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Abstract

Robustness with respect to modeling assumptions is a relevant aspect in each statistical

analysis. In particular, Bayesians are interested in robustness with respect to changes in

prior distributions/sampling models/loss functions.

A Poisson process is one of the most significant random processes in probability theory. It is

widely used to model random points in time and space such as the arrival times of customers

at a service center. A Non-Homogeneous process is a process with rate parameter λ(t) such

that the rate parameter of the process is a function of time. The NHPP is probably the

best known generalization of the Poisson process .

In This work, we focused on replacing a single prior distribution by a class of priors of the

parameters of a given Poisson processes, and developing methods of computing the range

of the ensuing answers as the prior varied over the class. This approach, called “global

robustness”.

Key words: Bayesian Robustness, Nonhomogeneous Poisson processes, Prior Robust-

ness, Model Robustness, Loss Robustness, Global Sensitivity, Local Sensitivity.



Résumé

La robustesse est un aspect approprié dans chaque analyse statistique. En particulier,

les Bayesiens sont intéressés par la robustesse en ce qui concerne les changements des

distributions a priori/des modèles/des fonctions de perte.

Le processus de Poisson est un processus aléatoire le plus significatif dans la théorie de

probabilité. il est largement utilisé pour modeler les points aléatoires dans le temps et

dans l’espace tel que les temps d’arrivée des clients à un service. Un processus de Poisson

non homogène est un processus avec le paramètre λ(t) et ce paramètre est une fonction de

temps. Un processus de Poisson non homogène est probablement la meilleure généralisation

connue d’un processus de Poisson .

Dans ce travail on s’intéresse à remplacer une loi a priori par une classe de lois a priori des

paramètres d’un processus de Poisson donné, et de développer le calcul du rang quand la

loi a priori change dans cette classe, cette approche, s’appelle ” la robustesse globale ”.

Mots clés : Robustesse Bayesienne, Processus de Poisson Nonhomogène, Robustesse

des lois a priori, Robustesse des Modèles, Robustesse des Fonctions de perte, sensitivité

globale, sensitivité locale.
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Introduction

Statistics is the science that relates data to specific questions of interest. This includes

devising methods to gather data relevant to the question, methods to summarize and

display the data to shed light on the question, and methods that enable us to draw answers

to the question that are supported by the data. Data almost always contain uncertainty.

This uncertainty may arise from selection of the items to be measured, or it may arise from

variability of the measurement process. Drawing general conclusions from data is the basis

for increasing knowledge about the world, and is the basis for all rational scientific inquiry.

Statistical inference gives us methods and tools for doing this despite the uncertainty in

the data. The methods used for analysis depend on the way the data were gathered. It

is vitally important that there is a probability model explaining how the uncertainty gets

into the data.

There are two main philosophical approaches to statistics. The first is often referred to

as the frequentist approach. Sometimes it is called the classical approach. The frequentist

approach to statistics considers the parameter to be a fixed but unknown constant. The

only kind of probability allowed is long-run relative frequency. These probabilities are

only for observations and sample statistics, given the unknown parameters. Statistical

procedures are judged by how they perform in an infinite number of hypothetical repetitions

of the experiment.
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Introduction

The alternative approach is the Bayesian approach. The Reverend Thomas Bayes first

discovered the theorem that now bears his name. It was written up in a paper An Essay

Towards Solving a Problem in the Doctrine of Chances. This paper was found after his

death by his friend Richard Price, who had it published posthumously in the Philosophical

Transactions of the Royal Society in 1763. Bayes showed how inverse probability could be

used to calculate probability of antecedent events from the occurrence of the consequent

event. His methods were adopted by Laplace and other scientists in the 19th century,

but had largely fallen from favor by the early 20th century. By the middle of the 20th

century, interest in Bayesian methods had been renewed by De Finetti, Jeffreys, Savage,

and Lindley, among others. They developed a complete method of statistical inference

based on Bayes’ theorem.

The Bayesian approach to statistics allows the parameter to be considered a random

variable. Probabilities can be calculated for parameters as well as observations and sample

statistics. Probabilities calculated for parameters are interpreted as “degree of belief’ and

must be subjective.

Informally, to make inference about θ is to learn about the unknown θ from data X,

i.e., based on the data, explore which values of θ are probable, what might be plausible

numbers as estimates of different components of θ and the extent of uncertainty associated

with such estimates. In addition to having a model f(x/θ) and a likelihood function, the

Bayesian needs a distribution for θ. The distribution is called a prior distribution or simply

a prior because it quantifies her uncertainty about θ prior to seeing data. The prior may

represent a blending of her subjective belief and knowledge, in which case it would be a

subjective prior. Alternatively, it could be a conventional prior supposed to represent small

or no information. Such a prior is called an objective prior.

Given all the above ingredients, the Bayesian calculates the conditional probability

9



Introduction

density of θ given X = x by Bayes formula

π(θ/x) =
f(x/θ)π(θ)∫

Θ
f(x/θ)π(θ)d(θ)

The conditional density π(θ/x) of θ given X = x is called the posterior density, a

quantification of our uncertainty about θ in the light of data. The transition from π(θ) to

π(θ/x) is what we have learnt from the data.

A Bayesian can simply report her posterior distribution, or she could report summary

descriptive measures associated with her posterior distribution. For example, for a real

valued parameter θ, she could report the posterior mean and the posterior variance or the

posterior standard deviation. Finally, she could use the posterior distribution to answer

more structured problems like estimation and testing.

Robust Bayesian Analysis is concerned with the sensitivity of the results of a Bayesian

analysis to the inputs for the analysis. Intuitively, robustness means lack of sensitivity of

the decision or inference to assumptions in the analysis that may involve a certain degree of

uncertainty. In an inference problem, the assumptions usually involve choice of the model

and prior, whereas in a decision problem there is the additional assumption involving

the choice of the loss or utility function. An analysis to measure the sensitivity is called

sensitivity analysis. Clearly, robustness with respect to all three of these components is

desirable. That is to say that reasonable variations from the choice used in the analysis for

the model, prior, and loss function do not lead to unreasonable variations in the conclusions

arrived at.

In this work, the model proposed is the nonhomogeneous Poisson processes(NHPPs),

which have relevant applications in many fields, e.g. in reliability, capturing different

behaviors of the problem they are modeling and providing different results (estimations

and forecasts). A thorough study of robustness associated to NHPPs is still missing and

the proposed work aims to pursue such goal.
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The objective of this work is then to study the robustness of the classes of priors of

the parameters of a given NHPP where the priors changes over this proposed class and

computation of some measures of robustness. Computations with NHPP are difficult. We

start with homogeneous Poisson processes and then we will do it later with NHPP.

In particular, this work contains three chapters. Chapter 1 provides an introduction

to Bayesian inference and the study of literature in Bayesian robustness, a quick review

of counting process, homogeneous Poisson process and non homogeneous poisson process

(definitions and proprieties) are given in Chapter 2. Identification of possible classes of pri-

ors for the parameters of a given NHPP and assessment of robustness through computation

of some measures are also introduced here. Prior distributions used include the positive

uniform, the Jeffreys’ prior, and the gamma prior, a detailed discussion on Bayesian ro-

bustness of the classes proposed of homogeneous and nonhomogeneous poisson processes is

provided in Chapter 3. Finally, a general conclusion and some recommendations suggested

finish this work.
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Chapter 1

Bayesian Robustness

Robustness with respect to modeling assumptions is a relevant aspect in each statistical

analysis. In particular, Bayesians are interested in robustness with respect to changes in

prior distributions/sampling models/loss functions. Most of the research, as described in

the reference book by Rios Insua and Ruggeri (Springer, 2000), has concentrated on robust-

ness with respect to the choice of the prior distribution, since it is both a characterizing

and a weak aspect of the Bayesian approach. Furthermore, computation of robustness

measures is easier under classes of priors, unlike for classes of sampling distributions.

In the early ‘90s, there was an explosion of publications focusing on studying sensitivity

to the prior distribution, in part because non-Bayesians often view this sensitivity to be

the major drawback of Bayesian analysis. This work focused on replacing a single prior

distribution by a class of priors, and developing methods of computing the range of the en-

suing answers as the prior varied over the class. This approach, called “global robustness”,

was soon supplemented by “local robustness” techniques, which focused on studying local

sensitivity (in the sense of derivatives) to prior distributions. Interest naturally expanded

into study of robustness with respect to the likelihood and loss function as well, with the

aim of having a general approach to sensitivity towards all the ingredients of the Bayesian

paradigm (model/prior/loss).

12



Chapter 1. Bayesian Robustness

An overview of the robust Bayesian approach is presented. Common types of robust-

ness analyses are illustrated, including global and local sensitivity analysis and loss and

likelihood robustness.

In this Chapter, we shall concentrate on some issues related to robustness of Bayesian

inference. The notations used will be introduced here as needed. Suppose X has (model)

density f(x/θ) and θ has (prior) probability density π(θ). Then the joint density of (X,θ),

for x in the sample space and θ ∈ Θ (Θ is the parameter space ), is

h(x, θ) = f(x/θ)π(θ)

The marginal density of X corresponding with this joint density is

mπ(x) =

∫
Θ

f(x/θ)π(θ)d(θ).

If X is continuous, and

mπ(x) = ΣΘf(x/θ)π(θ).

If X is discrete.

The posterior density of θ given x is given by

π(θ/x) =
h(θ, x)

mπ(x)
=

f(x/θ)π(θ)

mπ(x)

The posterior mean and posterior variance with respect to prior π will be denoted by

Eπ(θ/x) and V π(θ/x), respectively. Similarly, the posterior probability of a set A ⊂ Θ

given x will be denoted by P π(A/x).

13



Chapter 1. Bayesian Robustness

1.1 Different approaches to Bayesian robustness

There are three main approaches to Bayesian robustness. We illustrate them consider-

ing robustness with respect to changes in the prior, but similar issues are raised when

considering likelihoods and losses:

1.1.1 Informal approach:

In this approach, we consider a few priors and compare the quantity of interest (e.g.,

the posterior mean) under them. The approach has been (and is) very popular because

of its simplicity and can help, but it can easily “miss” priors that are compatible with

the actually elicited prior knowledge and yet which would yield very different quantity of

interest. The rationale with this informal approach is that since we shall be dealing with

messy computational problems, why not analyze sensitivity by trying only some alternative

pairs of losses and priors? This is a healthy practice and a good way to start a sensitivity

analysis.

Example 1.1.

Suppose a single observation, x, is observed from a normal distribution with unknown

mean θ and variance 1, to be denoted N (θ, 1). The classic (old) textbook Bayesian

analysis would suggest selection of a conjugate, normal prior for θ, chosen to match some

features determined by the elicitation process. Suppose, for instance, that -.954, 0, and

.954 are the elicited quartiles of the distribution of θ. The unique, normal prior with these

quartiles is Π ∼ N (0, 2). It is evident that the choice of a normal prior is mathematically

convenient but otherwise arbitrary. In the informal approach to robustness, one would try

a few different priors, compatible with the elicited quartiles, and compare the answers.

Three such priors are the normal N (0, 2), double exponential DE (0, log 2
0.945

) and Cauchy

distribution C (0, 0.954). Resulting posterior means, for different data x, are presented in

Table 1.1.
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Chapter 1. Bayesian Robustness

x 0.5 1 1.5 2 2.5 3 3.5 4 10

N 0.333 0.667 1.000 1.333 1.667 2.000 2.333 2.667 6.667

DE 0.292 0.606 0.960 1.362 1.808 2.285 2.776 3.274 9.274

C 0.259 0.540 0.806 1.259 1.729 2.267 2.844 3.427 9.796

TABLE 1.1. Posterior means for different priors.

For moderate or large values of x in Table 1, the posterior mean is reasonably consis-

tent for the Cauchy and Double Exponential distributions, but changes dramatically for

the Normal distribution. For small values of x, the posterior means are all reasonably con-

sistent. The conclusion of this informal analysis would be that robustness is likely obtained

for smaller values of x, but not for larger values.

1.1.2 Global robustness

Global sensitivity is the most popular approach in Bayesian robustness. We consider the

class of all priors compatible with the elicited prior information, and compute the range of

the quantities of interest as the prior varies over the class. This range is typically found

by determining the extremal priors in the class that yield the maximum and minimum

quantities of interest. Such computations can become cumbersome in multidimensional

problems.

1.1.3 Local robustness

Local sensitivity is interested in the rate of change in inferences, with respect to changes in

the prior, and uses differential techniques to evaluate the rate. Local sensitivity measures

are typically easier to compute in complicated situations than are global measures, but

their interpretation and calibration is not always clear.

15



Chapter 1. Bayesian Robustness

1.2 Priors robustness

We first show various ways of modeling imprecision in the prior through classes of priors.

This is only the first part in a sensitivity analysis; it must be followed by the identification

of a tool capable of measuring the effects of the uncertainty on the quantities of interest.

Different approaches can be taken, depending, e.g., on the existence or not of a baseline

prior and a neighborhood class around it. It is possible to consider a neighborhood class

around a prior Π0 and check what happens when allowing for either infinitesimal or more

relevant departures from Π0.

The following example illustrates why sensitivity to the choice of prior can be an im-

portant consideration.

Example.1.2.

Suppose we observe X, which follows Poisson(θ) distribution. Further, it is felt a prior

that θ has a continuous distribution with median 2 and upper quartile 4. i.e.

P (θ ≤ 2) = 0.5 = P (θ ≥ 2) and P (θ ≥ 4) = 0.25

If these are the only prior inputs available, the following three are candidates for such a

prior

(i) π1 θ ∼ exponential (a) with a=log(2)/2;

(ii) π2 log(θ) ∼ N(log(2), (log(2)/z.25)
2); and

(iii) π3 log(θ) ∼ Cauchy(log(2), log(2)).

Then (i) under π1, π1(θ/x) ∼ Gamma(a+1, x+1), so that the posterior mean is Eπ1(θ/x) =

(a + 1)/(x + 1);

(ii) under π2, if we let γ = log(θ), and τ = log(2)/z.25 = log(2)/0.675, we obtain

Eπ2(θ/x) = Eπ2(exp(γ)/x)

16



Chapter 1. Bayesian Robustness

=

+∞∫
−∞

exp(−eγ)exp(γ(x + 1))exp(−(γ − log(2))2/(2τ 2))dγ

+∞∫
−∞

exp(−eγ)exp(γx)exp(−(γ − log(2))2/(2τ 2))dγ

And (iii) under π3, again if let γ = log(θ), we get

Eπ3(θ/x) = Eπ3(exp(γ)/x)

=

+∞∫
−∞

exp(−eγ)exp(γ(x + 1))[1 + (γ−log(2)
log(2)

)2]−1dγ

+∞∫
−∞

exp(−eγ)exp(γx)[1 + (γ−log(2)
log(2)

)2]−1dγ

.

To see if the choice of prior matters, simply examine the posterior means under the three

different priors in Table.1.2.

π/x 0 1 2 3 4 5 10 15 20 50

π1 .749 1.485 2.228 2.971 3.713 4.456 8.169 11.882 15.595 37.874

π2 .950 1.480 2.106 2.806 3.559 4.353 8.660 13.241 17.945 47.017

π3 .761 1.562 2.094 2.633 3.250 3.980 8.867 14.067 19.178 49.402

TABLE.1.2. Posterior means under π1,π2 and π3.

For small x (x ≤ 10), there is robustness: the choice of prior does not seem to matter

too much. For large values of x, the choice does matter. It is now clear that there are

situations where it does matter what prior one chooses from a class of priors, each of which

is considered reasonable given the available prior information.

1.3 Classes of priors

There is a vast literature on how to choose a class Γ of priors to model prior uncertainty

appropriately. The choice of the class of priors should be driven by the following goals:

� To ensure that as many ”reasonable” priors as possible are included, is needed to

ensure robustness;

17



Chapter 1. Bayesian Robustness

� To try to eliminate ”unreasonable” priors, to ensure that one does not erroneously

conclude lack of robustness;

� To ensure that Γ does not require prior information which is difficult to elicit, and

� To be able to compute measures of robustness without much difficulty.

1.3.1 Conjugate priors

The class consisting of conjugate priors is one of the easiest classes of priors to work with.

If X ∼ N(θ, σ2) with known σ2, the conjugate priors for θ are the normal priors N(µ, τ 2).

So one could consider

ΓC = {N(µ, τ 2), µ1 ≤ µ ≤ µ2, τ
2
1 ≤ τ 2 ≤ τ 2

2 }

For some specified values of µ1, µ2, τ 2
1 and τ 2

2 . The advantage with the conjugate class

is that posterior quantities can be calculated in closed form. In the above case, if θ ∼

N(µ, τ 2), then θ/X ∼ N(µ∗(x), δ2) where:

µ∗(x) = (
τ 2

(τ 2 + σ2)
)x + (

σ2

(τ 2 + σ2)
)µ

And

δ2 =
τ 2σ2

(τ 2 + σ2)

Minimizing and maximizing posterior quantities then becomes an easy task. The crucial

drawback of the conjugate class is that it is usually ”too small” to provide robustness and

omit many reasonable priors.

1.3.2 Neighborhood Class

When a baseline prior Π0 (often conjugate) is elicited by usual methods, a natural class

of priors for studying sensitivity to the prior is the ε-contamination class. The popularity

of the ε-contamination class arises, in part, from the ease of its specification and, in part,

18



Chapter 1. Bayesian Robustness

from the fact that it is typically easily handled mathematically. The ε-contamination class

is defined as:

Γε = {Π : Π = (1− ε)Π0 + εq, q ∈ Q}

Where Q is called the class of contaminations and ε reflecting the uncertainty in Π0. The

class has been considered by Huber (1973) in classical robustness. In Bayesian robustness,

the ε-contamination class is made of priors witch resemble the baseline prior π0.

The major problem is the determination of ε and Q. In particular the uncertainty in π0.

In fact, it is worth mentioning that, for any measurable subset A, it follows that

(1− ε)Π0(A) + inf
q∈Q

q(A) ≤ Π(A) ≤ (1− ε)Π0(A) + sup
q∈Q

q(A)

for any Π ∈ Γε.

Researchers focused their interest in finding suitable classes of contaminations Q. The

choice of Q has a great effect. A variety of choices of Q have been considered in the liter-

ature. The most obvious choice is to let Q be the class of all distributions, Unfortunately,

this class is often too large to yield useful robustness bounds.

One important class of refinements of the contaminating class involves the addition of

shape constraints, Such constraints can often be readily elicited, and can very significantly

reduce the range of posterior quantities of interest.

Some choices for Q are all unimodal distributions with mode θ0 (ΓU) and all unimodal

symmetric distributions with mode θ0 (ΓUS). The ε-contamination class with appropriate

choice of Q can provide good robustness.

Moreno and Cano (1992) addressed the problem of robustness in a multidimensional

parameter space, considering the contamination class with partially know marginal. The

problem has been addressed by Lavineet al. (1991) as well.

As a related class, Gelfand and Dey (1991) proposed the geometric ε-contamination

class defined as

Γg = {π : π = Cg(ε)π1−ε
0 qε, q ∈ Q}
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Chapter 1. Bayesian Robustness

Where q is the density in the class of contamination Q.

One drawback of ε-contamination classes is that they are not true neighbourhood classes

in a topological sense. A variety of other classes have been considered that do have a formal

interpretation in this sense, such as the class based on a concentration function and the

class based on distribution bands.

The distribution band class, described in Basu and DasGupta (1990,1995) and Basu (1995),

is defined as

ΓBDG = {F : F is a cdf and FL(θ) ≤ F (θ) ≤ FU(θ) ∀θ}

Where FL and FU are given cumulative density functions (cdf), with FL(θ) ≤ FU(θ). This

class is important from a mathematical point of view since it includes, as special cases, the

well known Kolmogorov and Lèvy neighbourhoods. The elicitation of this classis relatively

simple and others features such as symmetry and unimodality of the distributions, can be

added as in Basu (1992), making computations even harder.

1.3.3 Density Ratio Class :

Assuming the existence of densities for all the priors in the class, the density ratio class is

defined as

ΓDR = {π : L(θ) ≤ απ(θ) ≤ U(θ) for some α > 0}

Where L and U are given non-negative functions, and π is not required to have mass one,

or even to be proper. An alternative definition of this class is

ΓDR = {π :
L(θ)

U(θ̀)
≤ π(θ)

π(θ̀)
≤ U(θ)

L(θ̀)
for all θ, θ̀}

From which it is clear that ΓDR specifies ranges for the ratios of the prior density between

any two points.

Example.1.3.
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Suppose L(θ) = 1 and U(θ) = K. Then ΓDR consists of all prior densities for which the

density ratio between any two points lies between K−1 and K. This class is a reasonable

representation of prior vagueness, from a robust Bayesian perspective.

1.3.4 Priors with specified generalized moments

The generalized moments class is defined through

Γ = {π :

∫
Θ

Hi(θ)π(θ)dθ ≤ αi, i = 1, ..., n}

Where Hi are given π-integrable functions and αi, i = 1, ..., n are fixed real numbers.

This class, considered first in Betrò et al. (1994) and Goutis (1994), is a very rich

and contains well-known classes like the one with given moments and the quantile class.

The former class has been used e.g. by Hartigan (1969) and Goldstein (1980), who con-

sidered the priors with given first two moments. Although the elicitation of the first two

moments, actually mean and variance, is often very reasonable, it is difficult to specify

further moments and reasonable distributions.

The generalised moments class alows for other choices of the functions Hi,i.e. neither

powers or set functions. Betrò at al. (1994) considered the class defined by bounds on the

marginal probabilities of given Ki taking

Hi(θ) =

∫
Ki

f(x/θ)dx

So that, by Fubini’s theorem, it follows that

∫
Θ

Hi(θ)π(θ)dθ =

∫
Ki

mπ(x)dx

Where mπ(x) =
∫
Θ

f(x/θ)π(θ)dθ is the marginal density of under π
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1.3.5 Quantile classes

Often, there will be no baseline prior and the class of priors will simply be those that

satisfy the features that are elicited.

An example of a quantile class is that considered in Berger and O’Hagan (1988), O’Hagan

and Berger (1988) and Moreno and Cano (1989). The elicitation proceeds by determining

the prior probabilities of each of the intervals Ii, i = 1, 6 in Table1.3. The probabilities

indicated therein are the elicited values, and the quantile class, ΓQ, consists of all distri-

butions that are compatible with these assessments. Note that the N(0, 2) distribution is

one such prior.

Ii ]−∞,−2] ]− 2,−1] ]− 1, 0] ]0, 1] ]1, 2] ]2,∞[

pi .08 .16 .26 .26 .16 .08

TABLE.1.3. Intervals and prior probabilities .

Computation of ranges of a posterior quantity of interest is rather simple for a quantile

class, since upper and lower bounds are achieved for discrete distributions giving mass to

one point in each intervalIi.

1.4 Measures of sensitivity

Measures of sensitivity are needed to examine the robustness of inference procedures (or

decisions) when a class Γ of priors are under consideration. In recent years two types

of these measures have been studied: global measures of sensitivity such as the range of

posterior quantities and local measures such as the derivatives.

1.4.1 Global measures of Robustness

The most commonly used measure in global robustness is the range, i.e. the difference

between upper and lower bounds on the quantity of interest. Its value measures the
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variation caused by the uncertainty in the prior/likelihood/loss function. It should always

be recognized that the range depends strongly on the size of the classes used to represent

the uncertain inputs. Thus a small range with an excessively small class is not really

comforting, and a large range with an excessively large class is not necessarily damning.

This range provides, in general, a number that, in principle, should be interpreted in the

following way:

• If the measure is ”small”, then robustness is achieved and any prior in the class can

be chosen without relevant effects on the quantity of interest;

• If the measure is ”large”, one ideally narrows the class further or obtains additional

data, recomputing the robustness measure and stopping as in the previous item;

• If the measure is ”large” and the class cannot be modified, then a prior can be

chosen in the class but we should be wary of the relevant influence of our choice on

the quantity of interest. A natural adhoc approach is to replace the class by a single

input, obtained by some type of averaging over the class. For instance, if the class is

a class of priors, one might choose a hyperprior on the class, and perform an ordinary

Bayesian analysis.

Given a class Γ of prior measures, global sensitivity analysis will usually pay attention to

the range of variation of a posterior (or predictive) quantity of interest as the prior ranges

over the class,i e,

Supπ∈ΓT (h, π)− Infπ∈ΓT (h, π)

Further, as explained in Berger (1990), typically there are three categories of Bayesian

quantities of interest.

(i) Linear functionals of the prior: T (h, π) =
∫
Θ

h(θ)π(dθ), where h is a given function.

If h is taken to be the likelihood function f(x/θ), we get an important linear functional,

the marginal density of data, i.e., mπ(x) =
∫
Θ

f(x/θ).π(dθ).
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(ii) Ratio of linear functionals of the prior for some given function h:

T (h, π) = Eπ(h(θ)/x) =
1

mπ(x)

∫
Θ

h(θ)f(x/θ)π(dθ)

If we take h(θ) = θ, T (h, π) is the posterior mean. For h(θ) = IC(θ), the indicator function

of the set C, we get the posterior probability of C.

(iii) Ratio of nonlinear functionals for some given h:

T (h, π) =
1

mπ(x)

∫
Θ

h(θ, φ(π))f(x/θ)π(dθ)

For h(θ, φ(π)) = (θ − µ(π))2, where µ(π) is the posterior mean, we get T (h, π) = the

posterior variance.

Note that extreme values of linear functionals of the prior as it varies in a class Γ are easy

to compute if the extreme points of Γ can be identified.

Example1.4.

Suppose X ∼ N(θ, σ2), with σ2 Known and the class of interest is

Γ = {all symmetric unimodal distributions with mode θ0}.

Then φ denoting the standard normal density,

mπ(x) =

+∞∫
−∞

1

σ
φ(

x− θ

σ
)π(θ)dθ.

Note that any unimodal symmetric (about θ0) density π is a mixture of uniform densities

symmetric about θ0. Thus the extreme points of ΓSU are U(θ0 − r, θ0 + r) distributions.

Therefore,

inf
π∈ΓSU

mπ(x) = inf
r>0

1

2r

θ0+r∫
θ0−r

1

σ
φ(

x− θ

σ
)dθ

= inf
r>0

1

2r
{φ(

θ0 + r − x

σ
)− φ(

θ0 − r − x

σ
)}
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sup
π∈ΓSU

mπ(x) = sup
r>0

1

2r

θ0+r∫
θ0−r

1

σ
φ(

x− θ

σ
)dθ

= sup
r>0

1

2r
{φ(

θ0 + r − x

σ
)− φ(

θ0 − r − x

σ
)}

To study ratio-linear functionals the following result from Sivaganesan and Berger (1989)

is useful.

Theorem1.1(see [42]).

Consider the class ΓSU of all symmetric unimodal prior distributions with mode θ0.

Then it follows that

sup
π∈ΓSU

Eπ(h(θ)/x) = sup
r>0

1
2r

θ0+r∫
θ0−r

h(θ)f(x/θ)dθ

1
2r

θ0+r∫
θ0−r

f(x/θ)dθ

,

inf
π∈ΓSU

Eπ(h(θ)/x) = inf
r>0

1
2r

θ0+r∫
θ0−r

h(θ)f(x/θ)dθ

1
2r

θ0+r∫
θ0−r

f(x/θ)dθ

.

Not that Eπ(h(θ)/x) =
∫

h(θ)f(x/θ)π(θ)dθ∫
f(x/θ)π(θ)dθ

, where f(x/θ) is the density of the data x.

Example.1.5.

Suppose X/θ ∼ N(θ, σ2 and robustness of the posterior mean with respect to ΓSU is of

interest. Then, range of posterior mean over this class can be easily computed using the

Theorem. We thus obtain,

sup
π∈ΓSU

Eπ(θ/x) = sup
r>0

1
2r

θ0+r∫
θ0−r

θ
σ
φ(x−θ

σ
)dθ

1
2r

θ0+r∫
θ0−r

1
σ
φ(x−θ

σ
)dθ

= x + sup
r>0

φ( θ0−r−x
σ

)− φ( θ0+r−x
σ

)

φ( θ0+r−x
σ

)− φ( θ0−r−x
σ

)
,
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inf
π∈ΓSU

Eπ(θ/x) = inf
r>0

1
2r

θ0+r∫
θ0−r

θ
σ
φ(x−θ

σ
)dθ

1
2r

θ0+r∫
θ0−r

1
σ
φ(x−θ

σ
)dθ

= x + inf
r>0

φ( θ0−r−x
σ

)− φ( θ0+r−x
σ

)

φ( θ0+r−x
σ

)− φ( θ0−r−x
σ

)
.

1.4.2 Relative sensitivity.

The range is capable of measuring changes in the scale of the quantity of interest. Reporting

only the range might be misleading, since a range of 1 has a different meaning, in terms

of robustness, when the quantity of interest is of order 103 or 10. The calibration of these

measures is still an unresolved problem since it is not clear when we can say that in a

problem there is more robustness than in another just by comparing two numbers. It is

not even possible to find an objective criterion which tells when robustness is achieved.

While interpretation of the size of the range is usually done within the specific applied

context, some efforts have been made to derive certain generic measures also. Ruggeri and

Sivaganesan (2000) suggest a scaled version of the range for this purpose. For a target

quantity of interest h(θ), called relative sensitivity and defined as:

RΠ =
(ρΠ − ρ0)2

V Π

Where ρΠ and ρ0 equal E(h(θ)/x) under Π and the baseline prior Π0, respectively, and V Π

is the posterior variance of h(θ) with respect to Π.

The motivation for considering RΠ is that the posterior variance V Π is a measure of

accuracy in estimation of h(θ) and hence if the squared distance of ρΠ from ρ0 relative to

this is not too large, robustness can be expected.
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Example.1.6.

Let X have the N(θ,1) distribution, and under π0, let θ be N(0, 2). Consider the class Γ

of all N(0, τ 2) priors with 1 ≤ τ 2 ≤ 10. Consider sensitivity of posterior inferences about

h(θ) = θ when x > 0 is observed. Because the posterior distribution (under the prior N(0,

τ 2)) of θ given x is normal with mean τ2x
(τ2+1)

and variance τ2

(τ2+1)
note that

ρΠ(x)− ρ0(x) = (
τ 2

τ 2 + 1
+

2

3
)x

and

RΠ(x) =
(τ 2 − 2)2x2

9τ 2(τ 2 + 1)
.

It can then be easily checked that the range of ρΠ(x) − ρ0(x) is 8x/33 and sup RΠ(x) =

6.4x2/99. Thus, robustness can be expected when the observation X lies in the range

0 ≤ x ≤ 4, but certainly not when x = 10.

1.4.3 Local measures of robustness

The global approach can become quite unfeasible for very complicated models. If, for

example, X ∼ Pθ, and θ is p-dimensional, p > 1, then the range of posterior mean of θi

may well depend on prior inputs on θj for j 6= i also. If such is the case, global measures of

robustness will involve computing ranges of posterior quantities of general functions g(θ)

over classes of joint prior distributions of θ.

The alternative, which has attracted a lot of attention, is that of trying to study

the effects of small perturbations to the prior. This is called local sensitivity. In this

approach also, one may either study the sensitivity of the entire posterior distribution or

that of some specified posterior quantity. In the local sensitivity approach to Bayesian

robustness, techniques from differential calculus are used and robustness is measured by

the supremum of (functional) derivatives over a class. Stemming from work by Diaconis

and Freedman (1986), Ruggeri and Wasserman (1993) measured the local sensitivity of
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a posterior expectation with respect to the prior by computing the norm of the Fréchet

derivative of the posterior with respect to the prior over several different classes of measures.

As an illustration of the approach, let consider as in Gustafson and Wasserman (1995).

A different set of notations as given below are needed in this section. Let π be a prior

probability measure and let πx denote its corresponding posterior probability measure given

the data x, let P be the set of all probability measures on the probability space. A distance

function d : P → P is needed to quantify changes in prior and posterior measures. Let vε

be a perturbation of π in the direction of a measure v. Then the local sensitivity of P in

the direction of v can be defined ( Gustafson and Wasserman (1995)) by

s(π, v; x) = lim
ε↓0

d(πx, vx
ε )

d(π, vε)

Two different types of perturbations vε have been considered. The linear perturbation is

defined as vε = (1− ε)π + εv, and the geometric perturbation as dvε ∝ ( dv
dπ

)εdπ. The local

sensitivity s(π, v; x) is simply the rate at which the perturbed posterior vx
ε tends to the

’initial’ posterior πx relative to the change in the prior. As a measure of overall sensitivity

of a class Γ of priors one may take

s(π, Γ; x) = sup
v∈Γ

s(π, v; x).

There are many possible choices for d, the distance measure.

1.5 Interactive Robust Bayesian Analysis

Following Berger (1994), an interactive scheme for robust Bayesian analysis can be sug-

gested according to t he diagram Figure . The point to note is that, if lack of robustness is

evident, then the classΓ of priors obtained from initial prior inputs has to be shrunk using

further prior elicitation.

Fig.1.1.. Interactive robust Bayesian scheme.
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1.6 Likelihood robustness

Perturbations with respect to parametric models is more complex than changes in the prior

and in the loss function, not only because of computational complexity but also because

changes in the model should preserve the meaning of the parameter. The case of symmetric

models is one of the most entertained since the median keeps the same meaning for all the

models.

An informal approach, similar to that discussed in priors robustness, can be followed

in analyzing likelihood robustness; one can simply try several models and see if the answer

changes significantly.

It is difficult to develop more formal approaches to likelihood robustness, for several

reasons, one of which is that parameters often change meanings in going from one model

to another; hence changing models also often requires changing the prior distributions.

1.7 Classes of models

We review some key classes used in the literature:
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1.7.1 Finite classes

A finite number of models can be considered. Sometimes a parameter has a clear meaning,

regardless of the model under consideration, and more formal methods can be employed.

An example is that of the median of a symmetric distribution. For instance, Shyamalkumar

(2000) discusses the situation in which there are two competing models (normal N(θ, 1)

and Cauchy C(θ, 0.675)),

M = {N(θ, 1), C(θ, 0.675)}

With classes of priors on the common parameter θ. The scale parameters of the two

models are chosen to match the inter-quartile range. The priors on θ are specified to be

in σ–contamination neighborhoods, where the contaminating classes are either ΓA or ΓSU ,

containing, respectively, arbitrary and symmetric, unimodal (around zero) distributions.

Shyamalkumar considered ε = 0.1 and computed upper and lower bounds on the posterior

mean E(θ/x) of θ, as shown in Table.1.4.

ΓA
0.1 = {π : π = 0.9π0 + 0.1q, q is arbtrary}

ΓSU
0.1 = {π : π = 0.9π0 + 0.1q, q is a distribution symmetric and unimodal around zero}

TABLE.1.4.. Bounds on posterior mean for different models and classes of priors.

As noticed by Shyamalkumar, even though the width of the ranges of the posterior

means are similar for the two likelihoods, the centers of the ranges are quite different when

x is larger.
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1.7.2 Parametric classes

There are many examples of parametric models. We just mention the very rich class of

models due to Box and Tiao (1962), given by

ΛBT = {f(y/θ, σ, β) =
exp{−1

2
|y−θ

σ
|

2
1+β }

σ2(1.5+0.5β)Γ(1.5 + 0.5β)
; any θ, σ > 0, β ∈ (−0, 1]}

An application of this class is given in Shyamalkumar (2000).

1.7.3 Neighborhood classes

There are other current approaches to likelihood robustness, including use of Neighborhood

classes where

ε-contaminations class

This class of models have been considered in, e.g., Sivaganesan (1993), although these

classes work well only when it is possible to consider the same parameter for all the enter-

tained models,

Γε = {f(x; θ) : f(x; θ) = (1− ε)f0(x; θ) + εp(x, θ), p ∈ F}

Where f0 is the baseline density and is the class of contamination.

Density Ratio classes

Basu (1995) considered a density ratio class as well, i.e. all the densities f for witch

there exists α > 0 such that ,

ΓDR = {f : l(x− θ0) ≤ αf(x/θ0) ≤ U(x− θ0), for all x}

With L and U are given nonnegative functions, with L(.) ≤ U(.).
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Class of bounded likelihoods.

Stemming from results in Cuvevas and Sanz (1988) and similarly to the class of priors

used by Ruggeri and Wasserman (1993), Ruggeri(1991, manuscript) considered the class

of bounded likelihoods given by

ΓBL(L, U) = {l ∈ Lp; L(θ) ≤ l(θ) ≤ (θ)}

Where Lp is the space of all integrable functions. L and U are are given measurable

nonnegative functions, not necessarily in Lp. In particular he considered the special case

where l = ( 1
k
)λ,U = kλ,k ≥ 1 and λ ∈  Lp was given.

DeRobestis (1978) discussed one way of building nonparametric neighborhoods of the like-

lihood, but the first thorough illustration of a nonparametric class is due to Lavine (1991).

1.8 Loss robustness

When addressing Decision Theoretic issues, we immediately think of considering classes

of loss functions and extend sensitivity to the prior procedures to this new setting in a

straightforward manner.

Given the same decision problem, it is possible that different decision makers have

different assessments for the consequences of their actions and hence may have different

loss functions. In such a situation, it may be necessary to evaluate the sensitivity of

Bayesian procedures to the choice of loss.

Example.1.7.

Suppose X is Poisson(θ) and θ has the prior distribution of exponential with mean 1.

Suppose x = 0 is observed. Then the posterior distribution of θ is exponential with mean

1
2
. Therefore, the Bayes estimator of θ under squared error loss is 1

2
which is the poste-

rior mean, whereas the Bayes estimator under absolute error loss is 0.3465, the posterior

median. These are clearly different, and this difference may have some significant impact
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depending on the use to which the estimator is being put.

It is possible to provide a Bayesian approach to the study of loss robustness exactly as

we have done for the prior distribution. In particular, if a class of loss functions is available,

range of posterior expected losses can be computed and examined.

1.9 Classes of losses

Although some of the classes of losses are similar to those referring to priors, others arise

from typical properties of the losses.

1.9.1 ε-contamination class

As shown earlier,ε-contamination classes are very popular in defining classes of priors.

They can be used, as well, to define a neighbourhood around a loss function L0 as follows

Lε(L0,W) = {L : (c) = (1− ε)L0(c) + εM(c) : M ∈ W},

Where ε represents imprecision over L0, c is a consequence belonging to the state of

consequences C and W is a class of loss functions, typically including L0.

1.9.2 Partially Known Class

Stemming from the quantile class of priors, Mart̀ın et al. (1998) considered a finite partition

C1,C2,...,Cn of the state of consequences C and gave upper and lower bounds on the losses

over each element of the partition, i.e. they considered

Lk = {L : vi−1 ≤ L(c) ≤ vi, ∀c ∈ Ci, i = 1, 2, ..., n}

Where some of the sets Ci could be empty. Although the specification of the class is rela-

tively simple as for the classes of priors, the computations become here more cumbersome.
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1.9.3 Parametric class

Various loss robustness measures have been proposed, most of which are discussed in Dey

et al. (1998),The most famous parametric class of losses is LINEX, defined by

Λ = {Lb : Lb(θ, a) = exp{b(a− θ)} − b(a− θ)− 1, b 6= 0, b0 < b < b1},

Where b0 and b1 are fixed. They (Dey et al. (1998)) consider a normal model for the

observation and a conjugate prior for its mean, with specified variance, and compute the

range of the posterior expected loss and the posterior regret.

1.9.4 Bands of convex loss functions

Mart̀ın et al. (1998) considered losses which can be modelled as L(θ; a) = L(θ − a).

Therefore, it is possible to consider the loss as a function L(t) and study its derivative,

when it exists, to detect local increase/decrease in the behavior of the loss. Let Ĺ(t) = l(t)

and consider two functions λ(t) and µ(t), both positive for positive t and negative for

negative t. Then a band of convex loss functions is obtained by considering

L = {L : λ(t) ≤ l(t) ≤ µ(t) ∀t}

Loss robustness studies consider a class L of loss functions L(θ; a), defined for the action

a in the action space A and θ in Θ. As L varies in L, a measure of loss robustness is given

by the range of the posterior expected loss of an action a, supL∈LT (L; a)− infL∈LT (L; a).

Many studies in loss robustness concentrated on the search of the ”best” loss, according

to some criteria. Dey et al. (1998) proposed the following robustness measure:

D = supx|
∂

∂x
T (L, a∗)| − infx|

∂

∂x
T (L, a∗)|

Where a∗ is the Bayes action.
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Some authors considered the influence of a loss function, defined as

∂

∂x
infaT (L, a) =

∂

∂x
T (L, a∗)

Makov (1994) used the influence to order loss functions in a class. In the first way, he said

that the loss L1 was preferred to L2 if

supx|infaT (L1, a)| < supx|infaT (L2, a)|.

In the second method, L1 was preferred to L2 if

Ex[T (L1, a)] < Ex[T (L2, a)]

Where the expectation was taken with respect to m(x), the marginal distribution of x.

Joint robustness studies are essential, specially in decision theoretic contexts, as ro-

bustness studies with respect to only one of the elements varying, and the others fixed,

may give a false sense of stability: a problem may be insensitive to changes only in the

loss and changes only in the probability, but sensitive to simultaneous changes in both the

loss and probability.
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A possible classes of priors for Non

Homogeneous Poisson Process

The Poisson process is one of the most significant random processes in probability theory.

It is widely used to model random points in time and space such as the times of radioactive

emissions, the arrival times of customers at a service center and the positions of flaws in

a piece of material. Several important probability distributions arise naturally from the

Poisson process. The Poisson process is a collection of random variables where N(t) is the

number of events that have occurred up to time t (starting from time 0). The number of

events between time a and time b is given as N(b)-N(a) and has a Poisson distribution.

A Non-Homogeneous process is a process with rate parameter λ(t) such that the rate

parameter of the process is a function of time e.g. the arrival rate of vehicles in a traffic

light signal.

The Poisson process has found numerous applications in science, engineering, economics

and other areas. The NHPP is probably the best known generalization of the Poisson

process . It is characterized by a deterministic intensity function that describes how the

rate of the process changes in time. For an ordinary Poisson processes, this function is a

constant.
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2.1 Counting Process

Models utilizing a counting process have played a key role in the analysis of systems com-

posed of random occurring events. By way of motivation, suppose that we are interested in

observing the occurrences of a repeatable event over a period of time. One of the simplest

examples is the arrival of customers at a service station, such as a bank. Another example

is the occurrences of earthquakes of a specified magnitude at a particular location over

time. The example that is of interest to us here is the points in time when a system’s

software fails. In all such cases, the event of interest does not occur with any regularity

and is therefore not exactly predictable. We are not sure about the exact times at which

the events will occur and consequently about the exact number of events that will occur

in any time interval.

A counting process is simply the count of the number of events that have occurred in

any specified interval of time. Since N(t) is unknown for any value of t, we are facing with

the problem of describing our uncertainty about an infinite collection of random variables,

one for each t. Any indexed collection of random variables is called stochastic process,

and when the interest is focused on counts, the process is called a counting process and is

denoted by N(t), t ≥ 0.

The sample path of a counting process is given by Figure 2.1. The horizontal line is

designated to represent time; the vertical line is used to represent the total number of

counts over time. It is a step function starting at zero, and taking jumps of size one at

each ti, that is, the cumulative time of the ith failure.

The most commonly probabilistic models used for the counting process are homogeneous

and nonhomogeneous Poisson processes.
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2.1.1 Poisson Process

A counting process N(t) is said to be a Poisson process if

1. N(0) =0;

2. For any a ≤ b ≤ c ≤ d the random variables N(a, b] and N(c, d] are independent.

This is called the independent increment property.

3. There is a function λ such that

λ(t) ≡ lim
∆t→0

P{N(t + ∆t)−N(t) ≥ 1}
∆t

The function λ is called the intensity function of the Poisson process.

4.

lim
∆t→0

P{N(t + ∆t)−N(t) ≥ 2}
∆t

= 0

This precludes the possibility of simultaneous failures.
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2.2 Homogeneous Poisson Process (HPP)

The counting process N(t), t ≥ 0 is said to be a homogeneous Poisson process (HPP) if

the intensity function λ(t) is a constant, that is, λ(t) = λ, λ > 0 and

1. N(0) =0;

2. The process has independent increments and stationary increments. A point process

has stationary increments if for all k, P [N(t + s)−N(t) = k] is independent of t.

3. . P [N(t + dt)−N(t) = k] = 0 + od(t) k ≥ 2

. P [N(t + dt)−N(t) = k] = λd(t) + od(t) k = 1

. P [N(t + dt)−N(t) = k] = 1− λd(t) + od(t) k = 0

It can be shown that the number of events in any interval of length s = t1 − t2 has a

Poisson distribution with mean λs, that is

P [N(t2)−N(t1) = n] =
e−λsλn

s

n!
, 0 ≤ t1 ≤ t2, n = 0, 1, 2, ...

2.2.1 Proprieties of Homogeneous Poisson Process

Homogeneous Poisson Process has the following properties

Property 1.

A process is an HPP with constant intensity function λ, if and only if the times between

events are iid exponential random variables with mean 1
λ
.

Property 2.

The superposition of two Poisson processes with intensities λ1 and λ2 is a Poisson

process with intensity

λ = λ1 + λ2.
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Property 3.

If 0 < T1 < T2 < ... < Tn are the event occurred from an HPP, then the joint poisson

distribution function of T1, T2, ...Tn is

f(t1, t2, ..., tn) = λne−λtn , 0 < t1 < t2 < ... < tn.

Property 4.

The time to the nth event from a system modeled by an HPP has a gamma distribution

with parameter α = n and β = 1
λ
.

Property 5.

For an HPP, conditional on N(t) = n, the number of events occurred at times 0 < T1 <

T2 < ... < Tn are distributed as order statistics from U(0,t) distribution.

2.3 Nonhomogeneous Poisson Process

Nonhomogeneous Poisson process (NHPP) is a Poisson process whose intensity function is

not a constant. A counting process N(t), t≥0 is a nonhomogeneous Poisson process if

1. N(0) =0;

2. The process has independent increments and stationary increments;

3. . P [N(t + dt)−N(t) = k] = 0 + o(dt) k ≥ 2;

. P [N(t + dt)−N(t) = k] = λ(t)dt + o(dt) k = 1;

. P [N(t + dt)−N(t) = k] = 1− λ(t)dt + o(dt) k = 0.
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A homogeneous Poisson process may be viewed as a special case when λ(t) = λ, a constant

rate.

The mean value function (m.v.f.) of the NHPP is defined as the nondecreasing, nonnega-

tive, function

M(s, t) = E{N(s, t)}, 0 ≤ s < t with M(t) = E{N(t)}, t ≥ 0.

Where

M(y, s) =

s∫
y

λ(t)dt.

Nonhomogeneous Poisson processes (NHPP) are widely used as models for failures of a

repairable system. The occurrences in time will be the failure times of a repairable system.

Though, sometimes we shall use the term failures instead of events.

The number of events occurred in any interval (y,s) has a Poisson distribution with mean
s∫
y

λ(t)dt, that is

P [N(s)−N(y) = k] =
M(y, s)k

k!
e−M(y,s) =

1

k!
exp{−

s∫
y

λ(t)dt}{
s∫
y

λ(t)dt}k.

For any integer k.

There are two different sampling protocols which provide data : (i) failure truncated case

and (ii) time truncated case.

Data are said to be failure truncated when testing stops after a predetermined number

of failures. Suppose that is observed till n events occur (fixed n), so we observe the ordered

failure times t1 < t2 < ... < tn where ti is the time of ith failure. In this case, the number

of failures is fixed and the time when the testing stops is random.

Data are said to be time truncated when testing stops at a predetermined time t. We

observe a set of failure time t1 < t2 < ... < tn < t. In this case, the time when the testing

stops is fixed and the number of failures n is random.
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2.3.1 Proprieties of Nonhomogeneous Poisson process

Analogously with homogeneous Poisson process, the non homogeneous Poisson process can

be shown to have the following properties:

Propriety 1.

The joint Poisson distribution function of the events occurred at time t1 , t2, ..., tn from

an NHPP with intensity function λ(t) is given by

f(t1, t2, ..., tn) =
n∏

i=1

λ(ti)exp{−
y∫
0

λ(t)dt}

Where y is the so-called stopping time: y = tn for the event truncated case, y = t for

the time truncated case. The two experiments lead to the same estimates in a Bayesian

framework, whereas some differences are possible following a frequentist approach.

Propriety 2.

The superposition of two non homogeneous Poisson processes with intensities λ1(t) and

λ2(t) is an non homogeneous Poisson process with intensity λ(t) = λ1(t) + λ2(t)

Propriety 3.

Given the total number of arrivals N(t) = n in the interval (0, t) from an non homoge-

neous Poisson process, the arrival instants of these n arrivals are distributed independently

in the interval (0, t) with the density function

λ(t)
t∫
0

λ(u)du

Propriety 4.

Suppose that events are occurring according to a Poisson process with rate λ, and

suppose that, independently of anything that occurred before, an event that happens at
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time t is counted with probability p(t). Then the process of the counted events constitutes

a nonhomogeneous Poisson process with intensity λ(t) = λp(t).

A random selection from an nonhomogeneous Poisson process with intensity λ(t) such

that each arrival is selected, independent of the others, with the probability p(t) (note, may

depend on time) results in an nonhomogeneous Poisson process with intensity p(t)λ(t).

2.3.2 Power Law Process

A common function form for the intensity function in NHPP is

λ(t) = (
β

α
)(

t

α
)β−1, for α > 0, β > 0,

Where α and β are the scale parameter and shape parameter respectively. This nonhomo-

geneous Poisson process is usually called the Power Law Process. The mean value function

M(t) of the process is

M(t) = E{N(t)} =

t∫
0

λ(s)ds =

t∫
0

(
β

α
)(

s

α
)β−1ds = (

t

α
)β

The power law process has been widely used in reliability growth(Crow(1982)), and

software reliability models(Kyparisis and Singpurwalla(1985)), and in repairable systems

(Ascher and Feingold (1984), Engelhardt and Bain(1986), Rigdon and Basu(1989)).

There has been much interest in using PLP where the value of β varies over time.

Previous research has used PLP where the value of β is allowed to change at two fixed

time-points. This model allows for three different stages of reliability: When β < 1, the

intensity function λ(t) is decreasing and the system is improving. Under this situation, the

power law process can be applied as a reliability growth model.

When β = 1, the intensity function λ(t) is constant. Under this situation, the reliability

remains the same. In the third situation where the intensity function is increasing for β > 1,

correspond to decay on reliability.
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Let M = α−β. Parametric empirical Bayes procedures on the Power Law Process are easier

to work with if the intensity function is parameterized as

λ(t) = Mβtβ−1, M, β > with M(t) = Mtβ

2.4 Some prior distribution for poisson process

We have a random sample x1, x2...xn from a Poisson(λ) distribution. The proportional

form of Bayes’ theorem is given by :

posterior ∝ prior × likelihood

π(λ)/x1, x2...xn) ∝ π(λ)× f(x1, x2...xn/λ)

The parameter λ can have any positive value, so we should use a continuous prior defined

on all positive values. The proportional form of Bayes’ theorem gives the shape of the

posterior. The actual posterior is given by

π(λ) =
π(λ)× f(x1, x2...xn/λ)
∞∫
0

π(λ)× f(x1, x2...xn/λ)

.

The likelihood of a single observation from a Poisson(λ) distribution is given by

f(x/λ) =
λxe−λ

x!
.

For x = 0,1, . . . and λ > 0. The part that determines the shape of the likelihood is

f(x/λ) ∝ λxe−λ.

When x1, x2...xn is a random sample from a Poisson(λ) distribution, the likelihood of the

random sample is the product of the original likelihoods. This simplifies to
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f(x1, x2...xn/λ) =
n∏

i=1

f(xi/λ)

∝ λ

n∑
i=1

xi

e−nλ.

In order to use Bayes’ theorem, we will need the prior distribution of the Poisson parameter

λ. In this section we will look at several possible prior distributions of λ for which we can

work out the posterior density without having to do the numerical integration.

2.4.1 Positive uniform prior density

Suppose we have no idea what the value ofλ is prior to looking at the data. In that case,

we would consider that we should give all positive values of λ equal weight. So we let the

positive uniform prior density be

π(λ) = 1, for λ > 0.

This prior density is improper since its integral over all possible values is infinite. The

posterior will be proportional to prior times likelihood, so in this case the proportional

posterior will be

π(λ)/x1, x2...xn) ∝ π(λ)× f(x1, x2...xn/λ)

∝ 1× λ

n∑
i=1

xi

e−nλ.

The posterior is the same shape as the likelihood function, that it is a Gamma(α, β), where

α =
n∑

i=1

xi + 1 and β = n.

2.4.2 Jeffrey prior for Poisson

Jeffreys’ method gives us priors which are objective in the sense that they are invariant

under any continuous transformation of the parameter. The Jeffreys’ prior for the Poisson

is

π(λ) ∝ [I(λ)]
1
2
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Where

I(λ) = −E[
∂2

∂λ2
f(x/λ)]

is the Fisher information in the one-dimensional case

f(x/λ) =
n∏

i=1

λxi
e−λ

xi!

f(x/λ) = λ

n∑
i=1

xi e−nλ

n∏
i=1

xi!

log f(x/λ) =
n∑

i=1

xilogλ− nλ +
n∑

i=1

logxi!

∂log f(x/λ)

∂λ
=

n∑
i=1

xi

λ
− n

∂2log f(x/λ)

∂λ2
= −

n∑
i=1

xi

λ2

I(λ) = −E(−

n∑
i=1

xi

λ2
) I(λ) =

n

λ

π(λ) ∝ [I(λ)]
1
2

π(λ) ∝ 1√
λ

for λ > 0.

Using the Jeffreys’ prior the proportional posterior will be

π(λ)/x1, x2...xn) ∝ π(λ)× f(x1, x2...xn/λ)

∝ 1√
λ
× λ

n∑
i=1

xi

e−nλ
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∝ λ

n∑
i=1

xi− 1
2
e−nλ.

Which we recognize as the shape of a Gamma(α, β)density, where α =
n∑

i=1

xi +
1
2

and β = n.

2.4.3 Conjugate family for Poisson observations is the gamma

family

The Gamma family of distributions is the conjugate family for Poisson observations. It is

advantageous to use a prior from this family, as the posterior will also be from this family

and can be found by the simple updating rules. This avoids having to do any numerical

integration.

The conjugate prior for the observations from the Poisson distribution with parameter λ

π(λ) ∼ Gamma(α, β)

π(λ) ∝ λα−1e−βλ

Given T > 0, the number N of events in the interval [0, T] is a Poisson random variable

with mean equal to λT so that the likelihood function is

f(t1, t2, ..., tn) =
n∏

i=1

λ(ti)exp{−
T∫
0

λ(t)dt}

f(t1, t2, ..., tn) = λnexp−λT

By applying the Bayes theorem we obtain the posterior

π(λ/t) ∝ λnexp−λT .λα−1e−βλ

π(λ/t) ∝ Gamma(α + n, β + T )
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The posterior mean and variance are

E(λ/t) =
α + n

β + T
and V (λ/t) =

α + n

(β + T )2

2.5 Classes of priors for the parameters of a given

NHPP

2.5.1 A general class

A general class of NHPP’s can be described by the intensity function λ(t, α, β) = αg(t, β),

with α, β > 0. Such that their m.v.f. is M(t, α, β) = αG(t, β), with G(t, β) =
t∫
0

g(u, β)du.

This class contains well known processes, such as the Musa-Okumoto, the Cox-Lewis and

the Power Law processes.

1. The Musa-Okumoto process

This process has intensity function λ(t, α, β) = α
(t+β)

and mean value function is given

by

M(t, α, β) =

t∫
0

(
α

x + β
)dx

= α

t∫
0

(
1

x + β
)dx

M(t, α, β) = αlog(t + β), α, β > 0.

2. The Cox-Lewis process

The Cox-Lewis process has intensity function λ(t, α, β) = αexp{βt} and mean value

function M(t, α, β) is given by
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M(t, α, β) =

t∫
0

(αeβxdx)

= α

t∫
0

eβxdx

= [
α

β
eβ∗t − α

β
eβ∗0]

M(t, α, β) =
α

β
eβt(t− 1), α, β > 0.

3. Power Law process

Power Law process has intensity function λ(t, α, β) = αβtβ−1 and mean value function

is given by

M(t, α, β) =

t∫
0

αβxβ−1dx

M(t, α, β) = αtβ, α, β > 0.

A unified treatment of this class from a Bayesian viewpoint is possible. Consider a

NHPP with intensity function λ(t).Suppose we observe the system up to time y and let n

be the number of failures, occurred at times t1 < t2... < tn; then the likelihood function is

given by

L(t1, t2, ..., tn) =
n∏

i=1

λ(ti)exp{−
y∫
0

λ(t)dt}

Where I = (t1, t2, ..., tn).

We focus on the Power law process with intensity λ(t) = βαtβ−1, then the likelihood

function is given by
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L(α, β, I) =
n∏

i=1

βαtβ−1
i exp{−

y∫
0

βαtβ−1dt}

L(α, β, I) = βnαn

n∏
i=1

tβ−1
i exp{−

y∫
0

βαtβ−1dt}

L(α, β, I) = βnαn

n∏
i=1

tβ−1
i exp{−αyβ}

A possible prior distribution for β and α is given by

- β ∼ Uniform(0, 2)

- α ∼ Gamma(a, b)

We suppose α and β are independent.

By applying the Bayes theorem we obtain

π(β, α/I) ∝ L(β, α, t)π(β)π(α)

π(β, α/I) ∝ βnαn

n∏
i=1

tβ−1
i e−αyβ

αa−1e−bαI(0,2)(β)

π(β, α/I) ∝ βnαn+a−1e−α(yβ+b)e
β

n
Σ

i=1
logti

I(0,2)(β)

One can consider the following class

Γ : {β ∼ U(0, 2) ∼ G(a, a), a > 0}

Then

E(β/I) =

∫
βπ(β, α/I)dβ

E(β/I) =

∫
βL(β, α, I)π(β)π(α)dβ∫
L(β, α, I)π(β)π(α)dβ
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E(β/I) =

∫
βαn+a−1e−α(yβ+b)βne

β
n
Σ

i=1
logti

I(0,2)(β)dβ∫
αn+a−1e−α(yβ+b)βne

β
n
Σ

i=1
logti

I(0,2)(β)dβ

E(β/I) =

2∫
0

βαn+a−1e−α(yβ+b)βne
β

n
Σ

i=1
logti

dβ

2∫
0

αn+a−1e−α(yβ+b)βne
β

n
Σ

i=1
logti

dβ

Robustness measures are computed as the prior varies in this class. Computations are the

evaluation of suprema and infima of the quantity of interest (posterior mean).

Range = Sup
α∈Γ

E(β/I) − Inf
α∈Γ

E(β/I)

2.5.2 A class based on differential equations

Another class can be described by relation between intensity function λ(t) and mean value

function M(t) which is given by

λ(t) = λe−θM(t)

The relation can be expressed as the first order differential equation

[M(t)]′ = λe−θM(t); so

θ[M(t)]′eθM(t) = θλ,

[eθM(t)]′ = θλ,

eθM(t) = θλt + c,

M(t) =
log(θλt + c)

θ

When M(0) = 0, the solution is,

M(t) =
log(λθt + 1)

θ
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Similar relations can be found for other NHPP’s. The PLP has intensity function λ(t) =

αβtβ−1 and mean value function M(t) = αtβ, their relation is given by [M(t)]′ = βM(t)
t

[M(t)]′ = λ(t), so
βM(t)

t
= αβtβ−1

When M(0) = 0, the solution is,

M(t) = αtβ

Similarly, other relations were proposed, belong to the class of first order differential equa-

tions.
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Chapter 3

Robustness of classes of

homogeneous and non homogeneous

Poisson processes

The Poisson distribution is used to count the number of occurrences of rare events which

are occurring randomly through time (or space) at a constant rate. The events must

occur one at a time. In this Chapter, we study the robustness of the classes of priors

of the parameters of a given NHPP where the prior changes over a proposed class and

computation of some measures of robustness. Computations with NHPP are difficult. we

start with homogeneous poisson processes and then we will do it later with NHPP.

A detailed discussion on the results of Bayesian robustness analysis of the classes pro-

posed of homogeneous and nonhomogeneous poisson processes is provided.

3.1 Study of Robustness - class of prior for HPP

3.1.1 Class of Gamma(α, β)

Let π(λ) a Gamma prior corresponding ti the likelihood f(t1, t2, ..., tn), and define
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Γ = {π : Gamma(α, β) :
α

β
= k}.

Class of all Gamma priors with mean k, where k is fixed, which can be written also as

Γ = {π : Gamma(kβ, β) : , β > 0}

By this class Γ of prior, the posterior distribution is a Gamma(kβ + n, β + T )

The quantity of interest is the posterior mean;

E(λ/t) =
kβ + n

β + T

The uncertainty might be quantified by specifying the range spanned by the posterior

mean, as the prior varies over the class.

Let

h(β) =
kβ + n

β + T

Then

h′(β) =
k(β + T )− (kβ + n)

(β + T )2
=

kT − n

(β + T )2

We are

. h′(β) > 0 if kT − n > 0 ⇒ sup
β>0

E(λ/t) =
β→∞

k and inf
β>0

E(λ/t) =
β→0

n

T

. h′(β) < 0 if kT − n < 0 ⇒ sup
β>0

E(λ/t) =
β→0

n

T
and inf

β>0
E(λ/t) =

β→∞
k

. h′(β) = 0 if kT − n = 0 ⇒ E(λ/t) = k is a constant.

Then we use the global measures of sensitivity for determining the range of the posterior

mean as the prior varies over the class

range = sup
π∈Γ

E(λ/t) − inf
π∈Γ

E(λ/t) = |k − n

T
|
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If the measure of range is small then robustness is achieved and any prior in the class can

be chosen; and if the measure of range is large there is not robustness.

We consider a numerical example; data were generated by a Poisson Process assuming

λ = 2 . The obtained data are shown in Table.3.1.

n 1 2 3 4 5 6 7 8 9 10

ti 0.17540 0.7840 1.76613 2.46538 3.09604 4.3574 4.36602 5.16747 5.19417 5.6102

n 11 12 13 14 15 16 17 18 19 20

ti 6.57309 7.04254 7.23656 7.84013 8.58444 9.0439 9.21996 9.9472 10.2435 10.7079

Table.3.1. Data generated by a Poisson Process assuming λ = 2.

Resulting range for different values of K are presented in Table.3.2.

k max min range rangeabs k max min range rangeabs

0.10 1.8182 0.10 -1.7182 1.7182 1.81 1.8182 1.81 -0.0082 0.0082

0.15 1.8182 0.15 -1.6682 1.6682 1.82 1.82 1.8182 0.0018 0.0018

0.24 1.8182 0.24 -1.5782 1.5782 1.84 1.84 1.8182 0.0218 0.0218

0.35 1.8182 0.35 -1.4682 1.4682 1.88 1.88 1.8182 0.0618 0.0618

0.45 1.8182 0.45 -1.3682 .3682 1.90 1.90 1.8182 0.0818 0.0818

0.76 1.8182 0.76 -1.0582 1.0582 2.05 2.05 1.8182 0.2318 0.2318

0.85 1.8182 0.85 -0.9682 0.9682 2.36 2.36 1.8182 0.5418 0.5418

1.15 1.8182 1.15 -0.6682 0.6682 2.55 2.55 1.8182 0.7318 0.7318

1.43 1.8182 1.43 -0.3882 0.38382 2.85 2.85 1.8182 1.0318 1..318

1.70 1.8182 1.70 -0.1182 0.1182 3.20 3.20 1.8182 1.3818 1.3818

1.80 1.8182 1.80 -0.0182 1.0182 8.10 8.10 1.8182 6.2818 6.2818

Table.3.2. Range of posterior mean for Gamma prior.

For values of K inferior than 1.7 and superior than 1.9 the range is large and the
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robustness is not achieved. The robust situation is when k = 1.82. Then, any prior

G(α, β) in the classΓ can be chosen and there is robustness.

Theorem.3.1.(see[30])

Given h(θ) the posterior quantity of interest, L(θ) the model density and π(θ) the prior

distribution, its results

sup
π∈Γ

∫
Ω

h(θ)L(θ)π(θ)dθ∫
Ω

L(θ)π(θ)dθ
= sup

θi∈Ii,i=1,...,m

m∑
i=1

h(θi)L(θi)pi

m∑
i=1

L(θi)pi

3.1.2 Class based on median at λ = 1, 2 and 3

We observe N(t), a homogeneous Poisson process with parameter (λ) . Further, it is felt

a priori that λ has a distribution with median 1, i.e.P π(λ ≤ 1) = 0.5 = P π(λ ≥ 1), we

consider as well the prior with median 2. i.e.P π(λ ≤ 2) = 0.5 = P π(λ ≥ 2), and with

median 3 i.e.P π(λ ≤ 3) = 0.5 = P π(λ ≥ 3). The classes are defined as

Γ1 = {π : median = 1}

Γ2 = {π : median = 2}

Γ3 = {π : median = 3}

Then, under Γ1 the posterior mean is

E(λ/t) =

∞∫
0

λ.f(t, λ).π(λ)dλ

∞∫
0

f(t, λ).π(λ)dλ

=

∞∫
0

λn+1.e−λT .π(λ)dλ

∞∫
0

λn.e−λT .π(λ)dλ
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Then, range of posterior mean over this classes can be computed, we start with the class

Γ1

sup
π∈Γ1

E(λ/t) − inf
π∈Γ1

E(λ/t)

We have P π(λ ≤ 1) = 0.5 = P π(λ ≥ 1), then we consider a discrete distribution in two

points λ1 and λ2 ( a DIRAC distribution)as given by Theorem 3.1 , and we write

1

2
δλ1 +

1

2
δλ2

We obtain

sup
λ1∈[0,1],λ2∈[1,∞]

E(λ/t) = sup
λ1∈[0,1],λ2∈[1,∞]

∞∫
0

λn+1.e−λT .(1
2
δλ1 + 1

2
δλ2)dλ

∞∫
0

λn.e−λT .(1
2
δλ1 + 1

2
δλ2)dλ

= sup
λ1∈[0,1],λ2∈[1,∞]

1
2
λn+1

1 e−λ1T + 1
2
λn+1

2 e−λ2T

1
2
λn

1e
−λ1T + 1

2
λn

2e
−λ2T

= sup
λ1∈[0,1],λ2∈[1,∞]

λn+1
1 e−λ1T + λn+1

2 e−λ2T

λn
1e
−λ1T + λn

2e
−λ2T

By the same method of calculation we obtain :

inf
λ1∈[0,1],λ2∈[1,∞]

E(λ/t) = inf
λ1∈[0,1],λ2∈[1,∞]

∞∫
0

λn+1.e−λT .(1
2
δλ1 + 1

2
δλ2)dλ

∞∫
0

λn.e−λT .(1
2
δλ1 + 1

2
δλ2)dλ

= inf
λ1∈[0,1],λ2∈[1,∞]

λn+1
1 e−λ1T + λn+1

2 e−λ2T

λn
1e
−λ1T + λn

2e
−λ2T

Considering the class Γ2 = {π : median = 2}, we can obtain the range

sup
λ1∈[0,2],λ2∈[2,∞]

λn+1
1 e−λ1T + λn+1

2 e−λ2T

λn
1e
−λ1T + λn

2e
−λ2T

− inf
λ1∈[0,2],λ2∈[2,∞]

λn+1
1 e−λ1T + λn+1

2 e−λ2T

λn
1e
−λ1T + λn

2e
−λ2T

And considering the class Γ3 = {π : median = 3}, we can obtain the range over this class
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sup
λ1∈[0,3],λ2∈[3,∞]

λn+1
1 e−λ1T + λn+1

2 e−λ2T

λn
1e
−λ1T + λn

2e
−λ2T

− inf
λ1∈[0,3],λ2∈[3,∞]

λn+1
1 e−λ1T + λn+1

2 e−λ2T

λn
1e
−λ1T + λn

2e
−λ2T

We must have to find the max and the min of these quantities, that wants to say, we must

obtain λ1 and λ2 which maximize this ratio and λ1 and λ2 which minimize this same ratio

when the prior changes in each class Γ1, Γ2 and Γ3 .

Considering the same data generated by Poisson process, and the classes of priors, we get

the uppers and the lowers bounds of the posteriors means in each class. The results of the

optimizations are presented in Table.3.3 for the class Γ1, in Table.3.4 for the class Γ2 and

in the Table.3.5 for the class Γ3.

58



Chapter 3. Robustness of classes of homogeneous and non homogeneous poisson processes

λ1 λ2 max λ1 λ2 min rangeΓ1

1 67.7393 67.7393 0.1 2 2 65.7393

1 7.9999 1 0.000 36.7954 0.0000001 0.9999999

1 25 1 0.000 36.6665 0.0000004 0.9999996

1 12 1 0.000 34.9552 0.0000006 0.9999994

1 18 1 0.000 34.72 0.0000007 0.9999993

1 8 1 0.000 36.5742 0.00000033 0.9999997

1 25 1 0.0001 25 0.000062 0.999938

1 30 1 0.000 30.0001 0.0000054 0.9999946

1 12 1 0.000 34.7654 0.00000058 0.99999942

1 17 1 0.000 39.6114 0.00000005 0.99999995

1 13 1 0.000 35.8118 0.00000031 0.99999969

1 48 1 0.000 48 0.00000007 0.9999773

1 28 1 0.000 36.5447 0.000014 0.999986

1 36 1 0.000 36 0.0000014 0.9999986

1 26 1 0.000 26 0.000038 0.999962

0 67.7393 67.7393 0.000 35.6434 0.00000035 67.7393

1 90 1 0.000 90 0.00000047 0.99999953

1 122 1 0.000 122 0.0000014 0.9999986

1 6 1 0.000 35.1093 0.00000041 0.00009959

1 280 1 0.000 280 0.00000059 0.99999941

Table.3.3. Range of posterior mean for the class of priors Γ1 .
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λ1 λ2 max λ1 λ2 min rangeΓ2

0.000 67.7394 67.7394 0.000 3 64.7394

2 15 2 0.000 35.9166 0.00000031 1.99999969

2 30 2 0.000 30 0.0000055 1.9999945

2 25 2 0.0001 25 0.000062 1.999938

2 24 2 0.001 24.0002 0.00010 1.9999

0.000 67.7394 67.7394 1.4355 2 1.7766 65.3628

2 20 2 0.000 35.0305 0.00000046 1.99999954

2 26 2 0.000 26.0001 0.000038 1.999962

2 25 2 0.0001 25 0.000062 1.999938

2 30 2 0.000 30 0.0000054 1.9999946

2 35 2 0.000 28 0.0000018 1.9999982

2 22 2 0.000 37.1315 0.00000016 1.99999984

2 28 2 0.000 28 0.000014 1.999986

2 2.4741 2.1312 0.000 53.3245 0.00000041 2.131196

2 50 0 0.000 50 0.00000053 1.99999947

0 67.7393 67.7393 0.000 34.8509 0.00000056 67.7393994

2 250 2 0.000 250 0.0000012 1.9999988

2 20 2 0.000 40.8013 0.000000027 1.999999973

Table.3.4. Range of posterior mean for the class of priors Γ2 .
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λ1 λ2 max λ1 λ2 min rangeΓ3

0 67.7394 67.7394 0.1 5 5 62.7394

3 7 3 0.000 34.5216 0.00000082 2.99999918

3 9 3 0.000 35.1317 0.00000047 2.99999953

3 12 3 0.000 35.8712 0.00000031 2.99999969

2.9 13 3 0.000 35.2854 0.00000049 2.99999951

3 15 3 0.000 36.5721 0.00000022 2.99999978

3 16 3 0.000 36.7914 0.00000019 2.99999981

3 20 3 0.000 34.2235 0.00000074 2.99999926

3 22 3 0.000 35.1218 0.00000043 2.99999957

3 24 3 0.0001 24.0001 0.00010 2.9990

3 25 3 0.0001 25.0002 0.000062 2.999938

3 26 3 0.000 26 0.000038 2.999962

3 29 3 0.000 29 0.0000090 2.9999910

3 32 3 0.000 32 0.0000026 2.9999974

3 35 3 0.000 35 0.0000011 2.9999989

3 38 3 0.000 38 0.00000058 2.99999942

3 44 3 0.000 44 0.0000012 2.9999988

3 48 3 0.000 48 0.000000903 2.999999087

3 53 3 0.000 53 0.000001 2.999999

3 60 3 0.000 60 0.0000007 2.9999993

Table.3.5. Range of posterior mean for the class of priors Γ3 .

After a choice of several values initials of λ1 and λ2, posterior ranges have been computed

for the class of priors Γ1, Γ2 and Γ3 and we have some results in the Table.3.2, Table.3.

and Table 3.4.

A nice case in Table.3.3 (the best situation of robustness) is when the maximum value of

the posterior mean is obtained for λ1 = 1 and λ2 = 25, and the minimum value of the
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posterior mean is obtained for λ1 = 0.0001 and λ2 = 25. So that the optimal values are

ρ = 1, ρ = 0.000062

and the range is 0.999938.

A nice case in Table.3.4 (the best situation of robustness) is when the maximum value of

the posterior mean is obtained for λ1 = 2 and λ2 = 24, and the minimum value of the

posterior mean is obtained for λ1 = 0.001 and λ2 = 24.0002. So that the optimal values

are

ρ = 2, ρ = 0.0001

and the range is 1.9999.

A nice case in Table.3.5 (the best situation of robustness) is when the maximum value of

the posterior mean is obtained for λ1 = 3 and λ2 = 24, and the minimum value of the

posterior mean is obtained for λ1 = 0.001 and λ2 = 24.0001. So that the optimal values

are

ρ = 3, ρ = 0.0001

and the range is 2.9999.

3.1.3 Class based on median at λ = 2 and quartiles at 1 and 3

We observe change as before. Further, it is felt a priori that λ has a distribution with

median 2, upper quartile 3 and under quartiles 1.i.e.

P π(λ ≤ 1) = P π(1 ≤ λ ≤ 2) = P π(2 ≤ λ ≤ 3) = P π(λ ≥ 3) = 0.25

The class is defined as

ΓQ = {π : Quartiles at 1 and 3, median at 2 }
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The quantity of interest is always the posterior mean. Then, under ΓQ, the posterior mean

is defined

E(λ/t) =

∞∫
0

λ.f(t, λ).π(λ)dλ

∞∫
0

f(t, λ).π(λ)dλ

=

∞∫
0

λn+1.e−λT .π(λ)dλ

∞∫
0

λn.e−λT .π(λ)dλ

As it can be seen from the above class, a natural global measure of sensitivity of the

Bayesian quantity to the choice of prior is the range of this quantity of interest as the prior

varies in the class of priors.

sup
π∈Γ1

E(λ/t) − inf
π∈Γ1

E(λ/t)

we have P π(λ ≤ 1) = P π(1 ≤ λ ≤ 2) = P π(2 ≤ λ ≤ 3) = P π(λ ≥ 3) = 0.25, then we

consider a discrete distribution in four points λ1, λ2, λ3 and λ4 ( a DIRAC distribution)as

given by Theorem 3.1 , and we write

1

4
δλ1 +

1

4
δλ2 +

1

4
δλ3 +

1

4
δλ4

We obtain

sup
λ1∈[0,1],λ2∈[1,2],λ3∈[2,3],λ4∈[3,∞]

E(λ/t)

= sup
λ1∈[0,1],λ2∈[1,2],λ3∈[2,3],λ4∈[3,∞]

∞∫
0

λn+1.e−λT .(1
4
δλ1 + 1

4
δλ2 + 1

4
δλ3 + 1

4
δλ4)dλ

∞∫
0

λn.e−λT .(1
4
δλ1 + 1

4
δλ2 + 1

4
δλ3 + 1

4
δλ4)dλ

= sup
λ1∈[0,1],λ2∈[1,2],λ3∈[2,3],λ4∈[3,∞]

1
4
λn+1

1 e−λ1T + 1
4
λn+1

2 e−λ2T + 1
4
λn+1

3 e−λ3T + 1
4
λn+1

4 e−λ4T

1
4
λn

1e
−λ1T + 1

4
λn

2e
−λ2T + 1

4
λn

3e
−λ3T + 1

4
λn

4e
−λ4T

= sup
λ1∈[0,1],λ2∈[1,2],λ3∈[2,3],λ4∈[3,∞]

1
4

4∑
i=1

(λi)
n+1.e−λiT

1
4

4∑
i=1

(λi)n.e−λiT
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= sup
λ1∈[0,1],λ2∈[1,2],λ3∈[2,3],λ4∈[3,∞]

4∑
i=1

(λi)
n+1.e−λiT

4∑
i=1

(λi)n.e−λiT

Therefore, by the same way, we obtain

= inf
λ1∈[0,1],λ2∈[1,2],λ3∈[2,3],λ4∈[3,∞]

4∑
i=1

(λi)
n+1.e−λiT

4∑
i=1

(λi)n.e−λiT

We must find the values of λ1, λ2, λ3 and λ4 who minimize and maximize the quantity of

the posterior mean under this class.

Considering the same data generated by Poisson process, and the class of prior ΓQ. We

get the upper and the lower bounds of the posteriors means in this class, the results of the

optimizations are presented in Table.3.6.

λ1 λ2 λ3 λ4 max λ1 λ2 λ3 λ4 min range

0.2 1.4355 2 5.6364 38.2112 0.2 1.9743 3 5.4702 1.7766 36.4346

0.1999 1.9220 3 5.5759 39.5874 0.2 1.2866 3 6.4040 1.5066 38.0808

0.2517 1.9679 3 8 38.4052 1 1.4231 2 9.2154 1.7505 36.6540

0.2455 1.9163 3 28 39.7090 1 1.2454 3 29.3548 1.4431 38.2659

Table.3.6. Range of posterior mean for the class of priors ΓQ.

After a choice of several values initials of λ1, λ2, λ3 and λ4, the difference between upper

and lower bounds on the quantity of interest is too large. (Its value measures the variation

caused by the uncertainty in the prior)
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3.2 Study of Robustness - class of prior for NHPP

3.2.1 Class based on the Cox-Lewis process

The Cox-Lewis process is one of the general classes of a NHPP, this class is defined by the

intensity function λ(t, α, β) = αexp{βt}.

The class proposed the following

ΓC = {All NHPP with λ(t) = λe+θt, θ ∈ [−1, 1], λ ∼ G(α, β)}

Where λ(t) = λe+θt is the intensity function of the Cox-Lewis process .

Consider a NHPP with intensity function λ(t). Suppose we observe the system up to time

T and let n be the number of occurrences, occurred at times t1, t2, ..., tn; then the likelihood

function is given by

L(t1, t2, ..., tn) =
n∏

i=1

λ(ti)exp{−
T∫
0

λ(t)dt}

L(t1, t2, ..., tn) =
n∏

i=1

λe+θtiexp{−
T∫
0

λe+θtdt}

L(t1, t2, ..., tn) = λne
θ

n
Σ

i=1
ti
exp{−

T∫
0

λe+θtdt}

L(t1, t2, ..., tn) = λne
θ

n
Σ

i=1
ti
exp{−λ

θ
(eθT − 1)}

A conjugate prior distribution for λ is given by λ ∼ G(α, β), then

π(λ) =
βα

Γ(α)
λα−1e−λβ

By applying the Bayes theorem we obtain

π(λ/t1, t2, ..., tn) =
λne

θ
n
Σ

i=1
ti
exp{−λ

θ
(eθT − 1)}. βα

Γ(α)
λα−1e−λβ

T∫
0

λne
θ

n
Σ

i=1
ti
exp{−λ

θ
(eθT − 1)}. βα

Γ(α)
λα−1e−λβdλ
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π(λ/t) ∝ λα+n−1.e−λ(β+ eθT−1
θ

λ/t ∼ G(α + n, β +
eθT − 1

θ1
)

The posterior mean is

E(λ/t) =
α + n

β + eθT−1
θ

The global robustness is based on the calculation of the range of the quantity of interest

(posterior mean) when the prior change over this class

sup
π∈Γ

E(λ/t)− inf
π∈Γ

E(λ/t)

We start by the computation of sup
π∈Γ

E(λ/t)

sup
π∈Γ

E(λ/t) = sup
θ∈[−1,1]

E(λ/t) = sup
θ∈[−1,1]

α + n

β + eθT−1
θ

=
α + n

β + inf
θ∈[−1,1]

eθT−1
θ

We put h1(θ) = eθT−1
θ

then

h′1(θ) =
T.eθT .θ − eθT + 1

θ2

We must find θ̂ which minimize h1(θ) and maximize E(λ/t) .

After the computation of sup
π∈Γ

E(λ/t), we can do the same to the inf
π∈Γ

E(λ/t)

inf
π∈Γ

E(λ/t) = inf
θ∈[−1,1]

E(λ/t) = inf
θ∈[−1,1]

α + n

β + eθT−1
θ

=
α + n

β + sup
θ∈[−1,1]

eθT−1
θ

We put h2(θ) = eθT−1
θ

then

h′2(θ) =
T.eθT .θ − eθT + 1

θ2

66



Chapter 3. Robustness of classes of homogeneous and non homogeneous poisson processes

We must find θ̂ which maximize h2(θ) and minimize E(λ/t).

Considering the same data generated by Poisson process, we get the upper and the lower

bounds of the posteriors means in this class, the results of the optimizations for different

values of α and β are presented in Table.3.7.

θmax supE(λ/t) θmin infE(λ/t) range

-0.9999 11.2219 1 0.000337 11.2216

-0.9999 10.0998 1 0.000337 10.0994

-0.9999 6.7332 1 0.000337 6.7329

-0.9999 6.6699 1 0.000334 6.6696

-0.9999 4.0002 1 0.000334 3.9908

-0.9999 2.8571 1 0.000334 2.8568

-0.9999 1.8182 1 0.000334 1.8178

-0.9999 0.9524 1 0.000334 0.9520

-0.9999 0.3922 1 0.000334 0.3918

-0.9999 0.3279 1 0.000334 0.3275

Table.3.7. Range of posterior mean for the class of priors ΓC .

For small values of α and a large values of β of Gamma distribution , the range of posterior

mean is reasonably small. The conclusion of this analysis would be that robustness likely

obtains for smaller values of α and larger values of β.
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Conclusion

In this work, we first explore how robust or sensitive is Bayesian analysis to the choice

of prior, utility, and model. In the process, we introduce and examine various quantitative

evaluations of robustness.

In most cases in practice, quantification of subjective belief or judgment is not easily

available. It is then common to choose from among conventional priors on the basis of some

relatively simple subjective judgments about the problem and the conventional probability

model for the data. Such priors have been criticized for various reasons.

Than, we proposed a Poisson process model and studied the global robustness of some

class of priors proposed for the parameters of NHPP and HPP , In perspective, it will be

interest to study the local sensitivity of some classes of priors for the parameters of a given

NHPP.
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