REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU

FACULTE DE GENIE ELECTRIQUE ET DE L'INFORMATIQUE DEPARTEMENT D'ELECTROTECHNIQUE

MEMOIRE DE MAGISTER

EN ELECTROTECHNIQUE Option : **Entrainements Electriques**

Présenté par

HAMOUDA Abderrahmane

Ingénieur d'état en électrotechnique

Thème

ELABORATION D'UN PROGRAMME DE CALCUL DE MACHINES SYNCHRONES SOUS MATLAB EN VU D'UNE ETUDE D'OPTIMISATION

Soutenu publiquement le 04/07/2012 devant le jury d'examen :

M. Rachid CHAIBI, Professeur, Université de Tizi-Ouzou	Président
M. Hassane MOHELLEBI, Professeur, Université de Tizi Ouzou	Rapporteur
M. NEDJAR Mohammed, Professeur, Université de Tizi Ouzou	Examinateur
M. OULD OUALI Samy Hassani, Maitre de Conférence B, Université de Tizi Ouzou	Examinateur

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU

FACULTE DE GENIE ELECTRIQUE ET DE L'INFORMATIQUE DEPARTEMENT D'ELECTROTECHNIQUE

MEMOIRE DE MAGISTER

EN ELECTROTECHNIQUE Option : **Entrainements Electriques**

Présenté par

HAMOUDA Abderrahmane

Ingénieur d'état en électrotechnique

Thème

ELABORATION D'UN PROGRAMME DE CALCUL DE MACHINES SYNCHRONES SOUS MATLAB EN VU D'UNE ETUDE D'OPTIMISATION

Soutenu publiquement le 04/07/2012 devant le jury d'examen :

M. Rachid CHAIBI, Professeur, Université de Tizi-Ouzou	Président
M. Hassane MOHELLEBI, Professeur, Université de Tizi Ouzou	Rapporteur
M. NEDJAR Mohammed, Professeur, Université de Tizi Ouzou	Examinateur
M. OULD OUALI Samy Hassani, Maitre de Conférence B, Université de Tizi Ouzou	Examinateur

TABLE DES MATIERES

Table des matières	i
Liste des figures	iv
Liste des tableaux	v
Nomenclature	vi
Version Abrégée	X
Introduction Générale	1
CHAPITRE I : Généralité Sur La Conception Des Machines Electriques	
I-1 Dimensionnement des machines électriques (problème inverse)	3
I-1-1 Problème inverse	3
I-1-2 Formulation du problème inverse	3
I-2 Les modèles analytiques pour la conception des machines électriques	4
I-2-1 Modèles provenant de la résolution formelle des équations de Maxwell	5
I-2-1-1 Cas d'une machine linéaire tubulaire à aimant permanent	6
I-2-1-2 Cas d'un coupleur magnétique	9
I-2-2 Modèles provenant des réseaux de reluctances	11
I-2-2-1 Définition d'une réluctance	11
I-2-2-2 Modèle réluctant d'une machines synchrone à aimant permanent	12
I-3 Conclusion	16
CHAPITRE II : Calcul D'une Machine Synchrone Avec La Méthode Analytico-Empirique	
II-1 Introduction	17
II-2 Les différentes méthodes analytico-empiriques pour la conception des machines électriques	17
II-2-1 Première Méthode	17
II-2-2 Deuxième Méthode	18
II-2-3 Troisième Méthode	18 i
	1

II-2-4 Méthode Classique	18
II-3 Calcul de la machine synchrone avec la méthode classique	18
II-3-1 Les données de la machine	18
II-3-2 Dimensions principales (longueur virtuelle et diamètre intérieur)	19
II-3-3 Dimensionnement de l'enroulement statorique	20
II-3-4 Dimensionnement de la feuille statorique	22
II-3-5 Calcul de l'entrefer	23
II-3-6 Dimensionnement du noyau du rotor	24
II-3-7 Calcul du circuit magnétique à vide	27
II-3-8 Calcul des paramètres de l'enroulement statorique	33
II-3-9 Calcul du circuit magnétique en charge	36
II-3-10 Dimensionnement de l'enroulement supplémentaire	38
II-3-11 Dimensionnement de l'enroulement d'excitation	38
II-3-12 Paramètres des enroulements de la machine	40
II-3-12-1 Résistance de l'enroulement du stator en régime stable	40
II-3-12-2 Résistance de l'enroulement d'excitation	41
II-3-12-3 Résistance transitoire et subtransitoire de l'enroulement de stator	41
II-3-12-4 Résistance pour les courants inverses et homopolaires	41
II-3-12-5 Les constantes du temps	42
II-3-13- Pertes et rendement de la machine en régime nominal	43
II-3-13-1 Pertes principales	43
II-3-13-2 Pertes supplémentaires	43
II-3-13-3 Pertes électriques principale dans l'enroulement statorique	43
II-3-13-4 Pertes mécaniques	44
II-3-13-5 Le rendement	44

II-3-14 Calcul thermique	45
II-3-14 -1 Echauffement et refroidissement du stator	45
II-3-14-2 Echauffement de l'enroulement de l'excitation	47
II-3-15 Calcul de la ventilation	48
II- 4 Organigramme du calcul	51
II-5 Conclusion	53
CHAPITRE III : Prise En Compte Des Effets Tridimensionnels	
Introduction	52
III.1 Compensation de la longueur axiale	52
III.2 Expressions analytiques des permeances	55
III.3 Expression de la longueur axiale compensée	56
III.4 Intégration de la longueur compensée dans le programme de calcul	56
III-4-1 Influence de la longueur compensée sur les grandeurs électromagnétiques de la	57
II-4-1-1 Influence sur le circuit magnétique à vide	57
III-4-1-2 Influence sur les paramètres de l'enroulement statorique	59
III-4-1-3 Influence sur les paramètres des enroulements de la machine	59
III-4-1-4 Influence sur les pertes et le rendement de la machine	60
III-5 Conclusion	61
Conclusion Générale	62
Bibliographie	63
Annexe	67

-LISTE DES FIGURES-

Chapitre I : généralité sur la conception des machines électriques

Figure I-1 : Résolution d'un problème inverse avec un modèle direct	4
Figure I- 2 : Problème de conception optimale ou problème inverse de conception	4
Figure I-3 : Structure de la machine linéaire	6
Figure I-4 : Géométrie du coupleur magnétique	9
Figure I-5 : Tube du flux	12
Figure I-6 : Structure de la machine	13
Figure I-7: Circuit réluctant équivalent	14

Chapitre II : Calcul d'une machine synchrone avec la méthode analytico-empirique

Figure II-1 : Feuilles statorique et rotorique	26
Figure II-2 : Schéma d'une encoche	26
Figure II-3 : Courbe à vide	33
Figure II-4 : Diagramme de Blondel	37
Figure II-5 : Caractéristiques partielles	37
Figure II-6 : Organigramme de calcul	52

Chapitre III : Prise en compte des effets tridimensionnels

Figure III-1 : Approximation rectangulaire des dents	53
Figure III-2 : Zones des permeances frontales	54
Figure III-3 : Représentation 3D des contours de flux	54
Figure III-4 : contours de flux des régions (P_3, P_3) et (P_4, P_4)	55
Figure III-5 : Représentation 2D du flux frontal	57
Figure III-6 Caractéristiques à vides avec et sans effets 3D	58

-LISTE DES TABLEAUX-

Chapitre II : Calcul d'une machine synchrone avec la méthode analytico-empirique

Tableau 1 : Résultats des dimensions principales	22
Tableau 2 : Résultats des dimensions de la feuille statorique et rotorique	25
Tableau 3 : Résultats de calcul du circuit magnétique à vide	32
Tableau 4 : Résultats de calcul des paramètres de l'enroulement statorique	35
Tableau 5 : Résultats de calcul de l'enroulement supplémentaire et d'excitation	40
Tableau 6 : Résultats de calcul des paramètres des enroulements de la machine	42
Tableau 7 : Résultats de calcul des pertes et du rendement	44
Tableau 8 : Résultats de calcul thermique	48
Tableau 9 : Résultats de calcul de la ventilation	50

Chapitre III : Prise en compte des effets tridimensionnels

Tableau 10 : Valeurs de coefficient de correction des pertes fer	56
Tableau 11 : Comparaison entre les valeurs du circuit magnétique à vide sans effet 3D et avec effet 3D.	57
Tableau 12 : Comparaison entre les valeurs des paramètres de l'enroulement statorique sans et avec effet 3D	59
Tableau 13 : Comparaison entre les valeurs les paramètres des enroulements de la machine sans et avec effet 3D	59
Tableau 14 : Comparaison entre les valeurs des pertes et le rendement de la machine sans et avec effet 3D	60

Remerciements

Je tiens à exprimer ma profonde gratitude et mes sincères remerciements à Monsieur Hassane MOHELLEBI, Professeur à l'Université Mouloud MAMMERI de Tizi-Ouzou, de m'avoir confié ce sujet et de l'aide précieuse qu'il m'a toujours apportée jusqu'à l'achèvement de ce travail. Ces insignes observations et suggestions ont été d'un grand apport pour son aboutissement.

J'adresse mes vifs remerciements à Monsieur le Professeur Rachid CHAIBI, Responsable, de la post-graduation Entrainements Electriques à l'Université Mouloud MAMMERI de Tizi-Ouzou pour avoir accepté de juger ce travail et m'avoir fait l'honneur de présider le jury de soutenance.

Je remercie chaleureusement Monsieur NEDJAR Mohammed, Professeur à Université Mouloud MAMMERI de Tizi-Ouzou et Monsieur OULD OUALI Samy Hassani, Maitre de Conférence classe B, à l'Université Mouloud MAMMERI de Tizi-Ouzou qui ont bien voulu examiner mon travail et m'honorer de leur participation dans le jury.

Je ne saurais terminer sans remercier mes amis (es) de l'Université MOULOUD MAMMERI de Tizi-Ouzou, pour leurs encouragements et leur soutien moral.

Finalement, je remercie tous les membres de ma famille plus particulièrement mes parents mes frères, mes sœurs et tous ceux qui ont contribué de prés ou de loin à la réalisation de ce travail.

Nomenclature

	Représentation	
Symboles	dans le	Désignations
	programme	
Li	Li	Longueur virtuelle
A	A	Charge linéaire
B _o	Bdelta	Induction dans l'entrefer
λ	landa	Coefficient de longueur
w ₁	w1	Nombre de spires
U _{en}	Uen	Nombre de conducteurs effectifs
P _{int1}	Dint1	Diamètre intérieur du stator
In	In	Courant nominal
S _{leff}	S1eff	Section effective
D _{tso}	Diso	Diamètre avec isolation
h _{o1}	hc1	Hauteur du dos du stator
b a1#	bz1	Largeur de la dent
h _{a1}	hz1	Hauteur de la dent
b2#	ben2	Largeur maximale de l'encoche
b _{en1}	ben1	Largeur minimale de l'encoche
h _{en1}	hen1	Hauteur de l'encoche du stator
S _{eniso}	Seniso	Section occupée par l'isolation
S _{en1}	Sen1	Section de l'encoche occupée par l'enroulement
Krem	Krem	Coefficient de remplissage
8	Delta	Valeur de l'entrefer
Smtr.	Deltamin	Valeur minimale de l'entrefer
â _{тан}	Deltamax	Valeur maximale de l'entrefer
bep	bep	Largeur de l'arc de l'épanouissement polaire
Rep	Rep	Rayon de l'épanouissement polaire
bep'	bepp	Largeur de la corde de l'épanouissement polaire
hep	hep	Hauteur l'épanouissement polaire
bpl	bpl	Largeur du pôle
hc	hc	Largeur de la fenêtre polaire
Dint2	Dint2	Diamètre intérieur du noyau rotorique
hc2	hc2	Hauteur du dos du rotor
hp	hp	Hauteur bobinée du pôle
En	En	Fmm induite en régime nominale
ø	flux	Le flux utile sous un pôle
Bô	Bdelta	Induction dans l'entrefer

F_{δ}	Fdelta	Fmm dans l'entrefer
B_{Z1}	Bz1	Induction dans les dents statoriques
H_{Z1}	Hz1	Champ dans les dents statoriques
Fz	Fz	Fmm des dents statoriques
B _{os}	Bcs	Induction dans le dos statorique
H _{os}	Hcs	Champ dans le dos statorique
F _{cs}	Fcs	Fmm dan dos statoriques
For	Fdeltazc	Fmm du stator par paire du pôle
ø,	flsigma	Flux de dispersion par pôle
p_{pm}	fluxpm	Flux dans le pôle
B_{pm}	Bpm	Induction dans le pôle
Hgrm	Hpm	Champ dans le pôle
Fpm	Fpm	Fmm dans le pôle
B _{o2}	Bc2	Induction dans le dos du rotor
H _{o2}	Hc2	Champ dans le dos du rotor
F _{o2}	Fc2	Fmm dans le dos du rotor
Fen	Fex	Fmm du circuit magnétique par pôle
Fpo	Fpc	Fmm du pôle et du dos du rotor
$F^*_{\delta B \sigma}$	Fdeltazcr	Fmm du stator par paire du pôle en valeur réduite
F _{ex}	Fexr	Fmm du circuit magnétique par pôle en valeur réduite
F^*_{po}	Fpcr	Fmm du pôle et du dos du rotor en valeur réduite
ø*,	flsigr	Flux de dispersion par pôle en valeur réduite
φ^*_{pm}	fluxpmr	Flux dans le pôle en valeur réduite
t _{moy1}	tmoy1	Pas dentaire moyen
Ymoy1	Ymoy1	Pas moyen
L _{1front}	L1front	Longueur moyenne de la partie frontale d'une spire
b _{moy1}	bmoy1	Largeur moyenne d'une section
L_{1moy}	L1moy	Longueur moyenne d'une spire de l'enroulement du stator
<i>R</i> ₁	R1	Résistance active par phase
R*11-	R1r	Résistance active en unité réduite
A _{en1}	landaen1	Coefficient de conductibilité magnétique de dispersion de l'encoche
λ_{d1}	landad1	Coefficient de conductibilité magnétique de dispersion différentielle
λ_{f1}	landaf1	Coefficient de dispersion frontale
λ_k	landak	Coefficient de dispersion entre les cornes des dents
λ1	landa1	Coefficient de dispersion globale du stator
X _σ	Xsig	Réactance de fuite du stator
X* ar	Xsigr	Réactance de fuite en unité réduite
Xou	Xsigrv	Réactance de fuite vérifiée en unité réduite
W _{supp}	wsup	Nombre de spire de l'enroulement supplémentaire
Ucupp	Usup	Tension aux bornes de l'enroulement supplémentaire

R _{supp}	Rsup	Résistance de l'enroulement supplémentaire
U _{ex}	Uex	Tension aux bornes de l'enroulement d'excitation
Lexmoy	Lexmoy	Longueur moyenne approximative d'une spire de l'enroulement
Sex	Sex	Section des conducteurs de l'enroulement d'excitation
W _{ex}	wex	Nombre de spires de l'enroulement d'excitation
l _{ex}	lex	Courant d'excitation en charge nominale
R _{ex}	Rex	Résistance de l'enroulement d'excitation
P _{ex}	Pex	Puissance nominale de l'excitation
X_{ad}^*	Xadr	Résistance inductive longitudinale de la réaction d'induit
$X^*_{\alpha q}$	Xaqr	Résistance inductive transversale de la réaction d'induit
X_{d}^{*}	Xdr	Réactance inductive longitudinale synchrone
X_q^*	Xqr	Réactance synchrone transversale
Rexe	Rexr	Résistance active de l'enroulement d'excitation rapportée à
		l'enroulement du stator et la température de fonctionnement
Xex	Xexr	Inductance de l'enroulement d'excitation
X [*] _{ex6}	Xdexr	Réactance de dispersion de l'enroulement d'excitation
$X_d^{\prime *}$	Xd1tr	Réactance transitoire longitudinale de l'enroulement du stator
X_q^{i*}	Xq1tr	Réactance transitoire transversale de l'enroulement du stator
X_d^{d*}	Xd2tr	Réactance subtransitoire longitudinale
$X_{q}^{u_{s}}$	Xq2tr	Réactance subtransitoire transversale
X [*] ₂	X2r	Réactance de l'enroulement de stator pour les courants inverses
X*3	X3r	Réactance de l'enroulement de stator en régime équivalent au
R*		Résistance active d'une phase de l'enroulement de stator pour les
R ₀ *	ROr	Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires
R ₀ *	R0r mc1	Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator
R ₀ * m _{c1} P _{c1}	ROr mc1 Pc1	Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator
R_0^* m_{o1} P_{o1} m_{s1}	ROr mc1 Pc1 mz1	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator
R_0^* m_{o1} P_{o1} m_{g1} P_{g1}	ROr mc1 Pc1 mz1 Pz1	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Pertes dans les dents du stator
R_0^* m_{o1} P_{o1} m_{g1} P_{g1} P_{g1}	ROr mc1 Pc1 mz1 Pz1 Psup1	regime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à
R_0^* m_{o1} P_{o1} m_{s1} P_{s1} P_{sup1}	ROr mc1 Pc1 mz1 Pz1 Psup1	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m ² de la surface de l'épanouissement polaire
R_0^* m_{o1} P_{o1} m_{g1} P_{g1} P_{sup1} P_{sup2}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine
R_0^* m_{o1} P_{o1} m_{g1} P_{g1} P_{g1} P_{gup2} P_{el}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel	regime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes principale dans les enroulements statoriques
R_0^* m_{o1} P_{o1} m_{s1} P_{s1} P_{sup1} P_{sup2} P_{el} P_{sup}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives
$\begin{array}{c} R_{0}^{*} \\ \hline R_{01} \\ \hline R_{o1} \hline \hline R_{o1} \\ \hline R_{o1} \hline \hline R_{o1} \\ \hline R_{o1} \hline \hline R$	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Psup Pp	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator
R_{0}^{*} m_{o1} P_{o1} P_{g1} P_{g1} P_{g1} P_{g1} P_{gup1} P_{ei} P_{gup} P_{g} P_{gup1}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Psup Pp Pp	regime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator Pertes par frottement et ventilation
R_0^* m_{o1} P_{o1} P_{o1} P_{s1} P_{sup1} P_{sup2} P_{el} P_{p} P_{m1} P_{m2}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Pp Pp Pm1 Pm2	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator Pertes par frottement et ventilation Pertes dues aux frottements entre les bagues et les balais
R_{0}^{*} m_{o1} P_{o1} P_{s1} P_{sup1} P_{sup1} P_{sup2} P_{e1} P_{p} P_{m1} P_{m2} P_{m2}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Pp Pp Pm1 Pm2 Pmec	Régime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator Pertes par frottement et ventilation Pertes dues aux frottements entre les bagues et les balais
R_{0}^{*} M_{o1} P_{o1} P_{o1} P_{g2} P_{g2}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Psup Pp Pp Pm1 Pm2 Pmec Pfer	regime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Pertes dans le dos du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator Pertes par frottement et ventilation Pertes dues aux frottements entre les bagues et les balais Pertes mécaniques Somme des pertes magnétiques
R_{0}^{*} R_{01}^{*} P_{o1} P_{o1} P_{g2} P_{g2}	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Pel Psup Pp Pm1 Pm2 Pm2 Pmec Pfer Psom	regime a videRésistance active d'une phase de l'enroulement de stator pour les courants homopolairesMasse du dos du statorPertes dans le dos du statorMasse des dents du statorPertes dans les dents du statorValeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polairePertes supplémentaires de la machinePertes électriques supplémentaires approximativesPertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du statorPertes par frottement et ventilationPertes dues aux frottements entre les bagues et les balaisPertes mécaniquesSomme des pertes magnétiques
R_{0}^{*} R_{01}^{*} P_{c1} P_{c1} P_{sup1} P_{sup1} P_{sup2} P_{ei} P_{gup} P_{g} P_{m1} P_{m2} P_{fer} P_{som} p	ROr mc1 Pc1 mz1 Pz1 Psup1 Psup2 Pel Psup Pp Pp Pm1 Pm2 Pmec Pfer Psom Rend	regime a vide Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires Masse du dos du stator Pertes dans le dos du stator Masse des dents du stator Pertes dans les dents du stator Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire Pertes supplémentaires de la machine Pertes électriques supplémentaires approximatives Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator Pertes par frottement et ventilation Pertes dues aux frottements entre les bagues et les balais Pertes mécaniques Somme des pertes magnétiques Somme des pertes

Sint	Sint	Surface interne de refroidissement de la partie active du stator
Pont	Pen1	Flux thermique spécifique rapporté à la surface interne de refroidissement de la partie active du stator
S _{cren1}	Scren1	Surface conventionnelle de refroidissement de l'encoche
Pelen1	Pelen1	Flux thermique spécifique rapporté à la surface interne de refroidissement de l'encoche
Sfro1	Sfro1	Surface conventionnelle des parties frontales
Pfro1	Pfro1	Flux thermique spécifique dû aux pertes dans la partie frontales rapporté à la surface de refroidissement des parties frontales
ΔT_{en1}	∆ Ten1	Dépassement de la température de la surface active du stator sur la température du l'air à l'intérieur de la machine
ΔT_{ebs1}	DTelen1	Chute de température dans l'isolation de l'encoche et dans l'isolation des sections des conducteurs ronds
ΔT_{fro1}	D Tfro1	Dépassement de la température de la partie frontale sur la température du l'air à l'intérieur de la machine
∆T _{elfro1}	Delfro1	Chute de température dans l'isolation dans l'isolation des parties frontales des sections des conducteurs ronds
$\Delta T1$	DT1	Valeur moyenne de dépassement de température de l'enroulement sur celle de l'air à l'intérieur de la machine
P _{som1}	Psom1	Pertes transmises à l'air à l'intérieur de la machine
ΔT_{atr}	D Tair	Valeur moyenne du dépassement de la température de l'air à l'intérieur de la machine sur celle de l'air à l'extérieur de la machine
ΔT_{p1}	D Tp1	Dépassement moyen de température de l'enroulement sur celle de l'air extérieur
S _{p2}	Sp2	Surface conventionnelle de refroidissement des sections à plusieurs couches
V_2	V2	Vitesse périphérique du rotor
ΔT_{pp}	D трр	Dépassement de la température de la surface extérieure de refroidissement de l'enroulement d'excitation
ΔT_{tso}	DTiso	Chute de température dans l'isolation des bobines excitation
$\Delta T^{t}{}_{p}$	D Tpm	Valeur moyenne du dépassement de la température de l'enroulement d'excitation sur celle de l'air à l'intérieur de la machine
ΔT_{p}	₽тр	Dépassement de la température de l'enroulement sur celle de l'air refroidissant

- VERSION ABRÉGÉE -

Sujet de mémoire : Elaboration d'un programme de calcul de machines synchrone sous Matlab en vue d'une étude d'optimisation

Encadrement : Hassane MOHELLEBI, Professeur à UMMTO

Spécialité : Électrotechnique

Option : Entrainements Électriques

Mots-clés : La conception des machines électriques, Modèles analytiques, Modèles analyticoempiriques, Effets tridimensionnels,

Résumé :

Le travail réalisé dans ce mémoire est un calcul d'une machines synchrone à pôles saillant avec une méthode analytico-empirique, elle consiste à chercher un ensemble d'équations qui traduit la description géométrique de la machine ainsi que sont comportement électromagnétique. Une fois le modèle analytico-empirique élaboré, il est programmé sous environnement Matlab. Les résultats obtenus avec ce code de calcul ont fait l'objet d'une optimisation avec l'introduction des effets tridimensionnels. La méthode adoptée pour introduire ces effets consiste à évaluer les perméances des parties frontales de la machine en suivant les lignes du flux qui transitent du rotor au stator sans passer par l'entrefer, à l'aide de ces perméances une nouvelle longueur de la machine est exprimée elle introduite dans l'expression du flux. Le rapport entre ce nouveau flux et le flux calculé sans les effets tridimensionnels nous donne un coefficient de correction du flux utile de la machine. Ce coefficient est alors intégré dans le programme de calcul.

Introduction

La conception des machines électriques est en pleine évolution, la rude concurrence entre les entreprises a accéléré le développement de leurs produits. Actuellement pour qu'un produit soit vendable avec succès sur le marché, il faut continuellement réduire les coûts, augmenter les performances, diminuer les temps de conception et de fabrication pour sortir produit le plus rapidement possible. C'est à ces ensembles de contraintes que les ingénieur et chercheurs doivent faire face

Dans le domaine des machines électriques, d'énormes progrès ont été réalisés, ils se traduisent par une qualité et une quantité de services rendus importantes dans un encombrement réduit, cependant la monté en puissance de nouveau matériaux, l'électronique de puissance et la commande en temps réel laisse une marge considérable pour l'amélioration de ces machines. Cela est rendu possible grâce à la croissance du savoir sur les phénomènes physiques existant dans les machines électriques ainsi qu'aux progrès réalisés dans la démarche de conception instrumentalisée de plus en plus

L'impressionnante augmentation de la puissance de calcul des ordinateurs a aussi contribué à l'amélioration de la conception des machines électriques. De nouveaux outils ont fait leur apparition, on peut citer les outils analytiques qui sont basés sur des réseaux de reluctances pour la partie magnétique. Les calculs sont très rapides, ce qui rend ces outils idéaux pour le prédimensionnement et le choix de structures. C'est le cas du logiciel SPEED qui traite les aspects électromagnétiques, Motor-CAD pour les aspects thermiques et le logiciel Pro@DESIGNTM [1] [2]. D'autres outils aussi existent, ils sont basés sur la résolution analytique des équations électromagnétiques

Les outils numériques sont souvent basés sur la méthode des éléments finis. Dans ce cas les résultats sont précis mais le temps de calcul est relativement long. C'est le cas de Flux 2D, Flux 3D, Matlab... etc.

Les principaux apports de ces outils sont la réduction du temps d'étude et la construction des prototypes

Le concepteur est amené donc à manipuler une diversité de modèles et d'algorithmes pour mettre en œuvre une méthodologie de conception spécifique à l'application visée et obtenir une conception optimale en un temps raisonnable. Mais, avant de se lancer dans ce processus, le concepteur doit en premier temps définir proprement et le plus précisément possible le problème à résoudre. Ceci s'articule autour de deux points importants [1] [3]:

Le premier point est la définition de la structure répondant aux critères décrits dans le cahier de charge. Cela consiste à choisir parmi des éléments existants celui ou l'ensemble de ceux qui permettent d'obtenir le fonctionnement désiré. Le deuxième point est la détermination des grandeurs géométriques et physiques. Dans cette étape, le concepteur manipule des équations mathématiques liant des paramètres descriptifs d'un système (grandeurs géométriques) et des paramètres caractérisant le fonctionnement du système (le rendement). Il faut donc pouvoir évaluer l'expression analytique de toutes les variables qui caractérisent le fonctionnement et les qualités du système en particulier celles qui apparaissent dans le cahier des charges, en fonction des grandeurs descriptives du système.

L'objectif que nous voulons atteindre à travers ce travail est de pouvoir élaborer un modèle bidimensionnel pour le dimensionnement des machines synchrones avec une méthode classique, les résultats obtenus feront l'objet d'une optimisation avec l'introduction de quelques effets tridimensionnels.

Le plan que nous nous proposons de suivre dans ce mémoire s'articule autour de trois chapitres:

Le premier comporte des rappels sur le problème de la conception des machines électriques et les modèles analytiques utilisés dans ce domaine avec la présentation de quelques exemples. Le second chapitre traite le processus de calcul d'une machine synchrone à pôles saillants avec une méthode classique basée sur des expressions analytico-empiriques

Quant au troisième chapitre il comporte la méthode utilisée pour prendre en compte dans le processus de dimensionnement les effets tridimensionnels causés par les parties frontales de la machine.

Nous terminerons enfin, ce mémoire par une conclusion générale décrivant le travail de recherche effectuée, et les perspectives futures.

CHAPITRE I

Généralités Sur La Conception Des Machines Electriques

I-1 Dimensionnement des machines électriques (problème inverse)

Le dimensionnement des actionneurs électromagnétiques fait appel à l'emploi d'un grand nombre de paramètres, ces derniers sont reliés entre eux pour formuler les lois descriptives des phénomènes physiques ainsi que les spécifications du cahier de charge. En admettant que ces phénomènes peuvent êtres décrits analytiquement, il est alors possible d'obtenir l'ensemble des relations qui lorsque on les associe aux contraintes de cahier de charge forment les équations de dimensionnement de la structure à étudier. [4]

De nos jours le problème de dimensionnement des machines électriques est formulé comme un problème inverse. Le problème direct est défini comme suit : A partir d'un actionneur électromagnétique où la structure, les dimensions et les compositions sont connues, calculons quelques valeurs caractéristiques par exemple, le champ électromagnétique, le couple, etc. [5] Ce type de problème est difficile à résoudre, il nécessite généralement l'emploi de méthodes numériques puissantes (éléments finis, différences finies). Cependant la résolution des problèmes directs n'est pas suffisamment intéressante pour investir le problème de dimensionnement des machines électriques, le but de cette approche est de donner aux concepteurs quelques outils numériques pour l'aider dans l'étape de conception sans faire appel à la construction des prototypes

I-1-1 Problème inverse

A partir des valeurs caractéristiques fixées dans le cahier des charges (par exemple le couple) retrouvons la structure, les dimensions ainsi que les compositions de l'actionneur. Le problème est que l'existence de la solution n'est pas toujours garantie, d'autant plus, lorsque nombre d'inconnues est supérieur à celui des équations il existe alors une infinité de solutions et seule la formulation d'un problème d'optimisation conduit à une solution unique [1] [6] [8]. Donc le problème direct et le problème inverse sont difficiles à résoudre, néanmoins dans les années précédentes quelques modèles analytiques ont été développés d'où l'obtention des valeurs caractéristiques d'une manière directe sans l'emploi de méthodes numériques [6].

I-1-2 Formulation du problème inverse

La résolution de problème inverse peut se faire avec les deux modèles à savoir numérique et analytique

 Modèles numériques : le concepteur expérimenté propose des solutions (structure, dimensions) et résout le problème direct numériquement, par suite les résultats obtenus sont modifiés itérativement jusqu'à satisfaction du cahier de charge.

Figure I-1 : Résolution d'un problème inverse avec un modèle direct

 Modèles analytiques : le problème inverse peut être formulé comme un problème d'optimisation globale pour éliminer l'ensemble des solutions possibles. La solution qui minimise ou maximise les critères donnés est alors choisie parmi les solutions du problème inverse

Figure I-2: Problème de conception optimale ou problème inverse de conception

Dans le paragraphe suivant on s'intéresseras uniquement aux modèles analytiques utilisés dans le dimensionnement des machines électriques

I-2 Les modèles analytiques pour la conception des machines électriques

Les modèles analytiques sont un ensemble de relations explicites déduites des phénomènes physiques présents dans la machine, ils permettent de calculer des paramètres de sortie connaissant la valeur des paramètres d'entrée. Ces modèles sont caractérisés par leur facilité de mise en œuvre et la rapidité avec laquelle ils fournissent des résultats et le pouvoir de prendre en compte facilement certains couplages de phénomènes physiques différents. Ils ont très souvent utilisés lors des premières étapes du dimensionnement [7] [8]. Leurs inconvénients majeurs sont qu'ils reposent sur certaines hypothèses simplificatrices basées sur des considérations globales qui dépendent de l'avis d'experts et dont il est difficile de cerner le domaine de validité [1].

De nombreux travaux fournis dans la littérature s'inscrivent dans cette démarche. La diversité des modèles utilisés rend pratiquement impossible leur classification. Il est presque toujours nécessaire d'en développer un nouveau pour chaque nouvelle structure [1]. C'est le cas de modèle de génératrice synchrone polyphasée et transformateur de sécurité développés dans la référence [8], le modèle multi-physique [3] [11][12], le modèle multi-harmonique pour une machine synchrone à 7 phases [9]. D'autres auteurs traitent un problème particulier afin d'établir son expression qui pourra être intégrée dans un modèle générale comme le problème de couple traité dans les références [10] et [13], les pertes fer [14] [15], l'induction dans l'entrefer [16] [17] [18], le champ et l'induction magnétique dans une machine linéaire tubulaire à aimant permanent [19] et dans une BLPM (Brushless Permanent-Magnet Machine) Malgré la variété de ces modèles, ils peuvent être regroupés dans deux types selon leur provenance, à savoir les modèles provenant de la résolution formelle des équations de Maxwell et les modèles déduits à partir des réseaux de reluctances [3][21][22]

I-2-1 Modèles provenant de la résolution formelle des équations de Maxwell

Le comportement des phénomènes électromagnétiques traités dans la physique mathématique est résumé par l'emploi des équations de Maxwell. La résolution analytique de ces équations s'effectue avec diverses méthodes. Dans le cas où les modèles obtenus sont régis par des équations linéaires, les méthodes suivantes sont utilisées [20]

- Méthode de séparation des variables
- Méthode des séries exponentielles
- Méthode des transformations conformes
- Méthode des composantes tangentielles

Si les équations des modèles sont non linéaires, les principales méthodes utilisées sont

- Méthode des dérivées asymptotiques
- Méthode d'intégration par séries entières

A partir de ces méthodes on peut établir l'expression exacte de l'inconnu (potentiel vecteur magnétiques, potentiel scalaire magnétique...etc.), par suite les différentes grandeurs électromagnétiques (induction magnétique, couple électromagnétique, pertes fer, force électromotrice...etc.) peuvent être déterminées

La plupart des travaux basés sur ces modèles traitent la modélisation des machines synchrones à aimant permanent

I-2-1-1 Cas d'une machine linéaire tubulaire à aimant permanent

Dans sa contribution l'auteur de la référence [19] à développé un modèle analytique pour la détermination du champ et de l'induction magnétique dans une machine linéaire tubulaire à aimant permanent. Le modèle est construit à partir de la résolution analytique des équations aux dérivées partielles en supposant que la longueur du moteur et la perméabilité du fer sont infinies. Le schéma de la structure est donné sur figure suivante

Figure I-3 : Structure de la machine linéaire

Dans cette analyse uniquement le champ dû aux aimants permanent est examiné L'induction de l'aimant est donnée par

$$B = \mu_0(H+M) \tag{I-1}$$

M: Est l'aimantation qui est nulle dans la région I (entrefer), dans la région II (aimant), elle est donnée par l'expression (I-1) en considérant uniquement sa composante radiale

$$M_r(z) = \sum_{n=1,2,6}^{\infty} \hat{M}_n \sin(w_n z)$$
 (I-2)

Avec
$$w_n = \frac{n\pi}{\tau}$$
 et $\hat{M}_n = \frac{B_r}{n\pi\mu_0} \sin\left(\frac{n\pi}{2}\right) \sin(w_n\tau_m)$ $(I-3)$

En absence des courants de conduction, le problème du champ peut être exprimé par le potentiel scalaire magnétique $\Psi(\mathbf{r}, \mathbf{z})$

$$rotH = 0$$
 $(I - 4)$

 $H = -grad\Psi$ (l-5)

L'équation de Poisson est alors donnée par

$$\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial r^2} + \frac{1}{r} \frac{\partial \Psi}{\partial r} + \frac{\partial^2 \Psi}{\partial z^2} = \frac{1}{r} \frac{\partial}{\partial r} (rM_r) \qquad (I-6)$$

Dans le milieu I l'expression (I-6) devient sous forme de l'équation de Laplace car $M_{\rm p} = 0$

$$\frac{\partial^2 \Psi}{\partial r^2} + \frac{1}{r} \frac{\partial \Psi}{\partial r} + \frac{\partial^2 \Psi}{\partial z^2} = 0 \qquad (I-7)$$

Pour résoudre cette équation analytiquement, la méthode de séparation des variables est utilisée, elle consiste à chercher des solutions sous forme de produit de deux fonctions chacune est fonction d'une seule variable $\Psi(\mathbf{r}, \mathbf{z}) = \mathbb{R}(\mathbf{r})\mathbb{Z}(\mathbf{z})$. Le principe de cette méthode est détaillé dans [20]

• Région I

La solution de l'équation de Laplace obtenu avec ($M_{p} = 0$) est donnée comme suite

$$\Psi^{I}(\mathbf{r},\mathbf{z}) = \sum_{n=1,3,5}^{\infty} [a_{n}^{I} I_{0} (\mathbf{k}_{n}\mathbf{r}) + b_{n}^{I} K_{0} (\mathbf{k}_{n}\mathbf{r})] [c_{n}^{I} \sin(\mathbf{k}_{n}\mathbf{z}) + d_{n}^{I} \cos(\mathbf{k}_{n}\mathbf{z})] \qquad (I-8)$$

Avec I_0 et K_0 sont les fonctions modifiées de Bessel d'ordre zéro de première et deuxième espèce

Les constantes $\mathbf{a}_n^{\mathbf{l}}, \mathbf{b}_n^{\mathbf{l}}, \mathbf{k}_n, \mathbf{c}_n^{\mathbf{l}}$ et $\mathbf{d}_n^{\mathbf{l}}$ sont déterminées à partir des conditions aux limites associées au problème

• Région II

La solution de l'équation linéaire différentielle est la somme de la solution Ψ_0^n de l'équation homogène et la solution particulaire Ψ_p^n . Similaire à celle trouvée dans la région I, la première solution est donnée par

$$\Psi_0^{\rm H}(\mathbf{r}, \mathbf{z}) = \sum_{n=1,3,5}^{\infty} [a_n^{\rm H} I_0(\mathbf{k}_n \mathbf{r}) + \mathbf{b}_n^{\rm H} \mathbf{K}_0(\mathbf{k}_n \mathbf{r})] [c_n^{\rm H} \sin(\mathbf{k}_n \mathbf{z}) + \mathbf{d}_n^{\rm H} \cos(\mathbf{k}_n \mathbf{z})] \qquad (I - 9)$$

La deuxième solution nécessite une recherche complexe sans la génération d'une forme explicite, donc la recherche d'une solution particulaire exacte de l'équation de Poisson est abandonnée

• Approximation de l'aimantation

Comme elle est donnée dans la relation (I-2), l'aimantation est fonction de la coordonnée z uniquement. Dans la suite, elle est forcée à être une fonction de z et r

$$M_r(r,z) = G(r)F(z) \qquad (I-10)$$

Avec

$$G(r) = \left(\frac{c_1}{r} + c_2 r\right) \qquad (I - 11)$$

$$F(x) = \sum_{n=1,2,5}^{\infty} \hat{M}_n \sin(w_n x) \qquad (I - 12)$$

 c_1 et c_2 sont des coefficients choisis pour réduire la déformation de M_r pour obtenir la même aimantation donnée par (I-2) dans les limite interne et externe de l'aimant ($r = r_0, r = r_m$)

$$c_1 = \frac{r_0 r_m}{r_0 + r_m}, \quad c_2 = \frac{1}{r_0 + r_m}$$

Avec cette approximation la solution particulaire de l'équation (I-6) est donnée par

$$\Psi_{p}^{H} = -2c_{2} \sum_{n=1,3,5}^{\infty} \tilde{M}_{n} \frac{\tau^{2}}{n^{2}\pi^{2}} \sin(w_{n}z) \qquad (I-13)$$

Les conditions aux limites sont fixées comme suite

$$H_{g}^{II}(r_{0}, z) = 0$$

 $H_{g}^{II}(r_{m}, z) = H_{g}^{I}(r_{m}, z)$
 $B_{r}^{II}(r_{m}, z) = B_{r}^{I}(r_{m}, z)$
 $H_{g}^{II}(r_{r}, z) = 0$

La composante axiale du champ et la composante radiale de l'induction sont obtenues en dérivant le potentiel scalaire magnétique

$$H_{x}^{I}(r,z) = \sum_{n=1,2,5}^{\infty} w_{n} \left[-A_{n}^{I} I_{0}(w_{n}r) - B_{n}^{I} K_{0}(w_{n}r) \right] \cos(w_{n}z) \tag{I-14}$$

$$H_{x}^{H}(r,z) = \sum_{n=1,3,5}^{\infty} w_{n} \left[-A_{n}^{H}I_{0}(w_{n}r) - B_{n}^{I}K_{0}(w_{n}r) + \frac{2c_{2}M_{r}}{w_{n}^{2}} \right] \cos(w_{n}z) \qquad (I-15)$$
$$B_{r}^{I}(r,z) = \mu_{0} \sum_{n=1,3,5}^{\infty} w_{n} \left[-A_{n}^{I}I_{1}(w_{r}r) + B_{n}^{I}K_{1}(w_{n}r) \right] \sin(w_{n}z) \qquad (I-16)$$

$$B_r^{\mathcal{U}}(r,z) = \mu_0 \sum_{n=1,3,5}^{\infty} \left[w_n \left[-A_n^{\mathcal{U}} I_1(w_r r) + B_n^{\mathcal{U}} K_1(w_n r) \right] + \left(\frac{c_1}{r} + c_2 r \right) \hat{M}_r \right] \sin(w_n z) \quad (I - 17)$$

Avec I_1 et K_1 sont les fonctions de Bessel modifiées d'ordre 1 de 1^{ére} et 2^{ème} espèce

$$A_{n}^{I} = a_{n}^{I}c_{n}^{I}, B_{n}^{I} = b_{n}^{I}c_{n}^{I}, A_{n}^{II} = a_{n}^{II}c_{n}^{II}, B_{n}^{II} = b_{n}^{II}c_{n}^{II}$$

I-2-1-2 Cas d'un coupleur magnétique

En se basant sur la résolution analytique des équations aux dérivées partielles, un modèle analytique de dimensionnement d'un coupleur magnétique est mit en œuvre par les auteurs de la référence [23]. La structure du coupleur est illustrée sur la figure(2). Il est constitué de deux rotors concentriques séparés par une cloison hermétique. Chacun des rotors est d'une culasse sur laquelle sont disposés le même nombre d'aimants. Les deux rangés d'aimants sont séparés par 5 zones : 2 reliures, 2 entrefers et la cloison hermétique, ces régions sont des parties non magnétiques, elles sont considérées comme une seule zone qui constitue l'entrefer.

Les régions à considérer sont : zone1 (rotor intérieur) zone2 (Entrefer) et la zone3 (rotor extérieur)

Figure I-4 Géométrie du coupleur magnétique

• Formulation du problème en termes de vecteur potentiel magnétique

Le champ magnétique dans le coupleur est régit par les équations du champ magnétostatique aux quelles est associé les relations constitutives du milieu

$$rotH = 0 \qquad (I - 18)$$

$$B = rotA \qquad (I - 19)$$

$$B = \mu_{e}H \quad (Dans la zone (2))$$

$$\mathbf{B} = \boldsymbol{\mu}_{\mathbf{0}}\mathbf{H} + \mathbf{B}_{\mathbf{r}} \quad \text{(Dans la zone (1) et (3))}$$

L'induction des aimants est supposée purement radiale de forme d'onde rectangulaire de période $\frac{2\pi}{p}$ dans la direction θ .Elle peut être décomposée en série de Fourier, son expression en coordonnées polaires est donnée par

$$B_r(r,\theta) = \sum_{n=1}^{\infty} B_{ron} \cos(np\theta) + B_{ron} \sin(np\theta) \qquad (I-20)$$

L'équation aux dérivées partielles en termes du vecteur potentiel magnétique qui régit le système est donnée par

$$\frac{\partial^2 A_z}{\partial r^2} + \frac{1}{r} \frac{\partial A_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_z}{\partial \theta^2} = \begin{cases} \frac{1}{r} \frac{\partial B_r}{\partial \theta} & \text{zone 1 et 3} \\ 0 & \text{zone 2} \end{cases}$$
 (*l*-21)

A ces équations il est associé les conditions aux limites et les relations de passage entre deux zones. Comme la perméabilité des culasses est infinie, les conditions aux limites $(r = R_1)$ et $(r = R_4)$ sont :

$$\left(\frac{\partial A_2^1}{\partial r}\right)_{r=R_2} = 0, \quad \left(\frac{\partial A_2^3}{\partial r}\right)_{r=R_4} = 0$$

Et aux interfaces $(r = R_2)$ at $(r - R_3)$

$$\left(\frac{\partial A_{z}^{1}}{\partial \theta}\right)_{r=R_{z}} = \left(\frac{\partial A_{z}^{2}}{\partial \theta}\right)_{r=R_{z}}, \qquad \left(\frac{\partial A_{z}^{2}}{\partial \theta}\right)_{r=R_{z}} = \left(\frac{\partial A_{z}^{3}}{\partial \theta}\right)_{r=R_{z}}$$

L'expression analytique de A_z est obtenue dans chaque zone avec la méthode de séparation des variables

$$A_{x}^{t}(r,\theta) = \sum_{n=1}^{\infty} \left[\left(A_{n}^{t} r^{np} + B_{n}^{t} r^{-np} + \frac{s_{on}^{t} r}{1 - (np)^{2}} \right) \cos(np\theta) + \left(C_{n}^{t} r^{np} + D_{n}^{t} r^{-np} + \frac{s_{on}^{t} r}{1 - (np)^{2}} \right) \sin(np\theta) \right]$$
(I 22)

Les coefficients s_{cn}^{i} et s_{sn}^{i} sont nuls dans la zone 2, dans les zones 1 et 3 ils sont donnée par

$$\begin{split} s_{en}^{1} &= 0 \\ s_{en}^{1} &= -\frac{2pB_{r(int)}}{\pi} \sin\left(\frac{np\theta_{int}}{2}\right) (1-(-1)^{n} \\ s_{en}^{3} &= -\frac{pB_{r(ent)}}{\pi} \left[\cos\left(\frac{np\theta_{ent}}{2} + np\theta_{0}\right) - \cos\left(-\frac{np\theta_{ent}}{2} + np\theta_{0}\right)\right] (1-(-1)^{n} \\ \# \\ s_{en}^{3} &= -\frac{pB_{r(ent)}}{\pi} \left[sln\left(\frac{np\theta_{ent}}{2} + np\theta_{0}\right) - sln\left(-\frac{np\theta_{ent}}{2} + np\theta_{0}\right)\right] (1-(-1)^{n} \\ \# \end{split}$$

 θ_0 : Angle de décalage entre le rotor intérieur et le rotor extérieur

 $B_{r(mc)}$ et $B_{r(mc)}$ Sont respectivement les composantes radiales de l'induction rémanente des aimants du rotor intérieur et le rotor extérieur Les coefficients $A_m^i, B_m^i C_m^i$ et D_m^i sont déterminés à partir des conditions aux limites

I-2-2 Modèles provenant des réseaux de reluctances

C'est une méthode classique dans l'électrotechnique pour le calcul et la caractérisation des circuits magnétiques. Si cette approche nécessite des hypothèses fortes et un ajustement empirique de certains paramètres; Elle permet néanmoins d'établir symboliquement l'expression des performances globales des dispositifs d'entraînement électromécaniques et c'est pourquoi elle est préférée par les concepteurs industriels [21][22].

I-2-2-1 Définition d'une réluctance [21][24]

Étant donné un tube de flux qui baigne dans un champ magnétique quasi-stationnaire de section S(x) et de longueur totale *l* représenté sur la figure ci-dessous. La réluctance magnétique est définie comme étant la quantité donnée par l'expression (I - 23)

$$\Re = \int_{0}^{1} \frac{dx}{\mu(x)S(x)} = \frac{1}{\mathcal{P}} \qquad (I - 23)$$

µ(*x*) : Perméabilité du matériau*P* : Perméance magnétique

Figure I-5 : Tube du flux

Les réluctances peuvent être classées en trois catégories

- Les réluctances constantes : les géométries et les caractéristiques magnétiques de ces réluctances sont fixes
- Les réluctances saturables : ce sont les réluctances dont la perméabilité est une fonction du champ d'excitation
- Les réluctances à géométrie variable : ce sont des réluctances dont les paramètres géométriques (longueur, section) sont variables

Les figures suivantes représentent quelques exemples de réluctances constantes

I-2-2-2 Modèle réluctant d'une machines synchrone à aimant permanent

C'est une méthode basée sur le calcul du circuit magnétique à travers un schéma réluctant équivalent. La démarche entretenue avec ce type de modèle est présentée dans le prédimensionnement d'une machine synchrone à aimant permanent [25]. La structure de la machine est représentée sur la figure ci-dessous

Figure I-6 : Structure de la machine

• Calcule de l'aimant permanent

Le volume de l'aimant et la puissance de la machine sont reliés par la relation suivante

$$P_{max} = \frac{\pi^2}{2} \frac{\xi}{k_f k_{ad} (1+s)} f B_r H_o V_m \qquad (I-24)$$

 k_f : Coefficient de forme

 k_{ad} : Facteur de la réaction magnétique selon l'axe d

f : Fréquence

- *ɛ* : Coefficient de majoration de la fem
- B_r : Induction rémanente

 H_{o} : Champ coercitif

V_m : Volume de l'aimant

 ξ : Coefficient d'utilisation de l'aimant, il définit la relation entre la capacité maximale de l'aimant et le point de fonctionnement

$$\xi = \frac{E_f}{E_p} \frac{I_{AB}}{I_{a\sigma}} \tag{I-25}$$

 E_f : fem induite par le flux d'excitation du rotor à vide

 E_r : fem correspondante à B_r

I_{AK} : Courant de démagnétisation maximal

 I_{ac} : Courant correspondant à H_{c}

• Circuit réluctant équivalent de la machine

La figure suivante représente le circuit réluctant équivalent de la machine

Figure I-7: Circuit réluctant équivalent

 $\phi_{\mathcal{Spm}}$: Flux magnétique dans l'entrefer

R_{pm} : Réluctance des aimants

 ϕ_{σ} : Flux de dispersion à travers les extrémités des aimants

 $R_{\delta 2}$: Réluctance de l'entrefer entre deux aimants

 R_{δ} : Réluctance de l'entrefer entre l'aimant et le stator

*R*_{*F*} : Réluctance du stator

F. : Force magnétomotrice des l'aimants

• Calcul du circuit magnétique

En premier lieu les réluctances de la machine sont déterminées de la manière suivante

- La réluctance de l'entrefer

$$R_{\delta} = \frac{\delta_{0pm}}{\mu_0 \tau_{\rm g} L_t} \qquad (I - 26)$$

Où

a_{lown} : Entrefer de la face supérieure de l'aimant

L_i: Longueur effective du rotor

 τ_p : Pas polaire

- La réluctance de l'aimant permanent

$$R_{pm} = \frac{n_m}{\mu_0 \mu_{pm} l_p L_t} \qquad (I - 27)$$

 h_m : Hauteur des aimants

Hanna : Perméabilité des aimants

*l*_p: Largeur des l'aimants

- Réluctance de fuite dans les aimants

$$R_{\delta 2} = \frac{l_m}{\mu_0 \mu_{pm} (\tau_p - h_m) L_t}$$
 (I - 28)

 l_m : Longueur transversale de l'aimant

- Réluctance des dents et du dos statorique

La réluctance dans ces parties de la machine varie en fonction de l'induction, son calcul se fait itérativement. A la première étape la valeur de la réluctance est fixée, avec cette valeur, le flux généré par les aimants dans l'entrefer est déterminé par l'expression suivante

$$\Phi_{\delta pm}^{(i)} = \frac{F_{pm}}{R_{pm} + R_{\delta} + R_{F_{\delta}(i)} + \frac{R_{pm}}{R_{\delta 2}} (R_{\delta} + R_{F_{\delta}(i)})}$$
(I-29)

 $R_{Fe(t)}$: Réluctance des dents et du dos statorique à chaque itération

$F_{\rm gam} = H_{\rm g} l_m \qquad (I - 30)$

Les fmm des dents et du dos statorique sont données respectivement par

$F_{g(t)} = H_{g(t)}h_{g}, \ F_{g(t)} = H_{g(t)}\tau_{g}$

 $h_{\rm g}$: Hauteur des dents statoriques

 τ_s : Longueur moyenne d'une ligne du champ dans le dos statorique

Une fois les fmm des dents et du dos statorique sont déterminées, la réluctance de ces parties peut être calculée par

$$R_{Fe(t)} = \frac{F_{s(t)}}{\phi_{pm}} + \frac{F_{s(t)}}{\frac{\phi_{pm}}{2}}$$
 (I-31)

Avec cette nouvelle valeur de la réluctance, le flux dans l'entrefer est recalculé. Ce processus est répété jusqu'à ce que la différence entre le flux calculé à l'itération i et celui calculé à l'itération i+1 soit inférieure à une erreur donnée.

I-3 Conclusion

Dans ce premier chapitre, nous avons présenté sommairement le problème de la conception des machines électriques partant du principe que le dimensionnement est un problème inverse à la modélisation. La résolution analytique de ce problème ce fait avec les modèles cités en haut, ces derniers sont regroupés dans deux types selon leur provenance à savoir les modèles provenant de la résolution formelle des équations de Maxwell et les modèles provenant des réseaux de reluctances où on a présenté des exemples pour chaque type de modèle.

CHAPITRE II

Calcul D'une Machine Synchrone Avec La Méthode Analytico-Empirique

II-1 Introduction

Le dimensionnement des machines électriques consiste à exploiter des équations mathématiques qui relient deux types de paramètres : Les paramètres descriptifs du système (grandeurs géométriques) et les paramètres caractérisant son fonctionnement comme les densités des courants, il faut donc tenir compte de tous les variables qui caractérisent le fonctionnement de la machine ainsi que les contraintes liées au cahier de charge [26] Basé sur des modèles analytiques et des relations empiriques, le dimensionnement est en faite la recherche des solutions symboliques exactes des équations physiques de la machine Les avantages que présentent ces modèles sont [26]

- Rapidité dans la résolution
- Un choix très vaste des paramètres de la machine, ce qui permet par exemple de dimensionner des machines de puissance différentes
- Les équations symboliques contiennent un lient explicite entre tous les paramètres et les phénomènes physiques

Néanmoins, les modèles analytiques sont peu adaptés au calcul des phénomènes locaux. La détermination de ces derniers relève du domaine de calcul numérique

II-2 Les différentes méthodes analytico-empiriques pour la conception des machines électriques

Ils existent plusieurs méthodes pour la conception et le dimensionnement des machines électriques, c'est un domaine très large qui nécessite beaucoup d'approches et d'hypothèses.

La plupart des procédés disponibles dans la littérature suivent pratiquement la même démarche, la méthode en général ne change pas puisque on remarque toujours un même cheminement qui autorise le dimensionnement du stator suivi par un calcul du rotor.

Dans ce qui suit nous proposons une liste de quatre méthodes de calcul non exhaustives rencontrées dans notre recherche bibliographique

II-2-1 Première Méthode

Cette méthode proposée par Marcel JUFER et Jean-Claude SABONNADIÈRE, repose sur le calcul en utilisant pour commencer les formules de dimensionnement du Fer statorique ensuite ils entament le calcul rotorique : Le dimensionnement du circuit magnétique, est basé sur les contraintes suivantes [27] [28] :

- Imposer un niveau d'induction correspondant au coude de saturation de façon à limité les chutes de potentiel et les pertes fer, tout en diminuant le volume et la masse du fer ; puis définir ce niveau d'induction par la géométrie et le principe de conservation du flux magnétique. - Le diamètre d'alésage et la longueur active sont les dimensions caractéristiques du processus de dimensionnement. Mais le facteur clé associé est l'induction radiale dans l'entrefer, sa distribution sera admise sinusoïdale.

II-2-2 Deuxième Méthode

Cette deuxième méthode à caractère pédagogique utilisé à l'école polytechnique de MONREAL est une méthode à but didactique, La méthode suggérée offre une certaine marge de manœuvres, des compromis doivent être faits pour le choix de certains paramètres comme le diamètre d'alésage du moteur par exemple, le résultat obtenu doit quelquefois faire l'objet de changement afin de satisfaire les exigences visées, Cette méthode inclue aussi les dispersions due à la disposition en biais des encoches rotoriques [27].

II-2-3 Troisième Méthode [27]

Cette méthode est utilisée pour le calcul et la conception assistée par ordinateur d'une machine à induction, elle emprunte différentes phases de calcul suivant un ordre chronologique. Cette approche est basé sure le principe de conception de G.KOUSKOFF et LIWSCHITZ. Sauf qu'on impose les données géométriques d'une machine industrielle déjà existante, comme contraintes auxquelles nous devons nous soumettre. Les résultats numériques du calcul sont comparés avec ceux donnés par la méthode des essais classiques puis traités par une analyse dynamique simulée du comportement de la machine en vue de mettre au point la corrélation et la concordance de ces résultats de conception avec ceux délivrés par le constructeur du moteur à induction étudié.

II-2-4 Méthode Classique [29]

Cette méthode est développée en détail dans ce qui suit, elle sera à la base de nos calculs lors du dimensionnement de la machine étudiée.

II-3 Calcul de la machine synchrone avec la méthode classique

II-3-1 Les données de la machine

- Puissance électromagnétique Pi = 5.5 KW
- Nombre de phases m = 3
- Tension nominale Un = 230 V
- La fréquence f = 50 Hz
- Nombre de paire du pôle p = 2
- Vitesse de rotation n = 1500 tr/min
- Hauteur d'axe h = 160 mm

II-3-2 Dimensions principales (longueur virtuelle et diamètre intérieur)

En régime nominale la fmm induite est donnée par

$$E_n = 4.K_f . f. w 1.K_{en1}.\phi$$

 ϕ : Flux mutuel sous un pôle

 K_{en1} : Coefficient de bobinage de l'enroulement statorique

w1 : Nombre de spires en série par phase

 K_f : Coefficient de forme

f: La fréquence

$$\phi = B_{\delta} . \alpha_i . \tau . l_i$$

 B_{δ} : Induction dans l'entrefer

 α_i : Coefficient d'arc polaire

$$\tau = \frac{\pi . D_{\text{int}1}}{2.p}$$
 : Pas polaire

On remplace le flux et le pas polaire dans la relation de la fmm on obtient

$$E_n = 4.K_f . f . w1.K_{en1}.B_{\delta}.\alpha_i \frac{\pi . D_{\text{int}1}}{2.p} l_i$$

Sachant que la puissance électromagnétique s'écrit

$$P_i = K_e \cdot S_n = K_e \frac{P_n}{\cos \alpha}$$

 $S_n = m.U_n.I_n$: Puissance apparente de la machine

 K_e : Coefficient de majoration de la fimm quand on passe de la marche à vide à la marche en nominale, il est donné par la relation suivante

$$K_e = \frac{E_n}{U_n} = \left[\left(\cos \varphi \right)^2 + \left(\sin(\varphi) + X_{\delta}^* \right)^2 \right]^{\frac{1}{2}} \quad [\text{UR}]$$

 X_{δ}^* : Réactance inductive de dispersion réduite de l'enroulement statorique sa valeur est déterminée en fonction du nombre de paires de pôle (voire annexe Fig.2) Le courant nominal peut être calculé à partir de la relation ci-dessous

$$I_n = \frac{A.\pi.D_{\text{int}1}}{2.m.w1}$$

A : Charge linéaire, elle est calculée à l'aide de la relation suivante

$$A = \frac{2.I_n.m.w_1}{\pi D_{\text{int}1}}$$

Elle caractérise le courant réparti le long de l'entrefer par unité de longueur. Il s'agit d'une donnée essentielle pour le dimensionnement car elle influe directement sur l'échauffement [30]. Cette grandeur varie généralement de 10000 à 50000 A/m.

Le diamètre intérieur de la machine est donné par

$$D_{int1} = 0.69D_{ext1} + 6$$

$$P_i = K_e . S_n = K_e . U_n . I_n . m = m . E_n . I_n$$

$$\Rightarrow$$

$$E_n = \frac{P_i}{m . I_n} = 4 . K_f . f . w1 . K_{en1} . B_{\delta} . \alpha_i \frac{\pi . D_{int1}}{2.p} l_i$$

$$\Rightarrow$$

$$li = \frac{P_i}{m I_n . 4 . K_f . f . w_1 . K_{en1} . B_{\delta} . \alpha_i . \frac{\pi . D_{int1}}{2p}$$

On remplace le courant nominal par son expression on aura

$$l_{i} = \frac{P_{i}}{2.A.\pi^{2}.f.(D_{int1})^{2}.K_{f}.K_{en1}.B_{\delta}.\frac{\alpha_{i}}{2p}}$$
$$l_{i} = \frac{6.1.P_{i}.10^{12}}{A.(D_{int1})^{2}.K_{f}.n.K_{en1}.B_{\delta}.\alpha_{i}}$$

La longueur virtuelle doit vérifier la condition suivant

$$0.7 < \lambda < 1.3$$
 Avec $\lambda = \frac{l_i}{\tau}$

II-3-3 Dimensionnement de l'enroulement statorique

• Le nombre d'encoches par pôle et par phase

$$q1 = \frac{Z_1}{2.p.m}$$

• Angle électrique entre deux encoches voisines

$$\gamma = \frac{p.360}{Z_1}$$

• Le courant statorique

$$P_n = m.U_n.I_n.\cos\varphi \implies In = \frac{P_n}{m.U_n.\cos\varphi}$$
- P_n : Puissance utile de la machine
- Nombres de conducteurs effectifs dans les encoches

$$U_{en1} = \frac{A.t_1.a_1.10^3}{I_n}$$

 a_1 : Nombres de branches parallèles de l'enroulement statorique

$$t_1 = \frac{\pi . D_{\text{int}1}}{Z_1}$$
: Pas dentaire

• Nombres de spires d'une branche parallèle d'une phase

$$w_1 = p.q1 \frac{U_{en1}}{a_1}$$

• Section du conducteur effectif de l'enroulement statorique

$$S_{1eff} = \frac{I_n}{a_1 J_1}$$

 J_1 : Densité du courant, elle est choisie en fonction de la protection, la classe d'isolation et la tension (elle varie entre 5 et 6.5 [A/mm²])

Lorsque la section du conducteur dépasse 1.8mm², on la divise par un nombre entier de sections élémentaires

$$S_{1el} = \frac{S_{1eff}}{n_{el}}$$

Dans ce cas on choisit des sections normalisées en tenant compte du diamètre du conducteur avec isolation (voire annexe tableau 1)

- Vérification de quelques paramètres
- La charge linéaire $A_{v} = \frac{I_{n}U_{en1}Z_{1}}{\pi D_{int1} \cdot 10^{-3} a_{1}}$
- L'induction dans l'entrefer $B_{\delta v} = \frac{\phi}{\alpha_i . \tau . l_i 10^{-6}}$
- Densité du courant $J_{1v} = \frac{I_n}{n_{el} \cdot S_{1el}}$

La différence entre ces valeurs et les valeurs préliminaires ne doit pas dépasser 10% Le tableau suivant regroupe les résultats obtenus

Chapitre II : Calcul d'une machine synchrone avec la méthode analytico-empirique

Grandeurs	Symbole	Valeur numérique	Unité de mesure
Longueur virtuelle	Li	124.26	mm
Charge linéaire	А	16000	A/m
Induction dans l'entrefer	B∂	0.57	Tesla
Coefficient de longueur	λ	0.9487	-
Nombre de spires	w1	168	-
Nombre de conducteurs effectifs	Uen	28	-
Diamètre intérieur du stator	Dint1	166.77	mm
Courant nominal	In	8.46	А
Section effective	S1eff	1.69	mm ²
Diamètre avec isolation	Diso	1.585	mm

Tableau 1 : Résultats des dimensions principales

II-3-4 Dimensionnement de la feuille statorique

La tôle magnétique utilisée et de 0.5mm d'épaisseur

• Hauteur du dos du stator

$$h_{c1} = 0.5 \frac{\alpha_i \tau . B\delta}{K_{fer} . B_{c1}}$$

 K_{fer} : Facteur de remplissage du paquet statorique [0.95 : 0.97]

 B_{c1} : Induction admissible dans le dos du stator [1.55 : 1.75] [T]

• Largeur de la dent

$$b_{z1} = \frac{t_1 B_{\delta}}{K_{fer} \cdot B_{z1\max}}$$

• Largeur de la base de la dent

$$b_{cl} = t_1 - b_f$$

 $B_{z1\max}$: Induction maximale admissible dans la dent statorique [1.8 : 2] [T]

• Hauteur de la dent

$$h_{z1} = \frac{D_{ext1} - D_{int1}}{2} - h_{c1}$$

• Hauteur de l'encoche du stator

$$h_{en1} = h_{z1} - h_{k1} - h_f$$

- h_f : Hauteur de la fente [1.5 : 2] [mm]
- h_{k1} : Hauteur de la clavette

• Largeur maximale de l'encoche

$$b_{en2} = t_3 - b_{z1} = \frac{\pi (D_{int1} + 2.h_{z1})}{Z_1} - b_{z1}$$

Largeur minimale de l'encoche

$$b_{en1} = t_2 - b_{z1} = \frac{\pi (D_{int1} + 0.2.h_{z1})}{Z_1} - b_{z1}$$

• Section de l'encoche occupée par l'enroulement

$$S_{en1} = 0.5(b_{en1} + b_{en2})h_{en1} - S_{eniso}$$

 S_{eniso} : Section occupée par l'isolation

$$S_{eniso} = (b_{en1} + b_{en2} + 2.h_{en1})b_{iso}$$

 b_{iso} : Epaisseur de l'isolation

• Coefficient de remplissage

$$K_{rem} = \frac{n_{el}.d_{iso}.U_{en1}}{0.8.S_{en1}}$$

 d_{iso} : Diamètre avec isolation

$$0.7 < K_{rem} < 0.75$$

II-3-5 Calcul de l'entrefer

$$\delta = \frac{36.10^{-8}.\tau.A}{B_{\delta}.X_{ad}^{*}}$$

 X_{ad}^{*} : Réactance d'axe direct de la réaction magnétique de l'induit

 $X_{ad}^* = X_d^* - X_\delta$ [UR], la valeur de X_d^* est tirée de la Figure 3 (voir annexe)

• Valeur minimale de l'entrefer

$$\delta_{\min} = \frac{\delta}{1.125}$$

• Valeur maximale de l'entrefer

$$\delta_{\max} = \frac{\delta}{0.75}$$

II-3-6 Dimensionnement du noyau du rotor

• Largeur de l'arc de l'épanouissement polaire

 $b_{ep} = \alpha.\tau$ Avec $\alpha = 0.7$ pour $\alpha_i = 0.66$

• Rayon de l'épanouissement polaire

$$R_{ep} = \frac{D_{int1}}{2 + 8.D_{int1} \frac{\delta_{max} - \delta_{min}}{(b_{ep})^2}}$$

• Hauteur l'épanouissement polaire

$$h_{ep} = h'_{ep} + R_{ep} - \sqrt{R_{ep}^2 - (0.5.b_{ep})^2}$$
 Avec h'ep=2mm

• Largeur de la corde de l'épanouissement polaire

$$b_{ep'} = 2.R_{ep} \sin\left(\frac{0.5.b_{ep}}{R_{ep}}\right)$$

• Largeur du pôle

$$b_{pl} = \frac{\sigma'.\phi.10^{\circ}}{K_{ferm} l_p.B_{pm}}$$

 σ' : Valeur préliminaire du coefficient de dispersion des pôles

$$\sigma' = 1 + \frac{K_{\sigma}.35.\delta}{\tau^2}$$
$$K_{\sigma} = 0.25h_{ep} + 25$$

 B_{pm} : Induction dans le pôle [1.4 : 1.6] [T]

- K_{ferm} : Coefficient de remplissage des tôles rotoriques
- Largeur de la fenêtre polaire

$$h_c = \frac{b_{ep} - b_{pl}}{2} + 2$$

• Hauteur du dos du rotor

$$h_{c2} = \frac{\sigma'.B_{\delta}.l_i.\tau.\alpha_i}{2.B_{c2}.l_p.K_{ferm}}$$

La valeur de B_{c2} doit être inférieure à 1.4 T

• Hauteur bobinée du pôle

$$h_p = 0.5.D_{\text{int}1} - (h_{ep} + h_c + \delta + 0.5.b_{pl})$$

• Diamètre intérieur du noyau rotorique

$$D_{\text{int 2}} = K_{ar} \sqrt[3]{\frac{P_n}{n}}$$

 K_{ar} : Coefficient donné en fonction du diamètre du l'arbre, il vaut 30

Le tableau suivant représente les résultats de calcul de feuille statorique et le noyau rotorique

Grandeurs	Symbole	Valeur numérique	Unité de mesure
Hauteur du dos du stator	hc1	16.73	mm
Largeur de la dent	bz1	4.85	mm
Hauteur de la dent	hz1	16.38	mm
Largeur maximale de l'encoche	ben2	12.56	mm
Largeur minimale de l'encoche	ben1	9.98	mm
Hauteur de l'encoche du stator	hen1	12.38	mm
Section occupée par l'isolation	Seniso	18.92	mm ²
Section de l'encoche occupée par l'enroulement	Sen1	120.69	mm ²
Coefficient de remplissage	Krem	0.7285	-
Valeur de l'entrefer	amin	0.8708	mm
Valeur minimale de l'entrefer	å	0.77	mm
Valeur maximale de l'entrefer		1.16	mm
Largeur de l'arc de l'épanouissement polaire	bep	91.68	mm
Rayon de l'épanouissement polaire	Rep	80.9	mm
Largeur de la corde de l'épanouissement polaire	bep'	86.85	mm
Hauteur l'épanouissement polaire	hep	16.24	mm
Largeur du pôle	bpl	36.59	mm
Largeur de la fenêtre polaire	hc	29.54	mm
Diamètre intérieur du noyau rotorique	Dint2	41.25	mm
Hauteur du dos du rotor	hc2	23.35	mm
Hauteur bobinée du pôle	hp	18.42	mm

Tableau 2 : Résultats des dimensions de la feuille statorique et rotorique

Figure II-1 : Feuilles statorique et rotorique

Figure II-2 : Schéma d'une encoche

II-3-7 Calcul du circuit magnétique à vide

Le circuit magnétique des machines électriques est composé généralement de matériaux ferromagnétiques et d'entrefer, son dimensionnement est basé sur l'analyse de l'induction magnétique et le champ magnétique dans les différentes parties de la machine. La réalisation de ce procédé ce fait avec la loi d'Ampère, on calcul en premier lieu l'induction requise dans l'entrefer puis par suite la valeur du champ magnétique dans les différentes parties de la machine [29] [30] [31].

Le calcul du circuit magnétique à vide nous permit de déterminer la fmm d'excitation qui engendre le champ magnétique. On calcul les chutes de tension dans les différentes parties de la machine, leur somme doit être compensée par la fmm d'excitation [29][31]

• Le flux utile sous un pôle

$$\phi = \frac{E_n}{4.K_f.w_1K_{en1}.f}$$
$$E_n = \frac{P_i}{m.I_n.}$$

- La fmm dans l'entrefer
- *a)* Le coefficient d'entrefer

$$K_{\delta} = K_{\delta 1}.K_{\delta 2}$$

$$K_{\delta 1} = 1 + \frac{b_f}{t_1 - b_f + \frac{5.\delta \cdot t_1}{b_f}}$$

 $K_{\delta 1}$: Coefficient qui tient compte de la contribution des encoches du stator

$$K_{\delta 2} = 1 + \frac{b_{f2}}{t_2 - b_{f2} + \frac{5.\delta t_2}{b_{f2}}}$$

 $K_{\delta 2}$: Coefficient qui tient compte de l'influence des encoches de l'enroulement amortisseur logé dans l'épanouissement polaire, il vaut 1 car il n y a pas de dent au rotor b) Induction dans l'entrefer

$$B_{\delta} = \frac{\phi.10^6}{\alpha_i.\tau.(l_i + 2\delta)}$$

$$D'o\dot{u}$$

 $F_{\delta} = 0.8.\delta.K_{\delta}.B_{\delta}.10^3$

- La fmm dans les dents statoriques
- a) Induction dans les dents statoriques

Le flux correspondant à un pas dentaire est

$$\phi_{z} = b_{z1}.K_{fer}.B_{z}.l_{i}$$
$$\phi_{z} = B_{\delta}.t_{1}.l_{i}$$
$$\Rightarrow$$
$$B_{z} = \frac{B_{\delta}.t_{1}}{b_{z1}.K_{fer}}$$

La valeur du champ magnétique est tirée du tableau de magnétisation des dents de stator (voir annexe, tableau 2)

La fmm est alors donnée par

$$F_z = H_z h_{z1}$$

• La fmm dans la culasse du stator

a) Induction dans la culasse du stator

$$B_{cs} = \frac{\phi . 10^6}{2.K_{fer} . h_{c1} . l_i}$$

La valeur du champ magnétique est tirée du tableau de magnétisation du dos du stator (voir annexe, tableau 3)

La fmm dans le dos du stator est calculée à partir de la relation suivante

 $F_{cs} = H_{cs} \cdot X_i \cdot L_{cs}$

 X_i : Coefficient tenant compte du non uniformité du champ d'induction dans le dos statorique (voire annexe Figure 4)

 L_{cs} : Longueur moyenne des lignes du champ dans le dos du stator

$$L_{cs} = \frac{\pi}{2p} \left(D_{ext1} - h_{c1} \right)$$

• Coefficient de saturation magnétique du stator

$$K_{sat} = \frac{F_{\delta.zc}}{2.F_{\delta}}$$

 $F_{\delta.zc} = 2.(F_{\delta} + F_z) + F_{cs}$ C'est la fimm du stator par paire du pôle

- La fmm dans le pôle
- a) Flux dans le pôle

Le flux dans le pôle est égal à la somme du flux utile et du flux de dispersion

$$\phi_{pm} = \phi + \phi_{\sigma}$$

 ϕ_{σ} : Flux de dispersion par pôle

$$\phi_{\sigma} = 4.\lambda_p l_p F_{\delta,zc} 10^{-11}$$

 λ_p : Coefficient de conductibilité magnétique de dispersion des pôles, il est donné par

$$\lambda_p = \lambda_{ep} + \lambda_{pc} + \lambda_{pb}$$
$$\lambda_{ep} = 140 \left(\frac{h_e}{a_{ep}} - 0.25\right) + 55 \left(\frac{b_{ep}}{a_{ep}} + 0.2\right) - 40 \left(\frac{b_p}{a_{ep}} - 0.5\right)^2$$

 λ_{ep} : Coefficient de conductibilité du flux de dispersion à partir des surfaces de l'épanouissement polaire

$$h_e = \frac{2.h_{ep} + h_{ep'}}{3}$$

 h_e : Hauteur de l'épanouissement polaire

$$a_{ep} = \frac{\pi}{2.p} (D_{\text{int}1} - 2.\delta_{\text{max}} - h_{ep'}) - b_{ep}$$

 a_{ep} : Distance séparant deux surfaces latérales des épanouissements polaires voisins

$$b_{p} = 0.5(b_{ep} - b_{pl})$$
$$\lambda_{pc} = \frac{55.h_{p}}{\tau - b_{pl} - (h_{p} + 2.h_{ep} + 2.\delta)\frac{\pi}{2p}}$$

 λ_{pc} : Coefficient de conductibilité magnétique du flux de dispersion à partir des pôles

$$\lambda_{pb} = \frac{37.b_{pl}}{l_p}$$

 λ_{pb} : Coefficient de conductibilité magnétique du flux de dispersion dans les sections étroites des pôles

b) Induction dans le pôle

$$B_{pm} = \frac{\sigma.\phi.10^{6}}{l_{p}.b_{pl}.K_{ferm}} = \frac{\phi_{pm}.10^{6}}{l_{p}.b_{pl}.K_{ferm}}$$

La fmm dans le pôle est donnée alors par

$$F_{pm} = L_{pm}.H_{pm}$$

 H_{pm} : Valeur de l'intensité du champ correspondante à l'induction B_{pm} , elle est lue sur le tableau de magnétisation (Voir annexe, tableau 4)

 L_{pm} : Longueur moyenne des lignes du champ dans le pôle

$$L_{pm} = h_p + 0.7 h_{ep}$$

Si l'induction dans les pôles dépasse 1,6 T, le calcul de la fmm se fait en considérant la variation du flux selon la hauteur des pôles, le procédé est le suivant

• Le Flux magnétique sur la base du pôle

$$\phi_{p1} = \sigma.\phi$$

• L'induction sur la base du pôle

$$B_{p1} = \frac{\phi_{p1} \cdot 10^6}{K_{ferm} l_p b_{pl}}$$

• Le Flux dans l'épanouissement polaire

$$\phi_{p2} = \phi_{p1+} \left(\frac{\lambda_{ep}}{\lambda_p} \right) \phi_{\sigma}$$

• L'induction dans l'épanouissement polaire

$$B_{p2} = \frac{\phi_{p2} \cdot 10^{6}}{K_{ferm} l_{p} b_{epm}}$$
$$b_{epm} = 0.5 \cdot (b_{ep} + b_{pl})$$

• Le Flux dans la section du milieu du pôle

$$\phi_{pmoy} = 0.5 \bigl(\phi_{p1} + \phi_{p2}\bigr)$$

• L'induction dans la section du milieu du pôle

$$B_{pmoy} = \frac{\phi_{pmoy}.10^6}{K_{ferm}.l_p b_{pl}}$$

L'intensité des champs H_{p1} H_{p2} et H_{pmoy} est lue sur le tableau de magnétisation (voir annexe, tableau 4)

Le champ magnétique au milieu du pôle est donné par

$$H_{p} = \frac{H_{p1} + H_{p2} + 4.H_{pmoy}}{6}$$

D'où la fmm du pôle

$$F_{pm} = L_{pm}.H_p$$

• La fmm dans le dos du rotor

a) L'induction dans le dos du rotor

$$B_{c2} = \frac{\phi_{pm} 10^6}{2.l_p.K_{ferm}.h_{c2}}$$

La valeur de H_{c2} est tirée du tableau de magnétisation (voir annexe, tableau 4) La fimm est alors donnée par

$$F_{c2} = L_{c2}.H_{c2}$$

 L_{c2} : Longueur moyenne des lignes du flux magnétique dans le dos du rotor

$$L_{c2} = \frac{\pi}{4.p} \left(D_{\text{int}2} + 2h_{c2} \right) + 0.5h_{c2}$$

• La fmm du circuit magnétique par pôle

$$\begin{split} F_{ex} &= F_{\delta.zc} + 2.F_{pm} \\ F_{ex} &= F_{\delta} + F_{c2} + F_{pm} + F_{cs} + F_{z} \end{split}$$

La somme des fmm du pôle et du dos du rotor est

$$F_{pc} = F_{pm} + F_{c2}$$

• Les valeurs réduites des fmm et des flux

Le calcul des caractéristiques magnétiques se fait en unité réduite, les valeurs de base sont

le flux nominal et la fmm à vide en régime nominal [33][34] [35]

$$F_{\delta,zc}^{*} = \frac{F_{\delta,zc}}{F_{exn0}} \qquad \qquad \phi_{\sigma}^{*} = \frac{\phi_{\sigma}}{\phi_{n0}}$$

$$F_{ex}^{*} = \frac{F_{ex}}{F_{exn0}} \qquad \qquad \phi_{p1}^{*} = \frac{\phi_{p1}}{\phi_{n0}}$$

$$F_{pc}^{*} = \frac{F_{pc}}{F_{exn0}} \qquad \qquad \phi_{pm}^{*} = \frac{\phi_{pm}}{\phi_{n0}}$$

Il est recommandé de faire une comparaison entre la caractéristique à vide calculée et la caractéristique normalisée, cette dernière est tracée avec les données suivantes

E [UR]	0	0,5	1	1,1	1,2	1,3
Fex [UR]	0	0,47	1	1,17	1,4	2

Ces caractéristiques sont représentées dans la figure II-3

к	0.5	1	1,1	1,2	1,3
En	108,329267	216,658535	238,324388	259,990242	281,656095
Flux	0,00299859	0,00599718	0,0065969	0,00719662	0,00779634
Bdelta	0,27528567	0,55057135	0,60562848	0,66068562	0,71574275
Fdelta	220,834442	441,668884	485,835773	530,002661	574,16955
Bz1	0,86932318	1,73864637	1,912511	2,08637564	2,26024028
Hz1	277	1290	2250	4920	12600
Fz	4,53816094	21,1343957	36,8623181	80,6056023	206,428981
Bcs	0,75907553	1,51815106	1,66996617	1,82178127	1,97359638
Hcs	113	564	1020	2490	5530
Fcs	8,6372126	43,1096275	77,9642199	190,324419	422,688369
Fdeltazc	459,382419	968,716187	1123,3604	1411,54095	1983,88543
flsigma	0,000353	0,000744	0,000862	0,001084	0,001513
fluxpm	0,003351	0,006741	0,007459	0,00828	0,009309
Bpm	0,775777	1,560431	1,726741	1,916784	2,154882
Hpm	86	1350	4300	14200	102000
Fpm	2,562641	40,2275	128,132	423,1337	3039,411
Bc2	0,595336	1,197484	1,325111	1,470951	1,653669
Hc2	80	226	341	492	982
Fc2	11,98715	33,86371	51,09524	73,72099	147,1423
Fex	248,5596	580,0041	779,8896	1297,787	4376,082
Fpc	14,54979	74,09121	179,2273	496,8547	3186,553
Fdeltazcr	0,792033	1,670188	1,936815	2,433674	3,396747
Fexr	0,428548	1	1,344628	2,237549	7,544915
Fpcr	0,025086	0,127743	0,30901	0,85664	5,494019
flsigr	0,058808	0,12401	0,143807	0,180699	0,252206
fluxpmr	0,558808	1,12401	1,243807	1,380699	1,552206

Les résultats de calcul du circuit magnétique à vide sont donnés dans le tableau suivant

Tableau 3 : Résultats de calcul du circuit magnétique à vide

Figure II-3 : Courbe à vide

II-3-8 Calcul des paramètres de l'enroulement statorique

• Résistance active par phase

$$R_{1} = \frac{\rho_{cu}.w_{1}.L_{1moy}}{n_{el}.a_{1}.S_{1el}}$$

 ρ_{cu} : Résistivité du cuivre rapportée

$$L_{1mov} = 2(l_i + L_{1front})$$

 L_{1mov} : Longueur moyenne d'une spire de l'enroulement du stator

$$L_{1\,front} = (1.16 + 0.14.p)b_{mov1} + 15$$

 $L_{1 front}$: Longueur moyenne de la partie frontale d'une spire

$$b_{moy1} = t_{moy1} \cdot y_{moy1}$$

 b_{mov1} : Largeur moyenne d'une section

$$t_{moy1} = \frac{\pi (D_{int1} + h_{z1})}{Z_1}$$
: Pas dentaire moyen

$$y_{moy1} = \frac{Z_1}{2.p}$$
: Pas moyen

• Résistance active en unité réduite

$$R_{1r}^* = \frac{R_1}{U_n} I_n$$

• Vérification de *R*₁

$$R_{1rv}^{*} = \frac{\pi . D_{\text{int}1} A . J_1 L_{1moy} . 10^{-6}}{114 . m . U_n . I_n}$$

• Réactance de fuite par phase de l'enroulement statorique

Pour déterminer la réactance de fuite de l'enroulement statorique, il est nécessaire de d'étudier les différents flux de fuite, ces dernier sont caractérisés par des coefficients de dispersion qui dépendent de la forme et les dimensions des encoches [30] [36]

a) Coefficient de conductibilité magnétique de dispersion de l'encoche

$$\lambda_{en1} = \frac{h_1}{3.b_{en1}} K_{\beta} + \left(\frac{h_{11}}{b_{en1}} + \frac{3.h_{k1}}{b_{en1} + 2.b_f} + \frac{h_f}{b_f}\right) K_{\beta}$$

 $h_{11} = b_{en1} + h_1$ Avec $h_1 = 0.8 \frac{0.8.S_{en1}}{0.5(b_{en1} + b_{en2})}$

 K_{β} et K_{β} Sont des coefficients qu'on prélèvera sur la figure 5 de l'annexe b) Coefficient de conductibilité magnétique de dispersion différentielle

$$\lambda_{d1} = \frac{0.33.\alpha_i . \tau. c_d}{\delta. K_\delta. q_1}$$

Avec $c_d = 0.9$ pour un enroulement concentrique

c) Coefficient de dispersion frontale

$$\lambda_{f1} = 0.34 \frac{q_1}{l_i} (L_{1,front} - 0.64.\beta.\tau)$$
 Avec $\beta = 1$ pour un enroulement concentrique

d) Coefficient de dispersion entre les cornes des dents

$$\lambda_k = 0.04 + K_k + 0.07 \sqrt{\frac{(t_1 - b_f)}{b_f}}$$

La valeur de K_k est donnée par la courbe $K_k = f(K_{\beta\delta})$ de la figure 10 de l'annexe

Avec
$$K_{\beta\delta} = \frac{b_f}{\delta . K_{\delta}}$$

e) Coefficient de dispersion globale du stator

$$\lambda_1 = \lambda_{en1} + \lambda_{d1} + \lambda_{f1} + \lambda_k$$

D'où la réactance de fuite du stator

$$X_{\sigma} = \frac{1.58.f.l_i.w_1^2.\lambda_1}{pq_1.10^8}$$

f) Réactance de fuite en unité réduite

$$X_{\sigma r}^* = \frac{X_{\sigma}.I_n}{U_n}$$

g) Vérification de $X_{\sigma r}^*$

$$X_{\sigma.r}^{*'} = \frac{0.39(D_{\text{int}1}.A)^2 l_i . \lambda_1 10^{-11}}{m.U_n . I_n Z_1}$$

Le tableau suivant regroupe les résultats de calcul des paramètres de l'enroulement statorique

Grandeur	Valeur numérique	Unité de mesure
tmoy1	15,98313646	mm
Ymoy1	9	-
L1front	222,1414485	mm
bmoy1	143,8482281	mm
L1moy	692,8063471	mm
R1	1,182916	Ω
R1r	0,04362647	UR
landaen1	2,748088693	-
landad1	8,53480752	-
landaf1	1,135345396	-
landak	0,16370114	-
landa1	12,58194275	-
Xsig	5,810044884	Ω
Xsigr	0,213755493	UR
Xsigrv	0,206541957	UR

Tableau 4 : Résultats de calcul des paramètres de l'enroulement statorique

II-3-9 Calcul du circuit magnétique en charge

En charge, la Fmm d'excitation est déterminée à partir des caractéristiques partielles et le diagramme de Blondel [35] [36]

• Caractéristiques partielles : Elles sont tracées à partir des résultats de calcul du circuit magnétique à vide

• Diagramme de Blondel : Ce diagramme est construit à partir des données suivantes

 $U_{1mr} = 1$, $I_{1mr} = 1$, $X_{\delta}^* = 0.08$, $\varphi = 36.86$

La fem longitudinale en régime nominale d'un alternateur qui débite sur une charge inductive mixte est donnée par

 $Ed = U_{1n} + (R_1 + jX_1)I_{1n} + Eaq$

La chute de tension ohmique dans l'enroulement statorique étant négligeable, on aura

$$Ed = H_{1n} + (JX_1)I_{1n} + Eaq$$

A partir de ces équations on construit le diagramme vectoriel de Blondel ainsi que la détermination du coefficient de saturation

$$K_{sat} = \frac{F_{\delta scr}}{2F_{\delta r}} = 1,12$$

De la valeur de Ksat on peut déterminer les coefficients Xq, Xd et Xqd (voir annexe Fig.7)

$$X_q = 0.85$$
 , $X_d = 0.95$ st $K_{qd} = 0.002_{\#}$

La fmm du stator est

 $F_{an} = 0.45 m_1.Ken1 .w1. l_{1n}.K_{0a}/p$

Koa: Coefficient de forme de réaction d'induit il vaut 1

$$F_{anr} = \frac{F_{an}}{F_{anno}} \quad [UR]$$

En prenant en compte la saturation, la fimm transversale de la réaction d'induit est donnée par

$$\frac{F_{aqr}}{co2\Psi} = Xq. Kaq. F_{anr}$$

D'où la valeur de $\frac{E_{agr}}{cos \Psi}$ qu'est tirée de la courbe $Q_r = f(F_{ozer})$. On la rapporte sur le diagramme vectoriel dans le prolongement du vecteur $fX_0^*I_n$ et on joint l'extrémité de $\frac{E_{agr}}{cos \Psi}$ avec l'origine de U_{1n} puis on abaisse une perpendiculaire à partir de l'extrémité $fX_0^*I_{1n}$ sur le

dernier segment de droite tracé, on obtient ainsi le vecteur $E_{\delta dr} = \emptyset_{\delta dr}$ et on tire $F_{\delta dr}$ de la courbe $\emptyset_r = f(F_{\delta a cr})$

On peut alors calculer la fimm longitudinale résultante For

 $F_{\delta ar} = F_{\delta dr} + F_{adr}$ Avec

 $F_{adr} = X_{d}.K_{ad}.sin\Psi.F_{anr} + F_{anr}.K_{qd}.\cos\Psi$

On porte $F_{\delta a r}$ sur la sur la courbe $\emptyset_r = f(F_{\delta a \sigma r})$ on obtient le ϑ_r correspondant qu'on additionne avec $\emptyset_{\delta d \sigma r}$ pour avoir la valeur de \emptyset_{pmr} , à cette dernière correspond la fimm F_{por} qu'on relève de la caractéristique $\emptyset_{pmr} = f(F_{por})$ d'où la fimm d'excitation en charge

 $F_{gan} = F_{\delta ar} + F_{gan} [UR]$ $F_{gan} = F_{gan} \times F_{suma} [A]$

Figure II-4 : Diagramme de Blondel

Figure II-5 : Caractéristiques partielles

II-3-10 Dimensionnement de l'enroulement supplémentaire

L'enroulement supplémentaire est logé dans les encoches statoriques, son rôle est d'assurer l'excitation des pôles. Il a le même pas et le même nombre de phases que l'enroulement de base et occupe jusqu'à 20% de volume des encoches, il assure aussi 30% de la charge de circuit d'excitation [30]

• Nombre de spire de l'enroulement supplémentaire

Etant logé dans les mêmes encoches, les deux enroulements sont traversés par le même flux, d'où le rapport de transformation suivant

$$\frac{U_1}{U_{supp}} = \frac{w1}{w_{supp}} \Longrightarrow w_{supp} = \frac{U_{supp}, w1}{U_1}$$

Le nombre de conducteurs effectifs de l'enroulement supplémentaire par encoche est donné par

$$N_{supp} = \frac{W_{supp} \cdot a1}{p \cdot q_1}$$

D'où

$$w_{supp} = \frac{N_{supp}, p, q1}{a_1}$$

Avec N_{supp}=2

• Tension aux bornes de l'enroulement supplémentaire

$$U_{supp} = \sqrt{3} \cdot \frac{K_{o} \cdot U_{1n} \cdot W_{supp}}{w1}$$

 $U_{supp} = \frac{U_1.w_{supp}}{w1}$

 U_1 : Tension composée aux bornes de l'enroulement principal

• Résistance de l'enroulement supplémentaire

$$R_{supp} = \frac{Z_* \rho_{\sigma^*} \left(l_p + L_{1front} \right) w_{supp^*} 10^3}{S_{supp}}$$

II-3-11 Dimensionnement de l'enroulement d'excitation

La fimm d'excitation en charge F_{pn} déterminée doit être égale au nombre d'ampères tours au niveau de chaque paire de pôles

$$F_{gm} = 2..w_{ex}.I_{ex}$$

*w*_{ex}: Nombre de spire de l'enroulement d'excitation

I_{ex}: Courant d'excitation

• Longueur moyenne approximative d'une spire de l'enroulement d'excitation

 $L_{exmoy} = 2i5(L_p + b_{pi})$

• Section des conducteurs de l'enroulement d'excitation

$$S_{ex} = \frac{1.15(m_{T2}, P, F_{pn}, L_{exmoy} 10^{-3})}{57.U_{ex}}$$

U_{ex}: Tension aux bornes de l'enroulement d'excitation

$$U_{ex} = U_{supp} - 2$$

m_{T2}: Coefficient de température il vaut 1,2

• Nombre de spires de l'enroulement d'excitation

$$w_{ex} = \frac{1_r 15.F_{pn}}{f_{ex} \cdot S_{ex}}$$

 j_{ax} : Densité du courant de l'enroulement d'excitation, il varie entre 3 et 4 [A/mm²]

• Courant d'excitation en charge nominale

$$I_{ex} = \frac{F_{gn}}{2.w_{ex}}$$

• Distance entre deux bobines des pôles adjacents

$$a_k = \frac{L_p \cdot \tau}{h_m \cdot 10^3} + a_{supp}$$

Avec a_{supp} = 7mm

• Résistance de l'enroulement d'excitation

$$R_{ex} = \frac{2.m_{T2}\rho.w_{ex}L_{exmoy}10^3}{S_{ex}}$$

• Le courant maximum d'excitation

$$I_{extract} = \frac{U_{ext}}{R_{ext}}$$

• Le coefficient de sécurité de l'excitation

$$\kappa_{\sigma x} = \frac{I_{\sigma x max}}{I_{\sigma x}}$$

• Puissance nominale de l'excitation

$$P_{ex} = U_{ex}I_{exmax}$$

• Vérification de la densité du courant d'excitation

Pour déterminer la densité du courant d'excitation définitive on doit choisir les sections normalisées des conducteurs de l'enroulement d'excitation et vérifier le coefficient de remplissage des fenêtres polaire et du régime thermique

$$f'_{ex} = \frac{I_{ex}}{a_1 \cdot S_{ex}}$$

Dans le tableau suivant, sont présentés les résultats de calcul de l'enroulement supplémentaire et l'enroulement d'excitation

Grandeur	Valeur numérique	Unité de mesure
wsup	12	-
Usup	28,45512	V
Rsup	0,084494	Ω
Uex	26,45512	V
Lexmoy	400,2535	mm
Sex	0,934432	mm ²
wex	461,6994	-
lex	1,381335	А
Rex	16,61215	Ω
Pex	42,13021	W

Tableau 5 : Résultats de calcul de l'enroulement supplémentaire et d'excitation

II-3-12 Paramètres des enroulements de la machine

II-3-12-1 Réactance de l'enroulement du stator en régime stable

• Réactance inductive longitudinale de la réaction d'induit

$$X_{ad}^* = \frac{K_{ad}, F_{ah}}{[K_{sav}(0,5)]F_0} [UR]$$

 K_{ad} : Coefficient longitudinale de la réaction d'induit

 $\frac{\delta_{max}}{\delta_{min}} = 1.5$ $\frac{\delta}{v} = 0.08$

D'où $K_{ad} = 0.87$ (voire annexe Fig.8)

[K_{sat} (0,5)]: Coefficient de saturation pour $E_{*}=0,5$ [UR]

• Résistance inductive transversale de la réaction d'induit

$$X_{aq}^{*} = \frac{0.5K_{aq}(1+K_{\delta})F_{an}}{K_{sat}(0.5).F_{\delta}} \ [UR]$$

 $K_{\alpha q}$: Coefficient transversal de la réaction magnétique de l'induit, il vaut 0,35 (voire annexe Fig.8)

• Réactance inductive longitudinale synchrone

$$X_{\alpha}^* = X_{\alpha\alpha}^* + X_{\alpha}^* \ [HR]$$

• Réactance synchrone transversale

$$X_{q}^{*} = X_{aq}^{*} + X_{\delta}^{*} [UR]$$

II-3-12-2 Résistance de l'enroulement d'excitation

• Résistance active de l'enroulement d'excitation rapportée à l'enroulement du stator et la température de fonctionnement

$$R_{exx} = \frac{3_{e} 6m_{T2} F_{an} \cdot K_{ad}^{2} \cdot L_{exmoy}}{10^{6} \cdot \emptyset \cdot W_{ex} S_{ex} F}$$

• Inductance de l'enroulement d'excitation

$$X_{ox}^{*} = 1.27.K_{od}.X_{od}^{*}.(1 + \frac{4K_{sat}(0.5)F_{\delta}\lambda_{pd}}{\phi 10^{11}})$$

$$\lambda_{-} = \lambda_{-} \pm 0.65\lambda_{-} \pm 0.38\lambda_{-}.$$

• Réactance de dispersion de l'enroulement d'excitation

$$X_{ex\delta}^* = X_{exs} - X_{ad} \left[UR \right]$$

II-3-12-3 Résistance transitoire et subtransitoire de l'enroulement de stator

• Résistance transitoire longitudinale de l'enroulement du stator

$$X_d^{ts} = X_{\delta}^s + \frac{X_{ad}^s - X_{ex\delta}^s}{X_{ad}^s + X_{ex\delta}^s} [UR]$$

• Résistance transitoire transversale de l'enroulement du stator

$$X_q^{t*} = X_q^*$$

• Résistance subtransitoire longitudinale

$$X_d^{tt*} = X_d^{t*}$$

• Résistance subtransitoire transversale

$$X_q^{u_{\mathfrak{g}}}=X_q^{**}=X_q^*$$

II-3-12-4 Résistance pour les courants inverses et homopolaires

• Résistance de l'enroulement du stator pour les courants inverses

Lorsque la machine fonctionne sur une faible résistance en régime équivalent au régime en court-circuit, la réactance de l'enroulement de stator pour les courants inverses est donnée par

$$X_2^* = \sqrt{X_d^{tt*} \cdot X_q^{tt*}}$$

Si la machine fonctionne sur une grande résistance en régime équivalent au régime à vide cette réactance est donnée par

$$X_8^* = 0, 5(X_d^{u_0} + X_q^{u_0})$$

Résistance active d'une phase de l'enroulement de stator pour les courants homopolaires

$R_0^* = R_1^*. m_{T2} \ [UR]$

II-3-12-5 Les constantes du temps

• Constante du temps de l'enroulement d'excitation avec un enroulement statorique ouvert

$$T_{d0} = \frac{X_d^*}{2.\pi.F.R_{ex*}}$$

• Constante du temps de l'enroulement d'excitation avec un enroulement statorique fermé

$$X_d^t = \frac{T_{d0^*} X_d^{t*}}{X_d^*}$$

• Constante du temps de l'enroulement de du stator avec un enroulement rotorique fermé

$$T_{\alpha} = \frac{X_2^*}{2.\sigma F.R_1^*}$$

Les résultats de calcul des paramètres des enroulements de la machine sont dressés dans le tableau suivant

Grandeur	Valeur numérique	Unité de mesure
Xadr	1,70449	UR
Xaqr	0,75503	UR
Xdr	1,78449	UR
Xqr	0,83503	UR
Rexr	0,008896	UR
Xexr	1,840859	UR
Xdexr	0,320859	UR
Xd1tr	2,467647	UR
Xq1tr	0,83503	UR
Xd2tr	2,467647	UR
Xq2tr	0,83503	UR
X2r	1,435465	UR
X3r	1,651339	UR
ROr	0,052224	UR

Tableau 6 : Résultats de calcul des paramètres des enroulements de la machine

II-3-13- Pertes et rendement de la machine en régime nominal

II-3-13-1 Pertes principales

Les pertes principales sont essentiellement les pertes dans les dents et le dos du stator, elles sont dues au champ magnétique principal

• Pertes dans le dos du stator

$P_{\sigma1}=4.4.B_{\sigma\sigma}^2.m_{\sigma1}$

m_{c1} : Masse du dos du stator

$$m_{o1} = 7.8\pi (D_{exc1} - h_{o1}).h_{o1}.i_t.K_{fer} 10^{-6} [Kg]$$

• Pertes dans les dents du stator

$$P_{g1} = 4 A B_g^2 . m_{g1}$$

m_{e1} : Masse des dents du stator

 $m_{a1} = 7.8Z_1.B_{a1}.h_{on1}L_t.K_{for}.10^{-6} [Kg]$

II-3-13-2 Pertes supplémentaires

• Valeur moyenne des pertes superficielles spécifiques par rapport à 1m² de la surface de l'épanouissement polaire

$$P_{sup1} = K_0 (Z_1.n.10^{-4})^{1.5} (0.1.B_0.t_1)^2$$

Avec K₀ = 1,8

B₀ : Amplitude de l'oscillation de l'induction

$$B_{0} = \beta_{0} K_{\delta} B_{\delta}$$

 β_0 : Coefficient qui dépend de la relation $\frac{b_2}{\delta}$, il est tiré du tableau suivant

b <u>r</u> ð	1	2	3	4	8
βı	0.05	0.11	0.25	0.33	0.37

 $\frac{p_f}{\delta} = 4,59$ D'où $\beta_0 = 0,35$

• Pertes supplémentaires de la machine

```
P_{sup2} = 2P.\tau.\alpha.L_{g}.P_{sup1}K_{g}.10^{-6}
```

```
avec K_p = 0.6
```

Pour
$$\frac{2max}{\sigma_{min}} = 1,5$$

II-3-13-3 Pertes électriques principale dans l'enroulement statorique

• Pertes principale dans les enroulements statoriques

$$P_{el} = m.m_T (R_1.I_n^2 + \left((\frac{I_{ex}}{\sqrt{3}})^2 P_{sup}\right), \qquad m_T = 1.38$$

• Pertes électriques supplémentaires approximatives

$$P_{sup} = 0,005,P_{\rm c},10^3$$

• Pertes d'excitation d'une machine synchrone élémentaire par un enroulement supplémentaire du stator

 $P_p = I_{ex}^2 \cdot R_{ex} + 2 \cdot I_{ex}$

2[V] Représente la chute de tension dans les bagues

II-3-13-4 Pertes mécaniques

• Pertes par frottement et ventilation

$$P_{m1} = 8(\frac{n}{1000})^2 \cdot (\frac{D_{int1}}{100})^3$$

• Pertes dues aux frottements entre les bagues et les balais

$$P_{m2} = 2,6I_{ex}, D_{int1}, n. 10^{-6}$$

$$\textit{P}_{me\sigma} = \textit{P}_{m1} + \textit{P}_{m2}$$

• Somme des pertes magnétiques

 $P_{fer} = P_{o1} + P_{a1} + P_{sup2}$

• Somme des pertes

$$P_{som} = P_{fer} + P_{ei} + P_{sup} + P_p + P_{meo}$$

II-3-13-5 Le rendement

$$\eta = \left[1 - \frac{P_{som} \cdot 10^{-3}}{P_{w} + P_{som} \cdot 10^{-3}}\right] \cdot 100$$

Les résultats de calcul des pertes et du rendement sont donnés dans le tableau suivant

Grandeur	Valeur numérique	Unité de mesure
mc1	10,46742	Kg
Pc1	106,1505	W
mz1	0,713681	Kg
Pz1	9,492471	W
Psup1	2,355699	W
Psup2	0,064413	W
Pel	423,0713	W
Psup	27,5	W
Рр	34,46008	W
Pm1	83,48843	W
Pm2	0,898424	W
Pmec	84,38685	W
Pfer	115,7074	W
Psom	685,1257	W
Rend	85,06078	%

Tableau 7 : Résultats de calcul des pertes et du rendement

II-3-14 Calcul thermique

Dans les machines électriques, la température doit être sous contrôle. Le bon fonctionnement et le vieillissement des matériaux isolant en dépendent fortement. Dans le processus de conception on tient compte généralement de l'échauffement maximal de la machine en régime continu. Cet échauffement peut prendre différentes valeurs qui sont réglementées par des normes et liées aux matériaux utilisés.

II-3-14 -1 Echauffement et refroidissement du stator

• Flux thermique spécifique dû aux pertes dans la partie active de l'enroulement et aux pertes dans le fer rapporté à la surface interne de refroidissement de la partie active du stator

$$P_{en1} = \frac{K(\frac{P_{el}, 2l_{f}}{L_{1moy}} + P_{fer})}{S_{int}}$$

 S_{trat} : Surface interne de refroidissement de la partie active du stator

$$S_{int} = \pi . D_{int1} . l_t$$

K = 0.84 Pour le degré de protection IP23

• Flux thermique spécifique dû aux pertes dans la partie active de l'enroulement et aux pertes dans le fer rapporté à la surface interne de refroidissement de l'encoche

$$P_{eien1} = \frac{2 \cdot P_{ei} \cdot l_i}{L_{1moy} \cdot S_{oren1}}$$

 S_{oren1} : Surface conventionnelle de refroidissement de l'encoche $S_{oren1} = Z_1 \cdot l_i \cdot P_i$ $P_i = 2 \cdot h_{on1} + b_{on2}$ P_i : Périmètre conventionnel de la surface transversale de l'encoche

• Flux thermique spécifique dû aux pertes dans la partie frontales rapporté à la surface de refroidissement des parties frontales

$$P_{fro1} = \frac{2 \cdot P_{el} \cdot L_{1f}}{L_{1moy} \cdot S_{fro1}}$$

Sfree : Surface conventionnelle des parties frontales

L_{1f}: Longueur de la frette

 $L_{1f} = 0.4, b_{moy1} + 0.5, h_{en1} + 25$ $S_{firs1} = 4, \pi, L_{1f}, D_{for1}$ • Dépassement de la température de la surface active du stator sur la température du l'air à l'intérieur de la machine

$$\Delta T_{en1} = \frac{P_{en1}}{\alpha_1} [^{\circ}C]$$

 α_1 : Coefficient de l'émission thermique qui dépend de la vitesse du rotor

 $\alpha_1 = 16.10^{-5} [W/mm^2 °C]$

• Chute de température dans l'isolation de l'encoche et dans l'isolation des sections des conducteurs ronds

$$\Delta T_{ein1} = P_{eien1} \left[\frac{a_{iso}}{\lambda_{eq}^{l}} + \frac{(b_{en1} + b_{en2})}{16\lambda_{eq}} \right]$$

 e_{tso} : Epaisseur unilatérale de l'isolation de l'encoche du stator ($e_{tso} = 0,4mm$)

 λ_{eq} : Coefficient de conductibilité thermique de l'isolation de l'encoche

 λ_{eq}^{l} : Coefficient équivalent de conductibilité thermique d'isolation interne

$$\lambda_{eq}^{i} = 15.10^{-6}$$

 $\lambda_{eq} = 16.10^{-6}$

• Dépassement de la température de la partie frontale sur la température du l'air à l'intérieur de la machine

$$\Delta T_{fro1} = \frac{p_{fro1}}{\alpha_1} \ [^{\circ}C]$$

• Chute de température dans l'isolation dans l'isolation des parties frontales des sections des conducteurs ronds

$$\Delta T_{elfro1} = P_{fro1} \left[\frac{e_{igo}}{\lambda_{eq}^{i}} + \frac{h_{en1}}{12\lambda_{eq}} \right]$$

• Valeur moyenne de dépassement de température de l'enroulement sur celle de l'air à l'intérieur de la machine

$$\Delta T 1 - (\Delta T_{en1} + \Delta T_{ein1}) \frac{2.l_i}{L_{1may}} + (\Delta T_{eifro1} + \Delta T_{fro1}) \frac{2L_{1f}}{L_{1may}}$$

• Pertes transmises à l'air à l'intérieur de la machine

$$P_{som1} = K \left(\frac{2 P_{ol} l_{t}}{L_{1moy}} + P_{for} \right) + \frac{2 P_{ol} L_{1f}}{L_{1moy}} + P_{ol} + P_{moo} + P_{sup}$$

 Valeur moyenne du dépassement de la température de l'air à l'intérieur de la machine sur celle de l'air à l'extérieur de la machine

$$\Delta T_{atr} = \frac{P_{som1}}{S_{mash} \cdot \alpha_{atr}}$$

Smach : Surface de refroidissement extérieure de la machines

 $S_{mach} = \pi.D_{ext1}(l_t \mid 2.L_{1f})$

 α_{atr} : Coefficient de refroidissement de l'air ($\alpha_{atr} = 15.10^{-5}$)

• Dépassement moyen de température de l'enroulement sur celle de l'air extérieur

$\Delta T_{p1} = \Delta T \mathbf{1} + \Delta T_{atr}$

II-3-14-2 Echauffement de l'enroulement de l'excitation

• Flux spécifique dû aux pertes de l'enroulement d'excitation rapporté à la surface de refroidissement du rotor

$$P_{p2} = \frac{K_{p}P_{ex}}{S_{p2}}$$

Avec $K_{p_{e}} = 0.7$

 S_{p2} : Surface conventionnelle de refroidissement des sections à plusieurs couches $S_{p2} = 2.P.L_{exmoy}.P_2$

 P_2 : Périmètre de la section transversale conventionnelle de refroidissement du pôle

$$P_2 = l_p + b_{pl}$$

• Dépassement de la température de la surface extérieure de refroidissement de l'enroulement d'excitation

$$\Delta T_{pp} = \frac{P_{p2}}{\alpha_r}$$

 α_T : Coefficient de l'émission thermique de la bobine d'excitation

$$\alpha_T = (0.19.V_2 + 2.6).10^{-5} [W/mm^2 \circ C]$$

 V_2 : Vitesse périphérique du rotor

$$V_{2} = \frac{\pi . D_{ext2} . n}{6.10^{4}} \left[m/s \right]$$

Avec Dexta: Diamètre extérieur du rotor

 $D_{ext2} = D_{int1} - 2\delta$

Chute de température dans l'isolation des bobines excitation

$$\Delta T_{tso} = \frac{(P_{p2}, e_{tso}p)}{\lambda_{eq}^{l}} [{}^{\circ}C]$$

• Valeur moyenne du dépassement de la température de l'enroulement d'excitation sur celle de l'air à l'intérieur de la machine

 $\Delta T_{g}^{t} = \Delta T_{gp} + \Delta T_{tso}$

• Dépassement de la température de l'enroulement sur celle de l'air refroidissant $\Delta T_p = \Delta T_p^t + \Delta T_{atr}$

Les résultats du calcul thermique sont présentés dans le tableau suivant

Grandeur	Valeur numérique	Unité de mesure
Sint	65103,63	mm ²
P_{en1}	0,003735	w/ mm ²
Scren1	211666,4	mm ²
Pelen1	0,000717	w/ mm²
Sfro1	185952,8	mm ²
Pfro1	0,000583	w/ mm ²
<mark>∆</mark> Ten1	23,34636	°C
∆ Telen1	8,227705	°C
<u>∆</u> Tfro1	3,642369	°C
<u>∧</u> elfro1	5,312776	°C
<u>∆</u> T1	13,6201	°C
Psom1	868,0037	W
∆Tair	26,20084	°C
<mark>∆</mark> Tp1	39,82095	°C
Sp2	256324,6	mm²
V2	12,9613	m/s
∆Трр	2,272604	°C
∆ Tiso	0,613621	°C
∆Tpm	2,886225	°C
∆Тр	29,08707	°C

Tableau 8 : Résultats de calcul thermique

II-3-15 Calcul de la ventilation

• Quantité d'air à dépenser

La quantité d'air nécessaire au refroidissement de la machine est fonction des pertes transmises à l'air à l'intérieur de la machine

$$Q_{atr} = \frac{P_{som1}}{C_{atr} \Delta T_{atr}^{t}} \left[\frac{m^{3}}{s}\right]$$

 C_{air} : Capacité thermique de l'air ($C_{air} = 1100 \left[\frac{W}{m^3} \alpha C\right]$)

 ΔT^{\prime}_{atr} : Dépassement de température de l'air sortant sur l'entrant

 $\Delta T_{atr}^{t} = 2\Delta T_{atr}$

• Vitesse de ventilateur sur sa périphérie

$$V_{ext} = \frac{\pi . D_{extp} . n}{6.10^4} [m/s]$$

Dexte : Diamètre extérieur du ventilateur

 $D_{onto} = (0.8 + 0.9) D_{onto}$

• Vitesse de ventilateur sur son diamètre intérieur

$$V_{int} = \frac{\pi \cdot D_{intv} \cdot n}{6.10^4} \quad [m/s]$$

Diamètre intérieur du ventilateur

$$D_{intv} = (0.62 + 0.67)D_{int1}$$

• Nombre d'ailettes du ventilateur

$$n_{atl} = (6+10) \frac{D_{extu}}{D_{extu} - D_{intu}}$$

• Largeur d'ailettes du ventilateur

 $L_{att} = (0.12 + 0.14) D_{oxe1}$

• Pression du ventilateur

$$P_{\nu} = \eta_{uvv} \rho_{uir} (V_{vxv}^2 - V_{inv}^2) [Pa]$$

 η_{aev} : Rendement aérodynamique du ventilateur ($\eta_{aev} = 0.6$)

 ρ_{atr} : Densité de l'air ($\rho_{atr} = 1.23 [Kg/m^3]$)

• Consommation de l'air maximale

$$Q_{atemax} = 0.42 V_{ext} \cdot S_{w} [m^3/s]$$

 S_w : Surface transversale des trous d'entrée d'air du ventilateur

$$S_v = 0.92\pi D_{extv} L_{atv} \cdot 10^{-6} \ [m^2]$$

• Consommation réelle de l'air

$$Q_{risei} = Q_{airmax} \sqrt{\frac{P_v}{P_v + R_{air} Q_{airmax}^2}} \quad [m^3/s]$$

R_{etr} : Résistance aérodynamique équivalent de l'air donnée par la figure 11 (voir annexe)

• Pression réelle du ventilateur

$$P_{vr6et} = \frac{P_v Z Q_{atrmax}}{P_v + Z Q_{atrmax}} \quad [Pa]$$

Le tableau suivant regroupe les résultats du calcul de la ventilation

Grandeur	Valeur numérique	Unité de mesure
$\Delta T'_{ztr}$	52,40169	°C
Qair	0,015059	m³/s
Dextv	209,7	mm
Dintv	108,4005	mm
Vext	16,4698	m/s
Vint	8,513755	m/s
nail	16,56079	-
Lail	27,96	mm
Pv	146,6925	Ра
Sv	0,016946	mm ²
Qrmax	0,117222	m³/s
Qrel	0,10357	m³/s
Pvrel	103,5135	Ра

Tableau 9 : Résultats de calcul de la ventilation

II- 4 Organigramme du calcul

Figure II-6 : Organigramme de calcul

II-5 Conclusion

Dans ce second chapitre nous avons dimensionné une machines synchrone à pôles saillants avec une méthode analytico-empirique. La démarche entretenue est un processus qui comporte plusieurs étapes partant des dimensions principales de la machine jusqu'au calcul de la ventilation. Les différentes expressions analytiques utilisées dans ce processus sont programmées sous environnement Matlab en suivant l'organigramme de la figure II-6 Il y a lieu de signaler que les temps de calcul sont considérablement courts, ce qui constitue l'avantage majeur des modèles analytiques.

CHAPITRE III

Prise En Compte Des Effets Tridimensionnels

Introduction

Du fait que la géométrie réelle des systèmes électromagnétiques est tridimensionnelle, une étude bidimensionnelle de ces systèmes s'avère insuffisante. Néanmoins, il est possible de construire des modèles analytiques bidimensionnels qui peuvent tenir compte de quelques effets tridimensionnels en apportant une correction adaptée.

Les modèles bidimensionnels qui intègrent les effets 3D reposent généralement sur la détermination d'un coefficient tridimensionnel qui représente l'augmentation du flux magnétique causé par les parties frontales de la machine à étudier [3] [38] [39].

L'inconvénient majeur de ces modèles c'est qu'ils reposent toujours sur des simulations 3D pour pouvoir déterminer l'expression analytique du coefficient tridimensionnel.

L'idéal donc c'est de pouvoir élaborer un modèle 2D qui peut tenir compte des effets 3D sans toutefois faire recours aux simulation 3D qui sont couteuses en terme de temps de résolution et d'espace mémoire.

Pour y aboutir nous allons exploiter une autre méthode qui repose sur le calcul analytique des permeances magnétiques des machines électriques.

Comme nous l'avons cité avant, il est possible de modéliser une machine électrique par un réseau de reluctances (inverse de la permeance). Cette méthode a fait l'objet des travaux réalisés dans les références [21] et [24]. Dans notre cas la modélisation complète de la machine n'est pas nécessaire, on s'intéresse uniquement aux permeances des parties frontales. Une fois déterminées, ces permeances vont nous servir dans la détermination de la longueur axiale compensée de la machine.

III.1 Compensation de la longueur axiale

La grande partie du flux magnétique créé dans une machine électrique tournante traverse l'entrefer, cependant une partie de ce flux souvent négligée dans les calculs transite par les parties frontales et entre les dents de la machine [38] [39]. Pour prendre en compte ce flux, nous allons utiliser la méthode des permeances citée précédemment dans le but de déterminer la longueur axiale compensée de la machine.

Avant d'entamer cette démarche, il est préférable d'approximer la géométrie des encoches à des formes rectangulaires [40]. La figure 1 représente la nouvelle géométrie de la machine. Considérons un segment de la machine d'une largeur b_e égale à la largeur d'une dent et une encoche (figure III-2)

$$b_e = \frac{\pi (R_{int1} + R_2)}{Z} \qquad \text{III. 1}$$

Avec

 $R_2 = \frac{D_{inc2}}{2} + h_o + h_p$

Figure III-1 : Approximation rectangulaire des dents

La permeance de ce segment peut être déterminée par la relation suivante en négligeant le flux des parties frontales.

$$P_{seg} = \frac{\mu_0 b_e L_t}{\delta + h_{ep}} \qquad III.2$$

En tenant compte du flux frontal, la nouvelle permeance de ce segment de vient comme suit

$$P_{seg} = \frac{\mu_0 b_e L_i}{\delta + h_{rw}} + 2P_{ewd} \qquad III.3$$

 P_{end} : Permeance entre la face du segment (dent et encoche) et le rotor

Pour le calcul de P_{end} , considérons la figure III-2 sur laquelle sont illustrées les 4 zones P₁, P₂, P₃ et P₄ que traverse le flux frontal ainsi que la nouvelle dimension h_{emax} qu'est une approximation de la distance maximale que peut parcourir le flux avant d'atteindre la culasse statorique et sans passer par le centre des têtes de bobines

Cette dimension s'exprime par [11] [40]

$$h_{emax} = h_f + \sqrt{\left(\frac{h_{ebs}}{2}\right)^2 + \left(\frac{h_{em1}}{2}\right)^2} \qquad III.4$$

Avec

$$h_{vb} = \frac{3b_{en}}{2} \qquad \qquad III.5$$

$$b_{en} = \frac{b_{en1} + b_{en2}}{2} \qquad \qquad III.$$

6
h_{tb} : Hauteur des têtes de bobines statoriques

b_{em} : Largeur moyenne d'une dent

Les contours parcourus par le flux frontal qui transite entre les zones (P_1, P_1) , (P_2, P_2) (P_3, P_3) et (P_4, P_4) sont représentés sur le schéma 3D de la figure III-3

Figure III-2 : Zones des permeances frontales

Figure III-3 : Représentation 3D des contours de flux

Pour les régions (P_1, P_1) et (P_2, P_2) , les contours de flux commencent par un quart de cercle à partir du rotor et continuent sous forme d'une droite parallèle au plan radial de la machine pour atteindre la dent statorique sous forme d'un quart de cercle

Pour les régions (P_3, P_3) et (P_4, P_4) , les contours parcourus par le flux sont plus complexes, les détails de ces contours sont représentés sur la figure suivante

Figure III-4 : contours de flux des régions (P_3, P_3) et (P_4, P_4)

Dans ces régions aussi les contours de flux frontal commencent à partir du rotor par un quart de cercle de rayon r_1 jusqu'au point B puis continuent sous forme d'une droite parallèle au plan radial de la machine jusqu'au point C, puis sous forme d'un quart de cercle au point D (figure III-4b) et ils se terminent à l'intérieur des dents statoriques par un autre quart de cercle de rayon r_2 (figure III-4a)

III.2 Expressions analytiques des permeances

La permeance Pend peut être maintenant exprimée par

 $P_{end} = 2(P_1 + P_2 + P_3 + P_4) \qquad III.7$

A présent il faut exprimer les relations analytiques de ces différentes permeances, ces dernières sont données par [40] [41]

$$P_{1} = \frac{\mu_{\theta} b_{ei}}{2\pi} ln \left(1 + \frac{\pi h_{f}}{\delta + h_{ep}} \right)$$

$$P_{2} = \frac{\mu_{0} b_{e1}}{2\pi} ln \left(1 + \frac{\pi (h_{emax} - h_{f})}{\delta + h_{ep} + 2h_{f}} \right)$$

$$III.9$$

$$III.9$$

$$P_{2} = \frac{\mu_{0}}{\pi^{2}} \left[2\pi h_{f} \ln \left(1 + \frac{n(v_{e} - v_{el})}{4(\delta + h_{ep}) + 4\pi h_{f}} \right) + \left(\frac{\pi}{2} (b_{e} - b_{el}) + 2(\delta + h_{ep}) \right) \ln \left(1 + \frac{4\pi h_{f}}{\pi (b_{e} - b_{el}) + 4(\delta + h_{ep})} \right) \right]$$

$$2(\delta + h_{ep}) \ln \left(1 + \frac{\pi h_{f}}{(\delta + h_{ep})} \right)$$
III. 10

$$\begin{split} P_{4} &= \frac{\mu_{0}}{\pi^{2}} \bigg[2\pi (h_{emax} - h_{f}) ln \bigg(1 + \frac{\pi (b_{e} - b_{p1})}{4(\delta + h_{ep} + 2h_{f}) + 4\pi (h_{emax} - h_{f})} \bigg) \\ &+ \bigg(\frac{\pi}{2} (b_{e} - b_{p1}) + 2 \big(\delta + h_{ep} + 2h_{f} \big) \bigg) ln \bigg(1 \\ &+ \frac{4\pi (h_{emax} - h_{f})}{\pi (b_{e} - b_{p1}) + 4 \big(\delta + h_{ep} + 2h_{f} \big)} \bigg) \\ &- 2 \big(\delta + h_{ep} + 2h_{f} \big) ln \bigg(1 + \frac{\pi (h_{emax} - h_{f})}{(\delta + h_{ep} + 2h_{f})} \bigg) \bigg] \end{split}$$
 III. 11

III.3 Expression de la longueur axiale compensée

En remplaçant la longueur réelle L_i dans l'expression 2 par une longueur compensée L_c on obtient

$$P_{seg} = \frac{\mu_0 b_e L_o}{\delta + h_{ep}} = \frac{\mu_0 b_e L_i}{\delta + h_{ep}} + 2P_{end} \qquad III.12$$

D'où

$$L_{o} = L_{i} + \frac{2(\delta + h_{ep})P_{end}}{\mu_{0}b_{e}} \qquad III.13$$

III.4 Intégration de la longueur compensée dans le programme de calcul

Pour retrouver le flux réel traversant le bobinage de la machine, nous allons introduire un coefficient de correction du flux, ce dernier est exprimé par le rapport entre le flux calculé avec la nouvelle longueur de la machine (L_e) et celui calculé avec la longueur initiale (L_i)

La prise en compte des pertes fer supplémentaires causées part le flux frontal peut se faire empiriquement en introduisant un coefficient de correction des pertes fer dans les différentes sections de la machine. La valeur de ce coefficient est donnée dans le tableau suivant pour différent types de machines électriques [30]

Type de machine	Dent	Dos
Machines synchrones	2	1.5–1.7
Machines asynchrones	1.8	1.5–1.7
Machines à courant continu	1.5	1.6–2

Tableau 10 : Valeurs de coefficient de correction des pertes fer

Le coefficient K_{ap} , va servir come facteur d'amplification du flux de la machine, il exprime la contribution des parties frontales à l'augmentation du flux. Une représentation schématique est donnée dans la figure suivante

56

Figure III-5 : Représentation 2D du flux frontal

III-4-1 Influence de la longueur compensée sur les grandeurs électromagnétiques de la machine en fonctionnement nominal

II-4-1-1 Influence sur le circuit magnétique à vide

Le tableau suivant représente une comparaison entre les résultats de calcul du circuit magnétique à vide au point nominal sans effet 3D et avec effet 3D

Grandeurs	Valeur sans effet 3D	Valeur avec effet 3D	Différence(%)
En	216,6585	216,6585	0
flux	0,00599718	0,007792	23.03
Bdelta	0,55057135	0,563791	2.34
Fdelta	441,668884	452,2736	2.34
Bz1	1,73864637	1,780392	2.34
Hz1	1290	1480	12.83
Fz	21,1343957	24,24721	12.83
Bcs	1,51815106	1,55	2.05
Hcs	564	630	10.47
Fcs	43,1096275	48,15437	10.47
Fdeltazc	968,716187	1001,196	3.24
flsigma	0,000744	0,000964	22.79
fluxpm	0,006741	0,008756	23.01
Bpm	1,560431	1,592694	2.02
Hpm	1350	1700	20.58
Fpm	40,2275	50,65685	20.58
Bc2	1,197484	1,222243	2.02
Hc2	226	277	18.41
Fc2	33,86371	41,50552	18.41
Fex	580,0041	616,8376	5.97
Fpc	74,09121	92,16237	19.60

Tableau 11 : Comparaison entre les valeurs du circuit magnétique à vide sans effet 3D et

avec effet 3D

Comme nous pouvons voir sur ce tableau, l'influence du coefficient de correction sur le flux de la machine est considérable, en effet nous constatons une augmentation de 23.03% du flux utile et comme les autres grandeurs sont en relation de proportionnalité avec ce flux, leur augmentation avec des pourcentages significatifs est justifiée par l'élévation de celui-ci. Donc on peut considérer comme effet positif l'apport de cette correction du fait qu'elle améliore les paramètres électromagnétiques du circuit magnétique a savoir l'induction (2.34%) et la Fmm (2.34%) d'entrefer, néanmoins elle a un effet négatif sur le flux de

dispersion car ce dernier augmente aussi de 22.79%. Cette augmentation de la dispersion du flux est due d'une part a l'accroissement de la Fmm du stator par pair du pôle et d'autre par a la compensation de la longueur de la machine.

Pour vérifier la cohérence de ces résultats nous allons comparer la nouvelle caractéristique à vide à celle tracée sans les effets 3D

Figure III-6 Caractéristiques à vides avec et sans effets 3D

Il est clair sur cette figure que la nouvelle caractéristique à vide tracée avec la prise en compte des effets 3D pour une Fem réduite inférieure à l'unité, ce qui constitue la limite du modèle suit la même allure de la caractéristique à vide sans les effets 3D et la caractéristique normalisée

III-	4-	-1	-2	In	flu	en	ce	sur	· les	5 1	param	lètr	es	de	ľ	enrou	llen	ient	t si	tat	ori	qu	ıe
																						_	

Grandeur	Valeur sans effet 3D	Valeur avec effet 3D	Différence (%)
R1	1,1829	1,1829	0
landaf1	1,1353	0,8921	(-) 27.26
landa1	12,5819	12,3387	(-) 1.97
Xsig	5,81004	5,6977	(-) 1.97

 Tableau 12 : Comparaison entre les valeurs des paramètres de l'enroulement statorique sans et avec effet 3D

D'après les résultats listés ci-dessus, le coefficient de correction du flux utile de la machine n'a aucune influence sur la résistance de l'enroulement statorique car, ce dernier est indépendant des grandeurs électromagnétiques de la machine, elle est seulement fonction des paramètres dimensionnels dont la longueur est exclue. Pour la réactance de fuite du stator, on constate qu'elle diminue de 1.97%. Cette diminution est due à la réduction de la dispersion frontale de la machine, en effet le flux considéré initialement comme flux de dispersion frontale est récupéré par le circuit magnétique du fait de la compensation de la longueur de la machine.

Grandeur	Valeur sans effet 3D	Valeur avec effet 3D	Différence (%)
Xadr	1,70449	1,564155	-8.23
Xaqr	0,75503	0,692866	-8.23
Xdr	1,78449	1,644155	-7.86
Xqr	0,83503	0,772866	-7.44
Rexr	0,008896	0,006847	-29.92
Xexr	1,840308	1,689165	-8.24
Xdexr	0,320308	0,169165	-47.27
Xd1tr	2,468105	2,448963	-0.75
Xq1tr	0,83503	0,772866	-7.44
Xd2tr	2,468105	2,448963	-0.75
Xq2tr	0,83503	0,772866	-7.44
X2r	1,435598	1,375762	-4.15
X3r	1,651567	1,610915	-2.44
ROr	0,052224	0,052224	0

III-4-1-3 Influence sur les paramètres des enroulements de la machine

 Tableau 13 : Comparaison entre les valeurs les paramètres des enroulements de la machine sans et avec effet 3D

Les résultats de tableau ci-dessus sont obtenus pour le même système d'excitation, on remarque qu'il y a une réduction des paramètres des enroulements car ces derniers sont inversement proportionnels au flux utile de la machine. La plus forte réduction est obtenue au niveau de la réactance de dispersion de l'enroulement d'excitation (47,27%). Néanmoins on remarque que cette correction du flux n'a aucune incidence sur la résistance active d'une phase de l'enroulement de stator pour les courants homopolaires car cette résistance est indépendante des paramètres électromagnétique de la machine

III-4-1-4 Influence sur les pertes et le rendement de la machine

Le tableau suivant regroupe les résultats de calcul des pertes et du rendement de la machine avec l'introduction du coefficient de correction des pertes fer.

Grandeur	Valeur sans effet 3D	Valeur avec effet 3D	Différence (%)
mc1	10,46	10,46	0
Pc1	106,15	165,98	36.04
mz1	0,71	0,71	0
Pz1	9,49	19,91	52.32
Psup1	2,35	2,470181	4.86
Psup2	0,06	0,085956	30.19
Pel	423	423,0687	0
Psup	27,5	27,5	0
Рр	34,46	34,46	0
Pm1	83,48	83,48	0
Pm2	0,89	0,898408	0
Pmec	84,38	84,38684	0
Pfer	115,70	186,00	37.78
Psom	685,12	755,40	9.30
Rend	85,06	83,77	-1.53

 Tableau 14 : Comparaison entre les valeurs des pertes et le rendement de la machine sans et avec effet 3D

Dans l'évaluation des pertes de la machine dressées dans le tableau ci-dessus, on constate que la seule augmentation des pertes a eu lieu au niveau des parties magnétique de la machine (pertes fer), cela est dû a l'augmentation des différentes inductions (B_{cs}, B_Z, R_{o}) dans ces parties, et comme conséquence directe de cette augmentation des pertes on a une faible diminution du rendement (1,53%) cela peut être considéré négligeable devant le gain obtenu au niveau du flux

III-5 Conclusion

Dance ce chapitre nous avons réévalué les paramètres électromagnétiques de la machine dimensionnée avec une méthode analytico-empirique en introduisant les effets tridimensionnels. Comme effet immédiat de cette correction nous avons obtenu une nette augmentation du flux utile de la machine qu'est d'ordre de 23.03% ainsi que la Fmm d'entrefer (2.34%), les différentes inductions (2%) et la réduction de la réactance de fuite du stator (1,97%), cela peut être considéré comme une amélioration de la machine, mais d'autre

part, on a comme effet négatif l'augmentation de la dispersion entre les pôles du rotor (22.79%) et les pertes fer (37,78%) ce qui a induit à une faible diminution du rendement de la machine (1.53%). Ce taux peut être jugé acceptable en dépit des améliorations obtenues

Conclusion générale

Ce présent mémoire a été consacré à l'élaboration d'une méthodologie de calcul de machines synchrones à pôles saillants en utilisant une méthode classique en vue d'une étude d'optimisation.

Le premier chapitre a été l'occasion de rappeler le problème de la conception des machines électriques et les méthodes analytiques utilisées dans ce domaine

Le deuxième chapitre a détaillé le processus de calcul d'une machine synchrone à pôles saillants. La méthode retenue est une méthode classique fondée sur des expressions analiticoempiriques, elle est composée de plusieurs étapes dans lesquelles nous avons défini les grandeurs géométriques de la machine (longueur virtuelle, les différents diamètres, l'entrefer...etc.) ainsi que les grandeurs électromagnétiques (les inductions, les champs...etc.)

Dans le troisième chapitre nous avons proposé une méthode analytique pour la prise en compte de quelques effets tridimensionnels, elle est basée sur le calcul des perméances des parties frontales de la machine en suivant les lignes du champ qui sortent du rotor et pénètre dans le paquet statorique sans traverser l'entrefer.

En conclusion, on peut dire que l'introduction des effets tridimensionnels dans le processus de calcul a considérablement amélioré la machine. En effet nous avons constaté une augmentation de 23% du flux qui participe à la création de la Fem, ce taux important est récupéré par les parties frontales de la machine grâce à la compensation de la longueur virtuelle de la machine. Bien entendu, cela a généré une augmentation des pertes fer ce qui a causé une faible diminution du rendement de la machine.

En termes de perspectives on peut envisager de poursuivre le travail en introduisant d'autres paramètres négligés dans le calcul avec la même méthode de calcul des perméances tel que l'inductance des têtes de bobines et le flux de fuite dans les encoches statoriques

Bibliographie

- [1] Julien Fontchastgner « Résolution du problème inverse de conception d'actionneurs électromagnétiques par association de méthodes déterministes d'optimisation globale avec des modèles analytiques et numériques »Thèse de doctorat de l'Institut National Polytechnique de Toulouse 2007
- [2] Guillaume Lacombe « *Définition et réalisation d'une nouvelle génération de logiciel pour la conception des moteurs du futur* » Thèse de doctorat de L'INP Grenoble 2007
- [3] Frédéric Dubas « conception d'un moteur rapide à aimants permanents pour l'entraînement de compresseurs de piles à combustible » Thèse de doctorat de l'Université de Franche-Comté 2006
- [4] F. Messine, B. Nogarede et J.L. Lagouanelle «Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization» IEEE Transactions on Magnetics, vol. 34, pp 299-308 no. 1, January 1998
- [5] J. Fontchastagner, F. Messine et Y. Lefèvre « Design of Electrical Rotating Machines by Associating Deterministic Global Optimization Algorithm With Combinatorial Analytical and Numerical Models» IEEE Transactions on Magnetics, vol.43,pp 3411-3419 no. 8, August 2007
- [6] E. Fitan, F. Messine, et B. Nogarède «The Electromagnetic Actuator Design Problem: A General and Rational Approach» IEEE Transactions on Magnetics, vol. 40, pp 1579-1590 no. 3, May 2004
- [7] DE BERNARDINIS Alexandre « Etude et Optimisation D'un Ensemble Alternateur a Aimants /Redresseur Commande. Application a Un Véhicule Hybride» Thèse de doctorat de L'Institut National Polytechnique de Lorraine 2000
- [8] Stéphane Brisset « Démarches et Outils pour la Conception Optimale des Machines Electriques » Thèse de doctorat de l'Université des Sciences et Technologies de Lille 2007

- [9] F. Locment « Conception et modélisation d'une machine synchrone à 7 phases à aimant permanent et à flux axial : Commande vectorielle en flux normale et dégradé » Thèse de doctorat de l'Université sciences te technologies de Lille 2006
- [10] Z.Q. Zhu, D. Howe «Analytical Prediction of the cogging Torque in Radial-field Permanent Magnet brushless Motors » IEEE Transactions on Magnetics, vol. 28, pp 1371-1374 no. 2, March 1992
- [11] P. Ragot « Modélisation analytique multi-physique pour la conception optimale de moteurs synchrones à aimants permanents » Thèse de doctorat de l'Ecole Polytechnique Fédérale de Lausanne 2008
- [12] Z. Makni, M. Besbes, et C. Marchand « Multi-physics Design Methodology of Permanent-Magnet Synchronous Motors » IEEE Transactions on Vehicular Technology, vol. 56, pp. 1524-1530 no. 4, July 2007
- [13] Li Zhu, S. Z. Jiang, Z. Q. Zhu, et C. C. Chan «Analytical Methods for Minimizing Cogging Torque in Permanent-Magnet Machines » IEEE Transactions on Magnetics, vol. 45,pp.2023-2031 no. 4, April 2009
- [14] S.H. Han, W. L. Soong, T. M. Jahns «An Analytical Design Approach for Reducing Stator Iron Losses in Interior PM Synchronous Machines during Flux-Weakening Operation»IEEE 42nd IAS Annual Meeting. Conference on Industry Applications, 2007.
- [15] R. Nuscheler «Two-Dimensional Analytical Model for Eddy-Current Loss Calculation in the Magnets and Solid Rotor Yokes of Permanent Magnet Synchronous Machines » 18th International Conference on Electrical Machines, ICEM 2008.
- [16] Li Zhu, S. Z. Jiang, Z. Q. Zhu, et C. C. Chan « Analytical Modeling of Open-Circuit Air-Gap Field Distributions in Multi-segment and Multilayer Interior Permanent-Magnet Machines»IEEE Transactions on Magnetics, vol. 45,pp.2023-2031 no. 8, August 2009
- [17] Hamid R. Izadfar, S.Shokri, M. Ardebili «Magnetic Field Analysis in Permanent Magnet Synchronous Machine by Analytical Method» Proceeding of International Conference on Electrical Machines and Systems 2007, Oct. Seoul, Korea

- [18] X. Wang, Qingfu Li, S. Wang, et Qunfeng Li «Analytical Calculation of Air-Gap Magnetic Field Distribution and Instantaneous Characteristics of Brushless DC Motors» IEEE Transactions on Energy Conversion, vol. 18, pp. 424-432, no. 3, September 2003
- [19] Nicola Bianchi «Analytical Field Computation of a Tubular Permanent-Magnet Linear Motor»IEEE Transactions on Magnetics, vol. 36,pp. 3798-3801 no. 5, September 2000
- [20] H. Mohellebi « Elaboration de Modèles 2D Analytico-Numériques pour l'Etude de Systèmes Electromagnétiques Comportant des Pièces en Mouvement » Thèse de doctorat d'état à l'Université Mouloud Mammeri Tizi-Ouzou 2001
- [21] Sami HLIOUI « Étude d'une Machine Synchrone à Double Excitation Contribution à la mise en place d'une plate-forme de logiciels en vue d'un dimensionnement optimal » Thèse de doctorat à l'Université de Technologie de Belfort-Montbéliard 2008
- [22] A. MIRAOUI, D. FODOREAN «Dimensionnement rapide des machines synchrones à aimant permanent » Techniques de l'Ingénieur, traité Génie électrique D3554. 2009
- [23] J. Fontchastagner, Y. Lefèvre and F. Messine «Some Co-Axial Magnetic Couplings Designed Using an Analytical Model and an Exact Global Optimization Code» IEEE Transactions On Magnetics, vol.45,pp1458-1461, no. 3, march 2009
- [24] L. Albert «Modélisation et Optimisation des Alternateurs à griffes Application au Domaine d'Automobile» Thèse de doctorat à l'Institut National Polytechnique du Grenoble 2004
- [25] I. Elósegui, M. Martínez-Iturralde, A. García Rico, J. Flórez, J.M. Echeverría, L. Fontán «Analytical design of synchronous permanent magnet motor/generators» IEEE International Symposium on Industrial Electronics, ISIE 2007. 2007
- [26] Laurent Gasc « *Conception d'un actionneur à aimants permanents à faibles ondulations de couple pour assistance de direction automobile Approches par la structure et par la commande* » Thèse de doctorat de l'Institut National Polytechnique de Toulouse 2004
- [27] REBBAH REDJEM « Calcul et Conception Assistée par Ordinateur des Machines Electriques Application aux moteurs asynchrones » Mémoire de magistère Université Mentouri Constantine 2006

- [28] M.JUFER, J-C.SABONNADIÈRE « *Conception assistée par ordinateur (CAO) Moteur Asynchrone* » Techniques de l'Ingénieur, traité Génie électrique, D 3590.
- [29] M. Liwschitz « Calcul des machines électriques Tom 1 » Edition SPES Lausanne 1967
- [30] Juha Pyrhonen, Tapani Jokinen and Valéria Hrabovcovà *«Design Of Rotating Electrical Machines »* John Wiley & Sons, Ltd 2008
- [31] Ivanov Smolinski « Machines électriques Tom 1» Edition MIR Moscou 1983
- [32] P. Merlet « *Technologie d'électricité générale et professionnelle Tom3* » Edition DUNOD Paris 1966
- [33] M. Kostenko, L. Piotrovski « Machines électriques » Edition MIR Moscou 1979
- [34] L. Asselgou, S. Kebri, S. Takheroubt « Calcul d'une machine synchrone à pôles saillants 22KVA » Mémoire d'ingénieur Université Mouloud Mammeri 2000
- [35] W. Kaci, Z. Mohellebi « Calcul d'une machines synchrones triphasées à entrefer excentrique auto-excitées (4KW, 5,5KW) » Mémoire d'ingénieur Université Mouloud Mammeri 1992
- [36] N. Haddad, D. Kaci« Calcul d'une machines synchrones triphasées à pôles saillants (11KW) » Mémoire ingénieur Université Mouloud Mammeri 1994
- [37] J. L.Coudert, D. Pascal, C. Dupuis, D. Hottoi « *Construction mécanique des machines électriques tournantes* » Techniques de l'Ingénieur, traité Génie électrique D3780

[38] F. Gillon, P. Brochet « *Optimisation of a Brushless Permanent-Magnet Motor with the Experimental Design Method* » IEEE Transactions On Magnetics, Vol. 34, pp 3648-3651 No 5, September 1998

[39] F. Gillon « *Modelisation et Optimisation par plans d'Experiences d'Un Moteur à Commutations Electriques* » Thèse de doctorat de l'Université de Lille Septembre 1997

[40] Brandon N. Cassimere, Scott D. Sudhoff, and Doug H. Sudhoff «Analytical Design Model for Surface-Mounted Permanent-Magnet Synchronous Machines» IEE Transactions On Energy Conversion, Vol. 24,pp 347-357 No. 2, June 2009

[41] «Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride «Analysis of Electromagnetic Performance of Flux-Switching Permanent-Magnet Machines by Nonlinear Adaptive Lumped Parameter Magnetic Circuit Model» IEEE Transactions On Magnetics, Vol. 41,pp 4277-4287 No. 11, November 2005

Annexe

Figure 6

x

۰.

,

D _{nu} [mm]	$D_{iso}[mm]$	$S_{eff} [mm^2]$
0.75	0.815	0.442
0.80	0.865	0.503
0.85	0.915	0.567
0.9	0.965	0.636
0.95	1.015	0.709
1.00	1.080	0.785
1.06	1.140	0.883
1.12	1.200	0.985
1.18	1.260	1.094
1.25	1.330	1.227
1.32	1.405	1.368
1.40	1.485	1.539
1.50	1.585	1.767
1.60	1.685	2.011
1.70	1.785	2.270
1.80	1.885	2.540
1.90	1.995	2.830

Tableau 1 : Tableau des sections normalisées

BITI	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09				
5[1]		H [A/Cm].												
0.4	1.24	1.27	1.3	1.33	1.36	1.38	1.41	1.44	1.47	1.5				
0.5	1.54	1.57	1.6	1.64	1.67	1.71	1.74	1.77	1.8	1.8-				
0.6	1.88	1.91	1.94	1.98	2.01	2.05	2.08	2.12	2.16	2.2				
0.7	2.33	2.26	2.29	2.33	2.36	.2.4	2.43	2.47	2.50	2.5.				
0.8	2.56	2.59	2.62	2.65	2.68	2.71	2.74	2.77	2.80	2.8				
0.9	2.86	2.90	2.93	2.97	3.01	3.04	3.08	3.12	3.16	3.20				
1.0	3.24	3.29	3.33	3.38	3.42	3.46	3.50	3.55	1 3.60	3.6				
1.1	3.70	3.75	3.80	3.95	3.91	3.96	4.01	4.06	4.11	4.17				
1.2	4.24	4.30	4.36	4.42	4.48	4.55	4.61	4.67	4.73	4.79				
1.3	4.86	4.95	5.04	5.14	5.24	5.33	5.63	5.74	5.84	5.95				
1.4	5.86	5.98	6.10	6.22	6.34	6.46	6.58	6.70	6.83	6.80				
1.5	7.09	7.22	7.35	7.49	6.63	7.77	7.91	8.05	8.20	8.35				
1.6	8.5	8.78	9.06	9.34	9.62	9.90	10.2	10.5	10.8	11.1				
1.7	11.5	11.8	12.2	12.5	12.9	13.3	13.6	14.0	14.4	14.8				
1.8	15.2	15.7	16.2	16.7	17.2	17.7	18.3	18.9	19.5	20.1				
1.9	20.7	21.6	22.5	23.4	.24.3	25.2	26.4	27.6	28.9	30.2				
2.0	31.5	33.2	35.0	36.8	38.6	40.4	42.6	44.8	47.0	49.2				
2.1	51.4	54.4	57.4	60.5	63.6	66.7	71.2	75.7	80.2	84.7				
2.2	89.2	94.3	99.4	104.6	109.8	115	120	126	132	138				
2.3	144	1151	158	165	172	180	188	196	205	214				

Tableau 2 : Tableau de magnétisation des dents des machines à courant alternatif

BITI	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
D(1)					H [A/Cn	n].			•	
0.4	0.52	0.53	0.54	0.55	0.56	0.58	0.59	0.60	0.61	0.62
0.5	0.64	0.65	0.66	0.67	0.69	0.71	0.72	0.74	0.76	0.78
0.6	0.80	0.81	0.89	0.85	0.87	0.89	0.91	0.93	0.95	0.97
0.7 .	1.0	1.02	1.04	1.06	1.08	1.11	1.13	1.15	1.18	1.2
0.8	1.24	1.28	1.29	1.32	1.35	1.38	1.40	1.43	1.46	1.49
0.9	1.52	1.55	1.58	1.61	1.64	1.68	1.71	1.74	1.77	1.3
1.0	1.85	1.88	1.91	1.95	1.99	2.03	2.06	2.09	2.13	2.17
1.1	2.21	2.25	2.29	2.33	2.37	2.11	2.45	2.40	2.58	2.57
1.2	2.62	2.67	2.72	2.77	2.83	2.89	2.95	3.01	3.07	3.13
1.3	3.20	3.27	3.34	3.41	3.49	3.57	3.65	3.73	3.82	3.91
1.4	4.00	4.10	4.20	4.30	4.40	4.50	4.64	4.78	4.92	5.06
1.5	5.20	5.42	5.64	5.86	6.08	6.30	6.54	6.78	7.02	7.26
1.6	7.50	7.88	8.26	8.64	9.02	9.40	9.82	10.2	10.7	11.1
1.7	11.5	12.2	12.9	13.6	14.3	15.0	16.0	17.0	18.0	19.0
1.8	20.0	21.6	23.2	24.9	26.5	28.1	29.6	31.1	32.7	34.2
1.9	35.7	38.0	40.3	42.6	44.9	47.2	49.3	51.4	53.5	55.6
2.0	57.7	60.0	63.0	66.0	70.0	74.0	79.0	84.0	90.0	97.0

Tableau 3 : Tableau de magnétisation des dents des machines à courant alternatif

в [7]	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
		4 S			H [A/Cm]		5.0		1	8
0.4	0.56	0.56	0.57	0.58	0.59	0.60	0.60	0.61	0.61	0.82
0.5	0.63	0.63	0.64	0.65	0.66	0.61	0.67	0.68	0.68	0.69
0.6	0.70	0.70	0.71	0.72	0.73	0.74	0.74	0.75	0.76	0.77
0.7	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87
0.8	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97
0.9	0.99	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08
1.0	1.0	1.11	1.13	1.14	1.15	1.17	1.18	1.20	1.21	1.23
1.1	1.25	1.26	1.27	1.29	1.29	1.32	1.33	1.34	1.36	1.38
1.2	1.41	1.46	1.52	1.58	1.64	1.70	1.76	1.82	1.88	1.94
1.3	2.00	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90
1.4	3.00	3.20	3.50	3.80	4.10	4.30	4.60	5.00	5.40	5.80
1.5	6.20	6.70	7.80	8.90	10.0	11.3	12.4	13.5	14.6	15.8
1.6	17.0	18.6	20.2	21.8	23.4	25.0	27.0	28.0	30.0	32.0
1.7	34.0	37.0	40.0	43.0	47.0	50.0	54.0	58.0	62.0	66.0
1.8	70.0	75.0	80.0	85.0	92.0	100	106	112	118	124
1.9	130	136	142	148	156	165	173	181	189	198
2.0	207	226	244	263	281	300	360	420	480	540
2.1	600	670	740	810	880	950	1020	1090	1160	1230
2.2	1300	1380	1460	1540	1620	1700	1780	1860	1940	2020
2.3	2100	2180	2260	2340	2420	2500	2580	2660	2740	2820
[·] 2.4	2900	2980	3060	31'40	3220	3300	3380	3460	3540	3620

Tableau 4 : Tableau de magnétisation de base

Figure 12 $\alpha_1 = f(V_2)$