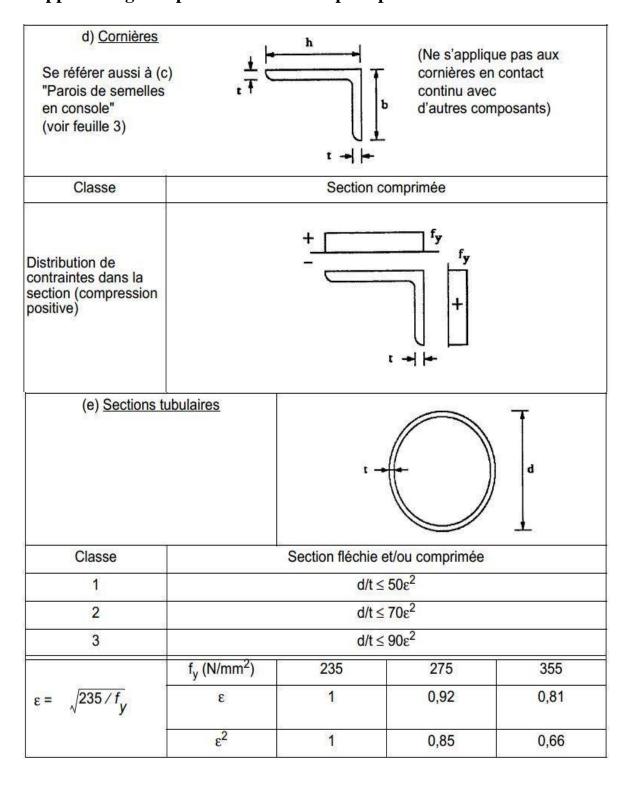

Rapports largeur/épaisseur maximaux pour àmes

Tableau 5.3.1 (Feuille 1)		Rapports largeur maximaux pour parois comprimées					
12 AF 01	nes : (parois interne	es perpendiculaires à	l'axe de flexion)				
t _w	t _w	· · · · · · · · · · · · · · · · · · ·	$= h - 3t [t = t_f = t_W]$	Axe de flexion			
Classe	Ame fléchie	Ame comprimée	Ame en flexio	n composée			
Distribution de contraintes dans la paroi (compression positive)	+ 5	, - · · · · · · · · · · · · · · · · · ·	,	ad d b			
1	$d/t_w \le 72 \epsilon$	$d/t_W \le 33 \epsilon$	Quand $\alpha > 0$, $d/t_w \le 396$ Quand $\alpha < 0$, $d/t_w \le 36 \epsilon$	ε/(13 α–1) 5 :			
2	$d/t_w \le 83 \epsilon$	$d/t_W \le 38 \ \epsilon$	Quand $\alpha > 0$, $d/t_w \le 456$ Quand $\alpha < 0$, $d/t_w \le 41$,	5 ε/(13 α–1) 5 :			
Distribution de contraintes dans la paroi (compression positive)	t _y h		ψ fy	fy d h			
3	d/t _w ≤ 124 ε	d/t _w ≤ 42 ε	Quand ψ≤-1	$E/(0,67+0,33\psi)$			
0= 235/f	f _y (N/mn	n ²) 235	275	355			
$\varepsilon = \sqrt{235/f_y}$	ε	1	0,92	0,81			

Rapports largeur-épaisseur maximaux pour parois de semelles en console

	(b) Parois semelles e	n console :			
=			The first		↓¹f
01	Sections lam	ASSESSED OF THE PROPERTY OF TH	3-24	ections soudées	
Classe	Type de section	Paroi comprimée	bord comp	oi en flexion com	bord tendu
dans la p	on de contraintes aroi ssion positive)	- + 	αc	• - - -	+ -
1	laminées soudées	$c/t_f \le 10 \ \epsilon$ $c/t_f \le 9 \ \epsilon$	$c/t_{f} \le \frac{10}{c}$ $c/t_{f} \le \frac{9}{c}$	*	$/t_{f} \le \frac{10\varepsilon}{\alpha\sqrt{\alpha}}$ $/t_{f} \le \frac{9\varepsilon}{\alpha\sqrt{\alpha}}$
2	laminées soudées	$c/t_f \le 11 \epsilon$ $c/t_f \le 10 \epsilon$	$c/t_{f} \le \frac{11}{c}$ $c/t_{f} \le \frac{10}{c}$		$/t_{f} \le \frac{11\varepsilon}{\alpha\sqrt{\alpha}}$ $/t_{f} \le \frac{10\varepsilon}{\alpha\sqrt{\alpha}}$
dans la p	on de contraintes aroi ssion positive)	+ -		1 + [+ -
3	laminées soudées	$c/t_f \le 15 \epsilon$ $c/t_f \le 14 \epsilon$	Pour k _o voir tab	c/t _f $\leq 23 \epsilon \sqrt{k_{\sigma}}$ c/t _f $\leq 21 \epsilon \sqrt{k_{\sigma}}$ cleau 5.3.3	
9020	225 / f	f _y (N/mm ²)	235	275	355
= 3	$\sqrt{235/f_y}$	ε	1	0,92	0,81

Rapports largeur-épaisseur maximaux pour parois de semelles en console

Choix de la courbe de flambement correspondant à une section

Type de Section	limites	axe de flambement	courbe de flambement
Sections en I laminées			
	h/b > 1,2:		
r.f.	t _f ≤ 40 mm	у - у	а
J ž		Z - Z	b
	40 mm < t _f ≤ 100 mm		b
	40 mm < 4 ≤ 100 mm	y - y z - z	C
h vv		2 - 2	
	$h / b \le 1,2$:		146
.	t _f ≤ 100 mm	y - y	b
½		Z-Z	С
ь	t _f > 100 mm	y - y	d
•	1200000000	z - z	d
100 × 1000		100 100	33321
Sections en I soudées			
² 1 ² 1			
+ + +	t _f ≤ 40 mm	y - y	b
, t	500 - 100 100 100 100 100 100 100 100 100	z - z	C
yy		V - V	С
	t _f > 40 mm	y - y z - z	d
	4 - 10 11111		
Sections creuses	laminées à chaud	quel qu'il soit	а
_		E-	b
	formées à froid	quel qu'il soit	
	- en utilisant f _{yb} *)		
	formées à froid	quel qu'il soit	С
	- en utilisant f _{ya} *)		
	d'une manière générale	quel qu'il soit	b
Caissons soudés	(sauf ci-dessous)	quoi qu'ii ooit	
•	Soudures épaisses et		
2 1			
	$b / t_f < 30$	y - y	C
h y	$h/t_{w} < 30$	z - z	С
b			
Sections en U, L, T et sections pleines	1		
			(222)
H . 1	4 .	quel qu'il soit	С
<u> </u>			
I I			
*) Voir 5.5.1.4 (4) et figure 5.5.2			

Valeur du coefficient de flambement χ de la courbe a

λ	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,1	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
0,2	1,0000	0,9978	0,9956	0,9934	0,9912	0,9889	0,9867	0,9844	0,9821	0,9798
0,3	0,9775	0,9751	0,9728	0,9704	0,9680	0,9655	0,9630	0,9605	0,9580	0,9554
0,4	0,9528	0,9501	0,9474	0,9447	0,9419	0,9391	0,9363	0,9333	0,9304	0,9273
0,5	0,9243	0,9211	0,9179	0,9147	0,9114	0,9080	0,9045	0,9010	0,8974	0,8937
0,6	0,8900	0,8862	0,8823	0,8783	0,8742	0,8700	0,8657	0,8614	0,8569	0,8524
0,7	0,8477	0,8430	0,8382	0,8332	0,8282	0,8230	0,8178	0,8124	0,8069	0,8014
0,8	0,7957	0,7899	0,7841	0,7781	0,7721	0,7659	0,7597	0,7534	0,7470	0,7405
0,9	0,7339	0,7273	0,7206	0,7139	0,7071	0,7003	0,6934	0,6865	0,6796	0,6726
1,0	0,6656	0,6586	0,6516	0,6446	0,6376	0,6306	0,6236	0,6167	0,6098	0,6029
1,1	0,5960	0,5892	0,5824	0,5757	0,5690	0,5623	0,5557	0,5492	0,5427	0,5363
1,2	0,5300	0,5237	0,5175	0,5114	0,5053	0,4993	0,4934	0,4875	0,4817	0,4760
1,3	0,4703	0,4648	0,4593	0,4538	0,4485	0,4432	0,4380	0,4329	0,4278	0,4228
1,4	0,4179	0,4130	0,4083	0,4036	0,3989	0,3943	0,3898	0,3854	0,3810	0,3767
1,5	0,3724	0,3682	0,3641	0,3601	0,3561	0,3521	0,3482	0,3444	0,3406	0,3369
1,6	0,3332	0,3296	0,3261	0,3226	0,3191	0,3157	0,3124	0,3091	0,3058	0,3026
1,7	0,2994	0,2963	0,2933	0,2902	0,2872	0,2843	0,2814	0,2786	0,2757	0,2730
1,8	0,2702	0,2675	0,2649	0,2623	0,2597	0,2571	0,2546	0,2522	0,2497	0,2473
1,9	0,2449	0,2426	0,2403	0,2380	0,2358	0,2335	0,2314	0,2292	0,2271	0,2250
2,0	0,2229	0,2209	0,2188	0,2168	0,2149	0,2129	0,2110	0,2091	0,2073	0,2054
2,1	0,2036	0,2018	0,2001	0,1983	0,1966	0,1949	0,1932	0,1915	0,1899	0,1883
2,2	0,1867	0,1851	0,1836	0,1820	0,1805	0,1790	0,1775	0,1760	0,1746	0,1732
2,3	0,1717			1100-200	0,1663	9/1-		STATE OF THE PARTY.	0,1610	0,1598
2,4	0,1585	0,1573	0,1560	0,1548	0,1536	0,1524	0,1513	0,1501	0,1490	A 100 A
2,5	0,1467	100 4 3 3 30	MC - CONTROL		0,1424		500000000000000000000000000000000000000			1600 (FOX 07) (CO)
2,6	The second	0,1352		No. of the Control of	and the second		LIST STATE OF	and the Name of the		18 18 38 5
2,7	to Selective Control	0,1258	100 6 Care 100 Care		1,000	\$2786 P. 1910			0,1198	1 X 1 - 0 - 0 - 0 X 1X 1
2,8	.00	0,1174	188			500	317)	0,1128	0,1120	(410)
2,9		0,1098	A STATE OF THE STA		0,1077	A CONTRACTOR OF THE PARTY OF TH	0,1063		0,1049	100000000000000000000000000000000000000
3,0	0,1036	0,1029	0,1022	0,1016	0,1010	0,1003	0,0997	0,0991	0,0985	0,0978

Valeur du coefficient de flambement χ de la courbe b

$\frac{1}{\lambda}$	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,1	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
0,2	1,0000	0,9965	0,9929	0,9894	0,9858	0,9822	0,9786	0,9750	0,9714	0,9678
0,3	0,9641	0,9604	0,9567	0,9530	0,9492	0,9455	0,9417	0,9378	0,9339	0,9300
0,4	0,9261	0,9221	0,9181	0,9140	0,9099	0,9057	0,9015	0,8973	0,8930	0,8886
0,5	0,8842	0,8798	0,8752	0,8707	0,8661	0,8614	0,8566	0,8518	0,8470	0,8420
0,6	0,8371	0,8320	0,8269	0,8217	0,8165	0,8112	0,8058	0,8004	0,7949	0,7893
0,7	0,7837	0,7780	0,7723	0,7665	0,7606	0,7547	0,7488	0,7428	0,7367	0,7306
0,8	0,7245	0,7183	0,7120	0,7058	0,6995	0,6931	0,6868	0,6804	0,6740	0,6676
0,9	0,6612	0,6547	0,6483	0,6419	0,6354	0,6290	0,6226	0,6162	0,6098	0,6034
1,0	0,5970	0,5907	0,5844	0,5781	0,5719	0,5657	0,5595	0,5534	0,5473	0,5412
1,1	0,5352	0,5293	0,5234	0,5175	0,5117	0,5060	0,5003	0,4947	0,4891	0,4836
1,2	0,4781	0,4727	0,4674	0,4621	0,4569	0,4517	0,4466	0,4416	0,4366	0,4317
1,3	0,4269	0,4221	0,4174	0,4127	0,4081	0,4035	0,3991	0,3946	0,3903	0,3860
1,4	0,3817	0,3775	0,3734	0,3693	0,3653	0,3613	0,3574	0,3535	0,3497	0,3459
1,5	0,3422	0,3386	0,3350	0,3314	0,3279	0,3245	0,3211	0,3177	0,3144	0,3111
1,6	0,3079	0,3047	0,3016	0,2985	0,2955	0,2925	0,2895	0,2866	0,2837	0,2809
1,7	0,2781	0,2753	0,2726	0,2699	0,2672	0,2646	0,2620	0,2595	0,2570	0,2545
1,8	0,2521	0,2496	0,2473	0,2449	0,2426	0,2403	0,2381	0,2359	0,2337	0,2315
1,9	0,2294	0,2272	0,2252	0,2231	0,2211	0,2191	0,2171	0,2152	0,2132	0,2113
2,0	0,2095	0,2076	0,2058	0,2040	0,2022	0,2004	0,1987	0,1970	0,1953	0,1936
2,1	0,1920	0,1903	0,1887	0,1871	0,1855	0,1840	0,1825	0,1809	0,1794	0,1780
2,2	0,1765	0,1751	0,1736	0,1722	0,1708	0,1694	0,1681	0,1667	0,1654	0,1641
2,3	0,1628	0,1615	0,1602	0,1590	0,1577	0,1565	0,1553	0,1541	0,1529	0,1517
2,4	0,1506	0,1494	0,1483	0,1472	0,1461	0,1450	0,1439	0,1428	0,1418	
2,5	0,1397	0,1387	0,1376	0,1366	0,1356	0.00		0,1327	0,1318	0,1308
2,6	0,1299	0,1290	0,1281	0,1272	0,1263	0,1254	0,1245	######################################	0,1228	0,1219
2,7	0,1211	983	88		0,1178	0.82	885	11.825	0,1147	387
2,8		0,1124				0,1095		0,1081	0,1074	
2,9	0,1060	200	40.000		0,1033	military and the same	The Constitution		0,1007	
3,0	0,0994	0,0988	0,0982	0,0976	0,0970	0,0964	0,0958	0,0952	0,0946	0,0940

Section en cm 2 de N armatures de diametre \emptyset (mm)

Φ (mm)	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,7
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,72	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,53
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,10
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,66
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,23
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,80
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,55	163,36
14	2,75	3,96	7,04	11,00	15,38	21,55	28,15	43,98	68,72	112,59	175,93
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,64	188,50
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	128,68	201,06
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,72	213,63
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,76	226,20
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	93,27	152,81	238,76
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,85	251,33

Coefficients C₁, C₂ et C₃, pour différentes valeurs de k, Tableau F.1.2 dans le cas de charges transversales Coefficients Chargement et Diagramme de Valeur de conditions d'appuis C_2 C_3 moment de flexion k C₁ 1,0 1,132 0,525 0,459 0,5 0,972 0,304 0,980 1,0 0,753 1,285 1,562 0,5 0,712 1,070 0,652 1,0 1,365 0,553 1,730 0,5 1,070 0,432 3,050 1,0 1,565 1,267 2,640 0,5 0,938 0,715 4,800 1,0 1,046 0,430 1,120 1,890 0,5 1,010 0,410

Valeur de longueur de flambement en fonction de longueurd'appuis

Conditions d'appuis	m	ℓ_K
Sans déplacements des extrémités		
$\ell_0 = \ell_K$	1	ℓ_0
encastrement parfait	2	0,7 £ ₀
$N \longrightarrow \emptyset$	4	0,5 ℓ ₀
encastrement élastique	1 < m < 2	> 0,7 Å
Avec liberté de déplacements aux extrémités	1/4	2 ℓ0
$N \rightarrow $	313	l ₀
N → "	m < 1	>2 l ₀

Coefficient de topographie

Site	C_{t}
Site plat	1
Site aux alentours des vallées et oueds sans effet d'entonnoir	1
Site aux alentours des vallées avec effet d'entonnoir	1.3
Site aux alentours des plateaux	1.15
Site aux alentours des collines	1.15
Site montagneux	1.5

Coefficient de pression extérieure pour les parois verticales

A		В	В С		C		n n es	D	la get a re	E	i.
$C_{e.10}$	$C_{e.1}$										
-1.0	-1.3	-0.8	-1.0	-0.5		+0.8	1.0	-0.3			

Coefficient de pression extérieure pour toiture à deux versants

Pente α	Zone	pour ve	nt de di	rection	$\theta = 0$ °					
	F		G		Н		I		J	
	$C_{e,10}$	$C_{e'1}$	$C_{e.10}$	$C_{e.1}$	$C_{e.10}$	$C_{e,1}$	$C_{e.10}$	$C_{e,1}$	$C_{e.10}$	C_{e}
5°	-1.7	-2.5	-1.2	-2.0	-0.6		-0.3		-0.3	
15°	-0.9	-2.0	-0.8	-1.5	-0.3		-0.4		-1.0	-1.5
(0)	+0.2	+0.2		+0.2			-	3903		
30°	-0.5	-1.5	-0.5	-1.5	+0.2		-0.4		-0.5	
	+0.7	47	+0.7		+0.4	-				
15°	+0.7	2	+0.7		+0.6	II .	-0.2		-0.3	
60°	+0.7		+0.7		+0.7		-0.2		-0.3	
′5°	+0.8		+0.8		+0.8		-0.2		-0.3	

Pent α	Zone	Zone pour vent de direction $\theta = 90^{\circ}$												
	F	-504	G		Н		I							
	$C_{e.10}$	$C_{e.1}$	$C_{e.10}$	$C_{e.1}$	$C_{e.10}$	$C_{e.1}$	$C_{e.10}$	$C_{e,1}$						
5°	-1.6	-2.2	-1.3	-2.0	-0.7	-1.2	-0.5							
15°	-1.3	-2.0	-1.3	-2.0	-0.6	-1.2	-0.5							
30°	-1.1	-1.5	-1.4	-2.0	-0.8	-1.2	-0.5							
5°	-1.1	-1.5	-1.4	-2.0	-0.9	-1.2	-0.5							
0°	-1.1	-1.5	-1.2	-2.0	-0.8	-1.0	-0.5							
5°	-1.1	-1.5	-1.2	-2.0	-0.8	-1.0	-0.5							

Valeurs de coefficient de forme en fonction de la pente Pour une toiture simple à deux versants sans obstacles de retenue

(α) pente du versant (en °)	$0 \le \alpha \le 15$	$15 < \alpha \le 30$	$30 < \alpha < 60$	α ≥ 60
Coefficient µ ₁	0.8	0.8	$0.8\left(\frac{60-\alpha}{30}\right)$	0.0
Coefficient μ ₂	0.8	$0.8+0.6\left(\frac{\alpha-15}{30}\right)$	$1.1\left(\frac{60-\alpha}{30}\right)$	0.0

Valeurs de la section de résistance A_s des boulons à la traction

Diamètre nominale du boulon $d(mm)$	14	16	18	20	22	24	27	30
Section résistante $A_s(mm^2)$	115	157	192	245	303	353	459	561

Caractéristique mécanique des boulons selon leur classe d'acier

Valeur de la	limite (d'élastic	cité f_{yl}	, et de	la rés	sistance	àla						
traction f_{ub} des boulons													
Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9						
$f_{yb}(N/mm^2)$	240	320	300	400	480	640	900						
$f_{ub}(N/mm^2)$	400	400	500	500	600	800	1000						

Caractéristique mécanique des boulons HR

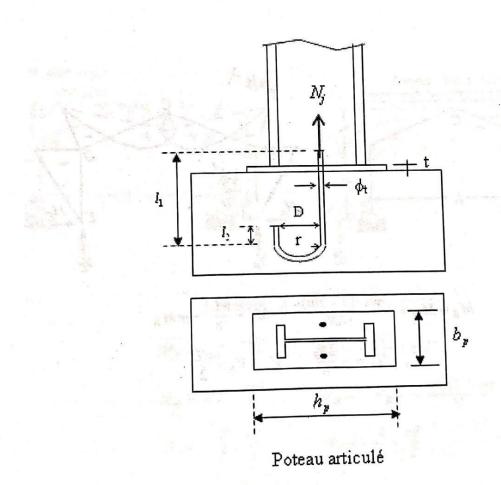
Appellation	$f_{ub}(N/mm^2)$	$f_{\gamma b}(N/mm^2)$
HR 10.9	1000	900
HR 8.8	800	640

	M 12	M 16	M 20	M 24	M 27
Diamètre tige d (mm)	12	16	20	24	27
Diamètre Trou d (mm)	14	18	22	26	30
Section Tige A (mm²)	113	201	314	452	573
Section Résistance A,	84	157	245	353	459

Caractéristique des boulons

Boulons	Vale	ırs usuelles (mm)	Valeurs minimales (mm)					
	P ₁ , P ₂	ė1.	ė,	P1, P2	ėį.	e ₂			
M 12	40	25	20	35	20	15			
M 16	50	35	25	40	25	20			
M 20	60	40	30	45	30	25			
M 24	70	50	40	55	35	30			
M 27	80	55	45	65	40	35			

Tableau: entraxe des boulons et pinces

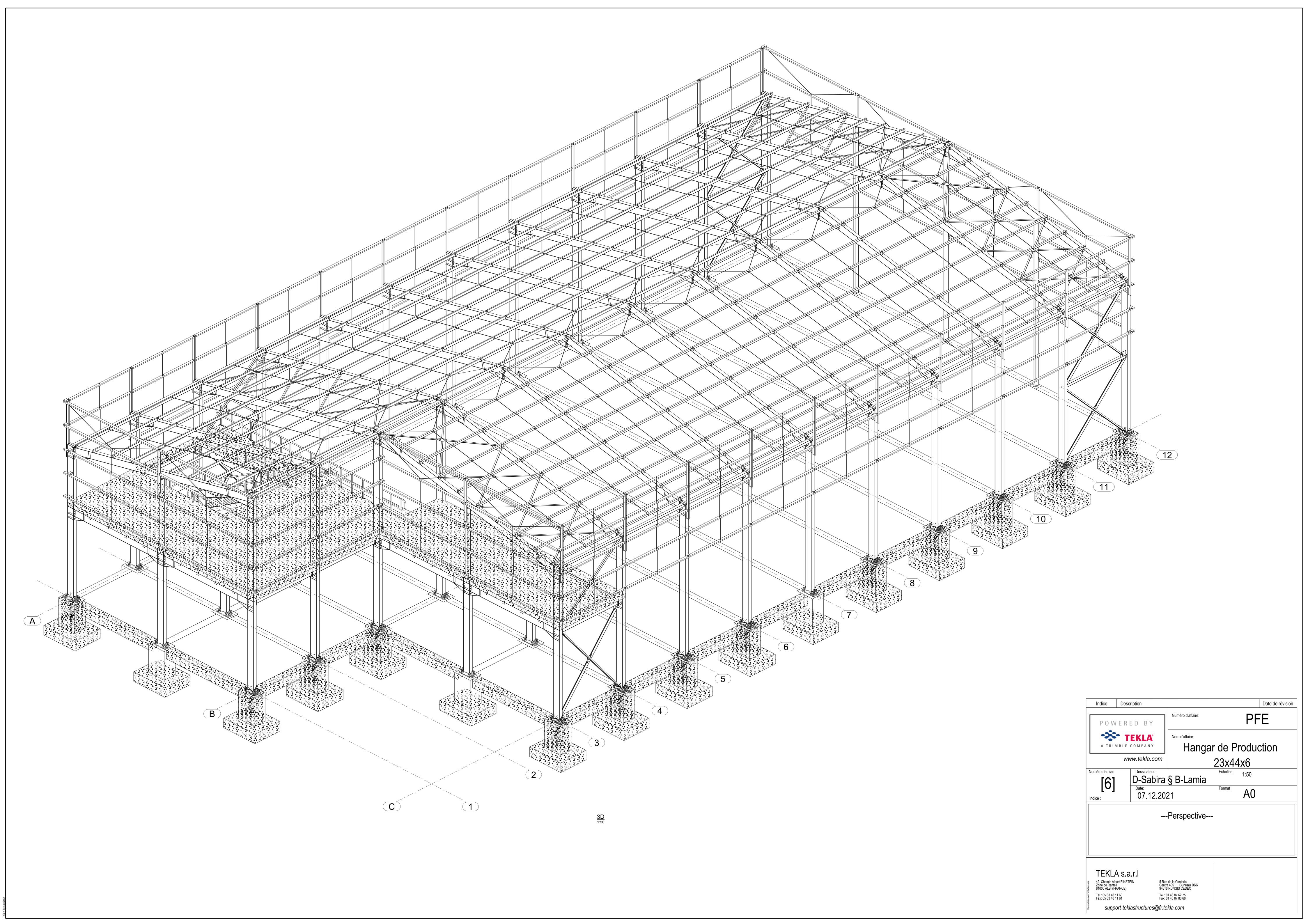

Diamètre nominal d _b (mm)	Aire nominale A (mm²)	Aire résistante As (mm²)
14	154	115
16	201	157
18	254	192
22	314	245
22	380	303
24	452	353

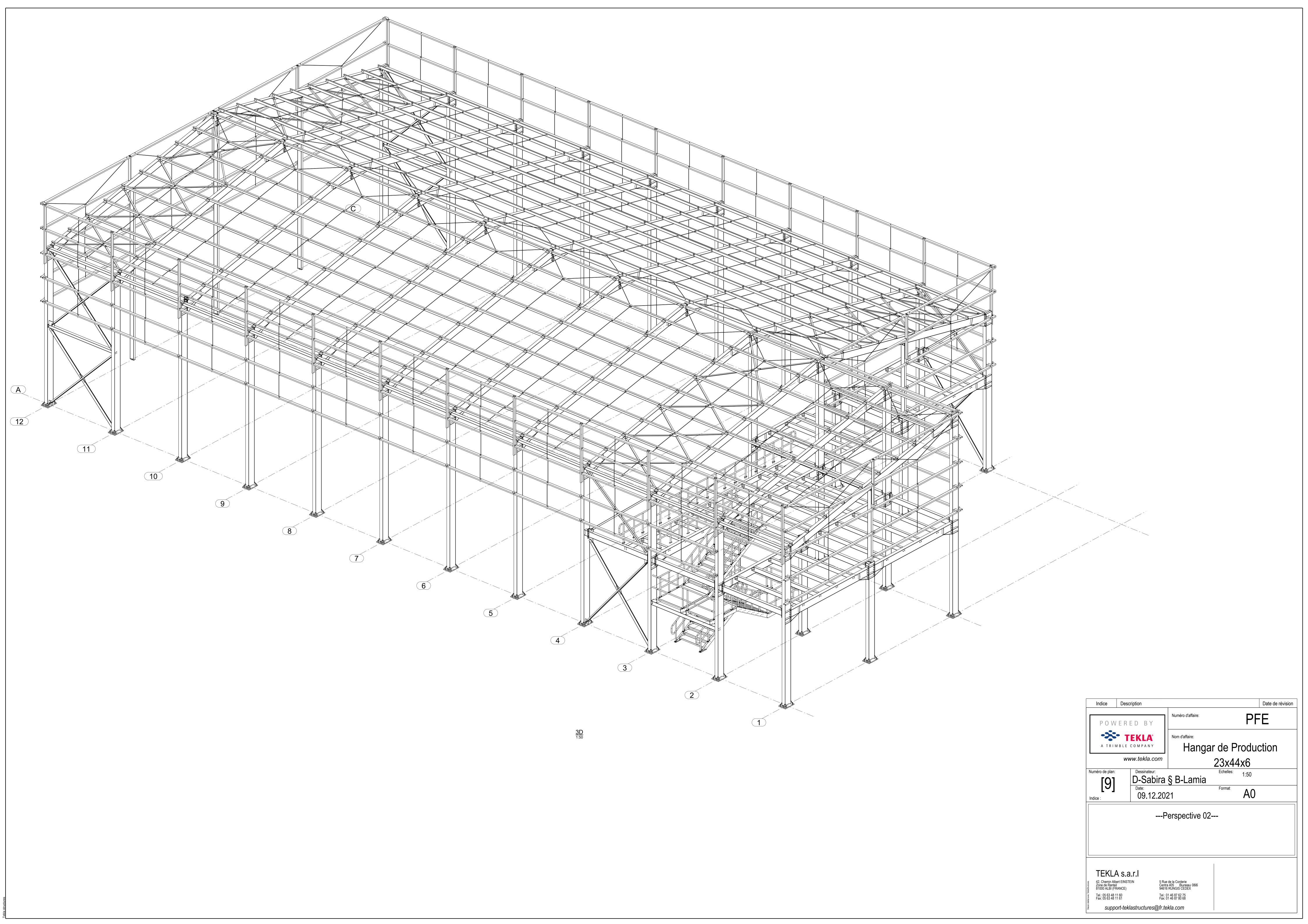
Les Dimensions des différents boulons

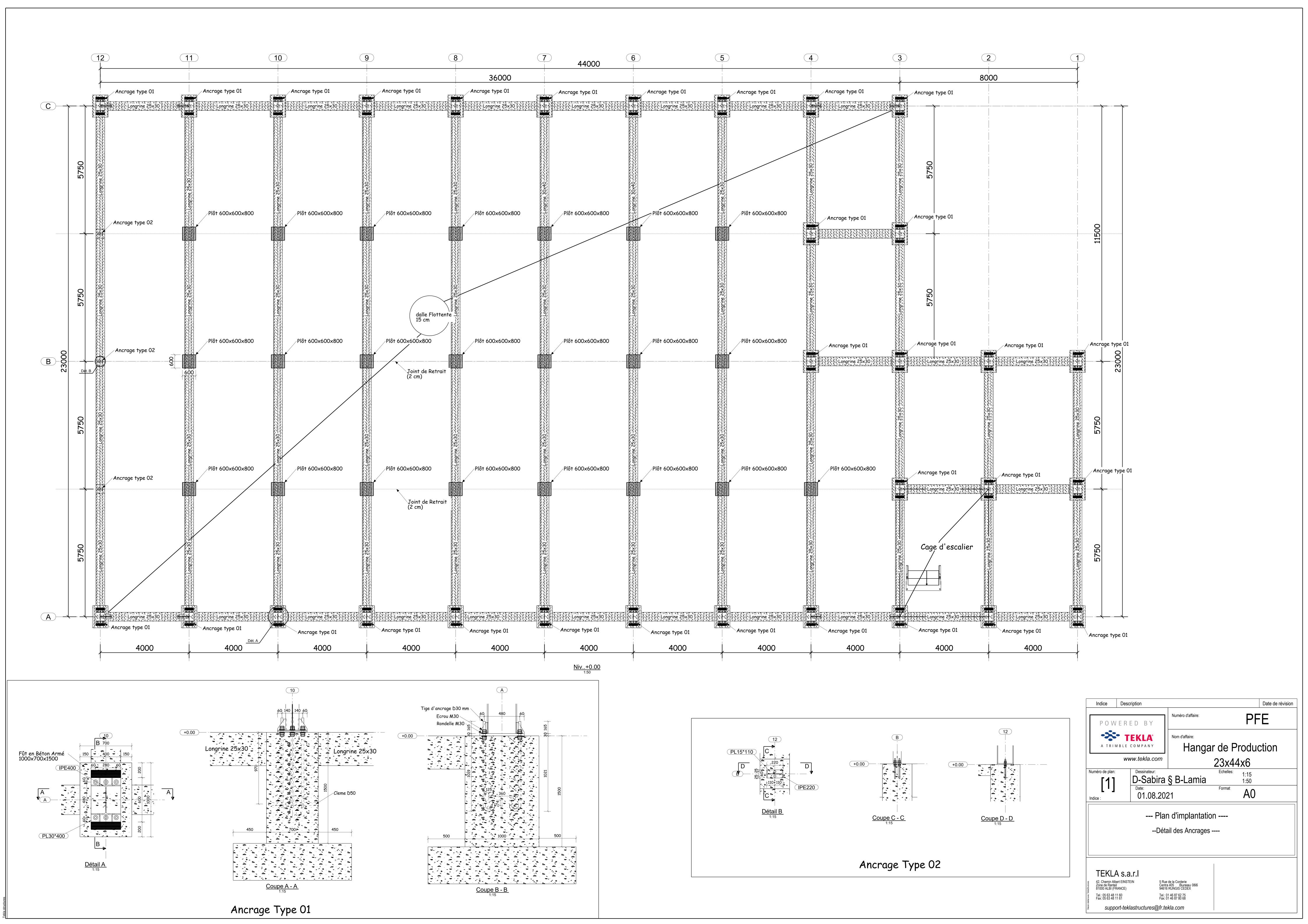
Valeurs des efforts normaux admissibles, $N_j^{\text{max}}(daN)$ par tige d'ancrage et leurs diamètres donnés en fonction des caractéristiques de la tige et de la profondeur d'ancrage:

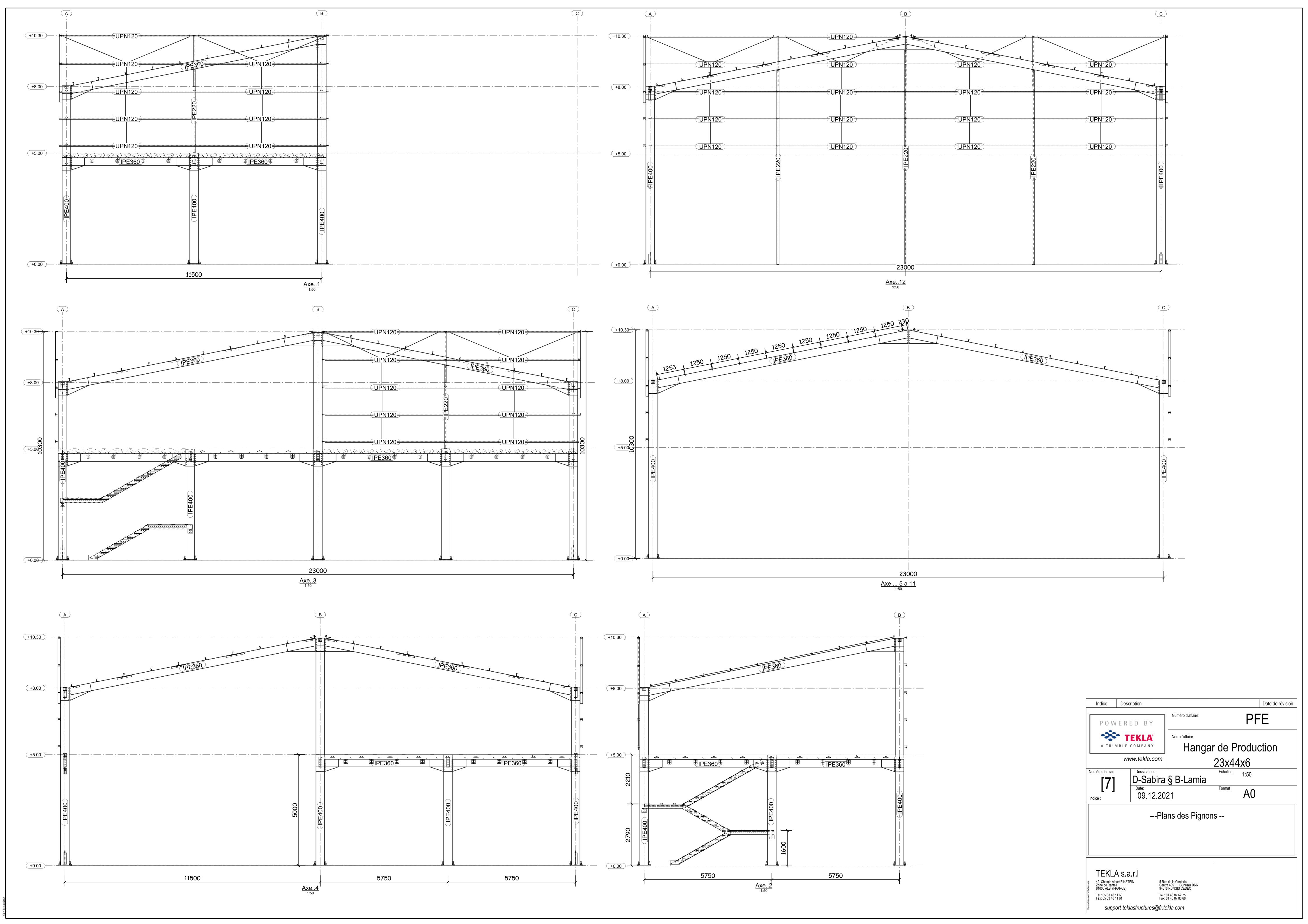
ϕ_t	D	l_1	l_2	l_f	N_j^{\max}
16	40	280	25	120	2170
20	50	280	32	120	3040
20	50	480	32	120	4420
24	70	500	40	160	6070
30	90	500	50	160	8580
33	100	700	55	160	12260

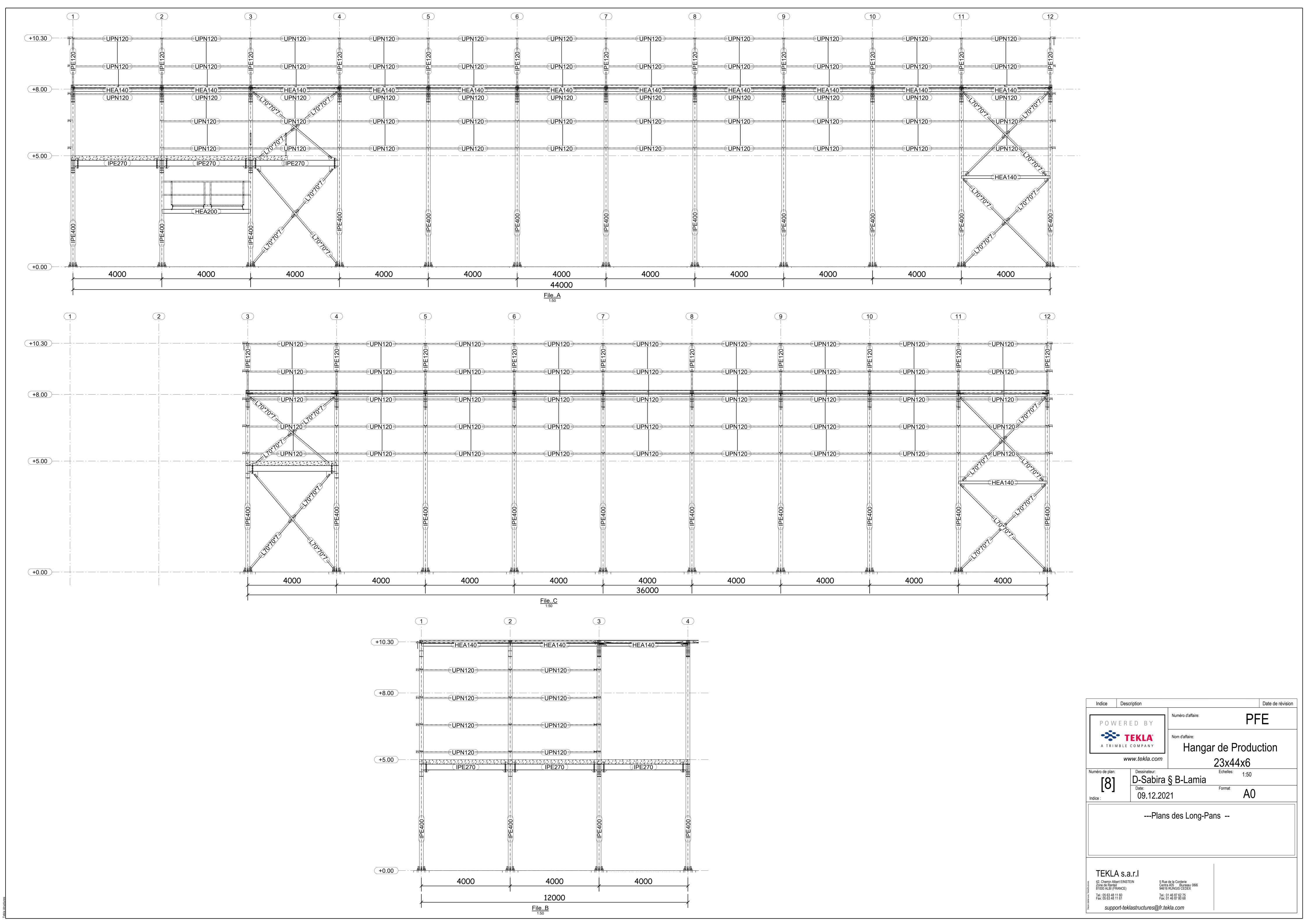
 l_f : longueur filetée.


Prédimensionnement des pieds de poteau articulés sous compression axiale (Acier S235/Béton C25/30):


Profilés IPE


Compress	ion	***************************************	***************************************	(No	, / N	PL NJ) =	= 0.25	***************************************				(N _S	J/N_{J}	od 11d) =	0.5		
Profil	Résista nce	Effort Axial	T	Platin	***************************************	***************************************		ndation (mm)	Effort Axial		Platin	(mm)		For	dation (r	,
Poteau	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d,	N _{SI}	hp	b _p	I _F	Proj.	h,	Ь,	d,							
IPERO	180	45	95	60	8	C	145	90	100	90	105	75	8	E	160	115	100
IPE100	243	61	115	70	8	C	175	105	100	121	130	85	8	E	195	130	100
IPE120	310	78	135	80	8	Č	205	120	100	155	150	95	g	E	225	145	100
IPE140	386	97	155	90	8	c	235	135	100	193	175	105	8	E	265	160	100
IPE160	472	118	175	100	8	C	265	150	100	236	195	120	8	E	295	180	100
IPE180	563	141	200	110	8	C	300	165	100	261	220	130	10	E	330	195	110
IPE200	669	167	220	120	R	C	330	180	110	335	240	140	10	E	360	210	120
IPE220	784	196	240	130	8	C	360	195	120	392	265	155	10	E	400	235	135
IPE240	919	230	260	140	8	C	390	210	130	460	290	170	12	E	435	255	145
IPE270	1080	270	295	160	X	Č	445	240	150	540	295	160	18	C	445	240	150
IPE300	1265	316	325	175	8	C	490	265	165	632	325	175	20	C	490	265	165
IPE330	1471	368	355	185	8	Ĉ	535	280	180	736	355	185	20	C	535	280	180
IPE360	1709	427	390	200	8	Č	585	300	195	855	390	200	22	C	585	300	195
IPE400	1985	496	430	210	8	è	645	315	215	992	430	210	22	C	645	315	215
IPE450	2322	581	480	220	8	Č	720	330	240	1161	480	220	24	C	720	330	240
IPE500	2715	679	535	235	8	Č	805	355	270	1357	535	235	26	C	805	355	270
IPE550	3159	790	585	245	8	Ĉ	880	370	295	1579	585	245	28	C	880	370	295
IPE600	3666	916	640	260	10	Č	960	390	320	1833	640	260	28	C	960	390	320


Profilés HEA


Compression		$(N_{Sd} / N_{pl,Rd}) = 0.25$								$(N_{Sd}/N_{plRd})=0.5$							
Profil Potesu	Résista nce	Effort Axial	Platine (mm)				Fondation (mm)			Effort Axial	Platine (mm)				Fondation (mm)		
	N _{pi.Rd} (kN)	N _{Sd} (kN)	h_p	b_p	1 _p	Proj.	h,	<i>b</i> ,	d,	N _{SI} (kN)	hp	b_p	t _p	Proj.	h,	br	d,
HEA100	499	125	115	120	8	C	175	180	100	250	140	140	10	E	210	210	100
HEA120	595	149	130	140	8	C	195	210	100	298	155	160	10	E		_	100
HEA140	738	185	150	160	8	C	225	240	100	369	180	185	10	E	235	240	100
HEA160	911	228	170	180	8	C	255	270	100	456	200	210	12	E		280	100
HEA180	1063	266	190	200	8	C	285	300	100	532	220	230	12		300	315	100
HEA200	1265	316	210	220	8	C	315	330	105	633	245	255		E	330	345	110
HEA220	1512	378	235	245	8	C	355	370	120	756	270	280	12	E	370	385	125
HEA240	1806	451	255	265	8	C	385	400	130	903	295	-	14	E	405	420	135
HEA260	2040	510	275	285	8	C	415	430	140	1020	-	305	16	E	445	460	150
HEA280	2286	571	300	310	8	C	450	465	150	1143	315	325	16	E	475	490	160
HEA300	2644	661	320	330	8	Č	480	495	160	1322	300	310	28	C	450	465	150
HEA320	2923	731	345	335	10	Č	520	505	175	1461	320	330	30	C	480	495	160
HEAJ40	3127	784	365	335	10	c	550	505	185	-	390	380	18	E	585	570	195
HEA360	3355	839	385	335	10	C	580	505	195	1568	415	385	20	E	-625	580	210
HEA400	3736	934	430	340	10	Č	645	510	215	1677	435	385	20	E	655	580	220
HEA450	4184	1046	485	345	10	Č	730	520	245	1868	485	395	22	E	730	595	245
HEA500	4642	1161	540	350	12	Č	810	525	270	2092	540	400	24	E	810	600	270
1EA550	4976	1244	590	350	12	č	885	323	295	2321	595	405	24	E	895	610	300
1EA600	5322	1330	640	350	12	C	960	525	320	2488	390	350	38	C	885	325	295
1EA650	5678	1420	695	355	12	C	1045	535	350	2661	640	350	38	C	960	525	320
1EA700	6121	1530	745	355	12	Č	1120	535	375	2839	695	355	38	C	1045	535	350
1EA800	6717	1679	850	360	12	C	1275	540	425	3061	745	355	40	C	1120	535	375
1EA900	7532	1883	950	360	12	C	1425	550	-	3358	850	360	38	C	1275	540-	425
			1,00	2/19			1423	130	475	3766	950	360	40	C	1425	540	475

