RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEURE ET DE LA RECHERCHE SCIENTIFIQUE

### UNIVERSITÉ MOULOUD MAMMERI DE TIZI-OUZOU FACULTÉ DU GÉNIE DE LA CONSTRUCTION

### DÉPARTEMENT DE GÉNIE CIVIL

LABORATOIRE DE RECHERCHE EN GÉOMATÉRIAUX, ENVIRONNEMENT ET AMÉNAGEMENT

(LGEA)



## MÉMOIRE DE FIN D'ÉTUDES

SPÉCIALITÉ : GÉNIE CIVIL OPTION : GÉOTECHNIQUE ET ENVIRONNEMENT

THÈME

## ÉVALUATION DE LA DÉGRADATION CHIMIQUE DES GRANULATS SCHISTEUX À L'ESSAI OEDOMETRQUE ET À LA BOITE DE CISAILLEMENT

### PRÉSENTÉ PAR

### Mr AIT TALEB Abdelkader

Devant le jury d'examen suivant :

Mr DJEMAI .M

Professeur à l'UMMTO

Mme BOUBRIT .H

Mr MELBOUCI Bachir

Maitre de conférences B à l'UMMTO

Professeur à l'UMMTO

Président.

Examinatrice.

Rapporteur.

Promotion : 2016/2017.

Soutenu le : 30/ 09 /17.

### Remerciement

En premier lieu je remercie mes parent, frères et sœurs de leur soutient morale et physique.

J'adresse mes sincères remerciements et ma profondes gratitude à **Mr. MELBOUCI B** professeur à l'université de mouloud Mammeri de Tizi Ouzou qui a encadré ce travail de master et qui m'a fait bénéficier de ces immenses compétences scientifiques et de sa disponibilité et qui je considère le guide et l'exemple du sérieux dans le travail.

Je remercie aussi Mm BOUBRIT H et Mr DJEMAI M d'avoir accepté de jugé ce travail.

Je remercie Mr. BOUDELLAL O pour ces conseils judicieux, pour ces qualités scientifiques et humaines et pour sa disponibilité.

Je tiens aussi à remercie mes amis qui ont participé à la réalisation de la partie expérimentale, AIT MALEK Abderrahim, DJEFFAL Dihia et bien sûr OUALI Leticia.

Je remercie aussi Mm MOUBAREK H et Mr BOUKHEROUB M.

Un grand remerciement pour Mr KHELIFA Sid Ali responsable du laboratoire MDS de l'université de mouloud Mammeri Tizi Ouzou pour sa disponibilité et surtout sa confiance.

Je tiens également à remercie Mr OUTALEB A gérant du laboratoire LEGEO pour ces conseils et orientations.

En fin je remercie toute personne ayant participé de près ou de loin dans ma formation.

## DÉDICACE

JE DÉDIE CE TRAVAIL POUR MES CHERS PARENTS, FRÈRES ET SŒURS. A TOUTE LA FAMILLE AIT TALEB ET CES PROCHES. A TOUS MES AMIS SANS EXCEPTION. A TOUTE LA PROMOTION DE GÉOTECHNIQUE ET ENVIRONNEMENT.

## Liste des figures

| Figure 1: structure interne de la terre.                                                          | 15 |
|---------------------------------------------------------------------------------------------------|----|
| Figure 2: structures et les symétries cristallines                                                | 15 |
| Figure 3: échelle de dureté de MOHS.                                                              | 16 |
| Figure 4: quelques éléments natifs.                                                               | 16 |
| Figure 5: quelques oxydes                                                                         | 16 |
| Figure 6: quelques sulfures                                                                       | 17 |
| Figure 7: quelques sulfates.                                                                      | 17 |
| Figure 8: quelques carbonates.                                                                    | 17 |
| Figure 9: quelques silicates.                                                                     | 17 |
| Figure 10: quelques halogénures.                                                                  | 18 |
| Figure 11: quelques hydroxydes                                                                    | 18 |
| Figure 12: quelques phosphates                                                                    | 18 |
| Figure 13: cycles de formation des roches.                                                        | 19 |
| Figure 14: le cvcle de sédimentation                                                              | 20 |
| Figure 15: principaux milieux de sédimentation                                                    | 21 |
| Figure 16: différents types de roches sédimentaires                                               | 21 |
| Figure 17: les séries sédimentaires détritiques.                                                  | 22 |
| Figure 18: auelaues roches détritiques.                                                           |    |
| Figure 19: quelques roches salines (gypse, anhydrite, halite, sylvite).                           |    |
| Figure 20: quelques roches carbonées (tourbes, anthracite, charbon).                              |    |
| Figure 21: quelques roches siliceuses (diatomite, rognons de silex)                               | 23 |
| Figure 22: quelques roches carbonatées (calcite, calcaire, dolomite)                              | 23 |
| Figure 23: principales roches plutonique (granit diorite gabbro)                                  | 23 |
| Figure 24: principales roches volcaniques (rhvolite, andésite, basalte)                           | 24 |
| Figure 25: différents types du métamorphisme                                                      | 21 |
| Figure 26: principales roches métamorphiques                                                      | 25 |
| Figure 27: degré croissant de métamorphiques.                                                     | 25 |
| Figure 28: situation de la daïra de Ain el hammam dans la wilava de Tizi Ouzou                    | 23 |
| Figure 29: vue aérienne (Google earth) de Ain el hammam                                           | 20 |
| Figure 30: délimitation et hydrographie de Ain el hammam                                          | 20 |
| Figure 31: carte des caractéristiques générales de Ain el hammam                                  | 29 |
| Figure 32: carte des pentes de Ain el hammam                                                      | 2) |
| Figure 33: carte des altitudes de Ain el hammam                                                   | 30 |
| Figure 34: carte géologique et lithologique de Ain el hammam                                      |    |
| Figure 35: carte des aléas naturels et technologique de Ain el hammam                             |    |
| Figure 36: diagramme de Goldschmidt (rapport de charge 7 sur le rayon jonique r)                  |    |
| Figure 37: site d'extraction du schiste (route vers AIT YAHIA AIN FL HAMMAM)                      | +0 |
| Figure 38: blocs de schiste extrait à Ain el hammam                                               |    |
| Figure 30: le schiste anrès concassage                                                            | ++ |
| Figure 40: la série de tamis et la tamiseuse                                                      | +5 |
| Figure 41: une balance                                                                            | +0 |
| Figure 41: une balance                                                                            | 40 |
| Figure 42: course granuloineurque initiale.                                                       | 40 |
| Figure 43. nexametaphosphate de sodium et obgi du schiste passant obum                            | 40 |
| Figure 44. preparation de la solution à l'alde d'un agitaleur electrique                          | 49 |
| Figure 45. equipements de l'essai de sedimentometre                                               | 49 |
| Figure 40. course granutometrique par sedimentation fraction de $\phi < 0.08$ mm                  | 50 |
| Figure 47: preparation de quaire echantilions de soniste dans le panier de la pesee hydrostatique | 31 |
| Figure 40. pese du pychometre a vide N11.                                                         | 52 |
| Figure 49: pese de 50g du soniste passant le tamis 2mm.                                           | 33 |
| Figure 50: pese de la masse NI3.                                                                  | 53 |

| Figure 51: élimination des bulles d'air par ébullition à la plaque chauffante.                   | 53 |
|--------------------------------------------------------------------------------------------------|----|
| Figure 52: préparation de l'échantillon pour réaliser les limites d'Atterberg                    | 54 |
| Figure 53: dispositif de dosage du bleu de méthylène                                             | 55 |
| Figure 54: l'agitateur mécanique, le récipient et la bouteille du bleu de méthylène              | 55 |
| Figure 55: gestion du dosage du bleu de méthylène                                                | 55 |
| Figure 56: essai du bleu de méthylène sur le papier filtre                                       | 55 |
| Figure 57: échelle de VBS donnée par ARVOR géotechnique                                          | 56 |
| Figure 58:diffractogramme du schiste de Ain el hammam à étudier.                                 | 57 |
| Figure 59: la machine et la boite de cisaillement.                                               | 59 |
| .Figure 60: préparation de la première série.                                                    | 60 |
| Figure 61: détergents, phosphates et sulfates.                                                   | 60 |
| Figure 62: courbe granulométrique initiale avant cisaillement de l'échantillon.                  | 60 |
| Figure 63: courbe $\tau = f(\Delta L)$ de l'essai de cisaillement avant traitement de 1 à 4 bars | 61 |
| Figure 64: courbe $\Delta H = f(\Delta L)$ de l'essai de cisaillement avant traitement           | 61 |
| Figure 65: droite intrinsèque $\tau = f(\sigma)$                                                 | 62 |
| Figure 66: courbe granulométrique après cisaillement                                             | 62 |
| Figure 67: courbe de $\tau = f(\Delta L)$ sériel après traitement (eau)                          | 63 |
| Figure 68: courbe de V = f (( $\Delta L$ ), série 1 après traitement (eau).                      | 64 |
| Figure 69: droite intrinsèque $\tau = f(\sigma)$ série 1 (eau).                                  | 64 |
| Figure 70: courbes granulométriques après cisaillement (eau).                                    | 65 |
| Figure 71: courbe $\tau = f(\Delta L)$ série 1 après traitement (phosphates).                    | 65 |
| Figure 72:courbe de V = $f((\Delta L)$ , série 1 après traitement (phosphates)                   | 66 |
| Figure 73: droite intrinsèque série 1 après traitement (phosphates).                             | 66 |
| Figure 74: courbes granulométriques après cisaillement (phosphates).                             | 66 |
| Figure 75:courbe $\tau = f(\Delta L)$ série 1 après traitement (détergents)                      | 67 |
| Figure 76: courbe de V = $f((\Delta L)$ , série 1 après traitement (détergents).                 | 67 |
| Figure 77: droite intrinsèque série 1 après traitement (détergent)                               | 68 |
| Figure 78: courbes granulométriques après cisaillement (détergents).                             | 68 |
| Figure 79:courbe $\tau = f(\Delta L)$ série 1 après traitement (sulfates)                        | 69 |
| Figure 80:courbe de V = $f((\Delta L)$ , série 1 après traitement (sulfates)                     | 69 |
| Figure 81: droite intrinsèque série 1 après traitement (sulfates).                               | 69 |
| Figure 82: courbes granulométriques après cisaillement (sulfates)                                | 70 |
| Figure 83: assemblage des courbes de 1bar pour les 4 polluants.                                  | 71 |
| Figure 84: assemblage des courbes de 2 bars pour les 4 polluants                                 | 71 |
| Figure 85: assemblage des courbes de 3bars pour les 4 polluants                                  | 71 |
| Figure 86: assemblage des courbes de 4 bars pour les 4 polluants                                 | 72 |
| Figure 87: courbe $\tau = f(\Delta L)$ série 2 après traitement (eau)                            | 72 |
| Figure 88: courbe de V = $f((\Delta L)$ , série 2 après traitement (eau).                        | 73 |
| Figure 89: droite intrinsèque série 2 après traitement (eau).                                    | 73 |
| Figure 90: courbes granulométriques après cisaillement (Eau)                                     | 73 |
| Figure 91 : courbe $\tau = f(\Delta L)$ série 2 après traitement (phosphates).                   | 74 |
| Figure 92: courbe de V = $f((\Delta L)$ , série 2 après traitement (phosphates)                  | 74 |
| Figure 93: droite intrinsèque série 2 après traitement (phosphates).                             | 74 |
| Figure 94: courbes granulométriques après cisaillement (phosphates).                             | 75 |
| Figure 95: courbe $\tau = f(\Delta L)$ série 2 après traitement (détergents)                     | 75 |
| Figure 96: courbe de V = f (( $\Delta$ L), série 2 après traitement (détergents).                | 75 |
| Figure 97: droite intrinsèque série 2 après traitement (détergents).                             | 76 |
| Figure 98: courbes granulométriques après traitement (détergents)                                | 76 |
| Figure 99: courbe $\tau = f(\Delta L)$ série 2 après traitement (sulfates)                       | 76 |
| Figure 100: courbe de V = f (( $\Delta$ L), série 2 après traitement (sulfates)                  | 77 |
| Figure 101: droite intrinsèque série 2 après traitement (sulfates).                              | 77 |
|                                                                                                  |    |

| Figure 102: courbes granulométriques après traitement (sulfates)                        | . 77         |
|-----------------------------------------------------------------------------------------|--------------|
| Figure 103: assemblage des courbes de 1bar pour les 4polluants.                         | . 78         |
| Figure 104: assemblage des courbes de 2bars pour les 4 polluants                        | . 78         |
| Figure 105: assemblage des courbes de 3bars pour les 4polluants                         | . 79         |
| Figure 106: assemblage des courbes de 4bars pour les 4 polluants                        | . 79         |
| Figure 107: courbe $\tau = f(\Delta L)$ série 3 après traitement (eau)                  | . 80         |
| Figure 108: courbe de V = f (( $\Delta L$ ), série 3 après traitement (eau).            | . 80         |
| Figure 109:droite intrinsèque série 3 après traitement (eau).                           | . 80         |
| Figure 110: courbes granulométriques après cisaillement (eau).                          | . 81         |
| Figure 111: courbe $\tau = f(\Delta L)$ série 3 après traitement phosphates.            | . 81         |
| Figure 112: courbe de V = f (( $\Delta L$ ), série 3 après traitement phosphates        | . 81         |
| Figure 113: droite intrinsèque série 3 après traitement phosphates                      | . 82         |
| Figure 114: courbes granulométriques après cisaillement (phosphates).                   | . 82         |
| Figure 115: courbe $\tau = f(\Delta L)$ série 3 après traitement détergents.            | . 82         |
| Figure 116: courbe de V = f (( $\Delta L$ ), série 3 après traitement détergents        | . 83         |
| Figure 117: droite intrinsèque série 3 après traitement détergents.                     | . 83         |
| Figure 118: courbes granulométriques après cisaillement (détergents).                   | . 83         |
| Figure 119: courbe $\tau = f(\Lambda L)$ série 3 après traitement sulfates              | . 84         |
| Figure 120: courbe de V = $f((\Lambda L))$ série 3 après traitement sulfates            | 84           |
| Figure 121: droite intrinsèque série 3 après traitement sulfates                        | 84           |
| Figure 122: courbes granulométriques après cisaillement (sulfates)                      | 85           |
| Figure 122: establistic function et region de la pour les 4 polluants                   | 85           |
| Figure 124: assemblage des courbes de 2bars pour les 4 polluants                        | 86           |
| Figure 125: assemblage des courbes de 3bars pour les 4 polluants                        | 86           |
| Figure 126: assemblage des courbes de 4bars pour les 4 polluants                        | 86           |
| Figure 127: courbe $\tau = f(\Lambda I)$ série 4 anrès traitement eau                   | 87           |
| Figure 128: courbe de V = $f((\Lambda L))$ série 4 après traitement eau                 | 87           |
| Figure 120: droite intrinsèque série 4 après traitement eau                             | 88           |
| Figure 130: courbes granulométriques après cisaillement (eau)                           | 88           |
| Figure 131: courbe $\tau = f(\Lambda I)$ série 4 anrès traitement (phosphates)          | 88           |
| Figure 132: courbe de V = $f(AI)$ serie 4 après traitement (phosphates).                | . 00<br>. 80 |
| Figure 132: droite intrinsèque série 4 après traitement phosphates.                     | . 07<br>. 80 |
| Figure 134: courbos granulomátriques après cisaillement (phosphates.)                   | . 09<br>. 09 |
| Figure 134. courbes granulonicitiques après cisamement (phosphales)                     | 00           |
| Figure 135: courbe $t = I(\Delta L)$ serie 4 après traitement détergents.               | . 90         |
| Figure 150. coulde de $\sqrt{-1}$ (( $\Delta L$ ), serie 4 après traitement détergents. | . 90         |
| Figure 137. droite intrinseque serie 4 après traitement detergents                      | . 90         |
| Figure 138 : courbes granulometriques après cisamement (detergents)                     | . 91         |
| Figure 139. courbe $t = I(\Delta L)$ serie 4 après traitement suffates.                 | . 91         |
| Figure 140. courbe de $\sqrt{-1}$ (( $\Delta L$ ), serie 4 après traitement suffates.   | . 91         |
| Figure 141. droite intrinseque serie 4 après discillement sulfates.                     | . 92         |
| Figure 142: courbes granulometriques après cisamement surfates.                         | . 92         |
| Figure 144:assemblage des courbes de l'bars pour les 4 polluents                        | . 93         |
| Figure 144:assemblage des courbes de 2bars pour les 4 polluants                         | . 93         |
| Figure 145: assemblage des courbes de 3bars pour les 4 polluants                        | . 93         |
| Figure 146: assemblage des courbes de 4bars pour les 4 polluants                        | . 94         |
| Figure 14/: courbe $\tau = t$ ( $\Delta L$ ) serie 5 apres traitement eau.              | . 94         |
| Figure 148: courbe de V =f (( $\Delta L$ ), serie 5 après traitement eau.               | . 95         |
| Figure 149: droite intrinseque serie 5 apres traitement eau                             | . 95         |
| Figure 150: courbes granulométriques après cisaillement eau                             | . 95         |
| Figure 151: courbe $\tau = t (\Delta L)$ serie 5 apres traitement phosphates            | . 96         |
| Figure 152: courbe de V =t (( $\Delta L$ ), série 5 après traitement phosphates         | . 96         |

| Figure 153: droite intrinsèque série 5 après traitement phosphates                   | 96    |
|--------------------------------------------------------------------------------------|-------|
| Figure 154: courbes granulométriques après cisaillement phosphates                   | 97    |
| Figure 155: courbe $\tau = f(\Delta L)$ série 5après traitement détergent            | 97    |
| Figure 156: courbe de V = f (( $\Delta$ L), série 5 après traitement détergents      | 97    |
| Figure 157: droite intrinsèque série 4 après traitement détergents                   | 98    |
| Figure 158: courbes granulométriques après cisaillement détergents                   | 98    |
| Figure 159: courbe $\tau = f(\Delta L)$ série 5après traitement sulfates             | 98    |
| Figure 160: courbe de V = f (( $\Delta L$ ), série 5 après traitement sulfates       | 99    |
| Figure 161: droite intrinsèque série 4 après traitement sulfates.                    | 99    |
| Figure 162: courbes granulométriques après cisaillement sulfates.                    | 99    |
| Figure 163: assemblage des courbes de 1bar pour les 4 polluants.                     | . 100 |
| Figure 164: assemblage des courbes de 2bars pour les 4 polluants                     | . 100 |
| Figure 165: assemblage des courbes de 3bars pour les 4 polluants                     | . 101 |
| Figure 166: assemblage des courbes de 4bars pour les 4 polluants                     | . 101 |
| Figure 167: comparaison des courbes de 1 bar avant et après traitement.              | . 102 |
| Figure 168: comparaison des courbes de 2 bars avant et après traitement              | . 102 |
| Figure 169: comparaison des courbes de 3 bars avant et après traitement              | . 102 |
| Figure 170: comparaison des résultats 4 bars avant et après traitement               | . 103 |
| Figure 171: comparaison des courbes de 1 bar avant et après traitement.              | . 103 |
| Figure 172: comparaison des courbes de 2 bars avant et après traitement              | . 103 |
| Figure 173: comparaison des courbes de 3 bars avant et après traitement              | . 104 |
| Figure 174: comparaison des courbes de 4 bars avant et après traitement              | . 104 |
| Figure 175: comparaison des courbes de 1 bar avant et après traitement.              | . 104 |
| Figure 176: comparaison des courbes de 2 bars avant et après traitement              | . 105 |
| Figure 177: comparaison des courbes de 3bars avant et après traitement               | . 105 |
| Figure 178: comparaison des courbes de 4 bars avant et après traitement              | . 105 |
| Figure 179: comparaison des courbes de 1 bar avant et après traitement.              | . 106 |
| Figure 180: comparaison des courbes de 2 bars avant et après traitement              | . 106 |
| Figure 181: comparaison des courbes de 3bars avant et après traitement               | . 107 |
| Figure 182: comparaison des courbes de 4 bars avant et après traitement              | . 107 |
| Figure 183: assemblage des paramètres avant et après traitement pour la 1ière série. | . 108 |
| Figure 184: assemblage des paramètres avant et après traitement pour la 2ième série  | . 108 |
| Figure 185:assemblages des paramètres avant et après traitement pour la 3ième série  | . 108 |
| Figure 186: assemblages des paramètres avant et après traitement pour la 4ième série | . 109 |
| Figure 187: assemblages des paramètres avant et après traitement pour la 5ième série | . 109 |
| Figure 188: assemblage des paramètres avant et après traitement (eau).               | . 109 |
| Figure 189: assemblage des paramètres avant et après traitement (phosphates)         | . 110 |
| Figure 190: assemblage des paramètres avant et après traitement (détergents).        | . 110 |
| Figure 191: assemblage des paramètres avant et après traitement (sulfates).          | . 110 |
| Figure 192: la machine œdométrique.                                                  | . 113 |
| Figure 193: préparation de l'échantillon pour l'essai avant traitement.              | . 114 |
| Figure 194: préparation des échantillons pour réaliser quatre essais œdométriques    | . 114 |
| Figure 195: courbe granulométrique avant traitement.                                 | . 115 |
| Figure 196: courbe œdométrique avant traitement                                      | . 115 |
| Figure 197: courbe œdométrique après traitement (schiste +eau)                       | . 116 |
| Figure 198: courbe œdométrique après traitement (schiste + détergents)               | . 117 |
| Figure 199: courbe œdométrique après traitement (schiste + sulfates)                 | . 117 |
| Figure 200: courbe œdométrique après traitement (phosphates)                         | . 118 |
| Figure 201: assemblage des courbes œdométriques avant et après traitement            | . 119 |

### **SOMMAIRE**

| Remerciements                                                     |       |
|-------------------------------------------------------------------|-------|
| Dédicace                                                          |       |
| Liste des tableaux                                                |       |
| Liste des figures                                                 |       |
| INTRODUCTION GENERALE                                             | 11    |
| PREMIERE PARTIE                                                   |       |
| SYNTHESE BIBLIOGRAPHIQUE ET IDENTIFICATION DES MATERIA<br>L'ETUDE | UX DE |
| CHAPITRE I: GENERALITES SUR LES ROCHES                            | 14    |
| 1. Introduction                                                   | 15    |
| 2. Les minéraux                                                   | 15    |
| 2.1. Définition                                                   | 15    |
| 2.2. Les espèces minérales                                        | 15    |
| 2.3. Classification des minéraux                                  | 15    |
| 3. Les roches                                                     | 19    |
| 3.1. Définition                                                   |       |
| 3.2. Classification des roches                                    | 19    |
| 3.4. Les roches sédimentaires                                     | 20    |
| 3.5. Les roches magmatiques                                       | 23    |
| 3.6. les roches métamorphiques                                    | 24    |
| Conclusion                                                        |       |
| CHAPITRE II: ETUDE GENERALE DE LA REGION DE AIN EL HAMMAM         | 127   |
| 1. Situation géographique                                         |       |
| 2. Délimitation et hydrographie                                   |       |
| 3. Caractéristiques générales                                     |       |
| 4. La topographie de la région d'AEH                              |       |
| 5. Le relief                                                      |       |
| 6. Géologie et lithologie de la région de Ain el hammam           |       |
| 7. Aléas naturelles et technologiques                             |       |
| 8. Le climat                                                      |       |
| 9. La Végétation                                                  |       |
| Conclusion                                                        |       |

CHAPITRE III: LES SCHISTES ET LES DIFFERENTES DEGRADATIONS DES ROCHES

| OCHES                                                   | <b>3</b> 4 |
|---------------------------------------------------------|------------|
| 1. Les schistes                                         |            |
| 1.1. Définition                                         | 35         |
| 1.2. Les différents types de schistes                   |            |
| 1.3. Les principaux minéraux constituant les schistes   | 36         |
| 2. Dégradation des roches                               |            |
| 2.1. Introduction                                       |            |
| 2.2. L'altération à l'échelle du minéral et de la roche | 36         |
| 2.3. Les phénomènes de dégradation des roches           |            |
| Conclusion                                              | 41         |
|                                                         |            |

### **DEUXIEME PARTIE**

### ETUDE EXPERIMENTALE

| CHAPITRE IV: ESSAIS D'IDENTIFICATION                                       | 43        |
|----------------------------------------------------------------------------|-----------|
| 1. Introduction                                                            | 44        |
| 2. Le matériau schiste                                                     | 44        |
| 3. Analyse granulométrique à sec après lavage [NF P94- 056]                | 45        |
| 4. L'analyse granulométrique par sédimentation [NF P94- 057].              |           |
| 5. Caractéristiques physiques                                              | 50        |
| 5.1. Teneur en eau W % [NF P94- 050]                                       | 50        |
| 5.2. Masse volumique sèche pd par pesée hydrostatique [NF P94- 064]        | 51        |
| 5.3. Densité volumique des grains solides ps méthode du pycnomètre [NF P94 | 4- 054]52 |
| 5.4. Limites d'Atterberg [NF P94- 051]                                     | 54        |
| 5.5. L'indice des vides e                                                  | 54        |
| 5.6. La porosité n                                                         | 54        |
| 6. Essai au bleu de méthylène [NF 94-068]                                  | 54        |
| 7. Analyse minéralogique par diffraction des rayons X                      | 56        |
| Conclusion                                                                 | 57        |

| CHAPITRE V: ESSAI DE CISAILLEMENT DIRECTE A LA BOITE                                                | 58         |
|-----------------------------------------------------------------------------------------------------|------------|
| 1. Introduction                                                                                     | . 59       |
| 2. Appareillage                                                                                     | . 59       |
| 3. Exécution de l'essai                                                                             | 59         |
| 4. Essai de cisaillement sur le materiau à l'état initial                                           | 60         |
| 5. Essai de cisaillement sur le matériau après traitement                                           | <b>6</b> 3 |
| 6. Assemblage des cohésions et angles de frottement interne pour les différentes séries             | 108        |
| 7. Assemblage des cohésions et angles de frottements interne après traitement pour chaq<br>polluant | jue<br>109 |
| 8. Comparaison entre les paramètres mécaniques1                                                     | 11         |
| Conclusion1                                                                                         | 111        |
| CHAPITRE VI: ESSAI OEDOMETRIQUE1                                                                    | 112        |
| 1. Introduction1                                                                                    | 13         |
| 2. Objectif du travail1                                                                             | 13         |
| 3. Pression de consolidation $\sigma'_{p}$ 1                                                        | 13         |
| 4. Appareillage1                                                                                    | 13         |
| 5. Exécution de l'essai1                                                                            | 14         |
| 6. Essai œdométrique sur le matériau à l'état naturel1                                              | 15         |
| 7. Essai œdométrique sur le matériau schiste après traitement1                                      | 16         |
| 8. Récapitulatif des résultats obtenus1                                                             | 18         |
| 9. Assemblage des courbes œdométrique avant et après traitement1                                    | 19         |
| Conclusion1                                                                                         | 120        |
| CONCLUSION GENERALE 1                                                                               | 121        |
| REFERENCES BIBLIOGRAPHIQUES1                                                                        | 123        |
| ANNEXES1                                                                                            | 125        |

## LISTE DES TABLEAUX

| Tableau 1: les principaux minéraux et leurs usages.                                          |     |
|----------------------------------------------------------------------------------------------|-----|
| Tableau 2: les principales familles des roches et leurs caractéristiques.                    | 19  |
| Tableau 3: variation du degré du métamorphisme.                                              |     |
| Tableau 4: classe granulométrique en fonction de Cu                                          | 44  |
| Tableau 5: Désignation des sols en fonction de Cu et Cc.                                     | 44  |
| Tableau 6: résultats de l'analyse granulométrique à sec.                                     |     |
| Tableau 7: résultats de l'analyse granulométrique par sédimentation (logiciel sol test 2014) |     |
| Tableau 8: détermination de la teneur en eau                                                 |     |
| Tableau 9: détermination de la masse volumique sèche                                         | 49  |
| Tableau 10: récapitulatif des données de l'essai au pycnomètre                               | 50  |
| Tableau 11: classes des sols en fonction du VBS                                              | 53  |
| Tableau 12: récapitulatif des paramètres mécanique avant et après traitement                 | 111 |
| Tableau 13 : récapitulatif des résultats de l'essai œdométrique avant et après traitement    | 119 |

### **LISTE DES FIGURES**

| Figure 1: structure interne de la terre.                                                          | 18 |
|---------------------------------------------------------------------------------------------------|----|
| Figure 2: structures et les symétries cristallines                                                | 18 |
| Figure 3: échelle de dureté de MOHS                                                               | 19 |
| Figure 4: quelques éléments natifs                                                                | 19 |
| Figure 5: quelques oxydes                                                                         | 19 |
| Figure 6: quelques sulfures                                                                       | 20 |
| Figure 7: quelques sulfates                                                                       | 20 |
| Figure 8: quelques carbonates.                                                                    | 20 |
| Figure 9: quelques silicates.                                                                     | 20 |
| Figure 10: quelques halogénures                                                                   | 21 |
| Figure 11: quelques hydroxydes                                                                    | 21 |
| Figure 12: quelques phosphates                                                                    | 21 |
| Figure 13: cycles de formation des roches.                                                        | 22 |
| Figure 14: le cycle de sédimentation                                                              | 23 |
| Figure 15: principaux milieux de sédimentation                                                    | 24 |
| Figure 16: différents types de roches sédimentaires                                               | 24 |
| Figure 17: les séries sédimentaires détritiques.                                                  | 24 |
| Figure 18: quelques roches détritiques                                                            | 25 |
| Figure 19: quelques roches salines (gypse, anhydrite, halite, sylvite).                           | 25 |
| Figure 20: quelques roches carbonées (tourbes, anthracite, charbon).                              | 25 |
| Figure 21: quelques roches siliceuses (diatomite, rognons de silex)                               | 25 |
| Figure 22: quelques roches carbonatées (calcite, calcaire, dolomite).                             | 26 |
| Figure 23: principales roches plutonique (granit, diorite, gabbro).                               | 26 |
| Figure 24: principales roches volcaniques (rhyolite, andésite, basalte).                          | 26 |
| Figure 25: différents types du métamorphisme                                                      | 27 |
| Figure 26: principales roches métamorphiques                                                      | 27 |
| Figure 27: degré croissant de métamorphisme                                                       | 28 |
| Figure 28: situation de la daïra de Ain el hammam dans la wilaya de Tizi Ouzou                    | 30 |
| Figure 29: vue aérienne (Google earth) de Ain el hammam.                                          | 30 |
| Figure 30: délimitation et hydrographie de Ain el hammam                                          | 31 |
| Figure 31: carte des caractéristiques générales de Ain el hammam                                  | 31 |
| Figure 32: carte des pentes de Ain el hammam                                                      | 32 |
| Figure 33: carte des altitudes de Ain el hammam.                                                  | 32 |
| Figure 34: carte géologique et lithologique de Ain el hammam.                                     | 33 |
| Figure 35: carte des aléas naturels et technologique de Ain el hammam                             | 34 |
| Figure 36: diagramme de Goldschmidt (rapport de charge Z sur le rayon ionique r)                  | 42 |
| Figure 37: site d'extraction du schiste (route vers AIT YAHIA AIN EL HAMMAM).                     | 46 |
| Figure 38: blocs de schiste extrait à Ain el hammam                                               | 46 |
| Figure 39: le schiste après concassage.                                                           | 47 |
| Figure 40: la série de tamis et la tamiseuse.                                                     | 47 |
| Figure 41: une balance.                                                                           | 48 |
| Figure 42: courbe granulométrique initiale                                                        | 49 |
| Figure 43: hexamétaphosphate de sodium et 80gr du schiste passant 80µm                            | 50 |
| Figure 44: préparation de la solution à l'aide d'un agitateur électrique                          | 50 |
| Figure 45: équipements de l'essai de sédimentométrie                                              | 50 |
| Figure 46: courbe granulométrique par sédimentation fraction de $\phi < 0.08$ mm                  | 51 |
| Figure 47: préparation de quatre échantillons de schiste dans le panier de la pesée hydrostatique | 52 |
| Figure 48: pesé du pycnomètre à vide M1.                                                          | 53 |
| Figure 49: 50g du schiste passant le tamis 2mm.                                                   | 54 |
| Figure 50: pesé de la masse M3.                                                                   | 54 |

| Figure 51: élimination des bulles d'air par ébullition à la plaque chauffante.               | 54       |
|----------------------------------------------------------------------------------------------|----------|
| Figure 52: préparation de l'échantillon pour réaliser les limites d'Atterberg                | 55       |
| Figure 53: dispositif de dosage du bleu de méthylène                                         | 56       |
| Figure 54: l'agitateur mécanique, le récipient et la bouteille du bleu de méthylène          | 56       |
| Figure 55: gestion du dosage du bleu de méthylène                                            | 56       |
| Figure 56: essai du bleu de méthylène sur le papier filtre                                   | 56       |
| Figure 57: échelle de VBS donnée par ARVOR géotechnique                                      | 57       |
| Figure 58: diffractogramme du schiste de Ain el hammam à étudier                             | 58       |
| Figure 59: la machine et la hoite de cisaillement                                            | 61       |
| Figure 60: prénaration de la première série                                                  | 62       |
| Figure 61: détergents, phosphates et sulfates                                                | 62       |
| Figure 62: courba granulomátrique initiale avent cisaillement de l'áchantillen               | 62       |
| Figure 62: courbe granutometrique mittale avant cisametricit de l'échantmont                 | 62       |
| Figure 05. coulde $t = I(\Delta L)$ de l'essai de cisamentent avant traitement de 1 à 4 dais | 62       |
| Figure 64. course $\Delta H = I (\Delta L)$ de l'essai de cisamement avant trancment.        | 03       |
| Figure 65: droite intrinseque $\tau = I(6)$                                                  | 04       |
| Figure 66: courbe granulometrique apres cisaillement.                                        | 64       |
| Figure 6/: courbe de $\tau = f(\Delta L)$ seriel après traitement (eau).                     | 65       |
| Figure 68: courbe de V =f (( $\Delta L$ ), serie 1 après traitement (eau).                   | 66       |
| Figure 69: droite intrinsèquet = $f(\sigma)$ sèrie 1 (eau)                                   | 66       |
| Figure 70: courbes granulométriques après cisaillement (eau).                                | 67       |
| Figure 71: courbe $\tau = f(\Delta L)$ série 1 après traitement (phosphates).                | 67       |
| Figure 72:courbe de V = $f((\Delta L)$ , série 1 après traitement (phosphates)               | 68       |
| Figure 73: droite intrinsèque série 1 après traitement (phosphates)                          | 68       |
| Figure 74: courbes granulométriques après cisaillement (phosphates).                         | 69       |
| Figure 75:courbe $\tau = f(\Delta L)$ série 1 après traitement (détergents)                  | 69       |
| Figure 76: courbe de V = f (( $\Delta$ L), série 1 après traitement (détergents)             | 70       |
| Figure 77: droite intrinsèque série 1 après traitement (détergent)                           | 70       |
| Figure 78: courbes granulométriques après cisaillement (détergents).                         | 71       |
| Figure 79:courbe $\tau = f(\Delta L)$ série 1 après traitement (sulfates)                    | 71       |
| Figure 80:courbe de V = $f((\Delta L)$ , série 1 après traitement (sulfates)                 | 72       |
| Figure 81: droite intrinsèque série 1 après traitement (sulfates).                           | 72       |
| Figure 82: courbes granulométriques après cisaillement (sulfates)                            | 73       |
| Figure 83: assemblage des courbes de 1bar pour les 4 polluants.                              | 74       |
| Figure 84: assemblage des courbes de 2 bars pour les 4 polluants                             | 74       |
| Figure 85: assemblage des courbes de 3bars pour les 4 polluants                              | 74       |
| Figure 86: assemblage des courbes de 4 bars pour les 4 polluants                             | 75       |
| Figure 87: courbe $\tau = f(\Lambda L)$ série 2 anrès traitement (eau)                       | 75       |
| Figure 88: courbe de V = $f((AI)$ série 2 après traitement (eau)                             | 76       |
| Figure 80: droite intrinsèque série 2 après traitement (eau)                                 | 76       |
| Figure 90: courbes granulométriques après cisaillement (Eau)                                 | 76       |
| Figure 01 : courbes granuloinetriques après traitement (phosphates)                          | 70<br>77 |
| Figure 91 : courbe $t = I(\Delta L)$ serie 2 après traitement (phosphates).                  | 77<br>77 |
| Figure 92. course de $v = I((\Delta L)$ , serie 2 après traitement (phosphates).             | 11<br>77 |
| Figure 95: droite intrinseque serie 2 après traitement (phosphates)                          | //<br>70 |
| Figure 94: courbes granulometriques après cisallement (prosphates).                          | /8       |
| Figure 95: courbe $\tau = f(\Delta L)$ serie 2 apres traitement (detergents)                 | /8       |
| Figure 96: courbe de V =f (( $\Delta L$ ), serie 2 apres traitement (detergents).            | /8       |
| Figure 9/: droite intrinsèque série 2 après traitement (détergents).                         | 79<br>70 |
| Figure 98: courbes granulométriques après traitement (détergents)                            | ·/9      |
| Figure 99: courbe $\tau = f(\Delta L)$ série 2 après traitement (sulfates).                  | 79       |
| Figure 100: courbe de V =f (( $\Delta$ L), série 2 après traitement (sulfates)               | 80       |
| Figure 101: droite intrinsèque série 2 après traitement (sulfates).                          | 80       |
| Figure 102: courbes granulométriques après traitement (sulfates)                             | 80       |
| Figure 103: assemblage des courbes de 1bar pour les 4polluants.                              | 81       |

| Figure 104: assemblage des courbes de 2bars pour les 4 polluants                               | . 81 |
|------------------------------------------------------------------------------------------------|------|
| Figure 105: assemblage des courbes de 3bars pour les 4polluants                                | . 82 |
| Figure 106: assemblage des courbes de 4bars pour les 4 polluants                               | . 82 |
| Figure 107: courbe $\tau = f(\Delta L)$ série 3 après traitement (eau)                         | . 83 |
| Figure 108: courbe de V = f (( $\Delta$ L), série 3 après traitement (eau).                    | . 83 |
| Figure 109:droite intrinsèque série 3 après traitement (eau).                                  | . 84 |
| Figure 110: courbes granulométriques après cisaillement (eau).                                 | . 84 |
| Figure 111: courbe $\tau = f(\Delta L)$ série 3 après traitement phosphates                    | . 84 |
| Figure 112: courbe de V = f (( $\Delta L$ ), série 3 après traitement phosphates               | . 85 |
| Figure 113: droite intrinsèque série 3 après traitement phosphates                             | . 85 |
| Figure 114: courbes granulométriques après cisaillement (phosphates).                          | . 85 |
| Figure 115: courbe $\tau = f(\Delta L)$ série 3 après traitement détergents.                   | . 86 |
| Figure 116: courbe de V = f (( $\Delta$ L), série 3 après traitement détergents                | . 86 |
| Figure 117: droite intrinsèque série 3 après traitement détergents.                            | . 86 |
| Figure 118: courbes granulométriques après cisaillement (détergents).                          | . 87 |
| Figure 119: courbe $\tau = f(\Delta L)$ série 3 après traitement sulfates                      | . 87 |
| Figure 120: courbe de V = f (( $\Delta L$ ), série 3 après traitement sulfates.                | . 87 |
| Figure 121: droite intrinsèque série 3 après traitement sulfates.                              | . 88 |
| Figure 122: courbes granulométriques après cisaillement (sulfates)                             | . 88 |
| Figure 123: assemblage des courbes de 1bar pour les 4 polluants.                               | . 89 |
| Figure 124: assemblage des courbes de 2bars pour les 4 polluants                               | . 89 |
| Figure 125: assemblage des courbes de 3bars pour les 4 polluants                               | . 90 |
| Figure 126: assemblage des courbes de 4bars pour les 4 polluants                               | . 90 |
| Figure 127: courbe $\tau = f(\Delta L)$ série 4 après traitement eau.                          | . 91 |
| Figure 128: courbe de V = f (( $\Delta L$ ), série 4 après traitement eau                      | . 91 |
| Figure 129: droite intrinsèque série 4 après traitement eau                                    | . 91 |
| Figure 130: courbes granulométriques après cisaillement (eau).                                 | . 92 |
| Figure 131: courbe $\tau = f(\Delta L)$ série 4 après traitement (phosphates).                 | . 92 |
| Figure 132: courbe de V = $f((\Delta L), \text{ série 4 après traitement (phosphates)}, \dots$ | . 92 |
| Figure 133: droite intrinsèque série 4 après traitement phosphates                             | . 93 |
| Figure 134: courbes granulométriques après cisaillement (phosphates).                          | . 93 |
| Figure 135: courbe $\tau = f(\Delta L)$ série 4 après traitement détergents                    | . 93 |
| Figure 136: courbe de V = $f((\Lambda L)$ , série 4 après traitement détergents                | . 94 |
| Figure 137: droite intrinsèque série 4 après traitement détergents.                            | .94  |
| Figure 138 : courbes granulométriques après cisaillement (détergents).                         | .94  |
| Figure 139: courbe $\tau = f(\Lambda L)$ série 4 après traitement sulfates                     | 95   |
| Figure 140: courbe de V = $f((\Delta L))$ série 4 après traitement sulfates                    | 95   |
| Figure 141: droite intrinsèque série 4 après traitement sulfates                               | 95   |
| Figure 142: courbes granulométriques après cisaillement sulfates                               | 96   |
| Figure 143: assemblage des courbes de 1 bars nour les 4 nolluants                              | 96   |
| Figure 144-assemblage des courbes de 2bars pour les 4 polluants                                | 97   |
| Figure 145: assemblage des courbes de 3bars pour les 4 polluants                               | . 97 |
| Figure 146: assemblage des courbes de 4bars pour les 4 polluants                               | 97   |
| Figure 147: courbe $\tau = f(\Lambda I)$ série 5 après traitement eau                          | . 98 |
| Figure 148: courbe de V = $f((AI)$ serie 5 après traitement eau                                | 98   |
| Figure 149: droite intrinsèque série 5 après traitement eau                                    | 99   |
| Figure 150: courbes granulométriques après cisaillement eau                                    | 90   |
| Figure 150, courbes granulometriques après traitement phosphates                               |      |
| Figure 151: courbe de V = $f((\Lambda I))$ série 5 après traitement phosphates                 | 100  |
| Figure 152: droite intrinsèque série 5 après traitement phosphates.                            | 100  |
| Figure 155, dione muniseque serie 5 après cisaillement phosphates                              | 100  |
| Figure 155: courbe $\tau = f(AI)$ série 5 après traitement détergent                           | 100  |
| Figure 155. courbe de $V = f((AI))$ soirie 5 après traitement déterments                       | 101  |
| Figure 150, coulde de $v = I$ (( $\Delta L$ ), serie 5 après traitement detergents             | 101  |

| Figure 157: droite intrinsèque série 4 après traitement détergents                   | 101 |
|--------------------------------------------------------------------------------------|-----|
| Figure 158: courbes granulométriques après cisaillement détergents                   | 102 |
| Figure 159: courbe $\tau = f(\Delta L)$ série 5après traitement sulfates             | 102 |
| Figure 160: courbe de V = f (( $\Delta$ L), série 5 après traitement sulfates.       | 102 |
| Figure 161: droite intrinsèque série 4 après traitement sulfates.                    | 103 |
| Figure 162: courbes granulométriques après cisaillement sulfates                     | 103 |
| Figure 163: assemblage des courbes de 1bar pour les 4 polluants                      | 104 |
| Figure 164: assemblage des courbes de 2bars pour les 4 polluants                     | 104 |
| Figure 165: assemblage des courbes de 3bars pour les 4 polluants                     | 104 |
| Figure 166: assemblage des courbes de 4bars pour les 4 polluants                     | 105 |
| Figure 167: comparaison des courbes de 1 bar avant et après traitement               | 105 |
| Figure 168: comparaison des courbes de 2 bars avant et après traitement              | 106 |
| Figure 169: comparaison des courbes de 3 bars avant et après traitement              | 106 |
| Figure 170: comparaison des résultats 4 bars avant et après traitement               | 106 |
| Figure 171: comparaison des courbes de 1 bar avant et après traitement               | 107 |
| Figure 172: comparaison des courbes de 2 bars avant et après traitement              | 107 |
| Figure 173: comparaison des courbes de 3 bars avant et après traitement              | 107 |
| Figure 174: comparaison des courbes de 4 bars avant et après traitement              | 108 |
| Figure 175: comparaison des courbes de 1 bar avant et après traitement.              | 108 |
| Figure 176: comparaison des courbes de 2 bars avant et après traitement              | 109 |
| Figure 177: comparaison des courbes de 3bars avant et après traitement               | 109 |
| Figure 178: comparaison des courbes de 4 bars avant et après traitement              | 109 |
| Figure 179: comparaison des courbes de 1 bar avant et après traitement.              | 110 |
| Figure 180: comparaison des courbes de 2 bars avant et après traitement              | 110 |
| Figure 181: comparaison des courbes de 3bars avant et après traitement               | 111 |
| Figure 182: comparaison des courbes de 4 bars avant et après traitement              | 111 |
| Figure 183: assemblage des paramètres avant et après traitement pour la 1ière série. | 112 |
| Figure 184: assemblage des paramètres avant et après traitement pour la 2ième série  | 112 |
| Figure 185:assemblages des paramètres avant et après traitement pour la 3ième série. | 112 |
| Figure 186: assemblages des paramètres avant et après traitement pour la 4ième série | 113 |
| Figure 187: assemblages des paramètres avant et après traitement pour la 5ième série | 113 |
| Figure 188: assemblage des paramètres avant et après traitement (eau).               | 113 |
| Figure 189: assemblage des paramètres avant et après traitement (phosphates)         | 114 |
| Figure 190: assemblage des paramètres avant et après traitement (détergents).        | 114 |
| Figure 191: assemblage des paramètres avant et après traitement (sulfates).          | 114 |
| Figure 192: la machine œdométrique.                                                  | 117 |
| Figure 193: préparation de l'échantillon pour l'essai avant traitement.              | 118 |
| Figure 194: préparation des échantillons pour réaliser quatre essais œdométriques    | 118 |
| Figure 195: courbe granulométrique avant traitement.                                 | 119 |
| Figure 196: courbe œdométrique avant traitement                                      | 119 |
| Figure 197: courbe œdométrique après traitement (schiste +eau)                       | 120 |
| Figure 198: courbe œdométrique après traitement (schiste + détergents)               | 121 |
| Figure 199: courbe œdométrique après traitement (schiste + sulfates)                 | 122 |
| Figure 200: courbe œdométrique après traitement (phosphates)                         | 122 |
| Figure 201: assemblage des courbes œdométriques avant et après traitement            | 124 |

# **INTRODUCTION GENERALE**

L'évaluation de la dégradation chimique des grains schisteux de la région de Ain el hammam à l'essai œdométrique et à la boite de cisaillement, nécessite d'abord une bonne connaissance de la région étudiée du plan géographique, topographique, géologique et bien sûr le climat et la végétation qui jouent un rôle très important dans l'altération des roches. Ainsi la connaissance des différents types de massifs schisteux et les principaux minéraux qui les constituent.

La problématique posée dans ce travail est de comprendre la dégradation des roches schisteuses source des glissements de terrains de Ain el hammam.

Sachant que les eaux usées de la commune de Ain el hammam sont déversés directement sur les versants schisteux.

Plusieurs questions ont été soulevées sur l'apport des détergents et autres polluants sur l'accélération de la dégradation des massifs schisteux.

Nous tenterons de solutionner ce problème en étudient l'influence des trois agents polluants (phosphates, sulfates et détergents) sur le schiste de Ain el hammam.

Cette étude expérimentale portera sur l'étude du cisaillement et de la compressibilité du schiste imbibé dans les trois polluants.

En tenant compte du climat de la région, nous avons simulé ce dernier par des cycles climatique au laboratoire.

Le mémoire est structuré en deux grandes parties ; la première est consacrée à la recherche bibliographique et identification des matériaux de l'étude et la seconde sur l'étude expérimentale.

La première composée de :

- Chapitre I : qui traite les différents types de roches constituant l'écorce terrestre.
- Chapitre II : est consacré à l'étude générale de la région de Ain el hammam.
- Chapitre III : est consacré à l'étude de la roche schisteuse et les différentes dégradations des roches.

La deuxième composée de :

- Chapitre IV : est basé sur l'identification du matériau schiste à l'aide des essais de laboratoire.
- Chapitre V : est consacré à l'essai de cisaillement direct à la boite sur le matériau schiste avant et après traitement et l'interprétation des résultats obtenus.
- Chapitre VI : est consacré à l'essai œdométrique sur le matériau schiste avant et après traitement et l'interprétation des résultats obtenus.

Le mémoire ce termine par une conclusion générale, des références bibliographiques et une annexe.

\_\_\_\_\_ 1 )\_\_\_\_\_

\_\_\_\_\_ ( 2 )\_\_\_\_\_

\_\_\_\_\_ 3 **)**\_\_\_\_\_

\_\_\_\_\_ **(** 4 **)**\_\_\_\_\_

\_\_\_\_\_ ( 7 )\_\_\_\_\_

\_\_\_\_\_ **(** 8 **)**\_\_\_\_\_

**(** 9 **)** 

\_\_\_\_\_ 10 **)**\_\_\_\_\_

[ 11 ]

\_\_\_\_\_ **(** 12 **)**\_\_\_\_\_

## **PREMIERE PARTIE**

# SYNTHESE BIBLIOGRAPHIQUE ET IDENTIFICATION DES MATERIAUX DE L'ETUDE

# **CHAPITRE I** GENERALITES SUR LES ROCHES

14

### Introduction

La Terre est une planète tellurique, c'est-à-dire essentiellement rocheuse. Ainsi, à l'exception des êtres vivants et partiellement des sols, tous les matériaux qui constituent la terre sont des roches. Une roche est un matériau formé par un agrégat naturel et d'assemblages de minéraux plus ou moins complexes.



Figure 1: structure interne de la terre.

### 2. Les minéraux

### 2.1. Définition

Ce sont des corps naturels inorganiques, homogènes, généralement solide, cristallisés en parallélépipèdes dont les structures et les symétries cristallines sont : cubiques, quadratiques, orthorhombiques, monocliniques, tricliniques, rhomboédriques, hexagonales et les caractères physicochimiques : composition, dureté, densité et plan de clivage. Selon sa nature et son gisement, la taille d'un minéral naturel peut être inférieur au millimètre voire micrométrique ou pour certains mais rarement, supérieur au mètre. Selon leur nature et les conditions du milieu : température, pression,... les minéraux se forment par condensation de gaz, solidification de liquide et/ou précipitation de solutions aqueuses. [MARTIN, P, 2010].



Figure 2: structures et les symétries cristallines.

| Échelle                                                         | Dureté | Minéraux |                                                                                                      |
|-----------------------------------------------------------------|--------|----------|------------------------------------------------------------------------------------------------------|
| de dureté<br>relative                                           | 1      | Talc     | Rayés par l'ongle                                                                                    |
|                                                                 | 2      | Gypse    | (minéraux très tendres)                                                                              |
| On part<br>du<br>minéral<br>le <b>moins</b><br>dur (talc)<br>au | 3      | Calcite  | Rayés par une pièce de 1 cent<br>en cuivre (minéraux assez tendres)<br>Rayés par une pointe de canif |
|                                                                 | 4      | Fluorite |                                                                                                      |
|                                                                 | 5      | Apatite  |                                                                                                      |
|                                                                 | 6      | Orthose  | (minéraux assez durs)                                                                                |
|                                                                 | 7      | Quartz   |                                                                                                      |
| minéral                                                         | 8      | Topaze   | Rayent le verre                                                                                      |
| le plus dur<br>(diamant)                                        | 9      | Corindon | (minéraux très durs)                                                                                 |
|                                                                 | 10     | Diamant  |                                                                                                      |

Figure 3: échelle de dureté de MOHS.

### 2.2. Les espèces minérales

Elles sont très nombreuses mais la plupart des minéraux naturels sont peu répandus voire rares. On les distingue et on les classe selon leurs caractères cristallographiques et chimiques. On regroupe en familles les minéraux dont les caractères cristallographiques sont identiques ou proches et dont les caractères chimiques sont progressivement variables. Dans une même famille, la caractérisation de chaque espèce est ainsi plus au moins arbitraire. Les minéraux simples sont rares (éléments natifs) : or, argent, cuivre, diamant... Les minéraux plus abondants sont les silicates, quartz, feldspaths, micas, argile...; très loin derrière viennent les sels minéraux : calcite, anhydrites (gypse), pyrite, halites... et enfin les oxydes, hématite... [MARTIN, P, 2010].

### 2.3. Classification des minéraux

La classification des minéraux correspond à une répartition des espèces minérales basées notamment sur la composition chimique des minéraux. [N'GOLO, T]

**2.3.1. Les éléments natifs :** les éléments natifs sont des minéraux formés d'un seul élément chimique. Les éléments natifs ont un grand rôle économique exemple : Or (Au), diamant (C), graphite (C), platine (Pt), argent (Ag), cuivre (Cu).



Figure 4: quelques éléments natifs.

**2.3.2.** Les oxydes : Les oxydes  $(O^{2-})$  sont des minéraux formés d'un ou de plusieurs métaux combinés avec l'oxygène exemple : magnétite (Fe<sub>3</sub>O<sub>4</sub>), corindon (Al<sub>2</sub>O<sub>3</sub>), rutile (TiO<sub>2</sub>).



Figure 5: quelques oxydes.

**2.3.3. Les sulfures :** Les sulfures sont des minéraux formés d'un ou plusieurs métaux combinés à du soufre(S) exemple : pyrite(FeS<sub>2</sub>), chalcopyrite(CuFeS<sub>2</sub>), galène(PbS).



Figure 6: quelques sulfures.

**2.3.4. Les sulfates :** Les sulfates $(SO_4)^{2-}$ , sont des minéraux constitués d'une combinaison de soufre et d'oxygène avec un ou plusieurs métaux ou métalloïdes exemples: gypse (CaSO<sub>4</sub>2H<sub>2</sub>O), barytine (BaSO<sub>4</sub>) On inclut dans cette classe les chromates $(CrO_4)^{2-}$ , les molybdates  $(MO_4)^{2-}$  et les tungstates $(WO_4)^{3-}$ .



Figure 7: quelques sulfates.

**2.3.5. Les carbonates** : Les carbonates $(CO_3)^{2-5}$ sont des minéraux constitués d'une combinaison de carbone et d'oxygène avec un ou plusieurs métaux ou métalloïdes exemples: calcite $(CaCO_3)$ , sidérite (FeCO<sub>3</sub>), dolomite (CaMgCO<sub>3</sub>) On inclut dans cette classe les nitrates $(NO_3)^{2-5}$  borates $(BO_3)^{2-5}$ .



Figure 8: quelques carbonates.

**2.3.6.** Les silicates : Les silicates $(SiO_4)^4$ -sont des minéraux qui combinent le silicium et l'oxygène avec un ou plusieurs métaux ou métalloïdes. Les silicates représentent 90 % en poids de l'écorce terrestre exemples: quartz (SiO<sub>2</sub>), sillimanite (Al<sub>2</sub>SiO<sub>5</sub>), microcline (KAl<sub>2</sub>SiO<sub>5</sub>).



Figure 9: quelques silicates.

**2.3.7. Les halogénures :** Les halogénures (chlorures (Cl-) et fluorures (F-)) sont des minéraux formés d'un ou plusieurs métaux ou métalloïdes combinés à l'élément chlore ou fluor. Exemples: sel gemme (NaCl), sylvite (KCl), fluorine ( $CaF_2$ ).

17



Figure 10: quelques halogénures.

**2.3.8.** Les hydroxydes : Les hydroxydes (OH-) sont des minéraux constitués d'une combinaison d'eau et d'oxydes métalliques. Exemple: goetite (FeO(OH)), brucite (Mg(OH) 2).



Figure 11: quelques hydroxydes.

**2.3.9. Les phosphates :** Les phosphates $(PO_4)^{3-}$ sont des minéraux constitués de phosphore et d'oxygène combinés avec un ou plusieurs métaux ou métalloïdes. Exemples: apatite  $(Ca_5(PO4)^3 (OH, Cl, F))$ , monazite ((Ce, La, Y, Th) PO<sub>4</sub>). On inclut également dans cette classe les arséniates $(AsO_4)^{3-}$ te les vanadates $(VO_4)^{3-}$ .



Figure 12: quelques phosphates.

Tableau 1: les principaux minéraux et leurs usages. [N'GOLO, T]

| GROUPE             | MINÉRAL                                                            | FORMULE                     | USAGE                                                                                                                                                                                      |
|--------------------|--------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ÉLÉMENTS<br>NATIFS | Or<br>Argent<br>Cuivre<br>Diamant<br>Graphite<br>Soufre<br>Platine | Ag a C C C S Pi             | Échange, joaillerie<br>joaillerie, photographie<br>conducteurs électriques<br>gemmes, abrasifs<br>mines à crayons, lubrifiants<br>médicaments, produits chimiques<br>catalyseurs, alliages |
| OXYDES             | Hématite                                                           | Fe2 <mark>O3</mark>         | minerai de fer                                                                                                                                                                             |
|                    | Magnétite                                                          | Fe3O4                       | minerai de fer                                                                                                                                                                             |
|                    | Corindon                                                           | Al2O3                       | gemme, abrasif                                                                                                                                                                             |
| SULFURES           | Galène                                                             | Pb <b>S</b>                 | minerai de plomb                                                                                                                                                                           |
|                    | Sphalérite                                                         | ZnS                         | minerai de zinc                                                                                                                                                                            |
|                    | Pyrite                                                             | FeS2                        | "or des fous"                                                                                                                                                                              |
|                    | Chalcopyrite                                                       | CuFeS2                      | minerai de cuivre                                                                                                                                                                          |
|                    | Bornite                                                            | Cu5FeS4                     | minerai de cuivre                                                                                                                                                                          |
|                    | Cinabre                                                            | HgS                         | minerai de mercure                                                                                                                                                                         |
| SULFATES           | Gypse                                                              | Ca <mark>SO4</mark> .H2O    | plâtre et panneaux                                                                                                                                                                         |
|                    | Anhydrite                                                          | CaSO4                       | plâtre et panneaux                                                                                                                                                                         |
|                    | Barite                                                             | BaSO4                       | boue de forage                                                                                                                                                                             |
| CARBONATES         | Calcite                                                            | CaCO3                       | ciment Portland                                                                                                                                                                            |
|                    | Dolomite                                                           | CaMg(CO3)2                  | ciment Portland                                                                                                                                                                            |
|                    | Malachite                                                          | Cu2(OH)2CO3                 | minerai de cuivre, joaillerie                                                                                                                                                              |
|                    | Azurite                                                            | Cu3(OH)2(CO3)2              | minerai de cuivre, joaillerie                                                                                                                                                              |
|                    | Rhodochrosite                                                      | MnCO3                       | joaillerie                                                                                                                                                                                 |
| SILICATES          | quartz                                                             | SiO2                        | verre, horlogerie, calculatrices                                                                                                                                                           |
|                    | talc                                                               | Mg3Si4O10(OH)2              | poudre pour bébés                                                                                                                                                                          |
|                    | amiante                                                            | Mg6Si4O10(OH)8              | isolant                                                                                                                                                                                    |
|                    | kaolinite                                                          | Al4Si4O10(OH)8              | cêramique                                                                                                                                                                                  |
| HALOGÉNURES        | Halite                                                             | NaCl                        | sel commun                                                                                                                                                                                 |
|                    | Fluorite                                                           | CaF2                        | fabrication des aciers                                                                                                                                                                     |
|                    | Sylvite                                                            | KCl                         | fertilisants                                                                                                                                                                               |
| HYDROXYDES         | Limonite                                                           | FeO <mark>(OH)</mark> .nH2O | minerai de fer, pigment                                                                                                                                                                    |
|                    | Bauxite                                                            | Al(OH)3. nH2O               | minerai d'aluminium                                                                                                                                                                        |

### 3. Les roches

#### 3.1. Définition

C'est un matériau qui entre dans la constitution de l'écorce terrestre quel que soit ses propriétés et son aspect physique. Une roche correspond à un agencement de minéraux les uns par rapport aux autres selon les lois de la cristallographie. Chaque roche a une architecture, une forme, une dimension et une disposition particulière. [7].

#### 3.2. Les cycles de formation des roches

Les roches sédimentaires proviennent en majorité du démantèlement des roches métamorphiques et magmatiques et les roches métamorphiques de la transformation des roches sédimentaires et magmatiques, la composition moyenne de la croûte est essentiellement celle des roches magmatiques. Selon des estimations convergentes, l'ensemble de la croûte, continentale et océanique, se compose de 7,9 % de roches sédimentaires, 27,4 % de roches métamorphiques et 64,7 % de roches magmatiques. [BONIN,B, et-al.2004]



Figure 13: cycles de formation des roches.

#### 3.3. Classification des roches

Les roches sont classées, selon de nombreux critères, en différents groupes dont les principaux sont donnés ci-après. On distingue les roches exogènes (sédimentaires et résiduelles) formées à la surface de l'écorce terrestre, et les roches endogènes (magmatiques et métamorphiques) issues des profondeurs. [DURVILLE, J et al, c204]


Les roches sont regroupées en trois grandes familles suivant le phénomène qui est à l'origine de leur formation.

| Famille                  |                             | Teinte                | Minéraux constitutifs                                     | Principaux termes                         | Autres termes                                           |
|--------------------------|-----------------------------|-----------------------|-----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|
| Roches<br>magmatiques    | volcaniques                 | claire<br>↓<br>sombre | quartz<br>feldspaths<br>amphiboles<br>pyroxène<br>olivine | trachyte, rhyolite<br>andésite<br>basalte | dolérite                                                |
|                          | plutoniques                 | claire<br>↓<br>sombre | quartz<br>feldspaths<br>amphiboles<br>pyroxène            | granite<br>diorite<br>gabbro              | microgranite<br>microdiorite<br>monzonite<br>péridotite |
| Roches<br>métamorphiques | folićes                     | claire<br>↓<br>sombre | { quartz<br>micas<br>amphibole                            | gneiss, micaschiste<br>amphibolite        | leptynite                                               |
|                          | non foliées                 |                       |                                                           | marbre, cornéenne                         |                                                         |
| Roches<br>sédimentaires  | détritiques                 | sombre<br>↓<br>claire | argiles<br>calcite<br>quarLz                              | pélites<br>marnes<br>grès                 | argilites                                               |
|                          | biogènes et/ou<br>chimiques |                       | carbonates, sulfates, etc.                                | calcaires, craie,<br>dolomies, gypse      | meulière,<br>charbon                                    |

Tableau 2: les principales familles des roches et leurs caractéristiques.

# 3.4. Les roches sédimentaires

#### 3.4.1. Définition

Les roches sédimentaires sont celles qui se forment à la surface de la Terre (exogène) par accumulation de sédiments, le plus généralement au fond de l'eau : en mer, dans un lac mais parfois aussi en milieu terrestre aérien, à la surface des continents. Les roches sédimentaires ne représentent que environ 7,9 % du volume de la croûte terrestre. Cependant, elles en recouvrent 75 % de la surface, et sont donc très présentes dans les paysages. [3]

#### 3.4.2. Processus de sédimentation



Figure 14: le cycle de sédimentation.

| PRINCIPAUX MIL | IEUX DE SEDIMEN                                       | TATION                                                    |                                                       |                                      |       |
|----------------|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-------|
| sols           | continentaux<br>nontagne<br>biedmont<br>bieline<br>ac | intermédia<br>estuaire<br>delta<br>lagune                 | ires<br>plage plate-fo<br>courants                    | marins<br>me talus bassin            |       |
|                | alluvions                                             |                                                           |                                                       | planeton                             | -1    |
| 100 km         |                                                       |                                                           |                                                       | turbidites boues                     |       |
|                | tri gra                                               | nulométrique                                              | : du grossier                                         | au plus fin pelegi                   | ques  |
| diaganàs       | sédiments                                             | sédiments<br>hétérogènes :<br>vases, sables,<br>ou galets | sédiments +<br>homogènes :<br>sables fins et<br>vases | sédiments fins : vases ou<br>argiles |       |
| Jagenes        | roches                                                | grès,<br>poudingues<br>ou brèches                         | calcaire-<br>marneux,<br>marno-calcaires              | marnes                               |       |
|                |                                                       |                                                           |                                                       | LI – HIS24A – S. SU                  | lanez |

Figure 15: principaux milieux de sédimentation.

# 3.4.3. Les différents types de roches sédimentaires



Figure 16: différents types de roches sédimentaires.

**3.4.3.1.** Les roches résiduelles : elles résultent de l'altération sur place de roches subaffleurantes du substratum. Elles ne sont pas des roches sédimentaires, mais elles peuvent être à leur origine si leurs éléments sont ensuite transportés et déposés. [MARTIN, P, 2010].

**3.4.3.2.** Les roches détritiques : Elles correspondent à des assemblages de débris variés issus de la dégradation des roches préexistantes (sédimentaires, métamorphiques, magmatiques). [7] Les éléments de ces roches sont des blocs, des cailloux, des graviers…etc. Les séries sédimentaires détritiques débutent par des couches d'éléments grossiers et s'achèvent par des couches d'éléments fins.



Figure 17: les séries sédimentaires détritiques.



Figure 18: quelques roches détritiques.

**3.4.3.3.** Les roches salines : Ces roches sont constituées par des précipités de sels dissous dans des eaux marines ou terrestres, provenant de l'altération des roches contenant du sodium, du potassium, du calcium...etc. C'est le groupe des roches dites salifères ou évaporitiques Composées de chlorures ou de sulfates. Ces roches présentent un intérêt économique important : halite ou sel-gemme, source de NaCl, gypse ou anhydrites à l'origine de l'industrie plâtrière.



Figure 19: quelques roches salines (gypse, anhydrite, halite, sylvite).

**3.4.3.4.** Les roches carbonées : Ce sont des roches formées essentiellement de carbone. Les principales roches sont les charbons (tourbe, houilles, lignite et anthracite) et les pétroles, on les appelle aussi les roches combustibles. Les charbons désignent des roches sédimentaires stratifiées, combustibles, de couleur sombre, formées principalement de débris végétaux.







Figure 20: quelques roches carbonées (tourbes, anthracite, charbon).

**3.4.3.5.** Les roches siliceuses : Ce sont des roches formées essentiellement de silice sous forme de quartz. Elles sont dures et sont caractérisées par l'existence d'une grande résistance chimique (pas d'effervescence avec les acides) sauf l'acide fluorhydrique (HF).



Figure 21: quelques roches siliceuses (diatomite, rognons de silex).

**3.4.3.6.** Les roches carbonatées : Formées d'au moins 50 % de carbonates (calcite, dolomite), elles représentent 20 % des roches sédimentaires, couvrent de grandes surfaces sur les continents et ont une grande importance pratique. Les calcaires représentent l'essentiel des roches carbonatées. Ils contiennent au moins 50 % de CaCO3, et font donc effervescence avec l'acide dilué (HCL à 10 %). Leur solubilité dans l'eau est à l'origine des réseaux et cavités karstiques. Résultant généralement de l'accumulation de squelettes et/ou de coquilles calcaires cimentés par une précipitation chimique ou biochimique. [DURVILLE, J et al, c204]



Figure 22: quelques roches carbonatées (calcite, calcaire, dolomite).

# 3.5. Roches magmatiques 3.5.1. Définition

Ce sont des dérivés de la solidification et de la cristallisation de magmas à différentes profondeurs de l'écorce terrestre, on les appelle aussi roches endogènes ou ignées et parfois improprement roches éruptives. Le magma et un mélange, en proportions variables, suivant les conditions de température et de pression, de cristaux et d'une phase fluide. Le stade magmatique est une étape transitoire entre une phase de fusion partielle d'une zone du manteau ou de la croûte et une phase de solidification liée au refroidissement du matériel magmatique. [POMEROL, C et al, 2005].

# 3.5.2. Principales roches magmatiques

**3.5.2.1. Roches plutoniques** : Les roches intrusives ou roches plutoniques se forment à partir d'un magma qui refroidit lentement à de grandes profondeurs (30 à 35 km) sous la croûte terrestre en conséquence, les cristaux ont le temps de bien se former et la roche présente une texture grenue. [N'GOLO, T]



Figure 23: principales roches plutonique (granit, diorite, gabbro).

**3.5.2.2.** Roches volcaniques : Les roches extrusives ou roches volcaniques sont issues d'un magma qui refroidit rapidement à la surface de la croûte terrestre. En conséquence, les cristaux n'ont pas le temps de bien se former et la roche est à grain très fin. [N'GOLO, T]



Figure 24: principales roches volcaniques (rhyolite, andésite, basalte).

# 3.6. Les roches métamorphiques

# 3.6.1. Définition

Ce sont des roches formées sans fusion à partir de roches préexistantes soit sédimentaires ou magmatiques, sous l'influence des hausses de température et/ou de pression qui provoquent le métamorphisme: cristallisation de nouveaux minéraux par réactions chimiques à l'état solide, accompagnée souvent d'une modification de la structure originelle. [DURVILLE, J et al, c204]

# 3.6.2. Facteurs du métamorphisme

Les principaux facteurs sont :

- Élévation de température : elle augmente avec la profondeur (le gradient géothermiques est de (30°C/km) ou avec la mise en place de roches plutoniques ou volcaniques. [Cours de CHABOU, M,]

- Élévation de pression : elle augmente également avec la profondeur

- Présence de fluides : les vides entre les grains dans une roche sont toujours remplis d'un fluide, en général du H2O avec des minéraux dissous. Ce fluide est très important pour les processus métamorphiques parce qu'il peut transporter des composants dissous (en solution) et de la chaleur et il augmente radicalement la vitesse des réactions entre minéraux. [Cours de CHABOU, M,]

- Le temps : la plupart des réactions métamorphiques exigent des millions d'années afin d'être complètes.



Figure 25: différents types du métamorphisme.

| Ardoise | Schiste | Gneiss |
|---------|---------|--------|
|         |         |        |
| Marbre  | Qua     | rtzite |

Figure 26: principales roches métamorphiques.

Tableau 3: variation du degré du métamorphisme.

| Conditions du<br>Métamorphisme | 200-300°C                                                                                                                                                                    | 300-450°C                                                                                                                                                                         | >450°C                                                                                                                                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Degré du<br>métamorphisme      | Faible                                                                                                                                                                       | Moyen                                                                                                                                                                             | Elevé                                                                                                                                                                                                                    |
| Nom de la roche                | Ardoise                                                                                                                                                                      | Schiste                                                                                                                                                                           | Gneiss                                                                                                                                                                                                                   |
| Description de la<br>roche     | Les minéraux sont<br>invisibles à l'œil nu.<br>La couleur de la<br>roche est foncée et<br>montre un clivage<br>caractéristique.<br>Transformation des<br>pélites et argiles. | Les minéraux sont de<br>tailles moyennes. Les<br>micas sont souvent<br>visibles. Résultent de<br>la transformation de<br>roches argileuses,<br>ardoises, granites et<br>basaltes. | Roches à grains<br>grossiers, foliées<br>avec alternance de<br>bandes claires et<br>sombres. Les bandes<br>peuvent être plissées.<br>Résultent de la<br>transformation de<br>roches argileuses,<br>schistes et granites. |



Figure 27: degré croissant de métamorphisme.

# Conclusion

Ce chapitre est consacré à l'étude des différents types de roches (magmatiques, métamorphique et sédimentaires).

La roche est un agencement de minéraux les uns par rapport aux autres de leur tours sont des agencements de substance chimiques.

L'ensemble de la croûte continentale et océanique se compose de 7,9 % de roches sédimentaires, 27,4 % de roches métamorphiques et 64,7 % de roches magmatiques.

90% de minéraux constituant l'écorce terrestre sont des silicates SIO<sup>4</sup>.

# **CHAPITRE II**

# ETUDE GENERALE DE LA REGION DE AIN EL HAMMAM

# 1. Situation géographique

La commune de Ain el hammam, qui est aussi chef-lieu de daïra, est située à 45 km au Sud-Est de la Wilaya de Tizi Ouzou. Elle est accessible à partir de la RN 15 et de la RN 71. [2]



Figure 28: situation de la daïra de Ain el hammam dans la wilaya de Tizi Ouzou.

# 2. Délimitation et hydrographie

Les limites territoriales de la commune de Ain el hammam sont données comme suit : Au Nord: la commune d'Ait Aggouacha ; A l'Ouest : la commune de Beni Yenni; Au Sud-Ouest : la commune d'Iboudrarene; Au Sud : les communes de Yattafene et Akbil ; Au Sud-Est : la commune d'Abi Youcef A l'Est et Nord-Est : la commune d'Ait Yahia.

Le réseau hydrographique est caractérisé par :

- Un Oued permanent (Oued Djemââ) : il parcourt 3 km du territoire communal et prend sa source à Ait Hemsi au Sud et s'écoule vers l'Ouest à la limite de la commune de Beni Yenni.

- Les oueds temporaires qui se forment sur les versants à la fonte des neiges ou les fortes pluies, dont le principal est Assif Oumalou qui parcourt le territoire de la commune dans sa partie Nord-Ouest et qui rejoint l'Oued Djemââ au niveau de la limite Ouest avec la commune de Beni Yenni.



Figure 29: vue aérienne (Google earth) de Ain el hammam.



Figure 30: délimitation et hydrographie de Ain el hammam.

# **3.** Caractéristiques générales

La commune de Ain El Hammam a une superficie de 38,55 km<sup>2</sup> et compte 20 401 habitants (RGPH 2008) dont 7 583 habitant au chef-lieu de la commune et le reste est réparti sur ses 19 villages ainsi que les zones éparses.



Figure 31: carte des caractéristiques générales de Ain el hammam.

#### 4. La topographie de la région d'AEH

L'ensemble du territoire de la commune de Ain El Hammam est caractérisé par des pentes fortes; l'analyse de la carte des pentes réalisée au 1/10000 montre la répartition spatiale de ces pentes :

- Les pentes inférieures à 12% : correspondent à certaines terrasses au sommet des crêtes et occupent moins de 10% du territoire.

- Les pentes de 12 à 25% : constituent la frange la mieux adaptée au développement de l'urbanisation et occupent moins de 40% du territoire.

- Les pentes supérieures à 25% : ce sont les plus répandues et occupent plus de 50% du territoire.



Figure 32: carte des pentes de Ain el hammam.

# 5. Le relief

L'étude relative à la délimitation et à la caractérisation des zones de montagne et du massif montagneux du Djurdjura a classé la commune d'Ain El Hammam dans la zone de montagne moyenne . L'analyse de la carte des altitudes réalisée à l'échelle de 1/10 000 fait ressortir une augmentation des altitudes de l'Ouest à l'Est. [2]

Les altitudes inférieures à 400 m correspondent à la zone de lit de l'Oued Djemaa (limite Ouest), occupent une superficie de 104 ha, soit 2.70%.

Les altitudes entre 400 et 800m occupent une superficie de 2221ha, soit 57.61% (Ait El Djoudi, Agouni n'Teslent, Ouait Slid, Ait Ailam).

Les altitudes supérieures à 800m représentent une superficie de 1530 ha, soit 39.69% du territoire de la commune. La majorité des villages sont perchés sur cette zone.



Figure 33: carte des altitudes de Ain el hammam.

#### 6. Géologie et lithologie de la région de Ain el hammam

La nature géologique de la commune nous permet de distinguer une dominance de la formation schisteuse qui présente de bonnes caractéristiques géotechniques. Néanmoins, les formations superficielles de schiste sont sujet à l'altération et à l'oxydation donnant lieu à des instabilités (glissements de terrains). La géologie de la région a été établie suivant la carte géologique de Fort National, feuillet N°45 échelle 1/50 000, on y retrouve, en plus des plans, de fractures de directions-différentes.[2]

#### 6.1. La constitution du socle cristallophyllien

Le socle cristallophyllien est constitué par des:

- Schistes micacés qui affleurent en majorité sur la zone Centre et Sud sur une superficie de 3042 ha, soit 78.91% du territoire de la commune.

- Schistes et phyllades qui affleurent sur la zone Nord et Nord-Est sur une superficie de 1212 ha, soit 3,16 % du territoire.

- Schistes granulites qui occupent une superficie de 411 ha, soit 10.66% du territoire.

- Granulites gneissiques qui affleurent sur la zone extrême Nord sur une superficie de 268 ha, soit 6.98% du territoire.

#### 6.2. Les formations quaternaires

Elles correspondent au remplissage par des alluvions actuelles d'oued Djemaa et occupent une superficie de 11 ha soit, 0.29% du territoire de la commune.



Figure 34: carte géologique et lithologique de Ain el hammam.

#### 7. Aléas naturelles et technologiques

#### 7.1. L'aléa naturel

Il constitue un phénomène ou une manifestation naturelle susceptible d'affecter une zone donnée.

#### 7.1.1. Risque sismique

Le zoning sismique établie par R.P.A (1999) modifié et complété suite au séisme de Zemmouri (21-05-2003), qui a touché la région de Boumerdès et ses environs classe la commune de Ain El Hammam dans la zone de moyenne sismicité (Zone II a) ; elle est plus ou moins vulnérable au risque sismique.

#### 7.1.2. Risque de glissement de terrains

Le chef-lieu de la commune de Ain El Hammam a fait l'objet d'une étude des glissements de terrains réalisée par le groupement ANTEA, TTI et hydroenvironnement commandée par la DUC de Tizi Ouzou en juin 2009. A l'issue de cette étude, il a été dressé une carte de constructibilité couvrant le périmètre urbain du chef-lieu de la commune.

#### 7.2. Aléas technologiques

Ils constituent tous risque d'origine anthropique regroupant les gazoducs, les lignes électriques moyenne tension et des zones de servitudes (des voies de communication). Pour la commune de Ain El Hammam, il s'agit des aléas suivants :

- Deux Routes nationales : la commune est traversée par deux routes nationales à savoir la  $RN^{\circ}15$  et la  $RN^{\circ}71$ .

- Lignes électriques de moyenne tension.



Figure 35: carte des aléas naturels et technologique de Ain el hammam.

# 8. Le climat

La commune de Ain el hammam est caractérisée par un climat assez rude, à la fois méditerranéen et montagnard, avec :

- Un hiver pluvieux, neigeux où les températures peuvent descendre jusqu'en dessous de0°.
- Un été chaud et sec mais tempéré par l'effet de l'altitude.
- Printemps et Automne presque équilibrés.
- Les vents dominants viennent du Nord et de l'Ouest. En été, on note des passages périodiques du Sirocco.

#### 9. La Végétation

Selon la carte d'occupation des sols de Ain el hammam, les zones de maquis et forêts couvrent une superficie de 1965,35 ha, soit 50.98 % de sa surface totale de la commune. Selon les données recueillies auprès des services agricoles, la superficie forestière est de 1462 Ha. La forêt est dominée par les maquis denses de chênes vert. On peut relever l'existence de frênes le long des talwegs.

# Conclusion

L'étude générale faite sur la région de Ain el hammam nous a permis de mieux connaitre ces caractéristiques du point de vue hydrographique, topographique caractérisé par des pentes fortes et d'un relief montagneux favorisant les glissements de terrains et géologique dont la dominance de la formation schisteuse.

# **CHAPITRE III**

# LES SCHISTES ET LES DIFFERENTES DEGRADATIONS DES ROCHES

\_\_\_\_\_

# 1. Les schistes

#### 1.1. Définition

Un schiste est une roche qui a pour particularité d'avoir un aspect feuilleté, et de se débiter en plaques fines ou « feuillet rocheux ». On dit qu'elle présente une schistosité ou foliation. Il peut s'agir d'une roche sédimentaire argileuse, ou bien d'une roche métamorphique.

- Schiste argileux sédimentaire : Il s'agit d'une roche formée d'argile ayant sédimenté au fond d'une eau calme. Elle peut être formée en milieu marin, comme les schistes-carton. [11]

- Schiste métamorphique : Le schiste métamorphique provient d'une argile qui sous l'action de la pression et de la température présente un feuilletage régulier en plans parallèles. [11]

#### 1.2. Les différents types de schiste

Il existe une grande diversité de schistes au point de vue des minéraux présents, en fonction des conditions (P, T°) de formation, et du chimisme des roches initiales.

#### 1.2.1. Schistes du métamorphisme général

**1.2.1.1. Schiste du métamorphisme général très faible** : ce sont des schistes situés à la limite du domaine du métamorphisme sont souvent considérés comme des roches sédimentaires. [FAUCAULT, A et al, dictionnaire 2005]

- **Schistes bitumineux**: sont des roches sédimentaires à grain fin, contenant des substances organiques, les kérogènes, en quantité suffisante pour fournir du pétrole et du gaz combustible.[12]

- Schiste ardoisé : est une roche métamorphique qui s'est formée dans de fortes conditions de pression et de température. Elle appartient à la famille des schistes à l'intérieur de laquelle elle se distingue par la qualité de son grain, très fin, et sa fissilité. Ces propriétés font qu'on peut l'utiliser comme matériau de couverture. [13].

#### 1.2.1.2. Schiste du métamorphisme général faible

- **Schiste satiné** : c'est une roche métamorphique qui présente la particularité de se débiter en feuillets. Si cette texture (schistosité) est commune à tous les schistes, leur composition peut varier. Ce schiste satiné a une composition chimique globale proche de l'argile.

- **Schiste talqueux** : ce sont les roches dans lesquelles domine le talc ou la serpentine. On distingue dans ce terrain les roches de talc lamelleux, appelées chlorites.

#### 1.2.1.3. Schiste de métamorphisme général plus fort

- **Micaschiste** : c'est une roche métamorphique à forte transformation constituée principalement de minéraux en feuillets tels que des micas, de la chlorite ou du talc. Généralement, les micaschistes contiennent aussi du quartz ou des feldspaths ainsi que des minéraux accessoires tels que des amphiboles ou des grenats. On parle alors de micaschistes à amphiboles ou de micaschistes à grenats. Comme les schistes, moins métamorphiques, les micaschistes sont caractérisés par un feuilletage très marqué résultant des déformations ductiles tectoniques de la roche. [14]

#### 1.2.2. Schiste du métamorphisme de contact et quelconque

- **Schistes tachetés** : ils sont formées de mica et d'un peu de feldspath; leur coloration est due à de l'ocre, ou le plus souvent à clos matières organiques qui fournissent des taches ayant la forme de gerbes et de mouchetures. [15]

- **Schistes ampélites** : ce sont des schistes noirs alunifères et charbonneux, riches en pyrite et en matières organiques. [mémoire KICHIDI, Z]

- Schistes houillers : ce sont les résidus de la séparation entre le charbon et le stérile qui l'accompagne lors de son extraction.

- Les schistes marneux : ce sont des mélanges de schiste argileux et des marnes.

#### 1.3. Principaux minéraux constituant les schistes

Les minéraux principaux sont la muscovite (de très petites dimensions) et le quartz. Les minéraux accessoires sont la biotite, les feldspaths, le chlorite, le graphite, les grenats. La matrice est donc fine mais peut parfois contenir des minéraux de grande taille. La couleur est généralement gris argenté et/ou verdâtre [11]

# 2. Dégradation des roches

#### 2.1. Introduction

Dans la pluparts des régions du globe, les roches n'affleurent pas directement en surface mais sont masquées par un épiderme meuble, le sol, sur lequel se développe la végétation. Les processus physiques, chimiques et biologiques qui conduisent de la roche saine à ses produits de décomposition sont appelés altération [POMEROL, C et al, 2005].

#### 2.2. L'altération à l'échelle du minéral et de la roche

A l'échelle du minéral : très peu de minéraux sont quasi inaltérable comme le quartz ou totalement comme le diamant. En subsurface, plus au moins stables selon les conditions climatiques et morphologiques locales, selon leur aptitude au clivage, leur dureté, leur composition chimique, les cristaux se fragmentent, se désagrègent, se transforment et/ ou se dissolvent à plus au moins longue échéance ; ces phénomènes d'altération, dont les agents sont l'air et l'eau. [MARTIN, P, 2010]

A l'échelle de la roche : en dehors de certains quartzites métamorphiques et de certaines roches volcaniques vitreuses, toutes les roches évoluent plus au moins fortement et rapidement d'une part selon leur minéralogie et leur structure et d'autre part, selon la température, la pression, l'acidité ou l'agressivité du milieu au contact duquel elles se trouvent, à condition qu'elles soient fissurées, diaclases, schistosité. Les plus évolutives sont les salines et le gypse qui se dissolvent rapidement dans l'eau ordinaire. Les schistes peu minéralisés se désagrègent en plaquettes ou crayons. Les schistes cristallins et les micaschistes se désagrègent facilement en feuillet puis en paillettes et se transforment plus au moins rapidement en argiles. [MARTIN, P, 2010].

#### 2.3. Les différents phénomènes de dégradation des roches

#### 2.3.1. Phénomènes naturels

Les phénomènes naturels sont les manifestations observables du comportement de la terre. Depuis la nuit des temps, des reliefs se créent et se détruisent à sa surface par les effets cumulés d'éruption volcanique, de séismes, de mouvements de terrain, de cyclones, de crues, de tsunamis, de chutes de météorites qui sont des événements intempestifs mais normaux de phénomènes naturels pérenne.[MARTIN, P, 2010]

#### 2.3.2. Phénomènes internes

A leur origines, la tectonique des plaques en a été le sous-produit : les éruptions volcaniques et les séismes sont les effets superficiels des mouvements lents, 1 à 20 cm/an selon l'endroit, mais continus

des plaques lithosphériques ; ils se produisent essentiellement sur les marges actives des plaques.[MARTIN, P, 2008].

#### 2.3.2.1. Eruptions volcaniques

Un volcan est un édifice naturel, terrestre ou sous-marin, produit par l'afflux à travers la croûte et l'empilement en surface, de magma et de gaz provenant généralement du manteau, sous hautes température et pression ; les éruptions sont les manifestations saccadées de cet afflux.

#### 2.3.2.2. Séismes

La terre vibre sans cesse et partout, de façon essentiellement naturelle et accessoirement provoquée, de l'échelle du globe à l'échelle locale, sous la forme de secousses brusques et transitoires du sol et du sous-sol ; ces vibrations sont des ondes de choc temporaires, plus ou moins durables qui affectent une portion plus ou moins vaste de l'écorce terrestre. Les ruptures tectoniques sur les marges actives de plaques sont de loin celles qui produisent les plus violents. [MARTIN, P, 2008]

#### 2.3.3. Les phénomènes atmosphériques

#### 2.3.3.1. Les phénomènes climatiques

Les agents climatiques majeurs comprennent la température, les précipitations, le drainage, l'évapotranspiration et le ruissellement superficiel. A l'échelle du globe, la part de chacun de ces agents varie en fonction de la latitude et du continent.

- **Inondations, crues, tempêtes littorales :** ces phénomènes provoquent et entretiennent l'érosion, le transport et la sédimentation à l'échelle régionale, et des déplacements de lits, de côtes, des modifications de paysages.

- **Avalanche :** ce sont des aléas naturels extrêmement fréquents. Elles se produisent dans des zones prédisposées par la topographie et l'exposition, notamment lors d'un redoux suivant rapidement une chute abondante, par surcharge de chutes successives sur de fortes pentes, sous l'effet de vibrations dues au vent, à une chute de bloc de glace ou rocheux, au passage d'un animal ou d'un homme, lors de la fonte. [MARTIN, P, 2008]

#### 2.3.3.2. Les phénomènes météorologiques

Les phénomènes météorologiques – moussons, cyclones, tornades, orages, enneigement puis fonte des neiges... sont rapides, très instables, plus ou moins saisonniers mais irréguliers et jamais strictement cycliques ; il s'en produit d'intempestifs hors saison.

#### 2.3.4. Les phénomènes externes

Tous les phénomènes externes sont des agents de l'altération ; quelle que soit la cause finale de leurs manifestations, le transport des matériaux érodés et leur sédimentation. La gravité en est le moteur et l'eau sous toutes ses formes, l'agent principal.

#### 2.3.4.1. L'Altération et l'érosion

Les mécanismes responsables de l'altération, phénomène prenant place aux températures et pressions faibles régnant à la surface de la terre, sont, l'altération physique, l'altération chimique et l'altération biologique.

#### a. L'altération physique

Elle ne modifie pas la composition de la roche-mère mais participe au morcellement du matériau initial. Elle tend donc à diminuer l'épaisseur des sols et des roches en arrachant mécaniquement des particules qui seront transportées par le ruissellement de surface. [COJAN, I et al, 2013].

Les processus mis en œuvre dans l'altération physique sont les suivants:

- les alternances de gel-dégel, en climat suffisamment humide, fragmentent les roches (gélifraction/cryoclastie). L'eau en gelant augmente son volume de 9 à 10% et agit comme un coin, élargissant progressivement les fractures.

- les variations répétées de température (40-50°C d'amplitude journalière dans le Sahara...) ont à peu près le même effet que le gel: les différences de dilatation thermique entre les minéraux d'une roche provoquent l'apparition de fractures.

- la décompression survient lorsque des roches ayant subi un enfouissement sont libérées de la pression lithostatique par érosion des formations supérieures. Des joints de décompression, pratiquement parallèles à la surface du sol se développent progressivement.

- l'usure mécanique par des grains détritiques emportés par l'eau, le vent et la glace.

#### b. L'altération chimique

Transforme la composition chimique et minéralogique initiale des roches par mise en solution ou précipitation d'éléments et favorise le développement de sols au détriment des roches-mères. Elle aboutit à la séparation d'une phase soluble dite migratrice, évacuée par le drainage des eaux courantes et d'une phase résiduelle qui s'accumulant sur place est à l'origine des sols voire de concentrations métallifères telles les bauxites. [COJAN, I et al, 2013]

#### b.1. Les modes d'altération chimique

#### b.1.1. Les réactions

#### b.1.1.1. La mise en solution

C'est la réaction la plus simple, faisant intervenir de l'eau, ou de l'eau et un acide.

- la solubilité du quartz est très faible (6 ppm dans les eaux de surface); la réaction de mise en solution [MARTIN, P, 2010]

#### $SiO_2 \!\!+ 2 \mathrel{H_2O} \rightarrow \!\!H_4SiO_4$

- la calcite, par contre est beaucoup plus soluble (environ 2000 ppm), parce que l'eau de pluie se charge en  $CO_2$  et agit comme un acide faible.

#### CaCO<sub>3</sub>+ H<sub>2</sub>O + CO<sub>2</sub> $\rightarrow$ Ca<sup>++</sup>+ 2 HCO<sub>3</sub><sup>-</sup> (bicarbonate en solution)

- la halite et les autres halogénures sont très solubles (solubilités de plusieurs milliers de ppm).

#### b.1.1.2.L'hydratationet la déshydratation

C'est la perte ou le gain de molécules d'eau qui font partie de la structure du minéral, ou de manière plus concrète: minéral + eau=nouveau minéral hydraté; la déshydratation étant le processus inverse.[MARTIN, P, 2010]

- la déshydratation du gypse pour produire de l'anhydrite:  $CaSO_4.2H_2O$  (gypse)  $\rightarrow CaSO_4$  (anhydrite) +2 H<sub>2</sub>O

- l'hydratation de l'hématite pour produire de la limonite:  $Fe_2O_3(\text{hématite})+$  3  $H_2O$   $\rightarrow 2Fe(OH)$  3

- l'hydratation de la kaolinite pour produire de la gibbsite.

#### b.1.1.3. L'hydrolyse

Cette réaction est le processus par lequel un cation d'un minéral est remplacé par le  $H^+$  d'une solution acide. Cette réaction a pour conséquence de détruire le minéral ou de le convertir en une nouvelle espèce. [MARTIN, P, 2010]

 $Mg_2SiO_4$  (forstérite) + 4  $H_2CO_3 \rightarrow 2 Mg^{++} + 4 HCO_3 + H_4SiO_4$ 

 $4NaAlSi_{3}O_{8} \quad (albite) + 2CO_{2} + 11H_{2}O \rightarrow Si_{2}O_{5}Al_{2} \quad (OH)_{4} \quad (kaolinite) + 2Na^{+} + 2HCO_{3}^{-} + 4H_{4}SiO_{4} \quad (acide silicique).$ 

 $CO_2 (GAZ) + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+ \leftrightarrow CO_3^{-2} + H^+$ 

#### b.1.1.4. L'oxydation

C'est la transformation de  $Fe^{2+}en Fe^{3+}$ . L'oxygène de l'atmosphère est l'élément oxydant le plus répandu dans la nature et les éléments les plus facilement oxydables sont le fer et le manganèse.

 $2Fe^{+2}$ (ions ferreux) +  $4HCO_3 + (\frac{1}{2})O_2 + 4H_2O \rightarrow FeO_3$  (hematite) +  $4CO_2 + 6H_2O$ 

 $(Fe^{2+})\ 2SiO_4+\ 1/2\ O_2+\ 5\ H_2O \rightarrow 2\ Fe^{3+}\ (OH)\ 3+\ H_4SiO_4$ 

$$4 \operatorname{FeS}_2+15 \operatorname{O}_2+8 \operatorname{H}_2 \operatorname{O} \rightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3+8 \operatorname{H}_2 \operatorname{SO}_4$$

#### b.1.1.5.Les réactions impliquant la matière organique

On a vu qu'une réaction importante est l'oxydation de la matière organique, produisant de l'eau et du CO2, lui-même impliqué dans différentes réactions d'altération. [MARTIN, P, 2010]

#### $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$

#### b.1.2. l'attirance des éléments chimiques pour la molécule d'eau

Le diagramme de Goldschmidt : les processus d'hydrolyse sont en grande partie commandés par le caractère dipolaire de la molécule d'eau (pôle  $H_2$  positif, pôle O négatif) dont la force d'attraction vis-à-vis d'un ion détermine la solubilité. Goldschmidt montra, dès 1934, que l'attirance des éléments chimiques pour la molécule d'eau était en fonction de leur potentiel ionique (rapport de charge [Z] sur le rayon ionique [r]).On distingue trois classes d'ions :

Les ions à potentiel ionique faible  $(\mathbb{Z}/\mathbb{r} < 3)$ : c'est le domaine des cations solubles. à l'intérieur de cette classe, on distingue ceux dont le potentiel ionique est inférieur à 1. Leur taille étant trop grande par rapport à leur charge, ils n'ont que peu d'attirance pour la molécule d'eau et ne sont pas hydratés lors de leur mise en solution (cations dits anti-stokes, émission d'énergie supérieur à celle reçue : Cs, Rb, K). lorsque le potentiel ionique est supérieur à 1 (cations stokes, émission d'énergie plus faible que celle reçue, Na, Ca, Mg) les ions sont hydratés et donnent des solutions alcalines suivant la réaction.  $A^{n+} + nH_2O \rightarrow (A, nH_2O)^{n+}$  avec n = valence de A

Les ions à potentiel ionique moyen (3 < Z/r < 10): c'est le domaine des hydrolysats (insolubles). De diamètre moyen, ces ions (Al, Fe, Si) ont une action sur les molécules d'eau et forment des hydroxydes dont la stabilité en solution est faible (Al(OH) <sub>3</sub>, Fe(OH) <sub>3</sub>,...) suivant la réaction :

 $A^{n\scriptscriptstyle +} + n H_2 O \to A \; (OH) \; _n + (n/2) \; H_2$ 

Les ions à potentiel ionique élevé (Z/r > 10) : C'est le domaine des oxyanions (solubles). Ces ions de petit diamètre et de charge élevée (B, C, P, S) développent un champ considérable. L'ion H<sup>+</sup> des oxhydryles est libéré et oxygène annexé (formation des anions BO3, PO4, CO3, SO4). A<sup>n+</sup> + PH<sub>2</sub>O  $\rightarrow$  AOpn-2p + pH<sub>2</sub> avec n-2p < 0



Figure 36:diagramme de Goldschmidt (rapport de charge Z sur le rayon ionique r)

#### c. l'altération biologique

On distingue l'altération provoquée par l'action chimique de composés produits par des organismes (plantes, microbes,...) de l'action purement mécanique de plantes ou d'animaux (par exemple: dilatation des racines jouant le rôle de coin dans des fractures). L'ingestion de matériaux par des animaux vivant dans les sols est un processus faisant intervenir en même temps les deux types de mécanismes. Un premier processus important est l'oxydation de la matière organique (par la fermentation ou la respiration), produisant de l'eau et du CO2, lui-même impliqué dans des réactions de mise en solution:

#### $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$

La combinaison du CO<sub>2</sub>et de l'eau donne naissance à l'acide carbonique (H2CO3), un acide faible qui peut néanmoins solubiliser la calcite (ou un autre carbonate):

#### $H_2CO_3+ CaCO_3 \rightarrow PCa^{++}+ 2 HCO_3^{--}$

Les deux processus ne sont pas indépendants, l'altération mécanique, en multipliant les surfaces de contact et de réaction par fragmentation du volume originel, facilite l'altération chimique qui est conduite par un agent dominant qui est l'eau. [COJAN, I et al, 2013]

#### 2.3.4.2. L'ablation

L'ablation et le déplacement limité dans l'espace et le temps des produits mécaniques de l'altération ; ses événements sont les mouvements de terrain terrestre (reptation, fluage, coulées, glissements éboulements, écoulements, effondrements) ou marins (coutants de turbidité...). Un mouvement de terrain peut se produire de diverses façons qui dépendent de la nature et caractéristiques physico-chimiques des roches, état d'altération, topographie, climat et temps.[MARTIN, P, 2010]

#### 2.3.4.3. Le transport

Le transport plus au moins long d'éléments plus au moins volumineux selon l'état de fragmentation et l'agent. Le transport par le vent de grains de sable est limité en hauteur et distance au pluri métriques ; mais celui de poussières divers (côtières, désertiques, volcaniques) atteint des volumes considérables sur des distance à l'échelle d'un continent et même du globe. Les cours d'eau sont les principaux agents de transport de matériaux solide de calibre dépendant de leur débit, de leur vitesse, de leur turbulence et surtout de leur turbidité. [MARTIN, P, 2010]

#### 2.3.4.4. La sédimentation

L'étude des sédiments récents et actuels est particulièrement importante car ces matériaux meubles en grande partie argileux, plus au moins organiques, sont peu compacts et instables. Ce sont eux qui posent les problèmes d'aménagement et de construction les plus difficiles à résoudre.

#### Conclusion

Un schiste est une roche qui a pour particularité d'avoir un aspect feuilleté, et de se débiter en plaques fines. On dit qu'elle présente une schistosité ou foliation. Il peut s'agir d'une roche sédimentaire argileuse, ou bien d'une roche métamorphique.

Les processus physiques, chimiques et biologiques qui conduisent de la roche saine à ses produits de décomposition sont appelés altération.

# **DEUXIEME PARTIE** ETUDE EXPERIMENTALE

# **CHAPITRE IV**

# ESSAIS D'IDENTIFICATION

\_\_\_\_\_

# Introduction

L'identification du matériau schiste utilisé dans ce travail nécessite la détermination d'un ensemble de propriétés physiques, chimiques et minéralogiques.

Le schiste est ramené dans des sacs, au niveau du laboratoire pédagogique de mécanique des sols de l'université de mouloud Mammeri Tizi Ouzou, sous formes de blocs de différentes tailles. Après concassage manuel des blocs, on a déterminé les propriétés de ce matériau. Ces propriétés sont déterminées par des essais d'identifications simples et rapides :

- analyse granulométrique à sec après lavage [NF P94-056].

- analyse granulométrique par sédimentation [NF P94-057].
- teneur en eau [NF P94- 050].
- densité volumique des grains solides [NF P94-054].
- densité volumique sèche [NF P94- 064].
- limites d'Atterberg [NF P94-051].
- essai au bleu de méthylène [NF P94 -068].

#### 2. Le matériau schiste

Le schiste utilisé dans cette étude est prélevé au niveau de la route vers AIT YAHIA la daïra de Ain el hammam à 45 km sud-est du chef-lieu de la wilaya de Tizi Ouzou.



Figure 37: site d'extraction du schiste (route vers AIT YAHIA AIN EL HAMMAM).



Figure 38: blocs de schiste satiné extrait à Ain el hammam.

# 3. Analyse granulométrique à sec après lavage [NF P94- 056]

# 3.1. Définition

Analyse granulométrique à sec après lavage concerne les sols dont la dimension des éléments supérieurs à  $80 \mu m$  (0.08 mm).

L'essai consiste à séparer les éléments agglomérés d'une masse connue d'un matériau par brassage sous l'eau. Après séchage des grains et des particules, le matériau est analysé au moyen d'une série de tamis emboités par ordre décroissant du haut vers le bas soumise à des vibrations au moyen d'une tamiseuse.

#### 3.2. Exécution de l'essai

Après le concassage manuel du matériau schiste, on a pris une masse M = 0,2\*D avec D le diamètre maximal du gros grain. Dans notre cas D = 6 mm donc M = 1,2 kg. Vu que notre échantillon est un sol grenu propre, alors on a tamisé à sec sans aucun lavage.



Figure 39: le schiste après concassage.



Figure 40: la série de tamis et la tamiseuse.



Figure 41: une balance.

#### 3.3. Coefficient d'uniformité Cu et de courbure Cc

Afin de connaître l'étalement granulométrique des sols étudiés et pouvoir les classer, deux paramètres sont utilisés (Holtz. R.D et Kovacs. W.D, 1991 ; Schlosser. F, 1997) : le paramètre de la courbe ; appelé coefficient d'uniformité (Cu), dit coefficient de Hazen, donné par la relation :

$$Cu = \frac{D60}{D10}$$

Le paramètre de courbure appelé coefficient de courbure (Cc), donné par la relation :

$$Cc = \frac{(D30)2}{(D10) \times (D60)}$$

Avec D10, D30 et D60 représentent les diamètres correspondants respectivement à 10%, 30% et 60% des tamisat cumulés.

Tableau 4: classe granulométrique en fonction de Cu.

| Valeur de Cu      | Classes granulométriques  |
|-------------------|---------------------------|
| $Cu \leq 2$       | Granulométrie très serrée |
| $2 < Cu \le 5$    | Granulométrie serrée      |
| $5 < Cu \le 20$   | Granulométrie semi-étalée |
| $20 < Cu \le 200$ | Granulométrie étalée      |
| Cu > 200          | Granulométrie très étalée |

Tableau 5: Désignation des sols en fonction de Cu et Cc.

| Matériau                                                                                          | conditions                            | désignation | symbole |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------|-------------|---------|--|--|
| sable                                                                                             | $Cu \ge 6 \text{ et } 1 \le Cc \le 3$ | Bien gradué | SW      |  |  |
|                                                                                                   | Cu < 6  ou 1 > Cc > 3                 | Mal gradué  | SP      |  |  |
| gravier                                                                                           | $Cu \ge 4 \text{ et } 1 \le Cc \le 3$ | Bien gradué | GW      |  |  |
|                                                                                                   | Cu < 4  ou 1 > Cc > 3                 | Mal gradué  | GP      |  |  |
| S : sable(Sand), G : gravier(Gravel), W : biengradué (Well Graded), P: mal gradué (Poorly Graded) |                                       |             |         |  |  |

# 3.4. Résultats de l'analyse granulométrique

Masse de départ est M = 0.2\*6 = 1.2 kg.

Tableau 6: résultats de l'analyse granulométrique à sec.

| Dimension | masse des<br>refus gr | Masse de<br>refus<br>cumulé (gr) | Pourcentage<br>des refus<br>cumulé % | Tamisat<br>cumulé % |
|-----------|-----------------------|----------------------------------|--------------------------------------|---------------------|
| 6,3       | 0                     | 0                                | 0                                    | 100                 |
| 4         | 259,4                 | 259,4                            | 21,6166667                           | 78,3833333          |
| 3,15      | 100                   | 359,4                            | 29,95                                | 70,05               |
| 2         | 211,5                 | 570,9                            | 47,575                               | 52,425              |
| 1,25      | 168,1                 | 739                              | 61,5833333                           | 38,4166667          |
| 0,8       | 90,4                  | 829,4                            | 69,1166667                           | 30,8833333          |
| 0,5       | 72,6                  | 902                              | 75,1666667                           | 24,8333333          |
| 0,315     | 59,6                  | 961,6                            | 80,1333333                           | 19,8666667          |
| 0,2       | 37,1                  | 998,7                            | 83,225                               | 16,775              |
| 0,125     | 37,8                  | 1036,5                           | 86,375                               | 13,625              |
| fend      | 159,4                 | 1195,9                           | 99,6583333                           | 0,34166667          |



Figure 42: courbe granulométrique initiale.

Calcul de Cu = D60 / D10 = 2,5 / 0,12 = 20,833 donc 20 < Cu  $\leq$  200 ce qui donne une Granulométrie étalée.

Calcul de Cc =  $(D30)^2$  /  $D10*D60 = 0.8^2$  / 0.12\*2.5 = 2.133 donc Cu  $\ge 6$  et  $1 \le Cc \le 3$  ce qui nous donne un sable bien gradué SW.

#### 4.L'analyse granulométrique par sédimentation [NF P94- 057]

#### 4.1. Définition

C'est un essai qui complète l'analyse granulométrique par tamisage. Elle s'applique à la fraction d'un sol passant au tamis 80  $\mu$ m. Elle a pour objet la détermination de la distribution pondérale de la taille des particules fines d'un sol. Elle est ainsi nécessaire à sa description et à sa classification.

#### 4.2. Principe de l'essai

Dans un milieu liquide au repos, la vitesse de décantation des grains fins à très fins est fonction de leur dimension. La loi de stockes donne, dans le cas de grains sphériques de même masse volumique, la relation entre le diamètre des grains et leur vitesse de décantation. Cette loi est appliquée aux éléments d'un sol pour déterminer les diamètres équivalents des particules.



Figure 43: hexamétaphosphate de sodium et 80gr du schiste passant 80µm.



Figure 44: préparation de la solution à l'aide d'un agitateur électrique



Figure 45: équipements de l'essai de sédimentométrie.

| Date et<br>Heure | Temps (min) | Lecture. R | Température<br>C° (degrès) | Correction.<br>Temp | Lecture<br>Corrigée | Diamètre<br>(µ) | %<br>PASSANTS |
|------------------|-------------|------------|----------------------------|---------------------|---------------------|-----------------|---------------|
|                  | 0,25        | 1,013      | 26,2                       | +1,310              | 2,323               | 80,0            | 79,6          |
|                  | 0,5         | 1,012      | 26,2                       | +1,310              | 2,322               | 75,0            | 79,57         |
|                  | 1           | 1,0105     | 26,2                       | +1,310              | 2,3205              | 55,0            | 79,51         |
|                  | 2           | 1,008      | 26,2                       | +1,310              | 2,318               | 38,0            | 79,43         |
|                  | 5           | 1,0049     | 26,2                       | +1,310              | 2,3149              | 25,0            | 79,32         |
|                  | 10          | 1,0029     | 26,2                       | +1,310              | 2,3129              | 17,0            | 79,25         |
|                  | 20          | 1,001      | 26,3                       | +1,335              | 2,336               | 12,0            | 79,19         |
|                  | 40          | 1          | 26,3                       | +1,335              | 2,335               | 8,0             | 79,16         |
|                  | 80          | 0,9996     | 26,4                       | +1,360              | 2,3596              | 5,0             | 79,15         |
|                  | 240         | 0,999      | 26,5                       | +1,385              | 2,384               | 2,0             | 79,14         |
|                  | 1440        | 0,997      | 26,2                       | +1,310              | 2,307               | 1,0             | 79,05         |
|                  |             |            |                            |                     |                     |                 |               |

Tableau 7: résultats de l'analyse granulométrique par sédimentation (logiciel sol test 2014).



Figure 46: courbe granulométrique par sédimentation fraction de  $\phi < 0.08$ mm.

## 5. Caractéristiques physiques

#### 5.1. Teneur en eau W % [NF P94- 050]

#### 5.1.1. Définition

Elle est exprimée en pourcentage %, est le rapport entre la masse de l'eau évaporée par séchage d'un volume de sol ramenée à la masse sèche de ce sol. L'essai permet de renseigner sur l'état d'humidité d'un matériau, de savoir la quantité d'eau existante dans un volume de sol donné relativement à la quantité des grains solides de ce même volume de sol. Cette caractéristique permettra par la suite de déterminer d'autres caractéristiques du sol telles que le degré de saturation, la porosité,... sa détermination est indispensable et révèle d'un intérêt capital, notamment dans le cas des sols fins sensibles à l'eau.

#### 5.1.2. Exécution de l'essai

La détermination de cette teneur consiste à peser des échantillons de schiste humide puis les passer à l'étuve à 105°c pendant 24h et le peser une autre fois à sec.

 $W = m_w / m_d$  avec  $m_w$ : masse de l'eau, et  $m_d$ : masse du matériau sec.

## 5.1.3. Expression des résultats

| Échantillon                                  | 01             | 02             | 03             | 04    |
|----------------------------------------------|----------------|----------------|----------------|-------|
| Poids de la tare<br>[gr]                     | 20.4           | 27.4           | 24.2           | 24.8  |
| Poids humide<br>+ poids de la tare<br>[gr]   | 302.6          | 385.3          | 298.7          | 407.4 |
| Poids sec<br>+poids de la tare<br>[gr]       | 301.5          | 384.3          | 298.7          | 406.1 |
| Poids de l'eau<br>[gr]                       | 1.1            | 1              | 0.6            | 1.3   |
| Poids sec [gr]                               | 281.1          | 356.9          | 273.9          | 381.3 |
| Teneur en eau<br>w(%)= $\frac{Mw}{Ms}$ * 100 | 0.39           | 0.28           | 0.22           | 0.34  |
|                                              | w(%) moy = 0.3 | Date de l'essa | i : 21/03/2017 |       |

Tableau 8: détermination de la teneur en eau.

La teneur en eau moyenne de quatre échantillons après étuvage à  $105^{\circ}$ c pendent 24h est de 0,3 % qui est une valeur très faible.

# 5.2. Masse volumique sèche ρd par pesée hydrostatique [NF P94- 064] 5.2.1. Définition

La masse volumique sèche  $\rho$ d d'un sol est un paramètre d'état représentant le quotient de sa masse Ms par le volume V qu'il occupe y compris l'air et l'eau qu'il contient.

#### Exécutions de l'essai

On prend quatre échantillons de schiste sous forme de petit bloc d'abord brossé pour éliminer les particules facilement détachables, il est ensuite séché totalement à l'étuve est immédiatement pesé Ms, et est paraffinée aussitôt après. Une fois revenue à la température de la salle d'essai, elle est pesée à l'air libre Mp, puis est placé dans le panier suspendu à l'étrier de la balance et est immergé afin d'être pesée avec la balance hydrostatique.



Figure 47: préparation de quatre échantillons de schiste dans le panier de la pesée hydrostatique.

#### 5.2.2. Expression des résultats

|                                               |                |                 | -     |       |
|-----------------------------------------------|----------------|-----------------|-------|-------|
|                                               | 1              | 2               | 3     | 4     |
| Poids de la tare                              | 26.8           | 25.1            | 26.1  | 24.7  |
| Masse de la roche sèche + tare                | 224            | 176.7           | 174.7 | 132.8 |
| Mr [gr]                                       |                |                 |       |       |
| Masse roche + paraffine à l'air               | 227.1          | 179.9           | 179.1 | 136.7 |
| libre + tare Mrp [gr]                         |                |                 |       |       |
| Masse roche sèche paraffinée                  | 123.8          | 92.5            | 95.6  | 68.2  |
| dans l'eau M'rp [gr]                          |                |                 |       |       |
| Volume de la paraffine Vp                     | 3.52           | 3.64            | 5.00  | 4.43  |
| $(Vp=MP/Pp) [cm^{3}]$                         |                |                 |       |       |
| Volume total de la roche sèche                | 72.98          | 58.66           | 52.4  | 39.37 |
| V [cm <sup>3</sup> ]                          |                |                 |       |       |
| Masse volumique de l'eau $\rho_w$             | 1              | 1               | 1     | 1     |
| (gr/ cm <sup>3</sup> )                        |                |                 |       |       |
| Masse volumique de la                         | 0.88           | 0.88            | 0.88  | 0.88  |
| paraffine (ρ <sub>p</sub> )                   |                |                 |       |       |
| Masse volumique sèche de la                   | 2.7            | 2.58            | 2.8   | 2.7   |
| roche (p <sub>d</sub> )                       |                |                 |       |       |
| $\rho_d moy = \frac{Mr}{Mrp - M'rp Mrp - Mr}$ | Date de l'essa | ai : 20/03/2017 |       |       |
| ρω ρρ                                         |                |                 |       |       |

Tableau 9: détermination de la masse volumique sèche.

La masse volumique sèche de notre échantillon de schiste est  $\rho d = 2.65 \text{g/cm}^3$ .

# 5.3.Densité volumique des grains solides ps méthode du pycnomètre [NF P94-054]

#### 5.3.1. Définition

Elle est le quotient de la masse sèche de ces particules Ms par leur volume Vs. Vu l'hétérogénéité du sol, l'essai permet la détermination de la masse volumique moyenne des particules et éléments solides constituant un échantillon.

#### 5.3.2. Exécution de l'essai

On prend une quantité du schiste concassé à la main et le passer au tamis 2mm, ensuite on prend 50g du tamisat et le mettre dans une coupelle de masse connue M. l'ensemble est introduit dans une étuve réglée à 105°c. On pèse le pycnomètre et son bouchon secs et propre M1puis on pèse le pycnomètre et son bouchon plus l'échantillon M2. Le ballon du pycnomètre est ensuite rempli d'eau distillée ou déminéralisée maintenue à la température ambiante et pesé M3.et on pèse M4 qui est la masse du pycnomètre avec son bouchon plus eau. Dans cette expérience on a opté pour la méthode d'élimination des bulles d'air par ébullition à la plaque chauffante.



Figure 48: pesé du pycnomètre à vide M1.



Figure 49: pesé de 50g du schiste passant le tamis 2mm.



Figure 50: pesé de la masse M3.



Figure 51: élimination des bulles d'air par ébullition à la plaque chauffante.

Tableau 10: récapitulatif des données de l'essai au pycnomètre.

| Paramètre                                                              | valeur             |
|------------------------------------------------------------------------|--------------------|
| Masse du pycnomètre vide + bouchon M1                                  | à pesé             |
| Masse du pycnomètre vide + bouchon+ particules solides M2              | à pesé             |
| Masse du pycnomètre vide + bouchon+ particules solides + eau M3        | à pesé             |
| Masse du pycnomètre vide + bouchon + eau M4                            | à pesé             |
| Masse de l'eau de même volume que les particules solides (M4-M1+M2-M3) | à calculer         |
| Masse volumique de l'eau pw                                            | $1 \text{ g/cm}^3$ |
| Masse volumique des particules solides ps : moyenne des trois mesures  | Valeur recherchée  |
| $\rho s = [\rho w (M2-M1)] / (M4-M1+M2-M3)$                            |                    |

#### 5.3.3. Expression des résultats

- Masse du pycnomètre vide + bouchon M1= 202,2g.
- Masse du pycnomètre vide + bouchon+ particules solidesM2= 252,2g.
- Masse du pycnomètre vide + bouchon+ particules solides + eauM3= 797,3g.
- Masse du pycnomètre vide + bouchon + eau M4= 765,7 g.
- Avec  $\rho s = [1 (252,2-202,2)] / (765,7-202,2+252,2-797,3) = 2,717 \text{ g/cm}^3$ .

La masse volumique des particules solides de notre échantillon  $\rho s = 2,717 \text{ g/cm}^3$ .

### 5.4.Limites d'Atterberg [NF P94- 051]

Après un certains nombres d'essai qu'on a réalisé à l'appareil de Casagrande sur l'échantillon du schiste après passage au tamis 0,4mm, on a constaté que notre sol ne possède pas de limites d'Atterberg à cause de l'absence de particules fines (argileuse) ce qui donne une pâte non cohérente.





Figure 52: préparation de l'échantillon pour réaliser les limites d'Atterberg.

#### 5.5. Indice des vides

e = (8s/8d) - 1 = (2,717/2,65) - 1 = 0,025 = 2,5%.

#### 5.6. La porosité

n=1-(8d/8s)=1-(2,65/2,717)=0,024=2,4%.

#### 6. Essai au bleu de méthylène [NF P94-068]

#### 6.1.1. définition

Il a pour objectif la détermination de la quantité de particules argileuses présentes dans un échantillon de matériau.

#### 6.1.2. Principe de l'essai

Consiste à mesurer par dosage la quantité de bleu de méthylène adsorbée par le matériau mis en suspension dans l'eau. Cette quantité est rapportée par proportionnalité directe à la fraction 0/50mm. La valeur du bleu du sol est directement liée à la surface des particules constituant le matériau. Ce dernier adsorbera d'autant plus de bleu de méthylène que la quantité d'argile qu'il contient est importante. Le dosage s'effectue en ajoutant successivement différente quantité de bleu de méthylène et en contrôlant l'adsorption après chaque ajout. Une goutte de suspension est déposée sur un papier filtre, ce qui provoque la création d'une tâche. L'adsorption maximale est attente lorsqu'une auréole bleu claire persistante apparaît à la périphérie de la tâche.

#### 6.1.3. Préparation de la solution

- On prépare la solution du bleu de méthylène à 10g/l. Utiliser de l'eau distillée ou déminéralisée et du bleu de méthylène, de qualité pharmaceutique référence CODEX, degré de pureté  $\geq$ 98,5%, présenté sous forme de poudre.

- Verser 500 à 700g d'eau distillée ou déminéralisée dans le récipient à la température  $\leq$ 50°c.
- prendre 10g de la poudre sèche.

- Agiter la contenu en ajoutant lentement la poudre de bleu dans l'eau jusqu'à dissolution complète de la poudre.

- Compléter la masse de la solution d'eau distillée ou déminéralisée jusqu'à 1000  $\pm 5$  g puis agiter pendent 5min.

- Conserver la solution ainsi préparé dans une bouteille en verre teinté et placer à l'abri de la lumière. Cette solution est utilisable après un mois de sa préparation.



Figure 53: dispositif de dosage du bleu de méthylène.



Figure 54: l'agitateur mécanique, le récipient et la bouteille du bleu de méthylène.



Figure 55: gestion du dosage du bleu de méthylène.



Figure 56: essai du bleu de méthylène sur le papier filtre.
|   | sol sableux | sol limoneux | sol limoneux-argileux | sol argileux | sol très argileux |     |
|---|-------------|--------------|-----------------------|--------------|-------------------|-----|
| ( | 0 0,        | 2 2          | .5 0                  | 5            | 8                 | VBS |

Figure 57: échelle de VBS donnée par ARVOR géotechnique.

| Valeur de VBS                                                           | Commentaire                    |
|-------------------------------------------------------------------------|--------------------------------|
| VBS < 0,1                                                               | Sol sableux insensible à l'eau |
| 0,1 <vbs 0,2<="" <="" td=""><td>Sol sableux sensible à l'eau</td></vbs> | Sol sableux sensible à l'eau   |
| 0,2< VBS < 1,5                                                          | Sol sablo-argileux             |
| 1,5 < VBS < 2,5                                                         | Sol sablo-limoneux             |
| 2,5 < VBS < 6                                                           | Sol limoneux                   |
| 6 < VBS < 8                                                             | Sol argileux                   |
| VBS > 8                                                                 | Sol très argileux              |

Tableau 11: classes des sols en fonction du VBS.

## 6.1.4. Expression des résultats

| Paramètre                                                 | valeur            |
|-----------------------------------------------------------|-------------------|
| Teneur en eau du matériau w(%)                            | 0.3               |
| Masse humide de la prise d'essai M <sub>h1</sub>          | 100               |
| Masse sèche dela prise d'essai $M_0 = \frac{M_{h1}}{1+w}$ | 99.70             |
| Volume de la solution du bleu nécessaire pour atteindre   | $25 \text{ cm}^3$ |
| l'adsorption totale                                       |                   |
| Masse de bleu introduite B= V* 0.01                       | 0.25              |
| Valeur au bleu $VBS = \frac{B}{M_0} * 100$                | 0.02              |

Notre échantillon a donné une valeur du bleu de méthylène VBS= 0,02g ce qui nous permet de dire que notre matériau est un sol sableux insensible à l'eau.

## 7. Analyse minéralogique par diffraction des rayons X

## 7.1. Expression des résultats

Nos essais sont effectués au niveau du laboratoire de l'USTHB à Alger et ont donné les résultats sous forme de graphes suivants.





Figure 58: diffractogramme du schiste de Ain el hammam à étudier.

L'analyse minéralogique réalisée par diffraction aux rayons X sur le matériau schiste extrait à Ain el hammam montre que le minéral le plus dominant est le quartz représenté sur le graphe par la couleur rouge avec bien sûr la présence de magnésium aluminium silicates graphe de couleur orange et de la kaolinite graphe en couleur bleu avec des proportions différente mais de pourcentage inférieur à celui du quartz ce qui donne une roche très dure.

## Conclusion

Ce chapitre est consacré à l'étude des paramètres d'identification réalisés au laboratoire afin de mieux présenter les aspects physiques et minéralogiques du matériau étudié. Les essais d'identification nous ont permis de mieux connaitre le matériau schiste utilisé.

# **CHAPITRE V**

# ESSAI DE CISAILLEMENT DIRECTE A LA BOITE

## Introduction

Dans ce chapitre, On s'intéressera à l'essai de cisaillement direct à la boite de Casagrande qui permet de déterminer les caractéristiques mécaniques (la cohésion et l'angle de frottement interne) de notre matériau qui est le schiste [NF P94-071-1].

## 2. Appareillage

Il comprend :

- La machine de cisaillement.
- la boite de cisaillement de section  $S = 6*6cm^2$ .
- Une demi-boite inférieure mobile, munie d'une pierre poreuse plate.
- Une demi-boite supérieure fixe.
- Un anneau dynamométrique muni d'un comparateur 1/1000 indiquant les déplacements horizontaux.
- Un comparateur 1/100 pour indiquer les déplacements verticaux.
- Un dispositif régulateur de vitesse de cisaillement.
- Les charges et un bras de levier.



Figure 59: la machine et la boite de cisaillement.

## 3. Exécution de l'essai

A partir de la granulométrie initiale de notre échantillon (chapitre IV), on a imposé une granulométrie pour nos essais de cisaillement qui est constante pour tous les essais qui seront réalisés. Autrement dit pour l'essai sur le matériau sain (état naturel) et pour les cinq essais sur le matériau immergé dans des produits chimique.

La contrainte normale varie de (100, 200, 300, 400 kPa).

Le matériau schiste est immergé dans quatre produits chimiques différents, détergents, sulfates, phosphates et eau. Cinq échantillons ont été préparés : schiste seul, schiste + eau, schiste+ détergents, schiste + sulfates et schiste+ phosphates. Ces cinq échantillons sont ensuite soumis à cinq série de 10 cycles climatiques aux températures de 45°c pendant 18h et de -5°c pendant 6h durant cinq premiers jours, ensuite de 45°c pendant 6h et de -5°c pendant 18h durant cinq derniers jours.



.Figure 60: préparation de la première série.



Figure 61: détergents, phosphates et sulfates.

## 4.Essai de cisaillement sur le materiau à l'état initial

## 4.1. Analyse granulométrique initiale les résultats sont présentés dans L'annexe tableau1



Figure 62: courbe granulométrique initiale avant cisaillement de l'échantillon.

## 4.2. Expression des résultats

Au cours des essais de cisaillement, nous avons fait varier la contrainte normale de 100 à 400 kPa par pas de 100 kPa. Les résultats obtenus sont présentés sous forme de courbes contraintes déformation, de courbes de variation de volume et de courbes granulométriques après essai.

Deux séries de résultats seront présentés :

- Les courbes de cisaillement du matériau schiste avant traitement ;
- Les courbes de cisaillement du matériau schiste après traitement ;

Le traitement consiste à immerger les échantillons de schiste dans les différents polluants (phosphates, sulfates, détergents et eau), puis les soumettre aux essais de cycles climatiques.

## 4.3. Résultats de l'essai de cisaillement avant traitement

## Les résultats sont présentés dans L'annexe tableau 2 et 3

Les échantillons de schiste (sans polluants et eau) sont soumis aux essais de cisaillement direct à la boite et les résultats sont présentés sur les figures 63, 64, 65 et 66.

Sous le chargement de  $\sigma = (100, 200, 300 \text{ et } 400 \text{ KPa})$ , on obtient des courbes monotones qui évoluent lentement jusqu'à atteindre une valeur maximale de cisaillement où la rupture franche de l'échantillon apparait.



Figure 63: courbe  $\tau = f(\Delta L)$  de l'essai de cisaillement avant traitement de 1 à 4 bars.

La figure 63 montre que plus la contrainte normale augmente, plus la contrainte de cisaillement augmente et plus le module de Young (E) devient important. La valeur maximale de la contrainte de cisaillement a atteint 500 kPa sous la contrainte normale de 400 kPa.



Figure 64: courbe  $\Delta H = f(\Delta L)$  de l'essai de cisaillement avant traitement.

La figure 64 présente les variations de volume du matériau schiste sous les différentes contraintes normales. Toutes les courbes passent par deux phases : une phase de contractance sous les faibles déplacements ( $\Delta L$ ) puis une phase de dilatance sous les déplacements plus importants. Le seuil entre les deux phases varie de ( $\Delta L = 0.1$ mm pour  $\sigma_n=100$  kPa à  $\Delta L = 0.25$  mm pour  $\sigma_n=400$  kPa). Ces courbes montrent que le comportement du schiste est semblable à celui d'un sable dense.



Figure 65: droite intrinsèque  $\tau = f(\sigma)$ .

Les caractéristiques (C et  $\phi$ ) sont déduites de la courbe intrinsèque (figure 65) :

| Angle de frottement interne $\phi^{\circ}$ | Cohésion C en kPa |
|--------------------------------------------|-------------------|
|                                            |                   |
| 49,04                                      | 27,5              |

## 4.3.1.Courbe granulométrique après le cisaillement

La figure 66 présente les différentes courbes granulométriques obtenues après les essais de cisaillement sous 100, 200, 300 et 400 kPa.



Figure 66: courbe granulométrique après cisaillement.

La dégradation des grains de schiste est représentée par l'étalement granulométrique comparativement à la courbe granulométrique initiale. Plus la courbe est étalée, plus l'écrasement ou la dégradation des grains est importante. Dans notre cas, la courbe est légèrement étalée sous 400 kPa.

## 5. Essai de cisaillement sur le matériau après traitement

Les autres séries d'essais portent sur les essais de cisaillement réalisés sur des échantillons de schiste traités aux différents polluants (phosphates, sulfates, détergents et eau) puis soumis aux essais de cycles climatiques.

## 5.1. Essai de cisaillement sur la Série nº 1

La série N°1 est une série de cycles de dix jours dans l'enceinte climatique à 45°C pendant 18h et à -5°C pendant 6h durant les cinq premiers jours et inversement sous une température à 45°C pendant 6h et à -5°C pendant 18h durant cinq derniers jours de la série.

#### 5.1.1. Expression des résultats

Les résultats sont présentés sous forme de courbes efforts déformation, sous forme de courbes de variation de volume, sous forme de contrainte de cisaillement en fonction de la contrainte normale pour la courbe intrinsèque et par des courbes granulométriques après essais.

#### Cas de l'ajout de l'eau au schiste les résultats sont présentés dans L'annexe tableau 4 et 5

Les courbes de cisaillement sont représentées sur la figure 67 pour les courbes efforts déformation, sur la figure 68 pour les courbes de variation de volume, sur la figure 69 pour la courbe intrinsèque et sur la figure 70 pour les courbes granulométriques après essais.



Figure 67: courbe de  $\tau = f(\Delta L)$  série 1 après traitement (eau).

La figure 67 montre que plus la contrainte normale augmente, plus la contrainte de cisaillement augmente et plus le module de Young (E) devient important. La valeur maximale de la contrainte de cisaillement a atteint 430 kPa sous la contrainte normale de 400 kPa; cette valeur est inférieure à celle obtenue sur l'échantillon de schiste seul. Ce qui montre que l'eau diminue l'effet de la résistance au cisaillement.



Figure 68: courbe de V =  $f((\Delta L)$ , série 1 après traitement (eau).

La figure 68 présente les variations de volume du matériau schiste sous les différentes contraintes normales. Toutes les courbes passent par deux phases : une phase de contractance sous les faibles déplacements ( $\Delta L$ ) puis une phase de dilatance sous les déplacements plus importants. Le seuil entre les deux phases varie de ( $\Delta L = 0.05$ mm pour  $\sigma_n=100$  kPa à  $\Delta L = 0.18$  mm pour  $\sigma_n=400$  kPa). Ces seuils sont obtenus pour des déplacements plus petits que ceux du schiste seul.



Figure 69: droite intrinsèque  $\tau = f(\sigma)$  série 1 (eau).

Les caractéristiques (C et  $\phi$ ) sont déduites de la courbe intrinsèque (figure 69) :

| Angle de frottement interne $\phi^{\circ}$ | Cohésion C en kPa |  |
|--------------------------------------------|-------------------|--|
| 39                                         | 94,3              |  |



Figure 70: courbes granulométriques après cisaillement (eau).

Dans ce cas, la courbe est légèrement étalée sous 400 kPa par rapport à la courbe initiale. Toutefois cet étalement est moindre que celui obtenu pour le schiste seul.

## Cas de l'ajout du phosphate au schiste les résultats sont présentés dans l'annexe tableau 6 et 7

Les courbes de cisaillement sont représentées sur la figure 71 pour les courbes efforts déformation, sur la figure 72 pour les courbes de variation de volume, sur la figure 73 pour la courbe intrinsèque et sur la figure 74 pour les courbes granulométriques après essais.



Figure 71: courbe  $\tau = f(\Delta L)$  série 1 après traitement (phosphates).

La figure 71 montre que la contrainte de cisaillement dépasse les 500 kPa sous la contrainte normale de 400 kPa ; ce qui montre que la présence du phosphate a rendu le matériau schiste plus résistant au cisaillement.



Figure 72:courbe de V =  $f((\Delta L)$ , série 1 après traitement (phosphates).

Les courbes de variation de volume de la figure 72 montrent que l'échantillon (schiste + phosphate) présente une phase de contractance sous les faibles déplacements ( $\Delta L$ ) puis une phase de dilatance sous les déplacements plus importants.



Figure 73: droite intrinsèque série 1 après traitement (phosphates).

Les caractéristiques (C et  $\varphi$ ) sont déduites de la courbe intrinsèque (figure 73) :



Figure 74: courbes granulométriques après cisaillement (phosphates).

Dans ce cas, la courbe est légèrement étalée sous 300 et 400 kPa par rapport à la courbe initiale. Toutefois cet étalement est plus important que celui obtenu pour le schiste seul et pour le (schiste + eau).





Figure 75:courbe  $\tau = f(\Delta L)$  série 1 après traitement (détergents).

La figure 75 montre que la contrainte de cisaillement est moins de 500 kPa sous la contrainte normale de 400 kPa ; ce qui montre que la présence des détergents a rendu le matériau schiste moins résistant au cisaillement par rapport au schiste seul.



Figure 76: courbe de V = f (( $\Delta$ L), série 1 après traitement (détergents).

Les courbes de variation de volume de la figure 76 montrent que l'échantillon (schiste + détergents) est dilatant quel que soit la contrainte normale appliquée. Toutefois la phase de contractance est plus accentuée sous la contrainte normale de 300 et 400 kPa.



Figure 77: droite intrinsèque série 1 après traitement (détergent).

Les caractéristiques (C et  $\phi$ ) sont déduites de la courbe intrinsèque (figure 77) :

| Angle de frottement interne $\phi^{\circ}$ | Cohésion C en kPa |
|--------------------------------------------|-------------------|
| 46,41                                      | 46,6              |



Figure 78: courbes granulométriques après cisaillement (détergents).

Dans ce cas, les courbes granulométriques sont presque confondues. La présence du phosphate n'a pas engendré des écrasements significatifs du schiste.

## Cas de l'ajout des sulfates au schiste les résultats sont présentés dans L'annexe tableau 10 et 11



Figure 79:courbe  $\tau = f(\Delta L)$  série 1 après traitement (sulfates).

La figure 79 montre que la contrainte de cisaillement dépasse 550 kPa sous la contrainte normale de 400 kPa ; ce qui montre que la présence des sulfates a rendu le matériau schiste plus résistant au cisaillement par rapport au schiste seul. Il faut toutefois remarquer qu'il y a un écart de 250 kPa de la contrainte de cisaillement entre les contraintes normales de 300 et 400 kPa.



Figure 80:courbe de V = f (( $\Delta$ L), série 1 après traitement (sulfates).

Les courbes de variation de volume de la figure 80 montrent que l'échantillon (schiste + sulfates) est dilatant quel que soit la contrainte normale appliquée. Toutefois la phase de contractance est plus accentuée sous la contrainte normale de 300 et 400 kPa. Ce comportement est presque identique à celui du (schiste + phosphate).



Figure 81: droite intrinsèque série 1 après traitement (sulfates).

## Les caractéristiques (C et $\phi$ ) sont déduites de la courbe intrinsèque (figure 81) :



Figure 82: courbes granulométriques après cisaillement (sulfates).

Dans ce cas, les courbes granulométriques sont presque confondues pour les différentes contraintes normales. La présence du sulfate n'a pas engendré des écrasements significatifs du schiste.

#### Détermination de la cohésion et l'angle du frottement interne série 1

Les principales caractéristiques de cisaillement obtenues dans la série 1 sont regroupées dans le tableau ci-dessous.

| Echantillons         | Caractéristiques C et $\varphi$ de la série N°1 |       |  |
|----------------------|-------------------------------------------------|-------|--|
|                      | C [kPa]                                         | φ°    |  |
| Schiste + eau        | 94,3                                            | 39    |  |
| Schiste + phosphates | 23,9                                            | 54,23 |  |
| Schiste + détergents | 46,6                                            | 46,41 |  |
| Schiste + sulfates   | 4                                               | 52,15 |  |

#### Assemblage des courbes de cisaillement après traitement de 100 à 400 kPa

Les figures 83, 84, 85 et 86 regroupant les différents polluants sous différentes contraintes normales montrent clairement que les échantillons de schiste + phosphates présentent les plus grandes résistances au cisaillement. Les échantillons de (schiste + sulfates) et (schiste+ détergents) présentent les plus basses résistances au cisaillement sous les contraintes normales de 200 et 300 kPa. L'eau ne joue aucun rôle lorsque la contrainte normale est la plus petite.

70



Figure 83: assemblage des courbes de 1bar pour les 4 polluants.



Figure 84: assemblage des courbes de 2 bars pour les 4 polluants.



Figure 85: assemblage des courbes de 3bars pour les 4 polluants.



Figure 86: assemblage des courbes de 4 bars pour les 4 polluants.

## 5.2.Essai de cisaillement sur la Série nº 2

Après une deuxième série de cycles de dix jours dans l'enceinte climatique identique à la première série, les échantillons seront soumis à l'essai de cisaillement. Les principaux résultats sont présentés pour chaque échantillon par des courbes efforts déformations, des courbes de variation de volume, de la courbe intrinsèque et enfin des courbes d'étalement granulométriques.



Cas du (schiste + Eau seul) les résultats sont présentés dans L'annexe tableau 12 et 13

Figure 87: courbe  $\tau = f(\Delta L)$  série 2 après traitement (eau).



Figure 88: courbe de V =  $f((\Delta L)$ , série 2 après traitement (eau).



Figure 89: droite intrinsèque série 2 après traitement (eau).



Figure 90: courbes granulométriques après cisaillement (Eau).



Figure 91 : courbe  $\tau = f(\Delta L)$  série 2 après traitement (phosphates).



Figure 92: courbe de V = f (( $\Delta$ L), série 2 après traitement (phosphates).



Figure 93: droite intrinsèque série 2 après traitement (phosphates).



Figure 94: courbes granulométriques après cisaillement (phosphates).



Cas du (schiste +détergents) les résultats sont présentés dans L'annexe tableau 16 et 17

Figure 95: courbe  $\tau = f(\Delta L)$  série 2 après traitement (détergents).



Figure 96: courbe de V =  $f((\Delta L)$ , série 2 après traitement (détergents).



Figure 97: droite intrinsèque série 2 après traitement (détergents).



Figure 98: courbes granulométriques après traitement (détergents).

Cas du (schiste + sulfates) les résultats sont présentés dans L'annexe tableau 18 et 19



Figure 99: courbe  $\tau = f(\Delta L)$  série 2 après traitement (sulfates).



Figure 100: courbe de V = f (( $\Delta$ L), série 2 après traitement (sulfates).



Figure 101: droite intrinsèque série 2 après traitement (sulfates).



Figure 102: courbes granulométriques après traitement (sulfates).

| Poluant s2 | C (bar) | φ°    |
|------------|---------|-------|
| Eau        | 0,215   | 51,42 |
| Phosphates | 0,52    | 46,83 |
| Détérgents | 0,77    | 47,67 |
| sulfates   | 0,652   | 47,71 |

Détermination de la cohésion et l'angle du frottement interne série 2

Les angles de frottement obtenus sont presque identiques pour les trois polluants : (phosphate, sulfates et détergents) ( $\phi$ =47°), alors que ces polluants ont créés une certaine cohésion dans le schiste variant de 50 à 77 kPa. Par contre la présence d'eau a diminué la cohésion dans le schiste.



Assemblage des courbes de cisaillement après traitement de 100 à 400 kPa

Figure 103: assemblage des courbes de 1bar pour les 4polluants.



Figure 104: assemblage des courbes de 2bars pour les 4 polluants.



Figure 105: assemblage des courbes de 3bars pour les 4polluants.



Figure 106: assemblage des courbes de 4bars pour les 4 polluants.

Les figures 103,104,105 et 106 regroupant les différents polluants sous différentes contraintes normales montrent clairement que les échantillons de schiste + détergents présentent les plus grandes résistances au cisaillement pour les faibles contraintes normales 100 et 200 kPa. Les courbes de cisaillement dans cette série sont circonscrites dans un fuseau restreint. L'échantillon de schiste + eau a présenté la plus grande résistance sous la contrainte normale de 400 kPa, ce qui montre que les polluants ont joué un rôle dans la baisse de la résistance au cisaillement.

### 5.3.Essai de cisaillement sur la Série nº 3

Après une troisième série de cycles de dix jours dans l'enceinte climatique identique à celle de la première et de la deuxième série, les échantillons seront soumis aux essais de cisaillement. Les principaux résultats sont présentés pour chaque échantillon par des courbes efforts déformations, des courbes de variation de volume, de la courbe intrinsèque et enfin des courbes d'étalement granulométriques.

Cas du (schiste + Eau seul) les résultats sont présentés dans L'annexe tableau 20 et 21



Figure 107: courbe  $\tau = f(\Delta L)$  série 3 après traitement (eau).







Figure 109:droite intrinsèque série 3 après traitement (eau).



Figure 110: courbes granulométriques après cisaillement (eau).



Cas du (schiste + phosphates) les résultats sont présentés dans L'annexe tableau 22 et 23

Figure 111: courbe  $\tau = f(\Delta L)$  série 3 après traitement phosphates.



Figure 112: courbe de V = f (( $\Delta$ L), série 3 après traitement phosphates.



Figure 113: droite intrinsèque série 3 après traitement phosphates.



Figure 114: courbes granulométriques après cisaillement (phosphates).

Cas du (schiste + détergents) les résultats sont présentés dans L'annexe tableau 24 et 25



Figure 115: courbe  $\tau = f(\Delta L)$  série 3 après traitement détergents.



Figure 116: courbe de V = f (( $\Delta L$ ), série 3 après traitement détergents.



Figure 117: droite intrinsèque série 3 après traitement détergents.



Figure 118: courbes granulométriques après cisaillement (détergents).



Cas du (schiste + sulfates) les résultats sont présentés dans L'annexe tableau 26 et 27

Figure 119: courbe  $\tau = f(\Delta L)$  série 3 après traitement sulfates.



Figure 120: courbe de V =  $f((\Delta L)$ , série 3 après traitement sulfates.



Figure 121: droite intrinsèque série 3 après traitement sulfates.



Figure 122: courbes granulométriques après cisaillement (sulfates).

| Poluant s3 | C (bar) | φ°    |
|------------|---------|-------|
| Eau        | 0,605   | 47,95 |
| Phosphates | 1,33    | 42,27 |
| Détérgents | 0,43    | 47,33 |
| sulfates   | 0.1965  | 55.49 |

Détermination de la cohésion et l'angle du frottement interne série 3

Les angles de frottement internes obtenus présentent un écart important surtout pour les phosphates qui ont baissés l'angle de frottement avec 5°, De l'autre part les sulfates ont augmenté l'angle de frottement avec 8° par contre les détergents et l'eau ont gardé le même angle de frottement. Alors que les phosphates ont créés une certaine cohésion dans le schiste atteint 133 Kpa, Par contre la présence des sulfates a baissés la cohésion dans le schiste jusqu'à une valeur de 19,65 Kpa.

Assemblage des courbes de cisaillement après traitement de 100 à 400 kPa



Figure 123: assemblage des courbes de 1bar pour les 4 polluants.



Figure 124: assemblage des courbes de 2bars pour les 4 polluants.



Figure 125: assemblage des courbes de 3bars pour les 4 polluants.



Figure 126: assemblage des courbes de 4bars pour les 4 polluants.

Les figures 123, 124, 125 et 126 regroupant les différents polluants sous différentes contraintes normales montrent clairement que les échantillons de schiste + phosphates présentent les plus grandes résistances au cisaillement pour les faibles contraintes normales et les échantillons de (schiste + sulfates) pour les fortes contraintes normales. Plus la contrainte normale augmente, plus l'effet des phosphates diminuent la résistance au cisaillement.

#### 5.4.Essai de cisaillement sur la Série n°4

Après une quatrième série de 10 cycles de dix jours dans l'enceinte climatique, identique aux trois premières séries, les échantillons seront soumis aux essais de cisaillement. Les principaux résultats sont présentés pour chaque échantillon par des courbes efforts déformations, des courbes de variation de volume, de la courbe intrinsèque et enfin des courbes d'étalement granulométriques.

Cas du (schiste + Eau seul) les résultats sont présentés dans L'annexe tableau 28 et 29



Figure 127: courbe  $\tau = f(\Delta L)$  série 4 après traitement eau.



Figure 128: courbe de V =  $f((\Delta L)$ , série 4 après traitement eau.



Figure 129: droite intrinsèque série 4 après traitement eau.



Figure 130: courbes granulométriques après cisaillement (eau).

Cas du (schiste + phosphates) les résultats sont présentés dans L'annexe tableau 30 et 31



Figure 131: courbe  $\tau = f(\Delta L)$  série 4 après traitement (phosphates).

88



Figure 132: courbe de V =  $f((\Delta L)$ , série 4 après traitement (phosphates).



Figure 133: droite intrinsèque série 4 après traitement phosphates.



Figure 134: courbes granulométriques après cisaillement (phosphates).





Figure 135: courbe  $\tau = f(\Delta L)$  série 4 après traitement détergents.



Figure 136: courbe de V =  $f((\Delta L)$ , série 4 après traitement détergents.



Figure 137: droite intrinsèque série 4 après traitement détergents.



Figure 138 : courbes granulométriques après cisaillement (détergents).



Cas du (schiste + sulfates) les résultats sont présentés dans L'annexe tableau 34 et 35

Figure 139: courbe  $\tau = f(\Delta L)$  série 4 après traitement sulfates.



Figure 140: courbe de V =  $f((\Delta L)$ , série 4 après traitement sulfates.


Figure 141:droite intrinsèque série 4 après traitement sulfates.



Figure 142: courbes granulométriques après cisaillement sulfates.

| Poluant s4 | C (bar) | φ°    |
|------------|---------|-------|
| Eau        | 0,7445  | 48,46 |
| Phosphates | 0,685   | 46,95 |
| Détérgents | 0,62    | 47,69 |
| sulfates   | 0,44    | 53,02 |

#### Détermination de la cohésion et l'angle du frottement interne série 4

Les angles de frottement obtenus sont presque identiques pour les deux polluants : (phosphate, et détergents) et l'eau ( $\phi$  variant de 47°à 48°). Par contre la présence des sulfates dans cette série a diminué la cohésion dans le schiste et a augmenté l'angle de frottement.

92



Figure 143:assemblage des courbes de 1bars pour les 4 polluants.



Figure 144:assemblage des courbes de 2bars pour les 4 polluants.



Figure 145: assemblage des courbes de 3bars pour les 4 polluants.



Figure 146: assemblage des courbes de 4bars pour les 4 polluants.

Les figures 143, 144, 145 et 146 regroupant les différents polluants sous différentes contraintes normales montrent clairement que les échantillons de (schiste + sulfates) présentent les plus grandes résistances au cisaillement pour les faibles et les fortes contraintes normales et les échantillons de (schiste + détergents) ont présentés les plus faibles contraintes au cisaillement. L'ensemble des courbes sont circonscrite dans un fuseau très étroit.

#### 5.5. Essai de cisaillement sur la Série n°5

Après une cinquième série de 10 cycles de dix jours dans l'enceinte climatique, identique aux quatre premières séries, les échantillons seront soumis aux essais de cisaillement. Les principaux résultats sont présentés pour chaque échantillon par des courbes efforts déformations, des courbes de variation de volume, de la courbe intrinsèque et enfin des courbes d'étalement granulométriques.



Cas du (schiste + Eau) les résultats sont présentés dans L'annexe tableau 36 et 37

Figure 147: courbe  $\tau = f(\Delta L)$  série 5 après traitement eau.



Figure 148: courbe de V = f (( $\Delta$ L), série 5 après traitement eau.



Figure 149: droite intrinsèque série 5 après traitement eau.



Figure 150: courbes granulométriques après cisaillement eau.

Cas du (schiste + phosphates) les résultats sont présentés dans L'annexe tableau 38 et 39



Figure 151: courbe  $\tau = f(\Delta L)$  série 5après traitement phosphates.



Figure 152: courbe de V = f (( $\Delta$ L), série 5 après traitement phosphates.



Figure 153: droite intrinsèque série 5 après traitement phosphates.



Figure 154: courbes granulométriques après cisaillement phosphates.

#### Cas du (schiste + détergents) les résultats sont présentés dans L'annexe tableau 40 et 41



Figure 155: courbe  $\tau = f(\Delta L)$  série 5après traitement détergent.



Figure 156: courbe de V =  $f((\Delta L)$ , série 5 après traitement détergents.

97



Figure 157: droite intrinsèque série 5 après traitement détergents.



Figure 158: courbes granulométriques après cisaillement détergents.

Cas du (schiste + sulfates) les résultats sont présentés dans L'annexe tableau 42 et 43



Figure 159: courbe  $\tau = f(\Delta L)$  série 5après traitement sulfates.



Figure 160: courbe de V =  $f((\Delta L)$ , série 5 après traitement sulfates.



Figure 161: droite intrinsèque série 5 après traitement sulfates.



Figure 162: courbes granulométriques après cisaillement sulfates.

| Poluant s5 | C (bar) | φ°    |
|------------|---------|-------|
| Eau        | 0,625   | 48,46 |
| Phosphates | 0,23    | 53,89 |
| Détérgents | 0,42    | 51,69 |
| sulfates   | 0,075   | 53,87 |

#### Détermination de la cohésion et l'angle du frottement interne série 5

Les angles de frottement obtenus sont presque identiques pour les deux polluants : (phosphate, et sulfates) ( $\phi = 53^{\circ}$ ). Par contre la présence des détergents a légèrement diminué  $\phi$ . Pour la cohésion, les sulfates ont complètement cassé cette liaison entre les grains et ont présenté la plus petite cohésion.



Assemblage des courbes de cisaillement après traitement de 100 à 400 kPa

Figure 163: assemblage des courbes de 1bar pour les 4 polluants.



Figure 164: assemblage des courbes de 2bars pour les 4 polluants.



Figure 165: assemblage des courbes de 3bars pour les 4 polluants.



Figure 166: assemblage des courbes de 4bars pour les 4 polluants.

Les figures 163, 164, 165 et 166 regroupant les différents polluants sous différentes contraintes normales montrent clairement que les échantillons de (schiste + phosphates) présentent les plus grandes résistances au cisaillement pour les fortes contraintes normales (300 et 400 kPa) et les échantillons de (schiste + sulfates) ont présenté la plus forte contrainte au cisaillement pour la contrainte normale de 400 kPa.

L'influence des polluants sur le matériau schisteux après cinquante cycles climatiques a montré que les trois polluants (détergents, phosphate et sulfate) ont présentés de meilleures résistances aux cisaillements que celle obtenue avec le (schiste + eau). Plus la contrainte normale est élevée, plus la résistance au cisaillement des échantillons avec les trois polluants est élevée.

#### Influence des séries de cycles climatiques sur les caractéristiques au cisaillement

Après les cinq séries de 10 cycles de dix jours dans l'enceinte climatique, les échantillons sont soumis aux essais de cisaillement. Les principaux résultats sont présentés pour chaque échantillon en fonction du numéro de la série par des courbes efforts déformations.



Figure 167: comparaison des courbes de 1 bar avant et après traitement.



Figure 168: comparaison des courbes de 2 bars avant et après traitement.



Figure 169: comparaison des courbes de 3 bars avant et après traitement.



Figure 170: comparaison des résultats 4 bars avant et après traitement.

Sous l'influence de l'eau, les courbes de cisaillement du schiste figures 167, 168, 169 et 170 ont présenté des valeurs des contraintes de cisaillement maximales ( $\tau_{max}$ ) supérieures à celle présentée par la courbe de cisaillement du schiste seul. En général, le nombre de cycles d'immersion à l'eau du schiste n'a fait qu'augmenter la résistance au cisaillement de l'échantillon (schiste + eau).



#### Cas du (schiste + phosphates)

Figure 171: comparaison des courbes de 1 bar avant et après traitement.



Figure 172: comparaison des courbes de 2 bars avant et après traitement.



Figure 173: comparaison des courbes de 3 bars avant et après traitement.



Figure 174: comparaison des courbes de 4 bars avant et après traitement.

Sous l'influence du phosphate, les courbes de cisaillement du schiste sous des contraintes normales de 100 et 200 kPa figures 171, 172, 173 et 174 ont présenté des valeurs des contraintes de cisaillement maximales ( $\tau_{max}$ ) supérieures à celle présentée par la courbe de cisaillement du schiste seul. A partir de la contrainte normale de 300 kPa, on retrouve à certains cycles des valeurs de ( $\tau_{max}$ ) inférieures à celle présentée par la courbe de cisaillement du schiste seul figure 63. Quel que soit la contrainte normale appliquée, la résistance au cisaillement ne suit pas une logique de linéarité en fonction du nombre de cycles climatiques.









Figure 176: comparaison des courbes de 2 bars avant et après traitement.



Figure 177: comparaison des courbes de 3bars avant et après traitement.



Figure 178: comparaison des courbes de 4 bars avant et après traitement.

Sous l'influence des détergents, les courbes de cisaillement du schiste sous la contrainte normale de 100 kPa figure 75, 76, 77 et 78 ont présenté des valeurs des contraintes de cisaillement maximales ( $\tau_{max}$ ) supérieures à celle présentée par la courbe de cisaillement du schiste seul. A partir de la contrainte normale de 200 kPa, on retrouve à certains cycles des valeurs de ( $\tau_{max}$ ) inférieures à celle présentée par la courbe de cisaillement du schiste seul a contrainte de cisaillement du schiste seul figures 63. On constate que la contrainte de cisaillement maximale est obtenue au deuxième cycle et cela quel que soit la contrainte normale appliquée.



#### Cas du (schiste + sulfates)

Figure 179: comparaison des courbes de 1 bar avant et après traitement.



Figure 180: comparaison des courbes de 2 bars avant et après traitement.



Figure 181: comparaison des courbes de 3bars avant et après traitement.



Figure 182: comparaison des courbes de 4 bars avant et après traitement.

Sous l'influence des sulfates, les courbes de cisaillement du schiste sous la contrainte normale de 400 kPa figure 179, 180, 181 et 182 ont présenté des valeurs des contraintes de cisaillement maximales ( $\tau_{max}$ ) supérieures à celle présentée par la courbe de cisaillement du schiste seul. A partir de la contrainte normale de 100 à 300 kPa, on retrouve à certains cycles des valeurs de ( $\tau_{max}$ ) inférieures à celle présentée par la courbe de cisaillement du schiste que la contrainte de cisaillement du schiste seul figures 63. On constate que la contrainte de cisaillement maximale est obtenue au troisième cycle et cela quel que soit la contrainte normale appliquée.

6. Assemblage des cohésions et angles de frottement interne pour les différentes



Assemblages des paramètres avant et après traitement pour les cinq séries







Figure 184: assemblage des paramètres avant et après traitement pour la 2ième série.



Figure 185:assemblages des paramètres avant et après traitement pour la 3ième série.



Figure 186: assemblages des paramètres avant et après traitement pour la 4ième série.



Figure 187: assemblages des paramètres avant et après traitement pour la 5ième série.

# 7. Assemblage des cohésions et angles de frottements interne après traitement pour chaque polluant

#### Cas de l'eau seul



Figure 188: assemblage des paramètres avant et après traitement (eau).

#### Cas des phosphates



Figure 189: assemblage des paramètres avant et après traitement (phosphates).



#### Cas des détergents

Figure 190: assemblage des paramètres avant et après traitement (détergents).

#### Cas des sulfates



Figure 191: assemblage des paramètres avant et après traitement (sulfates).

## 8. Comparaison entre les paramètres mécaniques

|         | eau après traitement |       | phosphates après traitement |       | détergents après traitement |       | sulfates apr | ès traitement | avant traitement |       |
|---------|----------------------|-------|-----------------------------|-------|-----------------------------|-------|--------------|---------------|------------------|-------|
|         | C                    | φ°    | С                           | φ°    | С                           | φ°    | С            | φ°            | С                | φ°    |
| série 1 | 0,943                | 39    | 0,239                       | 54,23 | 0,466                       | 46,41 | 0,04         | 52,15         |                  |       |
| série 2 | 0,215                | 51,39 | 0,52                        | 46,83 | 0,77                        | 47,67 | 0,652        | 47,71         | 0.175            | 40.04 |
| série 3 | 0,605                | 47,95 | 1,33                        | 42,27 | 0,43                        | 47,33 | 0,1965       | 55,49         | 0,2/5            | 43,04 |
| série 4 | 0,7445               | 48,46 | 0,685                       | 46,95 | 0,62                        | 47,69 | 0,44         | 53,02         |                  |       |
| série 5 | 0,625                | 48,46 | 0,23                        | 53,89 | 0,42                        | 51,69 | 0,075        | 53,87         |                  |       |

Tableau 12: récapitulatif des paramètres mécanique avant et après traitement.

## Conclusion

Les essais de cisaillements permettent de déterminer les caractéristiques mécaniques du

schiste (C et  $\varphi$ ).

Après cinquante cycles climatiques, les trois polluants (détergents, phosphate et sulfate) ont présenté de meilleures résistances au cisaillement que celle obtenue avec le (schiste + eau).

Plus la contrainte normale est élevée, plus la résistance au cisaillement des échantillons avec les trois polluants est élevée.

## **CHAPITRE VI**

## ESSAI OEDOMETRIQUE

\_\_\_\_\_

### Introduction

Les sols subissent au court du temps des déformations sous les cycles de chargementdéchargement qui leur sont appliqués, avec des amplitudes qui peuvent aller de quelques millimètres à quelques mètres. Pour estimer les déformations verticales d'un sol, on a souvent recours aux essais de compressibilité à l'œdomètre réalisés au laboratoire. Cet essai œdométrique permet d'étudier le comportement d'un sol soumis à un accroissement de chargement et d'en déduire l'amplitude les tassements et leur évolution dans le temps sous l'effet des cycles chargement- déchargement.

#### 2. Objectif du travail

Notre travail est basé sur la détermination des paramètres mécanique du sol liés à la compressibilité, la contrainte de préconsolidation  $\sigma'_{p}$ , l'indice de compression Cc, l'indice du recompression Cs et l'indice de gonflement Cg pour le matériau schiste avant et après immersion dans les produits chimiques durant cinq séries de cycles de dix jours par série.

#### 3. Pression de consolidation 6'p

C'est la pression maximale qu'a subi le sol durant son histoire géologique. Elle permet en la comparant à la contrainte actuelle du sol  $\sigma'_{vo}$  déterminée au point de prélèvement de l'échantillon de décrire l'état du sol :

- σ'<sub>p</sub>>σ'<sub>vo</sub> le sol est sur-consolidé (le sol a subi un chargement important dans le passé).
- $\sigma'_{p} = \sigma'_{vo}$  le sol est normalement consolidé (le sol n'a aucun chargement à l'exception de son poids propre).
- $\sigma'_{p} = \sigma'_{vo}$  le sol est sous-consolidé le sol n'a pas fini de tasser sous son poids propre).

#### 4. Appareillage

L'appareillage de l'essai œdométrique est composé par :

- Une cellule œdométrique munie d'un réservoir de saturation, l'anneau métallique rigide de section cylindrique, deux pierres poreuses et d'un dispositif permettant de repartir uniformément la contrainte appliquée sur la surface de l'échantillon.

- Un bâti de chargement indéformable, accompagné d'une série de masses.

- Un comparateur pour mesurer les variations de hauteur de l'échantillon sous différents chargements-déchargements appliqués.

- Un appareillage d'usage courant, trousse coupante pour taillé l'échantillon, une balance et une étuve.



Figure 192: la machine œdométrique.

#### 5. Exécution de l'essai

Une granulométrie initiale a été imposée pour tous les essais œdométriques tant pour le schiste seul que pour le schiste immergé dans des produits chimiques.

Pour le matériau de référence, on a préparé une quantité du schiste concassé manuellement et tamisé dans la fraction [0 / 6,3] pour la réalisation de l'essai œdométrique cyclique sous les chargements suivant :

- 1<sup>ier</sup> phase du chargement 1, 2, 4, 8, 16, 32 et 64 kg.
- 1<sup>ier</sup> phase déchargement 64, 32, 16, 8, 4, 2 et 1 kg.
- 2<sup>ième</sup> phase du chargement 8, 16, 32 et 64kg.
- 2<sup>ième</sup> phase de déchargement 64, 32, 16 et 8 kg.

Pour les échantillons de schiste immergé dans des produits chimiques différents : détergents, sulfates, phosphates et eau seul, ils seront soumis aux cycles climatiques dans une enceinte climatique pendant cinq séries de cycle de dix jours. Chaque cycle comporte deux températures (45°c pendant 18h et -5°c pendant 6h) durant cinq premiers jours ensuite on inverse les deux températures (45°c pendant 6h et - 5°c pendant 18h) durant cinq derniers jours. Tout compte fait, une série comporte dix cycles.

Une fois les cycles climatiques sont réalisés, on soumettra les échantillons aux essais œdométriques avec des cycles de chargement-déchargement.



Figure 193: préparation de l'échantillon pour l'essai avant traitement.



Figure 194: préparation des échantillons pour réaliser quatre essais œdométriques.

114

#### 6. Essai œdométrique sur le matériau à l'état naturel

Avant traitement, l'échantillon de schiste est soumis à l'essai de compressibilité (essai œdométrique). Les principaux résultats sont présentés ci-après :



6.1. Analyse granulométrique initiale les résultats sont présentés dans L'annexe tableau 44

Figure 195: courbe granulométrique avant traitement.

#### 6.2. Expression des résultats

Les résultats sont présentés sous forme de courbe œdométrique  $e = f(\sigma)$ 

Avant traitement les résultats sont présentés dans L'annexe tableau 46



Figure 196: courbe œdométrique avant traitement.

#### 6.2.1. Détermination des paramètres de l'essai œdométrique

Trois paramètres sont à déduire des courbes œdométriques :

- La contrainte de préconsolidation  $\sigma \, p$  qui correspond à l'intersection des deux tangentes
- L'indice de compression déterminé à partir de deux points sur la droite tangente à la partie vierge de la courbe et faire leurs projection sur les axes des contraintes et des indice des vides :

$$Cc = \Delta e / \Delta (\log \sigma')$$

- L'indice de recompression ou de gonflement déterminé à partir de deux points sur la droite tangente à la partie initiale de la courbe et faire leur projection sur les axes des contraintes et des indices des vides :

Cs ou Cg =  $\Delta e / \Delta (\log \sigma')$ 

Avant traitement, les caractéristiques de l'essai œdométrique sont :

- La contrainte de consolidation σ'p :

6'p = 1,22 bars

- L'indice de compression Cc :

 $Cc = \Delta e / \Delta (\log \sigma') = 0.0332$ 

- L'indice de recompression ou de gonflement Cg :

Cs ou Cg = 
$$\Delta e / \Delta (\log \sigma') = 0,00786$$

#### 7. Essai œdométrique sur le matériau schiste après traitement

Après les différents cycles climatiques, les échantillons de schiste immergés dans l'eau et les polluants (sulfates, phosphates et détergents) sont soumis aux essais de compressibilité à l'essai œdométrique. Les principaux résultats sont présentés ci-après :

Cas du (schiste + l'eau) les résultats sont présentés dans L'annexe tableau 47





La contrainte de consolidation σ'p : G'p = 3,1 bars
L'indice de compression Cc : Cc = Δe / Δ (log σ')= 0,049
L'indice de recompression ou de gonflement Cg : Cs ou Cg = Δe / Δ (log σ')= 0,0235



Cas du (schiste + détergents) les résultats sont présentés dans L'annexe tableau 48

Figure 198: courbe œdométrique après traitement (schiste + détergents).

- La contrainte de consolidation  $\sigma$ 'p :

$$G'p = 2,1$$
 bars

- L'indice de compression Cc :

$$Cc = \Delta e / \Delta (\log \sigma') = 0.0611$$

- L'indice de recompression ou de gonflement Cg :

Cs ou Cg = 
$$\Delta e / \Delta (\log \sigma') = 0.0$$

Cas du (schiste+ sulfates) les résultats sont présentés dans L'annexe tableau 49



Figure 199: courbe œdométrique après traitement (schiste + sulfates).

- La contrainte de consolidation  $\sigma'p$ : G'p = 2,9 bars - L'indice de compression Cc :  $Cc = \Delta e / \Delta (\log \sigma') = 0,0669$ - L'indice de recompression ou de gonflement Cg : Cs ou Cg =  $\Delta e / \Delta (\log \sigma') = 0,0114$ 



Cas du (schiste + phosphates) les résultats sont présentés dans L'annexe tableau 50



- La contrainte de consolidation σ'p :

$$6'p = 2,5$$
 bars

- L'indice de compression Cc :

$$Cc = \Delta e / \Delta (\log \sigma') = 0,0946$$

- L'indice de recompression ou de gonflement Cg : Cs ou Cg =  $\Delta e / \Delta (\log \sigma') = 0,0111$ 

### 8. Récapitulatif des résultats obtenus

Tableau 13 : récapitulatif des résultats de l'essai œdométrique avant et après traitement.

|          | Avant                     | Eau après  | Détergents | Sulfates   | Phosphates |  |  |
|----------|---------------------------|------------|------------|------------|------------|--|--|
|          | traitement                | traitement | après      | après      | après      |  |  |
|          |                           |            | traitement | traitement | traitement |  |  |
| б'р      | jo <u>1,22</u> <u>3,1</u> |            | 2,1 2,9    |            | 2,5        |  |  |
|          |                           |            |            |            |            |  |  |
| Cc       | 0,0332                    | 0,049      | 0,0611     | 0,0669     | 0,0946     |  |  |
|          |                           |            |            |            |            |  |  |
| Cs ou Cg | 0,00786                   | 0,0235     | 0,0107     | 0,0114     | 0,0111     |  |  |
|          |                           |            |            |            |            |  |  |

Les différents polluants (détergents, phosphates et sulfates) ont augmenté la contrainte de préconsolidation de 80 à 140% de celle obtenue sur le schiste seul. Par contre l'eau a fait augmenter cette contrainte de plus de 150%. Ceci montre qu'une bonne partie de la charge normale est reprise soit par l'eau soit par les polluants. Après traitement, la contrainte de préconsolidation la plus petite est obtenue sur l'échantillon de (schiste + détergents) et la plus grande est obtenue sur l'échantillon (schiste + eau).

Les indices de gonflement pour les trois échantillons traités aux détergents, sulfates et phosphates ont des valeurs petites et assez proches. Ceci montre que les trois polluants n'ont pas provoqués de gonflement significatif comme celui qui a été obtenu avec l'échantillon de (schiste + eau). Toutefois l'indice de gonflement obtenu sur l'échantillon de schiste seul est insignifiant et est pratiquement nul.

L'indice de compression le plus élevé est obtenu sur l'échantillon (schiste + phosphates). Les échantillons de (schiste + détergents) et (schiste + sulfates) ont présenté des Cc assez semblable mais qui est le double de celui de l'échantillon de schiste seul. Ceci montre que la présence du phosphate, des sulfates et des détergents accélère la compressibilité du schiste de 2 à 3 fois plus que celle obtenu sur le schiste seul.



#### 9. Assemblage des courbes œdométrique avant et après traitement

Figure 201: assemblage des courbes œdométriques avant et après traitement.

La courbe œdométrique du schiste seul est pratiquement confondue avec celle du (schiste + eau) avec une variation de l'indice des vides moins importante que celles obtenues sur des échantillons de (schiste + sulfates) ou de (schiste + détergents) qui semblent aussi identiques. La seule courbe qui a présenté une grande variation de l'indice des vides est celle obtenue avec l'échantillon (schiste + phosphates). Cela montre l'échantillon (schiste + phosphate) est plus compressible que les échantillons (schiste + sulfates) et (schiste + détergents) lesquels sont plus compressibles que l'échantillon (schiste + eau) lequel est plus compressible que l'échantillon de schiste seul.

## Conclusion

L'essai œdométrique permet de déterminer les caractéristiques mécaniques des sols en tassement.

Concernant la compressibilité, la présence du phosphate, des sulfates et des détergents accélère la compressibilité du schiste de 2 à 3 fois plus que celle obtenu sur le schiste seul.

Les indices de gonflement pour les trois échantillons traités aux détergents, sulfates et phosphates ont des valeurs petites et assez proches.

La présence des phosphates, des sulfates et des détergents accélère la compressibilité du schiste de 2 à 3 fois plus que celle obtenu sur le schiste seul.

**CONCLUSION GENERALE** 

L'étude expérimentale menée a permis d'évaluer la dégradation des grains schisteux imbibés dans l'eau contenant des produits chimiques (sulfates, phosphates et détergents). Lors de la circulation des eaux souterraines, l'eau attaque certaines roches contenant des sulfates ou des phosphates qui sont des minéraux constituant certaines roches et les détergents sont issus de l'activité humaine dans les eaux d'assainissement qui s'infiltrent dans les sols. Ces eaux entrent dans la structure du schiste qui se présente sous forme de feuillets parallèles (schistosité) ce qui facilite la pénétration de ces eaux chargés et affectant la composition minéralogique et surtout les liaisons chimiques entre les différents minéraux.

Les résultats obtenus expérimentalement ont montré que le matériau schiste a subi des dégradations importantes surtout en présence des sulfates et des phosphates qui cassent les liaisons entre les minéraux constituant la roche schisteuse ; ce qui a engendré le glissement de terrain d'Ain el hammam.

L'essai de cisaillement et l'essai œdométrique permettent de déterminer les caractéristiques mécaniques du schiste. L'influence des polluants sur le matériau schisteux après cinquante cycles climatiques a montré que les trois polluants (détergents, phosphate et sulfate) ont présenté de meilleures résistances au cisaillement que celle obtenue avec le (schiste + eau), ceci peut s'expliquer par une granulométrie plus étalée obtenue lors de la dégradation du matériau schisteux. Plus la contrainte normale est élevée, plus la résistance au cisaillement des échantillons avec les trois polluants est élevée.

Concernant la compressibilité, la présence du phosphate, des sulfates et des détergents accélère la compressibilité du schiste de 2 à 3 fois plus que celle obtenu sur le schiste seul. Les indices de gonflement pour les trois échantillons traités aux détergents, sulfates et phosphates ont des valeurs petites et assez proches. Ceci montre que les trois polluants n'ont pas provoqués de gonflement significatif comme celui qui a été obtenu avec l'échantillon de (schiste + eau).

#### Perspectives

Il est nécessaire de compléter cette étude par une étude chimique des matériaux et des réactions des polluants sur le schiste.

## BIBLIOGRAPHIE

BELAIDI, M, application de l'essai de cisaillement direct dans l'étude des glissements de terrains le long des plans de stratification des sols, mémoire master à UMMTO Tizi Ouzou, 2011, 119 pages.

BONIN, B, et MOYEN, J-F. Magmatisme et roche magmatiques, 3iéme édition de pétrologie endogène, DUNOD, 2004, 318 pages

BOUDLAL, O, Principaux essais de mécanique des sols et de géotechnique routière, Université de Mouloud Mammeri Tizi Ouzou, département de génie civil, Polycopie de TP- MDS, 2017.

CHABOU, M, Cours : Les roches métamorphiques, Université Ferhat Abbas, Sétif Département des Sciences de la Terre LMD -Sciences de la Terre et de l'Univers-Géosciences, Nature des Enveloppes Terrestres. 1èreannée – Semestre 2.

CHALAH, S, Etude de la Stabilité d'un Versant d'Ain El Hammam, mémoire master à UMMTO Tizi Ouzou, 2012, 118 pages.

COJAN, I et RENARD, M Sédimentologie 3iéme édition, DUNOD, 2013, 461 pages.

DEVLEESHOUWER, X, Cours de sédimentologie GEOL-F-204, université libre de Bruxelles, département de science de la terre et de l'environnement, année 2008/2009

DJERBAL, L, Dynamique d'évolution du glissement de terrain d'Ain El Hammam, mémoire master à UMMTO Tizi Ouzou, 2009, 110 pages.

FAUCAULT, A et RAOULT, J-F. Dictionnaire de géologie, 6iéme édition, DUNOD, 2005, 384 pages.

KECHIDI, Z, Application des analyses minéralogiques et géotechniques des schistes au glissement de terrain d'Ain el hammam, mémoire master à UMMTO Tizi Ouzou, 2010, 152 pages.

LCPC, 1985, Essai œdométrique, laboratoire centrale de ponts et des chaussées.

LCPC, 1987, Essai de cisaillement à la boite, laboratoire centrale de ponts et des chaussées.

MAGNAN, J, et MIEUSSENS, C. essai de compressibilité à l'œdomètre. LCPC, 1989

MAGNAN, J. Analyse graphique des courbes de consolidation œdométrique, LCPC, 1989.

MARTIN, P, Géologie appliquée au BTP, Groupe EYROLLES, 2010, 357 pages.

MARTIN, P, Géotechnique appliquée au BTP, Groupe EYROLLES, 2008, 397 pages.

N'GOLO, T, Les minéraux et les roches, ressources naturelles, QUEBEC ET MINES, 58 pages.

Norme AFNOR analyse granulométrique à sec après lavage [NF P94-056].

Norme AFNOR analyse granulométrique par sédimentation [NF P94- 057].

Norme AFNOR densité volumique des grains solides [NF P94-054].

Norme AFNOR densité volumique humide [NF P94- 053].

Norme AFNOR densité volumique sèche [NF P94-064].

Norme AFNOR essai au bleu de méthylène [NF P94 -068].

Norme AFNOR essai de cisaillement [NF P94- 71-1].

Norme AFNOR limites d'Atterberg [NF P94- 051].

Norme AFNOR tassement et consolidation à l'œdomètre [NF P94- 090-1].

Norme AFNOR teneur en eau [NF P94- 050].

OUTAYEB, S, Evaluation de la dégradation chimique des grains de schiste à l'aide de la notion de la dimension fractale, mémoire master à UMMTO Tizi Ouzou, 2015, 110 pages.

POMEROL, C et LAGABRIELLE, Y. Eléments de géologie 13iéme édition, DUNOD, 2005, 748 pages.

ROBITAILLE, V et TREMBLAY, D. Mécanique des sols, théorie et pratique, MODULO, 1997, 649 pages.

## WEBOGRAPHIE

[1] Ain el hammam jeanyvesthorrignac.fr.wa\_files.info\_424\_michelet.pdf.

[2]Ainelhammam.www/adsprogress/com.v1.docs.pdau.pdau\_aeh\_2011.rapport\_pdau\_a eh.

[3] http://www.etab.ac-caen.fr/discip/geologie/precamb/athis/schistes.htm

[4] http://www.geo.umass.edu/faculty/goncalves/TP6-roche\_sed.pdf

[5] Http.www.lhce.lu.Chimie.Publications.PDF.2\_roches. PDF.

[6] pdac.ca.docs.default-source.mining-matters---ttsp-documents, notions-de-fond-les roches-et-les-minéraux.

[7] https://ft.univ-tlemcen.dz/assets/uploads/pdf/departement/gc/houti/Chapitre-2-LES-MINERAUX-ET-LES-ROCHES-2.pdf

[8]http://www.gm.univ-montp2.fr/IMG/pdf/TP4-sedim.pdf.

[9]http://goliath.obspm.fr/documentsSAE/olympiades\_internationales/IESO/prepa\_fra ncaise\_geologie/Origine\_roches\_sedimentaires.

[10]http://sfa.univ-poitiers.fr/geosciences/wp-content/uploads/sites/7/2016/02/TD-Meu-Le-metam -et-les-roches-m%C3%A9tamorphiques-2016.pdf

[11] https://fr.wikipedia.org/wiki/Schiste.

[12] https://fr.wikipedia.org/wiki/Schiste\_bitumineux.

[13] https://fr.wikipedia.org/wiki/Ardoise.

[14] https://fr.wikipedia.org/wiki/Micaschiste.

[15] http://www.cosmovisions.com/schiste.htm

## ANNEXES

| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentage<br>des refus<br>cumulé % | tamisat<br>cumulé en<br>% |
|----------------|--------------------------|-------------------------------|-------------------------------------|---------------------------|
| 6,3            | 0                        | 0                             | 0                                   | 100                       |
| 4              | 60,5                     | 60,5                          | 21,6071429                          | 78,3928571                |
| 3,15           | 23,5                     | 84                            | 30                                  | 70                        |
| 2              | 49,4                     | 133,4                         | 47,6428571                          | 52,3571429                |
| 1,25           | 39,3                     | 172,7                         | 61,6785714                          | 38,3214286                |
| 0,8            | 21,1                     | 193,8                         | 69,2142857                          | 30,7857143                |
| 0,5            | 17                       | 210,8                         | 75,2857143                          | 24,7142857                |
| 0,315          | 14                       | 224,8                         | 80,2857143                          | 19,7142857                |
| 0,2            | 9                        | 233,8                         | 83,5                                | 16,5                      |
| 0,125          | 9                        | 242,8                         | 86,7142857                          | 13,2857143                |
| fend           | 37,2                     | 279,6                         | 99,8571429                          | 0,14285714                |

1. Analyse granulométrique avant cisaillement

2. Essai de cisaillement sur le matériau à l'état initial (avant traitement)

| Essai | de c  | sisaillemer | nt avant tra | aitement (m | ateriau sa | ain) |            |        |      |              |          |        |     |             |          |
|-------|-------|-------------|--------------|-------------|------------|------|------------|--------|------|--------------|----------|--------|-----|-------------|----------|
|       |       | 11          | par          |             | 2bar       |      |            |        | 3bar |              |          | 4bar   |     |             |          |
| ΔL    |       | ΔH          | La           | τ=Lax0,194  | ΔH         | La   | τ=Lax0,194 | ΔH     | La   | τ=Lax0,194/9 | Bo (Kpa) | ΔH     | La  | τ=Lax0,194/ | Sc (Kpa) |
|       | 0     | 0           | 0            | 0           | 0          | 0    | 0          | 0      | 0    | 0            |          | 0      | 0   | 0           |          |
| 0     | ,025  | -0,01       | 23           | 0,124463    | -0,01      | 10   | 0,054114   | -0,007 | 24   | 0,129874     |          | -0,001 | 25  | 0,135286    |          |
|       | 0,05  | -0,03       | 62           | 0,336919    | -0,03      | 65   | 0,353221   | -0,02  | 70   | 0,380392     |          | -0,02  | 72  | 0,391261    |          |
| 0     | ,075  | -0,04       | 118          | 0,643938    | -0,05      | 112  | 0,611195   | -0,03  | 132  | 0,720338     |          | -0,05  | 140 | 0,763994    |          |
|       | 0,1   | -0,04       | 140          | 0,767232    | -0,06      | 160  | 0,876836   | -0,05  | 193  | 1,057684     |          | -0,08  | 205 | 1,123446    |          |
| 0     | 1,125 | -0,03       | 158          | 0,86956     | -0,07      | 200  | 1,100709   | -0,06  | 255  | 1,403404     |          | -0,11  | 264 | 1,452936    |          |
|       | 0,15  | -0,01       | 175          | 0,967236    | -0,07      | 230  | 1,271225   | -0,08  | 308  | 1,702336     |          | -0,14  | 324 | 1,790769    |          |
| 0     | ),175 | 0,01        | 190          | 1,054649    | -0,06      | 265  | 1,470959   | -0,08  | 356  | 1,97608      |          | -0,16  | 380 | 2,109299    |          |
|       | 0,2   | 0,04        | 202          | 1,126092    | -0,05      | 290  | 1,616667   | -0,07  | 402  | 2,241034     |          | -0,19  | 431 | 2,402701    |          |
| 0     | ,225  | 0,08        | 213          | 1,192554    | -0,03      | 314  | 1,758038   | -0,06  | 435  | 2,435498     |          | -0,2   | 482 | 2,698644    |          |
|       | 0,25  | 0,12        | 221          | 1,242725    | -0,01      | 330  | 1,855652   | -0,04  | 466  | 2,620406     |          | -0,2   | 526 | 2,957797    |          |
| 0     | ,275  | 0,17        | 229          | 1,293333    | 0,02       | 352  | 1,988006   | -0,02  | 490  | 2,767394     |          | -0,19  | 568 | 3,207918    |          |
|       | 0,3   | 0,22        | 233          | 1,321696    | 0,06       | 366  | 2,07614    | 0,01   | 514  | 2,915673     |          | -0,19  | 602 | 3,414854    |          |
| 0     | ,325  | 0,28        | 237          | 1,350308    | 0,09       | 378  | 2,153656   | 0,03   | 529  | 3,013979     |          | -0,18  | 634 | 3,612217    |          |
|       | 0,35  | 0,33        | 241          | 1,379174    | 0,13       | 386  | 2,208968   | 0,07   | 545  | 3,118879     |          | -0,16  | 662 | 3,788437    |          |
| 0     | ,375  | 0,38        | 243          | 1,3968      | 0,18       | 398  | 2,287763   | 0,1    | 556  | 3,19597      |          | -0,14  | 685 | 3,937481    |          |
|       | 0,4   | 0,43        | 244          | 1,40881     | 0,23       | 410  | 2,367262   | 0,14   | 566  | 3,267976     |          | -0,13  | 712 | 4,110952    |          |
| 0     | ,425  | 0,48        | 244          | 1,415127    | 0,27       | 417  | 2,418475   | 0,18   | 576  | 3,340628     |          | -0,09  | 730 | 4,233782    |          |
|       | 0,45  | 0,54        | 244          | 1,421502    | 0,32       | 419  | 2,441021   | 0,21   | 578  | 3,367327     |          | -0,06  | 740 | 4,311111    |          |
| 0     | ,475  |             |              |             | 0,36       | 422  | 2,469623   | 0,25   | 578  | 3,382564     |          | -0,04  | 752 | 4,400845    |          |
|       | 0,5   |             |              |             | 0,41       | 425  | 2,498485   | 0,27   | 590  | 3,468485     |          | -0,01  | 764 | 4,491394    |          |
| 0     | ,525  |             |              |             | 0,45       | 426  | 2,515799   | 0,3    | 600  | 3,543379     |          | 0,02   | 779 | 4,600487    |          |
|       | 0,55  |             |              |             | 0,49       | 427  | 2,533272   | 0,33   | 610  | 3,61896      |          | 0,05   | 790 | 4,68685     |          |
| 0     | ,575  |             |              |             | 0,53       | 428  | 2,550906   | 0,36   | 610  | 3,635637     |          | 0,08   | 798 | 4,756129    |          |
|       | 0,6   |             |              |             | 0,56       | 427  | 2,556728   | 0,39   | 613  | 3,670432     |          | 0,11   | 805 | 4,820062    |          |
| 0     | ,625  |             |              |             | 0,57       | 426  | 2,562605   | 0,42   | 610  | 3,669457     |          | 0,15   | 812 | 4,884589    |          |
|       | 0,65  |             |              |             | 0,58       | 414  | 2,502056   | 0,43   | 608  | 3,674517     |          | 0,17   | 812 | 4,907414    |          |
| 0     | ,675  |             |              |             |            |      |            | 0,44   | 605  | 3,673552     |          | 0,2    | 809 | 4,912238    |          |
|       | 0,7   |             |              |             |            |      |            |        |      |              |          | 0,21   | 805 | 4,911006    |          |

### 3. analyse granulométrique après cisaillement (matériau sain)

| analyse gra | analyse granulométrique après cisaillement 1 bar |               |               |           |             | analyse granulométrique après cisaillement 2 bars |           |             |           |  |  |
|-------------|--------------------------------------------------|---------------|---------------|-----------|-------------|---------------------------------------------------|-----------|-------------|-----------|--|--|
| tomic on    | massa das                                        | masse des     | poucentag     | tamisat   | tomic on    | massa das                                         | masse des | poucentag   | tamisat   |  |  |
| tamsen      | masse des                                        | refus         | e des refus   | cumulé en | (amsen      | masse des                                         | refus     | e des refus | cumulé en |  |  |
| mm          | rerus en gr                                      | cumuclé       | cumulé %      | %         | mm          | rerus en gr                                       | cumuclé   | cumulé %    | %         |  |  |
| 6,3         | 0                                                | 0             | 0             | 100       | 6,3         | 0                                                 | 0         | 0           | 100       |  |  |
| 4           | 50,2                                             | 50,2          | 17,92857      | 82,07143  | 4           | 52,6                                              | 52,6      | 18,78571    | 81,21429  |  |  |
| 3,15        | 28,4                                             | 78,6          | 28,07143      | 71,92857  | 3,15        | 26                                                | 78,6      | 28,07143    | 71,92857  |  |  |
| 2           | 51,7                                             | 130,3         | 46,53571      | 53,46429  | 2           | 52,1                                              | 130,7     | 46,67857    | 53,32143  |  |  |
| 1,25        | 35,9                                             | 166,2         | 59,35714      | 40,64286  | 1,25        | 35,5                                              | 166,2     | 59,35714    | 40,64286  |  |  |
| 0,8         | 24,1                                             | 190,3         | 67,96429      | 32,03571  | 0,8         | 24,1                                              | 190,3     | 67,96429    | 32,03571  |  |  |
| 0,5         | 15,5                                             | 205,8         | 73,5          | 26,5      | 0,5         | 15,3                                              | 205,6     | 73,42857    | 26,57143  |  |  |
| 0,315       | 15,8                                             | 221,6         | 79,14286      | 20,85714  | 0,315       | 16,2                                              | 221,8     | 79,21429    | 20,78571  |  |  |
| 0,2         | 7,9                                              | 229,5         | 81,96429      | 18,03571  | 0,2         | 8,3                                               | 230,1     | 82,17857    | 17,82143  |  |  |
| 0,125       | 7,8                                              | 237,3         | 84,75         | 15,25     | 0,125       | 7,4                                               | 237,5     | 84,82143    | 15,17857  |  |  |
| fend        | 42,3                                             | 279,6         | 99,85714      | 0,142857  | fend        | 42                                                | 279,5     | 99,82143    | 0,178571  |  |  |
|             |                                                  |               |               |           |             |                                                   |           |             |           |  |  |
| analyse gra | nulométriqu                                      | e après cisai | llement 3 bai | rs        | analyse gra | analyse granulométrique après cisaillement 4 bars |           |             |           |  |  |
| tamis en    | masse des                                        | masse des     | poucentag     | tamisat   | tamis on    | masse des                                         | masse des | poucentag   | tamisat   |  |  |
| mm          | refused ac                                       | refus         | e des refus   | cumulé en | mm          | refus en ar                                       | refus     | e des refus | cumulé en |  |  |
|             | icias erigi                                      | cumuclé       | cumulé %      | ×.        |             | relasengi                                         | cumuclé   | cumulé %    | ×.        |  |  |
| 6,3         | 0                                                | 0             | 0             | 100       | 6,3         | 0                                                 | 0         | 0           | 100       |  |  |
| 4           | 49,9                                             | 49,9          | 17,82143      | 82,17857  | 4           | 51,4                                              | 51,4      | 18,35714    | 81,64286  |  |  |
| 3,15        | 28,1                                             | 78            | 27,85714      | 72,14286  | 3,15        | 25,2                                              | 76,6      | 27,35714    | 72,64286  |  |  |
| 2           | 51,2                                             | 129,2         | 46,14286      | 53,85714  | 2           | 52,9                                              | 129,5     | 46,25       | 53,75     |  |  |
| 1,25        | 38                                               | 167,2         | 59,71429      | 40,28571  | 1,25        | 35,8                                              | 165,3     | 59,03571    | 40,96429  |  |  |
| 0,8         | 22,7                                             | 189,9         | 67,82143      | 32,17857  | 0,8         | 24,5                                              | 189,8     | 67,78571    | 32,21429  |  |  |
| 0,5         | 15,5                                             | 205,4         | 73,35714      | 26,64286  | 0,5         | 16,1                                              | 205,9     | 73,53571    | 26,46429  |  |  |
| 0,315       | 16,3                                             | 221,7         | 79,17857      | 20,82143  | 0,315       | 15,7                                              | 221,6     | 79,14286    | 20,85714  |  |  |
| 0,2         | 8,1                                              | 229,8         | 82,07143      | 17,92857  | 0,2         | 8,1                                               | 229,7     | 82,03571    | 17,96429  |  |  |
| 0,125       | 7,9                                              | 237,7         | 84,89286      | 15,10714  | 0,125       | 7,5                                               | 237,2     | 84,71429    | 15,28571  |  |  |
| food        | 41.6                                             | 279.3         | 99.75         | 0.25      | fend        | 42.5                                              | 279.7     | 99.89286    | 0.107143  |  |  |
| Essai de ( | cisaillemen | t après | traitement eau 1 ièr | e série |     |                    |       |      |                   |       |     |             |          |
|------------|-------------|---------|----------------------|---------|-----|--------------------|-------|------|-------------------|-------|-----|-------------|----------|
|            | 1b          | ar      |                      | 2bar    |     |                    |       | 3bar |                   | 4     | par |             |          |
| ۵L         | ΔH          | La      | τ=Lax0,194/So (Kp Δl | 1       | La  | τ=Lax0,194/So (Kpa | ۵H    | La   | τ=Lax0,194/So (Kp | εΔH   | La  | τ=Lax0,194/ | Sc (Kpa) |
| 0          | 0           | 0       | 0                    | 0       | 0   | 0                  | 0     | 0    | 0                 | 0     | 0   | 0           |          |
| 0,025      | 0           | 67      | 0,362566248          | -0,05   | 97  | 0,524909344        | -0,07 | 80   | 0,432915          | -0,07 | 140 | 0,757601    |          |
| 0,05       | -0,01       | 105     | 0,570588235          | -0,08   | 155 | 0,842296919        | -0,11 | 172  | 0,934678          | -0,1  | 224 | 1,217255    |          |
| 0,075      | -0,01       | 140     | 0,763994374          | -0,08   | 195 | 1,064135021        | -0,14 | 232  | 1,266048          | -0,13 | 282 | 1,538903    |          |
| 0,1        | 0           | 170     | 0,931638418          | -0,08   | 232 | 1,271412429        | -0,16 | 280  | 1,534463          | -0,16 | 330 | 1,808475    |          |
| 0,125      | 0,02        | 186     | 1,023659574          | -0,08   | 263 | 1,447432624        | -0,18 | 323  | 1,777645          | -0,17 | 370 | 2,036312    |          |
| 0,15       | 0,05        | 202     | 1,116467236          | -0,07   | 286 | 1,580740741        | -0,2  | 361  | 1,995271          | -0,18 | 409 | 2,26057     |          |
| 0,175      | 0,08        | 217     | 1,204520744          | -0,05   | 306 | 1,698540773        | -0,2  | 397  | 2,203662          | -0,19 | 449 | 2,492303    |          |
| 0,2        | 0,12        | 235     | 1,310057471          | -0,03   | 322 | 1,795057471        | -0,18 | 427  | 2,380402          | -0,19 | 484 | 2,698161    |          |
| 0,225      | 0,17        | 246     | 1,377316017          | 0       | 332 | 1,858816739        | -0,16 | 453  | 2,536277          | -0,18 | 516 | 2,889004    |          |
| 0,25       | 0,22        | 256     | 1,439536232          | 0,02    | 345 | 1,94               | -0,14 | 478  | 2,687884          | -0,17 | 546 | 3,070261    |          |
| 0,275      | 0,27        | 268     | 1,513595342          | 0,05    | 355 | 2,004949054        | -0,12 | 502  | 2,835167          | -0,15 | 573 | 3,236157    |          |
| 0,3        | 0,34        | 273     | 1,548596491          | 0,09    | 361 | 2,047777778        | -0,09 | 520  | 2,949708          | -0,13 | 592 | 3,358129    |          |
| 0,325      | 0,4         | 278     | 1,583906021          | 0,13    | 372 | 2,119471366        | -0,06 | 538  | 3,065257          | -0,11 | 615 | 3,503965    |          |
| 0,35       | 0,45        | 283     | 1,619528024          | 0,16    | 381 | 2,180353982        | -0,03 | 553  | 3,164661          | -0,09 | 637 | 3,645369    |          |
| 0,375      | 0,53        | 285     | 1,638222222          | 0,2     | 385 | 2,213037037        | 0     | 568  | 3,264948          | -0,06 | 657 | 3,776533    |          |
| 0,4        | 0,58        | 289     | 1,668630952          | 0,23    | 390 | 2,251785714        | 0,04  | 575  | 3,31994           | -0,04 | 674 | 3,891548    |          |
| 0,425      | 0,65        | 292     | 1,693512706          | 0,27    | 395 | 2,290881913        | 0,08  | 582  | 3,375426          | -0,02 | 686 | 3,978595    |          |
| 0,45       | 0,71        | 296     | 1,724444444          | 0,31    | 398 | 2,318678679        | 0,12  | 590  | 3,437237          | 0,01  | 702 | 4,08973     |          |
| 0,475      | 0,77        | 296     | 1,73224736           | 0,35    | 405 | 2,370135747        | 0,15  | 596  | 3,487903          | 0,03  | 708 | 4,143348    |          |
| 0,5        | 0,83        | 297     | 1,746                | 0,39    | 410 | 2,41030303         | 0,18  | 604  | 3,550788          | 0,05  | 712 | 4,185697    |          |
| 0,525      | 0,9         | 297     | 1,753972603          | 0,43    | 412 | 2,433120244        | 0,22  | 609  | 3,59653           | 0,08  | 710 | 4,192998    |          |
| 0,55       | 0,98        | 292     | 1,73235474           | 0,46    | 410 | 2,432415902        | 0,25  | 615  | 3,648624          | 0,11  | 710 | 4,212232    |          |
| 0,575      | 1,05        | 289     | 1,722457757          | 0,5     | 405 | 2,413824885        | 0,26  | 610  | 3,635637          | 0,13  | 710 | 4,231644    |          |
| 0,6        | 1,06        | 286     | 1,712469136          | 0,53    | 404 | 2,419012346        | 0,28  | 604  | 3,616543          | 0,15  | 708 | 4,239259    |          |
| 0,625      |             |         |                      |         |     |                    |       |      |                   | 0,18  | 705 | 4,24093     |          |

4. essai de cisaillement série 1 après traitement de 1 à 4bars (eau)

### 5. Analyse granulométrique après cisaillement série 1 (eau)

| analyse gra | anulométriqu | ie après trait | ement 1 bar  | eau       | anal | analyse granulométrique après traitement 2 bars eau |             |           |          |           |  |  |
|-------------|--------------|----------------|--------------|-----------|------|-----------------------------------------------------|-------------|-----------|----------|-----------|--|--|
| tamis on    | massa das    | masse des      | poucenta     | tamisat   | tem  | vic on                                              | massa das   | masse des | poucenta | tamisat   |  |  |
| tams en     | refused as   | refus          | ge des       | cumulé en | (and |                                                     | refus en ar | refus     | ge des   | cumulé en |  |  |
|             | ierus en gr  | cumuclé        | refus        | %         |      |                                                     | rerus en gr | cumuclé   | refus    | %         |  |  |
| 6,3         | 0            | 0              | 0            | 100       | 6    | 6,3                                                 | 0           | 0         | 0        | 100       |  |  |
| 4           | 52,6         | 52,6           | 18,78571     | 81,21429  |      | 4                                                   | 54          | 54        | 19,28571 | 80,71429  |  |  |
| 3,15        | 21,7         | 74,3           | 26,53571     | 73,46429  | 3    | ,15                                                 | 20,2        | 74,2      | 26,5     | 73,5      |  |  |
| 2           | 48,2         | 122,5          | 43,75        | 56,25     |      | 2                                                   | 48,1        | 122,3     | 43,67857 | 56,32143  |  |  |
| 1,25        | 45,8         | 168,3          | 60,10714     | 39,89286  | 1,   | ,25                                                 | 43,8        | 166,1     | 59,32143 | 40,67857  |  |  |
| 0,8         | 21,3         | 189,6          | 67,71429     | 32,28571  | 0    | ),8                                                 | 21,2        | 187,3     | 66,89286 | 33,10714  |  |  |
| 0,5         | 18,3         | 207,9          | 74,25        | 25,75     | 0    | ),5                                                 | 18,6        | 205,9     | 73,53571 | 26,46429  |  |  |
| 0,315       | 15,3         | 223,2          | 79,71429     | 20,28571  | 0,   | .315                                                | 14,1        | 220       | 78,57143 | 21,42857  |  |  |
| 0,2         | 8,2          | 231,4          | 82,64286     | 17,35714  | 0    | ),2                                                 | 7,9         | 227,9     | 81,39286 | 18,60714  |  |  |
| 0,125       | 8,3          | 239,7          | 85,60714     | 14,39286  | 0,   | .125                                                | 8,1         | 236       | 84,28571 | 15,71429  |  |  |
| fend        | 40           | 279,7          | 99,89286     | 0,107143  | fe   | end                                                 | 42,9        | 278,9     | 99,60714 | 0,392857  |  |  |
|             |              |                |              |           |      |                                                     |             |           |          |           |  |  |
| analyse gra | anulométriqu | ie après trail | tement 3 bai | rseau     | anal | analyse granulométrique après traitement 4 bars eau |             |           |          |           |  |  |
| tomic on    | massa das    | masse des      | poucenta     | tamisat   | tom  | vic on                                              | massa das   | masse des | poucenta | tamisat   |  |  |
| tams en     | refus en ar  | refus          | ge des       | cumulé en | (and | nsen                                                | refusee as  | refus     | ge des   | cumulé en |  |  |
|             | reius en gr  | cumuclé        | refus        | · · ·     |      |                                                     | reius en gr | cumuclé   | refus    | %         |  |  |
| 6,3         | 0            | 0              | 0            | 100       | - Ε  | 3,3                                                 | 0           | 0         | 0        | 100       |  |  |
| 4           | 51,1         | 51,1           | 18,25        | 81,75     |      | 4                                                   | 52,5        | 52,5      | 18,75    | 81,25     |  |  |
| 3,15        | 23,7         | 74,8           | 26,71429     | 73,28571  | 3    | ,15                                                 | 18,9        | 71,4      | 25,5     | 74,5      |  |  |
| 2           | 48,5         | 123,3          | 44,03571     | 55,96429  |      | 2                                                   | 48,6        | 120       | 42,85714 | 57,14286  |  |  |
| 1,25        | 42,4         | 165,7          | 59,17857     | 40,82143  | 1,   | ,25                                                 | 44,5        | 164,5     | 58,75    | 41,25     |  |  |
| 0,8         | 21,6         | 187,3          | 66,89286     | 33,10714  | 0    | ),8                                                 | 20,7        | 185,2     | 66,14286 | 33,85714  |  |  |
| 0,5         | 18,9         | 206,2          | 73,64286     | 26,35714  | 0    | ),5                                                 | 18,7        | 203,9     | 72,82143 | 27,17857  |  |  |
| 0,315       | 15,3         | 221,5          | 79,10714     | 20,89286  | 0,   | .315                                                | 15,2        | 219,1     | 78,25    | 21,75     |  |  |
| 0,2         | 7,7          | 229,2          | 81,85714     | 18,14286  | 0    | ),2                                                 | 7,8         | 226,9     | 81,03571 | 18,96429  |  |  |
| 0,125       | 7            | 236,2          | 84,35714     | 15,64286  | 0,   | 125                                                 | 7,8         | 234,7     | 83,82143 | 16,17857  |  |  |
| food        | 43.1         | 279.3          | 99.75        | 0.25      | fe   | end                                                 | 42,8        | 277,5     | 99,10714 | 0,892857  |  |  |

| Essai de | cisaillem | ent après | traitemen   | : phospha | ates 1 ière | série      |                |      |                     |       |     |                     |
|----------|-----------|-----------|-------------|-----------|-------------|------------|----------------|------|---------------------|-------|-----|---------------------|
|          | 1         | bar       |             | 2bar      |             |            |                | 3bar |                     | 4b    | ar  |                     |
| ΔL       | ΔH        | La        | τ=Lax0,194/ | ΔH        | La          | τ=Lax0,194 | <del>ا ۲</del> | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ≈Lax0,194/Sc (Kpa) |
| 0        | 0         | 0         | 0           | 0         | 0           | 0          | 0              | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,03     | 55        | 0,297629    | -0,01     | 80          | 0,432915   | -0,01          | 85   | 0,459972            | -0,01 | 90  | 0,487029            |
| 0,05     | -0,04     | 122       | 0,662969    | -0,04     | 150         | 0,815126   | -0,04          | 190  | 1,032493            | -0,05 | 220 | 1,195518            |
| 0,075    | -0,03     | 157       | 0,856765    | -0,05     | 200         | 1,091421   | -0,06          | 255  | 1,391561            | -0,07 | 320 | 1,746273            |
| 0,1      | 0         | 183       | 1,002881    | -0,06     | 241         | 1,320734   | -0,08          | 310  | 1,69887             | -0,11 | 395 | 2,164689            |
| 0,125    | 0,03      | 203       | 1,11722     | -0,05     | 276         | 1,518979   | -0,1           | 350  | 1,926241            | -0,13 | 450 | 2,476596            |
| 0,15     | 0,06      | 215       | 1,188319    | -0,03     | 305         | 1,685755   | -0,11          | 395  | 2,183191            | -0,15 | 510 | 2,818803            |
| 0,175    | 0,1       | 230       | 1,276681    | -0,01     | 331         | 1,8373     | -0,12          | 435  | 2,414592            | -0,16 | 555 | 3,080687            |
| 0,2      | 0,14      | 240       | 1,337931    | 0         | 355         | 1,979023   | -0,11          | 465  | 2,592241            | -0,17 | 604 | 3,367126            |
| 0,225    | 0,19      | 250       | 1,399711    | 0,03      | 372         | 2,082771   | -0,08          | 500  | 2,799423            | -0,17 | 635 | 3,555267            |
| 0,25     | 0,23      | 256       | 1,439536    | 0,04      | 391         | 2,198667   | -0,05          | 525  | 2,952174            | -0,16 | 667 | 3,750667            |
| 0,275    | 0,28      | 259       | 1,462766    | 0,06      | 405         | 2,287336   | -0,02          | 553  | 3,123202            | -0,14 | 698 | 3,942125            |
| 0,3      | 0,33      | 267       | 1,514561    | 0,09      | 420         | 2,382456   | 0              | 581  | 3,295731            | -0,13 | 720 | 4,084211            |
| 0,325    | 0,38      | 272       | 1,549721    | 0,11      | 435         | 2,478414   | 0,03           | 605  | 3,44699             | -0,12 | 736 | 4,193363            |
| 0,35     | 0,43      | 275       | 1,573746    | 0,13      | 450         | 2,575221   | 0,05           | 628  | 3,593864            | -0,1  | 757 | 4,332094            |
| 0,375    | 0,48      | 278       | 1,597985    | 0,15      | 457         | 2,626904   | 0,07           | 653  | 3,753541            | -0,08 | 782 | 4,495052            |
| 0,4      | 0,54      | 281       | 1,62244     | 0,17      | 466         | 2,690595   | 0,09           | 677  | 3,908869            | -0,05 | 797 | 4,601726            |
| 0,425    | 0,59      | 284       | 1,647115    | 0,2       | 470         | 2,725859   | 0,11           | 698  | 4,048191            | -0,03 | 817 | 4,738356            |
| 0,45     | 0,63      | 283       | 1,648709    | 0,22      | 475         | 2,767267   | 0,14           | 712  | 4,147988            | 0     | 830 | 4,835435            |
| 0,475    | 0,68      | 282       | 1,650317    | 0,25      | 480         | 2,80905    | 0,17           | 723  | 4,231131            | 0,03  | 846 | 4,95095             |
| 0,5      | 0,71      | 282       | 1,657818    | 0,26      | 482         | 2,833576   | 0,2            | 733  | 4,309152            | 0,05  | 858 | 5,044               |
| 0,525    | 0,75      | 281       | 1,659482    | 0,3       | 488         | 2,881948   | 0,22           | 740  | 4,370167            | 0,09  | 869 | 5,131994            |
| 0,55     | 0,76      | 278       | 1,649297    | 0,33      | 486         | 2,883303   | 0,24           | 745  | 4,419878            | 0,11  | 886 | 5,256391            |
| 0,575    | 0,76      | 278       | 1,656897    | 0,36      | 485         | 2,89063    | 0,28           | 745  | 4,440246            | 0,13  | 900 | 5,364055            |
| 0,6      |           |           |             | 0,4       | 483         | 2,892037   | 0,3            | 744  | 4,454815            | 0,16  | 915 | 5,478704            |
| 0,625    |           |           |             | 0,42      | 480         | 2,887442   | 0,32           | 741  | 4,457488            | 0,2   | 925 | 5,564341            |
| 0,65     |           |           |             | 0,44      | 484         | 2,925109   | 0,36           | 740  | 4,472274            | 0,24  | 940 | 5,680997            |
| 0,675    |           |           |             | 0,45      | 484         | 2,938842   | 0,4            | 735  | 4,462911            | 0,27  | 945 | 5,738028            |
| 0,7      |           |           |             | 0,47      | 482         | 2,940503   | 0,42           | 739  | 4,508365            | 0,33  | 952 | 5,807799            |
| 0,725    |           |           |             | 0,48      | 479         | 2,936051   | 0,46           | 735  | 4,505213            | 0,36  | 955 | 5,853712            |
| 0,75     |           |           |             | 0,5       | 474         | 2,919238   | 0,5            | 743  | 4,575937            | 0,42  | 959 | 5,906222            |
| 0,775    |           |           |             |           |             |            | 0,52           | 745  | 4,610207            | 0,46  | 964 | 5,965423            |
| 0,8      |           |           |             |           |             |            | 0,58           | 737  | 4,582628            | 0,5   | 962 | 5,981667            |
| 0,825    |           |           |             |           |             |            | 0,6            | 735  | 4,592271            | 0,55  | 957 | 5,979324            |
| 0.85     |           |           |             |           |             |            | 0.62           | 732  | 4,595728            | 0.58  | 957 | 6.00835             |
| 0.075    |           |           |             |           |             |            | .,             |      |                     | 0.00  | 055 | 0.025041            |
| 0,875    |           |           |             |           |             |            |                |      |                     | 0,63  | 300 | 6,020041            |

6. Essai de cisaillement après traitement sérei 1 de 1 à 4bars (phosphates)

7. Analyse granulométrique après cisaillement sérei 1 (phosphates)

| analyse gra | nulométrique | e après traite | ement 1 bar p | hosphates  | analyse gra | alyse granulométrique après traitement 2 bars phospha |                |             |            |  |  |
|-------------|--------------|----------------|---------------|------------|-------------|-------------------------------------------------------|----------------|-------------|------------|--|--|
| tamis en    | massa das    | masse des      | poucentag     | tamisat    | tamis en    | massa das                                             | masse des      | poucentag   | tamisat    |  |  |
| camb en     | refus en ar  | refus          | e des refus   | cumulé en  | tamis en    | refus en ar                                           | refus          | e des refus | cumulé en  |  |  |
|             | ierus en gr  | cumuclé        | cumulé %      | %          |             | reids en gr                                           | cumuclé        | cumulé %    | %          |  |  |
| 6,3         | 0            | 0              | 0             | 100        | 6,3         | 0                                                     | 0              | 0           | 100        |  |  |
| 4           | 54,2         | 54,2           | 19,35714      | 80,64286   | 4           | 54,7                                                  | 54,7           | 19,53571    | 80,46429   |  |  |
| 3,15        | 19,9         | 74,1           | 26,46429      | 73,53571   | 3,15        | 22,1                                                  | 76,8           | 27,42857    | 72,57143   |  |  |
| 2           | 49,9         | 124            | 44,28571      | 55,71429   | 2           | 45,7                                                  | 122,5          | 43,75       | 56,25      |  |  |
| 1,25        | 44,3         | 168,3          | 60,10714      | 39,89286   | 1,25        | 45,2                                                  | 167,7          | 59,89286    | 40,10714   |  |  |
| 0,8         | 20,5         | 188,8          | 67,42857      | 32,57143   | 0,8         | 20,6                                                  | 188,3          | 67,25       | 32,75      |  |  |
| 0,5         | 18,2         | 207            | 73,92857      | 26,07143   | 0,5         | 17,6                                                  | 205,9          | 73,53571    | 26,46429   |  |  |
| 0,315       | 15           | 222            | 79,28571      | 20,71429   | 0,315       | 15,3                                                  | 221,2          | 79          | 21         |  |  |
| 0,2         | 8,1          | 230,1          | 82,17857      | 17,82143   | 0,2         | 8,6                                                   | 229,8          | 82,07143    | 17,92857   |  |  |
| 0,125       | 6,1          | 236,2          | 84,35714      | 15,64286   | 0,125       | 6,2                                                   | 236            | 84,28571    | 15,71429   |  |  |
| fend        | 43,2         | 279,4          | 99,78571      | 0,214286   | fend        | 42,1                                                  | 278,1          | 99,32143    | 0,678571   |  |  |
|             |              |                |               |            |             |                                                       |                |             |            |  |  |
| analyse gra | nulométrique | e après traite | ement 3 bars  | phosphates | analyse gra | anulométriqu                                          | e après traite | ment 4 bars | phosphates |  |  |
| tomic on    | massa das    | masse des      | poucentag     | tamisat    | tomic on    | massa das                                             | masse des      | poucentag   | tamisat    |  |  |
| tamsen      | masse des    | refus          | e des refus   | cumulé en  | tamis en    | masse des                                             | refus          | e des refus | cumulé en  |  |  |
|             | ieius en gi  | cumuclé        | cumulé %      | %          |             | reius en gr                                           | cumuclé        | cumulé %    | %          |  |  |
| 6,3         | 0            | 0              | 0             | 100        | 6,3         | 0                                                     | 0              | 0           | 100        |  |  |
| 4           | 53,7         | 53,7           | 19,17857      | 80,82143   | 4           | 56,1                                                  | 56,1           | 20,03571    | 79,96429   |  |  |
| 3,15        | 21,9         | 75,6           | 27            | 73         | 3,15        | 22,6                                                  | 78,7           | 28,10714    | 71,89286   |  |  |
| 2           | 38,8         | 114,4          | 40,85714      | 59,14286   | 2           | 42,9                                                  | 121,6          | 43,42857    | 56,57143   |  |  |
| 1,25        | 42,8         | 157,2          | 56,14286      | 43,85714   | 1,25        | 46,2                                                  | 167,8          | 59,92857    | 40,07143   |  |  |
| 0,8         | 20,1         | 177,3          | 63,32143      | 36,67857   | 0,8         | 19,2                                                  | 187            | 66,78571    | 33,21429   |  |  |
| 0,5         | 19,9         | 197,2          | 70,42857      | 29,57143   | 0,5         | 17,1                                                  | 204,1          | 72,89286    | 27,10714   |  |  |
| 0,315       | 15,2         | 212,4          | 75,85714      | 24,14286   | 0,315       | 15,8                                                  | 219,9          | 78,53571    | 21,46429   |  |  |
| 0,2         | 8,6          | 221            | 78,92857      | 21,07143   | 0,2         | 8,9                                                   | 228,8          | 81,71429    | 18,28571   |  |  |
| 0,125       | 8,9          | 229,9          | 82,10714      | 17,89286   | 0,125       | 6,3                                                   | 235,1          | 83,96429    | 16,03571   |  |  |
| fend        | 40,3         | 270,2          | 96,5          | 3,5        | fend        | 42,9                                                  | 278            | 99,28571    | 0,714286   |  |  |

8. Essai de cisaillement après traitement série 1 de 1 à 4bars (détergents)

| Essai de | cisaille | ement après tra | itement Détergen   | re série |       |         |       |      |           |          |       |      |        |                     |
|----------|----------|-----------------|--------------------|----------|-------|---------|-------|------|-----------|----------|-------|------|--------|---------------------|
|          |          | 1bar            |                    |          | 2 bar |         |       | 3bar |           |          |       | 4bar |        |                     |
| ΔL       | ΔH       | La              | τ=Lax0,194/Sc (Kpa | ΔH       | La    | τ≈Lax0, | IΔH   | La   | τ=Lax0,19 | 14/Sc (K | ΔH    | La   | τ=Lax0 | t≂Lax0,194/Sc (Kpa) |
|          | 0 0      | 0               | 0                  | 0        | 0     | 0       | 0     | 0    | 0         |          | 0     | 0    | 0      |                     |
| 0,02     | 5 -0,03  | 65              | 0,351743375        | -0,05    | 92    | 0,4979  | -0,05 | 90   | 0,487     |          | -0,05 | 145  | 0,785  |                     |
| 0,0!     | -0,04    | 105             | 0,570588235        | -0,07    | 142   | 0,7717  | -0,09 | 172  | 0,935     |          | -0,1  | 225  | 1,223  |                     |
| 0,07     | -0,02    | 130             | 0,709423347        | -0,08    | 182   | 0,9932  | -0,12 | 232  | 1,266     |          | -0,15 | 285  | 1,555  |                     |
| 0,       | 1 0      | 152             | 0,83299435         | -0,08    | 208   | 1,1399  | -0,14 | 275  | 1,507     |          | -0,17 | 337  | 1,847  |                     |
| 0,129    | 5 0,03   | 169             | 0,930099291        | -0,08    | 238   | 1,3098  | -0,16 | 308  | 1,695     |          | -0,19 | 380  | 2,091  |                     |
| 0,1      | 0,06     | 184             | 1,016980057        | -0,08    | 260   | 1,437   | -0,18 | 340  | 1,879     |          | -0,22 | 418  | 2,31   |                     |
| 0,175    | 5 0,1    | 195             | 1,082403433        | -0,07    | 278   | 1,5431  | -0,18 | 364  | 2,02      |          | -0,24 | 450  | 2,498  |                     |
| 0,3      | 2 0,14   | 206             | 1,148390805        | -0,06    | 295   | 1,6445  | -0,19 | 385  | 2,146     |          | -0,26 | 482  | 2,687  |                     |
| 0,22     | 5 0,19   | 216             | 1,209350649        | -0,05    | 308   | 1,7244  | -0,2  | 408  | 2,284     |          | -0,27 | 504  | 2,822  |                     |
| 0,2      | 5 0,23   | 224             | 1,259594203        | -0,03    | 320   | 1,7994  | -0,21 | 427  | 2,401     |          | -0,29 | 550  | 3,093  |                     |
| 0,27     | 0,28     | 230             | 1,298981077        | -0,01    | 324   | 1,8299  | -0,22 | 445  | 2,513     |          | -0,3  | 585  | 3,304  |                     |
| 0,3      | 0,33     | 235             | 1,333040936        | 0,02     | 337   | 1,9116  | -0,21 | 465  | 2,638     |          | -0,31 | 615  | 3,489  |                     |
| 0,32     | 0,38     | 240             | 1,367400881        | 0,05     | 341   | 1,9428  | -0,2  | 483  | 2,752     |          | -0,31 | 640  | 3,646  |                     |
| 0,3      | 0,43     | 244             | 1,396342183        | 0,08     | 345   | 1,9743  | -0,18 | 498  | 2,85      |          | -0,3  | 662  | 3,788  |                     |
| 0,37     | 0,48     | 246             | 1,414044444        | 0,11     | 351   | 2,0176  | -0,16 | 510  | 2,932     |          | -0,28 | 680  | 3,909  |                     |
| 0,       | 0,54     | 248             | 1,431904762        | 0,14     | 353   | 2,0382  | -0,14 | 527  | 3,043     |          | -0,25 | 700  | 4,042  |                     |
| 0,42     | 0,59     | 250             | 1,449925262        | 0,17     | 357   | 2,0705  | -0,1  | 535  | 3,103     |          | -0,22 | 708  | 4,106  |                     |
| 0,4      | 5 0,63   | 251             | 1,462282282        | 0,2      | 361   | 2,1031  | -0,07 | 539  | 3,14      |          | -0,18 | 727  | 4,235  |                     |
| 0,475    | 5 0,68   | 255             | 1,492307692        | 0,23     | 365   | 2,136   | -0,04 | 545  | 3,189     |          | -0,14 | 742  | 4,342  |                     |
| 0,9      | 5 0,71   | 255             | 1,499090909        | 0,26     | 366   | 2,1516  | -0,01 | 550  | 3,233     |          | -0,1  | 754  | 4,433  |                     |
| 0,52     | 0,75     | 260             | 1,535464231        | 0,29     | 368   | 2,1733  | 0,02  | 560  | 3,307     |          | -0,07 | 757  | 4,471  |                     |
| 0,5      | 0,76     | 261             | 1,548440367        | 0,32     | 368   | 2,1832  | 0,05  | 564  | 3,346     |          | -0,03 | 760  | 4,509  |                     |
| 0,57     | 5 0,79   | 258             | 1,537695853        | 0,35     | 365   | 2,1754  | 0,08  | 566  | 3,373     |          | 0     | 761  | 4,536  |                     |
| 0,0      | 6 0,8    | 257             | 1,53882716         | 0,38     | 365   | 2,1855  | 0,1   | 567  | 3,395     |          | 0,03  | 762  | 4,563  |                     |
| 0,62     | 0,82     | 256             | 1,539968992        | 0,405    | 365   | 2,1957  | 0,12  | 567  | 3,411     |          | 0,06  | 767  | 4,614  |                     |
| 0,65     | 5        |                 |                    | 0,43     | 366   | 2,212   | 0,15  | 567  | 3,427     |          | 0,08  | 765  | 4,623  |                     |
| 0,67     | 5        |                 |                    | 0,46     | 364   | 2,2102  | 0,18  | 568  | 3,449     |          | 0,11  | 764  | 4,639  |                     |
| 0,1      | ,        |                 |                    | 0,48     | 364   | 2,2206  | 0,2   | 571  | 3,483     |          | 0,15  | 768  | 4,685  |                     |
| 0,72     | 5        |                 |                    | 0,5      | 358   | 2,1944  | 0,23  | 575  | 3,524     |          | 0,18  | 765  | 4,689  |                     |
| 0,75     | 5        |                 |                    | 0,52     | 358   | 2,2048  | 0,26  | 574  | 3,535     |          | 0,21  | 769  | 4,736  |                     |
| 0,77     | 5        |                 |                    |          |       |         | 0,28  | 570  | 3,527     |          | 0,23  | 765  | 4,734  |                     |
| 0,8      | 3        |                 |                    |          |       |         | 0,3   | 569  | 3,538     |          | 0,25  | 764  | 4,751  |                     |
| 0,82     | 5        |                 |                    |          |       |         |       |      |           |          | 0,29  | 763  | 4,767  |                     |
| 0,8      | 5        |                 |                    |          |       |         |       |      |           |          | 0,33  | 764  | 4,797  |                     |
| 0,87     | 5        |                 |                    |          |       |         |       |      |           |          | 0,37  | 760  | 4,795  |                     |

9. Analyse granulométrique après cisaillement série 1 détergents

| analyse gra    | anulométriqu             | ie après trait                | ement 1 bar                 | détergents                |                                                         | analyse gra    | tement 2 bai             | rs détergents                 |                             |                           |
|----------------|--------------------------|-------------------------------|-----------------------------|---------------------------|---------------------------------------------------------|----------------|--------------------------|-------------------------------|-----------------------------|---------------------------|
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé en<br>% |                                                         | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé en<br>% |
| 6,3            | 0                        | 0                             | 0                           | 100                       |                                                         | 6,3            | 0                        | 0                             | 0                           | 100                       |
| 4              | 53,4                     | 53,4                          | 19,07143                    | 80,92857                  |                                                         | 4              | 53,3                     | 53,3                          | 19,03571                    | 80,96429                  |
| 3,15           | 20,3                     | 73,7                          | 26,32143                    | 73,67857                  |                                                         | 3,15           | 24,1                     | 77,4                          | 27,64286                    | 72,35714                  |
| 2              | 45,2                     | 118,9                         | 42,46429                    | 57,53571                  |                                                         | 2              | 46,2                     | 123,6                         | 44,14286                    | 55,85714                  |
| 1,25           | 47,3                     | 166,2                         | 59,35714                    | 40,64286                  |                                                         | 1,25           | 46,5                     | 170,1                         | 60,75                       | 39,25                     |
| 0,8            | 19,7                     | 185,9                         | 66,39286                    | 33,60714                  |                                                         | 0,8            | 19,9                     | 190                           | 67,85714                    | 32,14286                  |
| 0,5            | 17,9                     | 203,8                         | 72,78571                    | 27,21429                  |                                                         | 0,5            | 17,1                     | 207,1                         | 73,96429                    | 26,03571                  |
| 0,315          | 15,3                     | 219,1                         | 78,25                       | 21,75                     |                                                         | 0,315          | 15,2                     | 222,3                         | 79,39286                    | 20,60714                  |
| 0,2            | 8,9                      | 228                           | 81,42857                    | 18,57143                  |                                                         | 0,2            | 7,9                      | 230,2                         | 82,21429                    | 17,78571                  |
| 0,125          | 7,6                      | 235,6                         | 84,14286                    | 15,85714                  |                                                         | 0,125          | 6,6                      | 236,8                         | 84,57143                    | 15,42857                  |
| fend           | 42,6                     | 278,2                         | 99,35714                    | 0,642857                  |                                                         | fend           | 40,5                     | 277,3                         | 99,03571                    | 0,964286                  |
|                |                          |                               |                             |                           |                                                         |                |                          |                               |                             |                           |
| analyse gra    | anulométriqu             | ie après trait                | ement 3 bai                 | s détergent:              | analyse granulométrique après traitement 4 bars déterge |                |                          |                               |                             |                           |

| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé en<br>% |
|----------------|--------------------------|-------------------------------|-----------------------------|---------------------------|----------------|--------------------------|-------------------------------|-----------------------------|---------------------------|
| 6,3            | 0                        | 0                             | 0                           | 100                       | 6,3            | 0                        | 0                             | 0                           | 100                       |
| 4              | 54,5                     | 54,5                          | 19,46429                    | 80,53571                  | 4              | 54,8                     | 54,8                          | 19,57143                    | 80,42857                  |
| 3,15           | 26,7                     | 81,2                          | 29                          | 71                        | 3,15           | 23,2                     | 78                            | 27,85714                    | 72,14286                  |
| 2              | 46,3                     | 127,5                         | 45,53571                    | 54,46429                  | 2              | 45,2                     | 123,2                         | 44                          | 56                        |
| 1,25           | 39,1                     | 166,6                         | 59,5                        | 40,5                      | 1,25           | 41,3                     | 164,5                         | 58,75                       | 41,25                     |
| 0,8            | 21,1                     | 187,7                         | 67,03571                    | 32,96429                  | 0,8            | 19,4                     | 183,9                         | 65,67857                    | 34,32143                  |
| 0,5            | 17,4                     | 205,1                         | 73,25                       | 26,75                     | 0,5            | 17,4                     | 201,3                         | 71,89286                    | 28,10714                  |
| 0,315          | 15,8                     | 220,9                         | 78,89286                    | 21,10714                  | 0,315          | 15,1                     | 216,4                         | 77,28571                    | 22,71429                  |
| 0,2            | 8,9                      | 229,8                         | 82,07143                    | 17,92857                  | 0,2            | 8,8                      | 225,2                         | 80,42857                    | 19,57143                  |
| 0,125          | 7,9                      | 237,7                         | 84,89286                    | 15,10714                  | 0,125          | 6,6                      | 231,8                         | 82,78571                    | 17,21429                  |
| fend           | 40,8                     | 278,5                         | 99,46429                    | 0,535714                  | fend           | 46,4                     | 278,2                         | 99,35714                    | 0,642857                  |

10. Essai de cisaillement après traitement sérei 1 de 1 à 4bars (sulfates)

| Essai de | sai de <mark>cisaillement après traitemen<mark>t Sulfate</mark>s</mark> |     |            | 1 ière sé | ière série |             |       |      |                     |       |     |                     |
|----------|-------------------------------------------------------------------------|-----|------------|-----------|------------|-------------|-------|------|---------------------|-------|-----|---------------------|
|          | 1                                                                       | bar |            |           | 2 bai      | r           |       | 3bar |                     | 4bar  |     |                     |
| ΔL       | ΔH                                                                      | La  | τ=Lax0,194 | ΔH        | La         | τ=Lax0,194/ | ΔH    | La   | τ≈Lax0,194/Sc (Kpa) | ∆H La |     | τ=Lax0,194/Sc (Kpa) |
| 0        | 0                                                                       | 0   | 0          | 0         | 0          | 0           | 0     | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,03                                                                   | 45  | 0,243515   | -0,06     | 63         | 0,340921    | -0,08 | 100  | 0,541144            | -0,04 | 110 | 0,595258            |
| 0,05     | -0,04                                                                   | 75  | 0,407563   | -0,09     | 110        | 0,597759    | -0,11 | 155  | 0,842297            | -0,09 | 185 | 1,005322            |
| 0,075    | -0,05                                                                   | 101 | 0,551167   | -0,1      | 143        | 0,780366    | -0,14 | 195  | 1,064135            | -0,14 | 265 | 1,446132            |
| 0,1      | -0,04                                                                   | 122 | 0,668588   | -0,09     | 178        | 0,97548     | -0,16 | 235  | 1,287853            | -0,17 | 320 | 1,753672            |
| 0,125    | -0,02                                                                   | 133 | 0,731972   | -0,08     | 205        | 1,128227    | -0,18 | 270  | 1,485957            | -0,21 | 372 | 2,047319            |
| 0,15     | 0,01                                                                    | 150 | 0,82906    | -0,05     | 227        | 1,254644    | -0,19 | 303  | 1,674701            | -0,24 | 420 | 2,321368            |
| 0,175    | 0,04                                                                    | 161 | 0,893677   | -0,03     | 247        | 1,371044    | -0,19 | 333  | 1,848412            | -0,25 | 460 | 2,553362            |
| 0,2      | 0,08                                                                    | 173 | 0,964425   | 0,01      | 267        | 1,488448    | -0,18 | 356  | 1,984598            | -0,27 | 500 | 2,787356            |
| 0,225    | 0,12                                                                    | 181 | 1,013391   | 0,04      | 284        | 1,590072    | -0,18 | 380  | 2,127561            | -0,29 | 533 | 2,984185            |
| 0,25     | 0,17                                                                    | 186 | 1,045913   | 0,08      | 292        | 1,641971    | -0,17 | 395  | 2,221159            | -0,3  | 574 | 3,22771             |
| 0,275    | 0,21                                                                    | 192 | 1,084367   | 0,12      | 303        | 1,711266    | -0,15 | 410  | 2,315575            | -0,29 | 611 | 3,450771            |
| 0,3      | 0,27                                                                    | 196 | 1,111813   | 0,16      | 315        | 1,786842    | -0,14 | 425  | 2,410819            | -0,28 | 650 | 3,687135            |
| 0,325    | 0,33                                                                    | 199 | 1,133803   | 0,18      | 332        | 1,891571    | -0,1  | 436  | 2,484112            | -0,28 | 679 | 3,868605            |
| 0,35     | 0,37                                                                    | 204 | 1,167434   | 0,24      | 344        | 1,968614    | -0,07 | 455  | 2,603835            | -0,26 | 700 | 4,0059              |
| 0,375    | 0,43                                                                    | 208 | 1,195615   | 0,27      | 350        | 2,011852    | -0,05 | 465  | 2,672889            | -0,24 | 732 | 4,207644            |
| 0,4      | 0,48                                                                    | 211 | 1,218274   | 0,32      | 360        | 2,078571    | -0,03 | 480  | 2,771429            | -0,23 | 752 | 4,341905            |
| 0,425    | 0,51                                                                    | 216 | 1,252735   | 0,36      | 366        | 2,122691    | 0     | 484  | 2,807055            | -0,19 | 770 | 4,46577             |
| 0,45     | 0,56                                                                    | 217 | 1,264204   | 0,4       | 368        | 2,143904    | 0,02  | 495  | 2,883784            | -0,18 | 785 | 4,573273            |
| 0,475    | 0,6                                                                     | 215 | 1,25822    | 0,45      | 371        | 2,171161    | 0,05  | 498  | 2,914389            | -0,14 | 800 | 4,68175             |
| 0,5      | 0,64                                                                    | 216 | 1,269818   | 0,48      | 375        | 2,204545    | 0,07  | 503  | 2,95703             | -0,12 | 812 | 4,773576            |
| 0,525    | 0,68                                                                    | 216 | 1,275616   | 0,53      | 379        | 2,238234    | 0,09  | 510  | 3,011872            | -0,08 | 827 | 4,883957            |
| 0,55     | 0,71                                                                    | 217 | 1,287401   | 0,58      | 380        | 2,254434    | 0,12  | 514  | 3,049419            | -0,04 | 839 | 4,977554            |
| 0,575    | 0,75                                                                    | 215 | 1,281413   | 0,62      | 376        | 2,240983    | 0,14  | 516  | 3,075392            | -0,02 | 842 | 5,018372            |
| 0,6      | 0,77                                                                    | 216 | 1,293333   | 0,65      | 381        | 2,281296    | 0,16  | 517  | 3,095617            | 0,01  | 847 | 5,071543            |
| 0,625    | 0,8                                                                     | 215 | 1,293333   | 0,7       | 382        | 2,297922    | 0,18  | 515  | 3,097984            | 0,04  | 856 | 5,149271            |
| 0,65     | 0,84                                                                    | 217 | 1,311464   | 0,73      | 378        | 2,284486    | 0,21  | 513  | 3,100374            | 0,07  | 861 | 5,203551            |
| 0,675    | 0,89                                                                    | 220 | 1,335837   | 0,77      | 378        | 2,295211    | 0,24  | 512  | 3,108858            | 0,1   | 863 | 5,240125            |
| 0,7      | 0,92                                                                    | 220 | 1,342138   | 0,81      | 379        | 2,312138    | 0,25  | 513  | 3,129623            | 0,13  | 867 | 5,289245            |
| 0,725    | 0,96                                                                    | 222 | 1,360758   | 0,84      | 380        | 2,329226    | 0,27  | 508  | 3,113807            | 0,16  | 865 | 5,302054            |
| 0,75     | 0,99                                                                    | 222 | 1,367238   | 0,85      | 374        | 2,303365    | 0,29  | 505  | 3,110159            | 0,19  | 863 | 5,314984            |
| 0,775    | 1                                                                       | 224 | 1,386156   | 0,86      | 374        | 2,314386    | 0,32  | 504  | 3,118852            | 0,21  | 864 | 5,346603            |
| 0,8      | 1,02                                                                    | 215 | 1,336859   | 0,88      | 373        | 2,319295    | 0,35  | 504  | 3,133846            | 0,23  | 870 | 5,409615            |
| 0,825    |                                                                         |     |            |           |            |             | 0,36  | 504  | 3,148986            | 0,25  | 870 | 5,435749            |
| 0,85     |                                                                         |     |            |           |            |             |       |      |                     | 0,27  | 870 | 5,462136            |
| 0,875    |                                                                         |     |            |           |            |             |       |      |                     | 0,29  | 872 | 5,501398            |
| 0.9      |                                                                         |     |            |           |            |             |       |      |                     | 0.3   | 872 | 5.528366            |

11. Analyse granulométrique après cisaillement série 1 sulfates

| inalyse gr     | anulométriqu             | ie après trait                | ement 1 bar                 | sulfates                  | analyse gr     | anulométriqu             | ie après trail                | ement 2 ba                  | rs sulfates               |
|----------------|--------------------------|-------------------------------|-----------------------------|---------------------------|----------------|--------------------------|-------------------------------|-----------------------------|---------------------------|
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé ei<br>% |
| 6,3            | 0                        | 0                             | 0                           | 100                       | 6,3            | 0                        | 0                             | 0                           | 100                       |
| 4              | 43,9                     | 43,9                          | 15,67857                    | 84,32143                  | 4              | 50,6                     | 50,6                          | 18,07143                    | 81,9285                   |
| 3,15           | 19,4                     | 63,3                          | 22,60714                    | 77,39286                  | 3,15           | 22,8                     | 73,4                          | 26,21429                    | 73,7857                   |
| 2              | 41,8                     | 105,1                         | 37,53571                    | 62,46429                  | 2              | 48,3                     | 121,7                         | 43,46429                    | 56,5357                   |
| 1,25           | 38,7                     | 143,8                         | 51,35714                    | 48,64286                  | 1,25           | 43,6                     | 165,3                         | 59,03571                    | 40,9642                   |
| 0,8            | 18,1                     | 161,9                         | 57,82143                    | 42,17857                  | 0,8            | 22,3                     | 187,6                         | 67                          | 33                        |
| 0,5            | 15,5                     | 177,4                         | 63,35714                    | 36,64286                  | 0,5            | 18                       | 205,6                         | 73,42857                    | 26,5714                   |
| 0,315          | 13,1                     | 190,5                         | 68,03571                    | 31,96429                  | 0,315          | 16,2                     | 221,8                         | 79,21429                    | 20,7857                   |
| 0,2            | 6,7                      | 197,2                         | 70,42857                    | 29,57143                  | 0,2            | 8,4                      | 230,2                         | 82,21429                    | 17,7857                   |
| 0,125          | 6,7                      | 203,9                         | 72,82143                    | 27,17857                  | 0,125          | 8                        | 238,2                         | 85,07143                    | 14,9285                   |
| fend           | 34,6                     | 238,5                         | 85,17857                    | 14,82143                  | fend           | 41,3                     | 279,5                         | 99,82143                    | 0,17857                   |
| inalyse gr     | anulométriqu             | ie après trait                | ement 3 ba                  | rs sulfates               | analyse gr     | anulométriqu             | ie après trail                | ement 4 ba                  | rs sulfates               |
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucenta<br>ge des<br>refus | tamisat<br>cumulé e<br>%  |
| 6,3            | 0                        | 0                             | 0                           | 100                       | 6,3            | 0                        | 0                             | 0                           | 100                       |
| 4              | 52,5                     | 52,5                          | 18,75                       | 81,25                     | 4              | 51,7                     | 51,7                          | 18,46429                    | 81,5357                   |
| 3,15           | 21,5                     | 74                            | 26,42857                    | 73,57143                  | 3,15           | 21,8                     | 73,5                          | 26,25                       | 73,75                     |
| 2              | 48                       | 122                           | 43,57143                    | 56,42857                  | 2              | 47,2                     | 120,7                         | 43,10714                    | 56,8928                   |
| 1,25           | 45,7                     | 167,7                         | 59,89286                    | 40,10714                  | 1,25           | 45,4                     | 166,1                         | 59,32143                    | 40,6785                   |
| 0,8            | 20,7                     | 188,4                         | 67,28571                    | 32,71429                  | 0,8            | 20,7                     | 186,8                         | 66,71429                    | 33,2857                   |
| 0,5            | 19,1                     | 207,5                         | 74,10714                    | 25,89286                  | 0,5            | 18,6                     | 205,4                         | 73,35714                    | 26,6428                   |
| 0,315          | 14,2                     | 221,7                         | 79,17857                    | 20,82143                  | 0,315          | 15,2                     | 220,6                         | 78,78571                    | 21,2142                   |
| 0,2            | 8,8                      | 230,5                         | 82,32143                    | 17,67857                  | 0,2            | 8                        | 228,6                         | 81,64286                    | 18,3571                   |
| 0.400          | 7,8                      | 238,3                         | 85,10714                    | 14,89286                  | 0,125          | 7,8                      | 236,4                         | 84,42857                    | 15,5714                   |
| 0,125          |                          |                               |                             |                           |                |                          |                               |                             |                           |

12. Essai de cisaillement après traitement série 2 Eau

| Essai de | cisailleme | nt après tr | raitement ea  | u 2 ième | série |             |        |      |                     |       |      |                     |
|----------|------------|-------------|---------------|----------|-------|-------------|--------|------|---------------------|-------|------|---------------------|
|          | 1          | bar         |               | 2bar     |       |             |        | 3bar |                     | 4ba   | ir 👘 |                     |
| ΔL       | ΔH         | La          | t=Lax0,194752 | ιH       | La    | τ=Lax0,194/ | ΔH     | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La   | τ≈Lax0,194/Sc (Kpa) |
| 0        | 0          | 0           | 0             | 0        | 0     | 0           | 0      | 0    | 0                   | 0     | 0    | 0                   |
| 0,025    | -0,02      | 75          | 0,4058577     | -0,02    | 65    | 0,3517434   | -0,03  | 140  | 0,7576011           | -0,03 | 90   | 0,4870293           |
| 0,05     | -0,03      | 116         | 0,6303641     | -0,05    | 149   | 0,8096919   | -0,06  | 221  | 1,2009524           | -0,06 | 195  | 1,0596639           |
| 0,075    | -0,02      | 142         | 0,7749086     | -0,06    | 206   | 1,1241632   | -0,08  | 270  | 1,4734177           | -0,09 | 275  | 1,5007032           |
| 0,1      | -0,01      | 168         | 0,920678      | -0,06    | 249   | 1,3645763   | -0,095 | 312  | 1,7098305           | -0,11 | 343  | 1,8797175           |
| 0,125    | 0,02       | 187         | 1,0291631     | -0,05    | 282   | 1,552       | -0,105 | 354  | 1,9482553           | -0,12 | 400  | 2,2014184           |
| 0,15     | 0,05       | 208         | 1,1496296     | -0,04    | 308   | 1,7023362   | -0,11  | 390  | 2,1555556           | -0,13 | 452  | 2,4982336           |
| 0,175    | 0,1        | 219         | 1,2156223     | -0,03    | 338   | 1,876166    | -0,095 | 421  | 2,3368813           | -0,13 | 491  | 2,7254363           |
| 0,2      | 0,15       | 229         | 1,2766092     | 0        | 364   | 2,0291954   | -0,08  | 450  | 2,5086207           | -0,13 | 533  | 2,9713218           |
| 0,225    | 0,2        | 240         | 1,3437229     | 0,03     | 385   | 2,1555556   | -0,04  | 484  | 2,7098413           | -0,12 | 570  | 3,191342            |
| 0,25     | 0,25       | 249         | 1,4001739     | 0,06     | 403   | 2,2661449   | -0,01  | 505  | 2,8397101           | -0,11 | 610  | 3,4301449           |
| 0,275    | 0,3        | 255         | 1,4401747     | 0,1      | 422   | 2,3833479   | 0,03   | 524  | 2,9594178           | -0,09 | 645  | 3,6427948           |
| 0,3      | 0,36       | 259         | 1,4691813     | 0,15     | 436   | 2,4732164   | 0,06   | 535  | 3,0347953           | -0,06 | 678  | 3,8459649           |
| 0,325    | 0,42       | 264         | 1,504141      | 0,2      | 448   | 2,5524816   | 0,11   | 550  | 3,133627            | -0,04 | 705  | 4,0167401           |
| 0,35     | 0,49       | 270         | 1,5451327     | 0,26     | 454   | 2,5981121   | 0,15   | 559  | 3,1989971           | -0,01 | 733  | 4,1947493           |
| 0,375    | 0,55       | 271         | 1,5577481     | 0,3      | 458   | 2,6326519   | 0,2    | 565  | 3,2477037           | 0,03  | 754  | 4,3341037           |
| 0,4      | 0,62       | 272         | 1,5704762     | 0,35     | 469   | 2,7079167   | 0,24   | 567  | 3,27375             | 0,07  | 775  | 4,4747024           |
| 0,425    | 0,67       | 268         | 1,5543199     | 0,41     | 474   | 2,7490583   | 0,29   | 575  | 3,3348281           | 0,11  | 791  | 4,5875635           |
| 0,45     | 0,73       | 265         | 1,5438438     | 0,46     | 475   | 2,7672673   | 0,33   | 580  | 3,378979            | 0,15  | 805  | 4,6897898           |
| 0,475    | 0,77       | 258         | 1,5098643     | 0,51     | 476   | 2,785641    | 0,39   | 576  | 3,3708597           | 0,19  | 820  | 4,7987934           |
| 0,5      |            |             |               | 0,55     | 476   | 2,798303    | 0,44   | 573  | 3,3685455           | 0,24  | 835  | 4,9087879           |
| 0,525    |            |             |               | 0,58     | 477   | 2,8169863   | 0,49   | 570  | 3,36621             | 0,28  | 845  | 4,9902588           |
| 0,55     |            |             |               | 0,64     | 473   | 2,8061774   | 0,53   | 566  | 3,3579205           | 0,33  | 852  | 5,0546789           |
| 0,575    |            |             |               | 0,67     | 474   | 2,8250691   |        | 560  | 3,3376344           | 0,38  | 858  | 5,1137327           |
| 0,6      |            |             |               | 0,7      | 476   | 2,8501235   |        |      |                     | 0,42  | 865  | 5,179321            |
| 0,625    |            |             |               | 0,74     | 476   | 2,8633798   |        |      |                     | 0,45  | 870  | 5,2334884           |
| 0,65     |            |             |               | 0,76     | 467   | 2,8223676   |        |      |                     | 0,49  | 875  | 5,288162            |
| 0,675    |            |             |               |          | 459   | 2,7870423   |        |      |                     | 0,52  | 879  | 5,337277            |
| 0,7      |            |             |               |          | 455   | 2,7757862   |        |      |                     | 0,57  | 886  | 5,4051572           |
| 0,725    |            |             |               |          |       |             |        |      |                     | 0,6   | 892  | 5,4675513           |
| 0,75     |            |             |               |          |       |             |        |      |                     | 0,64  | 899  | 5,5366984           |
| 0,775    |            |             |               |          |       |             |        |      |                     | 0,67  | 901  | 5,5755662           |
| 0,8      |            |             |               |          |       |             |        |      |                     | 0,73  | 901  | 5,6023718           |
| 0.825    |            |             |               |          |       |             |        |      |                     | 0.76  | 891  | 5 5669565           |

13. Analyse granulométrique après cisaillement série 2 Eau

| analyse gra                                                                                                         | nulométrique                                                                                                      | e après traite                                                                                                                    | ment 1 bar e                                                                                                                                                         | au                                                                                                                                                  | analyse gr                                                                                            | analyse granulométrique après traitement 2 bars eau                                                                  |                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| tamis en                                                                                                            | masse des                                                                                                         | masse des                                                                                                                         | poucentag                                                                                                                                                            | tamisat                                                                                                                                             | tamis en                                                                                              | masse des                                                                                                            | masse des                                                                                                                         | poucentag                                                                                                                                                       | tamisat                                                                                                                                      |  |
| mm                                                                                                                  | refused or                                                                                                        | refus                                                                                                                             | e des refus                                                                                                                                                          | cumulé en                                                                                                                                           |                                                                                                       | refused at                                                                                                           | refus                                                                                                                             | e des refus                                                                                                                                                     | cumulé en                                                                                                                                    |  |
|                                                                                                                     | rends en gr                                                                                                       | cumuclé                                                                                                                           | cumulé %                                                                                                                                                             | ~                                                                                                                                                   |                                                                                                       | i ci dis ci i gi                                                                                                     | cumuclé                                                                                                                           | cumulé %                                                                                                                                                        | ~                                                                                                                                            |  |
| 6,3                                                                                                                 | 0                                                                                                                 | 0                                                                                                                                 | 0                                                                                                                                                                    | 100                                                                                                                                                 | 6,3                                                                                                   | 0                                                                                                                    | 0                                                                                                                                 | 0                                                                                                                                                               | 100                                                                                                                                          |  |
| 4                                                                                                                   | 54,1                                                                                                              | 54,1                                                                                                                              | 19,32143                                                                                                                                                             | 80,67857                                                                                                                                            | 4                                                                                                     | 52,8                                                                                                                 | 52,8                                                                                                                              | 18,85714                                                                                                                                                        | 81,14286                                                                                                                                     |  |
| 3,15                                                                                                                | 23,8                                                                                                              | 77,9                                                                                                                              | 27,82143                                                                                                                                                             | 72,17857                                                                                                                                            | 3,15                                                                                                  | 24,1                                                                                                                 | 76,9                                                                                                                              | 27,46429                                                                                                                                                        | 72,53571                                                                                                                                     |  |
| 2                                                                                                                   | 46,5                                                                                                              | 124,4                                                                                                                             | 44,42857                                                                                                                                                             | 55,57143                                                                                                                                            | 2                                                                                                     | 44,5                                                                                                                 | 121,4                                                                                                                             | 43,35714                                                                                                                                                        | 56,64286                                                                                                                                     |  |
| 1,25                                                                                                                | 44                                                                                                                | 168,4                                                                                                                             | 60,14286                                                                                                                                                             | 39,85714                                                                                                                                            | 1,25                                                                                                  | 44,8                                                                                                                 | 166,2                                                                                                                             | 59,35714                                                                                                                                                        | 40,64286                                                                                                                                     |  |
| 0,8                                                                                                                 | 22,7                                                                                                              | 191,1                                                                                                                             | 68,25                                                                                                                                                                | 31,75                                                                                                                                               | 0,8                                                                                                   | 21,5                                                                                                                 | 187,7                                                                                                                             | 67,03571                                                                                                                                                        | 32,96429                                                                                                                                     |  |
| 0,5                                                                                                                 | 17                                                                                                                | 208,1                                                                                                                             | 74,32143                                                                                                                                                             | 25,67857                                                                                                                                            | 0,5                                                                                                   | 17,6                                                                                                                 | 205,3                                                                                                                             | 73,32143                                                                                                                                                        | 26,67857                                                                                                                                     |  |
| 0,315                                                                                                               | 10,2                                                                                                              | 218,3                                                                                                                             | 77,96429                                                                                                                                                             | 22,03571                                                                                                                                            | 0,315                                                                                                 | 15,2                                                                                                                 | 220,5                                                                                                                             | 78,75                                                                                                                                                           | 21,25                                                                                                                                        |  |
| 0,2                                                                                                                 | 10,6                                                                                                              | 228,9                                                                                                                             | 81,75                                                                                                                                                                | 18,25                                                                                                                                               | 0,2                                                                                                   | 9                                                                                                                    | 229,5                                                                                                                             | 81,96429                                                                                                                                                        | 18,03571                                                                                                                                     |  |
| 0,125                                                                                                               | 7,2                                                                                                               | 236,1                                                                                                                             | 84,32143                                                                                                                                                             | 15,67857                                                                                                                                            | 0,125                                                                                                 | 7,1                                                                                                                  | 236,6                                                                                                                             | 84,5                                                                                                                                                            | 15,5                                                                                                                                         |  |
| fend                                                                                                                | 41                                                                                                                | 277,1                                                                                                                             | 98,96429                                                                                                                                                             | 1,035714                                                                                                                                            | fend                                                                                                  | 41,5                                                                                                                 | 278,1                                                                                                                             | 99,32143                                                                                                                                                        | 0,678571                                                                                                                                     |  |
|                                                                                                                     |                                                                                                                   |                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                     |                                                                                                       |                                                                                                                      |                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                              |  |
|                                                                                                                     |                                                                                                                   |                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                     |                                                                                                       |                                                                                                                      |                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                              |  |
| analyse gra                                                                                                         | nulométrique                                                                                                      | e après traite                                                                                                                    | ement 3 bars                                                                                                                                                         | eau                                                                                                                                                 | analyse gr                                                                                            | anulométrique                                                                                                        | e après traite                                                                                                                    | ement 4 bars                                                                                                                                                    | eau                                                                                                                                          |  |
| analyse gra                                                                                                         | nulométrique                                                                                                      | e après traite<br>masse des                                                                                                       | ement 3 bars<br>poucentag                                                                                                                                            | eau<br>tamisat                                                                                                                                      | analyse gra                                                                                           | anulométrique                                                                                                        | e après traite<br>masse des                                                                                                       | ement 4 bars<br>poucentag                                                                                                                                       | eau<br>tamisat                                                                                                                               |  |
| analyse gra<br>tamis en                                                                                             | nulométrique<br>masse des                                                                                         | e après traite<br>masse des<br>refus                                                                                              | ement 3 bars<br>poucentag<br>e des refus                                                                                                                             | eau<br>tamisat<br>cumulé en                                                                                                                         | analyse gra<br>tamis en                                                                               | anulométrique<br>masse des                                                                                           | e après traite<br>masse des<br>refus                                                                                              | ement 4 bars<br>poucentag<br>e des refus                                                                                                                        | eau<br>tamisat<br>cumulé en                                                                                                                  |  |
| analyse gra<br>tamis en<br>mm                                                                                       | nulométrique<br>masse des<br>refus en gr                                                                          | e après traite<br>masse des<br>refus<br>cumuclé                                                                                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                                  | eau<br>tamisat<br>cumulé en<br>%                                                                                                                    | analyse gra<br>tamis en<br>mm                                                                         | anulométrique<br>masse des<br>refus en gr                                                                            | e après traite<br>masse des<br>refus<br>cumuclé                                                                                   | ement 4 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                            | eau<br>tamisat<br>cumulé en<br>%                                                                                                             |  |
| analyse gra<br>tamis en<br>mm<br>6,3                                                                                | nulométrique<br>masse des<br>refus en gr<br>0                                                                     | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                              | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                             | eau<br>tamisat<br>cumulé en<br>%<br>100                                                                                                             | analyse gr.<br>tamis en<br>mm<br>6,3                                                                  | anulométriqu<br>masse des<br>refus en gr<br>0                                                                        | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                              | ement 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                       | eau<br>tamisat<br>cumulé en<br>%<br>100                                                                                                      |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                                           | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5                                                             | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5                                                                      | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429                                                                                                 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571                                                                                                 | analyse gr.<br>tamis en<br>mm<br>6,3<br>4                                                             | anulométrique<br>masse des<br>refus en gr<br>0<br>56,2                                                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2                                                                      | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143                                                                                            | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857                                                                                          |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                                   | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25                                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5                                                              | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286                                                                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714                                                                                     | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                     | anulométrique<br>masse des<br>refus en gr<br>0<br>56,2<br>21,3                                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5                                                              | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857                                                                                | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143                                                                              |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                                              | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7                                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2                                                     | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429                                                                         | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571                                                                         | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                                | anulométrique<br>masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8                                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3                                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143                                                                    | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857                                                                  |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                                      | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7<br>42,7                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2<br>167,9                                            | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429<br>59,96429                                                             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571<br>40,03571                                                             | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                        | anulométrique<br>masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8<br>47,4                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3<br>168,7                                            | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143<br>60,25                                                           | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857<br>39,75                                                         |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                               | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7<br>42,7<br>20,8                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2<br>167,9<br>188,7                                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429<br>59,96429<br>67,39286                                                 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571<br>40,03571<br>32,60714                                                 | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                 | masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8<br>47,4<br>19,6                                                | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3<br>168,7<br>188,3                                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143<br>60,25<br>67,25                                                  | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857<br>39,75<br>32,75                                                |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                                        | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7<br>42,7<br>42,7<br>20,8<br>18,1               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2<br>125,2<br>167,9<br>188,7<br>206,8                 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429<br>59,96429<br>67,39286<br>73,85714                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571<br>40,03571<br>32,60714<br>26,14286                                     | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                          | masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8<br>47,4<br>13,6<br>16,7                                        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3<br>168,7<br>188,3<br>205                            | rment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143<br>60,25<br>67,25<br>73,21429                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857<br>39,75<br>32,75<br>26,78571                                    |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                               | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7<br>42,7<br>20,8<br>18,1<br>14,6               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2<br>167,9<br>188,7<br>206,8<br>221,4                 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429<br>59,96429<br>67,39286<br>67,39286<br>73,85714<br>79,07143             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571<br>40,03571<br>32,60714<br>26,14286<br>20,92857                         | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                 | nulométrique<br>masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8<br>47,4<br>19,6<br>16,7<br>13,8                | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3<br>168,7<br>188,3<br>205<br>218,8                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143<br>60,25<br>67,25<br>73,21429<br>78,14286                          | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857<br>39,75<br>32,75<br>26,78571<br>21,85714                        |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,5<br>0,315<br>0,2                 | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7<br>42,7<br>20,8<br>18,1<br>14,6<br>8,5        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2<br>167,9<br>188,7<br>206,8<br>221,4<br>229,9        | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429<br>59,96429<br>67,39286<br>73,85714<br>79,07143<br>82,10714             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571<br>40,03571<br>32,60714<br>26,1428<br>20,92857<br>17,89286              | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2          | anulométrique<br>masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8<br>47,4<br>19,6<br>16,7<br>13,8<br>8,3        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3<br>168,7<br>188,3<br>205<br>218,8<br>227,1          | rment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143<br>60,25<br>67,25<br>73,21429<br>78,14286<br>81,10714             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857<br>39,75<br>32,75<br>26,78571<br>21,85714<br>18,89286            |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,5<br>0,5<br>0,315<br>0,2<br>0,125 | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>25<br>45,7<br>42,7<br>20,8<br>18,1<br>14,6<br>8,5<br>7,1 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>79,5<br>125,2<br>167,9<br>188,7<br>206,8<br>221,4<br>229,9<br>237 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>28,39286<br>44,71429<br>59,96429<br>67,39286<br>73,85714<br>79,07143<br>82,10714<br>84,64286 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>71,60714<br>55,28571<br>40,03571<br>32,60714<br>26,14286<br>20,92857<br>17,89286<br>15,35714 | analyse gr.<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125 | anulométrique<br>masse des<br>refus en gr<br>0<br>56,2<br>21,3<br>43,8<br>47,4<br>19,6<br>16,7<br>13,8<br>8,3<br>4,5 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>56,2<br>77,5<br>121,3<br>168,7<br>188,3<br>205<br>218,8<br>227,1<br>231,6 | rment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>20,07143<br>27,67857<br>43,32143<br>60,25<br>67,25<br>73,21429<br>78,14286<br>81,10714<br>82,71429 | eau<br>tamisat<br>oumulé en<br>%<br>100<br>79,92857<br>72,32143<br>56,67857<br>39,75<br>32,75<br>26,78571<br>21,8571<br>18,89286<br>17,28571 |  |

14. Résultats de cisaillement après traitement série 2 phosphates

| Essai de | e cisailleme | nt après tr | aitement p  | hosphate | s 2 ième si | rie         |       |      |                     |       |     |              |          |
|----------|--------------|-------------|-------------|----------|-------------|-------------|-------|------|---------------------|-------|-----|--------------|----------|
|          | 1            | bar         |             | 2bar     |             |             |       | 3bar |                     | 4b.   | ar  |              |          |
| ΔL       | ΔH           | La          | t=Lax0,194/ | ΔH       | La          | τ=Lax0,194/ | ΔV    | La   | τ=Lax0,194/Sc (Kpa) | ΔV    | La  | τ=Lax0,194/9 | Sc (Kpa) |
|          | 0 0          | 0           | 0           | 0        | 0           | 0           | 0     | 0    | 0                   | 0     | 0   | 0            |          |
| 0,02     | 5 -0,015     | 45          | 0,2435146   | -0,02    | 100         | 0,5411437   | -0,01 | 55   | 0,297629            | -0,01 | 120 | 0,6493724    |          |
| 0,0      | 5 -0,03      | 105         | 0,5705882   | -0,05    | 165         | 0,8966387   | -0,04 | 175  | 0,9509804           | -0,05 | 210 | 1,1411765    |          |
| 0,07     | 5 -0,025     | 140         | 0,7639944   | -0,06    | 210         | 1,1459916   | -0,09 | 255  | 1,3915612           | -0,08 | 270 | 1,4734177    |          |
| 0        | ,1 -0,01     | 165         | 0,9042373   | -0,06    | 243         | 1,3316949   | -0,14 | 305  | 1,6714689           | -0,12 | 315 | 1,7262712    |          |
| 0,12     | 5 0,02       | 185         | 1,018156    | -0,05    | 275         | 1,5134752   | -0,16 | 350  | 1,9262411           | -0,15 | 358 | 1,9702695    |          |
| 0,1      | 5 0,05       | 205         | 1,1330484   | -0,04    | 299         | 1,6525926   | -0,18 | 392  | 2,1666097           | -0,17 | 400 | 2,2108262    |          |
| 0,17     | 5 0,08       | 222         | 1,2322747   | -0,01    | 316         | 1,7540486   | -0,19 | 427  | 2,370186            | -0,18 | 430 | 2,3868383    |          |
| 0        | 2 0,12       | 236         | 1,3156322   | 0,02     | 336         | 1,8731034   | -0,2  | 460  | 2,5643678           | -0,19 | 460 | 2,5643678    |          |
| 0,22     | 5 0,16       | 248         | 1,3885137   | 0,04     | 355         | 1,9875902   | -0,2  | 490  | 2,7434343           | -0,2  | 495 | 2,7714286    |          |
| 0,2      | 5 0,22       | 255         | 1,433913    | 0,07     | 371         | 2,0862029   | -0,2  | 520  | 2,924058            | -0,21 | 525 | 2,9521739    |          |
| 0,27     | 5 0,27       | 261         | 1,4740611   | 0,1      | 385         | 2,1743814   | -0,19 | 545  | 3,0780204           | -0,22 | 560 | 3,1627365    |          |
| 0        | 3 0,31       | 263         | 1,4918713   | 0,14     | 400         | 2,2690058   | -0,17 | 570  | 3,2333333           | -0,2  | 590 | 3,3467836    |          |
| 0,32     | 5 0,36       | 265         | 1,5098385   | 0,18     | 415         | 2,364464    | -0,15 | 588  | 3,3501322           | -0,18 | 615 | 3,5039648    |          |
| 0,3      | 5 0,41       | 268         | 1,5336873   | 0,23     | 422         | 2,4149853   | -0,12 | 601  | 3,439351            | -0,16 | 642 | 3,6739823    |          |
| 0,37     | 5 0,46       | 270         | 1,552       | 0,27     | 428         | 2,4602074   | -0,08 | 608  | 3,4948741           | -0,14 | 665 | 3,8225185    |          |
| 0        | 4 0,51       | 272         | 1,5704762   | 0,32     | 434         | 2,5058333   | -0,05 | 616  | 3,5566667           | -0,12 | 690 | 3,9839286    |          |
| 0,42     | 5 0,56       | 272         | 1,5775187   | 0,37     | 435         | 2,52287     | 0     | 625  | 3,6248132           | -0,1  | 708 | 4,1061883    |          |
| 0,4      | 5 0,61       | 273         | 1,5904505   | 0,41     | 433         | 2,5225826   | 0,04  | 634  | 3,6935736           | -0,07 | 728 | 4,2412012    |          |
| 0,47     | 5 0,67       | 274         | 1,6034992   | 0,46     | 425         | 2,4871795   | 0,07  | 646  | 3,7805128           | -0,05 | 740 | 4,3306184    |          |
| 0        | 5 0,72       | 270         | 1,5872727   | 0,5      | 420         | 2,4690909   | 0,1   | 654  | 3,8447273           | -0,02 | 752 | 4,4208485    |          |
| 0,52     | 5 0,76       | 266         | 1,570898    | 0,51     |             |             | 0,14  | 656  | 3,8740944           | 0,01  | 765 | 4,5178082    |          |
| 0,5      | 5 0,76       | 264         | 1,5662385   |          |             |             | 0,17  | 660  | 3,9155963           | 0,04  | 769 | 4,562263     |          |
| 0,57     | 5            |             |             |          |             |             | 0,2   | 658  | 3,9217204           | 0,07  | 768 | 4,5773272    |          |
| 0        | 6            |             |             |          |             |             | 0,23  | 655  | 3,9219136           | 0,1   | 770 | 4,6104938    |          |
| 0,62     | 5            |             |             |          |             |             | 0,24  | 652  | 3,9221085           | 0,12  | 765 | 4,6018605    |          |
| 0,6      | 5            |             |             |          |             |             |       |      |                     | 0,14  | 765 | 4,6233645    |          |
| 0,67     | 5            |             |             |          |             |             |       |      |                     | 0,16  | 766 | 4,6511424    |          |
| 0        | 7            |             |             |          |             |             |       |      |                     | 0,19  | 770 | 4,6974843    |          |
| 0,72     | 5            |             |             |          |             |             |       |      |                     | 0,22  | 768 | 4,7074882    |          |
| 0,7      | 5            |             |             |          |             |             |       |      |                     | 0,23  | 765 | 4,7114286    |          |
| 0,77     | 5            |             |             |          |             |             |       |      |                     | 0,24  | 755 | 4,6720893    |          |

15. Analyse granulométrique après cisaillement série 2 phosphates

| analyse gra | nulométrique | e après traite | ement 1 bar pl | hosphates  | analys | se gran | nulométrique | e après traite | ment 2 bars | phosphates |
|-------------|--------------|----------------|----------------|------------|--------|---------|--------------|----------------|-------------|------------|
| tomicon     | massa das    | masse des      | poucentag      | tamisat    | tomic  |         | massa das    | masse des      | poucentag   | tamisat    |
| tamis en    | masse des    | refus          | e des refus    | cumulé en  | tamis  | sen     | masse des    | refus          | e des refus | cumulé en  |
| mm          | rerus en gr  | cumuclé        | cumulé %       | %          |        | n       | rerus en gr  | cumuclé        | cumulé %    | %          |
| 6,3         | 0            | 0              | 0              | 100        | 6,     | 3       | 0            | 0              | 0           | 100        |
| 4           | 53,1         | 53,1           | 18,96429       | 81,03571   | 4      | F       | 51           | 51             | 18,21429    | 81,78571   |
| 3,15        | 24,1         | 77,2           | 27,57143       | 72,42857   | 3,1    | 15      | 21,6         | 72,6           | 25,92857    | 74,07143   |
| 2           | 45,1         | 122,3          | 43,67857       | 56,32143   | 2      | 2       | 50           | 122,6          | 43,78571    | 56,21429   |
| 1,25        | 44,9         | 167,2          | 59,71429       | 40,28571   | 1,2    | 25      | 43,8         | 166,4          | 59,42857    | 40,57143   |
| 0,8         | 23,8         | 191            | 68,21429       | 31,78571   | 0,     | 8       | 21,6         | 188            | 67,14286    | 32,85714   |
| 0,5         | 17,1         | 208,1          | 74,32143       | 25,67857   | 0,     | 5       | 17,3         | 205,3          | 73,32143    | 26,67857   |
| 0,315       | 10,8         | 218,9          | 78,17857       | 21,82143   | 0,3    | 15      | 15,4         | 220,7          | 78,82143    | 21,17857   |
| 0,2         | 10,4         | 229,3          | 81,89286       | 18,10714   | 0,1    | 2       | 8,5          | 229,2          | 81,85714    | 18,14286   |
| 0,125       | 8,1          | 237,4          | 84,78571       | 15,21429   | 0,1    | 25      | 7,2          | 236,4          | 84,42857    | 15,57143   |
| fend        | 40           | 277,4          | 99,07143       | 0,928571   | fer    | nd      | 41,5         | 277,9          | 99,25       | 0,75       |
|             |              |                |                |            |        |         |              |                |             |            |
| analyse gra | nulométrique | e après traite | ement 3 bars   | phosphates | analys | se gran | nulométrique | e après traite | ment 4 bars | phosphates |
| tomic on    | massa das    | masse des      | poucentag      | tamisat    | tamia  |         | maara daa    | masse des      | poucentag   | tamisat    |
| tams en     | massedes     | refus          | e des refus    | cumulé en  | tams   | sen     | masse des    | refus          | e des refus | cumulé en  |
| mm          | rerus en gr  | cumuclé        | cumulé %       | %          | m      | n       | rerus en gr  | cumuclé        | cumulé %    | %          |
| 6,3         | 0            | 0              | 0              | 100        | 6,     | 3       | 0            | 0              | 0           | 100        |
| 4           | 56,8         | 56,8           | 20,28571       | 79,71429   | 4      | F       | 51,3         | 51,3           | 18,32143    | 81,67857   |
| 3,15        | 22,3         | 79,1           | 28,25          | 71,75      | 3,1    | 15      | 24,5         | 75,8           | 27,07143    | 72,92857   |
| 2           | 46,6         | 125,7          | 44,89286       | 55,10714   | 2      | 2       | 40,4         | 116,2          | 41,5        | 58,5       |
| 1,25        | 42,6         | 168,3          | 60,10714       | 39,89286   | 1,2    | 25      | 48,4         | 164,6          | 58,78571    | 41,21429   |
| 0,8         | 23,8         | 192,1          | 68,60714       | 31,39286   | 0,     | 8       | 21,1         | 185,7          | 66,32143    | 33,67857   |
| 0,5         | 17,7         | 209,8          | 74,92857       | 25,07143   | 0,     | 5       | 18,4         | 204,1          | 72,89286    | 27,10714   |
| 0,315       | 10,6         | 220,4          | 78,71429       | 21,28571   | 0,3    | 15      | 15,6         | 219,7          | 78,46429    | 21,53571   |
| 0,2         | 9,7          | 230,1          | 82,17857       | 17,82143   | 0,     | 2       | 8,8          | 228,5          | 81,60714    | 18,39286   |
| 0,125       | 8            | 238,1          | 85,03571       | 14,96429   | 0,1    | 25      | 8,4          | 236,9          | 84,60714    | 15,39286   |
| fend        | 40,2         | 278,3          | 99,39286       | 0,607143   | fer    | nd      | 40,1         | 277            | 98,92857    | 1,071429   |

## 16. Résultats de cisaillement après traitement série 2 détergents

| Essai de | cisailleme | nt après t | raitement                 | Détergents           | 2 ième sé | rie         |       |      |                     |       |     |                     |
|----------|------------|------------|---------------------------|----------------------|-----------|-------------|-------|------|---------------------|-------|-----|---------------------|
|          | 1          | bar        |                           |                      | 2 bar     |             |       | 3bar |                     | 4ba   | ar  |                     |
| ΔL       | ΔH         | La         | τ=Lax0,194                | ΔH                   | La        | τ=Lax0,194/ | ΔH    | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ=Lax0,194/Sc (Kpa) |
| (        | ) 0        |            | 0 (                       | ) (                  | 0         | 0           | 0     | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,02      | 71         | 0 <mark>_0,3788006</mark> | -0,01                | 72        | 0,3896234   | -0,05 | 105  | 0,5682008           | -0,05 | 65  | 0,3517434           |
| 0,05     | -0,04      | 12         | 5 0,6792717               | <mark>7</mark> -0,03 | 185       | 1,0053221   | -0,08 | 182  | 0,9890196           | -0,09 | 205 | 1,1140056           |
| 0,075    | -0,05      | 15         | 5 <mark>0,8458508</mark>  | <mark>9</mark> -0,06 | 243       | 1,3260759   | -0,1  | 235  | 1,2824191           | -0,13 | 305 | 1,6644163           |
| 0,1      | -0,04      | 18;        | 2 0,997401                | <mark>1</mark> -0,07 | 281       | 1,5399435   | -0,13 | 280  | 1,5344633           | -0,16 | 375 | 2,0550847           |
| 0,125    | -0,02      | 20         | 5 1,128223                | -0,08                | 312       | 1,7171064   | -0,16 | 315  | 1,733617            | -0,2  | 433 | 2,3830355           |
| 0,15     | 5 0,01     | 22         | 5 1,2435897               | -0,07                | 340       | 1,8792023   | -0,19 | 350  | 1,9344729           | -0,22 | 482 | 2,6640456           |
| 0,175    | 0,04       | 24         | 3 1,3488412               | 2 -0,06              | 366       | 2,031588    | -0,2  | 380  | 2,109299            | -0,23 | 520 | 2,8864092           |
| 0,2      | 2 0,08     | 26         | 0 1,4494253               | <mark>3</mark> -0,04 | 390       | 2,1741379   | -0,19 | 415  | 2,3135057           | -0,24 | 565 | 3,1497126           |
| 0,225    | 0,12       | 27         | 0 1,511688:               | <mark>3</mark> -0,02 | 408       | 2,284329    | -0,18 | 433  | 2,4243001           | -0,25 | 600 | 3,3593074           |
| 0,25     | 0,17       | 28         | 5 1,6026087               | <mark>7</mark> 0,01  | 425       | 2,3898551   | -0,15 | 455  | 2,5585507           | -0,24 | 640 | 3,5988406           |
| 0,275    | 0,23       | 29         | 5 1,6660844               | 0,04                 | 438       | 2,4737118   | -0,13 | 478  | 2,6996215           | -0,23 | 678 | 3,8291703           |
| 0,3      | 0,28       | 30         | 5 1,730117                | 0,07                 | 452       | 2,5639766   | -0,09 | 498  | 2,8249123           | -0,22 | 712 | 4,0388304           |
| 0,325    | 0,33       | 31:        | 2 1,777621                | <mark>1</mark> 0,1   | 460       | 2,6208517   | -0,05 | 514  | 2,9285169           | -0,21 | 742 | 4,2275477           |
| 0,35     | 0,39       | 31         | 5 <mark>1,802654</mark> 9 | <mark>)</mark> 0,14  | 466       | 2,6667847   | -0,02 | 524  | 2,9987021           | -0,2  | 770 | 4,4064897           |
| 0,375    | 0,44       | 31         | 9 <mark>-1,8336593</mark> | <mark>3</mark> 0,18  | 480       | 2,7591111   | 0,01  | 540  | 3,104               | -0,18 | 795 | 4,5697778           |
| 0,4      | 0,49       | 32         | 0 1,84761                 | <mark>)</mark> 0,21  | 488       | 2,817619    | 0,05  | 550  | 3,1755952           | -0,15 | 810 | 4,6767857           |
| 0,425    | 0,55       | 32         | 5 <mark>1,8849028</mark>  | <mark>8</mark> 0,25  | 498       | 2,8882511   | 0,08  | 570  | 3,3058296           | -0,12 | 826 | 4,7905531           |
| 0,45     | 5 0,6      | 32         | 5 <mark>1,8933934</mark>  | 0,28                 | 502       | 2,9245646   | 0,11  | 583  | 3,3964565           | -0,1  | 840 | 4,8936937           |
| 0,475    | 0,64       | 32         | 5 1,9019608               | <mark>3</mark> 0,31  | 508       | 2,972911    | 0,15  | 600  | 3,5113122           | -0,06 | 848 | 4,9626546           |
| 0,5      | 0,69       | 32         | 5 1,910606                | <mark>1</mark> 0,34  | 510       | 2,9981818   | 0,19  | 613  | 3,603697            | -0,02 | 854 | 5,0204848           |
| 0,525    | 0,74       | 324        | 4 1,9134247               | 0,39                 | 512       | 3,0236834   | 0,23  | 620  | 3,6614916           | 0,01  | 857 | 5,0611263           |
| 0,55     | 0,78       | 32         | 2 1,9103364               | 0,43                 | 513       | 3,0434862   | 0,27  | 628  | 3,7257492           | 0,05  | 862 | 5,1140061           |
| 0,575    | 0,82       | 32         | 0 1,9072197               | 0,48                 | 513       | 3,0575115   | 0,3   | 634  | 3,778679            | 0,09  | 870 | 5,1852535           |
| 0,6      | 8          |            |                           | 0,52                 | 506       | 3,0297531   | 0,34  | 635  | 3,8021605           | 0,12  | 870 | 5,2092593           |
| 0,625    | 5          |            |                           | 0,57                 | 505       | 3,0378295   | 0,37  | 630  | 3,7897674           | 0,15  | 870 | 5,2334884           |
| 0,65     | 5          |            |                           | 0,6                  | 502       | 3,0338941   | 0,4   | 632  | 3,8195639           | 0,2   | 871 | 5,2639875           |
| 0,675    | 5          |            |                           |                      |           |             | 0,42  | 636  | 3,861784            | 0,23  | 871 | 5,2887011           |
| 0,7      | '          |            |                           |                      |           |             | 0,45  | 636  | 3,88                | 0,26  | 870 | 5,3075472           |
| 0,725    | 5          |            |                           |                      |           |             | 0,47  | 625  | 3,8309637           | 0,3   | 870 | 5,3327014           |
| 0,75     | 5          |            |                           |                      |           |             | 0,49  | 608  | 3,7445079           | 0,34  | 860 | 5,2965079           |
| 0,775    | 5          |            |                           |                      |           |             |       |      |                     | 0,35  | 858 | 5,3094737           |

## 17. Analyse granulométrique après cisaillement série 2 détergents

| analyse gra | nulométrique | e après traite | ement 1 bar d | étergents  | analyse gra | nulométriqu | e après traite | ment 2 bars | détergents |
|-------------|--------------|----------------|---------------|------------|-------------|-------------|----------------|-------------|------------|
| tamis on    | massa das    | masse des      | poucentag     | tamisat    | tamis en    | massa das   | masse des      | poucentag   | tamisat    |
| carnis err  | refus en ar  | refus          | e des refus   | cumulé en  | tamis en    | refused as  | refus          | e des refus | cumulé en  |
|             | reids en gr  | cumuclé        | cumulé %      | %          |             | reids en gr | cumuclé        | cumulé %    | %          |
| 6,3         | 0            | 0              | 0             | 100        | 6,3         | 0           | 0              | 0           | 100        |
| 4           | 55,4         | 55,4           | 19,78571      | 80,21429   | 4           | 51,8        | 51,8           | 18,5        | 81,5       |
| 3,15        | 23,3         | 78,7           | 28,10714      | 71,89286   | 3,15        | 24          | 75,8           | 27,07143    | 72,92857   |
| 2           | 44,2         | 122,9          | 43,89286      | 56,10714   | 2           | 48,9        | 124,7          | 44,53571    | 55,46429   |
| 1,25        | 43,4         | 166,3          | 59,39286      | 40,60714   | 1,25        | 40,8        | 165,5          | 59,10714    | 40,89286   |
| 0,8         | 25,1         | 191,4          | 68,35714      | 31,64286   | 0,8         | 22,2        | 187,7          | 67,03571    | 32,96429   |
| 0,5         | 17,2         | 208,6          | 74,5          | 25,5       | 0,5         | 17,2        | 204,9          | 73,17857    | 26,82143   |
| 0,315       | 10,9         | 219,5          | 78,39286      | 21,60714   | 0,315       | 16          | 220,9          | 78,89286    | 21,10714   |
| 0,2         | 10,7         | 230,2          | 82,21429      | 17,78571   | 0,2         | 8,4         | 229,3          | 81,89286    | 18,10714   |
| 0,125       | 4,4          | 234,6          | 83,78571      | 16,21429   | 0,125       | 7,3         | 236,6          | 84,5        | 15,5       |
| fend        | 44,5         | 279,1          | 99,67857      | 0,321429   | fend        | 41,4        | 278            | 99,28571    | 0,714286   |
|             |              |                |               |            |             |             |                |             |            |
| analyse gra | nulométrique | e après traite | ment 3 bars   | détergents | analyse gra | nulométriqu | e après traite | ment 4 bars | détergents |
| tamis en    | massa das    | masse des      | poucentag     | tamisat    | tamis en    | massa das   | masse des      | poucentag   | tamisat    |
| mm          | refus en ar  | refus          | e des refus   | cumulé en  | tamis en    | refused as  | refus          | e des refus | cumulé en  |
|             | reids en gr  | cumuclé        | cumulé %      | %          |             | rerus en gr | cumuclé        | cumulé %    | %          |
| 6,3         | 0            | 0              | 0             | 100        | 6,3         | 0           | 0              | 0           | 100        |
| 4           | 55,5         | 55,5           | 19,82143      | 80,17857   | 4           | 49,2        | 49,2           | 17,57143    | 82,42857   |
| 3,15        | 20,5         | 76             | 27,14286      | 72,85714   | 3,15        | 24,8        | 74             | 26,42857    | 73,57143   |
| 2           | 49,4         | 125,4          | 44,78571      | 55,21429   | 2           | 49,7        | 123,7          | 44,17857    | 55,82143   |
| 1,25        | 43,2         | 168,6          | 60,21429      | 39,78571   | 1,25        | 40,6        | 164,3          | 58,67857    | 41,32143   |
| 0,8         | 24,6         | 193,2          | 69            | 31         | 0,8         | 22,1        | 186,4          | 66,57143    | 33,42857   |
| 0,5         | 17,2         | 210,4          | 75,14286      | 24,85714   | 0,5         | 18,2        | 204,6          | 73,07143    | 26,92857   |
| 0,315       | 10,7         | 221,1          | 78,96429      | 21,03571   | 0,315       | 16,1        | 220,7          | 78,82143    | 21,17857   |
| 0,2         | 10           | 231,1          | 82,53571      | 17,46429   | 0,2         | 8,5         | 229,2          | 81,85714    | 18,14286   |
| 0,125       | 8,7          | 239,8          | 85,64286      | 14,35714   | 0,125       | 8,1         | 237,3          | 84,75       | 15,25      |
| fend        | 40,1         | 279,9          | 99,96429      | 0,035714   | fend        | 42          | 279,3          | 99,75       | 0,25       |

## 18. Résultats de cisaillement après traitement série 2 sulfates

|   | Essai de o | cisailleme | nt après ti | raitement sul            | fates 2 | ième série |             |       |      |                  |         |       |     |                     |  |
|---|------------|------------|-------------|--------------------------|---------|------------|-------------|-------|------|------------------|---------|-------|-----|---------------------|--|
| ľ |            | 1          | bar         |                          | 2bar    |            |             |       | 3bar |                  |         | 4ba   | ir  |                     |  |
|   | ۵L         | ΔH         | La          | τ=Lax0,194/§ Δi          | н       | La         | τ=Lax0,194/ | ΔH    | La   | τ=Lax0,194/Sc (K | ipa) ∆l | Н     | La  | τ=Lax0,194/Sc (Kpa) |  |
|   | 0          | 0          | 0           | ) 0                      | 0       | 0          | 0           | 0     | 0    | 0                |         | 0     | 0   | 0                   |  |
|   | 0,025      | -0,01      | 55          | 0,297629                 | -0,02   | 50         | 0,2705718   | -0,02 | 65   | 0,3517434        |         | -0,02 | 144 | 0,7792469           |  |
|   | 0,05       | -0,01      | 105         | 0,5705882                | -0,05   | 146        | 0,7933894   | -0,05 | 155  | 0,8422969        |         | -0,07 | 230 | 1,2498599           |  |
|   | 0,075      | 0          | 142         | 0,7749086                | -0,08   | 208        | 1,1350774   | -0,08 | 235  | 1,2824191        |         | -0,11 | 295 | 1,6098453           |  |
|   | 0,1        | 0,01       | 165         | 0,9042373                | -0,09   | 250        | 1,3700565   | -0,09 | 294  | 1,6111864        |         | -0,15 | 350 | 1,9180791           |  |
|   | 0,125      | 0,04       | 180         | 0,9906383                | -0,08   | 283        | 1,5575035   | -0,11 | 336  | 1,8491915        |         | -0,17 | 395 | 2,1739007           |  |
|   | 0,15       | 0,07       | 202         | 1,1164672                | -0,07   | 310        | 1,7133903   | -0,12 | 376  | 2,0781766        |         | -0,19 | 440 | 2,4319088           |  |
|   | 0,175      | 0,1        | 218         | 1,2100715                | -0,06   | 341        | 1,8928183   | -0,12 | 416  | 2,3091273        |         | -0,2  | 482 | 2,6754793           |  |
|   | 0,2        | 0,14       | 234         | 1,3044828                | -0,04   | 370        | 2,0626437   | -0,11 | 447  | 2,4918966        |         | -0,2  | 530 | 2,9545977           |  |
|   | 0,225      | 0,19       | 242         | 2 1,3549206              | -0,02   | 389        | 2,1779509   | -0,1  | 478  | 2,6762482        |         | -0,19 | 581 | 3,2529293           |  |
|   | 0,25       | 0,25       | 252         | 2 1,4170435              | 0,01    | 408        | 2,2942609   | -0,09 | 512  | 2,8790725        |         | -0,18 | 623 | 3,5032464           |  |
|   | 0,275      | 0,31       | 254         | 1,4345269                | 0,05    | 423        | 2,3889956   | -0,06 | 540  | 3,0497817        |         | -0,17 | 664 | 3,7501019           |  |
|   | 0,3        | 0,36       | 260         | 1,4748538                | 0,09    | 435        | 2,4675439   | -0,04 | 566  | 3,2106433        |         | -0,15 | 692 | 3,9253801           |  |
|   | 0,325      | 0,42       | 265         | 5 <mark>1,5098385</mark> | 0,13    | 448        | 2,5524816   | -0,01 | 585  | 3,3330396        |         | -0,13 | 722 | 4,1135977           |  |
|   | 0,35       | 0,49       | 266         | 1,5222419                | 0,17    | 456        | 2,6095575   | 0,02  | 603  | 3,4507965        |         | -0,1  | 750 | 4,2920354           |  |
|   | 0,375      | 0,55       | 268         | 3 <mark>1,5405037</mark> | 0,22    | 465        | 2,6728889   | 0,05  | 618  | 3,5523556        |         | -0,08 | 774 | 4,4490667           |  |
|   | 0,4        | 0,61       | 274         | 1,5820238                | 0,26    | 472        | 2,7252381   | 0,09  | 636  | 3,6721429        |         | -0,04 | 792 | 4,5728571           |  |
|   | 0,425      | 0,66       | 272         | 2 <mark>1,5775187</mark> | 0,31    | 474        | 2,7490583   | 0,13  | 648  | 3,7582063        |         | -0,01 | 810 | 4,6977578           |  |
|   | 0,45       | 0,73       | 269         | 1,5671471                | 0,36    | 475        | 2,7672673   | 0,16  | 660  | 3,845045         |         | 0,02  | 810 | 4,7189189           |  |
|   | 0,475      | 0,79       | 266         | 6 <mark>1,5566817</mark> | 0,41    | 478        | 2,7973454   | 0,21  | 665  | 3,8917044        |         | 0,06  | 817 | 4,7812368           |  |
|   | 0,5        | 0,85       | 266         | 1,5637576                | 0,46    | 482        | 2,8335758   | 0,26  | 667  | 3,9211515        |         | 0,1   | 830 | 4,8793939           |  |
|   | 0,525      | 0,91       | 265         | 5 <mark>1,5649924</mark> | 0,5     | 484        | 2,8583257   | 0,3   | 665  | 3,9272451        |         | 0,13  | 832 | 4,9134855           |  |
|   | 0,55       | 0,97       | 260         | 1,5425076                | 0,55    | 490        | 2,9070336   | 0,34  | 666  | 3,9511927        |         | 0,17  | 829 | 4,9182263           |  |
|   | 0,575      | 1,02       | 255         | 5 <mark>1,5198157</mark> | 0,59    | 494        | 2,9442704   | 0,37  | 667  | 3,975361         |         | 0,21  | 826 | 4,9230108           |  |
|   | 0,6        | 1,06       | 254         | 1,5208642                | 0,64    | 495        | 2,9638889   | 0,42  | 666  | 3,9877778        |         | 0,23  | 820 | 4,9098765           |  |
|   | 0,625      |            |             |                          | 0,68    | 495        | 2,9776744   | 0,45  | 667  | 4,0123411        |         | 0,24  | 815 | 4,9026357           |  |
|   | 0,65       |            |             |                          | 0,71    | 504        | 3,0459813   | 0,49  | 668  | 4,037134         |         | 25    | 815 | 4,9255452           |  |
|   | 0,675      |            |             |                          | 0,76    | 503        | 3,0542097   | 0,53  | 669  | 4,0621596        |         | 27    | 815 | 4,9486698           |  |
|   | 0,7        |            |             |                          | 0,79    | 500        | 3,0503145   | 0,56  | 666  | 4,0630189        |         | 28    | 815 | 4,9720126           |  |
|   | 0,725      |            |             |                          | 0,83    | 494        | 3,0279937   | 0,57  | 665  | 4,0761453        |         | 0,3   | 815 | 4,9955766           |  |
|   | 0,75       |            |             |                          |         |            |             | 0,58  | 660  | 4,0647619        |         | 0,31  | 815 | 5,0193651           |  |

19. Analyse granulométrique après cisaillement série 2 (sulfates)

| analyse gran | ulométrique | après traiten | nent 1 bar sul | fates     | analyse gran | ulométrique | après traiten | nent 2 bars su | lfates    |
|--------------|-------------|---------------|----------------|-----------|--------------|-------------|---------------|----------------|-----------|
| tamia an     | mana das    | masse des     | poucentage     | tamisat   | tamis an     | mana das    | masse des     | poucentage     | tamisat   |
| tamis en     | masse des   | refus         | des refus      | cumulé en | tamis en     | masse des   | refus         | des refus      | cumulé en |
| mm           | rerus en gr | cumuclé       | cumulé %       | %         | mm           | rerus en gr | cumuclé       | cumulé %       | %         |
| 6,3          | 0           | 0             | 0              | 100       | 6,3          | 0           | 0             | 0              | 100       |
| 4            | 48,3        | 48,3          | 17,25          | 82,75     | 4            | 49,7        | 49,7          | 17,75          | 82,25     |
| 3,15         | 29,4        | 77,7          | 27,75          | 72,25     | 3,15         | 25,2        | 74,9          | 26,75          | 73,25     |
| 2            | 45,1        | 122,8         | 43,857143      | 56,142857 | 2            | 47,6        | 122,5         | 43,75          | 56,25     |
| 1,25         | 42,3        | 165,1         | 58,964286      | 41,035714 | 1,25         | 41,9        | 164,4         | 58,714286      | 41,285714 |
| 0,8          | 23,5        | 188,6         | 67,357143      | 32,642857 | 0,8          | 22          | 186,4         | 66,571429      | 33,428571 |
| 0,5          | 17,7        | 206,3         | 73,678571      | 26,321429 | 0,5          | 18,1        | 204,5         | 73,035714      | 26,964286 |
| 0,315        | 11,5        | 217,8         | 77,785714      | 22,214286 | 0,315        | 15,5        | 220           | 78,571429      | 21,428571 |
| 0,2          | 10,6        | 228,4         | 81,571429      | 18,428571 | 0,2          | 8,9         | 228,9         | 81,75          | 18,25     |
| 0,125        | 7,4         | 235,8         | 84,214286      | 15,785714 | 0,125        | 7,7         | 236,6         | 84,5           | 15,5      |
| fend         | 40,6        | 276,4         | 98,714286      | 1,2857143 | fend         | 41,9        | 278,5         | 99,464286      | 0,5357143 |
|              |             |               |                |           |              |             |               |                |           |
| analyse gran | ulométrique | après traiten | nent 3 bars su | lfates    | analyse gran | ulométrique | après traiten | nent 4 bars su | lfates    |
|              |             | masse des     | poucentage     | tamisat   |              |             | masse des     | poucentage     | tamisat   |
| tanns en     | masse des   | refus         | des refus      | cumulé en | tamis en     | masse des   | refus         | des refus      | cumulé en |
| mm           | terus en gr | cumuclé       | cumulé %       | %         | mm           | felus en gr | cumuclé       | cumulé %       | %         |
| 6,3          | 0           | 0             | 0              | 100       | 6,3          | 0           | 0             | 0              | 100       |
| 4            | 52,8        | 52,8          | 18,857143      | 81,142857 | 4            | 52,3        | 52,3          | 18,678571      | 81,321429 |
| 3,15         | 25,1        | 77,9          | 27,821429      | 72,178571 | 3,15         | 21,1        | 73,4          | 26,214286      | 73,785714 |
| 2            | 47,5        | 125,4         | 44,785714      | 55,214286 | 2            | 49,1        | 122,5         | 43,75          | 56,25     |
| 1,25         | 38,5        | 163,9         | 58,535714      | 41,464286 | 1,25         | 44,8        | 167,3         | 59,75          | 40,25     |
| 0,8          | 26,3        | 190,2         | 67,928571      | 32,071429 | 0,8          | 21          | 188,3         | 67,25          | 32,75     |
| 0,5          | 18,4        | 208,6         | 74,5           | 25,5      | 0,5          | 17,7        | 206           | 73,571429      | 26,428571 |
| 0,315        | 10,8        | 219,4         | 78,357143      | 21,642857 | 0,315        | 15,4        | 221,4         | 79,071429      | 20,928571 |
| 0,2          | 9,1         | 228,5         | 81,607143      | 18,392857 | 0,2          | 8,5         | 229,9         | 82,107143      | 17,892857 |
| 0,125        | 7,9         | 236,4         | 84,428571      | 15,571429 | 0,125        | 8,2         | 238,1         | 85,035714      | 14,964286 |
| fend         | 42,8        | 279,2         | 99,714286      | 0,2857143 | fend         | 41,3        | 279,4         | 99,785714      | 0,2142857 |

20. Résultats de cisaillement après traitement série 3 (eau)

| Essai de | cisailleme | nt après ti | raitement   | eau 3 iềm | e série |             |        |      |                     |       |     |                     |
|----------|------------|-------------|-------------|-----------|---------|-------------|--------|------|---------------------|-------|-----|---------------------|
|          | 1          | bar         |             | 2bar      |         |             |        | 3bar |                     | 4ba   | ar  |                     |
| ΔL       | ΔH         | La          | τ=Lax0,194/ | ΔH        | La      | τ=Lax0,194/ | ΔH     | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ≈Lax0,194/Sc (Kpa) |
| 0        | 0          | 0           | 0           | 0         | 0       | 0           | 0      | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,01      | 69          | 0,3733891   | -0,01     | 68      | 0,3679777   | -0,005 | 108  | 0,5844351           | -0,02 | 70  | 0,3788006           |
| 0,05     | -0,02      | 107         | 0,5814566   | -0,03     | 182     | 0,9890196   | -0,05  | 182  | 0,9890196           | -0,07 | 200 | 1,0868347           |
| 0,075    | -0,02      | 134         | 0,7312518   | -0,05     | 245     | 1,3369902   | -0,09  | 242  | 1,3206188           | -0,12 | 298 | 1,6262166           |
| 0,1      | 0,005      | 150         | 0,8220339   | -0,05     | 290     | 1,5892655   | -0,11  | 285  | 1,5618644           | -0,16 | 360 | 1,9728814           |
| 0,125    | 0,03       | 165         | 0,9080851   | -0,05     | 325     | 1,7886525   | -0,14  | 325  | 1,7886525           | -0,2  | 415 | 2,2839716           |
| 0,15     | 0,06       | 183         | 1,011453    | -0,04     | 356     | 1,9676353   | -0,15  | 360  | 1,9897436           | -0,23 | 460 | 2,5424501           |
| 0,175    | 0,09       | 195         | 1,0824034   | -0,02     | 385     | 2,1370529   | -0,14  | 392  | 2,1759084           | -0,25 | 505 | 2,8031474           |
| 0,2      | 0,14       | 204         | 1,1372414   | 0,005     | 412     | 2,2967816   | -0,13  | 415  | 2,3135057           | -0,26 | 540 | 3,0103448           |
| 0,225    | 0,18       | 210         | 1,1757576   | 0,04      | 435     | 2,4354978   | -0,12  | 444  | 2,4858874           | -0,27 | 582 | 3,2585281           |
| 0,25     | 0,23       | 217         | 1,2202319   | 0,08      | 456     | 2,5641739   | -0,1   | 471  | 2,6485217           | -0,28 | 616 | 3,4638841           |
| 0,275    | 0,28       | 224         | 1,2650946   | 0,12      | 479     | 2,7052693   | -0,09  | 494  | 2,7899854           | -0,27 | 652 | 3,682329            |
| 0,3      | 0,34       | 229         | 1,2990058   | 0,16      | 492     | 2,7908772   | -0,06  | 508  | 2,8816374           | -0,28 | 688 | 3,9026901           |
| 0,325    | 0,38       | 233         | 1,3275184   | 0,21      | 501     | 2,8544493   | -0,03  | 526  | 2,9968869           | -0,27 | 712 | 4,0566226           |
| 0,35     | 0,44       | 238         | 1,3620059   | 0,25      | 511     | 2,9243068   | 0,01   | 542  | 3,1017109           | -0,27 | 728 | 4,1661357           |
| 0,375    | 0,49       | 240         | 1,3795556   | 0,3       | 515     | 2,9602963   | 0,04   | 553  | 3,1787259           | -0,26 | 756 | 4,3456              |
| 0,4      | 0,53       | 244         | 1,4088095   | 0,34      | 522     | 3,0139286   | 0,07   | 562  | 3,244881            | -0,24 | 765 | 4,4169643           |
| 0,425    | 0,57       | 243         | 1,4093274   | 0,38      | 526     | 3,0506428   | 0,11   | 573  | 3,3232287           | -0,22 | 779 | 4,5179671           |
| 0,45     | 0,61       | 242         | 1,4098498   | 0,41      | 530     | 3,0876877   | 0,15   | 581  | 3,3848048           | -0,2  | 792 | 4,6140541           |
| 0,475    | 0,65       | 242         | 1,4162293   | 0,45      | 532     | 3,1133635   | 0,18   | 584  | 3,4176772           | -0,18 | 795 | 4,6524887           |
| 0,5      | 0,69       | 238         | 1,3991515   | 0,48      | 535     | 3,1451515   | 0,22   | 595  | 3,4978788           | -0,15 | 798 | 4,6912727           |
| 0,525    | 0,72       | 237         | 1,3996347   | 0,51      | 534     | 3,1536073   | 0,26   | 604  | 3,5670015           | -0,12 | 805 | 4,7540335           |
| 0,55     |            |             |             | 0,54      | 535     | 3,1740061   | 0,3    | 610  | 3,6189602           | -0,09 | 808 | 4,7936391           |
| 0,575    |            |             |             | 0,56      | 535     | 3,1886329   | 0,32   | 615  | 3,6654378           | -0,07 | 813 | 4,84553             |
| 0,6      |            |             |             | 0,6       | 537     | 3,2153704   | 0,36   | 619  | 3,706358            | -0,02 | 818 | 4,8979012           |
| 0,625    |            |             |             | 0,62      | 538     | 3,2363411   | 0,4    | 619  | 3,7235969           | 0,005 | 826 | 4,9688062           |
| 0,65     |            |             |             | 0,65      | 541     | 3,269595    | 0,43   | 619  | 3,7409969           | 0,03  | 824 | 4,9799377           |
| 0,675    |            |             |             | 0,67      | 543     | 3,2970892   | 0,46   | 618  | 3,7524883           | 0,07  | 820 | 4,9790297           |
| 0,7      |            |             |             | 0,69      | 546     | 3,3309434   | 0,49   | 615  | 3,7518868           | 0,1   | 808 | 4,9293082           |
| 0,725    |            |             |             | 0,72      | 546     | 3,3467299   | 0,5    | 614  | 3,7635387           | 0,13  | 808 | 4,9526698           |
| 0,75     |            |             |             | 0,74      | 543     | 3,3441905   | 0,52   | 614  | 3,7814603           |       |     |                     |
| 0,775    |            |             |             | 0,77      | 543     | 3,3601914   |        |      |                     |       |     |                     |
| 0,8      |            |             |             | 0,8       | 543     | 3,3763462   |        |      |                     |       |     |                     |
| 0.825    |            |             |             | 0.83      | 542     | 3 386409    |        |      |                     |       |     |                     |

21. Analyse granulométrique après cisaillement série 3 (eau)

| analyse gra    | anulométriqu             | e après traite                | ment 1bar e                          | au                        | analyse gra    | nulométriqu              | e après traite                | ment 2 bars                          | eau                       |
|----------------|--------------------------|-------------------------------|--------------------------------------|---------------------------|----------------|--------------------------|-------------------------------|--------------------------------------|---------------------------|
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% |
| 6,3            | 0                        | 0                             | 0                                    | 100                       | 6,3            | 0                        | 0                             | 0                                    | 100                       |
| 4              | 52,3                     | 52,3                          | 18,67857                             | 81,32143                  | 4              | 51,2                     | 51,2                          | 18,28571                             | 81,71429                  |
| 3,15           | 23,6                     | 75,9                          | 27,10714                             | 72,89286                  | 3,15           | 22,2                     | 73,4                          | 26,21429                             | 73,78571                  |
| 2              | 46,7                     | 122,6                         | 43,78571                             | 56,21429                  | 2              | 49,1                     | 122,5                         | 43,75                                | 56,25                     |
| 1,25           | 44,5                     | 167,1                         | 59,67857                             | 40,32143                  | 1,25           | 43,3                     | 165,8                         | 59,21429                             | 40,78571                  |
| 0,8            | 20,8                     | 187,9                         | 67,10714                             | 32,89286                  | 0,8            | 23,3                     | 189,1                         | 67,53571                             | 32,46429                  |
| 0,5            | 18                       | 205,9                         | 73,53571                             | 26,46429                  | 0,5            | 18,3                     | 207,4                         | 74,07143                             | 25,92857                  |
| 0,315          | 15,9                     | 221,8                         | 79,21429                             | 20,78571                  | 0,315          | 13,3                     | 220,7                         | 78,82143                             | 21,17857                  |
| 0,2            | 8,3                      | 230,1                         | 82,17857                             | 17,82143                  | 0,2            | 9,8                      | 230,5                         | 82,32143                             | 17,67857                  |
| 0,125          | 7,9                      | 238                           | 85                                   | 15                        | 0,125          | 7,8                      | 238,3                         | 85,10714                             | 14,89286                  |
| fend           | 40,1                     | 278,1                         | 99,32143                             | 0,678571                  | fend           | 40,7                     | 279                           | 39,64286                             | 0,357143                  |
| analyse gra    | anulométriqu             | e après traite                | ment 3 bars                          | eau                       | analyse gra    | nulométriqu              | e après traite                | ment 4 bars                          | eau                       |
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>cumulé %              | tamisat<br>cumulé en<br>% |
| 6,3            | 0                        | 0                             | 0                                    | 100                       | 6,3            | 0                        | 0                             | 0                                    | 100                       |
| 4              | 52,2                     | 52,2                          | 18,64286                             | 81,35714                  | 4              | 52,7                     | 52,7                          | 18,82143                             | 81,17857                  |
| 3,15           | 22,2                     | 74,4                          | 26,57143                             | 73,42857                  | 3,15           | 24,1                     | 76,8                          | 27,42857                             | 72,57143                  |
| 2              | 50,4                     | 124,8                         | 44,57143                             | 55,42857                  | 2              | 47,1                     | 123,9                         | 44,25                                | 55,75                     |
| 1,25           | 42,9                     | 167,7                         | 59,89286                             | 40,10714                  | 1,25           | 41,9                     | 165,8                         | 59,21429                             | 40,78571                  |
| 0,8            | 19,7                     | 187,4                         | 66,92857                             | 33,07143                  | 0,8            | 24,6                     | 190,4                         | 68                                   | 32                        |
| 0,5            | 18,4                     | 205,8                         | 73,5                                 | 26,5                      | 0,5            | 17,1                     | 207,5                         | 74,10714                             | 25,89286                  |
| 0,315          | 15,2                     | 221                           | 78,92857                             | 21,07143                  | 0,315          | 11,1                     | 218,6                         | 78,07143                             | 21,92857                  |
| 0,2            | 8,3                      | 229,3                         | 81,89286                             | 18,10714                  | 0,2            | 10,1                     | 228,7                         | 81,67857                             | 18,32143                  |
| 0,125          | 8,2                      | 237,5                         | 84,82143                             | 15,17857                  | 0,125          | 8,2                      | 236,9                         | 84,60714                             | 15,39286                  |
| fend           | 41,6                     | 279,1                         | 99,67857                             | 0,321429                  | fend           | 40,5                     | 277,4                         | 99,07143                             | 0,928571                  |

### 22. Résultats de cisaillement après traitement série 3 (phosphates)

| Essai de | cisailleme | nt après t | raitement p | hosphat | es 3 ième s | série       |       |      |                     |       |     |                     |
|----------|------------|------------|-------------|---------|-------------|-------------|-------|------|---------------------|-------|-----|---------------------|
|          | 11         | bar        |             | 2bar    |             |             |       | 3bar |                     | 4ba   | ar  |                     |
| ΔL       | ΔH         | La         | t=Lax0,194/ | ΔH      | La          | τ=Lax0,194/ | ΔV    | La   | τ=Lax0,194/Sc (Kpa) | ΔV    | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0          | 0          | 0           | 0       | 0           | 0           | 0     | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,01      | 55         | 0,297629    | -0,02   | 72          | 0,3896234   | -0,02 | 65   | 0,3517434           | -0,02 | 135 | 0,7305439           |
| 0,05     | -0,01      | 122        | 0,6629692   | -0,05   | 175         | 0,9509804   | -0,06 | 185  | 1,0053221           | -0,07 | 222 | 1,2063866           |
| 0,075    | 0          | 164        | 0,8949648   | -0,06   | 240         | 1,3097046   | -0,09 | 260  | 1,4188467           | -0,11 | 286 | 1,5607314           |
| 0,1      | 0,02       | 191        | 1,0467232   | -0,07   | 290         | 1,5892655   | -0,11 | 315  | 1,7262712           | -0,15 | 333 | 1,8249153           |
| 0,125    | 0,04       | 210        | 1,1557447   | -0,08   | 332         | 1,8271773   | -0,12 | 364  | 2,0032908           | -0,17 | 382 | 2,1023546           |
| 0,15     | 0,08       | 227        | 1,2546439   | -0,09   | 365         | 2,0173789   | -0,13 | 400  | 2,2108262           | -0,2  | 422 | 2,3324217           |
| 0,175    | 0,12       | 242        | 1,3432904   | -0,08   | 405         | 2,2480687   | -0,13 | 440  | 2,4423462           | -0,21 | 463 | 2,5700143           |
| 0,2      | 0,16       | 255        | 1,4215517   | -0,07   | 433         | 2,4138506   | -0,12 | 470  | 2,6201149           | -0,21 | 501 | 2,792931            |
| 0,225    | 0,21       | 269        | 1,5060895   | -0,05   | 461         | 2,5810678   | -0,11 | 498  | 2,7882251           | -0,21 | 532 | 2,9785859           |
| 0,25     | 0,26       | 279        | 1,5688696   | -0,02   | 485         | 2,7272464   | -0,09 | 520  | 2,924058            | -0,21 | 569 | 3,1995942           |
| 0,275    | 0,31       | 285        | 1,609607    | 0,01    | 505         | 2,8521106   | -0,06 | 549  | 3,1006114           | -0,21 | 603 | 3,4055895           |
| 0,3      | 0,36       | 295        | 1,6733918   | 0,04    | 524         | 2,9723977   | -0,04 | 570  | 3,2333333           | -0,2  | 628 | 3,5623392           |
| 0,325    | 0,41       | 303        | 1,7263436   | 0,08    | 542         | 3,088047    | -0,02 | 595  | 3,3900147           | -0,19 | 648 | 3,6919824           |
| 0,35     | 0,47       | 306        | 1,7511504   | 0,12    | 563         | 3,2218879   | 0,01  | 622  | 3,559528            | -0,18 | 663 | 3,7941593           |
| 0,375    | 0,52       | 309        | 1,7761778   | 0,17    | 579         | 3,3281778   | 0,04  | 645  | 3,7075556           | -0,15 | 681 | 3,9144889           |
| 0,4      | 0,56       | 309        | 1,7841071   | 0,22    | 582         | 3,3603571   | 0,07  | 664  | 3,8338095           | -0,12 | 693 | 4,00125             |
| 0,425    | 0,61       | 310        | 1,7979073   | 0,28    | 590         | 3,4218236   | 0,11  | 679  | 3,937997            | -0,1  | 712 | 4,1293871           |
| 0,45     | 0,66       | 314        | 1,8293093   | 0,33    | 594         | 3,4605405   | 0,15  | 692  | 4,0314715           | -0,07 | 718 | 4,1829429           |
| 0,475    | 0,71       | 315        | 1,8434389   | 0,38    | 598         | 3,4996078   | 0,18  | 705  | 4,1257919           | -0,03 | 725 | 4,2428356           |
| 0,5      | 0,75       | 318        | 1,8694545   | 0,43    | 604         | 3,5507879   | 0,22  | 710  | 4,1739394           | 0     | 731 | 4,2973939           |
| 0,525    | 0,78       | 317        | 1,8720852   | 0,48    | 606         | 3,5788128   | 0,26  | 722  | 4,2638661           | 0,03  | 740 | 4,3701674           |
| 0,55     | 0,81       | 314        | 1,8628746   | 0,54    | 600         | 3,559633    | 0,29  | 727  | 4,3130887           | 0,06  | 742 | 4,4020795           |
| 0,575    | 0,83       | 310        | 1,847619    | 0,58    | 595         | 3,5462366   | 0,32  | 730  | 4,3508449           | 0,09  | 744 | 4,4342857           |
| 0,6      |            |            |             | 0,6     | 592         | 3,5446914   | 0,35  | 722  | 4,3230864           | 0,12  | 745 | 4,4608025           |
| 0,625    |            |            |             |         |             |             | 0,37  | 714  | 4,2950698           | 0,14  | 748 | 4,4995969           |
| 0,65     |            |            |             |         |             |             |       |      |                     | 0,17  | 750 | 4,5327103           |
| 0,675    |            |            |             |         |             |             |       |      |                     | 0,19  | 752 | 4,5661346           |
| 0,7      |            |            |             |         |             |             |       |      |                     | 0,21  | 755 | 4,6059748           |
| 0,725    |            |            |             |         |             |             |       |      |                     | 0,24  | 756 | 4,6339336           |
| 0,75     |            |            |             |         |             |             |       |      |                     | 0,26  | 750 | 4,6190476           |
| 0,775    |            |            |             |         |             |             |       |      |                     | 0,28  | 740 | 4,5792663           |

23. Analyse granulométrique après cisaillement série 3 (phosphates)

| nalyse gra                                                    | anulométrique                                                  | e après traite                                                              | ment 1 bar pl                                                                                        | hosphates                                                                                            | analyse gra                                                   | anulométrique                                                       | e après traite                                                              | ment 2 bars                                                                                           | phosphate                                                                                             |
|---------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| tamis en                                                      | masse des                                                      | masse des<br>refus                                                          | poucentag<br>e des refus                                                                             | tamisat<br>cumulé en                                                                                 | tamis en                                                      | masse des                                                           | masse des<br>refus                                                          | poucentag<br>e des refus                                                                              | tamisat<br>cumulé er                                                                                  |
| mm                                                            | rerus en gr                                                    | cumuclé                                                                     | cumulé %                                                                                             | %                                                                                                    | mm                                                            | rerus en gr                                                         | cumuclé                                                                     | cumulé %                                                                                              | %                                                                                                     |
| 6,3                                                           | 0                                                              | 0                                                                           | 0                                                                                                    | 100                                                                                                  | 6,3                                                           | 0                                                                   | 0                                                                           | 0                                                                                                     | 100                                                                                                   |
| 4                                                             | 51,4                                                           | 51,4                                                                        | 18,35714                                                                                             | 81,64286                                                                                             | 4                                                             | 54,6                                                                | 54,6                                                                        | 19,5                                                                                                  | 80,5                                                                                                  |
| 3,15                                                          | 23,2                                                           | 74,6                                                                        | 26,64286                                                                                             | 73,35714                                                                                             | 3,15                                                          | 21,9                                                                | 76,5                                                                        | 27,32143                                                                                              | 72,67857                                                                                              |
| 2                                                             | 46,8                                                           | 121,4                                                                       | 43,35714                                                                                             | 56,64286                                                                                             | 2                                                             | 47,9                                                                | 124,4                                                                       | 44,42857                                                                                              | 55,57143                                                                                              |
| 1,25                                                          | 45,3                                                           | 166,7                                                                       | 59,53571                                                                                             | 40,46429                                                                                             | 1,25                                                          | 44,1                                                                | 168,5                                                                       | 60,17857                                                                                              | 39,82143                                                                                              |
| 0,8                                                           | 21,2                                                           | 187,9                                                                       | 67,10714                                                                                             | 32,89286                                                                                             | 0,8                                                           | 23,2                                                                | 191,7                                                                       | 68,46429                                                                                              | 31,53571                                                                                              |
| 0,5                                                           | 18,9                                                           | 206,8                                                                       | 73,85714                                                                                             | 26,14286                                                                                             | 0,5                                                           | 17,9                                                                | 209,6                                                                       | 74,85714                                                                                              | 25,14286                                                                                              |
| 0,315                                                         | 15,3                                                           | 222,1                                                                       | 79,32143                                                                                             | 20,67857                                                                                             | 0,315                                                         | 10,9                                                                | 220,5                                                                       | 78,75                                                                                                 | 21,25                                                                                                 |
| 0,2                                                           | 8,3                                                            | 230,4                                                                       | 82,28571                                                                                             | 17,71429                                                                                             | 0,2                                                           | 9,6                                                                 | 230,1                                                                       | 82,17857                                                                                              | 17,82143                                                                                              |
| 0,125                                                         | 7,3                                                            | 237,7                                                                       | 84,89286                                                                                             | 15,10714                                                                                             | 0,125                                                         | 8                                                                   | 238,1                                                                       | 85,03571                                                                                              | 14,96429                                                                                              |
| fend                                                          | 40,9                                                           | 278,6                                                                       | 99,5                                                                                                 | 0,5                                                                                                  | fend                                                          | 40,9                                                                | 279                                                                         | 99,64286                                                                                              | 0,357143                                                                                              |
| nalyse gra                                                    | anulométrique                                                  | e après traite                                                              | ment 3 bars                                                                                          | phosphates                                                                                           | analyse gra                                                   | anulométrique                                                       | e après traite                                                              | ment 4 bars                                                                                           | phosphate                                                                                             |
| tamis en<br>mm                                                | masse des<br>refus en gr                                       | masse des<br>refus<br>cumuclé                                               | poucentag<br>e des refus<br>cumulé */                                                                | tamisat<br>cumulé en<br>V                                                                            | tamis en<br>mm                                                | masse des<br>refus en gr                                            | masse des<br>refus                                                          | poucentag<br>e des refus<br>cumulé */                                                                 | tamisat<br>cumulé en<br>*/                                                                            |
| 6.3                                                           | 0                                                              | n                                                                           | Cantale 7.                                                                                           | 100                                                                                                  | 6.3                                                           | 0                                                                   | n                                                                           | n n                                                                                                   | 100                                                                                                   |
| -/-                                                           | -                                                              |                                                                             | -                                                                                                    |                                                                                                      |                                                               |                                                                     | -                                                                           | -                                                                                                     |                                                                                                       |
| 4                                                             | 53.6                                                           | 53.6                                                                        | 19.14286                                                                                             | 80.85714                                                                                             | 4                                                             | 53.4                                                                | 53.4                                                                        | 19.07143                                                                                              | 80.92857                                                                                              |
| 4<br>3.15                                                     | 53,6<br>21,6                                                   | 53,6<br>75,2                                                                | 19,14286<br>26.85714                                                                                 | 80,85714<br>73,14286                                                                                 | 4                                                             | 53,4<br>20,9                                                        | 53,4<br>74,3                                                                | 19,07143<br>26,53571                                                                                  | 80,92857<br>73,46429                                                                                  |
| 4<br>3,15<br>2                                                | 53,6<br>21,6<br>46,3                                           | 53,6<br>75,2<br>121,5                                                       | 19,14286<br>26,85714<br>43,39286                                                                     | 80,85714<br>73,14286<br>56,60714                                                                     | 4<br>3,15<br>2                                                | 53,4<br>20,9<br>45,4                                                | 53,4<br>74,3<br>119,7                                                       | 19,07143<br>26,53571<br>42,75                                                                         | 80,92857<br>73,46429<br>57,25                                                                         |
| 4<br>3,15<br>2<br>1,25                                        | 53,6<br>21,6<br>46,3<br>45                                     | 53,6<br>75,2<br>121,5<br>166,5                                              | 19,14286<br>26,85714<br>43,39286<br>59,46429                                                         | 80,85714<br>73,14286<br>56,60714<br>40,53571                                                         | 4<br>3,15<br>2<br>1,25                                        | 53,4<br>20,9<br>45,4<br>46,5                                        | 53,4<br>74,3<br>119,7<br>166,2                                              | 19,07143<br>26,53571<br>42,75<br>59,35714                                                             | 80,92857<br>73,46429<br>57,25<br>40,64286                                                             |
| 4<br>3,15<br>2<br>1,25<br>0,8                                 | 53,6<br>21,6<br>46,3<br>45<br>20,9                             | 53,6<br>75,2<br>121,5<br>166,5<br>187,4                                     | 19,14286<br>26,85714<br>43,39286<br>59,46429<br>66,92857                                             | 80,85714<br>73,14286<br>56,60714<br>40,53571<br>33,07143                                             | 4<br>3,15<br>2<br>1,25<br>0,8                                 | 53,4<br>20,9<br>45,4<br>46,5<br>23,7                                | 53,4<br>74,3<br>119,7<br>166,2<br>189,9                                     | 19,07143<br>26,53571<br>42,75<br>59,35714<br>67,82143                                                 | 80,92857<br>73,46429<br>57,25<br>40,64286<br>32,17857                                                 |
| 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                          | 53,6<br>21,6<br>46,3<br>45<br>20,9<br>18,4                     | 53,6<br>75,2<br>121,5<br>166,5<br>187,4<br>205,8                            | 19,14286<br>26,85714<br>43,39286<br>59,46429<br>66,92857<br>73,5                                     | 80,85714<br>73,14286<br>56,60714<br>40,53571<br>33,07143<br>26,5                                     | 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                          | 53,4<br>20,9<br>45,4<br>46,5<br>23,7<br>17,8                        | 53,4<br>74,3<br>119,7<br>166,2<br>189,9<br>207,7                            | 19,07143<br>26,53571<br>42,75<br>59,35714<br>67,82143<br>74,17857                                     | 80,92857<br>73,46429<br>57,25<br>40,64286<br>32,17857<br>25,82143                                     |
| 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                 | 53,6<br>21,6<br>46,3<br>45<br>20,9<br>18,4<br>16               | 53,6<br>75,2<br>121,5<br>166,5<br>187,4<br>205,8<br>221,8                   | 19,14286<br>26,85714<br>43,39286<br>59,46429<br>66,92857<br>73,5<br>79,21429                         | 80,85714<br>73,14286<br>56,60714<br>40,53571<br>33,07143<br>26,5<br>20,78571                         | 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                 | 53,4<br>20,9<br>45,4<br>46,5<br>23,7<br>17,8<br>11,1                | 53,4<br>74,3<br>119,7<br>166,2<br>189,9<br>207,7<br>218,8                   | 19,07143<br>26,53571<br>42,75<br>59,35714<br>67,82143<br>74,17857<br>78,14286                         | 80,92857<br>73,46429<br>57,25<br>40,64286<br>32,17857<br>25,82143<br>21,85714                         |
| 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2          | 53,6<br>21,6<br>46,3<br>45<br>20,9<br>18,4<br>16<br>8,9        | 53,6<br>75,2<br>121,5<br>166,5<br>187,4<br>205,8<br>221,8<br>230,7          | 19,14286<br>26,85714<br>43,39286<br>59,46429<br>66,92857<br>73,5<br>79,21429<br>82,39286             | 80,85714<br>73,14286<br>56,60714<br>40,53571<br>33,07143<br>26,5<br>20,78571<br>17,60714             | 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2          | 53,4<br>20,9<br>45,4<br>46,5<br>23,7<br>17,8<br>11,1<br>10,7        | 53,4<br>74,3<br>119,7<br>166,2<br>189,9<br>207,7<br>218,8<br>229,5          | 19,07143<br>26,53571<br>42,75<br>59,35714<br>67,82143<br>74,17857<br>78,14286<br>81,96429             | 80,92857<br>73,46429<br>57,25<br>40,64286<br>32,17857<br>25,82143<br>21,85714<br>18,03571             |
| 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125 | 53,6<br>21,6<br>46,3<br>45<br>20,9<br>18,4<br>16<br>8,9<br>8,5 | 53,6<br>75,2<br>121,5<br>166,5<br>187,4<br>205,8<br>221,8<br>230,7<br>239,2 | 19,14286<br>26,85714<br>43,39286<br>59,46429<br>66,92857<br>73,5<br>79,21429<br>82,39286<br>85,42857 | 80,85714<br>73,14286<br>56,60714<br>40,53571<br>33,07143<br>26,5<br>20,78571<br>17,60714<br>14,57143 | 4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125 | 53,4<br>20,9<br>45,4<br>46,5<br>23,7<br>17,8<br>11,1<br>10,7<br>8,7 | 53,4<br>74,3<br>119,7<br>166,2<br>189,9<br>207,7<br>218,8<br>229,5<br>238,2 | 19,07143<br>26,53571<br>42,75<br>59,35714<br>67,82143<br>74,17857<br>78,14286<br>81,96429<br>85,07143 | 80,92857<br>73,46429<br>57,25<br>40,64286<br>32,17857<br>25,82143<br>21,85714<br>18,03571<br>14,92857 |

## 24. Résultats de cisaillement après traitement série 3 (détergents)

| Essai de | cisailleme | ent après ti | raitement   | Détergent | s 3 ième s | érie        |        |      |                     |       |     |                     |
|----------|------------|--------------|-------------|-----------|------------|-------------|--------|------|---------------------|-------|-----|---------------------|
|          | 1          | bar          |             |           | 2 bar      |             |        | 3bar |                     | 4b-   | ar  |                     |
| ΔL       | ΔH         | La           | τ=Lax0,194/ | ΔH        | La         | τ=Lax0,194/ | ΔH     | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0          | 0            | 0           | 0         | 0          | 0           | 0      | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,015     | 55           | 0,297629    | -0,02     | 98         | 0,5303208   | -0,04  | 90   | 0,4870293           | -0,01 | 70  | 0,3788006           |
| 0,05     | -0,02      | 100          | 0,5434174   | -0,05     | 148        | 0,8042577   | -0,08  | 131  | 0,7118768           | -0,05 | 155 | 0,8422969           |
| 0,075    | -0,02      | 132          | 0,7203376   | -0,06     | 201        | 1,0968776   | -0,11  | 182  | 0,9931927           | -0,1  | 235 | 1,2824191           |
| 0,1      | -0,005     | 152          | 0,8329944   | -0,07     | 242        | 1,3262147   | -0,14  | 234  | 1,2823729           | -0,15 | 292 | 1,600226            |
| 0,125    | 0,02       | 172          | 0,9466099   | -0,06     | 275        | 1,5134752   | -0,16  | 265  | 1,4584397           | -0,17 | 350 | 1,9262411           |
| 0,15     | 0,06       | 186          | 1,0280342   | -0,05     | 300        | 1,6581197   | -0,18  | 315  | 1,7410256           | -0,2  | 401 | 2,2163533           |
| 0,175    | 0,1        | 200          | 1,1101574   | -0,03     | 320        | 1,7762518   | -0,19  | 335  | 1,8595136           | -0,22 | 450 | 2,4978541           |
| 0,2      | 0,13       | 216          | 1,2041379   | 0         | 341        | 1,900977    | -0,18  | 365  | 2,0347701           | -0,23 | 490 | 2,7316092           |
| 0,225    | 0,17       | 225          | 1,2597403   | 0,03      | 358        | 2,0043867   | -0,17  | 385  | 2,1555556           | -0,25 | 525 | 2,9393939           |
| 0,25     | 0,21       | 229          | 1,2877101   | 0,08      | 372        | 2,0918261   | -0,15  | 405  | 2,2773913           | -0,24 | 562 | 3,1602319           |
| 0,275    | 0,26       | 236          | 1,3328675   | 0,12      | 388        | 2,1913246   | -0,14  | 420  | 2,3720524           | -0,23 | 600 | 3,3886463           |
| 0,3      | 0,31       | 241          | 1,367076    | 0,17      | 410        | 2,325731    | -0,12  | 437  | 2,4788889           | -0,22 | 638 | 3,6190643           |
| 0,325    | 0,35       | 245          | 1,3958884   | 0,21      | 420        | 2,3929515   | -0,09  | 450  | 2,5638767           | -0,2  | 664 | 3,7831424           |
| 0,35     | 0,4        | 248          | 1,419233    | 0,25      | 430        | 2,460767    | -0,07  | 462  | 2,6438938           | -0,19 | 690 | 3,9486726           |
| 0,375    | 0,44       | 251          | 1,4427852   | 0,29      | 437        | 2,5119407   | -0,04  | 475  | 2,7303704           | -0,16 | 717 | 4,1214222           |
| 0,4      | 0,49       | 256          | 1,4780952   | 0,33      | 442        | 2,5520238   | -0,005 | 488  | 2,817619            | -0,15 | 744 | 4,2957143           |
| 0,425    | 0,54       | 257          | 1,4905232   | 0,37      | 447        | 2,5924664   | 0,025  | 505  | 2,928849            | -0,12 | 754 | 4,3729746           |
| 0,45     | 0,58       | 257          | 1,4972372   | 0,41      | 450        | 2,6216216   | 0,05   | 514  | 2,9944745           | -0,1  | 772 | 4,4975375           |
| 0,475    | 0,62       | 258          | 1,5098643   | 0,44      | 452        | 2,6451885   | 0,09   | 521  | 3,0489894           | -0,08 | 790 | 4,6232278           |
| 0,5      | 0,67       | 258          | 1,5167273   | 0,47      | 452        | 2,6572121   | 0,11   | 523  | 3,0746061           | -0,05 | 804 | 4,7265455           |
| 0,525    | 0,71       | 258          | 1,523653    | 0,51      | 455        | 2,6870624   | 0,14   | 524  | 3,094551            | -0,02 | 820 | 4,842618            |
| 0,55     | 0,75       | 257          | 1,5247095   | 0,53      | 457        | 2,7112538   | 0,17   | 528  | 3,1324771           | 0,005 | 824 | 4,8885627           |
| 0,575    | 0,78       | 257          | 1,5317358   | 0,57      | 461        | 2,7475883   | 0,19   | 521  | 3,105192            | 0,03  | 830 | 4,946851            |
| 0,6      | 0,82       | 255          | 1,5268519   | 0,6       | 465        | 2,7842593   | 0,2    | 521  | 3,1195679           | 0,05  | 831 | 4,9757407           |
| 0,625    | 0,86       | 255          | 1,5339535   | 0,62      | 465        | 2,7972093   | 0,23   | 521  | 3,1340775           | 0,08  | 832 | 5,0048992           |
| 0,65     | 0,89       | 254          | 1,5350779   | 0,65      | 468        | 2,8284112   |        |      |                     | 0,09  | 834 | 5,0403738           |
| 0,675    |            |              |             | 0,68      | 470        | 2,8538341   |        |      |                     | 0,1   | 818 | 4,9668858           |
| 0,7      |            |              |             | 0,71      | 476        | 2,9038994   |        |      |                     |       |     |                     |
| 0,725    |            |              |             | 0,73      | 472        | 2,8931438   |        |      |                     |       |     |                     |
| 0,75     |            |              |             | 0,75      | 474        | 2,9192381   |        |      |                     |       |     |                     |

| 25. | Analyse | granulométrique | e après | cisaillement | série 3 | (détergents) |
|-----|---------|-----------------|---------|--------------|---------|--------------|
|     |         | 8               |         |              |         | (            |

| analyse gra    | anulométriqu             | e après traite                | ment 1bard                           | étergents                 | analyse gra    | anulométriqu             | e après traite                | ment 2 bars             | détergents                |
|----------------|--------------------------|-------------------------------|--------------------------------------|---------------------------|----------------|--------------------------|-------------------------------|-------------------------|---------------------------|
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>cumulé %              | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>cumulé % | tamisat<br>oumulé en<br>% |
| 6,3            | 0                        | 0                             | 0                                    | 100                       | 6,3            | 0                        | 0                             | 0                       | 100                       |
| 4              | 50,3                     | 50,3                          | 17,96429                             | 82,03571                  | 4              | 51,7                     | 51,7                          | 18,46429                | 81,53571                  |
| 3,15           | 23,7                     | 74                            | 26,42857                             | 73,57143                  | 3,15           | 22,2                     | 73,9                          | 26,39286                | 73,60714                  |
| 2              | 45,3                     | 119,3                         | 42,60714                             | 57,39286                  | 2              | 46,3                     | 120,2                         | 42,92857                | 57,07143                  |
| 1,25           | 40,3                     | 159,6                         | 57                                   | 43                        | 1,25           | 46                       | 166,2                         | 59,35714                | 40,64286                  |
| 0,8            | 25,4                     | 185                           | 66,07143                             | 33,92857                  | 0,8            | 23,1                     | 189,3                         | 67,60714                | 32,39286                  |
| 0,5            | 17,5                     | 202,5                         | 72,32143                             | 27,67857                  | 0,5            | 18,7                     | 208                           | 74,28571                | 25,71429                  |
| 0,315          | 14,3                     | 216,8                         | 77,42857                             | 22,57143                  | 0,315          | 11,1                     | 219,1                         | 78,25                   | 21,75                     |
| 0,2            | 8,5                      | 225,3                         | 80,46429                             | 19,53571                  | 0,2            | 9,8                      | 228,9                         | 81,75                   | 18,25                     |
| 0,125          | 10,3                     | 235,6                         | 84,14286                             | 15,85714                  | 0,125          | 8,6                      | 237,5                         | 84,82143                | 15,17857                  |
| fend           | 43,9                     | 279,5                         | 99,82143                             | 0,178571                  | fend           | 42,3                     | 279,8                         | 99,92857                | 0,071429                  |
| analyse gr     | anulométriqu             | e après traite                | ment 3 bars                          | détergents                | analyse gra    | anulométriqu             | e après traite                | ment 4 bars             | détergents                |
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>oumuolé | e des refus<br>cumulé % | tamisat<br>cumulé en<br>% |
| 6,3            | 0                        | 0                             | 0                                    | 100                       | 6,3            | 0                        | 0                             | 0                       | 100                       |
| 4              | 53                       | 53                            | 18,92857                             | 81,07143                  | 4              | 54,1                     | 54,1                          | 19,32143                | 80,67857                  |
| 3,15           | 23,6                     | 76,6                          | 27,35714                             | 72,64286                  | 3,15           | 22,2                     | 76,3                          | 27,25                   | 72,75                     |
| 2              | 47,1                     | 123,7                         | 44,17857                             | 55,82143                  | 2              | 46,5                     | 122,8                         | 43,85714                | 56,14286                  |
| 1,25           | 43,8                     | 167,5                         | 59,82143                             | 40,17857                  | 1,25           | 44,8                     | 167,6                         | 59,85714                | 40,14286                  |
| 0,8            | 21,3                     | 188,8                         | 67,42857                             | 32,57143                  | 0,8            | 23,8                     | 191,4                         | 68,35714                | 31,64286                  |
| 0,5            | 17,8                     | 206,6                         | 73,78571                             | 26,21429                  | 0,5            | 18                       | 209,4                         | 74,78571                | 25,21429                  |
| 0,315          | 15,5                     | 222,1                         | 79,32143                             | 20,67857                  | 0,315          | 11,3                     | 220,7                         | 78,82143                | 21,17857                  |
| 0.2            | 8,1                      | 230,2                         | 82,21429                             | 17,78571                  | 0,2            | 9,8                      | 230,5                         | 82,32143                | 17,67857                  |
|                |                          |                               |                                      |                           |                |                          |                               |                         |                           |
| 0,125          | 8,5                      | 238,7                         | 85,25                                | 14,75                     | 0,125          | 8,1                      | 238,6                         | 85,21429                | 14,78571                  |
| 0,125<br>fend  | 8,5<br>40,7              | 238,7<br>279,4                | 85,25<br>99,78571                    | 14,75<br>0,214286         | 0,125<br>fend  | 8,1<br>41,1              | 238,6 279,7                   | 85,21429<br>99,89286    | 14,78571 0,107143         |

26. Résultats de cisaillement après traitement série 3 (sulfates)

| Essai de | cisaillem | ent après | traitemen   | t sulfates | 3 ième si | érie       |       |      |                     |       |     |                     |
|----------|-----------|-----------|-------------|------------|-----------|------------|-------|------|---------------------|-------|-----|---------------------|
|          | 1         | l bar     |             | 2bar       |           |            |       | 3bar |                     | 4b    | ar  |                     |
| ΔL       | ΔH        | La        | τ=Lax0,194/ | ΔH         | La        | τ=Lax0,194 | ł∆H   | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0         | 0         | 0           | 0          | 0         | 0          | 0     | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,02     | 60        | 0,324686    | -0,02      | 90        | 0,487029   | -0,03 | 85   | 0,459972            | -0,04 | 75  | 0,405858            |
| 0,05     | -0,01     | 115       | 0,62493     | -0,04      | 155       | 0,842297   | -0,06 | 170  | 0,92381             | -0,08 | 190 | 1,032493            |
| 0,075    | 0,01      | 169       | 0,92225     | -0,07      | 201       | 1,096878   | -0,09 | 245  | 1,33699             | -0,12 | 290 | 1,58256             |
| 0,1      | 0,035     | 195       | 1,068644    | -0,08      | 235       | 1,287853   | -0,11 | 326  | 1,786554            | -0,16 | 355 | 1,94548             |
| 0,125    | 0,06      | 216       | 1,188766    | -0,085     | 259       | 1,425418   | -0,12 | 398  | 2,190411            | -0,23 | 415 | 2,283972            |
| 0,15     | 0,09      | 229       | 1,265698    | -0,08      | 285       | 1,575214   | -0,13 | 468  | 2,586667            | -0,25 | 465 | 2,570085            |
| 0,175    | 0,13      | 240       | 1,332189    | -0,07      | 315       | 1,748498   | -0,11 | 510  | 2,830901            | -0,26 | 515 | 2,858655            |
| 0,2      | 0,17      | 249       | 1,388103    | -0,06      | 332       | 1,850805   | -0,09 | 545  | 3,038218            | -0,26 | 557 | 3,105115            |
| 0,225    | 0,21      | 256       | 1,433304    | -0,045     | 352       | 1,970794   | -0,08 | 578  | 3,236133            | -0,25 | 613 | 3,432092            |
| 0,25     | 0,26      | 264       | 1,484522    | -0,03      | 370       | 2,08058    | -0,06 | 610  | 3,430145            | -0,24 | 655 | 3,683188            |
| 0,275    | 0,31      | 272       | 1,536186    | 0          | 386       | 2,180029   | -0,04 | 628  | 3,546783            | -0,22 | 688 | 3,885648            |
| 0,3      | 0,35      | 277       | 1,571287    | 0,025      | 403       | 2,286023   | -0,02 | 663  | 3,760877            | -0,2  | 710 | 4,027485            |
| 0,325    | 0,4       | 280       | 1,595301    | 0,07       | 415       | 2,364464   | 0,01  | 680  | 3,874302            | -0,18 | 732 | 4,170573            |
| 0,35     | 0,45      | 283       | 1,619528    | 0,11       | 425       | 2,432153   | 0,05  | 705  | 4,034513            | -0,16 | 750 | 4,292035            |
| 0,375    | 0,5       | 285       | 1,638222    | 0,15       | 437       | 2,511941   | 0,09  | 720  | 4,138667            | -0,14 | 780 | 4,483556            |
| 0,4      | 0,54      | 288       | 1,662857    | 0,19       | 451       | 2,603988   | 0,12  | 730  | 4,214881            | -0,1  | 800 | 4,619048            |
| 0,425    | 0,59      | 290       | 1,681913    | 0,22       | 458       | 2,656263   | 0,16  | 740  | 4,291779            | -0,07 | 827 | 4,796353            |
| 0,45     | 0,62      | 291       | 1,695315    | 0,26       | 470       | 2,738138   | 0,21  | 748  | 4,357718            | -0,05 | 856 | 4,986907            |
| 0,475    | 0,66      | 292       | 1,708839    | 0,3        | 478       | 2,797345   | 0,25  | 752  | 4,400845            | -0,03 | 885 | 5,179186            |
| 0,5      | 0,7       | 288       | 1,693091    | 0,34       | 481       | 2,827697   | 0,29  | 748  | 4,397333            | 0,01  | 910 | 5,349697            |
| 0,525    | 0,73      | 285       | 1,683105    | 0,39       | 485       | 2,864231   | 0,33  | 745  | 4,399696            | 0,05  | 920 | 5,433181            |
| 0,55     | 0,76      | 285       | 1,690826    | 0,44       | 492       | 2,918899   |       | 745  | 4,419878            | 0,07  | 929 | 5,511498            |
| 0,575    | 0,79      | 285       | 1,698618    | 0,49       | 494       | 2,94427    |       | 745  | 4,440246            | 0,1   | 935 | 5,572657            |
| 0,6      | 0,82      | 285       | 1,706481    | 0,53       | 495       | 2,963889   |       | 745  | 4,460802            | 0,12  | 954 | 5,712222            |
| 0,625    | 0,85      | 285       | 1,714419    | 0,58       | 497       | 2,989705   |       | 745  | 4,48155             | 0,14  | 957 | 5,756837            |
| 0,65     | 0,86      | 285       | 1,72243     | 0,64       | 499       | 3,044214   |       | 745  | 4,502492            | 0,16  | 958 | 5,789782            |
| 0,675    |           |           |             | 0,7        | 500       | 3,064771   |       |      |                     | 0,18  | 964 | 5,853396            |
| 0,7      |           |           |             | 0,75       | 496       | 3,05473    |       |      |                     | 0,21  | 967 | 5,899308            |
| 0,725    |           |           |             | 0,8        | 492       | 3,044593   |       |      |                     | 0,24  | 972 | 5,957915            |
| 0,75     |           |           |             | 0,83       | 489       | 3,040577   |       |      |                     | 0,26  | 977 | 6,017079            |
| 0,775    |           |           |             |            |           |            |       |      |                     | 0,28  | 981 | 6,070622            |
| 0,8      |           |           |             |            |           |            |       |      |                     | 0,3   | 970 | 6,03141             |
| 0,825    |           |           |             |            |           |            |       |      |                     | 0,31  | 968 | 6,048052            |

## 27. Analyse granulométrique après cisaillement série 3 (sulfates)

| tamisen masse des refus energie des refus cumulé en masse des refus energie des refus cumulé en masse des refus energie | ntag tamisat            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| cumucie cumuiez. z. cumucie cumu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | efus cumulé en<br>é % % |
| 6,3 0 0 0 100 6,3 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                     |
| 4 49,7 49,7 17,75 82,25 4 51,8 51,8 18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 81,5                  |
| 3,15 25,6 75,3 26,89286 73,10714 3,15 24,1 75,9 27,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 714 72,89286            |
| 2 47,4 122,7 43,82143 56,17857 2 47,8 123,7 44,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 357 55,82143            |
| 1,25 43,6 166,3 59,39286 40,60714 1,25 43,1 166,8 59,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 143 40,42857            |
| 0,8 22,4 188,7 67,39286 32,60714 0,8 24,1 190,9 68,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 357 31,82143            |
| 0,5 18 206,7 73,82143 26,17857 0,5 17,9 208,8 74,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143 25,42857            |
| 0,315 15,4 222,1 79,32143 20,67857 0,315 11,1 219,9 78,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 571 21,46429            |
| 0,2 8,4 230,5 82,32143 17,67857 0,2 10,2 230,1 82,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 357 17,82143            |
| 0,125 7,7 238,2 85,07143 14,92857 0,125 8,7 238,8 85,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 571 14,71429            |
| fend 40,6 278,8 99,57143 0,428571 fend 40,3 279,1 99,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 357 0,321429            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| analyse granulométrique après traitement 3 bars sulfates analyse granulométrique après traitement 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bars sulfates           |
| tamis en masse des poucentagi tamisati tamis en masse des pouce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ntag tamisat            |
| masse des refus e des refus cumulé en man refus en gri refus e des e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | efus cumulé en          |
| nim relasengi cumuclé cumulé% % nim relasengi cumuclé cumu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | é% %                    |
| 6,3 0 0 0 100 6,3 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                     |
| 4 52,5 52,5 18,75 81,25 4 52,5 52,5 18,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 81,25                 |
| 3,15 20,9 73,4 26,21429 73,78571 3,15 22,1 74,6 26,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 286 73,35714            |
| 2 47,1 120,5 43,03571 56,96429 2 45 119,6 42,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129 57,28571            |
| 1.25 43,5 164 58,57143 41,42857 1,25 45,6 165,2 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41                      |
| 0,8 21,2 185,2 66,14286 33,85714 0,8 23,5 188,7 67,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 286 32,60714            |
| 0,5 17,8 203 72,5 27,5 0,5 18 206,7 73,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143 26,17857            |
| 0,315 15,7 218,7 78,10714 21,89286 0,315 11,3 218 77,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 714 22,14286            |
| 0,2 8,5 227,2 81,14286 18,85714 0,2 10,3 228,3 81,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 571 18,46429            |
| 0,125 7,6 234,8 83,85714 16,14286 0,125 7,8 236,1 84,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 143 15,67857            |
| fend 40,2 275 98,21429 1,785714 fend 42,1 278,2 99,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 714 0,642857            |

## 28. Résultats de cisaillement après traitement série 4 (eau)

| Essai de o | cisaillemer | nt après tra | aitement eau  | 4 ième : | série |            |       |      |              |          |       |     |               |          |
|------------|-------------|--------------|---------------|----------|-------|------------|-------|------|--------------|----------|-------|-----|---------------|----------|
|            | 16          | bar          |               | 2bar     |       |            |       | 3bar |              |          | 4ba   | r   |               |          |
| ΔL         | ΔH          | La           | τ=Lax0,194 ΔH | ł        | La    | τ=Lax0,194 | ΔH    | La   | τ=Lax0,194/3 | So (Kpa) | ΔH    | La  | τ=Lax0,194/\$ | Sc (Kpa) |
| 0          | 0           | 0            | 0             | 0        | 0     | 0          | 0     | 0    | 0            |          | 0     | 0   | 0             |          |
| 0,025      | -0,02       | 35           | 0,1894        | -0,01    | 70    | 0,378801   | -0,01 | 45   | 0,243515     |          | -0,05 | 85  | 0,459972      |          |
| 0,05       | -0,03       | 98           | 0,532549      | -0,02    | 130   | 0,706443   | -0,07 | 135  | 0,733613     |          | -0,1  | 200 | 1,086835      |          |
| 0,075      | -0,01       | 149          | 0,813108      | -0,05    | 202   | 1,102335   | -0,11 | 205  | 1,118706     |          | -0,13 | 285 | 1,555274      |          |
| 0,1        | 0,01        | 185          | 1,013842      | -0,08    | 250   | 1,370056   | -0,15 | 260  | 1,424859     |          | -0,16 | 355 | 1,94548       |          |
| 0,125      | 0,04        | 213          | 1,172255      | -0,09    | 290   | 1,596028   | -0,17 | 310  | 1,706099     |          | -0,19 | 415 | 2,283972      |          |
| 0,15       | 0,09        | 236          | 1,304387      | -0,11    | 322   | 1,779715   | -0,19 | 360  | 1,989744     |          | -0,2  | 455 | 2,514815      |          |
| 0,175      | 0,14        | 256          | 1,421001      | -0,11    | 348   | 1,931674   | -0,19 | 410  | 2,275823     |          | -0,21 | 495 | 2,747639      |          |
| 0,2        | 0,19        | 271          | 1,510747      | -0,1     | 374   | 2,084943   | -0,19 | 448  | 2,497471     |          | -0,21 | 535 | 2,982471      |          |
| 0,225      | 0,26        | 284          | 1,590072      | -0,09    | 392   | 2,194747   | -0,18 | 478  | 2,676248     |          | -0,2  | 570 | 3,191342      |          |
| 0,25       | 0,32        | 288          | 1,619478      | -0,06    | 410   | 2,305507   | -0,16 | 507  | 2,850957     |          | -0,19 | 605 | 3,402029      |          |
| 0,275      | 0,39        | 294          | 1,660437      | -0,05    | 435   | 2,456769   | -0,15 | 537  | 3,032838     |          | -0,18 | 635 | 3,586317      |          |
| 0,3        | 0,45        | 295          | 1,673392      | -0,02    | 450   | 2,552632   | -0,14 | 564  | 3,199298     |          | -0,16 | 672 | 3,81193       |          |
| 0,325      | 0,51        | 299          | 1,703554      | 0,01     | 465   | 2,649339   | -0,12 | 597  | 3,40141      |          | -0,15 | 712 | 4,056623      |          |
| 0,35       | 0,58        | 301          | 1,722537      | 0,05     | 480   | 2,746903   | -0,1  | 635  | 3,633923     |          | -0,12 | 748 | 4,28059       |          |
| 0,375      | 0,64        | 305          | 1,753185      | 0,09     | 493   | 2,833837   | -0,06 | 657  | 3,776533     |          | -0,1  | 774 | 4,449067      |          |
| 0,4        | 0,7         | 304          | 1,755238      | 0,12     | 499   | 2,881131   | -0,02 | 678  | 3,914643     |          | -0,07 | 801 | 4,624821      |          |
| 0,425      | 0,76        | 304          | 1,763109      | 0,16     | 506   | 2,934649   | 0,02  | 690  | 4,001794     |          | -0,04 | 818 | 4,744155      |          |
| 0,45       | 0,81        | 303          | 1,765225      | 0,22     | 512   | 2,982823   | 0,06  | 708  | 4,124685     |          | -0,01 | 831 | 4,841261      |          |
| 0,475      | 0,85        | 298          | 1,743952      | 0,26     | 515   | 3,013876   | 0,11  | 714  | 4,178462     |          | 0,03  | 834 | 4,880724      |          |
| 0,5        |             |              |               | 0,3      | 518   | 3,045212   | 0,15  | 720  | 4,232727     |          | 0,06  | 848 | 4,985212      |          |
| 0,525      |             |              |               | 0,35     | 522   | 3,08274    | 0,2   | 730  | 4,311111     |          | 0,09  | 849 | 5,013881      |          |
| 0,55       |             |              |               | 0,4      | 520   | 3,085015   | 0,24  | 725  | 4,301223     |          | 0,12  | 850 | 5,042813      |          |
| 0,575      |             |              |               | 0,45     | 520   | 3,099232   | 0,27  | 717  | 4,273364     |          | 0,15  | 850 | 5,066052      |          |
| 0,6        |             |              |               |          |       |            | 0,29  | 715  | 4,281173     |          | 0,18  | 855 | 5,119444      |          |
| 0,625      |             |              |               |          |       |            |       |      |              |          | 0,19  | 850 | 5,113178      |          |
| 0,65       |             |              |               |          |       |            |       |      |              |          | 0,2   | 822 | 4,96785       |          |

### 29. Analyse granulométrique après cisaillement série 4 (eau)

| analyse gra                                                                                          | nulométriqu                                                                                                               | e après traite                                                                                                                    | ement 1 bar e                                                                                                                                                      | au                                                                                                                                               | analyse gra                                                                                           | anulométriqu                                                                                                         | e après traite                                                                                                                    | ment 2 bars                                                                                                                                                                      | eau                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| tamis en<br>mm                                                                                       | masse des<br>refus en gr                                                                                                  | masse des<br>refus<br>cumuclé                                                                                                     | poucentag<br>e des refus<br>cumulé %                                                                                                                               | tamisat<br>cumulé en<br>%                                                                                                                        | tamis en<br>mm                                                                                        | masse des<br>refus en gr                                                                                             | masse des<br>refus<br>cumuclé                                                                                                     | poucentag<br>e des refus<br>cumulé %                                                                                                                                             | tamisat<br>cumulé en<br>%                                                                                                                           |
| 6,3                                                                                                  | 0                                                                                                                         | 0                                                                                                                                 | 0                                                                                                                                                                  | 100                                                                                                                                              | 6,3                                                                                                   | 0                                                                                                                    | 0                                                                                                                                 | 0                                                                                                                                                                                | 100                                                                                                                                                 |
| 4                                                                                                    | 52,3                                                                                                                      | 52,3                                                                                                                              | 18,67857                                                                                                                                                           | 81,32143                                                                                                                                         | 4                                                                                                     | 49,6                                                                                                                 | 49,6                                                                                                                              | 17,71429                                                                                                                                                                         | 82,28571                                                                                                                                            |
| 3,15                                                                                                 | 22                                                                                                                        | 74,3                                                                                                                              | 26,53571                                                                                                                                                           | 73,46429                                                                                                                                         | 3,15                                                                                                  | 25,3                                                                                                                 | 74,9                                                                                                                              | 26,75                                                                                                                                                                            | 73,25                                                                                                                                               |
| 2                                                                                                    | 57,6                                                                                                                      | 131,9                                                                                                                             | 47,10714                                                                                                                                                           | 52,89286                                                                                                                                         | 2                                                                                                     | 46,4                                                                                                                 | 121,3                                                                                                                             | 43,32143                                                                                                                                                                         | 56,67857                                                                                                                                            |
| 1,25                                                                                                 | 35,1                                                                                                                      | 167                                                                                                                               | 59,64286                                                                                                                                                           | 40,35714                                                                                                                                         | 1,25                                                                                                  | 46,8                                                                                                                 | 168,1                                                                                                                             | 60,03571                                                                                                                                                                         | 39,96429                                                                                                                                            |
| 0,8                                                                                                  | 19,7                                                                                                                      | 186,7                                                                                                                             | 66,67857                                                                                                                                                           | 33,32143                                                                                                                                         | 0,8                                                                                                   | 24                                                                                                                   | 192,1                                                                                                                             | 68,60714                                                                                                                                                                         | 31,39286                                                                                                                                            |
| 0,5                                                                                                  | 18                                                                                                                        | 204,7                                                                                                                             | 73,10714                                                                                                                                                           | 26,89286                                                                                                                                         | 0,5                                                                                                   | 17,2                                                                                                                 | 209,3                                                                                                                             | 74,75                                                                                                                                                                            | 25,25                                                                                                                                               |
| 0,315                                                                                                | 15,6                                                                                                                      | 220,3                                                                                                                             | 78,67857                                                                                                                                                           | 21,32143                                                                                                                                         | 0,315                                                                                                 | 11,4                                                                                                                 | 220,7                                                                                                                             | 78,82143                                                                                                                                                                         | 21,17857                                                                                                                                            |
| 0,2                                                                                                  | 10                                                                                                                        | 230,3                                                                                                                             | 82,25                                                                                                                                                              | 17,75                                                                                                                                            | 0,2                                                                                                   | 9,8                                                                                                                  | 230,5                                                                                                                             | 82,32143                                                                                                                                                                         | 17,67857                                                                                                                                            |
| 0,125                                                                                                | 7,8                                                                                                                       | 238,1                                                                                                                             | 85,03571                                                                                                                                                           | 14,96429                                                                                                                                         | 0,125                                                                                                 | 8,2                                                                                                                  | 238,7                                                                                                                             | 85,25                                                                                                                                                                            | 14,75                                                                                                                                               |
| fend                                                                                                 | 41,7                                                                                                                      | 279,8                                                                                                                             | 99,92857                                                                                                                                                           | 0,071429                                                                                                                                         | fend                                                                                                  | 40,5                                                                                                                 | 279,2                                                                                                                             | 99,71429                                                                                                                                                                         | 0,285714                                                                                                                                            |
|                                                                                                      |                                                                                                                           |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                  |                                                                                                       |                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                     |
|                                                                                                      |                                                                                                                           |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                  |                                                                                                       |                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                     |
| analyse gra                                                                                          | nulométrique                                                                                                              | e après traite                                                                                                                    | ement 3 bars                                                                                                                                                       | eau                                                                                                                                              | analyse gra                                                                                           | anulométriqu                                                                                                         | e après traite                                                                                                                    | ment 4 bars                                                                                                                                                                      | eau                                                                                                                                                 |
| analyse gra<br>tamis en<br>mm                                                                        | nulométrique<br>masse des<br>refus en gr                                                                                  | e après traite<br>masse des<br>refus<br>cumuclé                                                                                   | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                               | eau<br>tamisat<br>cumulé en<br>%                                                                                                                 | analyse gra<br>tamis en<br>mm                                                                         | nulométriqu<br>masse des<br>refus en gr                                                                              | e après traite<br>masse des<br>refus<br>cumuclé                                                                                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                                              | eau<br>tamisat<br>cumulé en<br>%                                                                                                                    |
| analyse gra<br>tamis en<br>mm<br>6,3                                                                 | nulométriqu<br>masse des<br>refus en gr<br>0                                                                              | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                              | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                          | eau<br>tamisat<br>cumulé en<br>%<br>100                                                                                                          | analyse gra<br>tamis en<br>mm<br>6,3                                                                  | nulométrique<br>masse des<br>refus en gr<br>0                                                                        | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                              | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                                         | eau<br>tamisat<br>cumulé en<br>%<br>100                                                                                                             |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                            | nulométriqu<br>masse des<br>refus en gr<br>0<br>52,8                                                                      | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8                                                                      | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714                                                                                               | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286                                                                                              | analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                             | nulométriqu<br>masse des<br>refus en gr<br>0<br>54,5                                                                 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5                                                                      | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429                                                                                                             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571                                                                                                 |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                    | nulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2                                                             | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76                                                                | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286                                                                                  | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714                                                                                  | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                     | nulométriqu<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2                                                         | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7                                                              | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571                                                                                                 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429                                                                                     |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                               | mulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6                                                     | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6                                                       | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857                                                                      | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143                                                                      | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                                | mulométriqu<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2                                                 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7<br>120,9                                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857                                                                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143                                                                         |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                       | nulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6<br>46,5                                             | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6<br>168,1                                              | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857<br>60,03571                                                          | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143<br>39,96429                                                          | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                        | nulométriqu<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2<br>45,2                                         | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7<br>120,9<br>166                                              | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857<br>59,28571                                                                         | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143<br>40,71429                                                             |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                | mulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6<br>46,5<br>20,3                                     | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6<br>168,1<br>188,4                                     | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857<br>60,03571<br>67,28571                                               | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143<br>39,96429<br>32,71429                                              | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                 | mulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2<br>45,2<br>45,1<br>23,6                        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7<br>120,9<br>166<br>189,6                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857<br>59,28571<br>67,71429                                                             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143<br>40,71429<br>32,28571                                                 |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                         | nulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6<br>46,5<br>20,3<br>18,3                             | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6<br>121,6<br>168,1<br>188,4<br>206,7                   | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857<br>60,03571<br>67,28571<br>73,82143                                  | eau<br>tamisat<br>oumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143<br>39,96429<br>32,71429<br>26,17857                                  | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                          | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2<br>45,2<br>45,1<br>23,6<br>17,5                | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7<br>120,9<br>166<br>189,6<br>207,1                            | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857<br>59,28571<br>67,71429<br>73,96429                                                 | eau<br>tamisat<br>oumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143<br>40,71429<br>32,28571<br>26,03571                                     |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                | nulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6<br>46,5<br>20,3<br>18,3<br>15,7                     | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6<br>168,1<br>188,4<br>206,7<br>222,4                   | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857<br>60,03571<br>67,28571<br>73,82143<br>79,42857                      | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143<br>33,96429<br>32,71429<br>32,71429<br>26,17857<br>20,57143          | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                 | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2<br>45,1<br>23,6<br>17,5<br>14,2                | e après traite<br>masse des<br>refus<br>cumuolé<br>0<br>54,5<br>75,7<br>120,9<br>166<br>189,6<br>207,1<br>221,3                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857<br>59,28571<br>67,71429<br>73,96429<br>79,03571                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143<br>40,71429<br>32,28571<br>26,03571<br>26,03571                         |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2         | nulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6<br>46,5<br>20,3<br>18,3<br>15,7<br>7,9              | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6<br>168,1<br>188,4<br>206,7<br>222,4<br>230,3          | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857<br>60,03571<br>67,28571<br>73,82143<br>79,42857<br>82,25             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143<br>33,96429<br>32,71429<br>26,17857<br>20,57143<br>17,75             | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2          | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2<br>45,2<br>45,1<br>23,6<br>17,5<br>14,2<br>9,4 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7<br>120,9<br>166<br>189,6<br>207,1<br>221,3<br>230,7          | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857<br>59,28571<br>67,71429<br>73,96429<br>73,96429<br>73,96429                         | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143<br>40,71429<br>32,28571<br>26,03571<br>26,03571<br>20,96429<br>17,60714 |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,25 | nulométrique<br>masse des<br>refus en gr<br>0<br>52,8<br>23,2<br>45,6<br>46,5<br>20,3<br>18,3<br>18,3<br>15,7<br>7,9<br>8 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,8<br>76<br>121,6<br>168,1<br>188,4<br>206,7<br>222,4<br>230,3<br>238,3 | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,85714<br>27,14286<br>43,42857<br>60,03571<br>67,28571<br>73,82143<br>79,42857<br>82,25<br>85,10714 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,14286<br>72,85714<br>56,57143<br>39,96429<br>32,71429<br>26,17857<br>20,57143<br>17,75<br>14,89286 | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125 | nulométrique<br>masse des<br>refus en gr<br>0<br>54,5<br>21,2<br>45,2<br>45,1<br>23,6<br>17,5<br>14,2<br>3,4<br>8,4  | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,5<br>75,7<br>120,9<br>166<br>189,6<br>207,1<br>221,3<br>230,7<br>239,1 | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,46429<br>27,03571<br>43,17857<br>59,28571<br>67,71429<br>73,96429<br>73,96429<br>73,90571<br>82,39286<br>85,39286 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,53571<br>72,96429<br>56,82143<br>40,71429<br>32,28571<br>26,03571<br>20,96429<br>17,60714<br>14,60714 |

### 30. Résultats de cisaillement après traitement série 4 (phosphates)

| Essai de | cisaillemer | nt après tra | aitement ph  | osphates | 4 ième sér | ie         |       |      |            |           |        |     |                     |
|----------|-------------|--------------|--------------|----------|------------|------------|-------|------|------------|-----------|--------|-----|---------------------|
|          | 16          | )ar          |              | 2bar     |            |            |       | 3bar |            |           | 4ba    | r   |                     |
| ΔL       | ΔH          | La           | τ=Lax0,194 / | ۸H       | La         | τ=Lax0,194 | ΔV    | La   | τ=Lax0,194 | /Sc (Kpa) | ۵V     | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0           | 0            | 0            | 0        | 0          | 0          | 0     | 0    | 0          |           | 0      | 0   | 0                   |
| 0,025    | -0,03       | 58           | 0,313863     | -0,04    | 45         | 0,243515   | -0,03 | 105  | 0,568201   |           | -0,05  | 85  | 0,459972            |
| 0,05     | -0,05       | 110          | 0,597759     | -0,06    | 120        | 0,652101   | -0,06 | 180  | 0,978151   |           | -0,1   | 195 | 1,059664            |
| 0,075    | -0,06       | 164          | 0,894965     | -0,07    | 178        | 0,971364   | -0,09 | 226  | 1,233305   |           | -0,13  | 272 | 1,484332            |
| 0,1      | -0,06       | 183          | 1,002881     | -0,09    | 220        | 1,20565    | -0,12 | 276  | 1,512542   |           | -0,16  | 334 | 1,830395            |
| 0,125    | -0,05       | 200          | 1,100709     | -0,1     | 255        | 1,403404   | -0,14 | 310  | 1,706099   |           | -0,18  | 390 | 2,146383            |
| 0,15     | -0,02       | 215          | 1,188319     | -0,1     | 285        | 1,575214   | -0,14 | 350  | 1,934473   |           | -0,2   | 435 | 2,404274            |
| 0,175    | 0           | 229          | 1,27113      | -0,08    | 315        | 1,748498   | -0,14 | 377  | 2,092647   |           | -0,21  | 478 | 2,653276            |
| 0,2      | 0,04        | 240          | 1,337931     | -0,06    | 350        | 1,951149   | -0,13 | 401  | 2,23546    |           | -0,21  | 515 | 2,870977            |
| 0,225    | 0,08        | 248          | 1,388514     | -0,05    | 375        | 2,099567   | -0,11 | 426  | 2,385108   |           | -0,19  | 544 | 3,045772            |
| 0,25     | 0,11        | 254          | 1,42829      | -0,03    | 405        | 2,277391   | -0,1  | 454  | 2,552928   |           | -0,17  | 582 | 3,272696            |
| 0,275    | 0,16        | 261          | 1,474061     | 0        | 430        | 2,42853    | -0,09 | 476  | 2,688326   |           | -0,146 | 620 | 3,501601            |
| 0,3      | 0,22        | 265          | 1,503216     | 0,04     | 455        | 2,580994   | -0,08 | 505  | 2,86462    |           | -0,14  | 655 | 3,715497            |
| 0,325    | 0,26        | 268          | 1,526931     | 0,08     | 477        | 2,717709   | -0,06 | 526  | 2,996887   |           | -0,12  | 684 | 3,897093            |
| 0,35     | 0,31        | 267          | 1,527965     | 0,11     | 500        | 2,861357   | -0,03 | 544  | 3,113156   |           | -0,09  | 714 | 4,086018            |
| 0,375    | 0,37        | 267          | 1,534756     | 0,17     | 515        | 2,960296   | 0     | 560  | 3,218963   |           | -0,05  | 740 | 4,25363             |
| 0,4      | 0,42        | 267          | 1,541607     | 0,21     | 530        | 3,060119   | 0,02  | 570  | 3,291071   |           | -0,03  | 760 | 4,388095            |
| 0,425    | 0,47        | 267          | 1,54852      | 0,25     | 542        | 3,143438   | 0,05  | 574  | 3,329028   |           | 0      | 770 | 4,46577             |
| 0,45     | 0,53        | 266          | 1,54967      | 0,32     | 557        | 3,244985   | 0,09  | 583  | 3,396456   |           | 0,03   | 777 | 4,526667            |
| 0,475    | 0,57        | 265          | 1,55083      | 0,36     | 564        | 3,300633   | 0,12  | 589  | 3,446938   |           | 0,06   | 790 | 4,623228            |
| 0,5      |             |              |              | 0,43     | 569        | 3,34503    | 0,16  | 595  | 3,497879   |           | 0,09   | 798 | 4,691273            |
| 0,525    |             |              |              | 0,48     | 565        | 3,336682   | 0,21  | 598  | 3,531568   |           | 0,13   | 804 | 4,748128            |
| 0,55     |             |              |              | 0,54     | 560        | 3,322324   | 0,25  | 602  | 3,571498   |           | 0,16   | 816 | 4,841101            |
| 0,575    |             |              |              | 0,6      | 555        | 3,307834   | 0,29  | 600  | 3,576037   |           | 0,19   | 826 | 4,923011            |
| 0,6      |             |              |              | 0,69     | 550        | 3,29321    | 0,33  | 593  | 3,550679   |           | 0,22   | 830 | 4,969753            |
| 0,625    |             |              |              |          |            |            | 0,35  | 590  | 3,549147   |           | 0,23   | 834 | 5,01693             |
| 0,65     |             |              |              |          |            |            |       |      |            |           | 0,25   | 830 | 5,016199            |
| 0,675    |             |              |              |          |            |            |       |      |            |           | 0,26   | 822 | 4,991174            |
| 0,7      |             |              |              |          |            |            |       |      |            |           | 0,28   | 820 | 5,002516            |

|                                                                                                                     |                                                                                                                  |                                                                                                                                      | · ·                                                                                                                                                                              |                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                         | · . · ·                                                                                                                           |                                                                                                                                              |                                                                                                                                                                      |                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| analyse gra                                                                                                         | nulométrique                                                                                                     | e après traite                                                                                                                       | ment 1 bar p                                                                                                                                                                     | hosphates                                                                                                                                                  | analys                                                                                                                        | e granulométriqu                                                                                                                  | ie après traite                                                                                                                              | ement 2 bars                                                                                                                                                         | phosphates                                                                                                                                                 |
| tamis on                                                                                                            | massa das                                                                                                        | masse des                                                                                                                            | poucentag                                                                                                                                                                        | tamisat                                                                                                                                                    | tamis                                                                                                                         | on massa das                                                                                                                      | masse des                                                                                                                                    | poucentag                                                                                                                                                            | tamisat                                                                                                                                                    |
| mm                                                                                                                  | refus en ar                                                                                                      | refus                                                                                                                                | e des refus                                                                                                                                                                      | cumulé en                                                                                                                                                  | (amis                                                                                                                         | en masse des                                                                                                                      | refus                                                                                                                                        | e des refus                                                                                                                                                          | cumulé en                                                                                                                                                  |
|                                                                                                                     | reids en gr                                                                                                      | cumuclé                                                                                                                              | cumulé %                                                                                                                                                                         | %                                                                                                                                                          |                                                                                                                               | i leiusengi                                                                                                                       | cumuclé                                                                                                                                      | cumulé %                                                                                                                                                             | %                                                                                                                                                          |
| 6,3                                                                                                                 | 0                                                                                                                | 0                                                                                                                                    | 0                                                                                                                                                                                | 100                                                                                                                                                        | 6,3                                                                                                                           | 0                                                                                                                                 | 0                                                                                                                                            | 0                                                                                                                                                                    | 100                                                                                                                                                        |
| 4                                                                                                                   | 51,2                                                                                                             | 51,2                                                                                                                                 | 18,28571                                                                                                                                                                         | 81,71429                                                                                                                                                   | 4                                                                                                                             | 51,8                                                                                                                              | 51,8                                                                                                                                         | 18,5                                                                                                                                                                 | 81,5                                                                                                                                                       |
| 3,15                                                                                                                | 21,6                                                                                                             | 72,8                                                                                                                                 | 26                                                                                                                                                                               | 74                                                                                                                                                         | 3,1                                                                                                                           | 5 23,1                                                                                                                            | 74,9                                                                                                                                         | 26,75                                                                                                                                                                | 73,25                                                                                                                                                      |
| 2                                                                                                                   | 49,7                                                                                                             | 122,5                                                                                                                                | 43,75                                                                                                                                                                            | 56,25                                                                                                                                                      | 2                                                                                                                             | 47,6                                                                                                                              | 122,5                                                                                                                                        | 43,75                                                                                                                                                                | 56,25                                                                                                                                                      |
| 1,25                                                                                                                | 46,5                                                                                                             | 169                                                                                                                                  | 60,35714                                                                                                                                                                         | 39,64286                                                                                                                                                   | 1,25                                                                                                                          | 5 45,3                                                                                                                            | 167,8                                                                                                                                        | 59,92857                                                                                                                                                             | 40,07143                                                                                                                                                   |
| 0,8                                                                                                                 | 20,1                                                                                                             | 189,1                                                                                                                                | 67,53571                                                                                                                                                                         | 32,46429                                                                                                                                                   | 0,8                                                                                                                           | 23,1                                                                                                                              | 190,9                                                                                                                                        | 68,17857                                                                                                                                                             | 31,82143                                                                                                                                                   |
| 0,5                                                                                                                 | 17,8                                                                                                             | 206,9                                                                                                                                | 73,89286                                                                                                                                                                         | 26,10714                                                                                                                                                   | 0,5                                                                                                                           | 18,1                                                                                                                              | 209                                                                                                                                          | 74,64286                                                                                                                                                             | 25,35714                                                                                                                                                   |
| 0,315                                                                                                               | 15,9                                                                                                             | 222,8                                                                                                                                | 79,57143                                                                                                                                                                         | 20,42857                                                                                                                                                   | 0,31                                                                                                                          | 5 10,9                                                                                                                            | 219,9                                                                                                                                        | 78,53571                                                                                                                                                             | 21,46429                                                                                                                                                   |
| 0,2                                                                                                                 | 8,6                                                                                                              | 231,4                                                                                                                                | 82,64286                                                                                                                                                                         | 17,35714                                                                                                                                                   | 0,2                                                                                                                           | : 10                                                                                                                              | 229,9                                                                                                                                        | 82,10714                                                                                                                                                             | 17,89286                                                                                                                                                   |
| 0,125                                                                                                               | 8,1                                                                                                              | 239,5                                                                                                                                | 85,53571                                                                                                                                                                         | 14,46429                                                                                                                                                   | 0,12                                                                                                                          | 5 9,2                                                                                                                             | 239,1                                                                                                                                        | 85,39286                                                                                                                                                             | 14,60714                                                                                                                                                   |
| fend                                                                                                                | 40,2                                                                                                             | 279,7                                                                                                                                | 99,89286                                                                                                                                                                         | 0,107143                                                                                                                                                   | fen                                                                                                                           | d 40,8                                                                                                                            | 279,9                                                                                                                                        | 99,96429                                                                                                                                                             | 0,035714                                                                                                                                                   |
|                                                                                                                     |                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                            |                                                                                                                               |                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                      |                                                                                                                                                            |
|                                                                                                                     |                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                            |                                                                                                                               |                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                      |                                                                                                                                                            |
| analyse gra                                                                                                         | nulométrique                                                                                                     | e après traite                                                                                                                       | ment 3 bars                                                                                                                                                                      | phosphates                                                                                                                                                 | analys                                                                                                                        | e granulométriqu                                                                                                                  | le après traite                                                                                                                              | ement 4 bars                                                                                                                                                         | phosphates                                                                                                                                                 |
| analyse gra                                                                                                         | nulométrique                                                                                                     | e après traite<br>masse des                                                                                                          | ment 3 bars<br>poucentag                                                                                                                                                         | phosphates<br>tamisat                                                                                                                                      | analys                                                                                                                        | e granulométriqu                                                                                                                  | ie après traite<br>masse des                                                                                                                 | ment 4 bars<br>poucentag                                                                                                                                             | phosphates<br>tamisat                                                                                                                                      |
| analyse gra<br>tamis en                                                                                             | nulométrique<br>masse des                                                                                        | e après traite<br>masse des<br>refus                                                                                                 | ment 3 bars<br>poucentag<br>e des refus                                                                                                                                          | phosphates<br>tamisat<br>cumulé en                                                                                                                         | analys<br>tamis                                                                                                               | e granulométriqu<br>en masse des                                                                                                  | e après traite<br>masse des<br>refus                                                                                                         | ement 4 bars<br>poucentag<br>e des refus                                                                                                                             | phosphates<br>tamisat<br>cumulé en                                                                                                                         |
| analyse gra<br>tamis en<br>mm                                                                                       | nulométrique<br>masse des<br>refus en gr                                                                         | e après traite<br>masse des<br>refus<br>cumuclé                                                                                      | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                                              | phosphates<br>tamisat<br>cumulé en<br>%                                                                                                                    | analys<br>tamis<br>mr                                                                                                         | e granulométriqu<br>en masse des<br>n refus en gr                                                                                 | e après traite<br>masse des<br>refus<br>cumuclé                                                                                              | ement 4 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                                 | phosphates<br>tamisat<br>cumulé en<br>%                                                                                                                    |
| analyse gra<br>tamis en<br>mm<br>6,3                                                                                | nulométrique<br>masse des<br>refus en gr<br>0                                                                    | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                                 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100                                                                                                             | analyse<br>tamis<br>mr<br>6,3                                                                                                 | e granulométriqu<br>en masse des<br>refus en gr<br>; 0                                                                            | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                                         | ement 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                            | phosphates<br>tamisat<br>cumulé en<br>%<br>100                                                                                                             |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                                           | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1                                                            | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1                                                                         | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286                                                                                                             | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714                                                                                                 | analysi<br>tamis<br>mr<br>6,3<br>4                                                                                            | e granulométriqu<br>en masse des<br>refus en gr<br>; 0<br>53,1                                                                    | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1                                                                                 | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429                                                                                                 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571                                                                                                 |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                                   | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9                                                    | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73                                                                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286<br>26,07143                                                                                                 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857                                                                                     | analys<br>tamis<br>mr<br>6,3<br>4<br>3,1%                                                                                     | e granulométriqu<br>en masse des<br>refus en gr<br>6 0<br>53,1<br>5 21,6                                                          | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7                                                                         | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429<br>26,67857                                                                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143                                                                                     |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                                              | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6                                            | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6                                                          | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286<br>26,07143<br>43,42857                                                                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143                                                                         | analys<br>tamis<br>6,3<br>4<br>3,11<br>2                                                                                      | e granulométriqu<br>en masse des<br>refus en gr<br>5 0<br>53,1<br>5 21,6<br>46,7                                                  | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4                                                                | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429<br>26,67857<br>43,35714                                                                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286                                                                         |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                                      | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45                                      | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6                                                 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5                                                                               | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143<br>40,5                                                                 | analys<br>tamis<br>mr<br>6,3<br>4<br>3,1%<br>2<br>2<br>1,2%                                                                   | e granulométriqu<br>en masse des<br>refus en gr<br>6 0<br>53,1<br>5 21,6<br>46,7<br>5 45,9                                        | refus<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3                                                                             | ment 4 bars<br>poucentag<br>e des refus<br>cumulé<br>0<br>18,96429<br>26,67857<br>43,35714<br>59,75                                                                  | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25                                                                |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                               | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45<br>22,4                              | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6<br>189                                          | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5<br>67,5                                                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143<br>40,5<br>32,5                                                         | analys<br>tamis<br>mr<br>6,3<br>4<br>3,1%<br>2<br>1,2%<br>0,2%                                                                | e granulométriqu<br>en masse des<br>refus en gr<br>5 21,6<br>46,7<br>5 45,9<br>8 23,8                                             | e après traite<br>masse des<br>refus<br>oumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3<br>191,1                                              | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429<br>26,67857<br>43,35714<br>59,75<br>68,25                                                       | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25<br>31,75                                                       |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                                        | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45<br>22,4<br>18                        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6<br>189<br>207                                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5<br>67,5<br>73,92857                                                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143<br>40,5<br>32,5<br>26,07143                                             | analys<br>tamis<br>mr<br>6,3<br>4<br>4<br>3,1%<br>2<br>1,2%<br>0,5<br>0,5                                                     | e granulométriqu<br>en masse des<br>refus en gr<br>0 53,1<br>5 21,6<br>46,7<br>5 45,9<br>8 23,8<br>6 18,2                         | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3<br>191,1<br>209,3                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429<br>26,67857<br>43,35714<br>59,75<br>68,25<br>74,75                                              | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25<br>31,75<br>25,25                                              |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                               | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45<br>22,4<br>18<br>15,4                | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6<br>189<br>207<br>222,4                          | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5<br>67,5<br>73,92857<br>79,42857                                             | phosphates<br>tamisat<br>cumulé en<br>%<br>82,10714<br>73,92857<br>56,57143<br>40,5<br>32,5<br>26,07143<br>20,57143                                        | analys<br>tamis<br>6,3<br>4<br>3,1t<br>2<br>1,2t<br>0,5<br>0,5<br>0,5<br>0,5<br>0,31                                          | e granulométriqu<br>en masse des<br>refus en gr<br>53,1<br>5 21,6<br>46,7<br>5 45,9<br>8 23,8<br>5 18,2<br>5 10,6                 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3<br>191,1<br>209,3<br>219,9                            | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429<br>26,67857<br>43,35714<br>59,75<br>68,25<br>74,75<br>78,53571                                  | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25<br>31,75<br>25,25<br>21,46429                                  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,5<br>0,315<br>0,2                 | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45<br>22,4<br>18<br>15,4<br>8,6         | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6<br>189<br>207<br>222,4<br>231                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5<br>67,5<br>73,92857<br>79,42857<br>82,5                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143<br>40,5<br>32,5<br>26,07143<br>20,57143<br>17,5                         | analys<br>tamis<br>mr<br>6,3<br>4<br>3,11<br>2<br>1,24<br>0,5<br>0,5<br>0,33<br>0,33                                          | e granulométriqu<br>en masse des<br>refus en gr<br>5 21,6<br>46,7<br>5 45,9<br>8 23,8<br>6 18,2<br>5 10,6<br>10,6                 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3<br>191,1<br>209,3<br>219,9<br>230,5                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,96429<br>26,67857<br>43,35714<br>59,75<br>68,25<br>74,75<br>78,53571<br>82,32143                      | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25<br>31,75<br>25,25<br>21,46429<br>17,67857                      |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,5<br>0,5<br>0,315<br>0,2<br>0,125 | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45<br>22,4<br>18<br>15,4<br>8,6<br>8,1  | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6<br>189<br>207<br>222,4<br>231<br>239,1          | ment 3 bars<br>poucentag<br>e des refus<br>oumulé ½<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5<br>67,5<br>73,92857<br>79,42857<br>82,5<br>85,39286                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143<br>40,5<br>32,5<br>26,07143<br>20,57143<br>17,5<br>14,60714             | analyss<br>tamis<br>mr<br>6,3<br>4<br>3,1t<br>2<br>1,2t<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5 | e granulométriqu<br>en masse des<br>refus en gr<br>6 0<br>53,1<br>5 21,6<br>46,7<br>5 45,9<br>6 23,8<br>6 18,2<br>5 10,6<br>5 8,2 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3<br>191,1<br>209,3<br>219,9<br>230,5<br>238,7          | ment 4 bars<br>poucentag<br>e des refus<br>cumulé ½<br>0<br>18,96429<br>26,67857<br>43,35714<br>53,75<br>68,25<br>74,75<br>78,53571<br>82,32143<br>85,25             | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25<br>31,75<br>25,25<br>21,46429<br>17,67857<br>14,75             |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125<br>fend       | nulométrique<br>masse des<br>refus en gr<br>0<br>50,1<br>22,9<br>48,6<br>45<br>22,4<br>18<br>15,4<br>8,1<br>40,1 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>50,1<br>73<br>121,6<br>166,6<br>189<br>207<br>222,4<br>231<br>239,1<br>279,2 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé ½<br>0<br>17,89286<br>26,07143<br>43,42857<br>59,5<br>67,5<br>73,92857<br>73,92857<br>73,92857<br>82,5<br>85,39286<br>93,71429 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>82,10714<br>73,92857<br>56,57143<br>40,5<br>32,5<br>26,07143<br>20,57143<br>17,5<br>14,60714<br>0,285714 | analys<br>tamis<br>mm<br>6,3<br>6,4<br>3,1%<br>2<br>1,2%<br>0,8<br>0,5<br>0,31<br>0,2<br>0,31<br>0,2<br>0,12<br>(fere         | e granulométriqu<br>en masse des<br>refus en gr<br>5 21,6<br>46,7<br>5 45,9<br>8 23,8<br>5 10,6<br>5 10,6<br>5 8,2<br>d 40,4      | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>53,1<br>74,7<br>121,4<br>167,3<br>191,1<br>209,3<br>219,9<br>230,5<br>238,7<br>279,1 | ment 4 bars<br>poucentag<br>e des refus<br>cumulé ½<br>0<br>18,96429<br>26,67857<br>43,35714<br>59,75<br>68,25<br>74,75<br>78,53571<br>82,32143<br>85,25<br>99,67857 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,03571<br>73,32143<br>56,64286<br>40,25<br>31,75<br>25,25<br>21,46429<br>17,67857<br>14,75<br>0,321429 |

### 31. Analyse granulométrique après cisaillement série 4 (phosphates)

## 32. Résultats de cisaillement après traitement série 4 (détergents)

| Essai de | cisaillemei | nt après tr | aitement D              | étergents | 4 ième séri | e          |       |      |             |          |       |     |             |          |
|----------|-------------|-------------|-------------------------|-----------|-------------|------------|-------|------|-------------|----------|-------|-----|-------------|----------|
|          | 11          | par         |                         |           | 2 bar       |            |       | 3bar |             |          | 4ba   | r   |             |          |
| ΔL       | ΔH          | La          | τ=Lax0,194              | ΔH        | La          | τ=Lax0,194 | ΔH    | La   | τ=Lax0,194/ | Sc (Kpa) | ΔH    | La  | τ=Lax0,194/ | Sc (Kpa) |
| 0        | 0           | 0           | ) 0                     | 0         | 0           | 0          | 0     | 0    | 0           |          | 0     | 0   | 0           |          |
| 0,025    | -0,015      | 45          | 0,243515                | -0,02     | 55          | 0,297629   | -0,01 | 40   | 0,216457    |          | -0,05 | 145 | 0,784658    |          |
| 0,05     | -0,03       | 100         | 0,543417                | -0,05     | 142         | 0,771653   | -0,04 | 140  | 0,760784    |          | -0,09 | 242 | 1,31507     |          |
| 0,075    | -0,03       | 136         | 0,742166                | -0,07     | 202         | 1,102335   | -0,07 | 220  | 1,200563    |          | -0,11 | 315 | 1,718987    |          |
| 0,1      | -0,03       | 163         | 0,893277                | -0,09     | 245         | 1,342655   | -0,1  | 280  | 1,534463    |          | -0,14 | 370 | 2,027684    |          |
| 0,125    | -0,02       | 182         | 2 1,001645              | -0,1      | 276         | 1,518979   | -0,11 | 325  | 1,788652    |          | -0,16 | 420 | 2,311489    |          |
| 0,15     | -0,01       | 199         | 1,099886                | -0,1      | 306         | 1,691282   | -0,13 | 370  | 2,045014    |          | -0,18 | 455 | 2,514815    |          |
| 0,175    | 0,01        | 212         | 2 1,176767              | -0,08     | 332         | 1,842861   | -0,12 | 405  | 2,248069    |          | -0,18 | 499 | 2,769843    |          |
| 0,2      | 0,04        | 222         | 1,237586                | -0,07     | 355         | 1,979023   | -0,11 | 435  | 2,425       |          | -0,16 | 528 | 2,943448    |          |
| 0,225    | 0,08        | 232         | 1,298932                | -0,05     | 367         | 2,054776   | -0,1  | 460  | 2,575469    |          | -0,15 | 558 | 3,124156    |          |
| 0,25     | 0,11        | 240         | 1,349565                | -0,02     | 388         | 2,181797   | -0,09 | 482  | 2,710377    |          | -0,13 | 590 | 3,317681    |          |
| 0,275    | 0,15        | 252         | 1,423231                | 0         | 403         | 2,276041   | -0,07 | 510  | 2,880349    |          | -0,12 | 617 | 3,484658    |          |
| 0,3      | 0,18        | 253         | 1,469181                | 0,03      | 420         | 2,382456   | -0,05 | 530  | 3,006433    |          | -0,11 | 645 | 3,658772    |          |
| 0,325    | 0,22        | 266         | 1,515536                | 0,07      | 435         | 2,478414   | -0,02 | 553  | 3,15072     |          | -0,09 | 677 | 3,85721     |          |
| 0,35     | 0,259       | 270         | 1,545133                | 0,11      | 450         | 2,575221   | 0     | 573  | 3,279115    |          | -0,07 | 705 | 4,034513    |          |
| 0,375    | 0,3         | 273         | 1,569244                | 0,15      | 455         | 2,615407   | 0,03  | 591  | 3,397156    |          | -0,03 | 727 | 4,178904    |          |
| 0,4      | 0,36        | 273         | 1,57625                 | 0,2       | 460         | 2,655952   | 0,05  | 605  | 3,493155    |          | 0     | 738 | 4,261071    |          |
| 0,425    | 0,41        | 270         | 1,565919                | 0,25      | 470         | 2,725859   | 0,08  | 623  | 3,613214    |          | 0,04  | 750 | 4,349776    |          |
| 0,45     | 0,45        | 265         | i <mark>1,543844</mark> | 0,3       | 480         | 2,796396   | 0,12  | 633  | 3,687748    |          | 0,08  | 775 | 4,515015    |          |
| 0,475    | 0,47        | 265         | i <mark>1,55083</mark>  | 0,35      | 484         | 2,832459   | 0,15  | 647  | 3,786365    |          | 0,11  | 790 | 4,623228    |          |
| 0,5      |             |             |                         | 0,39      | 489         | 2,874727   | 0,19  | 655  | 3,850606    |          | 0,14  | 798 | 4,691273    |          |
| 0,525    |             |             |                         | 0,43      | 490         | 2,89376    | 0,22  | 664  | 3,921339    |          | 0,18  | 805 | 4,754033    |          |
| 0,55     |             |             |                         | 0,47      | 496         | 2,94263    | 0,26  | 675  | 4,004587    |          | 0,21  | 811 | 4,811437    |          |
| 0,575    |             |             |                         | 0,52      | 499         | 2,974071   | 0,29  | 674  | 4,017081    |          | 0,24  | 822 | 4,899171    |          |
| 0,6      |             |             |                         | 0,56      | 500         | 2,993827   | 0,32  | 670  | 4,011728    |          | 0,28  | 818 | 4,897901    |          |
| 0,625    |             |             |                         | 0,6       | 495         | 2,977674   | 0,35  | 667  | 4,012341    |          | 0,31  | 816 | 4,908651    |          |
| 0,65     |             |             |                         | 0,62      | 494         | 2,985545   | 0,38  | 665  | 4,019003    |          | 0,35  | 815 | 4,925545    |          |
| 0,675    |             |             |                         |           |             |            |       |      |             |          | 0,38  | 813 | 4,936526    |          |

### 33. Analyse granulométrique après cisaillement série 4 (détergents)

| analyse gra | nulométrique | e après traite | ement 1 bar d | étergents  | analyse gra | nulométriqu | e après traite | ment 2 bars | détergents |
|-------------|--------------|----------------|---------------|------------|-------------|-------------|----------------|-------------|------------|
|             |              | masse des      | poucentag     | tamisat    | ·           |             | masse des      | poucentag   | tamisat    |
| tamis en    | masse des    | refus          | e des refus   | cumulé en  | tamis en    | masse des   | refus          | e des refus | cumulé en  |
| mm          | rerus en gr  | cumuclé        | cumulé %      | %          | mm          | rerus en gr | cumuclé        | cumulé %    | ~          |
| 6,3         | 0            | 0              | 0             | 100        | 6,3         | 0           | 0              | 0           | 100        |
| 4           | 50,9         | 50,9           | 18,17857      | 81,82143   | 4           | 52,2        | 52,2           | 18,64286    | 81,35714   |
| 3,15        | 20,4         | 71,3           | 25,46429      | 74,53571   | 3,15        | 22,5        | 74,7           | 26,67857    | 73,32143   |
| 2           | 49,2         | 120,5          | 43,03571      | 56,96429   | 2           | 44,1        | 118,8          | 42,42857    | 57,57143   |
| 1,25        | 47,3         | 167,8          | 59,92857      | 40,07143   | 1,25        | 46,6        | 165,4          | 59,07143    | 40,92857   |
| 0,8         | 20,1         | 187,9          | 67,10714      | 32,89286   | 0,8         | 24,2        | 189,6          | 67,71429    | 32,28571   |
| 0,5         | 18,3         | 206,2          | 73,64286      | 26,35714   | 0,5         | 18,6        | 208,2          | 74,35714    | 25,64286   |
| 0,315       | 15,4         | 221,6          | 79,14286      | 20,85714   | 0,315       | 10,8        | 219            | 78,21429    | 21,78571   |
| 0,2         | 8,6          | 230,2          | 82,21429      | 17,78571   | 0,2         | 10,8        | 229,8          | 82,07143    | 17,92857   |
| 0,125       | 8,1          | 238,3          | 85,10714      | 14,89286   | 0,125       | 8,9         | 238,7          | 85,25       | 14,75      |
| fend        | 39,8         | 278,1          | 99,32143      | 0,678571   | fend        | 39,6        | 278,3          | 99,39286    | 0,607143   |
|             |              |                |               |            |             |             |                |             |            |
| analyse gra | nulométrique | e après traite | ement 3 bars  | détergents | analyse gra | nulométriqu | e après traite | ment 4 bars | détergents |
| tamis en    | massa das    | masse des      | poucentag     | tamisat    | tamis en    | massa das   | masse des      | poucentag   | tamisat    |
| (ams en     | rofus op gr  | refus          | e des refus   | cumulé en  | (amsen      | refus on ar | refus          | e des refus | cumulé en  |
|             | reids en gr  | cumuclé        | cumulé %      | %          | 11111       | reids en gr | cumuclé        | cumulé %    | %          |
| 6,3         | 0            | 0              | 0             | 100        | 6,3         | 0           | 0              | 0           | 100        |
| 4           | 52,8         | 52,8           | 18,85714      | 81,14286   | 4           | 53,2        | 53,2           | 19          | 81         |
| 3,15        | 21,3         | 74,1           | 26,46429      | 73,53571   | 3,15        | 22,4        | 75,6           | 27          | 73         |
| 2           | 48,6         | 122,7          | 43,82143      | 56,17857   | 2           | 46,3        | 121,9          | 43,53571    | 56,46429   |
| 1,25        | 44,6         | 167,3          | 59,75         | 40,25      | 1,25        | 44,4        | 166,3          | 59,39286    | 40,60714   |
| 0,8         | 21,2         | 188,5          | 67,32143      | 32,67857   | 0,8         | 23,9        | 190,2          | 67,92857    | 32,07143   |
| 0,5         | 17,8         | 206,3          | 73,67857      | 26,32143   | 0,5         | 18,1        | 208,3          | 74,39286    | 25,60714   |
| 0,315       | 14,9         | 221,2          | 79            | 21         | 0,315       | 11,4        | 219,7          | 78,46429    | 21,53571   |
| 0,2         | 8,6          | 229,8          | 82,07143      | 17,92857   | 0,2         | 10,2        | 229,9          | 82,10714    | 17,89286   |
| 0,125       | 8,2          | 238            | 85            | 15         | 0,125       | 8,1         | 238            | 85          | 15         |
| fend        | 40,1         | 278,1          | 99,32143      | 0,678571   | fend        | 40,5        | 278,5          | 99,46429    | 0,535714   |

34. Résultats de cisaillement après traitement série 4 (sulfates)

| Essai de | cisailiem | ent apres | traitemen   | it suirates | 4 ieme so | erie       |       |        |                     |       |     |                     |
|----------|-----------|-----------|-------------|-------------|-----------|------------|-------|--------|---------------------|-------|-----|---------------------|
|          | 1         | bar       |             | 2bar        |           |            |       | 3bar 🛛 |                     | 4b    | ar  |                     |
| ΔL       | ΔH        | La        | τ=Lax0,194i | ΔH          | La        | τ=Lax0,194 | ΔH    | La     | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0         | 0         | 0           | 0           | 0         | 0          | 0     | 0      | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,02     | 6         | 0,032469    | -0,03       | 40        | 0,216457   | -0,01 | 112    | 0,606081            | -0,04 | 63  | 0,340921            |
| 0,05     | -0,04     | 115       | 0,62493     | -0,05       | 120       | 0,652101   | -0,01 | 165    | 0,896639            | -0,08 | 180 | 0,978151            |
| 0,075    | -0,04     | 148       | 0,807651    | -0,08       | 170       | 0,927707   | -0,03 | 255    | 1,391561            | -0,12 | 255 | 1,391561            |
| 0,1      | -0,03     | 170       | 0,931638    | -0,1        | 215       | 1,178249   | -0,06 | 325    | 1,781073            | -0,15 | 324 | 1,775593            |
| 0,125    | 0         | 190       | 1,045674    | -0,1        | 250       | 1,375887   | -0,09 | 375    | 2,06383             | -0,17 | 380 | 2,091348            |
| 0,15     | 0,04      | 210       | 1,160684    | -0,09       | 279       | 1,542051   | -0,11 | 430    | 2,376638            | -0,19 | 430 | 2,376638            |
| 0,175    | 0,08      | 225       | 1,248927    | -0,08       | 308       | 1,709642   | -0,13 | 467    | 2,592217            | -0,2  | 475 | 2,636624            |
| 0,2      | 0,13      | 238       | 1,326782    | -0,06       | 332       | 1,850805   | -0,14 | 510    | 2,843103            | -0,21 | 512 | 2,854253            |
| 0,225    | 0,17      | 247       | 1,382915    | -0,04       | 355       | 1,98759    | -0,14 | 543    | 3,040173            | -0,21 | 550 | 3,079365            |
| 0,25     | 0,22      | 251       | 1,41142     | -0,02       | 378       | 2,125565   | -0,14 | 573    | 3,222087            | -0,21 | 587 | 3,300812            |
| 0,275    | 0,26      | 255       | 1,440175    | 0           | 401       | 2,264745   | -0,14 | 603    | 3,40559             | -0,21 | 620 | 3,501601            |
| 0,3      | 0,31      | 263       | 1,491871    | 0,03        | 425       | 2,410819   | -0,13 | 625    | 3,545322            | -0,2  | 650 | 3,687135            |
| 0,325    | 0,36      | 269       | 1,532628    | 0,07        | 444       | 2,529692   | -0,12 | 650    | 3,703377            | -0,19 | 683 | 3,891395            |
| 0,35     | 0,42      | 275       | 1,573746    | 0,11        | 458       | 2,621003   | -0,1  | 670    | 3,834218            | -0,17 | 718 | 4,108909            |
| 0,375    | 0,47      | 281       | 1,61523     | 0,14        | 467       | 2,684385   | -0,06 | 690    | 3,966222            | -0,16 | 755 | 4,339852            |
| 0,4      | 0,53      | 285       | 1,645536    | 0,18        | 474       | 2,736786   | -0,04 | 710    | 4,099405            | -0,13 | 780 | 4,503571            |
| 0,425    | 0,61      | 286       | 1,658714    | 0,23        | 480       | 2,783857   | -0,01 | 710    | 4,117788            | -0,11 | 800 | 4,639761            |
| 0,45     | 0,67      | 290       | 1,689489    | 0,28        | 484       | 2,8197     | 0,02  | 710    | 4,136336            | -0,09 | 817 | 4,7597              |
| 0,475    | 0,74      | 290       | 1,697134    | 0,34        | 487       | 2,850015   | 0,05  | 726    | 4,248688            | -0,06 | 843 | 4,933394            |
| 0,5      | 0,8       | 291       | 1,710727    | 0,37        | 487       | 2,86297    | 0,08  | 735    | 4,320909            | -0,03 | 855 | 5,026364            |
| 0,525    | 0,85      | 292       | 1,724444    | 0,4         | 488       | 2,881948   | 0,11  | 747    | 4,411507            | 0     | 865 | 5,108371            |
| 0,55     | 0,9       | 293       | 1,738287    | 0,45        | 488       | 2,895168   | 0,14  | 754    | 4,473272            | 0,02  | 870 | 5,161468            |
| 0,575    | 0,95      | 290       | 1,728418    | 0,47        | 474       | 2,825069   | 0,17  | 770    | 4,589247            | 0,05  | 873 | 5,203134            |
| 0,6      | 1         | 289       | 1,730432    | 0,47        | 474       | 2,838148   | 0,2   | 774    | 4,634444            | 0,07  | 874 | 5,23321             |
| 0,625    | 1,05      | 288       | 1,732465    |             |           |            | 0,24  | 777    | 4,674047            | 0,1   | 875 | 5,263566            |
| 0,65     | 1,05      | 288       | 1,740561    |             |           |            | 0,27  | 786    | 4,75028             | 0,12  | 880 | 5,31838             |
| 0,675    | 1,05      | 288       | 1,748732    |             |           |            | 0,3   | 790    | 4,79687             | 0,14  | 885 | 5,373709            |
| 0,7      |           |           |             |             |           |            | 0,31  | 795    | 4,85                | 0,16  | 889 | 5,423459            |
| 0,725    |           |           |             |             |           |            | 0,32  | 797    | 4,885245            | 0,18  | 893 | 5,473681            |
| 0,75     |           |           |             |             |           |            | 0,35  | 798    | 4,914667            | 0,2   | 890 | 5,48127             |
| 0,775    |           |           |             |             |           |            | 0,38  | 800    | 4,950558            | 0,22  | 880 | 5,445614            |
| 0,8      |           |           |             |             |           |            | 0,39  | 791    | 4,918397            |       |     |                     |
| 0,825    |           |           |             |             |           |            | 0,41  | 790    | 4,93591             |       |     |                     |

35. Analyse granulométrique après cisaillement série 4 (sulfates)

| analyse gra | nulométrique | e après traite | ement 1 bar si | ulfates   | analyse gra | nulométrique | e après traite | ment 2 bars | sulfates  |
|-------------|--------------|----------------|----------------|-----------|-------------|--------------|----------------|-------------|-----------|
| tamis en    | massa das    | masse des      | poucentag      | tamisat   | tamis en    | massa das    | masse des      | poucentag   | tamisat   |
| (amis en    | refus en ar  | refus          | e des refus    | cumulé en | tamis en    | refused as   | refus          | e des refus | cumulé en |
|             | reius en gr  | cumuclé        | cumulé %       | %         |             | reids en gr  | cumuclé        | cumulé %    | %         |
| 6,3         | 0            | 0              | 0              | 100       | 6,3         | 0            | 0              | 0           | 100       |
| 4           | 51,1         | 51,1           | 18,25          | 81,75     | 4           | 52,2         | 52,2           | 18,64286    | 81,35714  |
| 3,15        | 23,2         | 74,3           | 26,53571       | 73,46429  | 3,15        | 23,8         | 76             | 27,14286    | 72,85714  |
| 2           | 46,9         | 121,2          | 43,28571       | 56,71429  | 2           | 46,4         | 122,4          | 43,71429    | 56,28571  |
| 1,25        | 44,5         | 165,7          | 59,17857       | 40,82143  | 1,25        | 43,6         | 166            | 59,28571    | 40,71429  |
| 0,8         | 21           | 186,7          | 66,67857       | 33,32143  | 0,8         | 24,8         | 190,8          | 68,14286    | 31,85714  |
| 0,5         | 18,3         | 205            | 73,21429       | 26,78571  | 0,5         | 17,1         | 207,9          | 74,25       | 25,75     |
| 0,315       | 17,4         | 222,4          | 79,42857       | 20,57143  | 0,315       | 12,3         | 220,2          | 78,64286    | 21,35714  |
| 0,2         | 8,6          | 231            | 82,5           | 17,5      | 0,2         | 10,3         | 230,5          | 82,32143    | 17,67857  |
| 0,125       | 8,2          | 239,2          | 85,42857       | 14,57143  | 0,125       | 7,2          | 237,7          | 84,89286    | 15,10714  |
| fend        | 40,7         | 279,9          | 99,96429       | 0,035714  | fend        | 41           | 278,7          | 99,53571    | 0,464286  |
|             |              |                |                |           |             |              |                |             |           |
| analyse gra | nulométrique | e après traite | ment 3 bars    | sulfates  | analyse gra | nulométriqu  | e après traite | ment 4 bars | sulfates  |
| tamis en    | massa das    | masse des      | poucentag      | tamisat   | tamis on    | massa das    | masse des      | poucentag   | tamisat   |
| tams en     | refus en ar  | refus          | e des refus    | cumulé en | tams en     | refusee ar   | refus          | e des refus | cumulé en |
|             | ierus errgi  | cumuclé        | cumulé %       | %         |             | reids en gr  | cumuclé        | cumulé %    | %         |
| 6,3         | 0            | 0              | 0              | 100       | 6,3         | 0            | 0              | 0           | 100       |
| 4           | 53,2         | 53,2           | 19             | 81        | 4           | 52,3         | 52,3           | 18,67857    | 81,32143  |
| 3,15        | 20,1         | 73,3           | 26,17857       | 73,82143  | 3,15        | 22,2         | 74,5           | 26,60714    | 73,39286  |
| 2           | 48,9         | 122,2          | 43,64286       | 56,35714  | 2           | 43,1         | 117,6          | 42          | 58        |
| 1,25        | 45           | 167,2          | 59,71429       | 40,28571  | 1,25        | 46,2         | 163,8          | 58,5        | 41,5      |
| 0,8         | 22           | 189,2          | 67,57143       | 32,42857  | 0,8         | 24           | 187,8          | 67,07143    | 32,92857  |
| 0,5         | 17,1         | 206,3          | 73,67857       | 26,32143  | 0,5         | 18,1         | 205,9          | 73,53571    | 26,46429  |
| 0,315       | 15,5         | 221,8          | 79,21429       | 20,78571  | 0,315       | 14,5         | 220,4          | 78,71429    | 21,28571  |
| 0,2         | 8,6          | 230,4          | 82,28571       | 17,71429  | 0,2         | 9,9          | 230,3          | 82,25       | 17,75     |
| 0,125       | 8,5          | 238,9          | 85,32143       | 14,67857  | 0,125       | 8,7          | 239            | 85,35714    | 14,64286  |
| fend        | 40,9         | 279,8          | 99,92857       | 0,071429  | fend        | 39,8         | 278,8          | 99,57143    | 0,428571  |

## 36. Résultats de cisaillement après traitement série 5 (eau)

| Essai de | cisaillemer | nt après l | traitement | t eau 5 iè | me série |           |       |      |            |           |       |     |            |           |
|----------|-------------|------------|------------|------------|----------|-----------|-------|------|------------|-----------|-------|-----|------------|-----------|
|          | 1ba         | ar         |            | 2bar       |          |           |       | 3bar |            |           | 4b    | ar  |            |           |
| ΔL       | ∆H L        | .a         | τ=Lax0,194 | ΔH         | La       | τ=Lax0,19 | ۵H    | La   | τ=Lax0,194 | WSc (Kpa) | ΔH    | La  | τ=Lax0,194 | ¥Sc (Kpa) |
| 0        | 0           | 0          | 0          | 0          | 0        | 0         | 0     | 0    | 0          |           | 0     | ) ( | 0          |           |
| 0,025    | -0,02       | 55         | 0,29763    | -0,02      | 53       | 0,28681   | -0,03 | 110  | 0,59526    |           | -0,03 | 85  | 0,45997    |           |
| 0,05     | -0,02       | 110        | 0,59776    | -0,03      | 130      | 0,70644   | -0,08 | 190  | 1,03249    |           | -0,07 | 200 | 1,08683    |           |
| 0,075    | -0,01       | 155        | 0,84585    | -0,04      | 190      | 1,03685   | -0,12 | 262  | 1,42976    |           | -0,11 | 285 | 1,55527    |           |
| 0,1      | 0,02        | 183        | 1,00288    | -0,05      | 242      | 1,32621   | -0,15 | 313  | 1,71531    |           | -0,15 | 355 | 1,94548    |           |
| 0,125    | 0,06        | 205        | 1,12823    | -0,04      | 280      | 1,54099   | -0,17 | 360  | 1,98128    |           | -0,16 | 415 | 2,28397    |           |
| 0,15     | 0,11        | 220        | 1,21595    | -0,02      | 300      | 1,65812   | -0,18 | 405  | 2,23846    |           | -0,18 | 455 | 2,51481    |           |
| 0,175    | 0,14        | 234        | 1,29888    | 0          | 332      | 1,84286   | -0,19 | 440  | 2,44235    |           | -0,18 | 495 | 2,74764    |           |
| 0,2      | 0,19        | 245        | 1,3658     | 0,02       | 355      | 1,97902   | -0,18 | 472  | 2,63126    |           | -0,18 | 535 | 2,98247    |           |
| 0,225    | 0,24        | 254        | 1,42211    | 0,04       | 378      | 2,11636   | -0,17 | 495  | 2,77143    |           | -0,18 | 570 | 3,19134    |           |
| 0,25     | 0,3         | 259        | 1,45641    | 0,07       | 404      | 2,27177   | -0,15 | 516  | 2,90157    |           | -0,18 | 605 | 3,40203    |           |
| 0,275    | 0,35        | 264        | 1,491      | 0,11       | 425      | 2,40029   | -0,14 | 544  | 3,07237    |           | -0,17 | 635 | 3,58632    |           |
| 0,3      | 0,4         | 267        | 1,51456    | 0,15       | 446      | 2,52994   | -0,11 | 563  | 3,19363    |           | -0,16 | 672 | 3,81193    |           |
| 0,325    | 0,44        | 268        | 1,52693    | 0,19       | 465      | 2,64934   | -0,09 | 584  | 3,32734    |           | -0,15 | 712 | 4,05662    |           |
| 0,35     | 0,49        | 273        | 1,5623     | 0,25       | 484      | 2,76979   | -0,06 | 596  | 3,41074    |           | -0,13 | 748 | 4,28059    |           |
| 0,375    | 0,53        | 278        | 1,59799    | 0,29       | 494      | 2,83959   | -0,02 | 610  | 3,50637    |           | -0,11 | 774 | 4,44907    |           |
| 0,4      | 0,57        | 280        | 1,61667    | 0,34       | 501      | 2,89268   | 0,01  | 620  | 3,57976    |           | -0,08 | 80  | 4,62482    |           |
| 0,425    | 0,62        | 279        | 1,61812    | 0,4        | 511      | 2,96365   | 0,05  | 634  | 3,67701    |           | -0,06 | 818 | 4,74416    |           |
| 0,45     | 0,66        | 279        | 1,62541    | 0,45       | 514      | 2,99447   | 0,09  | 634  | 3,69357    |           | -0,03 | 83  | 4,84126    |           |
| 0,475    | 0,7         | 279        | 1,63276    | 0,51       | 519      | 3,03729   | 0,15  | 634  | 3,71029    |           | 0     | 834 | 4,88072    |           |
| 0,5      | 0,71        | 275        | 1,61667    | 0,57       | 525      | 3,08636   | 0,18  | 635  | 3,73303    |           | 0,05  | 848 | 4,98521    |           |
| 0,525    | 0,72        | 275        | 1,62405    | 0,63       | 525      | 3,10046   | 0,22  | 635  | 3,75008    |           | 0,09  | 849 | 5,01388    |           |
| 0,55     | 0,72        | 275        | 1,6315     | 0,68       | 522      | 3,09688   | 0,24  | 635  | 3,76728    |           | 0,12  | 850 | 5,04281    |           |
| 0,575    |             |            |            | 0,73       | 522      | 3,11115   | 0,28  | 636  | 3,7906     |           | 0,16  | 850 | 5,06605    |           |
| 0,6      |             |            |            | 0,75       | 518      | 3,1016    | 0,31  | 650  | 3,89198    |           | 0,2   | 855 | 5,11944    |           |
| 0,625    |             |            |            |            |          |           | 0,33  | 650  | 3,91008    |           | 0,24  | 850 | 5,11318    |           |
| 0,65     |             |            |            |            |          |           | 0,36  | 648  | 3,91626    |           |       |     |            |           |
| 0,675    |             |            |            |            |          |           | 0,38  | 646  | 3,9225     |           |       |     |            |           |
| 0,7      |             |            |            |            |          |           | 0,4   | 645  | 3,93491    |           |       |     |            |           |
| 0,725    |             |            |            |            |          |           | 0,42  | 645  | 3,95355    |           |       |     |            |           |
| 0,75     |             |            |            |            |          |           | 0,44  | 642  | 3,9539     |           |       |     |            |           |

| 37. | Analyse | granulométrique | après | cisaillement | série 5 | (eau) |
|-----|---------|-----------------|-------|--------------|---------|-------|
|     |         |                 |       |              |         |       |

| analyse gra                                                                                           | anulométrique                                                                                                       | e après traite                                                                                                                      | ment 1 bar e                                                                                                                                                         | au                                                                                                                                          | analyse gra                                                                           | nulométrique                                                                                        | e après traite                                                                                                                      | ment 2 bars                                                                                                                                                    | eau                                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| tamis en<br>mm                                                                                        | masse des<br>refus en gr                                                                                            | masse des<br>refus<br>cumuclé                                                                                                       | poucentag<br>e des refus<br>cumulé %                                                                                                                                 | tamisat<br>cumulé en<br>%                                                                                                                   | tamis en<br>mm                                                                        | masse des<br>refus en gr                                                                            | masse des<br>refus<br>cumuclé                                                                                                       | poucentag<br>e des refus<br>cumulé %                                                                                                                           | tamisat<br>cumulé en<br>%                                                                                                             |  |
| 6,3                                                                                                   | 0                                                                                                                   | 0                                                                                                                                   | 0                                                                                                                                                                    | 100                                                                                                                                         | 6,3                                                                                   | 0                                                                                                   | 0                                                                                                                                   | 0                                                                                                                                                              | 100                                                                                                                                   |  |
| 4                                                                                                     | 52,4                                                                                                                | 52,4                                                                                                                                | 18,71429                                                                                                                                                             | 81,28571                                                                                                                                    | 4                                                                                     | 53                                                                                                  | 53                                                                                                                                  | 18,92857                                                                                                                                                       | 81,07143                                                                                                                              |  |
| 3,15                                                                                                  | 22,1                                                                                                                | 74,5                                                                                                                                | 26,60714                                                                                                                                                             | 73,39286                                                                                                                                    | 3,15                                                                                  | 22,4                                                                                                | 75,4                                                                                                                                | 26,92857                                                                                                                                                       | 73,07143                                                                                                                              |  |
| 2                                                                                                     | 45,6                                                                                                                | 120,1                                                                                                                               | 42,89286                                                                                                                                                             | 57,10714                                                                                                                                    | 2                                                                                     | 45,7                                                                                                | 121,1                                                                                                                               | 43,25                                                                                                                                                          | 56,75                                                                                                                                 |  |
| 1,25                                                                                                  | 47,2                                                                                                                | 167,3                                                                                                                               | 59,75                                                                                                                                                                | 40,25                                                                                                                                       | 1,25                                                                                  | 47                                                                                                  | 168,1                                                                                                                               | 60,03571                                                                                                                                                       | 39,96429                                                                                                                              |  |
| 0,8                                                                                                   | 23,3                                                                                                                | 190,6                                                                                                                               | 68,07143                                                                                                                                                             | 31,92857                                                                                                                                    | 0,8                                                                                   | 22,4                                                                                                | 190,5                                                                                                                               | 68,03571                                                                                                                                                       | 31,96429                                                                                                                              |  |
| 0,5                                                                                                   | 17,7                                                                                                                | 208,3                                                                                                                               | 74,39286                                                                                                                                                             | 25,60714                                                                                                                                    | 0,5                                                                                   | 18,4                                                                                                | 208,9                                                                                                                               | 74,60714                                                                                                                                                       | 25,39286                                                                                                                              |  |
| 0,315                                                                                                 | 13,1                                                                                                                | 221,4                                                                                                                               | 79,07143                                                                                                                                                             | 20,92857                                                                                                                                    | 0,315                                                                                 | 13,3                                                                                                | 222,2                                                                                                                               | 79,35714                                                                                                                                                       | 20,64286                                                                                                                              |  |
| 0,2                                                                                                   | 8,4                                                                                                                 | 229,8                                                                                                                               | 82,07143                                                                                                                                                             | 17,92857                                                                                                                                    | 0,2                                                                                   | 8,1                                                                                                 | 230,3                                                                                                                               | 82,25                                                                                                                                                          | 17,75                                                                                                                                 |  |
| 0,125                                                                                                 | 7,9                                                                                                                 | 237,7                                                                                                                               | 84,89286                                                                                                                                                             | 15,10714                                                                                                                                    | 0,125                                                                                 | 7,5                                                                                                 | 237,8                                                                                                                               | 84,92857                                                                                                                                                       | 15,07143                                                                                                                              |  |
| fend                                                                                                  | 41,6                                                                                                                | 279,3                                                                                                                               | 99,75                                                                                                                                                                | 0,25                                                                                                                                        | fend                                                                                  | 40,8                                                                                                | 278,6                                                                                                                               | 99,5                                                                                                                                                           | 0,5                                                                                                                                   |  |
|                                                                                                       |                                                                                                                     |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                             |                                                                                       |                                                                                                     |                                                                                                                                     |                                                                                                                                                                |                                                                                                                                       |  |
| analuse granulométrique après traitement 3 bars eau                                                   |                                                                                                                     |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                             | analyse granulométrique après traitement 4 bars eau                                   |                                                                                                     |                                                                                                                                     |                                                                                                                                                                |                                                                                                                                       |  |
| analyse gra                                                                                           | anulométrique                                                                                                       | e après traite                                                                                                                      | ement 3 bars                                                                                                                                                         | eau                                                                                                                                         | analyse gra                                                                           | inulometriqu                                                                                        | e après traite                                                                                                                      | ment 4 bars                                                                                                                                                    | eau                                                                                                                                   |  |
| analyse gra                                                                                           | nulométrique<br>masse des                                                                                           | e après traite<br>masse des                                                                                                         | ment 3 bars<br>poucentag                                                                                                                                             | eau<br>tamisat                                                                                                                              | anaiyse gra                                                                           | masse des                                                                                           | e après traite<br>masse des                                                                                                         | ement 4 bars<br>poucentag                                                                                                                                      | eau<br>tamisat                                                                                                                        |  |
| tamis en                                                                                              | masse des<br>refus en gr                                                                                            | e après traite<br>masse des<br>refus                                                                                                | ement 3 bars<br>poucentag<br>e des refus                                                                                                                             | eau<br>tamisat<br>cumulé en                                                                                                                 | anaiyse gra<br>tamis en                                                               | masse des<br>refus en ar                                                                            | e après traite<br>masse des<br>refus                                                                                                | ment 4 bars<br>poucentag<br>e des refus                                                                                                                        | eau<br>tamisat<br>cumulé en                                                                                                           |  |
| analyse gra<br>tamis en<br>mm                                                                         | mulométrique<br>masse des<br>refus en gr                                                                            | e après traite<br>masse des<br>refus<br>cumuclé                                                                                     | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                                  | eau<br>tamisat<br>cumulé en<br>%                                                                                                            | anaiyse gra<br>tamis en<br>mm                                                         | nulometriqui<br>masse des<br>refus en gr                                                            | e après traite<br>masse des<br>refus<br>cumuclé                                                                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                            | eau<br>tamisat<br>cumulé en<br>%                                                                                                      |  |
| analyse gra<br>tamis en<br>mm<br>6,3                                                                  | nulométrique<br>masse des<br>refus en gr<br>0                                                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                                | ement 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                            | eau<br>tamisat<br>cumulé en<br>%<br>100                                                                                                     | tamise gra<br>tamisen<br>mm<br>6,3                                                    | nulometrique<br>masse des<br>refus en gr<br>0                                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                                | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                       | eau<br>tamisat<br>cumulé en<br>%<br>100                                                                                               |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                             | mulométrique<br>masse des<br>refus en gr<br>0<br>52,4                                                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4                                                                        | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429                                                                                                 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,28571                                                                                         | tamisen<br>mm<br>6,3<br>4                                                             | nulometriqui<br>masse des<br>refus en gr<br>0<br>54,7                                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7                                                                        | e des refus<br>cumulé %<br>19,53571                                                                                                                            | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,46429                                                                                   |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                     | mulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8                                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2                                                                | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286                                                                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,28571<br>73,85714                                                                             | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                     | nulometriqui<br>masse des<br>refus en gr<br>0<br>54,7<br>20,9                                       | e aprés traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6                                                                | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,53571<br>27                                                                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,46429<br>73                                                                             |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                                | mulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8<br>47,1                                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2<br>120,3                                                       | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96429                                                                         | eau<br>tamisat<br>cumulé en<br>½<br>100<br>81,28571<br>73,85714<br>57,03571                                                                 | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                | nulometriqui<br>masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9                                                       | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,53571<br>27<br>43,53571                                                                         | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,46429<br>73<br>56,46429                                                                 |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                        | nulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8<br>47,1<br>47,3                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2<br>120,3<br>167,6                                              | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96429<br>59,85714                                                             | eau<br>tamisat<br>cumulé en<br>½<br>100<br>81,28571<br>73,85714<br>57,03571<br>40,14286                                                     | tamisen<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                        | nulometriqui<br>masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3<br>45,9                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9<br>167,8                                              | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,53571<br>27<br>43,53571<br>59,92857                                                             | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,46429<br>73<br>56,46429<br>40,07143                                                     |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                 | nulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8<br>47,1<br>47,3<br>21,2                               | e après traite<br>masse des<br>refus<br>0<br>52,4<br>73,2<br>120,3<br>167,6<br>188,8                                                | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96429<br>59,85714<br>67,42857                                                 | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,28571<br>73,85714<br>57,03571<br>40,14286<br>32,57143                                         | tamisen<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                 | mulometriqui<br>masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3<br>45,9<br>23,4               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9<br>167,8<br>191,2                                     | ment 4 bars<br>poucentag<br>e des refus<br>ourulé<br>0<br>19,53571<br>27<br>43,53571<br>59,92857<br>68,28571                                                   | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,46429<br>73<br>56,46429<br>40,07143<br>31,71429                                         |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                          | nulométrique<br>masse des<br>refus en gr<br>52,4<br>20,8<br>47,1<br>47,3<br>21,2<br>17,3                            | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2<br>120,3<br>167,6<br>188,8<br>206,1                            | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96423<br>59,85714<br>67,42857<br>73,60714                                     | eau<br>tamisat<br>cumulé en<br>%<br>100<br>81,28571<br>73,85714<br>57,03571<br>40,14286<br>32,57143<br>26,33286                             | tamisen<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                          | mulometriqui<br>masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3<br>45,9<br>23,4<br>17,7       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9<br>167,8<br>191,2<br>208,9                            | ment 4 bars<br>poucentag<br>e des refus<br>cumulé //<br>0<br>19,53571<br>27<br>43,53571<br>59,32857<br>68,28571<br>74,60714                                    | eau<br>tamisat<br>cumulé en<br>%<br>100<br>80,46429<br>73<br>56,46429<br>40,07143<br>31,71429<br>25,39286                             |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                 | nulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8<br>47,1<br>47,3<br>21,2<br>17,3<br>15,5               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2<br>120,3<br>167,6<br>188,8<br>206,1<br>221,6                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96429<br>59,85714<br>67,42857<br>73,60714<br>79,14286                         | eau<br>tamisat<br>oumulé<br>100<br>81,28571<br>73,85714<br>57,03571<br>40,14286<br>32,57143<br>26,33286<br>20,85714                         | tamisen<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                 | masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3<br>45,9<br>23,4<br>17,7<br>13,5               | e apres traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9<br>167,8<br>191,2<br>208,9<br>222,4                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,53571<br>27<br>43,53571<br>59,92857<br>68,28571<br>74,60714<br>79,42857                         | eau<br>tamisat<br>cumulex<br>100<br>80,46429<br>73<br>56,46429<br>40,07143<br>31,71429<br>25,33286<br>20,57143                        |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2          | nulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8<br>47,1<br>47,3<br>21,2<br>17,3<br>15,5<br>7,8        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2<br>120,3<br>167,6<br>188,8<br>206,1<br>221,6<br>229,4          | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96429<br>59,85714<br>67,42857<br>73,60714<br>79,14286<br>81,92857             | eau<br>tamisat<br>cumulex<br>100<br>81,28571<br>73,85714<br>57,03571<br>40,14286<br>32,57143<br>26,33286<br>20,85714<br>18,07143            | tamisen<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2          | masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3<br>45,9<br>23,4<br>17,7<br>13,5<br>8,7        | e apres traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9<br>167,8<br>191,2<br>208,9<br>222,4<br>231,1          | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,53571<br>27<br>43,53571<br>59,32857<br>68,28571<br>74,60714<br>79,42857<br>82,53571             | eau<br>tamisat<br>cumulé<br>100<br>80,46429<br>73<br>56,46429<br>40,07143<br>31,71429<br>25,39286<br>20,57143<br>17,46429             |  |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125 | nulométrique<br>masse des<br>refus en gr<br>0<br>52,4<br>20,8<br>47,1<br>47,3<br>21,2<br>17,3<br>15,5<br>7,8<br>9,8 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,4<br>73,2<br>120,3<br>167,6<br>188,8<br>206,1<br>221,6<br>229,4<br>239,2 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,71429<br>26,14286<br>42,96429<br>59,85714<br>67,42857<br>73,60714<br>73,14286<br>81,92857<br>85,42857 | eau<br>tamisat<br>cumulé<br>100<br>81,28571<br>73,85714<br>57,03571<br>40,14286<br>32,57143<br>26,33286<br>20,85714<br>18,07143<br>14,57143 | tamisen<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2<br>0,125 | masse des<br>refus en gr<br>0<br>54,7<br>20,9<br>46,3<br>45,9<br>23,4<br>17,7<br>13,5<br>8,7<br>7,4 | e apres traite<br>masse des<br>refus<br>cumuclé<br>0<br>54,7<br>75,6<br>121,9<br>167,8<br>191,2<br>208,9<br>222,4<br>231,1<br>238,5 | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>19,53571<br>27<br>43,53571<br>59,92857<br>68,28571<br>74,60714<br>79,42857<br>82,53571<br>85,17857 | eau<br>tamisat<br>cumulé<br>100<br>80,46429<br>73<br>56,46429<br>40,07143<br>31,71429<br>25,39286<br>20,57143<br>17,46429<br>14,82143 |  |

# 38. Résultats de cisaillement après traitement série 5 (phosphates)

| Essai de | cisailleme | nt après | traitement ph                | nospha | tes 5 ièm | e série     |       |      |                     |       |     |                     |
|----------|------------|----------|------------------------------|--------|-----------|-------------|-------|------|---------------------|-------|-----|---------------------|
|          | 11         | bar      |                              | 2bar   |           |             |       | 3bar |                     | 4b    | ar  |                     |
| ΔL       | ΔH         | La       | τ=Lax0,194 <mark>/</mark> ΔH |        | La        | τ=Lax0,194/ | ΔV    | La   | τ=Lax0,194/Sc (Kpa) | ΔV    | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0          | 0        | 0                            | 0      | 0         | 0           | 0     | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,01      | 45       | 0,243515                     | -0,01  | 60        | 0,324686    | -0,03 | 65   | 0,351743            | -0,02 | 95  | 0,514086            |
| 0,05     | -0,03      | 105      | 0,570588                     | -0,04  | 132       | 0,717311    | -0,06 | 180  | 0,978151            | -0,02 | 180 | 0,978151            |
| 0,075    | -0,03      | 150      | 0,818565                     | -0,07  | 190       | 1,03685     | -0,08 | 262  | 1,429761            | -0,05 | 285 | 1,555274            |
| 0,1      | -0,03      | 184      | 1,008362                     | -0,08  | 235       | 1,287853    | -0,1  | 325  | 1,781073            | -0,08 | 362 | 1,983842            |
| 0,125    | -0,03      | 215      | 1,183262                     | -0,09  | 274       | 1,507972    | -0,11 | 370  | 2,036312            | -0,11 | 440 | 2,42156             |
| 0,15     | -0,01      | 232      | 1,282279                     | -0,09  | 307       | 1,696809    | -0,11 | 412  | 2,277151            | -0,14 | 510 | 2,818803            |
| 0,175    | 0,03       | 245      | 1,359943                     | -0,07  | 335       | 1,859514    | -0,1  | 450  | 2,497854            | -0,16 | 560 | 3,108441            |
| 0,2      | 0,07       | 255      | 1,421552                     | -0,06  | 360       | 2,006897    | -0,09 | 482  | 2,687011            | -0,16 | 620 | 3,456322            |
| 0,225    | 0,12       | 278      | 1,556479                     | -0,04  | 383       | 2,144358    | -0,07 | 508  | 2,844214            | -0,18 | 669 | 3,745628            |
| 0,25     | 0,17       | 281      | 1,580116                     | -0,02  | 410       | 2,305507    | -0,05 | 540  | 3,036522            | -0,19 | 710 | 3,992464            |
| 0,275    | 0,2        | 284      | 1,603959                     | 0,02   | 433       | 2,445473    | -0,02 | 562  | 3,174032            | -0,19 | 747 | 4,218865            |
| 0,3      | 0,28       | 284      | 1,610994                     | 0,05   | 455       | 2,580994    | 0,02  | 583  | 3,307076            | -0,18 | 784 | 4,447251            |
| 0,325    | 0,34       | 285      | 1,623789                     | 0,09   | 472       | 2,689222    | 0,04  | 605  | 3,44699             | -0,17 | 805 | 4,58649             |
| 0,35     | 0,4        | 285      | 1,630973                     | 0,14   | 480       | 2,746903    | 0,07  | 622  | 3,559528            | -0,15 | 833 | 4,767021            |
| 0,375    | 0,45       | 284      | 1,632474                     | 0,19   | 484       | 2,782104    | 0,11  | 640  | 3,678815            | -0,14 | 860 | 4,943407            |
| 0,4      | 0,51       | 283      | 1,633988                     | 0,22   | 485       | 2,800298    | 0,15  | 653  | 3,770298            | -0,12 | 885 | 5,109821            |
| 0,425    | 0,57       | 281      | 1,629716                     | 0,28   | 485       | 2,812855    | 0,18  | 664  | 3,851001            | -0,1  | 910 | 5,277728            |
| 0,45     | 0,57       | 281      | 1,637057                     | 0,33   | 484       | 2,8197      | 0,21  | 675  | 3,932432            | -0,07 | 925 | 5,388889            |
| 0,475    |            |          |                              | 0,37   | 480       | 2,80905     | 0,25  | 684  | 4,002896            | -0,05 | 930 | 5,442534            |
| 0,5      |            |          |                              | 0,42   | 480       | 2,821818    | 0,29  | 692  | 4,068121            | -0,02 | 939 | 5,520182            |
| 0,525    |            |          |                              | 0,46   | 478       | 2,822892    | 0,32  | 701  | 4,139848            | 0,02  | 930 | 5,492237            |
| 0,55     |            |          |                              | 0,46   | 478       | 2,835841    | 0,35  | 710  | 4,212232            | 0,05  | 920 | 5,458104            |
| 0,575    |            |          |                              |        |           |             | 0,38  | 715  | 4,261444            | 0,08  | 920 | 5,483257            |
| 0,6      |            |          |                              |        |           |             | 0,41  | 720  | 4,311111            | 0,12  | 922 | 5,520617            |
| 0,625    |            |          |                              |        |           |             | 0,44  | 723  | 4,349209            | 0,15  | 929 | 5,588403            |
| 0,65     |            |          |                              |        |           |             | 0,47  | 726  | 4,387664            | 0,17  | 931 | 5,626604            |
| 0,675    |            |          |                              |        |           |             | 0,5   | 729  | 4,426479            | 0,21  | 915 | 5,555869            |
| 0,7      |            |          |                              |        |           |             | 0,52  | 732  | 4,46566             |       |     |                     |
| 0,725    |            |          |                              |        |           |             | 0,56  | 734  | 4,499084            |       |     |                     |
| 0,75     |            |          |                              |        |           |             | 0,58  | 734  | 4,520508            |       |     |                     |
| 0,775    |            |          |                              |        |           |             | 0,61  | 733  | 4,535949            |       |     |                     |
| 0,8      |            |          |                              |        |           |             | 0,62  | 732  | 4,551538            |       |     |                     |
| 0,825    |            |          |                              |        |           |             | 0,63  | 730  | 4,561031            |       |     |                     |
| 0,85     |            |          |                              |        |           |             | 0,65  | 726  | 4,558058            |       |     |                     |

| analyse granulométrique après traitement 1 bar phosphates                                                           |                                                                                                                   |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                            | analyse gra                                                                                         | anulométrique                                                                                                           | e après traite                                                                                                                      | ment 2 bars                                                                                                                                              | phosphates                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| tamis en<br>mm                                                                                                      | masse des<br>refus en gr                                                                                          | masse des<br>refus<br>cumuclé                                                                                                       | poucentag<br>e des refus<br>cumulé %                                                                                                                                 | tamisat<br>cumulé en<br>%                                                                                                                                  | tamis en<br>mm                                                                                      | masse des<br>refus en gr                                                                                                | masse des<br>refus<br>cumuclé                                                                                                       | poucentag<br>e des refus<br>cumulé %                                                                                                                     | tamisat<br>cumulé en<br>%                                                                                                                      |
| 6,3                                                                                                                 | 0                                                                                                                 | 0                                                                                                                                   | 0                                                                                                                                                                    | 100                                                                                                                                                        | 6,3                                                                                                 | 0                                                                                                                       | 0                                                                                                                                   | 0                                                                                                                                                        | 100                                                                                                                                            |
| 4                                                                                                                   | 53,7                                                                                                              | 53,7                                                                                                                                | 19,17857                                                                                                                                                             | 80,82143                                                                                                                                                   | 4                                                                                                   | 50,4                                                                                                                    | 50,4                                                                                                                                | 18                                                                                                                                                       | 82                                                                                                                                             |
| 3,15                                                                                                                | 22,6                                                                                                              | 76,3                                                                                                                                | 27,25                                                                                                                                                                | 72,75                                                                                                                                                      | 3,15                                                                                                | 23                                                                                                                      | 73,4                                                                                                                                | 26,21429                                                                                                                                                 | 73,78571                                                                                                                                       |
| 2                                                                                                                   | 46,8                                                                                                              | 123,1                                                                                                                               | 43,96429                                                                                                                                                             | 56,03571                                                                                                                                                   | 2                                                                                                   | 48,5                                                                                                                    | 121,9                                                                                                                               | 43,53571                                                                                                                                                 | 56,46429                                                                                                                                       |
| 1,25                                                                                                                | 44,4                                                                                                              | 167,5                                                                                                                               | 59,82143                                                                                                                                                             | 40,17857                                                                                                                                                   | 1,25                                                                                                | 46,1                                                                                                                    | 168                                                                                                                                 | 60                                                                                                                                                       | 40                                                                                                                                             |
| 0,8                                                                                                                 | 20,9                                                                                                              | 188,4                                                                                                                               | 67,28571                                                                                                                                                             | 32,71429                                                                                                                                                   | 0,8                                                                                                 | 23                                                                                                                      | 191                                                                                                                                 | 68,21429                                                                                                                                                 | 31,78571                                                                                                                                       |
| 0,5                                                                                                                 | 18,2                                                                                                              | 206,6                                                                                                                               | 73,78571                                                                                                                                                             | 26,21429                                                                                                                                                   | 0,5                                                                                                 | 18,5                                                                                                                    | 209,5                                                                                                                               | 74,82143                                                                                                                                                 | 25,17857                                                                                                                                       |
| 0,315                                                                                                               | 15                                                                                                                | 221,6                                                                                                                               | 79,14286                                                                                                                                                             | 20,85714                                                                                                                                                   | 0,315                                                                                               | 13,2                                                                                                                    | 222,7                                                                                                                               | 79,53571                                                                                                                                                 | 20,46429                                                                                                                                       |
| 0,2                                                                                                                 | 8,2                                                                                                               | 229,8                                                                                                                               | 82,07143                                                                                                                                                             | 17,92857                                                                                                                                                   | 0,2                                                                                                 | 8,3                                                                                                                     | 231                                                                                                                                 | 82,5                                                                                                                                                     | 17,5                                                                                                                                           |
| 0,125                                                                                                               | 8,6                                                                                                               | 238,4                                                                                                                               | 85,14286                                                                                                                                                             | 14,85714                                                                                                                                                   | 0,125                                                                                               | 7,4                                                                                                                     | 238,4                                                                                                                               | 85,14286                                                                                                                                                 | 14,85714                                                                                                                                       |
| fend                                                                                                                | 40,4                                                                                                              | 278,8                                                                                                                               | 99,57143                                                                                                                                                             | 0,428571                                                                                                                                                   | fend                                                                                                | 40,3                                                                                                                    | 278,7                                                                                                                               | 99,53571                                                                                                                                                 | 0,464286                                                                                                                                       |
|                                                                                                                     |                                                                                                                   |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                            |                                                                                                     |                                                                                                                         |                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                |
|                                                                                                                     |                                                                                                                   |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                            |                                                                                                     |                                                                                                                         |                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                |
| analyse gra                                                                                                         | nulométrique                                                                                                      | e après traite                                                                                                                      | ment 3 bars                                                                                                                                                          | phosphates                                                                                                                                                 | analyse gra                                                                                         | anulométrique                                                                                                           | e après traite                                                                                                                      | ment 4 bars                                                                                                                                              | phosphates                                                                                                                                     |
| analyse gra<br>tamis en<br>mm                                                                                       | nulométrique<br>masse des<br>refus en gr                                                                          | e après traite<br>masse des<br>refus<br>cumuclé                                                                                     | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                                  | phosphates<br>tamisat<br>cumulé en<br>%                                                                                                                    | analyse gra<br>tamis en<br>mm                                                                       | anulométrique<br>masse des<br>refus en gr                                                                               | e après traite<br>masse des<br>refus<br>cumuclé                                                                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %                                                                                                      | phosphates<br>tamisat<br>cumulé en<br>%                                                                                                        |
| analyse gra<br>tamis en<br>mm<br>6,3                                                                                | nulométriqu<br>masse des<br>refus en gr<br>0                                                                      | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                                | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                             | phosphates<br>tamisat<br>cumulé en<br>%<br>100                                                                                                             | analyse gra<br>tamis en<br>mm<br>6,3                                                                | anulométrique<br>masse des<br>refus en gr<br>0                                                                          | e après traite<br>masse des<br>refus<br>cumuclé<br>0                                                                                | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0                                                                                                 | phosphates<br>tamisat<br>cumulé en<br>%<br>100                                                                                                 |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                                           | nulométriqu<br>masse des<br>refus en gr<br>0<br>52,6                                                              | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6                                                                        | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571                                                                                                 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429                                                                                                 | analyse gra<br>tamis en<br>mm<br>6,3<br>4                                                           | anulométrique<br>masse des<br>refus en gr<br>0<br>51,7                                                                  | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7                                                                        | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429                                                                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571                                                                                     |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                                   | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6                                                     | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6<br>75,2                                                                | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571<br>26,85714                                                                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286                                                                                     | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15                                                   | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6                                                           | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7<br>76,3                                                                | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429<br>27,25                                                                            | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571<br>72,75                                                                            |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                                              | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3                                             | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6<br>75,2<br>123,5                                                       | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571<br>26,85714<br>44,10714                                                                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,89286                                                                         | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2                                              | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43                                                     | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7<br>76,3<br>119,3                                                       | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429<br>27,25<br>42,60714                                                                | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571<br>72,75<br>57,39286                                                                |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                                      | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3<br>44                                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6<br>75,2<br>123,5<br>167,5                                              | ment 3 bars<br>poucentag<br>e des refus<br>cumulé<br>0<br>18,78571<br>26,85714<br>44,10714<br>59,82143                                                               | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,89286<br>40,17857                                                             | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25                                      | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43<br>47                                               | e après traite<br>masse des<br>cumuclé<br>0<br>51,7<br>76,3<br>119,3<br>166,3                                                       | ment 4 bars<br>poucentag<br>e des refus<br>cumulé<br>0<br>18,46429<br>27,25<br>42,60714<br>59,39286                                                      | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571<br>72,75<br>57,39286<br>40,60714                                                    |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                                               | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3<br>44<br>20,6                               | e après traite<br>masse des<br>refus<br>cumuolé<br>0<br>52,6<br>75,2<br>123,5<br>167,5<br>188,1                                     | ment 3 bars<br>poucentag<br>e des refus<br>cumulé //<br>18,78571<br>26,85714<br>44,10714<br>59,82143<br>67,17857                                                     | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,83286<br>40,17857<br>32,82143                                                 | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8                               | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43<br>47<br>23,3                                       | e après traite<br>masse des<br>refus<br>cumuolé<br>0<br>51,7<br>76,3<br>119,3<br>166,3<br>189,6                                     | ment 4 bars<br>poucentag<br>e des refus<br>cumulé //<br>18,46429<br>27,25<br>42,60714<br>59,39286<br>67,71429                                            | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571<br>72,75<br>57,39286<br>40,60714<br>32,28571                                        |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                                        | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3<br>44<br>20,6<br>18,2                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6<br>75,2<br>123,5<br>167,5<br>188,1<br>206,3                            | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571<br>26,85714<br>44,10714<br>44,10714<br>59,82143<br>59,82143<br>67,17657<br>73,67857             | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,8286<br>40,17857<br>32,82143<br>26,32143                                      | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5                        | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43<br>47<br>23,3<br>18,3                               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7<br>76,3<br>119,3<br>166,3<br>189,6<br>207,9                            | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429<br>27,25<br>42,60714<br>59,39286<br>67,71429<br>74,25                               | phosphates<br>tamisat<br>oumulé en<br>%<br>100<br>81,53571<br>72,75<br>57,39286<br>40,60714<br>32,28571<br>25,75                               |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315                               | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3<br>44<br>20,6<br>18,2<br>14,8               | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6<br>75,2<br>123,5<br>167,5<br>188,1<br>206,3<br>221,1                   | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571<br>26,85714<br>44,10714<br>59,82143<br>67,17857<br>73,67857<br>78,96423                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,83286<br>40,17857<br>32,82143<br>26,32143<br>26,32143<br>21,03571             | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315               | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43<br>47<br>23,3<br>18,3<br>13,3                       | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7<br>76,3<br>119,3<br>166,3<br>169,6<br>207,9<br>221,2                   | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429<br>27,25<br>42,60714<br>59,39286<br>67,71429<br>74,25<br>79                         | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571<br>72,75<br>57,39286<br>40,60714<br>32,28571<br>25,75<br>21                         |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2                        | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3<br>44<br>20,6<br>18,2<br>14,8<br>8,3        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>52,6<br>75,2<br>123,5<br>167,5<br>188,1<br>206,3<br>221,1<br>229,4          | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571<br>26,85714<br>44,10714<br>59,82143<br>67,17857<br>73,67857<br>78,96423<br>81,92857             | phosphates<br>tamisat<br>oumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,83286<br>40,17857<br>32,82143<br>26,32143<br>21,03571<br>18,07143             | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,315<br>0,2        | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43<br>47<br>23,3<br>18,3<br>18,3<br>13,3<br>8,7        | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7<br>76,3<br>119,3<br>166,3<br>189,6<br>207,9<br>221,2<br>229,9          | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429<br>27,25<br>42,60714<br>59,39286<br>67,71429<br>74,25<br>79<br>82,10714             | phosphates<br>tamisat<br>cumulé m<br>%<br>100<br>81,53571<br>72,75<br>57,33286<br>40,60714<br>32,28571<br>25,75<br>21<br>17,83286              |
| analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,5<br>0,5<br>0,315<br>0,2<br>0,125 | nulométrique<br>masse des<br>refus en gr<br>0<br>52,6<br>22,6<br>48,3<br>44<br>20,6<br>18,2<br>14,8<br>8,3<br>8,7 | e après traite<br>masse des<br>refus<br>cumuolé<br>0<br>52,6<br>75,2<br>123,5<br>167,5<br>188,1<br>206,3<br>221,1<br>229,4<br>238,1 | ment 3 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,78571<br>26,85714<br>44,10714<br>59,82143<br>67,17857<br>73,67857<br>78,96429<br>81,92857<br>85,03571 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,21429<br>73,14286<br>55,83286<br>40,17857<br>32,82143<br>26,32143<br>21,03571<br>18,07143<br>14,96429 | analyse gra<br>tamis en<br>mm<br>6,3<br>4<br>3,15<br>2<br>1,25<br>0,8<br>0,5<br>0,5<br>0,315<br>0,2 | mulométrique<br>masse des<br>refus en gr<br>0<br>51,7<br>24,6<br>43<br>47<br>23,3<br>18,3<br>18,3<br>13,3<br>8,7<br>8,2 | e après traite<br>masse des<br>refus<br>cumuclé<br>0<br>51,7<br>76,3<br>119,3<br>166,3<br>189,6<br>207,9<br>221,2<br>229,9<br>238,1 | ment 4 bars<br>poucentag<br>e des refus<br>cumulé %<br>0<br>18,46429<br>27,25<br>42,60714<br>59,39286<br>67,71429<br>74,25<br>79<br>82,10714<br>85,03571 | phosphates<br>tamisat<br>cumulé en<br>%<br>100<br>81,53571<br>72,75<br>57,33286<br>40,60714<br>32,28571<br>25,75<br>21<br>17,83286<br>14,96429 |

### 39. Analyse granulométrique après cisaillement série 5 (phosphates)

40. Résultats de cisaillement après traitement série 5 (détergents)

| Essai de | cisailleme | nt après | traitement  | t Déterge | nts 5 ièm | e série     |       |      |                     |       |     |                     |
|----------|------------|----------|-------------|-----------|-----------|-------------|-------|------|---------------------|-------|-----|---------------------|
|          | 1          | bar      |             |           | 2 ba      |             |       | 3bar |                     | 4b    | ar  |                     |
| ΔL       | ΔH         | La       | τ=Lax0,1947 | ΔH        | La        | τ=Lax0,194i | ΔH    | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ=Lax0,194/Sc (Kpa) |
| 0        | 0          | 0        | 0           | 0         | 0         | 0           | 0     | 0    | 0                   | 0     | 0   | 0                   |
| 0,025    | -0,01      | 50       | 0,270572    | -0,02     | 74        | 0,400446    | -0,01 | 80   | 0,432915            | -0,01 | 90  | 0,487029            |
| 0,05     | -0,02      | 123      | 0,668403    | -0,05     | 145       | 0,787955    | -0,02 | 175  | 0,95098             | -0,03 | 200 | 1,086835            |
| 0,075    | -0,01      | 173      | 0,944079    | -0,06     | 199       | 1,085963    | -0,06 | 265  | 1,446132            | -0,06 | 285 | 1,555274            |
| 0,1      | 0          | 207      | 1,134407    | -0,06     | 235       | 1,287853    | -0,09 | 325  | 1,781073            | -0,1  | 350 | 1,918079            |
| 0,125    | 0,04       | 234      | 1,28783     | -0,04     | 264       | 1,452936    | -0,12 | 376  | 2,069333            | -0,13 | 403 | 2,217929            |
| 0,15     | 0,09       | 255      | 1,409402    | -0,03     | 288       | 1,591795    | -0,14 | 419  | 2,31584             | -0,16 | 457 | 2,525869            |
| 0,175    | 0,14       | 271      | 1,504263    | -0,01     | 310       | 1,720744    | -0,15 | 458  | 2,54226             | -0,17 | 500 | 2,775393            |
| 0,2      | 0,19       | 283      | 1,577644    | 0,01      | 335       | 1,867529    | -0,15 | 490  | 2,731609            | -0,18 | 542 | 3,021494            |
| 0,225    | 0,24       | 294      | 1,646061    | 0,04      | 357       | 1,998788    | -0,15 | 520  | 2,9114              | -0,18 | 580 | 3,24733             |
| 0,25     | 0,3        | 305      | 1,715072    | 0,07      | 378       | 2,125565    | -0,13 | 546  | 3,070261            | -0,17 | 620 | 3,486377            |
| 0,275    | 0,36       | 308      | 1,739505    | 0,11      | 395       | 2,230859    | -0,11 | 570  | 3,219214            | -0,16 | 658 | 3,716215            |
| 0,3      | 0,41       | 315      | 1,786842    | 0,14      | 410       | 2,325731    | -0,1  | 590  | 3,346784            | -0,16 | 692 | 3,92538             |
| 0,325    | 0,47       | 319      | 1,817504    | 0,18      | 419       | 2,387254    | -0,08 | 604  | 3,441292            | -0,14 | 725 | 4,13069             |
| 0,35     | 0,53       | 322      | 1,842714    | 0,22      | 429       | 2,455044    | -0,06 | 632  | 3,616755            | -0,13 | 758 | 4,337817            |
| 0,375    | 0,59       | 324      | 1,8624      | 0,25      | 435       | 2,500444    | -0,03 | 649  | 3,730548            | -0,1  | 786 | 4,518044            |
| 0,4      | 0,64       | 324      | 1,870714    | 0,28      | 437       | 2,523155    | 0,01  | 656  | 3,787619            | -0,08 | 811 | 4,68256             |
| 0,425    | 0,7        | 322      | 1,867504    | 0,32      | 436       | 2,52867     | 0,05  | 657  | 3,810404            | -0,05 | 830 | 4,813752            |
| 0,45     | 0,8        | 321      | 1,87009     | 0,35      | 435       | 2,534234    | 0,09  | 662  | 3,856697            | -0,02 | 848 | 4,9403              |
| 0,475    | 0,85       | 321      | 1,878552    | 0,37      | 435       | 2,545701    | 0,12  | 671  | 3,926817            | 0,01  | 860 | 5,032881            |
| 0,5      | 0,86       | 0,86     | 0,86        | 0,41      | 435       | 2,557273    | 0,16  | 685  | 4,02697             | 0,04  | 865 | 5,085152            |
| 0,525    | 0,86       | 0,86     | 0,86        | 0,44      | 430       | 2,539422    | 0,19  | 692  | 4,086697            | 0,07  | 878 | 5,185145            |
| 0,55     |            |          |             | 0,45      | 429       | 2,545138    | 0,21  | 690  | 4,093578            | 0,1   | 886 | 5,256391            |
| 0,575    |            |          |             | 0,46      | 426       | 2,538986    | 0,24  | 698  | 4,160123            | 0,14  | 895 | 5,334255            |
| 0,6      |            |          |             | 0,46      | 426       | 2,550741    | 0,26  | 705  | 4,221296            | 0,17  | 886 | 5,305062            |
| 0,625    |            |          |             |           |           |             | 0,28  | 710  | 4,271008            | 0,2   | 882 | 5,305674            |
| 0,65     |            |          |             |           |           |             | 0,3   | 712  | 4,303053            | 0,23  | 889 | 5,372773            |
| 0,675    |            |          |             |           |           |             | 0,32  | 718  | 4,359687            | 0,25  | 890 | 5,404069            |
| 0,7      |            |          |             |           |           |             | 0,34  | 720  | 4,392453            | 0,28  | 893 | 5,447862            |
| 0,725    |            |          |             |           |           |             | 0,36  | 716  | 4,388752            | 0,31  | 890 | 5,455292            |
| 0,75     |            |          |             |           |           |             | 0,37  | 715  | 4,403492            | 0,34  | 889 | 5,475111            |
| 0,775    |            |          |             |           |           |             | 0,4   | 715  | 4,424561            | 0,36  | 875 | 5,414673            |
| 0,8      |            |          |             |           |           |             | 0,4   | 715  | 4,445833            | 0,39  | 865 | 5,378526            |

41. Analyse granulométrique après cisaillement série 5(détergents)

| analyse gra    | anulométriqu             | e après traite                | ment 1bar d                          | étergents                 | analyse gra                                                | anulométrique            | e après traite                | ement 2 bars                         | détergents                |  |
|----------------|--------------------------|-------------------------------|--------------------------------------|---------------------------|------------------------------------------------------------|--------------------------|-------------------------------|--------------------------------------|---------------------------|--|
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm                                             | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% |  |
| 6,3            | 0                        | 0                             | 0                                    | 100                       | 6,3                                                        | 0                        | 0                             | 0                                    | 100                       |  |
| 4              | 51,3                     | 51,3                          | 18,32143                             | 81,67857                  | 4                                                          | 50,2                     | 50,2                          | 17,92857                             | 82,07143                  |  |
| 3,15           | 22,4                     | 73,7                          | 26,32143                             | 73,67857                  | 3,15                                                       | 26,5                     | 76,7                          | 27,39286                             | 72,60714                  |  |
| 2              | 48,6                     | 122,3                         | 43,67857                             | 56,32143                  | 2                                                          | 45,7                     | 122,4                         | 43,71429                             | 56,28571                  |  |
| 1,25           | 44,6                     | 166,9                         | 59,60714                             | 40,33286                  | 1,25                                                       | 45,2                     | 167,6                         | 59,85714                             | 40,14286                  |  |
| 0,8            | 19,9                     | 186,8                         | 66,71429                             | 33,28571                  | 0,8                                                        | 24,3                     | 191,9                         | 68,53571                             | 31,46429                  |  |
| 0,5            | 19,3                     | 206,1                         | 73,60714                             | 26,39286                  | 0,5                                                        | 16,9                     | 208,8                         | 74,57143                             | 25,42857                  |  |
| 0,315          | 14,9                     | 221                           | 78,92857                             | 21,07143                  | 0,315                                                      | 13,1                     | 221,9                         | 79,25                                | 20,75                     |  |
| 0,2            | 8,5                      | 229,5                         | 81,96429                             | 18,03571                  | 0,2                                                        | 8,3                      | 230,2                         | 82,21429                             | 17,78571                  |  |
| 0,125          | 7,5                      | 237                           | 84,64286                             | 15,35714                  | 0,125                                                      | 7,5                      | 237,7                         | 84,89286                             | 15,10714                  |  |
| fend           | 41,5                     | 278,5                         | 99,46429                             | 0,535714                  | fend                                                       | 39,6                     | 277,3                         | 99,03571                             | 0,964286                  |  |
| analyse gr     | anulométriqu             | e après traite                | ment 3 bars                          | détergents                | analyse granulométrique après traitement 4 bars détergents |                          |                               |                                      |                           |  |
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm                                             | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | poucentag<br>e des refus<br>cumulé % | tamisat<br>cumulé en<br>% |  |
| 6,3            | 0                        | 0                             | 0                                    | 100                       | 6,3                                                        | 0                        | 0                             | 0                                    | 100                       |  |
| 4              | 51,2                     | 51,2                          | 18,28571                             | 81,71429                  | 4                                                          | 53,4                     | 53,4                          | 19,07143                             | 80,92857                  |  |
| 3,15           | 22,7                     | 73,9                          | 26,39286                             | 73,60714                  | 3,15                                                       | 18,7                     | 72,1                          | 25,75                                | 74,25                     |  |
| 2              | 47,1                     | 121                           | 43,21429                             | 56,78571                  | 2                                                          | 45,2                     | 117,3                         | 41,89286                             | 58,10714                  |  |
| 1,25           | 44,8                     | 165,8                         | 59,21429                             | 40,78571                  | 1.25                                                       | 47,7                     | 165                           | 58,92857                             | 41.07143                  |  |
| 0,8            | 22                       | 187,8                         | 67,07143                             | 32,92857                  | 0,8                                                        | 24                       | 189                           | 67,5                                 | 32,5                      |  |
| 0,5            | 17,7                     | 205,5                         | 73,39286                             | 26,60714                  | 0,5                                                        | 17,5                     | 206,5                         | 73,75                                | 26,25                     |  |
| 0,315          | 15,4                     | 220,9                         | 78,89286                             | 21,10714                  | 0,315                                                      | 13,6                     | 220,1                         | 78,60714                             | 21,39286                  |  |
| 0,2            | 8,3                      | 229,2                         | 81,85714                             | 18,14286                  | 0,2                                                        | 8,9                      | 229                           | 81,78571                             | 18,21429                  |  |
| 0,125          | 6,7                      | 235,9                         | 84,25                                | 15,75                     | 0,125                                                      | 7,8                      | 236,8                         | 84,57143                             | 15,42857                  |  |
| food           | 43.6                     | 279.5                         | 99 92143                             | 0 179571                  | fand                                                       | 40.2                     | 277                           | 90 92057                             | 1071429                   |  |

42. Résultats de cisaillement après traitement série 5 (sulfates)

| Essai de | cisaillem | ent après | traitemen  | t sulfates | 5 ième si | érie        |       |      |                     |       |     |             |
|----------|-----------|-----------|------------|------------|-----------|-------------|-------|------|---------------------|-------|-----|-------------|
|          | 1         | bar       |            | 2bar       |           |             |       | 3bar |                     | 4b    | ar  |             |
| ۵L       | ΔH        | La        | t=Lax0,194 | ΔH         | La        | τ=Lax0,194/ | ΔH    | La   | τ=Lax0,194/Sc (Kpa) | ΔH    | La  | τ=Lax0,194/ |
| 0        | 0         | 0         | 0          | 0          | 0         | 0           | 0     | 0    | 0                   | 0     | 0   | 0           |
| 0,025    | -0,03     | 65        | 0,351743   | -0,01      | 62        | 0,335509    | -0,01 | 65   | 0,351743            | -0,03 | 85  | 0,459972    |
| 0,05     | -0,04     | 110       | 0,597759   | -0,02      | 140       | 0,760784    | -0,04 | 185  | 1,005322            | -0,07 | 190 | 1,032493    |
| 0,075    | -0,03     | 135       | 0,736709   | -0,06      | 200       | 1,091421    | -0,07 | 265  | 1,446132            | -0,11 | 280 | 1,527989    |
| 0,1      | -0,01     | 157       | 0,860395   | -0,08      | 250       | 1,370056    | -0,11 | 325  | 1,781073            | -0,14 | 344 | 1,885198    |
| 0,125    | 0,03      | 178       | 0,979631   | -0,09      | 287       | 1,579518    | -0,13 | 375  | 2,06383             | -0,16 | 405 | 2,228936    |
| 0,15     | 0,06      | 196       | 1,083305   | -0,09      | 318       | 1,757607    | -0,14 | 412  | 2,277151            | -0,18 | 456 | 2,520342    |
| 0,175    | 0,11      | 210       | 1,165665   | -0,08      | 350       | 1,942775    | -0,15 | 454  | 2,520057            | -0,18 | 505 | 2,803147    |
| 0,2      | 0,12      | 218       | 1,215287   | -0,06      | 373       | 2,079368    | -0,15 | 484  | 2,698161            | -0,18 | 549 | 3,060517    |
| 0,225    | 0,15      | 224       | 1,254141   | -0,04      | 394       | 2,205945    | -0,14 | 520  | 2,9114              | -0,18 | 588 | 3,292121    |
| 0,25     | 0,21      | 229       | 1,28771    | -0,02      | 418       | 2,350493    | -0,13 | 540  | 3,036522            | -0,18 | 625 | 3,514493    |
| 0,275    | 0,26      | 230       | 1,298981   | 0,01       | 435       | 2,456769    | -0,12 | 565  | 3,190975            | -0,16 | 665 | 3,75575     |
| 0,3      | 0,3       | 235       | 1,333041   | 0,04       | 448       | 2,541287    | -0,09 | 593  | 3,363801            | -0,14 | 700 | 3,97076     |
| 0,325    | 0,34      | 236       | 1,344611   | 0,08       | 460       | 2,620852    | -0,06 | 615  | 3,503965            | -0,13 | 745 | 4,24464     |
| 0,35     | 0,39      | 237       | 1,356283   | 0,11       | 474       | 2,712566    | -0,03 | 632  | 3,616755            | -0,1  | 785 | 4,49233     |
| 0,375    | 0,44      | 238       | 1,368059   | 0,15       | 482       | 2,770607    | 0     | 653  | 3,753541            | -0,08 | 850 | 4,885926    |
| 0,4      | 0,48      | 236       | 1,362619   | 0,19       | 485       | 2,800298    | 0,04  | 670  | 3,868452            | -0,05 | 880 | 5,080952    |
| 0,425    | 0,52      | 237       | 1,374529   | 0,23       | 495       | 2,870852    | 0,09  | 682  | 3,955396            | 0,02  | 900 | 5,219731    |
| 0,45     | 0,56      | 237       | 1,380721   | 0,27       | 494       | 2,877958    | 0,13  | 690  | 4,01982             | 0,04  | 911 | 5,307327    |
| 0,475    | 0,6       | 236       | 1,381116   | 0,31       | 500       | 2,926094    | 0,17  | 695  | 4,06727             | 0,08  | 920 | 5,384012    |
| 0,5      | 0,63      | 235       | 1,381515   | 0,35       | 500       | 2,939394    | 0,24  | 695  | 4,085758            | 0,11  | 910 | 5,349697    |
| 0,525    | 0,67      | 235       | 1,387823   | 0,37       | 490       | 2,89376     | 0,29  | 695  | 4,104414            | 0,15  | 908 | 5,362314    |
| 0,55     | 0,7       | 233       | 1,382324   | 0,4        | 490       | 2,907034    | 0,34  | 700  | 4,152905            | 0,18  | 911 | 5,404709    |
| 0,575    | 0,72      | 230       | 1,370814   | 0,45       | 490       | 2,92043     | 0,39  | 695  | 4,142243            | 0,2   | 910 | 5,423656    |
| 0,6      | 0,72      | 230       | 1,37716    | 0,46       | 484       | 2,898025    | 0,43  | 694  | 4,155432            | 0,24  | 915 | 5,478704    |
| 0,625    |           |           |            | 0,46       | 484       | 2,911504    | 0,48  | 694  | 4,17476             | 0,27  | 915 | 5,504186    |
| 0,65     |           |           |            |            |           |             | 0,52  | 685  | 4,139875            | 0,3   | 914 | 5,523863    |
| 0,675    |           |           |            |            |           |             | 0,54  | 685  | 4,159311            | 0,33  | 910 | 5,525509    |
| 0,7      |           |           |            |            |           |             |       |      |                     | 0,36  | 908 | 5,539371    |

43. Analyse granulométrique après cisaillement série 5 (sulfates)

| analyse gra    | anulométrique            | e après traite                | ment 1bar s             | ulfates                   | analyse gra                                              | nulométriqu              | e après traite                | ment 2 bars             | sulfates                  |  |  |
|----------------|--------------------------|-------------------------------|-------------------------|---------------------------|----------------------------------------------------------|--------------------------|-------------------------------|-------------------------|---------------------------|--|--|
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm                                           | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>cumulé % | tamisat<br>cumulé en<br>% |  |  |
| 6,3            | 0                        | 0                             | 0                       | 100                       | 6,3                                                      | 0                        | 0                             | 0                       | 100                       |  |  |
| 4              | 51,3                     | 51,3                          | 18,32143                | 81,67857                  | 4                                                        | 51,8                     | 51,8                          | 18,5                    | 81,5                      |  |  |
| 3,15           | 22,2                     | 73,5                          | 26,25                   | 73,75                     | 3,15                                                     | 22,5                     | 74,3                          | 26,53571                | 73,46429                  |  |  |
| 2              | 47                       | 120,5                         | 43,03571                | 56,96429                  | 2                                                        | 45,2                     | 119,5                         | 42,67857                | 57,32143                  |  |  |
| 1,25           | 46,3                     | 166,8                         | 59,57143                | 40,42857                  | 1,25                                                     | 46,3                     | 165,8                         | 59,21429                | 40,78571                  |  |  |
| 0,8            | 20,7                     | 187,5                         | 66,96429                | 33,03571                  | 0,8                                                      | 23,8                     | 189,6                         | 67,71429                | 32,28571                  |  |  |
| 0,5            | 18,2                     | 205,7                         | 73,46429                | 26,53571                  | 0,5                                                      | 18,4                     | 208                           | 74,28571                | 25,71429                  |  |  |
| 0,315          | 15,6                     | 221,3                         | 79,03571                | 20,96429                  | 0,315                                                    | 13,5                     | 221,5                         | 79,10714                | 20,89286                  |  |  |
| 0,2            | 8,1                      | 229,4                         | 81,92857                | 18,07143                  | 0,2                                                      | 8,6                      | 230,1                         | 82,17857                | 17,82143                  |  |  |
| 0,125          | 10                       | 239,4                         | 85,5                    | 14,5                      | 0,125                                                    | 8,1                      | 238,2                         | 85,07143                | 14,92857                  |  |  |
| fend           | 40,1                     | 279,5                         | 99,82143                | 0,178571                  | fend                                                     | 40,6                     | 278,8                         | 99,57143                | 0,428571                  |  |  |
| analyse gra    | anulométriqu             | e après traite                | ment 3 bars             | sulfates                  | analyse granulométrique après traitement 4 bars sulfates |                          |                               |                         |                           |  |  |
| tamis en<br>mm | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>cumulé % | tamisat<br>cumulé en<br>% | tamis en<br>mm                                           | masse des<br>refus en gr | masse des<br>refus<br>cumuclé | e des refus<br>oumulé % | tamisat<br>cumulé en<br>% |  |  |
| 6,3            | 0                        | 0                             | 0                       | 100                       | 6.3                                                      | 0                        | 0                             | 0                       | 100                       |  |  |
| 4              | 50,8                     | 50,8                          | 18,14286                | 81,85714                  | 4                                                        | 50,2                     | 50,2                          | 17,92857                | 82,07143                  |  |  |
| 3,15           | 23,9                     | 74,7                          | 26,67857                | 73,32143                  | 3,15                                                     | 23,9                     | 74,1                          | 26,46429                | 73,53571                  |  |  |
| 2              | 46,6                     | 121,3                         | 43,32143                | 56,67857                  | 2                                                        | 45,7                     | 119,8                         | 42,78571                | 57,21429                  |  |  |
| 1,25           | 45,1                     | 166,4                         | 59,42857                | 40,57143                  | 1,25                                                     | 45,1                     | 164,9                         | 58,89286                | 41,10714                  |  |  |
| 0,8            | 21,3                     | 187,7                         | 67,03571                | 32,96429                  | 0,8                                                      | 23,9                     | 188,8                         | 67,42857                | 32,57143                  |  |  |
| 0,5            | 17,9                     | 205,6                         | 73,42857                | 26,57143                  | 0,5                                                      | 18,2                     | 207                           | 73,92857                | 26,07143                  |  |  |
| 0,315          | 15,1                     | 220,7                         | 78,82143                | 21,17857                  | 0,315                                                    | 14,2                     | 221,2                         | 79                      | 21                        |  |  |
| 0,2            | 7,9                      | 228,6                         | 81,64286                | 18,35714                  | 0,2                                                      | 8,8                      | 230                           | 82,14286                | 17,85714                  |  |  |
| 0,125          | 8,7                      | 237,3                         | 84,75                   | 15,25                     | 0,125                                                    | 8,2                      | 238,2                         | 85,07143                | 14,92857                  |  |  |
| fend           | 40,9                     | 278,2                         | 99,35714                | 0,642857                  | fend                                                     | 40,2                     | 278,4                         | 99,42857                | 0,571429                  |  |  |

44. Analyse granulométrique de l'essai œdométrique avant traitement (imposée)

| tamis en<br>mmmasse des<br>refus en grmasse des<br>refus<br>cumuclépoucentage<br>des refus<br>cumulé %tamisat<br>cumulé en<br>%6,3000100433,833,812,071428687,92857143,1513,447,216,857142983,1428571227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429 | analyse granulométrique avant traitement |             |           |            |            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|-----------|------------|------------|--|--|--|--|
| tainis enmasse des<br>refus en grrefus<br>cumuclédes refus<br>cumulé %cumulé en<br>%6,3000100433,833,812,071428687,92857143,1513,447,216,857142983,1428571227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429           | tomis en                                 | masse des   | masse des | poucentage | tamisat    |  |  |  |  |
| IninTerus en grcumuclécumulé %%6,3000100433,833,812,071428687,92857143,1513,447,216,857142983,1428571227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                |                                          | masse des   | refus     | des refus  | cumulé en  |  |  |  |  |
| 6,3000100433,833,812,071428687,92857143,1513,447,216,857142983,1428571227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                               | 11111                                    | Terus en gr | cumuclé   | cumulé %   | %          |  |  |  |  |
| 433,833,812,071428687,92857143,1513,447,216,857142983,1428571227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                        | 6,3                                      | 0           | 0         | 0          | 100        |  |  |  |  |
| 3,1513,447,216,857142983,1428571227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                     | 4                                        | 33,8        | 33,8      | 12,0714286 | 87,9285714 |  |  |  |  |
| 227,574,726,678571473,32142861,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                                                     | 3,15                                     | 13,4        | 47,2      | 16,8571429 | 83,1428571 |  |  |  |  |
| 1,2521,996,634,565,50,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                                                                                  | 2                                        | 27,5        | 74,7      | 26,6785714 | 73,3214286 |  |  |  |  |
| 0,811,8108,438,714285761,28571430,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                                                                                                      | 1,25                                     | 21,9        | 96,6      | 34,5       | 65,5       |  |  |  |  |
| 0,59,4117,842,071428657,92857140,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                                                                                                                                      | 0,8                                      | 11,8        | 108,4     | 38,7142857 | 61,2857143 |  |  |  |  |
| 0,3157,8125,644,857142955,14285710,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                                                                                                                                                                     | 0,5                                      | 9,4         | 117,8     | 42,0714286 | 57,9285714 |  |  |  |  |
| 0,24,9130,546,607142953,39285710,1255,1135,648,428571451,5714286fend20,9156,555,892857144,1071429                                                                                                                                                                                                                                                                                                                      | 0,315                                    | 7,8         | 125,6     | 44,8571429 | 55,1428571 |  |  |  |  |
| 0,125 5,1 135,6 48,4285714 51,5714286   fend 20,9 156,5 55,8928571 44,1071429                                                                                                                                                                                                                                                                                                                                          | 0,2                                      | 4,9         | 130,5     | 46,6071429 | 53,3928571 |  |  |  |  |
| fend 20,9 156,5 55,8928571 44,1071429                                                                                                                                                                                                                                                                                                                                                                                  | 0,125                                    | 5,1         | 135,6     | 48,4285714 | 51,5714286 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | fend                                     | 20,9        | 156,5     | 55,8928571 | 44,1071429 |  |  |  |  |

45. caractéristiques initial de l'échantillon.

| h0 mm | 8s g/cm3 | S cm2 | 8s*s      | pd  |
|-------|----------|-------|-----------|-----|
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |
| 19,94 | 2,717    | 39,59 | 107,56603 | 157 |

46. récapitulatif des résultats de l'essai œdométrique avant traitement.

| contrai (bar) | lecture ∆h | h=ho-∆h | hp=pd/8s*S | e=(h-hp)/hp | h (cm) |
|---------------|------------|---------|------------|-------------|--------|
| 0,28          | 0,065      | 19,875  | 14,633     | 0,35823139  | 1,9875 |
| 0,56          | 0,279      | 19,661  | 14,633     | 0,34360692  | 1,9661 |
| 2,24          | 1,06       | 18,88   | 14,633     | 0,2902344   | 1,888  |
| 4,48          | 1,6        | 18,34   | 14,633     | 0,25333151  | 1,834  |
| 8,96          | 2,185      | 17,755  | 14,633     | 0,21335338  | 1,7755 |
| 17,92         | 2,841      | 17,099  | 14,633     | 0,1685232   | 1,7099 |
| 8,96          | 2,809      | 17,131  | 14,633     | 0,17071004  | 1,7131 |
| 4,48          | 2,771      | 17,169  | 14,633     | 0,17330691  | 1,7169 |
| 2,24          | 2,738      | 17,202  | 14,633     | 0,17556209  | 1,7202 |
| 0,56          | 2,668      | 17,272  | 14,633     | 0,18034579  | 1,7272 |
| 0,28          | 2,638      | 17,302  | 14,633     | 0,18239595  | 1,7302 |
| 4,48          | 2,725      | 17,215  | 14,633     | 0,17645049  | 1,7215 |
| 8,96          | 2,799      | 17,141  | 14,633     | 0,17139343  | 1,7141 |
| 17,92         | 2,915      | 17,025  | 14,633     | 0,16346614  | 1,7025 |
| 8,96          | 2,88       | 17,06   | 14,633     | 0,16585799  | 1,706  |
| 4,48          | 2,84       | 17,1    | 14,633     | 0,16859154  | 1,71   |
| 2,24          | 2,811      | 17,129  | 14,633     | 0,17057336  | 1,7129 |

47. récapitulatif des résultats de l'essai œdométrique après traitement (eau seul)

| contrai (bar) | lecture ∆h | h=ho-∆h | hp=pd/8s*S | e=(h-hp)/hp | h (cm) |
|---------------|------------|---------|------------|-------------|--------|
| 0,28          | 0,279      | 19,661  | 14,633     | 0,34360692  | 1,9661 |
| 0,56          | 0,472      | 19,468  | 14,633     | 0,33041755  | 1,9468 |
| 1,12          | 0,71       | 19,23   | 14,633     | 0,31415294  | 1,923  |
| 2,24          | 1,015      | 18,925  | 14,633     | 0,29330964  | 1,8925 |
| 4,48          | 1,491      | 18,449  | 14,633     | 0,26078043  | 1,8449 |
| 8,96          | 2,11       | 17,83   | 14,633     | 0,21847878  | 1,783  |
| 17,92         | 2,96       | 16,98   | 14,633     | 0,1603909   | 1,698  |
| 8,96          | 2,821      | 17,119  | 14,633     | 0,16988997  | 1,7119 |
| 4,48          | 2,709      | 17,231  | 14,633     | 0,17754391  | 1,7231 |
| 2,24          | 2,639      | 17,301  | 14,633     | 0,18232762  | 1,7301 |
| 1,12          | 2,599      | 17,341  | 14,633     | 0,18506116  | 1,7341 |
| 0,56          | 2,549      | 17,391  | 14,633     | 0,1884781   | 1,7391 |
| 0,28          | 2,499      | 17,441  | 14,633     | 0,19189503  | 1,7441 |
| 4,48          | 2,689      | 17,251  | 14,633     | 0,17891068  | 1,7251 |
| 8,96          | 2,802      | 17,138  | 14,633     | 0,17118841  | 1,7138 |
| 17,92         | 3,021      | 16,919  | 14,633     | 0,15622224  | 1,6919 |
| 8,96          | 2,894      | 17,046  | 14,633     | 0,16490125  | 1,7046 |
| 4,48          | 2,785      | 17,155  | 14,633     | 0,17235017  | 1,7155 |
| 2,24          | 2,71       | 17,23   | 14,633     | 0,17747557  | 1,723  |

48. récapitulatif des résultats de l'essai œdométrique après traitement (détergents).

| contrai (bar) | lecture ∆h | h=ho-∆h | hp=pd/8s*S | e=(h-hp)/hp | h (cm) |
|---------------|------------|---------|------------|-------------|--------|
| 0,28          | 0,45       | 19,49   | 14,633     | 0,331921    | 1,949  |
| 0,56          | 0,719      | 19,221  | 14,633     | 0,31353789  | 1,9221 |
| 1,12          | 1,055      | 18,885  | 14,633     | 0,2905761   | 1,8885 |
| 2,24          | 1,492      | 18,448  | 14,633     | 0,26071209  | 1,8448 |
| 4,48          | 2,03       | 17,91   | 14,633     | 0,22394588  | 1,791  |
| 8,96          | 2,71       | 17,23   | 14,633     | 0,17747557  | 1,723  |
| 17,92         | 3,482      | 16,458  | 14,633     | 0,1247181   | 1,6458 |
| 8,96          | 3,435      | 16,505  | 14,633     | 0,12793002  | 1,6505 |
| 4,48          | 3,381      | 16,559  | 14,633     | 0,13162031  | 1,6559 |
| 2,24          | 3,335      | 16,605  | 14,633     | 0,13476389  | 1,6605 |
| 1,12          | 3,285      | 16,655  | 14,633     | 0,13818082  | 1,6655 |
| 0,56          | 3,245      | 16,695  | 14,633     | 0,14091437  | 1,6695 |
| 0,28          | 3,195      | 16,745  | 14,633     | 0,14433131  | 1,6745 |
| 4,48          | 3,361      | 16,579  | 14,633     | 0,13298708  | 1,6579 |
| 8,96          | 3,39       | 16,55   | 14,633     | 0,13100526  | 1,655  |
| 17,92         | 3,542      | 16,398  | 14,633     | 0,12061778  | 1,6398 |
| 8,96          | 3,495      | 16,445  | 14,633     | 0,1238297   | 1,6445 |
| 4,48          | 3,442      | 16,498  | 14,633     | 0,12745165  | 1,6498 |
| 2,24          | 3,4        | 16,54   | 14,633     | 0,13032188  | 1,654  |

49. récapitulatif des résultats de l'essai œdométrique après traitement (sulfates).

| contrai (bar) | lecture ∆h | h=ho-∆h | hp=pd/8s*S | e=(h-hp)/hp | h (cm) |
|---------------|------------|---------|------------|-------------|--------|
| 0,28          | 0,36       | 19,58   | 14,633     | 0,33807148  | 1,958  |
| 0,56          | 0,62       | 19,32   | 14,633     | 0,32030342  | 1,932  |
| 1,12          | 0,95       | 18,99   | 14,633     | 0,29775166  | 1,899  |
| 2,24          | 1,412      | 18,528  | 14,633     | 0,26617918  | 1,8528 |
| 4,48          | 1,931      | 18,009  | 14,633     | 0,23071141  | 1,8009 |
| 8,96          | 2,642      | 17,298  | 14,633     | 0,1821226   | 1,7298 |
| 17,92         | 3,52       | 16,42   | 14,633     | 0,12212123  | 1,642  |
| 8,96          | 3,46       | 16,48   | 14,633     | 0,12622155  | 1,648  |
| 4,48          | 3,403      | 16,537  | 14,633     | 0,13011686  | 1,6537 |
| 2,24          | 3,355      | 16,585  | 14,633     | 0,13339712  | 1,6585 |
| 1,12          | 3,305      | 16,635  | 14,633     | 0,13681405  | 1,6635 |
| 0,56          | 3,265      | 16,675  | 14,633     | 0,1395476   | 1,6675 |
| 0,28          | 3,225      | 16,715  | 14,633     | 0,14228115  | 1,6715 |
| 4,48          | 3,389      | 16,551  | 14,633     | 0,1310736   | 1,6551 |
| 8,96          | 3,442      | 16,498  | 14,633     | 0,12745165  | 1,6498 |
| 17,92         | 3,581      | 16,359  | 14,633     | 0,11795257  | 1,6359 |
| 8,96          | 3,531      | 16,409  | 14,633     | 0,12136951  | 1,6409 |
| 4,48          | 3,47       | 16,47   | 14,633     | 0,12553817  | 1,647  |
| 2,24          | 3,43       | 16,51   | 14,633     | 0,12827171  | 1,651  |

50. récapitulatif des résultats de l'essai œdométrique après traitement (phosphates).

| contrai (bar) | lecture ∆h | h=ho-∆h | hp=pd/8s*S | e=(h-hp)/hp | h (cm) |
|---------------|------------|---------|------------|-------------|--------|
| 0,28          | 0,261      | 19,679  | 14,633     | 0,34483701  | 1,9679 |
| 0,56          | 0,645      | 19,295  | 14,633     | 0,31859496  | 1,9295 |
| 1,12          | 1,095      | 18,845  | 14,633     | 0,28784255  | 1,8845 |
| 2,24          | 1,64       | 18,3    | 14,633     | 0,25059796  | 1,83   |
| 4,48          | 2,361      | 17,579  | 14,633     | 0,20132577  | 1,7579 |
| 8,96          | 3,072      | 16,868  | 14,633     | 0,15273696  | 1,6868 |
| 17,92         | 3,952      | 15,988  | 14,633     | 0,09259892  | 1,5988 |
| 8,96          | 3,889      | 16,051  | 14,633     | 0,09690426  | 1,6051 |
| 4,48          | 3,832      | 16,108  | 14,633     | 0,10079956  | 1,6108 |
| 2,24          | 3,784      | 16,156  | 14,633     | 0,10407982  | 1,6156 |
| 1,12          | 3,734      | 16,206  | 14,633     | 0,10749675  | 1,6206 |
| 0,56          | 3,694      | 16,246  | 14,633     | 0,1102303   | 1,6246 |
| 0,28          | 3,654      | 16,286  | 14,633     | 0,11296385  | 1,6286 |
| 4,48          | 3,818      | 16,122  | 14,633     | 0,1017563   | 1,6122 |
| 8,96          | 3,871      | 16,069  | 14,633     | 0,09813435  | 1,6069 |
| 17,92         | 4,01       | 15,93   | 14,633     | 0,08863528  | 1,593  |
| 8,96          | 3,961      | 15,979  | 14,633     | 0,09198387  | 1,5979 |
| 4,48          | 3,909      | 16,031  | 14,633     | 0,09553748  | 1,6031 |
| 2,24          | 3,866      | 16,074  | 14,633     | 0,09847605  | 1,6074 |