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The modeling of moving solid particles in fluid flow has been the focus of many studies and
has succeeded to attract sufficient attention by researchers. However, commonly used mod-
eling approaches such as discrete element modeling (DEM) and direct numerical simulations
(DNS) lack simplicity and have been computationally intensive [1]. The aim of this paper is
to develop a new approach to simulate solid transport in an incompressible Newtonian fluid
flow. This method is based on the Finite element method with penalization of the deformation
tensor [2]. The fluid behavior is governed by the Navier-Stokes equations within the inves-
tigation domain. To take into account collisions, we present an algorithm which allows us
to handle contacts between rigid particles [3, 4]. In this paper, 2D simulation fluid/particles
flow is performed; some preliminary results are presented.
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1 Mathematical formulation of the fluid-structure problem

We consider a connected, bounded and regular domain Ω ⊂ R2 and we denote by (Bi)i=1,··· ,N
the rigid particles, strongly included in Ω. B denotes the whole rigid domain: B = ∪iBi.
The domain Ω \ B is filled with Newtonian fluid governed by the Navier-Stokes equations.
We note µ the viscosity of the fluid, p the presure and ff the external forces exerted on it.
Since we consider a Newtonian fluid, the stress tensor σ is given by the following relation
(see Eq. (1)):

σ = 2µD(u)− pI, where D(u) =
∇(u) + (∇(u))T

2
(1)

and p the presure. For the sake of simplicity we will consider homogeneous Dirichlet condi-
tions on ∂Ω. On the other hand, viscosity imposes a no-slip condition on the boundary ∂B



of the rigid domain.
At the initial time the particles with density ρi are distributed randomly over the fluid. The
position of the center of the ith particle is denoted by xi, by vi and ωi its translational and
angular velocities. We denote by mi and Ji the mass and the kinematic momentum about its
center of mass:

mi =

∫
Bi

ρi, Ji =

∫
Bi

ρi‖x− xi‖2 (2)

We have to find the velocity u(u1, u2) and the pressure field p defined in Ω \ B, as well as
the velocities of the particlesV := (vi=1,...,N) ∈ R2N and ω := (ωi=1,...,N) ∈ RN such that
(see Eq. (3)):


ρf(

∂u
∂t + u.∇u)− div(σ) = ff in Ω \B,

div(u) = 0 in Ω \B,
u = 0 on ∂Ω,
u = vi + ωi(x− xi)⊥ on ∂B, ∀i ∈ {1,··· , N}

(3)

where ρf denotes the density of the fluid and ff = ρfgey is the external force exerted on
the fluid (gravity forces). The fluid exerts hydrodynamic forces on the particles. Newton’s
second law for these particles is written then as follows (see Eq. (4)):

mi
dVi

dt =
∫
Bi

fi −
∫
∂Bi

σn,

Ji
dωi

dt =
∫
Bi

(x− xi)⊥.fi −
∫
∂Bi

(x− xi)⊥.σn,
(4)

Where, fi denotes the external non-hydrodynamical forces exerted on the sphere, such as
gravity : fi = −ρigey . In order to avoid remeshing, we look for a weak formulation involving
functions defined on the whole domain Ω.In this manner, it can be proven that this problem
leads to the variational formulation (see Eq. (5)):


Find (u, p) ∈ KB × L2

0(Ω) such that∫
Ω
ρ̃Du
Dt v + 2µ

∫
Ω
D(u) : D(v)−

∫
Ω
pdiv(v) =

∫
Ω

f̃.v, ∀v ∈ KB∫
Ω
qdiv(u) = 0, ∀q ∈ L2

0,

(5)

with ρ̃ := ρf1Ω\B+
∑N

i=1 ρf1Bi
, f̃ := ff1Ω\B+

∑N
i=1 fi1Bi

andKB = {u ∈ H1
0 (Ω)D(u) =

0 inB}.
Using a penalty method, we will rather consider the following problem:



Find (u, p) ∈ H1
0(Ω)× L2(Ω) such that∫

Ω
ρ̃Du
Dt v + 2µ

∫
Ω
D(u) : D(v) + 2

ε

∫
B
D(u) : D(v)

−
∫

Ω
pdiv(v) =

∫
Ω

f̃.v, ∀v ∈ H1
0(Ω),∫

Ω
qdiv(u) = 0, ∀q ∈ L2(Ω),

(6)



The time discretization is performed by using the method of characteristics.
The dynamics (translational and angular velocities) of the rigid spheres is gouverned by the
following relations:

ẋi := vi :=

∫
∂Bi

ρiuds∫
∂Bi

ρids

, θ̇i := ωi :=

∫
∂Bi

ρiu.(x− xi)⊥ds∫
∂Bi

ρi‖x− xi‖2ds

2 Contact Handling Procedure

Let us detail the method in the case of spherical particles: we denote by Xn := (xn
i )i=1,.....,N

the position of N particles (more precisely, the position of their gravity centre) at time tn,
by V̂

n
= (v̂i)i=1,.....,N the a priori translational velocity, by Ω̂n = (ω̂i)i=1,.....,N the a priori

rotational velocity. As stated before, the a priori updated position of the particles, defined as:

Xn+1 = Xn + ∆tV̂
n

+
1

2
γn4t2 (7)

where γ the acceleration, calculated from the Newton’s second law. Equation 7 may lead to
non-admissible configuration, in the sense that the particles overlap. To avoid this, we project
the velocities onto the following set:

K(Xn) = {V ∈ R2N , Dij(X
n) + ∆tGij(X

n).V +
1

2
γn4t2 > 0,∀i < j} (8)

where Dij is the distance between every two particles given as:

Dij(X
n) = ‖xn

i − xn
j ‖ − (Ri −Rj) (9)

At each time step, V ∈ R2N is an admissible vector if the particles with velocity {V do not
overlap at the next time step:

E(Xn) = {V ∈ R2N , Dij(X
n + ∆tVn +

1

2
γn4t2) > 0,∀i < j} (10)

We not that equation 8 is the linearized form of equation 10 and, furthermore, it can be shown
thatK(Xn) ⊂ E(Xn). It means in particular that particles with admissible velocities at time
tn do not overlap at time tn+1.
The constrained problem is formulated as a saddle-point problem, by using the introduction
of Lagrange multipliers:{

Find(Vn,Λn) ∈ R2N × RN(N−1)/2
+ such that

J (Vn, λ) 6 J (Vn,Λn) 6 J (V,Λn), ∀(Vn, λ) ∈ R2N × RN(N−1)/2
+

(11)

with the following functional:

J (V, λ) =
1

2
| V − V̂

n
|2 −

∑
16i6j6N

λij(Dij(X
n) + ∆tGij(X

n).V) +
1

2
γn4t2 (12)

Where Gij(X
n) ∈ R2N is the gradient of distance Dij . The number of Lagrange multipliers

( λij) corresponds to the number of possible contacts.
This problem is solved by an Uzawa algorithm.



3 case test

In this section, we present the simulation of the flow of an incompressible fluid, with a density
of ρf = 1000kg/m3 and a dynamic viscosity µ = 0.001Pa.s, involving 100 particles, of
density ρp = 2250kg/m3 randomly distributed in the pipe. The radius and length of the pipe
are respectively r × L = 0.12m× 1.4m.
In this case, particles with 0.015m are subjected to a Poiseuille flow, and a parabolic profile is
imposed at the inlet. The configurations obtained at different time steps are presented (figure
1).

t = 0.0s t = 0.10s t = 0.30s t = 0.40s

t = 0.50s t = 60s t = 70s t = 80s

Figure 1: Fluid/solid particles flow: Configuration at different time steps.

The test cases presented make it possible to verify and validate the consideration of the rigid
movement by the penalty method. In horizontal pipe, the effect of gravity, normal to the pipe
axis, makes the flow pattern richer and higher.
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