REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI DE TIZI OUZOU

> Faculté Des Sciences Département De Physique

<u>Mémoíre de Master</u>

Option : Physique de la matière de dimensionnalité réduite

Thème :

Mesure et interprétation de spectres atomiques : Cas du thorium deux et quatre fois ionisé (Th III, Th V).

> Présenté par : Mengueltí Bílal

Soutenu le 20/09/2012 devant le jury composé de :

M. Hamídí	Mahdí	МАСА	UMMTO	Président
M. Deghíche	Djamel	МССВ	ИММТО	Promoteur
M. Djouder	Madjíd	МАСА	ИММТО	Examínateur
M. Meftah	Ali	МССВ	ИММТО	Examínateur

Laboratoire de Physique et Chimie Quantique (LPCQ) de Tizi-Ouzou

Remerciements

Je tiens à exprimer ma gratitude à Mr Deghiche djamel pour son indéfectible soutien le long de la préparation de ce mémoire. Je remercie également les membres du jury, Hamidi Mahdi, Meftah Ali et Djouder Madjid d'avoir accépter d'examiner ce mémoire.

J'ai réalisé ce travail au laboratoire de Physique et Chimie Quantique (LPCQ) de Tizi-Ouzou. C'est donc tout naturellement que je remercie le directeur S. Bouarab, qui m'a accueilli et m'a fait bénéficier de conditions propices à la recherche.

Enfin, c'est avec une tendresse infinie que je remercie ma famille qui m'ont encouragé et soutenu pendant la préparation de mon mémoire. Merci à tous ceux que j'ai malencontreusement oublié de citer.

Table des matières

In	trod	uction	générale	1
1	Thé	èorie d	es atomes complexes	6
	1.1	Introd	luction	6
	1.2	Génér	alités sur les systèmes polyélectroniques	7
	1.3	Métho	ode de Slater-Racah	10
		1.3.1	L'approximation du champ central	11
		1.3.2	Les intégrales radiales d'interactions électrostatiques et de spin-orbite :	14
		1.3.3	Intégrales de Slater d'interactions entre différentes confi-	
			gurations	15
	1.4	La mé	ethode paramétrique et la méthode de comparaison isoélec-	
		troniq	ue	15
		1.4.1	Ajustement par moindres carrés	15
		1.4.2	Principe de comparaison isoélectronique	16
	1.5	Conch	usion	16
2	Mo	ntage o	expérimental	18
	2.1	L'ator	$me de thorium \dots \dots$	18
		2.1.1	Caractèristique du thorium	18
	2.2	Le spe	ectrographe	19
		2.2.1	Cercle de Rowland	20
		2.2.2	Ultraviolet sous vide	20
		2.2.3	Incidence normale	21
		2.2.4	Source lumineuse	21
		2.2.5	Le réseau holographique	23
		2.2.6	Plaques photographiques	23

TABLE DES MATIÈRES

	2.3	Détermination des positions des raies	23
	2.4	Identification des raies mesurées	24
3	Rés	ultats et discussions	32
	3.1	Résultats et discussions	32
	3.2	Positionnement des configurations paires et impaires	32
	3.3	Réduction de l'écart énergétique expérience/théorie	33
	3.4	Etude du ThV	38
	3.5	Conclusion	38
A	Lon	gueurs d'onde des raies mesurées	43
В	Con	nparaison des niveaux d'énergie théoriques et expérimen-	
	tale	S	60
	B.1	Niveaux d'énergie impairs du Th III	60
	B.2	Niveaux d'énergie pairs du Th III	60

Introduction

La plupart de nos connaissances actuelles sur la constitution des atomes et des molécules provient d'expériences dans lesquelles la lumière et la matière s'influencent mutuellement. La spectroscopie atomique fut la première de ces méthodes expérimentales à fournir des données nécessaires pour faire avancer la théorie de l'atome, par cette méthode pouvons déterminer et caractériser les raies spectrales des atomes et des ions.Plus de quatre décennies l'interprétation des raies spectrale des atomes et des ions est l'une des disciplines les plus importantes qui est donnée aux autres domaines des outils de diagnostique indispensables Dans un proche avenir, elle accompagnera les recherches sur la fusion contrôlée dans des installations plus puissantes (tokamak ITER, laser mégajoule LMJ).

En astrophysique, les nouvelles données, théoriques ou expérimentales, trouvent une application dans l'étude spectroscopique de la radiation émise par les corps célestes. La spectroscopie fournie un moyen de diagnostic des températures et densités de différents milieux fortement ionisés. Les longueurs d'onde et les paramètres radiatifs des atomes fortement ionisés constituent des données de base notamment pour la construction de modèles de plasmas.

L'identification des ions présents est un diagnostic primordial dans l'étude d'un plasma. La spectroscopie à haute résolution conduit à constituer des listes de longueurs d'onde dont la précision garantit la fiabilité du diagnostic. En effet, les plasmas astrophysiques conduisent à l'étude de presque tous les éléments.

Les actinides (numéro atomique Z=89 (Ac) à Z=103 (Lr)) tirent leur nom de l'actinium (Z=89). Ce sont des éléments dont toutes ou une partie des configurations électroniques comportent, pour l'atome neutre et les ions faiblement chargés, une sous-couche $5f^N$ ouverte. Les actinides sont souvent appelés "terres rares", ainsi que parmi les actinides, seuls les premiers de la série jusqu'à l'uranium, se trouvent à l'état naturel. Tous les actinides plus lourds que l'uranium (Pu, Np,...) ont été générés de façon artificielle dans un réacteur nucléaire et sont radioactifs. L'uranium et le thorium ont suscité un grand nombre de travaux mais leurs spectres, très complexe, posent encore de nombreux problèmes de classification.

La compréhension des spectres des atomes et des ions a progressé avec des avancées théoriques dont Condon et Shortley [1] ont fait la somme en 1935 dans pour caractériser les états des configurations d'électrons équivalents et en introduisant les opérateurs tensoriels, Racah a donné accès aux spectres des éléments de transition [2, 3, 4].

Pour modéliser ces plasmas, d'astrophysique ou de laboratoire, et accéder aux abondances relatives de ces éléments, il faut connaitre les grandeurs atomiques déduites par la méthode de Slater-Racah.

Dans ce travail, nous nous intéressons à l'atome de Thorium, élément d'intérêt astrophysique servant à valider des modèles de nucléosynthèse sur certains types d'étoiles pauvres en métaux. Notre intérêt est porté sur les spectres III et V. Le premier est assez bien connu mais demeure améliorable alors que le spectre V est complétement inconnu.

Le présent manuscrit est structuré comme suit : après l'introduction nous présentons l'essentiel de la méthode de Slater Racah et celle de l'ajustement paramétrique. Dans le chapitre 2, nous allons déterminer les longueurs d'onde des raies observées à partir de spectrogrammes obtenus à l'observatoire de Paris-Meudon au courant de décharge de 50 A. Au chapitre 3, nous présentons les résultats obtenus en utilisant la méthode paramétrique. La dernière partie sera consacrée au spectre V du Thorium en utilisant le principe de comparaison isoélectronique. Les facteurs d'échelle utilisés sont ceux du spectre du radon neutre RnI. On termine par deux annexes (A et B), nous présentons dans ces annexes, les longueurs d'onde des raies mesurées et comparaison des niveaux d'énergie théoriques et expérimentales

Chapitre 1

Théorie des atomes complexes

1.1 Introduction

L'atome d'hydrogène et l'ion moléculaire sont les deux seuls systèmes dont on connaît exactement les états propres. Pour tous les autres systèmes, on obtient des hamiltoniens renfermant des termes d'interaction électrostatique électronélectron qui rendent impossible la résolution analytique de l'équation de Schroidinger. Un tel phénomène est très courant en physique, par exemple les systèmes statiques de particules en interaction n'admettent en général pas de solutions simples à causes des termes d'interaction interparticulaire.

Il faut donc renoncer à utiliser l'arsenal mathématique usuel de la recherche des fonctions propres et valeurs propres de l'hamiltonien pour le remplacer par des techniques équivalentes dites variationnelles où l'on utilise explicitement le fait que l'intégrale d'action est un extremum pour le système physique. Là aussi, ces techniques variationnelles ne sont pas propres à la mécanique quantique, mais sont utilisées à chaque fois qu'une loi physique peut s'exprimer sous la forme d'une condition d'extremum. Ainsi en thermodynamique, on sait que le système physique à l'équilibre correspond à un extremum de l'énergie libre ou de l'enthalpie libre.

Dans la pratique, le principe variationnel ne peut être appliqué que sur un nombre fini de paramètres indépendants : on obtient des solutions approchées, les meilleures pour la classe de fonctions choisies

La structure des atomes et des ions complexes est déterminée qualitativement par des méthodes perturbatives. Pratiquement, la méthode de Racah-slater qui dérive de l'équation de Schrödinger, est la seule capable de décrire les niveaux d'énergie des atomes neutres et peu ionisés à couches ouvertes avec des déviations moyennes supérieurs à 10^{-3} du domaine d'énergie interprété. Les calculs sont effectués au moyen de la chaine de programme de R.D. Cowan (Los Alamos).

1.2 Généralités sur les systèmes polyélectroniques

L'état du nuage électronique dans les atomes peut être décrit de manière approchée dans le cadre d'un modèle faisant appel aux orbitales atomiques. La forme de ces orbitales s'adapte pour tenir compte de la répulsion entre les électrons. L'état du nuage s'analyse en terme de configurations électroniques qui sont les modes d'affectation des électrons aux orbitales. Les règles de remplissage régissent l'établissement de la configuration de l'état fondamental des atomes. Elles forment le fondement de la classification périodique des éléments.

Si un atome comporte N électrons, chacun de ceux-ci sera caractérisé par une valeur du moment orbital l_i et du moment de spin s_i (i = 1.2,..., N). Dans des conditions fréquemment rencontrées et qui correspondent au cas où l'interaction électrostatique entre les électrons est prépondérante par rapport à l'interaction de spin-orbite, c'est généralement le cas des éléments légers¹ [5], les configurations électroniques seront caractérisées par un moment orbital \overrightarrow{L} résultant du couplage des moments orbitaux des électrons individuels $\overrightarrow{l_i}$ et par un moment de spin \overrightarrow{S} résultant du couplage des moments de spin individuels $\overrightarrow{s_i}$, c'est le couplage L-S. On écrira :

$$\overrightarrow{L} = \sum_{i=1}^{N} \overrightarrow{l_i}; \qquad (1.1)$$

$$\overrightarrow{S} = \sum_{i=1}^{N} \overrightarrow{s_i}.$$
(1.2)

Du couplage de \overrightarrow{L} et de \overrightarrow{S} , résultera le moment cinétique total défini par ² : $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}.$ (1.3)

¹Lorsque l'interaction spin-orbite est prépondérante par rapport l'interaction électrostatique, il est possible que les moments $\overrightarrow{l_i}$ soient davantage couplés aux moments de spin $\overrightarrow{s_i}$ qu'aux autres moments $\overrightarrow{l_i}$. Généralement, c'est le cas des élements lourds, on parle alors de couplage j-j.

Dans le cas du couplage j-j, le moment cinétique total est donné par : $(\overrightarrow{j_1} + \overrightarrow{j_2} + \ldots + \overrightarrow{j_N}) = \overrightarrow{J}$ où $\overrightarrow{j_1} = \overrightarrow{l_1} + \overrightarrow{s_1}, \cdots \overrightarrow{j_N} = \overrightarrow{l_N} + \overrightarrow{s_N}$

Dans le cas d'un atome à deux électrons, le nombre quantique L associé à \overrightarrow{L} pourra prendre les valeurs comprises entre $|l_1 - l_2|$ et $l_1 + l_2$, et le nombre quantique S associé à \overrightarrow{S} les valeurs comprises entre $|s_1 - s_2|$ et $s_1 + s_2$. Dans le cas général, si $\overrightarrow{L} = \overrightarrow{l_1} + \overrightarrow{l_2} + \overrightarrow{l_3} + \cdots + \overrightarrow{l_N} \dots$ La valeur résultante sera comprise entre 0 et $|l_1| + |l_2| + |l_3| + \dots |l_N|$. Le nombre quantique J associé au moment cinétique total pourra donc prendre toutes les valeurs entières ou demi-entières comprises entre |L - S| et L + S.

Notations spectroscopiques :

Un état électronique est caractérisé par une valeur déterminée de M (la projection de \overrightarrow{J} sur axe privilégié). Un niveau est un ensemble d'états électroniques générés par rapport à M, c'est-à-dire les 2J + 1 états caractérisés par les mêmes valeurs de S, L et J.

Pour caractériser les états électroniques, la nomenclature suivante est en usage :

Un terme correspond à un groupe de niveaux de L et S donnés. Les termes caractérisés par $S = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}...$ portent respectivement le nom de singulet, doublet, triplet, quadruplet, quintuplet, sextuplet, septuplet...

A chaque type de couplage correspond une notation des niveaux d'énergie différente. En couplage L-S, les niveaux d'énergie sont désignés symboliquement de la façon suivante 3 :

$${}^{2S+1}L_J$$

La multiplicité d'un terme électronique, qui est donnée par 2S + 1, sera ajoutée en indice supérieur gauche à la lettre représentant la valeur correspondante de L. Ainsi, pour S = 1 et L = 3, on utilisera la notion 3F.

La valeur de J est indiquée, pour une configuration déterminée, par l'indice inférieur droit. Ainsi on parlera d'un niveau ${}^{3}P_{2}$ si S = 1, L = 1 et J = 2.

Il faut remarquer que si $L \ge S$, il existe 2S + 1 valeurs possibles pour J et par conséquent, 2S + 1 niveaux distincts pour le terme. Par contre, si L < S, le terme ne comporte que 2L + 1 niveaux. Par conséquent, la multiplicité n'indique le nombre de niveaux que si $L \ge S$.

³En couplage j-j, on adopte la notation spectroscopique suivante : n + n + l = (i - i) I

Pour définir complètement la notation d'un niveau, il importe encore d'introduire la notion de parité d'une configuration électronique. L'opérateur de parité P, qui correspond à une inversion des coordonnées par rapport au centre de référence, est défini de telle manière que :

$$P^2\psi(x_i, y_i, z_i, \sigma_i) = \psi(x_i, y_i, z_i, \sigma_i).$$

$$(1.4)$$

C'est-à-dire que $P \ \psi = \pm \psi$, le signe (+) définissant les états pairs et le signe (-) les états impairs. Dans le cas d'une fonction d'onde donnée en coordonnées polaires, on a :

$$P\psi(r_i, \theta_i, \phi_i, \sigma_i) = \psi(r_i, \pi - \theta_i, \pi + \phi_i, \sigma_i).$$
(1.5)

Dans le cas des systèmes monoélectroniques, en appliquant cet opérateur aux fonctions d'onde, la présence des harmoniques sphériques introduit un facteur $(-1)^l$:

$$P\psi = (-1)^l \psi. \tag{1.6}$$

Dans le cas général d'un système polyélectronique, on notera la présence d'un facteur $(-1)^{\sum l_i}$, la sommation étant étendue à tous les électrons de la configuration.

La configuration sera paire ou impaire selon que $\sum l_i$ est pair ou impair. Il est à noter que la parité est déterminée par $\sum l_i$ et non par L. Pour deux électrons équivalents par exemple, la parité est toujours paire alors que L peut être pair ou impair.

Pour indiquer la parité impaire, le symbole "o" est ajouté au terme spectral, on le note alors en couplage L-S : ${}^{2S+1}L_J^o$.

Facteur de Landé :

En mécanique quantique, le facteur de Landé est une grandeur physique sans dimension qui permet de relier le moment magnétique au moment cinétique d'un état quantique. Il est essentiellement utilisé dans le cas d'une particule de spin non nul. Il est ainsi nommé en l'honneur d'Alfred Landé qui l'a introduit en 1921.

Moment magnétique orbital :

Au moment cinétique orbital d'une particule de charge q (positive ou négative) et de masse m est associé un moment magnétique orbital :

$$\overrightarrow{\mu}_L = \frac{q}{2m} \overrightarrow{L} \tag{1.7}$$

où $\frac{q}{2m}$ est le rapport gyromagnétique qui est le même qu'en mécanique classique et L le moment cinétique orbital.

Moment magnétique de spin :

Dans le cas d'une particule fondamentale, les moments cinétique et magnétique de spin ne sont plus dans un rapport qui ne dépende que de la charge et de la masse. On introduit un nombre sans dimension, g, facteur de Landé qui nous permet d'écrire le moment magnétique de spin :

$$\overrightarrow{\mu}_{S} = g \frac{q}{2m} \overrightarrow{S} \tag{1.8}$$

Valeurs du facteur de Landé

L'équation de Schrödinger ne fait pas intervenir le spin des particules, de sorte que la mécanique quantique non relativiste ne permet pas de déduire la valeur du facteur de Landé d'une particule de spin non nul. Une théorie plus précise, l'équation de Dirac, qui décrit les fermions relativistes de spin 1/2, prédit une valeur $g_e = -g = -2$ pour l'électron très proche de la valeur expérimentale qui est de -2,0023. L'écart entre les deux valeurs est parfaitement expliqué dans le cadre de l'électrodynamique quantique.

Si l'on s'intéresse au moment cinétique électronique J, somme du spin électronique S et du moment cinétique orbital L, le facteur de Landé vaut [9] :

$$g_J = g_L \frac{J(J+1) - S(S+1) + L(L+1)]}{2J(J+1)} + g_S \frac{J(J+1) + S(S+1) - L(L+1)]}{2J(J+1)},$$
(1.9)

soit approximativement :

$$g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)]}{2J(J+1)}.$$
(1.10)

tel que $g_L \approx 1$ $g_S \approx 2$

1.3 Méthode de Slater-Racah

Considérons un atome à N électrons. Il est constitué d'un noyau de masse M. La masse du noyau étant très supérieure à celle de l'électron, on peut tout

de suite se placer dans un modèle où le noyau est fixe et où seuls les électrons sont mobiles. En négligeant les effets relativistes et les effets de couplage entre les spins des noyaux et ceux des électrons, l'hamiltonien décrivant le mouvement s'écrit :

$$H = \sum_{i=1}^{z} \left(\frac{P_i^2}{2m_e} - \frac{Ze^2}{R_i}\right) + \sum_{i < j} \frac{e^2}{|R_i - R_j|} + \sum_{i=1}^{N} \xi(r_i) l_i s_i,$$
(1.11)

où $R_i = 4\pi\varepsilon_0 r_i$ et r_i représente le vecteur position de l'électron i. $P_i^2 = -\hbar^2 \nabla_i^2$ tel que ∇_i^2 est l'opérateur Laplacien.

La première somme comporte le terme d'énergie cinétique des électrons et celui de l'énergie potentielle d'interaction entre le noyau et chacun des électrons. La deuxième somme, quant à elle, correspond à l'énergie potentielle d'interaction électrostatique entre les divers électrons. On remarque tout de suite que, si cette somme n'apparaissait pas dans l'hamiltonien, on pourrait aisément déterminer les fonctions d'onde et les énergies solutions de l'équation :

$$H\psi(\overrightarrow{r_1}, ... \overrightarrow{r_N}) = E\psi(\overrightarrow{r_1}, ... \overrightarrow{r_N}).$$

En effet les énergies ne sont que la somme des énergies des N électrons placés dans le potentiel coulombien $\frac{-Z e^2}{r}$ et la fonction d'onde le produit tensoriel des Z fonctions d'onde correspondantes, qui serait bien entendu antisymétrisée pour satisfaire au principe de Pauli. C'est donc bien le terme $\sum_{i < j} \frac{e^2}{|R_i - R_j|}$ qui est responsable de l'impossibilité à résoudre de manière exacte l'équation précédente. Par ailleurs, on ne peut pas considérer ce terme comme une perturbation, car les résultats obtenus de cette manière seraient probablement très éloignés de la réalité. Il s'agit donc de trouver une méthode d'approximation plus fine.

1.3.1 L'approximation du champ central

Considérons un électron quelconque d'un atome polyélectronique. En première approximation, on peut supposer que cet électron "voit" le potentiel électrostatique des autres électrons comme un écrantage du potentiel créé par le noyau. Dans le cadre de cette approximation, on peut donc dire que l'électron n'est plus soumis à un potentiel total $V = -\sum_{i=1}^{z} \frac{Z e^2}{R_i} + \sum_{i \neq j} \frac{e^2}{|R_i - R_j|}$ mais à un potentiel effectif appelé potentiel central V_c . Ceci constitue bien entendu une approximation, étant donné que le mouvement de l'électron i influence le mouvement des autres électrons, et donc le potentiel central, et que s'il se trouve au voisinage immédiat d'un autre électron, le potentiel auquel il est soumis ne peut plus être considéré comme central.

Ces considérations amènent donc à écrire l'hamiltonien sous la forme :

$$H = \sum_{i=1}^{z} \left(\frac{P_i^2}{2m_e} + V_c(R_i)\right) + H_1, \qquad (1.12)$$

où

$$H_1 = -\sum_{i=1}^{z} \frac{Ze^2}{R_i} + \sum_{i < j} \frac{e^2}{|R_i - R_j|} - \sum_{i=1}^{z} V_c(R_i) + \sum_{i=1}^{N} \xi(r_i) l_i s_i.$$
(1.13)

Si le potentiel central $V_c(R_i)$ est bien choisi, H_1 jouera le rôle d'une perturbation de :

$$H_0 = \sum_{i=1}^{z} \left(\frac{P_i^2}{2m_e} + V_c(R_i)\right).$$
(1.14)

On a donc :

$$H = H_0 + H_1, (1.15)$$

 H_0 : contient l'énergie cinétique et l'énergie potentielle dans le champ du noyau et la moyenne de la répulsion inter-électronique.

 H_1 : est la perturbation qui tient compte des effets de la répulsion électronique et l'interaction de spin-orbite.

On voit que la diagonalisation de H_0 revient à un problème de N électrons indépendants dans un potentiel central : c'est donc un problème de particules indépendantes.

Bien que la détermination du potentiel $V_c(R_i)$ constitue un problème assez ardu, on peut tout de même se faire une idée de son comportement asymptotique. En effet, en raison de la symétrie sphérique du problème dans le cadre de l'approximation du champ central, le théorème de Gauss nous permet d'affirmer que :

Pour r grand, l'électron est soumis à un potentiel $V_c(r) \approx \frac{e^2}{r}$, et pour r petit, l'électron est soumis à un potentiel $V_c(r) \approx \frac{Ze^2}{r}$.

Si l'on ne considére que la partie spatiale de la fonction d'onde relative au hamiltonien H_0 , on peut écrire :

$$H_0\psi_0 = E_0\psi_0. (1.16)$$

Et l'équation de Schrödinger est séparable en N équations pour chaque électron. Le calcul à l'ordre zéro consiste à résoudre les équations aux valeurs propres concernant les hamiltoniens mono-électroniques h_i . Les solutions peuvent être exprimées comme suit :

$$U_{nlm_lm_s}(\overrightarrow{r}) = R_{nl}(r)Y_{l,m}(\theta,\phi)$$
(1.17)

L'énergie totale E sera obtenue à partir des énergies électroniques individuelles :

$$E_0 = \sum_{i=1}^{N} E_{n_i, l_i}.$$
 (1.18)

Si l'on tient compte du spin, les fonctions d'onde (spin-orbitale), caractérisées par les quatre nombres quantiques n, l, m_l, m_s , s'écrivent :

$$U_{nlm_lm_s}(\overrightarrow{r}) = R_{nl}(r)Y_{l,m_l}(\theta,\phi)X_{s,m_s},$$
(1.19)

où l'on a introduit la fonction de spin X_{s,m_s} . Ces fonctions d'onde satisfont évidemment les équations :

$$\left(\frac{P_i^2}{2m_e} + V_c(R_i)\right)U_{nlm_lm_s}(\overrightarrow{r}) = E_{n,l}U_{nlm_lm_s}(\overrightarrow{r}).$$
(1.20)

Dans le cas général d'un système à N électrons, la fonction d'onde totale antisymétrisée s'écrira, en tenant compte du principe d'exclusion de Pauli, sous la forme d'un déterminent de Slater.

De plus, ces considérations permettent de se faire une première idée du spectre d'énergie des atomes. Comme $V_c(r)$ n'est plus en $\frac{1}{r}$, les énergies dépendent non seulement de n, mais aussi de l et comme $V_c(r)$ est un potentiel central, les énergies ne dépendent toujours pas de m. On obtient donc des niveaux d'énergies $E_{n,l}$, caractérisés par deux nombres quantiques et dont la dégénérescence est donnée par $g_{n,l} = 2(2l + 1)$.

La fonction totale ψ_0 va s'écrire :

$$\psi_0(q_1, \dots q_N) = \frac{1}{\sqrt{N}} \begin{vmatrix} U_1(q_1) & \dots & U_N(q_1) \\ \dots & \dots & \dots \\ U_1(q_N) & \dots & U_N(q_N) \end{vmatrix}.$$
 (1.21)

Cette fonction est évidemment antisymétrique puisque la permutation des coordonnées spatiales et de spin de deux électrons provoque un changement de signe de déterminant (permutation de deux lignes).

1.3.2 Les intégrales radiales d'interactions électrostatiques et de spin-orbite :

Il est possible de montrer que la première somme de 1.13 possède les mêmes valeurs propres pour tous les états de la même configuration [6]. Elle déplace donc les niveaux d'énergie de la même quantité.

En conséquence, c'est l'interaction coulombienne qui sépare les termes LS des configurations. Les éléments de matrice de l'interaction coulombienne pour une configuration à deux électrons non-équivalents [7].

$$<\Psi_{b} \mid \sum \frac{e^{2}}{r_{ij}} \mid \Psi_{b'} > = 2e^{2} \, \delta_{LSJM,L'S'J'M'} \sum_{k} \left[f_{k} \, F^{k} \, (l_{i}, l_{j}) + g_{k} \, G^{k} \, (l_{i}, l_{j}) \right],$$
(1.22)

où d'une part :

$$F^{k} = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{<}^{k+1}} \left| P_{l_{i}}(r_{1}) \right|^{2} \left| P_{l_{j}}(r_{2}) \right|^{2} dr_{1} dr_{2}, \qquad (1.23)$$

 et

$$f_{k} = (-1)^{L} \begin{pmatrix} l_{i} & k & l_{i} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_{j} & k & l_{j} \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l_{i} & l_{j} & L \\ l_{j} & l_{i} & k \end{cases},$$
(1.24)

avec : $k = 0, 2, ..., \min(2l_i, 2l_j)$, et d'autre part :

$$G^{k} = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{<}^{k+1}} P_{l_{i}}^{*}(r_{1}) P_{l_{j}}^{*}(r_{2}) P_{l_{j}}(r_{1}) P_{l_{i}}(r_{2}) dr_{1} dr_{2}, \qquad (1.25)$$

 et

$$g^{k} = (-1)^{S} \begin{pmatrix} l_{i} & k & l_{j} \\ 0 & 0 & 0 \end{pmatrix}^{2} \begin{cases} l_{i} & l_{j} & L \\ l_{i} & l_{j} & k \end{cases},$$
(1.26)

avec $k = |l_i - l_j|$, $|l_i - l_j| + 2$, ..., $|l_i + l_j|$.

Pour le terme de spin-orbite :

$$< n_i l_i j_i m_i \mid \xi_{l_i}(l_i, s_i) \mid n_i l_i j_i m_i > = d_i \xi_{l_i},$$
 (1.27)

avec :

$$\xi_{li} = \int_0^\infty \frac{1}{r} (\frac{dV^{li}}{dr}) |P_{li}(r)|^2 dr , \qquad (1.28)$$

où f^k, g^k et d_i sont des matrices dont les éléments sont des coefficients angulaires, ils dépendent des symboles 3j (en parenthèses) et les symboles 6j (en crochets). Les propriétés de ces symboles sont disponibles dans la littérature [5, 8, 9]. F^k, G^k et ξ_{li} sont des intégrales radiales d'interaction électrostatique et de spin-orbite.

1.3.3 Intégrales de Slater d'interactions entre différentes configurations

Les interactions électrostatiques à l'intérieur d'une configuration font apparaître des intégrales directes $F^k(nl, n'l') = R^k(nl, n'l'; nl, n'l')$ et des intégrales d'échange G^k tel que $G^k(nl, n'l') = R^k(nl, n'l', n'l', nl)$. Ce sont des cas particuliers des intégrales de Slater d'interactions de configurations :

$$R^{k}(nl, n'l'; n''l'', n'''l''') = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{<}^{k+1}} P_{nl}^{*}(r_{1}) P_{n'l'}^{*}(r_{2}) P_{n''l''}(r_{1}) P_{n''l''}(r_{2}) dr_{1} dr_{2}.$$
(1.29)

1.4 La méthode paramétrique et la méthode de comparaison isoélectronique

1.4.1 Ajustement par moindres carrés

Dans la méthode paramétrique, les intégrales données précédemment (1.23, 1.25, 1.28 et 1.29) sont considérées comme des paramètres ajustables en fonction des résultats expérimentaux. Le calcul paramétrique commence en choisissant un ensemble initial de paramètres $P_a^{(0)}$. La diagonalisation de la matrice $H_{\text{ele-stat}} + H_{\text{SO}}$ conduit à des fonctions propres et à des valeurs propres en fonction de $P_a^{(0)}$; si l'on dispose des niveaux expérimentaux E_{exp} , on peut alors comparer E_a et E_{exp} et chercher les valeurs $P_a^{(1)}$ des paramètres P_a qui rendent minimum l'écart quadratique moyen :

$$\left\langle \Delta E \right\rangle = \left(\frac{\sum_{1}^{N} \left(E_{\exp} - E_{a} \right)}{N - P} \right)^{1/2}, \qquad (1.30)$$

où N est le nombre de niveaux expérimentaux et P le nombre de paramètres.

Avec ces nouvelles valeurs $P_a^{(1)}$ des P_a , on recommence le cycle de diagonalisationmoindres carrés jusqu'à la convergence, c'est à dire jusqu'à ce que, pour tous les paramètres $P_a^{(n)} = P_a^{(n+1)}$.

Le calcul paramétrique n'est évidemment possible que si le nombre de niveaux expérimentaux est supérieur au nombre de paramètres libres; il donne alors les énergies calculées pour les niveaux inconnus de la configuration. Le résultat est d'autant meilleur que le nombre de niveaux est élevé.

Afin de s'assurer de la signification physique des paramètres, il est nécessaire de vérifier que les paramètres sont d'un ordre de grandeur compatible avec la théorie. En pratique, nous comparons les valeurs ajustées des paramètres aux intégrales radiales calculées par une méthode de type Hartree-Fock Relativiste (HFR de R. D. Cowan [7]). Les valeurs HFR peuvent d'ailleurs constituer un ensemble initial de paramètres pour le cycle de diagonalisation-moindres carrés. Il arrive qu'un paramètre ne puisse être ajusté, soit par manque de niveaux exprérimentaux soit à cause d'une interaction inconnue. Nous le fixons alors à sa valeur HFR.

Les résultats définitifs sont constitués d'un ensembre de paramètres ajustés, des énergies calculées E_{cal} données par la dernière diagonalisation ainsi que des composantes des niveaux correspondants. Ces compositions des niveaux sont présentés sous forme de pourcentages qui représentent les carrées des coéfficients de leurs développements dans la base du couplage pur choisi. Les fonctions d'onde sont ensuite utilisées pour calculer les probabilités de transition auxquelles les intensités des raies sont proportionnelles.

1.4.2 Principe de comparaison isoélectronique

Les ions d'une séquence isoélectronique possèdent la même structure électronique et ne diffère que par la charge Z du noyau.

Lorsque le spectre d'un ion donné est complétement inconnu (ThV par exemple), la méthode d'ajustement paramétrique n'est pas applicable directement. Sachant que les facteurs d'échelle $SF = P_{ajust}/P_{HFR}$ varient peu dans une séquence isoélectronique, il est intéressant d'étudier avec la méthode paramétrique un ion de la même séquence (exemple RnI) dont une partie du spectre est connue. Nous pouvons obtenir une estimation des énergies du ThV en diagonalisant ces matrices avec les paramètres HFR corrigés selon les rapports obtenus pour le RnI.

1.5 Conclusion

Nous avons, dans ce chapitre, passé en revue l'essentiel de la méthode Slater-Racah qui repose sur l'approximation du champ central. Nous avons ensuite présenté la méthode paramétrique qui consiste à considérer les intégrales de Slater et de spin-orbite comme des paramètres. Cette méthode sera utilisée dans le troisième chapitre pour le calcul des niveaux d'énergie du Thorium III. La méthode isoélectronique sera, quant à elle, utilisée pour prédire les niveaux d'énergie du ThV en utilisant les facteurs d'échelle issus du calcul paramétrique sur le Radon neutre. Le chapitre suivant est dédié à la détermination expérimentale des longueurs d'onde des raies obtenues à un courant de décharge de 50 A à l'observatoire Paris-Meudon.

Chapitre 2

Montage expérimental

Dans ce chapitre, nous présentons le montage expérimental permettant la mesure des longueurs d'onde des raies enrégistrées sur des plaques photographiques. Nous présentons ensuite la méthode de calcul de ces longueurs d'onde.

2.1 L'atome de thorium

Le thorium 232 a fait l'objet de peu d'études en FRANCE, du fait d'une utilisation industrielle réduite. Cependant il ne peut plus être ignoré car étant à l'origine d'inquiétudes autant professionnelles qu'écologiques. Initialement, ce fût J.J BERZELIUS qui en 1829 l'identifia dans un minerai provenant de l'île de LÖVÖ (Norvège). Ce minerai fût baptisé thorite. De 1928 à 1955, le dioxyde de thorium fût utilisé en radiologie comme produit de contraste, le Thorotrast. Son injection à un nombre de patients compris entre 2,5 et 10 millions serait responsable de l'apparition de tumeurs malignes du foie. Cette revue bibliographique fait le point sur les risques liés à l'exposition au thorium dans de nombreuses situations de travail, et en particulier lors de la soudure T.I.G (tungstène inert gaz). Elle permet d'envisager une surveillance réaliste des travailleurs exposés.

2.1.1 Caractèristique du thorium

Le thorium est un métal gris de numéro atomique 90, stable à l'air, mou et très ductile. Il est extrait de nombreux minerais : la thorite, la thorianite, la pilbarite, la chéralite, la monazite etc... Le thorium présente un intérêt important du fait de ses nombreuses qualités. La Thorine possède des propriétés céramiques remarquables (densité égale à 10, point de fusion à 3 300 C°). Le thorium peut être associé au magnésium dans la composition de certains alliages, leur conférant une solidité et une résistance exceptionnelle aux fortes températures, d'où un débouché dans l'industrie aérospatiale civile et militaire. Le Th 232 est le chef de file d'une des grandes familles de radio-isotopes naturels et sa période radioactive est de 1,4.1010 ans. Sa filiation comprend 11 éléments. Avec en moyenne 12 ppm soit 12 gr/tonne, il est quatre fois plus abondant que l'uranium dans la croûte terrestre, mais moitié moins abondant que le plomb. Le thorium manipulé dans l'industrie ne peut être considéré comme "naturel". Ce thorium est en effet broyé, concassé, traité chimiquement et enfin concentré. Il ne s'agit pas d'un produit naturel car il a été démontré (6) qu'il n'y a pas équilibre entre le Th 232 et le Th 228. De plus on y trouve des quantités non négligeables de Th 230 n'appartenant pas à la filiation du Th 232.

2.2 Le spectrographe

Le spectrographe de 10.7 m de l'observatoire de Paris-Meudon (figure ??) est un instrument unique en Europe pour obtenir des spectres à haute résolution dans le domaine de 50 à 300 nm. Nous en rappelons quelques caractéristiques.

FIG. 2.1 – Cercle de Rowland

2.2.1 Cercle de Rowland

Le spectrographe à réseau concave est constitué de trois éléments essentiels : la fente d'entrée, l'élément dispersif et le récepteur (figure 2.1). Dans la théorie des réseaux concaves [10], on montre que la fente, le réseau et le récepteur (ou détecteur) doivent être situés sur le meme cercle appelé "cercle de Rowland". Rowland fut le premier, dès 1882, à suggérer la gravure des traits d'un réseau sur un miroir concave, l'avantage résultant du fait que celui-ci peut servir simultanément de collimateur et d'objectif de chambre.

2.2.2 Ultraviolet sous vide

L'enregistrement des spectres ionisés dans l'ultraviolet lointain sont limités essentiellement par l'opacité de l'air et des matériaux solides. Ainsi en-dessous de 2000 Å, le grand coefficient d'absorption de l'air impose l'utilisation d'un spectromètre fonctionnant sous vide grâce à deux pompes turbo-moléculaires qui permettent d'atteindre une pression de 10-6 torrs

2.2.3 Incidence normale

La réalisation des expériences se fait sous incidence s'écartant de 4 à15 degrés de l'incidence normale adoptant le montage Eagle, dans lequel le faisceau incident et le faisceau difracté ont des diffractions adjacentes. On peut régler la résolution et la luminosité recherchées a partir d'une manipulation de deux fentes de largeur fixes, 15 et 30 μm . Tellement les raies de l'atome ionisé sont importante, nous avons toujours utilisé la fente de 30 μm afin de réduire la duré de l'exposition. Le réseau concave utilisé est un réseau holographique de 3600 traits par millimètre, ce qui correspond à une pouvoir de résolution égale à ($\lambda/\delta\lambda \sim 150000$). Dans le premier ordre, la dispersion linéaire est de 0.25 Å/mm, ces condition nous l'avons obtenu grace aux spectrographe de 10.7 m(Figure) construit à l'Observatoire de Meudon qui fonctionne depuis 1972. à l'aide de ce dernier, nous avons observé le domaine de longueur d'onde s'étendant de 500 à 3000 Å. toutefois l'efficacité de réseau décroit en-dessous de 1000 Å pour devenir tout-à-fait insuffisante vers 500 Å.

2.2.4 Source lumineuse

Les spectres en émission ultraviloet sous vide (VUV) sont produits à partir d'une source de décharge du type étincelle glissante. Ce type de source à été décrite pour la premiere fois dans la litérature par Bockasten [11] puis modifiée par Sugar [12]. Les étincelles sont produites entre deux électrodes placées sous vide. Pour produire une tension disruptive de l'ordre de 100kV/mm, une tension élevée et une distance interélectrodes faible sont nécessaires.

Disque isolant "spacer"

A l'aide d'un corps isolant composé de silice, aluminium, germanium, fluor ou bore entre les deux électrodes, on peut avoir la décharge sous vide facilement. La surface du disque se métallise et le passage des électrons de la cathode (en aluminium) vers l'anode (dans notre cas c'est le thorium) est possible. Par conséquent, les ions de thorium sont arrachés par pulvérisation dans différents états. La désexcitation par émission spontanée de ces ions donne des spectres dans le domaine UV.

FIG. 2.2 – Disposition des principaux éléments d'un spectrographe à réseau

Circuit électrique équivalent

Sur le sommet de la source à étincelles glissantes se situent deux circuits, l'un de charge et l'autre de décharge, le premier est composé d'une alimentation Haute Tension (HT) continue, une résistance et un condensateur à bain d'huile (pour une décharge rapide), l'autre est composé d'un éclateur, d'un condensateur et d'une self-inductance. Le condensateur du circuit de charge est chargé par l'alimentation HT. La résistance affaibli cette haut tension pour éviter tout appel de courant élevé. Dans cette phase, la tension aux bornes du condensateur est : alimentation

FIG. 2.3 – Schéma de principe de la source à étincelle glissante

$$U_{condensateur} = V_{alimentation} (1 - \exp(-t/RC))$$
(2.1)

Le condensateur se décharge dans la source dés que la tension aux bornes de l'éclateur (donc du condensateur) est supérieur à la tension de "claquage" dans l'air. La self-inductance résiste au passage du courant et permet en ajustant sa valeur de gérer l'intensité du pic de courant ainsi sa durée dans la source. le phénomène désagréable dans ce modèle est la pulvérisation cathodique, donc il est inévitable de le remplacer après un certain temps de fonctionnement et de nettoyer les alumines et l'anode dans un bain de soude. Ces opérations de montage et de démontage ne représentent aucun obstacle dans ce modèle.

2.2.5 Le réseau holographique

Le réseau concave utilisé est un réseau holographique de 3600 traits par millimètre, ce qui correspond à un pouvoir de résolution à $\delta\lambda/\lambda = 1/150000$. A l'aide du spectromètre de 10.7 m, le domaine des longueurs d'onde s'étend de 500 à 3000Å.

2.2.6 Plaques photographiques

Les plaques photographiques ¹ utilisées pour l'enregistrement des spectres émis par la source lumineuse sont de type Short-Wave-Radiation (SWR- Kodak) de dimensions 5cm × 45cm. Pour couvrir un domaine de 240 Å en longueur d'onde, on utilise deux plaques, l'une à coté de l'autre, une couche de gélatine particulièrement mince a été mettre sur ses surfaces dans le bute de diminuer l'absorption des rayonnements ultraviolet. Ces plaques sont choisir pour leur bon contraste. Selon les longueurs d'onde. Cependant, nous avons choisi pour les longueurs d'onde >1000, des plaques photographique de type Ilford Q2. La durée d'exposition des plaques différer selon les régions spectrales et les longueurs d'onde, la duré d'exposition est d'environ de 30 minutes à une heure dans le cas des longueurs d'ondes au-dessus de 800 Å. par contre pour les longueurs d'ondes, entre 600 à 800 Å, l'intensité des rais spectrales est très faible ce qui exige une grande duré d'exposition que le cas précédent

2.3 Détermination des positions des raies

Pour déterminer les positions des raies, on utilise une règle d'excellente résolution et un scanner de précision 47000 dpi. Ce scanner numérise aussi bien la

¹Il existe un autre système de détection de spectres, les écrans phosphore photostimulables. Ce système devrait remplacer les plaques photographiques. Depuis quelques années, les plaques ne sont plus fabriquées et le besoin d'un remplacement devient plus évident. Lorsqu'un détecteur photostimulable (couramment appelé Image Plate 'IP') est exposé à un flux de particules, il retient l'énergie absorbée pour former une image latente. Au lieu de la libérer immédiatement, cette énergie peut être conservée quelques jours. La lecture et la numérisation de l'information stockée sur le détecteur photostimulable s'effectuent par balayage à l'aide d'un laser.

FIG. 2.4 – Règle de précision micrométrique.

plaque contenant les raies et la règle servant à déterminer les positions (figure 2.4).

Un logiciel de pointage "SPECTRA" nous permet d'associer une position à chacune des raies en faisant une interpolation entre deux graduations de la règle. Le pointé d'une raie correspond à la concidence de son profile avec son image mirroir (figures 2.5 et 2.6).

Les spectres enregistrés contiennent des raies issues des impuretés qui sont considérées comme des raies de référence servant à la calibration du spectre de

thorium. Ce sont des raies fines dont les longueurs d'onde sont très bien connues. Elles appartiennet généralement à des spectres d'atomes neutres ou peu ionisés tels que CI, CII, CIII, NI, NII, OIII,...etc.

2.4 Identification des raies mesurées

A partir de deux raies connues et par simple interpolation linéaire, on obtient une première liste de longueurs d'onde approximatives. Celle-ci nous permet de sélectionner les raies de référence. A l'aide d'un programme écrit par J. Tech du

FIG. 2.5 – L'image mirroir ne coincide pas avec le profile de la raie. Cela indique que la position pointée est loin de la raie.

FIG. 2.6 – Coincidence de la raie avec son image mirroir.

FIG. 2.7 – Une petite partie du spectre de thorium en régistré au courant 50 ampères.

bureau des standards (NBS), les longueurs d'onde de toutes les raies mesurées sont calculées avec une meilleure précision. Ce code lit une liste de couples de valeurs (x, y) qui sont l'abscisse et la longueur d'onde des raies de référence, puis il calcule par moindres carrés les coefficients d'un polynôme en x, $y = c0 + c1x + c_2x^2 + \ldots + c_nx^n$, de façon à ce que les valeurs de y reproduisent le mieux possible les longueurs d'onde λ de la liste. Ce programme associe ensuite aux valeurs des abscisses de toutes les raies mesurées les valeurs des longueurs d'onde correspondantes.

Sur la liste définitive des raies mesurées, nous pourrons identifier toutes celles qui sont déjà classées à l'aide des tables de longueurs d'onde [13]. Dans ce travail, nous nous sommes intéressés à la plaque photographique du spectre de thorium obtenu avec un courant de décharge de 50 ampères. On s'attend à ce que le spectre contienne essentiellement des raies de ThIII. Sur la figure (2.7), on a représenté une partie du spectre, les longueurs d'onde correspondantes à ces raies sont données dans la table 1. L'appendice A est consacré à l'intégralité de la liste des longueurs d'onde mesurées.

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
1	1976	1172,9	85332,5	048
2	2399	1172,2	85308,5	010
3	2688	1172,4	85291,1	004
4	3171	1173,8	85264,7	007
5	3237	1173,8	85260,9	003
6	3627	1173,2	85238,8	003
7	4454	1174,8	85191,1	015
8	4578	1174,9	85184,1	011
9	4698	1174,0	85177,2	010
10	5072	1174,3	85156,0	004
11	5113	1174,3	85154,7	010
12	5413	1175,5	85137,7	003
13	5726	1175,8	85119,1	015
14	5801	1175,9	85115,8	155
15	5879	1175,9	85110,4	293
16	5981	1175,0	85105,6	087
17	6248	1175,2	85090,5	217
18	6315	1175,3	85086,7	219
19	6439	1175,4	85079,7	011
20	6787	1176,6	85059,1	636
21	6999	1176,8	85047,1	043
22	7211	1176,9	85035,2	358
23	7417	1176,4	85024,5	007
24	7698	1176,3	85008,7	351
25	7873	1177,5	84998,8	018
26	8109	1177,7	84985,5	002
27	8345	1177,8	84971,2	002
28	8531	1177,0	84961,8	002
29	8729	1177,2	84950,6	004
30	8800	1177,2	84946,6	013
31	9404	1178,7	84912,7	006
32	9594	1178,8	84901,9	055
33	9800	1178,0	84889,4	003
34	9953	1178,1	84881,8	002
35	10084	1178,2	84873,4	010
36	10356	1178,4	84858,1	023
37	11255	1179,1	84808,7	018
38	11611	1179,4	84788,7	101
39	11957	1180,7	84768,3	006
40	12468	1180,1	84740,6	003
41	12657	1180,2	84729,1	036
42	12926	1180,4	84714,1	011
43	13385	1181,8	84688,6	003
44	14113	1181,3	84648,3	003
45	14502	1182,6	84626,9	014

TAB. 2.1 – Longueur d'onde des raies mesurées au courant de décharge de 50 A. domaine spectral (1171-1213 $\rm A\check{r})$

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I(u,a)
46	14816	1182,9	84608,3	060
47	14907	1182,9	84603,2	031
48	15009	1182,1	84598,5	024
49	15197	1182,2	84587,1	009
50	15471	1182,4	84572,8	015
51	15606	1183,5	84564,2	004
52	16233	1183,0	84529,3	110
53	16373	1183,1	84522,5	006
54	16678	1183,3	84505,5	003
55	16790	1183,4	84498,2	014
56	17128	1184,7	84479,4	145
57	17248	1184,8	84473,3	057
58	17621	1184,1	84452,5	057
59	18041	1184,4	84429,5	013
60	18185	1185,5	84421,2	131
61	19135	1185,3	84368,4	009
62	19222	1185,3	84363,7	059
63	19465	1186,3	84350,0	006
64	19596	$1185,\!6$	84342,3	006
65	19805	1185,8	84330,7	005
66	20192	1186,1	84309,2	012
67	20252	1186,2	84305,9	011
68	20757	1186,6	84277,9	034
69	20959	1186,7	84266,7	008
70	21082	1186,7	84259,9	010
71	21278	1187,0	84249,0	045
72	21429	1187,1	84240,7	052
73	22257	1187,7	84194,9	004
74	22428	1187,9	84185,4	012
75	22511	1187,9	84180,8	047
76	22841	1188,2	84162,6	015
77	23613	1188,8	84119,9	024
78	23700	1188,8	84115,1	002
79	24262	1189,3	84084,1	043
80	24338	1189,3	84079,9	025
81	24656	1189,6	84062,4	087
82	24855	1189,7	84051,4	079
83	25158	1190,0	84034,8	003
	25328	1190,1	84025,4	209
	25711	1190,4	84004,3	027
86	26292	1190,9	83972,3	001
87	26490	1191,0	83961,4	082
88	26753	1191,2	83947,0	003
89	26890	1191,3	83939,5	102
90	27495	1191,8	83906,2	003

Suite du TAB. 2. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I(u,a)
91	27667	1191,9	83896,8	144
92	27868	1192,1	83885,7	007
93	28156	1192,3	83869,9	009
94	28555	1192,6	83848,0	047
95	28657	1192,7	83842,4	007
96	28770	1192,8	83836,3	085
97	28823	1192,8	83833,3	158
98	29050	1193,0	83820,9	019
99	29357	1193,3	83804,1	098
100	29390	1193,3	83802,3	099
101	29799	1193,6	83779,9	002
102	29912	1193,7	83773,7	060
103	30016	1193,8	83768,0	051
104	30132	1193,9	83761,6	007
105	30395	1194,1	83747,3	004
106	30953	1194,5	83716,7	182
107	31035	1194,6	83712,3	012
108	31330	1194,8	83696,1	109
109	31401	1194,9	83692,3	077
110	31556	1195,0	83683,8	032
111	31859	1195,2	83667,2	002
112	32170	1195,5	$83650,\!3$	007
113	32412	$1195,\!6$	83637,0	018
114	32483	1195,7	83633,2	015
115	32581	1195,8	83627,8	007
116	32812	1196,0	83615,2	142
117	32856	1196,0	83612,8	048
118	32991	1196,1	83605,5	010
119	33170	1196,2	83595,7	314
120	33257	1196,3	83591,0	274
121	33569	1196,5	83574,0	099
122	33722	1196,7	$83565,\!6$	041
123	33834	1196,8	83559,5	023
124	33911	1196,8	83555,3	038
125	34337	1197,1	83532,1	034
126	34481	1197,3	83524,3	127
127	34653	1197,3	83514,9	050
	34717	1197,4	83497,5	075
	34974	1197,6	83497,5	012
	35144	1197,8	83488,2	
	35339	1197,9	83477,6	018
	35616	1198,1	83462,6	030
	36058	1198,5	83438,6	053
	36183	1198,6	83431,8	039
135	36650	1198,9	83406,4	020

Suite du TAB. 2. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma(\mathrm{cm}^{-1})$	I(u,a)
136	36965	1199.2	83389.4	198
137	37043	1199.3	83385.1	055
138	37430	1199.6	83364 1	230
139	37777	1199.8	83345.3	007
140	37871	1199.9	83340.2	010
141	38283	1200.2	83317.9	185
142	38907	1200,2 1200,7	83284 2	165
143	39256	1200,1 1201.0	83265.3	016
144	39741	1201,0 1201.4	83239.1	009
145	39923	1201,1 1201.5	83229.2	019
146	40261	1201,9 1201.8	83211.0	028
147	40399	1201,0 1201.9	83203 5	018
148	40629	1201,3 1202.1	83191.1	022
149	40912	1202,1 1202.3	83175.8	007
149	41098	1202,9 1202.4	83165.8	003
150	41146	1202,1 1202.5	83163.2	014
152	41390	1202,9 1202.6	83150.0	201
153	41911	1202,0 1203.1	83121.9	089
154	42490	1203,1 1203,5	83090 7	023
155	42792	1203.7	83074.5	035
156	42928	1203.8	83067.2	026
157	43053	1203.9	83060.4	026
158	43093	1204.0	83058.3	059
159	43410	1204.2	83041.2	004
160	43660	1204,4	83027.8	008
161	43737	1204,5	83023,6	056
162	43902	1204,6	83014,8	022
163	44282	1204,9	82994,4	008
164	44655	1205,2	82974,3	085
165	45086	1205,5	82951,2	045
166	45685	1206,0	82919,0	008
167	45866	1206,1	82909,3	030
168	46301	1206,5	82886,0	348
169	46399	1206,6	82880,8	304
170	46529	1206,7	82873,8	072
171	47005	1207,0	82848,3	023
172	47250	1207,2	82835,2	049
173	47643	1207,5	82814,2	136
174	47723	1207,6	82809,9	016
175	47801	1207,6	82805,7	012
176	48890	1208,5	82747,5	049
177	49021	1208,6	82740,5	037
178	49053	1208,6	82738,8	035
179	49223	1208,8	82729,7	003
180	49384	1208,9	82721,1	009

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I (u, a)
181	49503	1209,0	82714,8	061
182	49676	1209,1	82705,6	223
183	50302	1209,6	82672,2	029
184	51270	1210,4	82620,6	018
185	51397	1210,5	82613,8	110
186	51675	1210,7	82599,1	030
187	52241	1211,1	82568,9	009
188	52455	1211,3	82557,6	004
189	52560	1211,4	82552,0	031
190	52975	1211,7	82529,9	100
191	53135	1211,8	82521,4	018
192	54121	1212,6	82469,1	011

Suite du TAB. 2. 1

Chapitre 3

Résultats et discussions

Dans le chapitre 1, nous avons introduit la méthode théorique de Slater-Racah qui permet de calculer les niveaux d'énergie ainsi que les propriétés radiatives des atomes. Dans ce qui suit, nous présentons les résultats relatifs aux spectre III et V de Thorium. Les calculs ont été effectués au moyen de la chaine de programmes écrits par R.D. Cowan (Los Alamos) [7].

3.1 Résultats et discussions

Nous entamons l'étude de l'ion Th^{+2} avec une base de 19 configurations, 8 de parité impaire (5*f*6*d*, 5*f*7*s*, 6*d*7*p*, 7*s*7*p*, 5*f*8*s*, 5*f*7*d*, 6*d*6*f*, 6*d*8*p*) et 11 de parité paire (6*d*², 6*d*7*s*, 7*s*², 5*f*², 5*f*7*p*, 6*d*8*s*, 6*d*7*d*, 5*f*8*p*, 5*f*6*f*, 6*d*5*g*, 7*p*²).

Les calculs HFR permettent de calculer les énergies moyennes des configurations. Les expressions (1.23), (1.25), (1.28) et (1.29) donnent les valeurs des **55** d'intégrales de Slater directes et d'échange, **28** de spin-orbite et près de **200** intégrales d'interactions de configuration. En diagonalisant les matrices par valeurs des moments cinétiques totaux J, nous obtenons **97** niveaux impairs et **124** niveaux pairs.

3.2 Positionnement des configurations paires et impaires

A partir du"levels3" de sortie du programme RCE d'ajustement paramétrique, nous pourrons positionner en énergie les différentes configurations. La

J	Configuration	E _{exp}	$E_{\rm hfr}$	E_{ajust}	$E_{\rm hfr}{-}E_{\rm exp}$	$E_{ajust} - E_{exp}$
4	5f2	15148.5	27384.4	14846.8	12235.9	-301.7
5	5f2	17887.4	30661.0	17491.2	12773.6	-396.2
2	5f2	18863.9	32171.5	19055.0	13307.6	191.1
6	5f2	20770.9	33859.0	20265.2	13088.1	-505.7
3	5f2	20840.5	34579.7	21038.9	13739.2	198.4
4	5f2	21783.9	34759.1	22009.3	12975.2	225.4
4	5f2	25972.2	38966.4	26077.9	12994.2	105.7
6	5f2	28350.0	43298.6	28150.2	14948.6	-199.8
2	5f2	28232.5	43223.5	28688.1	14991.0	455.6
0	5f2	29299.5	44903.2	29320.3	15603.7	20.8
1	5f2	30402.9	46286.4	30426.9	15883.5	24.0
2	5f2	32867.3	48825.8	33024.2	15958.5	156.9
0	5f2	51161.6	65088.2	51419.9	13926.6	258.3

TAB. 3.1 – Comparaison entre les énergies expérimentales et calculées de la configuration paire 5f2

figure (3.1) montre que la configuration 5f6d est la configuration fondamentale et elle est de parité impaire.

3.3 Réduction de l'écart énergétique expérience/théorie

Dans le but de montrer le rôle de la méthode paramétrique dans la réduction de l'écart énergétique expérience/théorie, nous avons choisit de présenter les résultats pour une configuration de chaque parité. Rappelons que l'ajustement paramétrique consiste à considérer les intégrales radiales d'interactions électrostatiques et de spin-orbite comme des paramètres ajustables.

Sur le tableau (3.1), on reporte les énergies expérimentales, les énergies théoriques obtenues pour la configuration $5f_2$ de parité paire; d'une part par un calcul HFR pur et d'autre part en faisant un ajustement paramétrique.

Nous constatons que les écarts sont beaucoup plus importants dans le cas HFR pur. Cela est bien visible sur la figure (3.2) correspondant à la configuration $5f^2$.

Sur le tableau (3.2), on reporte les énergies expérimentales, les énergies théoriques obtenues pour la configuration 5f7d de parité impaire, d'une part par un

FIG. 3.1 – Positionnement en énergie des différentes configurations; (a) impaires, (b) paires.

FIG. 3.2 – Comparaison entre les énergies mesurées E_{exp} et les énergies E_{cal} de la configuration $5f^2$; (a) calculées dans le contexte HFR pur et (b) avec la méthode paramétrique.

J	Configuration	E _{exp}	E _{hfr}	$\mathrm{E}_{\mathrm{ajust}}$	$E_{\rm hfr} - E_{\rm exp}$	E _{ajust} -E _{exp}
3	5f7d	78327.7	83123.8	78451.8	4796.1	124.1
2	5f7d	78332.7	83904.2	78519.1	5571.5	186.4
4	5f7d	78417.3	84024.3	78517.5	5607.0	100.2
4	5f7d	79329.6	84557.3	79213.8	5227.7	-115.8
1	5f7d	79484.2	84707.3	79773.9	5223.1	289.7
3	5f7d	79646.4	84892.4	79572.7	5246.0	-73.7
2	5f7d	79916.0	85290.6	79994.0	5374.6	78.0
5	5f7d	80137.2	85380.7	80123.2	5243.5	-14.0
1	5f7d	80784.2	86300.1	81015.6	5515.9	231.4
0	5f7d	80906.3	86507.1	81089.0	5600.8	182.7
4	5f7d	82348.6	87852.7	82416.2	5504.1	67.6
3	5f7d	82827.1	88265.7	82969.7	5438.6	142.6
5	5f7d	83023.2	88413.2	83064.6	5390.0	41.4
2	5f7d	83237.7	88928.9	83490.1	5691.2	252.4
4	5f7d	83552.9	89468.9	83457.3	5916.0	-95.6
6	5f7d	83962.9	90115.4	83894.0	6152.5	-68.9
5	5f7d	84239.0	89377.1	84295.4	5138.1	56.4
3	5f7d	84374.2	89730.0	84324.5	5355.8	-49.7
2	5f7d	84532,5	90482,9	84719,2	5950,4	186,7
1	5f7d	85875,7	91434,3	85990,7	5558,6	115

TAB. 3.2 – Comparaison entre les énergies expérimentales et calculées de la configuration paire $5\mathrm{f7d}$

calcul HFR pur et d'autre part en faisant un ajustement paramétrique. La liste totale des niveaux d'énergie pairs et impairs est donnée dans l'annexe B.

Les écarts sont également beaucoup plus importants dans le cas HFR pur, cela est aussi visible sur la figure (3.3).

Le processus d'ajustement paramétrique ne doit pas être arbitraire, en fait, il tient compte des effets d'interaction avec les états non-considérés dans la base de calcul, une correction est apportée à l'intégrale de Slater. La liste des paramètres utilisés pour les configurations $5f^2$ et 5f7d est résumée sur les tableaux (3.3) et (3.4).

FIG. 3.3 – Comparaison entre les énergies mesurées E_{exp} et les énergies E_{cal} de la configuration 5f7d; (a) calculées dans le contexte HFR pur et (b) avec la méthode paramétrique.

Configuration	Paramètre	P_{HFR}	P_{ajust}	SF
$5f^2$	E_{moy}	36108.20	22058.49	0.611
$5f^{2}$	$F_2(11)$	46776.61	36379.96	0.778
$5f^{2}$	$F_4(11)$	29764.11	35818.53	1.203
$5f^{2}$	$F_{6}(11)$	21565.51	25164.12	1.167
$5f^2$	ξ_f	1135.72	988.07	0.870

TAB. 3.3 – Paramètres utilisés pour la configuration 5f2

Configuration	Paramètre	P_{HFR}	Pajust	SF
5f7d	E_{moy}	87987.10	82197.34	0.934
5f7d	ξ_f	1358.42	1222.57	0.900
5f7d	ξ_d	412.82	371.53	0.900
5f7d	$F_2(15)$	5964.73	5824.38	0.976
5f7d	$F_4(15)$	2784.73	3079.56	1.106
5f7d	$G_1(15)$	2440.84	2871.54	1.176
5f7d	$G_{3}(15)$	2092.64	2461.94	1.176
5f7d	$G_5(15)$	1653.84	1945.64	1.176

TAB. 3.4 – Paramètres utilisés pour la configuration 5f7d

3.4 Etude du ThV

Le spectre du Thorium trois fois ionisé (ThIV) est de type alcalin isoélectronique du Francium neutre FrI avec un seul électron optique (couches pleines et un électron périphérique). Il est assez bien connu et classe les plus fortes raies du thorium sur le spectrogramme. Cela indique que le spectre V pourrait être responsable de beaucoup de raies non classées, d'où l'intérêt de l'étudier.

Nous choisissons la base de calcul suivante : $6p^6$ comme configuration fondamentale et les configurations excitées $6p^55f$, $6p^56f$, $6p^57p$, $6p^58p$, $6p^56d$, $6p^57s$, $6p^58s$ et $6p^57d$.

La méthode d'ajustement paramétrique n'est pas applicable sur le ThV puisque son spectre est complétement inconnu. Nous optons donc pour la méthode de comparaison isoélectronique. L'idée est d'étudier avec la méthode paramétrique un atome dont une partie du spectre est connue (le RnI dans ce cas) et de déterminer les facteurs d'échelle à partie des paramètres HFR et ceux ajustés. Ces facteurs d'échelle sont ensuite adoptés pour estimer les énergies des niveaux du ThV. Les valeurs des paramètres adoptés sont rassemblées dans les tableaux (3.5 et 3.6). La dernière colonne représente les facteurs d'échelle utilisés pour ce calcul. Sur la figure (3.4), on représente les énergies des niveaux du ThV.

Configuration	Paramètre	Valeur HFR	Valeur adopté	SF
6p6	E _{moy}	0	273.8	1
$6p\overline{5-5}f1$	E_{moy}	170675.4	173918.2	1.019
6p5-5f1	F_2	56332.4	45122.3	0.801
6p5-5f1	G_2	41498.2	30169.2	0.727
6p5-5f1	G_4	30244.8	22320.7	0.738
6p5-5f1	ζ_p	43977.8	43977.8	1
6p5-5f1	ζ_f	1504.5	1504.5	1
$\overline{6p5-6f1}$	E_{moy}	339589.4	346041.6	1.019
6p5-6f1	F_2	15623.4	12514.4	0.801
6p5-6f1	G_2	2547.5	1852.1	0.727
6p5-6f1	G_4	2404.1	1774.3	0.738
6p5-6f1	ζ_p	47332.9	47332.9	1
6p5-6f1	ζ_f	224.6	224.6	1
$\overline{6p5-7p1}$	E_{moy}	274702.0	281294.8	1.024
6p5-7p1	F_2	19958.5	19958.5	1
6p5-7p1	G_0	3378.0	2780.1	0.823
6p5-7p1	G_2	4967.0	4087.9	0.823
6p5-7p1	ζ_{6p}	47465.6	47465.6	1
6p5-7p1	ζ_{7p}	9818.3	11487.4	1.17

TAB. 3.5 – Paramètres adoptés pour déterminer les niveaux d'énergie pairs du ThV

Configuration	Paramètre	Valeur HFR	Valeur adopté	SF
6p5-6d1	E _{moy}	197015.0	201546.3	1.023
6p5-6d1	F_2	45746.5	39021.8	0.853
6p5-6d1	G_1	49867.3	49518.3	0.993
6p5-6d1	G_3	31906.5	31683.2	0.993
6p5-6d1	ζ_p	45930.2	45930.2	1
6p5-6d1	ζ_d	2768.2	2768.2	1
6p5-7s1	E _{moy}	221606.4	225816.9	1.019
6p5-7s1	G_1	7841.9	7787.0	0,993
6p5-7s1	ζ_p	46843.7	46843.7	1
$\overline{6p5-8s1}$	Emoy	341107.9	347588.9	1.019
6p5-8s1	G_1	220414.0	218871.1	0.993
6p5-8s1	ζ_p	47491.4	47491.4	1

TAB. 3.6 – Paramètres adoptés pour déterminer les niveaux d'énergie impairs du ThV

FIG. 3.4 - Energies des niveaux du ThV : (a) pairs, (b) impairs obtenus par la méthode de comparaison isoélectrononique avec le radon neutre RnI.

3.5 Conclusion

Dans le cadre de ce travail sur le ThIII, la méthode paramétrique de Slater-Racah nous a permis d'approcher les valeurs d'énergie expérimentales. Néanmoins, les résultats obtenus montrent que des efforts supplémentaires sont nécessaires. On est arrivé à une déviation moyenne de 337 cm-1 pour la parité impaire et 827cm-1 pour la parité paire. Dans le cas du ThV, la méthode isoélectronique nous a permis de prédire ces valeurs d'énergie en utilisant les facteurs d'échelle de RnI.

Conclusion générale

Dans ce travail, le but était d'étudier le spectre de Thorium deux fois ionisé (ThIII) dans l'ultraviolet (UV) sous vide. Les spectres de ThI, II, III et IV sont assez bien connus [14, 15, 16], mais demeure améliorable, et celui de ThV pourrait être responsable de raies non classées.

Nous avons présenté dans le chapitre 1 la méthode théorique de Racah-Slater qui permet de calculer les niveaux d'énergie et des probabilités de transition d'un spectre complexe tels que le ThIII et ThV.

Dans le chapitre 2, nous avons mesuré les longueurs d'onde des raies sur les spectrogrammes photographiques enregistrées à l'observatoire de Paris Meudon. Cela nous a permis de faire un dépouillement préliminaire des raies susceptibles d'appartenir au ThIII et ThV. Nous disposons, grâce à ces mesures, d'une liste de longueurs d'onde expérimentales d'une précision moyenne de 0.003Å sur la zone spectrale allant de 850Å et 1700Å.

Nous avons réalisé le calcul paramétrique en utilisant la chaine de codes Cowan [7]. Nous avons optimisé l'écart expérience-théorie des niveaux d'énergie pour arriver à une déviation moyenne de 337 cm-1 pour la parité impaire et 827cm-1 pour la parité paire. Nous pensons qu'un effort supplémentaire est indispensable pour améliorer cette déviation.

En perspective, une fois le calcul est satisfaisant, nous pourrons entamer la recherche de nouveaux niveaux d'énergie et ce en exploitant notre liste de longueurs expérimentales et en appliquant le principe de combinaison de Ritz.

Annexe A

Longueurs d'onde des raies mesurées

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
1	1976	1172,9	85332,5	048
2	2399	1172,2	85308,5	010
3	2688	1172,4	85291,1	004
4	3171	1173,8	85264,7	007
5	3237	1173,8	85260,9	003
6	3627	1173,2	85238,8	003
7	4454	1174,8	85191,1	015
8	4578	1174,9	85184,1	011
9	4698	1174,0	85177,2	010
10	5072	1174,3	85156,0	004
11	5113	1174,3	85154,7	010
12	5413	1175,5	85137,7	003
13	5726	1175,8	85119,1	015
14	5801	1175,9	85115,8	155
15	5879	1175,9	85110,4	293
16	5981	1175,0	85105,6	087
17	6248	1175,2	85090,5	217
18	6315	1175,3	85086,7	219
19	6439	1175,4	85079,7	011
20	6787	1176,6	85059,1	636
21	6999	1176,8	85047,1	043
22	7211	1176,9	85035,2	358
23	7417	1176,4	85024,5	007
24	7698	1176,3	85008,7	351
25	7873	1177,5	84998,8	018
26	8109	1177,7	84985,5	002
27	8345	1177,8	84971,2	002
28	8531	1177,0	84961,8	002
29	8729	1177,2	84950,6	004
30	8800	1177,2	84946,6	013
31	9404	1178,7	84912,7	006
32	9594	1178,8	84901,9	055
33	9800	1178,0	84889,4	003
34	9953	1178,1	84881,8	002
35	10084	1178,2	84873,4	010
36	10356	1178,4	84858,1	023
37	11255	1179,1	84808,7	018
38	11611	1179,4	84788,7	101
39	11957	1180,7	84768,3	006
40	12468	1180,1	84740,6	003
41	12657	1180,2	84729,1	036
42	12926	1180,4	84714,1	011
43	13385	1181,8	84688,6	003
44	14113	1181,3	84648,3	003
45	14502	1182,6	84626,9	014

TAB. A.1 – Longueurs d'onde mesurées au courant de décharge de 50 A

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I (u, a)
46	14816	1182,9	84608,3	060
47	14907	1182,9	84603,2	031
48	15009	1182,1	84598,5	024
49	15197	1182,2	84587,1	009
50	15471	1182,4	84572,8	015
51	15606	1183,5	84564,2	004
52	16233	1183,0	84529,3	110
53	16373	1183,1	84522,5	006
54	16678	1183,3	84505,5	003
55	16790	1183,4	84498,2	014
56	17128	1184,7	84479,4	145
57	17248	1184,8	84473,3	057
58	17621	1184,1	84452,5	057
59	18041	1184,4	84429,5	013
60	18185	1185,5	84421,2	131
61	19135	1185,3	84368,4	009
62	19222	1185,3	84363,7	059
63	19465	1186,3	84350,0	006
64	19596	1185,6	84342,3	006
65	19805	1185,8	84330,7	005
66	20192	1186,1	84309,2	012
67	20252	1186,2	84305,9	011
68	20757	1186,6	84277,9	034
69	20959	1186,7	84266,7	008
70	21082	1186,7	84259,9	010
71	21278	1187,0	84249,0	045
72	21429	1187,1	84240,7	052
73	22257	1187,7	84194,9	004
74	22428	1187,9	84185,4	012
75	22511	1187,9	84180,8	047
76	22841	1188,2	84162,6	015
77	23613	1188,8	84119,9	024
78	23700	1188,8	84115,1	002
79	24262	1189,3	84084,1	043
80	24338	1189,3	84079,9	025
81	24656	1189,6	84062,4	087
82	24855	1189,7	84051,4	079
83	25158	1190,0	84034,8	003
84	25328	1190,1	84025,4	209
85	25711	1190,4	84004,3	027
86	26292	1190,9	83972,3	001
87	26490	1191,0	83961,4	082
88	26753	1191,2	83947,0	003
89	26890	1191,3	83939,5	102
90	27495	1191,8	83906,2	003

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I(u,a)
91	27667	1191,9	83896,8	144
92	27868	1192,1	83885,7	007
93	28156	1192,3	83869,9	009
94	28555	1192,6	83848,0	047
95	28657	1192,7	83842,4	007
96	28770	1192.8	83836.3	085
97	28823	1192.8	83833.3	158
98	29050	1193.0	83820.9	019
99	29357	1193.3	83804.1	098
100	29390	1193.3	83802.3	099
101	29799	1193.6	83779.9	002
102	29912	1193 7	83773 7	060
103	30016	1193.8	83768.0	051
104	30132	1193,9	83761.6	007
101	30395	1193,3	83747.3	004
106	30953	1104,1 11945	83716.7	182
107	31035	1194.6	83712.3	012
101	31330	1191,9	83696 1	109
100	31401	1194,0	83692.3	077
110	31556	1191,9	83683.8	032
111	31859	1195,0 1195,2	83667.2	002
119	32170	1195,2 1195,5	83650.3	002
112	39/19	1195,5 1195,6	83637.0	018
110	32412	1195,0 1105 7	83633.2	015
115	32581	1195,7	83627.8	015
116	32812	1196.0	83615.2	142
117	32856	1196,0	83612.8	048
118	32000	1196,0	83605.5	010
110	33170	1196,1	83505.7	314
120	33257	1196,2 1196,3	83591.0	974
120	33560	1190,5 1106.5	83574.0	000
121	33722	1190,9 1196 7	83565.6	041
122	33834	1196,8	83559.5	023
120	33011	1196,8	83555 3	020
124	34337	1190,0	83532.1	034
126	34481	1197,1	83524.3	197
120	3/653	1197,9	83514.0	050
121	34717	1107.4	83407 5	075
120	34074	1107.6	83497 5	019
120	35144	1107.8	83488 9	012
	35330	1107.0	83477.6	010
129	35616	1108.1	83/62 6	010
	36058	1108 5	83438 G	050
	26182	1108 G	82/21 8	030
	36650	1108.0	83406 /	039
199	00000	1190,9	00400,4	020

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
136	36965	1199,2	83389,4	198
137	37043	1199,3	83385,1	055
138	37430	1199,6	83364,1	230
139	37777	1199,8	83345,3	007
140	37871	1199,9	83340,2	010
141	38283	1200,2	83317,9	185
142	38907	1200,7	83284,2	165
143	39256	1201,0	83265,3	016
144	39741	1201,4	83239,1	009
145	39923	1201,5	83229,2	019
146	40261	1201,8	83211,0	028
147	40399	1201,9	83203,5	018
148	40629	1202,1	83191,1	022
149	40912	1202.3	83175.8	007
150	41098	1202,4	83165,8	003
151	41146	1202,5	83163,2	014
152	41390	1202.6	83150.0	201
153	41911	1203,1	83121,9	089
154	42490	1203.5	83090.7	023
155	42792	1203,7	83074,5	035
156	42928	1203,8	83067,2	026
157	43053	1203,9	83060,4	026
158	43093	1204,0	83058,3	059
159	43410	1204,2	83041,2	004
160	43660	1204,4	83027,8	008
161	43737	1204,5	83023,6	056
162	43902	1204,6	83014,8	022
163	44282	1204,9	82994,4	008
164	44655	1205,2	82974,3	085
165	45086	1205,5	82951,2	045
166	45685	1206,0	82919,0	008
167	45866	1206,1	82909,3	030
168	46301	1206,5	82886,0	348
169	46399	1206,6	82880,8	304
170	46529	1206,7	82873,8	072
171	47005	1207,0	82848,3	023
172	47250	1207,2	82835,2	049
173	47643	1207,5	82814,2	136
174	47723	1207,6	82809,9	016
175	47801	1207,6	82805,7	012
176	48890	1208,5	82747,5	049
177	49021	1208,6	82740,5	037
178	49053	1208,6	82738,8	035
179	49223	1208,8	82729,7	003
180	49384	1208,9	82721,1	009

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I(u,a)
193	54594	1212,9	82444,0	021
194	55063	1213,3	82419,2	004
195	55231	1213,4	82410,3	050
196	55450	1213,6	82398,7	141
197	55766	1213,9	82381,9	004
198	56108	1214,1	82363,8	111
199	56246	1214,2	82356,5	003
200	56549	1214,5	82340,5	019
201	56646	1214,5	82335,4	002
202	56886	1214,7	82322,7	005
203	56963	1214,8	82318,6	007
204	57122	1214,9	82310,2	068
205	57176	1215,0	82307,4	129
206	57434	1215,2	82293,7	791
207	58081	1215,7	82259,6	2070
208	58596	1216,1	82232,4	465
209	58839	1216,3	82219,6	098
210	59208	1216,5	82200,1	022
211	59462	1216,7	82186,7	097
212	59552	1216,8	82182,0	040
213	59781	1217,0	82169,9	039
214	60192	1217,3	82148,3	008
215	60461	1217,5	82134,2	015
216	60631	1217,7	82125,2	043
217	60666	1217,7	82123,4	027
218	60995	1217,9	82106,1	017
219	61093	1218,0	82100,9	065
220	61373	1218,2	82086,2	022
221	61713	1218,5	82068,3	028
222	62347	1219,0	82035,0	031
223	62500	1219,1	82027,0	009
224	62640	1219,2	82019,7	007
225	63008	1219,5	82000,4	052
226	63111	1219,6	81995,0	002
227	63189	1219,6	81990,9	020
228	63459	1219,9	81976,7	004
229	63801	1220,1	81958,8	008
230	64015	1220,3	81947,6	003
231	64110	1220,4	81942,6	005
232	65045	1221,1	81893,7	011
233	65317	1221,3	81879,4	007
234	65540	1221,5	81867,8	026
235	65627	1221,5	81863,2	008
236	66110	1221,9	81838,0	008

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I(u,a)
237	66259	1222,0	81830,2	006
238	67023	1222,6	81790,3	059
239	67322	1222,9	81774,7	003
240	67459	1223,0	81767,6	121
241	67564	1223,1	81762,1	010
242	67956	1223,4	81741,7	068
243	68201	1223,6	81728,9	211
244	68939	1224,1	81690,5	009
245	69851	1224,8	81643,1	007
246	70554	1225,4	81606,5	032
247	70743	1225,5	81596,7	013
248	72061	1226,6	81528,3	005
249	72168	1226,7	81522,8	003
250	72434	1226,9	81509,0	008
251	72508	1226,9	81505,2	025
252	73390	1227,6	81459,5	001
253	73884	1228,0	81433,9	038
254	73923	1228,0	81431,9	014
255	74207	1228,2	81417,2	003
256	74309	1228,3	81412,0	008
257	74399	1228,4	81407,3	018
258	74614	1228,6	81396,2	139
259	74687	1228,6	81392,4	442
260	74845	1228,7	81384,3	022
261	75032	1228,9	81374,6	387
262	75240	1229,0	81363,9	007
263	75426	1229,2	81354,3	073
264	75689	1229,4	81340,7	077
265	75831	1229,5	81333,4	033
266	76116	1229,7	81318,7	029
267	76198	1229,8	81314,4	079
268	76447	1230,0	81301,6	023
269	77180	1230,6	81263,8	051
270	77627	1230,9	81240,8	005
271	77841	1231,1	81229,8	089
272	78213	1231,4	81210,7	002
273	78370	1231,5	81202,6	008
274	78972	1232,0	81171,6	014
275	79220	1232,2	81158,9	200
276	79688	1232,5	81134,9	068
277	79817	1232,6	81128,2	039
278	80301	1233,0	81103,4	087
279	80374	1233,1	81099,7	041
280	80691	1233,3	81083,4	065
281	81563	1234,0	81038,7	019

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
282	81773	1234,1	81028,0	002
283	82717	1234,9	80979,7	016
284	82756	1234,9	80977,7	056
285	83068	1235,2	80961,7	003
286	83359	1235,4	80946,8	007
287	83466	1235,5	80941,4	007
288	83646	1235,6	80932,2	022
289	84350	1236,2	80896,2	067
290	84955	1236,6	80865,4	009
291	85500	1237,0	80837,6	010
292	86840	1238,1	80769,4	031
293	87774	1238,8	80721,9	186
294	88289	1239,2	80695,7	006
295	88889	1239,7	80665,2	036
296	89205	1239,9	80649,2	051
297	89319	1240,0	80643,4	034
298	89447	1240,1	80636,9	115
299	89608	1240,3	80628,8	044
300	90414	1240,9	80587,9	004
301	90749	1241,1	80571,0	004
302	90950	1241,3	80560,8	055
303	91096	1241,4	80553,4	021
304	91179	1241,5	80549,2	003
305	91494	1241,7	80533,3	011
306	91613	1241,8	80527,3	007
307	91750	1241,9	80520,3	009
308	92420	1242,4	80486,5	016
309	92858	1242,8	80464,4	122
310	93361	1243,2	80439,0	143
311	93528	1243,3	80430,5	108
312	93723	1243,5	80420,7	053
313	93930	1243,6	80410,3	002
314	94278	1243,9	80392,7	019
315	94777	1244,3	80367,6	008
316	94816	1244,3	80365,6	017
317	97316	1246,3	80239,9	005
318	97467	1246,4	80232,3	112
319	98078	1246,9	80201,7	016
320	98581	1247,2	80176,4	003
321	98760	1247,4	80176,4	306
322	99367	1247,9	80167,5	017
323	99511	1248,0	80137,1	007
324	99740	1248,2	80129,8	005
325	100086	1248,4	80118,4	012
326	100991	1249,1	80101,1	003

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma(ext{cm}^{-1})$	I(u,a)
327	101176	1249,3	80046,6	011
328	101344	1249,4	80038,2	023
329	101526	1249,5	80029,1	080
330	101754	1249,7	80017,7	007
331	102665	1250,4	79972,2	007
332	102974	1250,7	79956,8	096
333	103130	1250,8	79949,0	017
334	103490	1251,1	79931,1	030
335	103591	1251,2	79926,1	004
336	103693	1251,2	79921,0	008
337	103926	1251,4	79909,4	002
338	104312	1251,7	79890,2	004
339	104670	1252,0	79872,4	047
340	104734	1252,0	79869,2	016
341	105724	1252,8	79820,0	008
342	106643	1253,5	79774,3	067
343	106819	1253,7	79765,6	005
344	107191	1254,0	79747,1	036
345	107421	1254,1	79735,7	009
346	107620	1254,3	79725,9	058
347	108215	1254,8	79696,4	100
348	108482	1255,0	79683,2	014
349	108686	1255,1	79673,1	110
350	108763	1255,2	79669,3	053
351	109319	$1255,\!6$	79641,8	027
352	109395	1255,7	79638,0	003
353	109769	1256,0	79619,5	009
354	109994	1256,1	79608,4	003
355	110172	1256,3	79599,6	050
356	110390	1256,5	79588,8	053
357	110617	1256,6	79577,6	017
358	110784	1256,8	79569,4	045
359	111353	1257,2	79541,3	028
360	111671	1257,5	$79525,\!6$	034
361	111932	1257,7	79512,7	027
362	112159	1257,8	79501,5	041
363	112288	1257,9	79495,2	005
364	113488	1258,9	79436,1	027
365	113679	1259,0	79426,7	016
366	113965	1259,2	79412,6	009
367	114161	1259,4	79403,0	003
368	114275	1259,5	79397,4	014
369	114353	1259,5	79393,6	016
370	114546	1259,7	79384,1	005
371	114690	1259,8	79377,0	011

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
372	114748	1259,9	79374,1	015
373	114748	1259,9	79370,1	011
374	115305	1260,3	79346,8	034
375	115474	1260,4	79338,5	191
376	115900	1260,8	79317,6	024
377	116113	1260,9	79307,1	045
378	116228	1261,0	79301,5	006
379	116296	1261,1	79298,2	025
380	116392	1261,1	79293,5	011
381	116720	1261,4	79277,4	011
382	116774	1261,4	79274,7	021
383	116937	1261,6	79266,8	105
384	117329	1261,9	79247,6	026
385	118080	1262,5	79210,8	031
386	118384	1262,7	79195,9	002
387	118490	1262,8	79190,7	006
388	118673	1262,9	79181,8	032
389	119064	1263,2	79162,7	073
390	119689	1263,7	79132,2	038
391	120066	1264,0	79113,7	026
392	120336	1264,2	79100,6	036
393	121005	1264,7	79067,9	228
394	121192	1264,9	79058,8	025
395	121350	1265,0	79051,1	041
396	121637	1265,2	79037,2	035
397	121861	1265,4	79026,2	311
398	122050	1265,5	79017,0	012
399	122219	1265,7	79008,8	042
400	122680	1266,0	78986,4	006
401	122798	1266,1	78980,6	017
402	123264	1266,5	78958,0	009
403	123564	1266,7	78943,4	003
404	123767	1266,9	78933,5	005
405	123935	1267,0	78925,4	003
406	124136	1267,2	78915,6	015
407	124198	1267,2	78912,6	009
408	124687	1267,6	78888,9	012
409	124796	1267,7	$78883,\!6$	008
410	124971	1267,8	78875,1	208
411	125185	1268,0	78864,7	208
412	125829	1268,5	78833,5	016
413	126011	1268,6	78824,7	104
414	126305	1268,9	78810,4	059
415	126364	1268,9	78807,6	097
416	126507	1269,0	78800,7	006

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I (u, a)
417	126877	1269,3	78782,7	032
418	126991	1269,4	78777,2	159
419	127279	1269,6	78763,3	043
420	127541	1269,8	78750,6	118
421	128095	1270,3	78723,8	010
422	128283	1270,4	78714,8	026
423	128554	1270,6	78701,7	009
424	128851	1270,9	78687,3	058
425	129070	1271,0	78676,8	004
426	129145	1271,1	78673,1	008
427	129275	1271,2	78666,9	005
428	129426	1271,3	78659,6	009
429	129803	1271,6	78641,4	005
430	129889	1271,7	78637,2	013
431	130247	1271,9	78620,0	036
432	131175	1272,7	78575,3	004
433	131384	1272,8	78565,2	015
434	131736	1273,1	78548,3	010
435	133045	1274,1	78485,4	130
436	133294	1274,3	78473,4	009
437	133824	1274,7	78448,0	028
438	134068	1274,9	78436,3	022
439	134194	1275,0	78430,2	008
440	135393	1276,0	78372,8	005
441	135718	1276,2	78357,2	010
442	135871	1276,3	78349,9	037
443	136233	1276,6	78332,6	012
444	136506	1276,8	78319,5	014
445	136909	1277,1	78300,2	132
446	137073	1277,3	78292,4	111
447	137104	1277,3	78290,9	096
448	137241	1277,4	78284,4	021
449	137443	1277,6	78274,7	145
450	137660	1277,7	78264,3	131
451	137864	1277,9	78254,6	094
452	138971	1278,7	78201,8	049
453	139222	1278,9	78189,8	032
454	139366	1279,1	78183,0	018
455	139428	1279,1	78180,0	005
456	139624	1279,3	78170,7	004
457	139939	1279,5	78155,7	006
458	140327	1279,8	78137,2	017
459	140349	1279,8	78136,1	016
460	140454	1279,9	78131,1	019
461	140688	1280,1	78120,0	005

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I (u, a)
462	140769	1280,1	78116,1	006
463	141018	1280,3	78104,3	034
464	141257	1280,5	78092,9	008
465	141353	1280,6	78088,4	007
466	141502	1280,7	78081,3	033
467	141608	1280,8	78076,3	014
468	141682	1280,9	78072,7	037
469	141919	1281,0	78061,5	005
470	142171	1281,2	78049,5	048
471	142542	1281,5	78031,9	022
472	142684	1281,6	78025,1	004
473	142816	1281,7	78018,9	085
474	143326	1282,1	77994,7	004
475	143523	1282,3	77985,3	004
476	143805	1282,5	77972,0	025
477	143919	1282,6	77966,6	078
478	144573	1283,1	77935,6	054
479	145221	1283,6	77904,9	005
480	145640	1283,9	77885,1	091
481	146161	1284,3	77860,5	013
482	147076	1285,1	77817,2	056
483	147357	1285,3	77804,0	004
484	147622	1285,5	77791,5	005
485	147888	1285,7	77778,9	021
486	148044	1285,8	77771,6	100
487	148334	1286,0	77757,9	023
488	148419	1286,1	77753,9	026
489	148839	1286,4	77734,1	021
490	148965	1286,5	77728,2	045
491	149839	1287,2	77687,0	036
492	149968	1287,3	77680,9	061
493	150090	1287,4	77675,2	025
494	150502	1287,7	77655,8	007
495	150750	1287,9	77644,2	126
496	150788	1288,0	77642,4	083
497	151245	1288,3	77620,9	085
498	151760	1288,7	77596,7	183
499	151885	1288,8	77590,9	290
500	151969	1288,9	77586,9	268
501	152243	1289,1	77574,1	037
502	152470	1289,3	77563,4	020
503	152641	1289,4	77555,4	024
504	152760	1289,5	77549,8	008
505	152993	1289,7	77538,9	129
506	153230	1289,9	77527,8	038

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$oldsymbol{\sigma}(\mathbf{cm}^{-1})$	I(u,a)
507	153307	1289,9	77524,2	095
508	153501	1290,1	77515,1	004
509	153865	1290,4	77498,0	099
510	154852	1291,1	77451,8	008
511	155319	1291,5	77430,0	004
512	155642	1291,7	77414,9	001
513	156074	1292,1	77394,7	007
514	156217	1292,2	77388,1	011
515	156572	1292,5	77371,5	005
516	156939	1292,8	77354,4	049
517	157658	1293,3	77320,8	136
518	158171	1293,7	77296,9	148
519	159053	1294,4	77255,9	015
520	159228	1294,5	77247,7	250
521	159842	1295,0	77219,2	018
522	160420	1295,5	77192,3	025
523	161755	1296,5	77130,4	010
524	161879	1296,6	77124,6	005
525	162037	1296,7	77117,3	253
526	162196	1296,9	77109,9	036
527	162369	1297,0	77101,9	018
528	162671	1297,2	77087,9	163
529	162818	1297,3	77081,1	006
530	163061	1297,5	77069,8	050
531	163366	1297,8	77055,7	057
532	163862	1298,1	77032,8	027
533	163980	1298,2	77027,3	079
534	164848	1298,9	76987,2	429
535	166001	1299,8	76933,9	023
536	166750	1300,4	76899,4	060
537	167224	1300,8	76877,5	004
538	167703	1301,1	76855,5	245
539	168652	1301,9	76811,8	108
540	169010	1302,2	76795,3	227
541	169379	1302,5	76778,4	207
542	169937	1302,9	76752,7	008
543	170483	1303,3	76727,7	269
544	170855	1303,6	76710,6	003
545	170967	1303,7	76705,5	013
546	171302	1303,9	76690,1	018
547	171498	1304,1	76681,1	007
548	171837	1304,4	76665,6	067
549	172051	1304,5	76655,8	013
550	172462	1304,9	76637,0	233
551	173059	1305,3	76609,6	004

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma(\mathbf{cm}^{-1})$	I (u, a)
552	173418	1305,6	76593,2	020
553	173659	1305,8	76582,2	007
554	173972	1306,0	76567,9	169
555	174303	1306,3	76552,8	012
556	174998	1306,8	76521,0	003
557	175184	1307,0	76512,5	010
558	175509	1307,2	76497,7	097
559	175600	1307,3	76493,6	010
560	175771	1307,4	76485,8	083
561	176605	1308,1	76447,7	072
562	176683	1308,1	76444,2	291
563	177055	1308,4	76427,2	039
564	177273	1308,6	76417,3	004
565	177859	1309,1	76390,7	018
566	178036	1309,2	76382,6	004
567	178129	1309,3	76378,4	089
568	178423	1309,5	76365,0	102
569	179049	1310,0	76336,6	104
570	179768	1310,5	76303,9	013
571	180284	1311,0	76280,5	065
572	180364	1311,0	76276,9	135
573	180822	1311,4	76256,1	003
574	180937	1311,5	76250,9	042
575	181251	1311,7	76236,7	047
576	181849	1312,2	76209,6	131
577	181963	1312,3	76204,4	080
578	182379	1312,6	76185,6	168
579	182438	1312,6	76182,9	159
580	182636	1312,8	76174,0	005
581	183396	1313,4	76139,6	010
582	183878	1313,8	76117,8	141
583	184057	1313,9	76109,7	019
584	184281	1314,1	76099,6	024
585	185339	1314,9	76051,9	002
586	185767	1315,2	76032,6	009
587	186097	1315,5	76017,7	002
588	186516	1315,8	75998,9	024
589	187123	1316,3	75971,6	004
590	187226	1316,4	75966,9	002
591	187619	1316,7	75949,2	156
592	188504	1317,4	75909,5	007
593	188677	1317,5	75901,7	082
594	188733	1317,5	75899,2	015
595	189777	1318,4	75852,3	048
596	190131	1318,6	75836,5	024

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
597	190652	1319,0	75813,1	070
598	191301	1319,5	75784,0	007
599	191481	1319.7	75776.0	019
600	192625	1320.6	75724,8	033
601	193639	1321,4	75679.5	072
602	194122	1321.7	75658.0	016
603	194682	1322.2	75633.0	002
604	195020	1322.4	75617.9	007
605	195458	1322.8	75598.4	012
606	196047	1323.2	75572.2	008
607	196936	1323.9	75532.6	398
608	197390	1324.3	75512.4	019
609	197798	1324.6	75494,3	034
610	198513	1325.2	75462,6	007
611	198727	1325,3	75453,1	093
612	199078	1325,6	75437,5	034
613	199494	1325,9	75419,0	003
614	201025	1327,1	75351,2	130
615	201315	1327,3	75338,4	283
616	201377	1327,4	$75335,\!6$	235
617	202055	1327,9	75305,7	023
618	202478	1328,3	75287,0	072
619	202779	1328,5	75273,7	025
620	203230	1328,8	$75253,\!8$	073
621	203573	1329,1	75238,6	176
622	204173	1329,6	75212,2	239
623	204762	1330,0	75186,2	123
624	205027	1330,2	75174,5	088
625	205691	1330,8	75145,3	127
626	205842	1330,9	75138,6	015
627	206385	1331,3	75114,7	001
628	206546	1331,4	75107,7	151
629	207274	1332,0	75075,7	028
630	207579	1332,2	75062,3	030
631	208819	1333,2	75007,9	146
632	209017	1333,3	74999,2	120
633	209238	1333,5	74989,5	022
634	209593	1333,8	74973,9	035
635	209953	1334,1	74958,2	014
636	210132	1334,2	74950,3	014
637	210526	1334,5	74933,1	424
638	210921	1334,8	74915,8	013
639	210958	1334,9	74914,2	016
640	211308	1335,1	74898,9	031
641	211543	1335,3	74888,6	016

Suite de TAB. A. 1

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I (u, a)
642	211642	1335,4	74884,3	089
643	211976	1335,7	74869,7	395
644	212101	1335,8	74864,2	220
645	212192	1335,8	74860,2	186
646	212242	1335,9	74858,1	159
647	212242	1336,2	74840,6	012
648	212938	1336,4	74827,7	004
649	213058	1336,5	74822,4	031
650	213123	1336,5	74819,6	030
651	213847	1337,1	74788,0	054
652	214310	1337,5	74767,8	097
653	214369	1337,5	74765,3	176
654	214864	1337,9	74743,7	070
655	215045	1338,0	74735,8	082
656	215125	1338,1	74732,3	010
657	215348	1338,3	74722,6	298
658	215717	1338,6	74706,6	010
659	216990	1339,6	74651,2	006
660	217794	1340,2	74616,3	006
661	218201	1340,5	74598,7	002
662	218379	1340,6	74591,0	020
663	218571	1340,8	74582,6	012
664	219265	1341,3	74552,6	024
665	219420	1341,5	74545,9	029
666	219619	1341,6	74537,2	169
667	219723	1341,7	74532,7	013
668	220451	1342,3	74501,2	075
669	220620	1342,4	74493,9	017
670	221121	1342,8	74472,3	016
671	221499	1343,1	74455,9	003
672	221641	1343,2	74449,8	003
673	221928	1343,4	74437,4	007
674	222174	1343,6	74426,8	004
675	223377	1344,5	74374,9	046
676	223522	1344,7	74368,6	003
677	223774	1344,8	74357,7	035
678	224073	1345,1	74344,9	090
679	224194	1345,2	74339,7	020
680	224278	1345,2	74336,0	078
681	224332	1345,3	74333,7	041
682 CO2	224481	1345,4	(4327,3	008
683	224634	1345,5	74320,7	001
084	224840	1345,7	(4311,0	160
080 696	225272	1340,0	(4293,3	020
080	220391	1340,1	(4288,1	024
087	225614	1340,3	(42/8,5	120

\mathbf{N}° Raie	Position (μm)	λ (Å)	$\sigma({ m cm}^{-1})$	I(u,a)
688	225824	1346,4	74269,5	022
689	226222	1346,8	74252,4	025
690	226422	1346,9	74243,8	019
691	226846	1347,2	74225,6	119
692	227867	1348,0	74181,8	003
693	228219	1348,3	74166,7	002
694	228323	1348,4	74162,2	091
695	228623	1348,6	74149,4	047
696	228669	1348,7	74147,4	014
697	229179	1349,1	74125,6	022
698	229337	1349,2	74118,8	005
699	229636	1349,4	74106,0	143
700	229950	1349,7	74092,6	006
701	230007	1349,7	74090,1	030
702	230476	1350,1	74070,1	004
703	230814	1350,3	74055,6	005
704	231297	1350,7	74035,0	024
705	231722	1351,0	74016,8	040
706	232515	1351,7	73983,0	078
707	232563	1351,7	73980,9	023
708	232810	1351,9	73970,4	075
709	232870	1351,9	73967,8	037
710	233092	1352,1	73958,4	024
711	233597	1352,5	73936,9	089
712	233635	1352,5	73935,2	031
713	234479	1353,2	73899,3	039
714	234866	1353,5	73882,8	026
715	234922	1353,5	73880,4	066
716	235049	$1353,\!6$	73875,0	073
717	235971	1354,4	73835,8	031
718	236139	1354,5	73828,7	003
719	236608	1354,9	73808,8	058
720	236921	1355,1	73795,5	226
721	237517	$1355,\!6$	73770,2	005
722	237907	1355,9	73753,7	022
723	238463	1356,3	73730,1	061
724	238565	1356,4	73725,8	005
725	238719	1356,5	73725,8	008
726	238770	1356,5	73719,3	039
727	238870	1356,6	73717,1	004
728	239213	1356,9	73698,4	067
729	239264	1356,9	73696,2	122
730	241180	1358,4	73615,2	027

Annexe B

Niveaux d'énergie théoriques et expérimentales du Th III

- B.1 Niveaux d'énergie impairs du Th III
- B.2 Niveaux d'énergie pairs du Th III

B. Niveaux d'énergie théoriques et expérimentales du Th III

Conf°	E _{exp}	E _{ajustée}	J	g	Mélange des	$\operatorname{configurat}^{\circ} \operatorname{et}$	Terme.spectraux
5f6d	0,000	0,300	4	0,868	69%5f 6d 3H	$28\%~5\mathrm{f6d}~1\mathrm{G}$	3% 5f6d 3F
5f6d	510,758	590,000	2	0,698	72%5f 6d 3F	$19\%~5\mathrm{f7s}~3\mathrm{F}$	8% 5f6d 1D
5f6d	3188,301	3170,500	4	1,004	47% 5f6d 1G	28% 5f6d $3\mathrm{H}$	22% 5f6d 3F
5f6d	4489,641	4331,200	5	1,034	100% 5f6d 3H	/	/
5f6d	4826,826	4632,300	3	1,060	58%5f 6d 3F	$28\%~5\mathrm{f7s}~1\mathrm{F}$	13% 5f7s 3F
5f6d	5060,544	5989,100	3	0,874	$58\%~5\mathrm{f6d}~3\mathrm{G}$	$16\%~5\mathrm{f7s}~3\mathrm{F}$	16% 5 f 6 d 1 F
5f6d	8436,824	8279,500	6	1,167	100% 5f6d 3H	/	/
5f6d	8141,749	8290,100	4	1,218	48%5f 6d 3F	$38\%~5\mathrm{f7s}~3\mathrm{F}$	7% 5f6d 1G
5f6d	6288,221	8446,500	2	1,046	$63\%~5\mathrm{f}6\mathrm{d}~1\mathrm{D}$	15%5f 6d 3 P	13% 5f6d 3F
5f6d	7921,088	8891,200	1	0,737	$70\%~5\mathrm{f6d}~3\mathrm{D}$	18%5f 6d 3 P	11%5f 6d 1 P
5f6d	8980,557	9859,000	4	1,060	93% 5f6d 3G	4% 5f 6d $3\mathrm{F}$	1% 5f6d 1G
5f6d	10180,766	11193,400	2	1,240	77% 5f6d 3D	22% 5f 6d $3\mathrm{P}$	1% 5f6d 1D
5f6d	$10741,\!150$	11367,700	3	1,165	55%5f 6d 3D	$30\%~5\mathrm{f6d}~1\mathrm{F}$	8% 5f6d 3G
5f6d	$11232,\!615$	11372,100	0	0,000	99% 5f6d 3P	1% 6d7p 3P	/
5f6d	11123,179	11474,800	1	1,252	73% 5f6d 3P	24% 5f6d $3\mathrm{D}$	2% 5f6d 1P
5f6d	$11276,\!807$	12657,000	5	1,192	96% 5f6d 3G	4% 5f6d 1H	/
5f6d	13208,214	13889,600	2	1,331	61%5f 6d 3 P	23% 5f6d $1\mathrm{D}$	$14\%~5\mathrm{f6d}~3\mathrm{D}$
5f6d	15453,411	15437,600	3	1,134	$50\%~5\mathrm{f6d}~1\mathrm{F}$	43% 5f6d 3D	4% 5f6d 3G
5f6d	19009,908	20186,400	5	1,008	96% 5f6d 1H	4% 5f6d 3G	/
5f6d	20710,949	20668,800	1	1,011	85% 5f6d 1P	8% 5f6d 3P	5% 5f6d 3D
$5 \mathrm{f7s}$	$2527,\!095$	2369,000	3	1,064	43% 5f7s 3F	37% 5f6d 3F	$16\% 5 \mathrm{f7s} 1\mathrm{F}$
$5 \mathrm{f7s}$	3181,502	3515,000	2	0,686	79% 5f7s 3F	14% 5f6d 3F	5% 5f6d 1D
$5 \mathrm{f7s}$	6310,807	6042,700	4	1,200	58% 5f7s 3F	23% 5f6d 3F	16% 5 f 6 d 1 G
5f7s	7500,605	7452,100	3	0,954	$39\% 5 \mathrm{f7s} 1\mathrm{F}$	29% 5f6d 3G	26% 5f7s 3F
6d7p	37280,229	37783,300	2	0,793	64% 6d7p 3F	$29\% \ 6d7p \ 1D$	3% 6 d7 p 3 D
6d7p	39280,863	40142,700	1	0,767	61% 6d7p 3D	18% 6d7p 1P	9% 6d7p 3P
6d7p	44088,281	44682,000	2	1,135	33% 6d7p 1D	31% 6d7p 3D	23% 6d7p 3P
6d7p	44464,958	44769,200	3	1,113	84% 6d7p 3F	13% 6d7p 3D	2% 6d7p 1F
6d7p	47679,970	46204,200	2	1,026	58% 6d7p 3D	21% 6d7p 3F	19% 6d7p 1D
6d7p	49980,670	49461,400	3	1,252	71% 6d7p 3D	15% 6d7p 3F	13% 6d7p 1F
6d7p	50992,570	50941,800	1	1,303	47% 6d7p 3P	25% 7s7p 3P	13% 6d7p 1P
6d7p	$51745,\!370$	51336,300	0	0,000	92% 6d7p 3P	6% 7s7p 3P	1% 5f6d 3P
6d7p	53052,470	52030,200	4	1,251	99% 6d7p 3F	$1\% 5 \mathrm{f7s} 3\mathrm{F}$	
6d7p	$53151,\!570$	52300,500	2	1,419	48% 7s7p 3P	34% 6d7p 3P	12% 6d7p 1D
6d7p	53939,270	53960,600	1	1,186	35% 6d7p 3P	29% 6d7p 1P	29% 7s7p 1P
6d7p	55552,370	57388,200	3	1,052	82% 6d7p 1F	15% 6d7p 3D	1% 5 f7 s 1F
		10500 100					,
7s7p	42259,714	43539,400	0	0,000	94% 7s7p 3P	6% 6d7p 3P	
7s7p	45063,970	45090,000		1,226	63% 7s7p 3P	22% 6d7p 3D	8% 7s7p 1P
7s7p	55399,370	55590,700	2	1,463	51% 7s7p 3P	40% 6d7p 3P	6% 6d7p 1D
7s7p	69001,000	69686,400	$\mid 1$	1,020	53% 7s7p 1P	35% 6d7p 1P	/

TAB. B.1 – Comparaison des niveaux d'énergie expérimentale et théorique (parité impair)

Conf°	E exp	E _{ajustée}	J	g	Mélange des	$\operatorname{configurat}^{\circ} \operatorname{et}$	Ter.spectraux
5f8s	74644,270	74651,900	2	0,666	98% 5f8s 3F	1% 6d8p 3F	1% 5f7d 3F
5f8s	74784,310	74836,900	3	1,051	60% 5f8s 3F	38% 5f8s 1F	1% 6 d8 p 3F
5f8s	78929,560	79488,300	4	1,218	86% 5f8s 3F	7% 5f7d 3G	4% 5f7d 1G
5f8s	79082,840	79654,400	3	1,027	58% 5f8s 1F	38% 5f8s 3F	2% 5f7d 3G
	,	,		,			
5f7d	78327,710	78451,800	3	0,794	80% 5f7d 3G	13% 5 f7 d 1F	4% 6d6f 3G
5f7d	78417,260	78517,500	4	0,889	62% 5f7d $3\mathrm{H}$	29% 5 f7 d 1G	5% 5f7d 3G
5f7d	78332,730	78519,100	2	0,762	$73\%~5\mathrm{f7d}~3\mathrm{F}$	$23\%~5\mathrm{f7d}~1\mathrm{D}$	1% 5 f7 d 3P
5f7d	79329,560	79213,800	4	1,008	$36\%~5\mathrm{f7d}~3\mathrm{G}$	29% 5f7d 3H	15% 5 f7 d 1G
5f7d	79646,360	79572,700	3	1,073	$63\%~5\mathrm{f7d}~3\mathrm{F}$	$19\%~5\mathrm{f7d}~1\mathrm{F}$	9% 5f7d 3D
5f7d	79484,150	79773,900	1	0,578	82% 5f7d $3\mathrm{D}$	13% 5f7d 1P	2% 6d6f 3D
5f7d	79915,980	79994,000	2	1,079	$53\%~5\mathrm{f7d}~3\mathrm{D}$	$22\%~5\mathrm{f7d}~1\mathrm{D}$	$15\%~5\mathrm{f7d}~3\mathrm{F}$
5f7d	80137,220	80123,200	5	1,039	$67\%~5\mathrm{f7d}$ 3H	$23\%~5\mathrm{f7d}~1\mathrm{H}$	8% 5f7d 3G
5f7d	80784,250	81015,600	1	1,354	$75\%~5\mathrm{f7d}$ 3P	$15\%~5\mathrm{f7d}~1\mathrm{P}$	6% 5f7d 3D
5f7d	80906,300	81089,000	0	0,000	97% 5f7d $3\mathrm{P}$	1%6d 6f 3 P	1% 6d8p 3P
5f7d	82348,620	82416,200	4	1,050	$46\%~5\mathrm{f7d}~3\mathrm{G}$	29% 5f7d 1G	$15\%~5\mathrm{f7d}~3\mathrm{F}$
5f7d	82827,050	82969,700	3	1,125	$34\%~5\mathrm{f7d}~3\mathrm{F}$	$31\%~5\mathrm{f7d}~3\mathrm{D}$	$24\%~5\mathrm{f7d}~1\mathrm{F}$
5f7d	83023,210	83064,600	5	1,148	$67\%~5\mathrm{f7d}~3\mathrm{G}$	$22\%~5\mathrm{f7d}$ 3H	7% 5f7d 1H
5f7d	83552,910	83457,300	4	1,186	$74\%~5\mathrm{f7d}~3\mathrm{F}$	$23\%~5\mathrm{f7d}~1\mathrm{G}$	1% 5 f7 d 3 H
5f7d	83237,740	83490,100	2	1,113	42% 5f7d $3\mathrm{D}$	31% 5 f7 d 1D	13% 5f7d3P
5f7d	83962,900	83894,000	6	1,167	$100\%~5\mathrm{f7d}$ 3H	/	/
5f7d	84239,020	84295,400	5	1,047	62%5f7d 1H	$21\%~5\mathrm{f7d}~3\mathrm{G}$	$11\%~5\mathrm{f7d}$ 3H
5f7d	84374,160	84324,500	3	1,181	$54\%~5\mathrm{f7d}~3\mathrm{D}$	$38\%~5\mathrm{f7d}~1\mathrm{F}$	3% 5f7d 3G
5f7d	84532,540	84719,200	2	1,380	74% 5f7d $3\mathrm{P}$	$21\%~5\mathrm{f7d}~1\mathrm{D}$	2% 5f7d 3F
5f7d	85875,650	85990,700	1	1,069	66%5f7d 1 P	$21\%~5\mathrm{f7d}~3\mathrm{P}$	8% 5f7d 3D
6d6f	94657,940	94047,800	4	1,027	56% 6d 6f $1\mathrm{G}$	18%6d 6f 3F	13% 6d6f 3H
6d6f	94816,590	94435,400	2	0,769	72%6d 6f 3 F	22%6d 6f 1D	5% 6d 6f $3\mathrm{D}$
6d6f	95158,390	94815,900	3	0,939	45%6d 6f 3F	45% 6d 6f $3\mathrm{G}$	5% 6d 6f $3\mathrm{D}$
6d6f	95379,940	94996,500	4	0,888	70%6d 6f 3H	21% 6d 6f $3\mathrm{G}$	7% 6d6f 3F
6d6f	95544,780	95363,400	3	1,074	$19\%~6\mathrm{d8p}~3\mathrm{D}$	18%6d 6f 1F	17% 6 d6f 3G
6d6f	96316,650	96147,100	5	1,056	71%6d 6f 3H	15%6d 6f 3G	11% 6d6f 1H
6d6f	96394,830	97012,800	2	1,222	35%6d 6f 3 P	28%6d 6f 3D	28%6d 6f 1D
6d6f	96831,720	97539,800	1	0,754	64%6d 6f 3D	15%6d 6f 3 P	15% 6d6f 1P
6d6f	99457,750	98360,500	4	1,114	45%6d 6f 3F	37%6d 6f 1G	8% 6d6f 3H
6d6f	99964,100	99093,400	4	1,103	54%6d 6f 3G	28%6d 6f 3F	7% 6d8p 3F
6d6f	100008,660	99634,600	3	1,124	$36\%~6\mathrm{d}6\mathrm{f}~3\mathrm{D}$	27%6d 6f 3F	13% 6d6f 1F
6d6f	100151,730	99644,400	2	1,000	37%6d 6f 1D	33%6d 6f 3D	23% 6d6f 3F
6d6f	100616,040	99659,200	5	1,167	76% 6d 6f $3{\rm G}$	20%6d 6f 3H	4% 5f7d 3G
6d6f	/ /	99682,100	6	1,167	100%6d 6f 3H	/	/
6d6f	100918,210	101127,800	3	1,131	44%6d 6f 1F	38%6d 6f 3D	8% 6d8p 1F
6d6f	101332,700	101514,100	2	1,350	58%6d 6f 3 P	29%6d 6f 3D	9% 6d6f 1D
6d6f	101580,170	101805,500	1	1,267	74%6d 6f 3 P	21%6d 6f 3D	2% 6d6f 1P

B. Niveaux d'énergie théoriques et expérimentales du Th III

Conf°	E exp	E ajustée	J	g	Mélange des	$\operatorname{configurat}^{\circ} \operatorname{et}$	Ter.spectraux
6d6f	/	102203,100	0	0,000	99% 6d6f 3P	1% 5f7d 3P	/
6d6f	102252,700	102457,400	5	1,011	81%6d 6f 1H	9%6d 6f 3H	$6\% 5 \mathrm{f7d} 1 \mathrm{H}$
6d6f	/	104686,300	1	1,024	67%6d 6f 1 P	13% 6d8p 1P	8% 6d6f 3P
6d8p	/	89417,600	2	0,809	62% 6d8p 3F	29% 6d8p 1D	6% 6d8p 3D
6d8p	/	90003,400	1	0,623	79% 6d8p 3D	14% 6d8p 1P	5% 6d8p 3P
6d8p	/	92404,200	2	1,015	55% 6d8 p $3\mathrm{D}$	$27\%~6\mathrm{d8p}~3\mathrm{F}$	$15\% \ 6d8p \ 1D$
6d8p		$93515,\!100$	3	1,081	72% 6d8 p $3\mathrm{F}$	$19\%~6\mathrm{d8p}~1\mathrm{F}$	6% 6d8p 3D
6d8p		93861,700	1	1,278	69% 6d8p 3P	$14\%~6\mathrm{d8p}~1\mathrm{P}$	14% 6d8p $3\mathrm{D}$
6d8p	/	94200,600	0	0,000	99% 6d8p 3P	$1\%~5\mathrm{f7d}~3\mathrm{P}$	/
6d8p	/	95265,200	2	1,154	35% 6d8p 3D	31% 6d8p 1D	23% 6d8p 3P
6d8p	/	96072,400	3	1,140	39% 6d8p 3D	13%6d 6f 3F	12%6d 6f 3G
6d8p	/	98768,800	4	1,217	$86\%~6\mathrm{d8p}~3\mathrm{F}$	7%6d 6f 3G	4% 6d6f 1G
6d8p	/	98902,100	2	1,349	69% 6d8p 3P	$22\%~6\mathrm{d8p}~1\mathrm{D}$	$2\%~6\mathrm{d8p}~3\mathrm{D}$
6d8p	/	98994,800	3	1,096	$43\%~6\mathrm{d8p}~1\mathrm{F}$	31% 6d8p $3\mathrm{D}$	10%6d 6f 1F
6d8p	/	100506,600	1	1,056	55% 6d8 p $1\mathrm{P}$	$21\%~6\mathrm{d8p}~3\mathrm{P}$	9% 6d6f 1P

Suite du TAB. B. 1

B. Niveaux d'énergie théoriques et expérimentales du Th III

Conf°	E _{exp}	E _{ajustée}	J	g	Mélange des	$configurat^{\circ} et$	Terme.spectraux
6d2	63,267	74,500	2	0,768	67% 6d2 3F	20% 6d2 1D	6% 5f2 3F
6d2	5090,057	3708,000	0	0,000	67% 6d2 3P	$16\% \ 6d2 \ 1S$	11% 5f2 3P
6d2	4056,020	4078,700	3	1,084	91% 6d2 3F	9% 5f2 3F	/
6d2	4676,432	4794,600	2	1,031	32% 6d2 1D	21% 6d2 3F	16% 6d2 3P
6d2	6537,812	6470,200	4	1,194	69% 6d2 3F	$18\% \ 6d2 \ 1G$	8% 5f2 3F
6d2	7875,827	6574,200	1	1,501	85% 6d2 3P	15% 5f2 3P	/
6d2	10440,240	9532,600	2	1,325	$53\%~6\mathrm{d}2$ 3P	$17\% \ 6d2 \ 1D$	10% 5f2 3P
6d2	10542,898	1063,8200	4	1,052	61% $6d2$ $1G$	21% 6d2 3F	14% 5f2 1G
6d2	18993,313	1930,6900	0	0,000	41% 7s2 1S	37% 6d2 1S	16% 5f2 1S
6d7s	5523,881	5494,400	1	0,499	98% 6d7 3D	2% 5f7p 3D	/
6d7s	7176,107	6826,400	2	1,197	76% 6d7 3D	12% 6d2 3P	4% 6d2 1D
6d7s	9953,580	9743,200	3	1,334	$98\%~6\mathrm{d}7~3\mathrm{D}$	2% 5f7p 3D	/
6d7s	16037,641	16154,300	2	0,999	60% 6d7 1D	15% 5f2 1D	9% 6d2 1D
	,	,		,			
7s2	11961,133	11050,700	0	0,000	$53\% \ 7s2 \ 1S$	26% 6d2 1S	$15\%~6\mathrm{d}2$ 3P
5f2	15148,519	14846,800	4	0,811	94% 5f2 3H	4% 6d2 1G	1% 5f2 1G
5f2	17887,409	17491,200	5	1,033	100% 5f2 3H	/	/
5f2	18863,869	19055,000	2	0,698	84% 5f2 3F	6% 6d2 3F	$5\% \ 6d7 \ 1D$
5f2	20770,895	20265,200	6	1,163	98% 5f2 3H	2% 5f2 1I	/
5f2	20840,488	21038,900	3	1,084	91% 5f2 3F	9% 6d2 3F	/
5f2	21783,869	22009,300	4	1,176	64% 5f2 3F	23% 5f2 1G	7% 6d2 3F
5f2	25972,172	26077,900	4	1,068	59% 5f2 1G	25% 5f2 3F	$10\% \ 6d2 \ 1G$
5f2	28349,961	28150,200	6	1,004	97% 5f2 1I	2% 5f2 3H	/
5f2	28232,502	28688,100	2	1,156	48% 5f2 1D	29% 5f2 3P	10% 6d2 1D
5f2	29299,515	29320,300	0	0,000	83% 5f2 3P	13% 6d2 3P	$2\%~5\mathrm{f}2~1\mathrm{S}$
5f2	30402,855	30426,900	1	1,501	85% 5f2 3P	15% 6d2 3P	/
5f2	32867,274	33024,200	2	1,319	$54\%~5\mathrm{f}2$ 3P	$26\%~5\mathrm{f}2~1\mathrm{D}$	10% 6d2 3P
5f2	51161,630	51419,900	0	0,000	72% 5f2 1S	$17\% \ 6d2 \ 1S$	3% 6d7d 1S
5f7p	33562,349	32613,900	3	0,830	71% 5f7p 3G	$21\%~5\mathrm{f7p}~1\mathrm{F}$	7% 5f7p 3F
5f7p	34996,087	34079,300	2	0,842	$57\%~5\mathrm{f7p}~3\mathrm{F}$	20% 5 f7p 1D	$16\%~5\mathrm{f7p}~3\mathrm{D}$
5f7p	38580,600	38487,800	4	1,095	$52\%~5\mathrm{f7p}~3\mathrm{G}$	$27\%~5\mathrm{f7p}~3\mathrm{F}$	20% 5 f7 p 1G
5f7p	38431,640	38677,300	3	1,171	41% 5f7p 3D	38% 5f7p 3F	$18\% 5 {\rm f7p} 1 {\rm F}$
5f7p	42313,055	42515,300	3	0,979	$41\%~5\mathrm{f7p}~3\mathrm{F}$	$29\%~5\mathrm{f7p}~1\mathrm{F}$	$26\%~5\mathrm{f7p}~3\mathrm{G}$
5f7p	43701,665	43676,600	4	1,061	45% 5f7p 3G	39% 5 f7p 1G	$15\% 5 {\rm f7p} 3 {\rm F}$
5f7p	43759,222	43793,400	2	0,954	$48\%~5\mathrm{f7p}~3\mathrm{D}$	$38\%~5\mathrm{f7p}~3\mathrm{F}$	$13\%~5\mathrm{f7p}~1\mathrm{D}$
5f7p	44603,100	44550,500	1	0,499	98% 5f7p 3D	$2\%~6\mathrm{d}7~3\mathrm{D}$	/
5f7p	47421,939	48078,300	5	1,200	100% 5 f7p 3G	/	/
5f7p	47261,099	48476,400	4	1,145	57% 5f7p 3F	40% 5 f7p 1G	$2\%~5\mathrm{f7p}~3\mathrm{G}$
5f7p	47471,480	48531,300	3	1,187	53% 5f7p 3D	32% 5 f7p 1F	13% 5f7p 3F
5f7p	47805,940	50460,700	2	1,046	$60\%~5\mathrm{f7p}~1\mathrm{D}$	$34\%~5\mathrm{f7p}~3\mathrm{D}$	$3\%~5\mathrm{f7p}~3\mathrm{F}$

TAB. B.2 – Comparaison des niveaux d'énergie expérimentale et théorique (parité pair)

$\operatorname{Conf}^{\circ}$	E _{exp}	E _{ajustée}	J	g	Mélange des	$\operatorname{configurat}^{\circ} \operatorname{et}$	Term.spectraux
6d8s	81706,370	81804,100	1	0,514	86%6d8s 3D	7% 6d7d 3D	3% 5f8p 3D
6d8s	/	82071,900	2	1,112	61% 6d8s $3\mathrm{D}$	$28\%~6\mathrm{d8s}~1\mathrm{D}$	3% 5f8p 3D
6d8s	/	86427,600	3	1,253	70% 6d8s 3D	8% 6d7d 1F	5% 5f8p 3D
6d8s		86769,500	2	0,948	30% 6d8s 1D	22% 6d8s 3D	13% 6d7d 3F
	,	,		,			
6d7d	83358,660	82936,300	1	1,072	$26\% \ 6\mathrm{d7d} \ 1\mathrm{P}$	21% 5f 6f $1\mathrm{P}$	13% 6d7d 3D
6d7d	85213,260	84341,600	1	1,361	25% 5f 6f $3\mathrm{S}$	22% 6d7d $3\mathrm{D}$	21% 6d7d 3S
6d7d	83702,110	84403,400	3	0,960	33% 6d7d $3\mathrm{G}$	30% 6d7d 1F	11% 6d7d 3D
6d7d	85003,470	84964,800	2	1,149	53% 6d7d $3\mathrm{D}$	$31\%~5\mathrm{f}6\mathrm{f}~3\mathrm{D}$	3% 6d7d 3F
6d7d	85099,050	85287,800	3	1,024	39% 6d7d 3G	21% 6d7d $3\mathrm{D}$	11% 5f6f 3D
6d7d	86514,290	85615,000	2	0,925	31% 6d7d $3\mathrm{F}$	$25\% \ 6d7d \ 1D$	10% 5f6f 3F
6d7d	86160,360	86199,600	4	1,058	63% 6d7d 3G	17% 5f6f 3G	6% 5f6f 1G
6d7d	88959,880	86620,000	1	1,014	32% 6d7d $1\mathrm{P}$	25% 6d7d $3\mathrm{D}$	18% 5f6f 1P
6d7d	88558,640	87449,100	3	1,036	33% 6d7d 1F	17% 5f8p 3G	12% 6 d7 d 3 D
6d7d	89886,910	87696,400	2	1,211	31% 6d7d $3\mathrm{P}$	14% 6d7d $3\mathrm{F}$	14% 7P2 3P
6d7d	/	87716,500	0	0,000	39% 6d7d $3\mathrm{P}$	23% 5f 6f $3\mathrm{P}$	$14\% \ 6d7d \ 1S$
6d7d	89722,540	88047,400	3	1,024	$48\% \ 6\mathrm{d7d} \ 3\mathrm{F}$	16% 5f6f 3F	11% 5f8p 3G
6d7d	90084,560	88916,200	5	1,119	$55\% \ 6d7d \ 3G$	24%5f 6f 3H	20% 5f6f 1H
6d7d	91922,250	89719,700	2	0,998	$20\% \ 6d7d \ 1D$	$18\%~6\mathrm{d}7\mathrm{d}~3\mathrm{F}$	13% 5f6f 1D
6d7d	92265,170	89829,600	4	1,160	58% 6d7d $3\mathrm{F}$	17% 5f6f 1G	15% 5f6f 3G
6d7d	/	90036,800	1	1,506	27% 5f 6f $3\mathrm{P}$	$23\%~7\mathrm{P2}~3\mathrm{P}$	$19\% \ 6d7d \ 3P$
6d7d	/	90433,000	4	1,023	44% 6d7d $1\mathrm{G}$	24% 5f 6f $3\mathrm{G}$	11% 5f8p 1G
6d7d	/	90852,100	0	0,000	42% 6d7d $1\mathrm{S}$	27% 6d7d $3\mathrm{P}$	25% 5f6f 1S
5f8p	86086,370	87616,900	3	1,013	35% 5f8p $3\mathrm{G}$	14% 5f8 p $1\mathrm{F}$	11%6d8s 3D
5f8p	86705,640	88301,500	2	0,829	54% 5f8 p $3\mathrm{F}$	14% 6d8s $1\mathrm{D}$	9% 5f8p 3D
5f8p	89316,510	90442,600	3	0,974	$49\%~5\mathrm{f8p}~3\mathrm{F}$	$29\%~5\mathrm{f8p}~3\mathrm{G}$	16% 5f8p 1F
5f8p	90010,020	91324,900	4	1,039	64% 5f8p $3\mathrm{G}$	$18\%~5\mathrm{f8p}~1\mathrm{G}$	11% 6 d7 d 1G
5f8p	90125,680	91448,900	2	1,030	53% 5f8p $3\mathrm{D}$	$19\%~5\mathrm{f8p}~3\mathrm{F}$	16% 5f8p 1D
5f8p	/	91820,900	1	0,500	96% 5f8p 3D	$4\%~6\mathrm{d8s}~3\mathrm{D}$	/
5f8p	/	92629,700	4	1,128	$46\%~5\mathrm{f8p}~3\mathrm{F}$	$27\%~5\mathrm{f8p}~1\mathrm{G}$	23% 5f8p 3G
5f8p	91071,370	92636,000	3	1,118	33% 5f8p 1F	30% 5f8p 3F	27% 5f8p 3D
5f8p	94126,470	95498,600	4	1,130	50% 5f8p $3\mathrm{F}$	$41\%~5\mathrm{f8p}~1\mathrm{G}$	7% 5f8p 3G
5f8p	94144,540	95719,500	5	1,200	100% 5f8p $3\mathrm{G}$	/	/
5f8p	/	95824,800	3	1,229	65% 5f8p $3\mathrm{D}$	24% 5f8 p $1\mathrm{F}$	7% 5f8p 3F
5f8p	/	96993,900	2	1,101	$48\%~5\mathrm{f8p}~1\mathrm{D}$	$26\%~5\mathrm{f8p}~3\mathrm{D}$	$10\%~5\mathrm{f}\mathrm{6f}~3\mathrm{P}$
5f6f	86933,970	86445,300	5	0,840	95% 5f 6f $3\mathrm{I}$	3% 5f 6f $1{\rm H}$	1% 5f6f 3H
5f6f	89007,590	87724,200	4	0,929	48%5f 6f 3H	25% 5f 6f $1\mathrm{G}$	8% 6 d7 d 1G
5f6f	88386,700	87803,100	6	1,028	84% 5f 6f $3\mathrm{I}$	$11\%~5\mathrm{f}6\mathrm{f}~1\mathrm{I}$	5% 5f6f 3H
5f6f	87667,630	87876,500	5	1,117	$35\%~6\mathrm{d7d}~3\mathrm{G}$	24%5f 6f 3H	21% 5f6f 1H
5f6f	88454,580	88551,400	1	0,785	$36\%~5\mathrm{f}6\mathrm{f}~3\mathrm{D}$	21% 5f 6f $1\mathrm{P}$	20% 6d7d 1P
5f6f	88584,540	88576,300	4	1,015	35%5f 6f 3H	21% 6d7d $3\mathrm{G}$	15% 6d7d 3F

B. Niveaux d'énergie théoriques et expérimentales du Th III

Conf°	E _{exp}	E _{ajustée}	J	g	Mélange des	$\operatorname{configurat}^{\circ} \operatorname{et}$	Term.spectraux
5f6f	87425,390	88693,800	3	0,898	48% 5f6f 3G	23% 5f6f 1F	$10\% \ 6\mathrm{d7d} \ 1\mathrm{F}$
5f6f	89262,490	89836,500	3	1,075	18% 5f 6f $3{\rm G}$	$18\%~6\mathrm{d}7\mathrm{d}~3\mathrm{F}$	$16\%~6\mathrm{d}7\mathrm{d}~3\mathrm{D}$
5f6f	89313,240	89936,400	2	1,119	30% 5f 6f $3\mathrm{D}$	23% 6d7d 3D	9% 5f6f 1D
5f6f	90318,750	90519,700	2	0,978	$33\%~5\mathrm{f}6\mathrm{f}~3\mathrm{F}$	12% 5f6f 3P	11% 5f6f 1D
5f6f	91586,400	90999,800	7	1,143	100% 5f6f 3I	/	/
5f6f	/	91053,900	1	1,386	$19\% \ 6d7d \ 3P$	18% 5f6f 3D	17% 5f6f 3S
5f6f	92102,570	92248,300	5	1,011	48% 5f6f 3H	47% 5f6f 1H	4% 5f6f 3I
5f6f	93045,030	92400,900	6	1,147	86% 5f6f 3H	9% 5f6f 3I	5% 5f6f 1I
5f6f	/	92886,300	1	1,329	28% 5f6f 1P	21% 5f6f 3S	19% 6d7d 3S
5f6f	92807,880	92892,400	3	1,166	39% 5f6f 3D	33% 5f6f 1F	$14\% \ 6d7d \ 3D$
5f6f	92671,490	93091,400	5	1,179	79% 5f6f 3G	9% 6d7d 3G	8% 5f6f 1H
5f6f	91294,880	93219,600	4	1,034	32% 5f6f 3G	30% 5f6f 1G	$15\% \ 6d7d \ 1G$
5f6f	93692,130	93388,300	3	1,065	57% 5f 6f $3\mathrm{F}$	11% 6d7d 3F	10% 5f6f 3G
5f6f	94017,560	94165,700	6	1,016	83% 5f6f 1I	9% 5f6f 3H	7% 5f6f 3I
5f6f	93808,320	94302,100	4	1,185	58% 5f6f 3F	16% 5f6f 1G	16% 6d7d 3F
5f6f	ĺ	95111,700	$\mid 0 \mid$	0,000	64% 5f6f 3P	20% 6d7d 3P	8% 6d7d 1S
5f6f	94547,760	95417,100	2	1,060	48% 5f6f 1D	17% 6d7d 1D	14% 7P2 3P
5f6f	/	96646,600	1	1,504	66% 5f6f 3P	22% 6d7d 3P	4% 7P2 3P
5f6f	96615,000	97063,100	2	1,359	54% 5f6f 3P	15% 6d7d 3P	10% 5f8p 1D
5f6f	ĺ	100719,000	$\mid 0 \mid$	0,000	56% 5f6f 1S	22% 6d7d 1S	9% 5f6f 3P
	,	,		,			
6d5g	/	115678,600	5	1,066	37% 6d5g 3H	36% 6d5g 1H	$27\%~6\mathrm{d5g}~3\mathrm{G}$
6d5g	/	115771,100	4	0,874	70% 6d5g 3H	21% 6d5g 3G	$7\% \ 6d5g \ 1G$
6d5g	/	115928,600	3	0,868	$58\%~6\mathrm{d5g}~3\mathrm{G}$	25% 6d5g 1F	17% 6d5g 3F
6d5g	/	116034,500	4	1,107	41% 6d5g 3F	32% 6d5g 1G	24% 6d5g 3G
6d5g	/	116396,900	5	0,866	82% 6d5g 3I	10% 6d5g 3H	8% 6d5g 1H
6d5g	/	116642,700	6	1,042	48% 6d5g 3I	33% 6d5g 1I	18% 6d5g 3H
6d5g	/	116787,500	3	1,216	$58\%~6\mathrm{d5g}~3\mathrm{D}$	24% 6d5g 3F	$17\% \ 6d5g \ 1F$
6d5g	/	116920,600	2	0,898	43% 6d5g 3F	33% 6d5g 1D	24% 6d5g 3D
6d5g	/	121522,500	5	1,095	52% 6d5g 3G	43% 6d5g 1H	5% 6d5g 3I
6d5g	/	121618,700	5	1,039	53% 6d5g $3\mathrm{H}$	21% 6d5g 3G	$13\%~6\mathrm{d5g}~1\mathrm{H}$
6d5g	/	121657,300	4	0,990	$47\%~6\mathrm{d5g}~3\mathrm{G}$	24% 6d5g 3H	23% 6d5g 1G
6d5g	/	121710,700	6	1,138	80% 6d5g $3\mathrm{H}$	16% 6d5g 3I	3% 6d5g 1I
6d5g	/	121802,000	3	0,915	42% 6d5g 3G	$36\% \ 6d5g \ 1F$	$22\%~6\mathrm{d5g}~3\mathrm{F}$
6d5g	/	121912,500	4	1,129	52% 6d5g $3\mathrm{F}$	38% 6d5g 1G	8% 6d5g 3G
6d5g	/	122356,300	7	1,143	100% 6d5g $3\mathrm{I}$		
6d5g	/	122359,800	3	1,168	41% 6d5g $3\mathrm{D}$	36% 6d5g 3F	$22\%~6\mathrm{d5g}~1\mathrm{F}$
6d5g	/	122445,400	2	0,859	$56\%~6\mathrm{d5g}~3\mathrm{F}$	$28\%~6\mathrm{d5g}~3\mathrm{D}$	$16\%~6\mathrm{d5g}~1\mathrm{D}$
6d5g	/	122721,100	6	1,010	$63\%~6\mathrm{d5g}~1\mathrm{I}$	36%~6d5g~3I	$1\%~6\mathrm{d5g}~3\mathrm{H}$
6d5g	/	122973,600	1	0,499	100% 6d5g $3\mathrm{D}$		
6d5g	/	123123,000	2	1,076	51% 6d5g $1\mathrm{D}$	$48\% \ 6\mathrm{d5g} \ 3\mathrm{D}$	1% 6d5g 3F

Suite du TAB. B. 2

Conf°	E_{exp}	E _{ajustée}	J	g	Mélange des	$\operatorname{configurat}^{\circ} \operatorname{et}$	Terme.spectraux
7p2	/	81043,000	0	0,000	76% 7P2 3P	12% 6d7d 3P	8% 7P2 1S
7p2	/	85893,300	1	1,531	$54\%~7\mathrm{P2}~3\mathrm{P}$	31% 6d7d $3\mathrm{P}$	6% 5f6f 3S
7p2	/	92388,800	2	1,192	$30\%~7\mathrm{P2}~3\mathrm{P}$	$17\%~5\mathrm{f}6\mathrm{f}~3\mathrm{F}$	16% 5f6f 3D
7p2	/	101839,500	2	$1,\!159$	$58\%~7\mathrm{P2}~1\mathrm{D}$	$26\%~7\mathrm{P2}~3\mathrm{P}$	6% 6d7d 1D
7p2	/	113651,400	0	0,000	$79\% \ 7\mathrm{P2} \ 1\mathrm{S}$	$8\% \ 6\mathrm{d7d} \ 1\mathrm{S}$	$8\%~7\mathrm{P2}~3\mathrm{P}$

Suite du TAB. B. 2

Bibliographie

- [1] E.U. Condon et G. H. Shortley. The Theory of Atomic Spectra, Cambridge University Press, Cambridge (1935).
- [2] G. Racah. Phys. Rev. **62**, 438 (1942).
- [3] G. Racah. Phys. Rev. **63**, 367 (1943).
- [4] G. Racah. Phys. Rev. **76**, 1352 (1949).
- [5] E. Biémont. Spectroscopie atomique, Instrumentation et structures atomiques, Editions De Boeck Université (2006).
- [6] B.R Judd. Théorie des configurations électroniques intervenant dans les spectres des terres rares. Notes de cours, Paris (1963).
- [7] R. D. Cowan. The Theory of Atomic Structure and Spectra, University of California Press, Berkeley (1981).
- [8] B. R. Judd. Low-Lying Levels in Certain Actinide Atoms. Phys. Rev. 135, 613 (1962).
- [9] C. Cohen-Tannoudji, B. Diu et F. Laloë. Mécanique Quantique, Tomes 1 et 2, Herman, Paris (1986,1988).
- [10] A. Thorne, U. Litzén et S. Johansson. Spectrophysics, Principles and Applications, Springer Edition (1999).
- [11] K. Bockasten. Ark. Fysik. 9, 457 (1955).
- [12] J. sugar. J. Opt. Soc. Am. **53**, 831(1963).
- [13] R. L. Kelly. J. Phys. Chem. Ref. Data 16, Supp. Vol. 1 (1987).
- [14] J. F. Wyart et V. Kaufman. Physica Scripta, Sweden, **29**, 941(1981).
- [15] J. Blaise, J. F. Wyart, R. Engleman, B. A. Palmer. 15th Conf. Europ. Group Atomic Spectrosc., Madrid, Espagne, juillet 5-8 1983.
- [16] P. F. A. Klinkenberg et P. H. M. Uylings. Physica Scripta, Sweden, 34, 413(1986).