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Résumé : Univariate global optimization problems attract attention of researchers.Several
methods [23] have been studied in the literature for univariate global optimization problems
. Optimization in R presents the same difficulty as in R"™. Many algorithms are directed in
this direction. For cutting methods in Global optimization or Optimsation gradient method
in general . In this work, we propose to improve: The article submitted: ( Simulations for
efficient combination of two lower bound functions in univariate global optimization. AIP
Conference Proceedings 1863, 250004 (2017) ; https ://doi.org/10.1063/1.4992412, (2017).
) In this context too, we will accelerate the speed of the Algorithm for better complexity
with technics (CSP, Arithmetic analysis and Interval and another). It should be noted that,
we have made conclusive simulations in this direction .

Mots-Clefs : Global optimization, « BB method, quadratic lower bound function, Branch
and Bound, pruning method.
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1 Introduction

We consider the following problem
min f(z)
(P){ rez’ 2l CR

Main Improvements (Main Contributions)

Improvements are (Types C.S.P)

1 / Extra rapid convexity test (test Aj)

2 / Computation of bounds, to inhibit intervals by anlyse intervals or affine arithmetic (test Asg)
3 / The derivative and its bound, to inhibit intervals by anlyse intervals or affine arithmetic.(test
As)

4/ if Smooth Form involved Direct Execution.

These 04 procedures will be integrated in the process of the Algorithm, to accelerate the speed
of convergence towards the optimal solution.

global optimization with a single variable is not easy because; the functions must be see and
especially their forms in a general way. In real cases these functions do not offer facilities for
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studying them. Many research and methods in global optimization can not bypass global opti-
mization with a single variable, in other words: depend on the study to a variable to find the
optimal solution.

with f(x) a non-convex C2-continuous function on the interval [z°, x!] of R.

Univariate global optimization problems attract attention of researchers not only because they
arise in many real-life applications but also the methods for these problems are useful for the
extension for the multivariate case or by reducing the multidimensional case to the univariate
case. One class of deterministic approaches, which called lower bounding method, emerged from
the natural strategy to find a global minimum for sure. The efficiency of a method is in the
construction of tight lower bound and to discard a large regions which do not contain the global
minimum as quickly as possible.

In order to solve the global optimization problem, many envelope methods have been proposed
(see [21] and references therein). Several methods have been studied in the literature for univari-
ate global optimization problems, among them we can cite the classical BB method developed
in [19], another method using a quadratic lower bound is developed in [23] for univariate case.
The latter is generalized to multivariate case in [25]. In [21], tight convex lower bound for
univariate C?-continuous functions are proposed by using a piecewise quadratic lower bound
obtained by aBB method which allows to find convex envelope in finite number of subdivisions.
In [24], a branch and prune algorithm is proposed, the pruning step(outer and inner) consists
in solving linear equation, the linear bounding function is obtained by interval analysis.

2 Background

2.1 Lower bound function in «BB method [19]

The lower bound function in BB method on the interval [2°, z!] is given by :

with K, > max{0, —f”(z)},Vz € [2°, ']. The main properties of this lower bound function are:

1. It is convex (i.e. LB!(x) = f"(x) + Ko > 0,Vx € [2°,2]).

2. Tt coincides with the function f(z) at the endpoints of the interval [z°,z!] (i.e. by con-
struction of (LB, (x)).

3. It is a lower bound function (i.e. f(z) — LBa(z) = & (2 — 20) (2! — 2) > 0,Vz € [2°,21)).

For more details one see [19].

2.2 Quadratic lower bound function [23]

The quadratic lower bound developed in [23] on the interval [2°, z1] is given by :

Y e

LBro(z) = f(a:O) po

xl — 20 x

with K > |f”(x)|, V& € [xg,21]. The main properties of this lower bound function are:

1. Tt is convex (i.e. LB} ,(z) = K >0).

Algeri:
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2. It coincides with the function f(x) at the endpoints of the interval [z% 2!] ( i.e. by
construction of LBro(x)).

3. It is a lower bound function (i.e. (f(x) — LBro(z))” = f"(z) — K < 0,Vz € [2°, 2!].)
which implies that (f(x) — LBro(z)) is concave, it vanishes at the endpoints of [z", 2!]

then f(x) > LBro(z),Vx € [29, 21].

Details of the main results

The optimization of univariate functions presents the same difficulties as the functions to mul-
tivariate. We find this for example in gradient methods and eigen value calculations .

1/ (test A;)
The properties of functions exploited to produce formulations that can express convexity, con-
cavity and invexity.

2/ (test Ay)

We use in this context, the properties of the functions, lower bound in different forms.
3/ (test As)

In another context, the properties of functions, derivability and differentiability are used.
Remark

Property reformulations of exploited functions to produce simple forms that can be effectively
used.

3 Branch and Bound Algorithm and its convergence

The Branch and Bound algorithm is an efficient algorithm. he gave a lot of experimental evi-
dence. This algorithm exists on several variants. We use one of its variants in this document.
Many works in global optimization, notably in DC / DCA, global reverse-convex optimization,
global optimization type reformulation and overall multi-objective stochastic blur optimization
use Branch and bound variants.

Method based on Branch-and-bound (BB) is one of the most popular deterministic global op-
timization frameworks. It consists on subdividing the solution space into smaller regions where
the upper and lower bounds to the objective function value are computed. According to these
bounds, each region is explored or fathomed out of the built Branch and Bound tree. Global
solution is then obtained once the current best upper bound (UB) value is close to current best
lower bound (LB) value within a specified tolerance €. In this section, we introduce the algo-
rithm for finding the global solution of problem (P) and we show its convergence.

Algorithm Branch and Bound (BB)

Step 1 : Initialization

a0) if Smooth Form involved Direct Execution.

a) Let € be a given small number and let [ag, bo] the initial interval

b) Compute th = maX{O, SUPz e ag,bo] (_f”(x))} and Kg = max{O, SU‘pze[aU,bg]f”(x)}

Algeri:
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bl) Test C.S.P A;

b2) Test C.S.P As

b3) Test C.S.P A3

c) Apply Convex/concave test

d) Apply the pruning test in order to reduce and update the searching interval
e) Set k:=0;T° = [ag,bo]; M :=T°

f) Compute LB (x) and LB (z) on T?, and solve the convex program to obtain an optimal solution z° and sj.

min {z: LBY(2) < 2, LBY(z) < 2,z € R,z € T°} (1)

g) Set UBp := min{f(ao),f(bo),f(sg)} = f(3°), LBy = LB(T?) := 2°.

h) If UBy — LBy < € then print 50 as an e-optimal solution; EXIT the algorithm.
else Set M « {T°}, k<« 1

Step 2 : Iteration

a) Selection step

e Select T* = [ay, by] € M, the interval such that LBy = min LB(T*)

b) Bisection step
e Bisect T* into two sub-rectangles TF = [af,bi], T¥ = [a?,b2] by w-subdivision procedure via s* ¥
c¢) Computing step
e For i=1,2 do
1. Compute K** and K(’;i on the interval TF
2. Convex test : if K¥¢ =0 then update LB(TF) and UB(TF) and go to step d
3. Concave test: if K(’;i = 0 then update LB(TF) and UB(TF) and go to step d
31) Test C.S.P A; on the interval Tik
32) Test C.S.P Az on the interval Tik
33) Test C.S.P As on the interval TP

4. Pruning test : Compute LB!Z” and solve LB(]Z” = U B4 to reduce the searching interval [af€7 b}g]
5. Compute LBY(x). Let 2** and s}, be the solution of the convex problem

min {z : LBF(2) < z,LBgi(z) <zz€eR,z€ Tik} (2)
and LB(TF) = 2
6. Set M <+ MU{TF :UBy — LB(TF) > ¢,i=1,2}\ {T*}
d) Updating step

e Update the lower bound: LBy = min{LB(T): T € M}.
e Delete from M all the intervals T such that LB(T) > UBy, — €.

e) Stopping step
e If M = () then Output 3* as an optimal solution and exit algorithm
e else set k < k + 1, and return to Step 2a).

Convergence of Algorithm

The purpose of the calculation artifices of types A; , A2 and As is to accelerate the convergence of the above Algorithm
and the elements of demonstrations are as follows (see in https ://doi.org/10.1063/1.4992412, (2017). ) .

Experimental Study

Test Problem f1 : b(s) = b(s) = (s + sin(s)) * exp(—s2) , ¥s € [ -10 , 10 ]
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Solution in 05 Iterations

Test Problem f2 : b(s)= —sin((2) *xs+ 1) — sin((3) * s+ 2) — sin((4) * s+ 3) — sin((5) * s +4) — sin((6) * s+ 5) , Vs €

[-10, 10 ]
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f(s)
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abcisse s
Iterations Interval reduced LBy, UBy, s* (Optimal) Obs
1 [-9.2032 ,-8.8311] -1.2168 -0.7511 -9.0276 Convexe
2 -8.1341 , -8.1102 -2.0114  -1.9602 -8.1102 Convexe
3 -8.1102 , -7.8800 -2.0354 -0.8251 -8.0804 Convexe
4 -6.9879 , -6.6800 -3.3729  -0.8253 -6.7201 Convexe
5 -6.6800 , -6.6265 -3.3179  -3.0890 -6.6799 Convexe
6 -6.3721 , -6.0605 -0.8244 0.1006 -6.3721 Concave
7 -5.9017 , -5.6907 -0.8454  -0.4738 -5.7290 Convexe
8 -2.9200 , -2.5489 -1.2168  -0.7550 -2.7444 Convexe
9 -1.8509 , -1.8270 -2.0114  -1.9601 -1.8270 Convexe
10 -1.8270 , -1.5968 -2.0354  -0.8251 -1.7972 Convexe
11 -0.7047 , -0.3968 -3.3729  -0.8253 -0.4369 Convexe
12 -0.3968 , -0.3434 -3.3178  -3.0891 -0.3967 Convexe
13 0.5157 , 0.7332 -0.8454  -0.4184 0.5542 Convexe
14 4.3521 , 4.4708 -2.0290 -1.6198 4.4708 Convexe
15 4.4709 , 4.6235 -2.0354  -1.4683 4.4860 Convexe
16 5.5785 , 5.8864 -3.3729  -0.8253 5.8463 Convexe
17 5.8864 , 5.9398 -3.3177  -3.0893 5.8865 Convexe
18 6.1943 , 6.5058 -0.8244 0.1009 6.1943 Concave
19 6.6646 , 6.8756 -0.8454  -0.4737 6.8374 Convexe
20 [9.5854 , 10.0000] -1.2168  -0.5577 9.8220 Convexe

Solution in 20 Iterations

Test Problem f3 :b(s) = b(s) =s* —3xs% —1.5%xs2+10xs,Vs€ [-5,5 ]
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To [-5,5] [-3.635 5 | -
T [3.635 0.6825] | [-1.8069 0.6825] -
Tiz [0.6825 5 | [0.6825 1.6243)] N
To1 [-1.8069 -0.5622] | [-1.8069 -0.5622 -1.0000
Too [-0.5622 0.6825] -0.9157 -0.5622 -

Solution in 03 Iterations

4 Conclusion

The study done in this paper proves a lot efficiency of our algorithm model. The experimental results prove the efficiency of
our proposed method . The comparison of the results of our method was made compared to well-known methods in global
optimization. The results were satisfactory .

In this paper we proposed a branch and prune algorithm for computing all global minimizers of univariate functions subject
to bound constraints. The algorithm uses a combination of two lower bounds and utilizes a pruning technique as well as a
convex/concave test in order to accelerate the search process. Numerical results show that the proposed method is efficient.

References

[1] R.E. Moore , Interval Analysis Prentice-Hall Inc., Englewood Cliffs, N.J., 1966.

2] E.R. Hansen et W.G. William ,

Global Optimization Using Interval Analysis Marcel Dekker Inc.,

New York, 2eme édition, 2004.

3] R. J. Hanson , interval arithmetic as a closed arithmetic system on a computer Rapport technique,

Jet Propulsion Lab,

1968.

[4] R.B. Kearfott , An interval branch and bound algorithm for bound constrained optimization problems
Journal of Global Optimization, 2(3):2597280, 1992.

(5] R. Hammer, M. Hocks, U. Kulish et D. Ratz , Numerical Toolbox for Verified Computing Springer-
Verlag, Berlin, 1993.

Algeri

|



CHEBBAH MOHAMMED* Pr Ouanes Mohand?

[9]

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

K. Ichidaet Y. Fujii, An interval arithmetic method for global optimization Computing, 23(1):85797,
1979.

W.M. Kahan , A more complete interval arithmetic Rapport technique, University of Michigan,
1968.

S. Skelboe , Computation of rational interval functions BIT Numerical Mathematics, 14(1):87795,
1974.

J. Stolfi et L. de Figueiredo , Self-validated numerical methods and applications. Monograph for 21st
Brazilian Mathematics Colloquium, 1997.

A. Touhami , Utilisation et extension de [Zarithmétique affine dans les algorithmes déterministes
d?optimisation globale. Mémoire de D.E.A., Institut National Polytechnique de Toulouse, 2002..

F. Messine , FExtensions of affine arithmetic : Application to unconstrained global optimization.
Journal of Universal Computer Science, 8(11):99271015, 2002.

J.L.D. Comba et J. Stolfi , Affine arithmetic and its applications to computer raphics In Proceedings
of SIBGRAPI?93 - VI Simpdsio Brasileiro de Computagao Grafica e Processamento de Imagens, pages
9718, 1993.

L. Kolev , Automatic computation of a linear interval enclosure Reliable Computing,7(1):17728,
2001.

F. Messine et A. Touhami , A general reliable quadratic form : An extension of affine arithmetic
Reliable Computing, 12(3):1717192, 2006.

J. Ninin et F. Messine , A mized integer affine reformulation method for global optimization. In
Proceedings of TOGO Global Optimization Workshop, 2010.

J. Ninin et F.Messine , A metaheuristic methodology based on the limitation of the memory of
interval branch and bound algorithms Journal of Global Optimization, en ligne et a paraitre, 2010.

J. Ninin, F. Messine et P. Hansen , A reliable affine relaxation method for global optimization.
Rapport technique, IRIT, Rapport , 2010.

Chebbah Mohammed, Ouanes Mohand, and Zidna Ahmed , Simulations for efficient combination
of two lower bound functions in univariate global optimization, AIP Conference Proceedings 1863,
250004 (2017); https://doi.org/10.1063/1.4992412.

I.P. Androulakis, C.D. Marinas, C.A. Floudas, aBB: A global optimization method for general con-
strained nonconvex problems J. Glob. Optim. (1995), 7, 337-363.

C de Boor, A practical Guide to Splines Applied Mathematical Sciences. Springer-Verlag (1978).

C. A. Floudas and C. E. Gounaris, A review of recent advances in global optimization , J Glob
Optim. (2008), DOT 10.1007/s10898-008-9332-8

Chrysanthos E. Gounaris - Christodoulos A. Floudas. Tight conver underestimators for C2-
continuous problems: I. univariate functions J Glob Optim (2008) 42:51 - 67 DOI 10.1007/s10898-
008-9287-9 Received: 14 December 2006 / Accepted: 6 February 2008 / Published online: 13 March
2008 (© Springer Science+Business Media, LLC. 2008

[23] Le Thi Hoai An and Ouanes Mohand, Conver quadratic underestimation and Branch and Bound for

univariate global optimization with one nonconvez constraint, RATRO Oper. Res. (2006) 40: 285-302.

[24] D.G. Sotiropoulos and T.N. Grapsa, Optimal centers in branch-and-prune algorithms for univariate

global optimization, Applied Mathematics and Computation, 169 (2005), pp.247-277.

[25] Mohand Ouanes, Hoai An Le Thi, Trong Phuc Nguyen, Ahmed Zidna, New gquadratic lower bound

for multivariate functions in global optimization Mathematics and Computers in Simulation, (2015)

109, 197-211.

[26] Le Thi Hoai An, Mohand Ouanes, Ahmed Zidna, An Adapted Branch and Bound Algorithm for

Approximating Real Root of a Ploynomial. MCO 2008: 182-189

[27] Le Thi, H.A., Ouanes, M., Zidna, A. Computing real zeros of a polynomial by branch and bound and

branch and reduce algorithms Yugoslav Journal of Operations Research (2014)24,53-69.

Algeri;

[ 2



