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Introduction

Extreme points are well known in the geometric theory of Banach spaces, opti-
mization, and convex analysis, and they are without a doubt the most fundamental
concepts in the study of the behavior of balls in Banach spaces, as evidenced by a large
amount of research in this area (see, e.g., [6,33,34,45,54,65,93,95] ). To justify the
importance of this notion, we can cite for example the famous Krein Milman theorem
which states that any compact convex set K in a Banach space is the convex hull of its
extreme points set.

Extreme points were initially investigated in finite dimensional spaces, then mathe-
maticians have dealt with them in infinite dimensional spaces. These studies have led
to useful results in classical Banach spaces. We can cite for example results obtained
in Orlicz spaces, see for example [21,36,49,94] and references therein.

Let us recall that, intuitively speaking, a point x in a convex set K is called an
extreme point of K if and only if x does not belong to the interior of a line segment
contained in K.

The notion of extreme point is also connected with the strict convexity. More
precisely, a Banach space X is said to be strictly convex (or rotund) if every point of
S (X) is an extreme point of B(X) i.e., S (X) = extr [B(X)] .

The criteria for extreme points and strict convexity in classical Orlicz spaces (i.e.
Banach spaces of which the Lp spaces are a special case) and Musielak-Orlicz spaces
(i.e. spaces which are generalization of Lebesgue spaces with variable exponents Lp(x))
equipped with the Orlicz norm, the Luxemburg norm, and p-Amemiya norm, has been
obtained earlier see for instance [21,35,49,90].

The main topic treated in this thesis is the characterization of extreme points of
the unit ball of the Besicovitch-Orlicz space of almost periodic functions Bφ a.p.

In order to describe the space Bφ a.p, we begin by reviewing the definitions of
Orlicz spaces and Bohr almost periodic functions.

Initially, almost periodic functions are defined by the Danish mathematician H.

viii



Bohr [15] in 1923 as a natural generalization of the periodicity. Indeed, a continuous
function f : R→ C is said to be Bohr almost periodic, (we write f ∈ AP(R,C)) if for
all ε > 0 the set

T ( f ,ε) := {τ ∈ R, ‖ fτ − f‖
∞
< ε} ,

is relatively dense in R, where fτ is the translation mapping of f , (see [4], [25], [97].)
Bohr almost periodic functions are connected with several branches of mathematics

such as differential equations and optimization. They enjoy important properties, in
particular they are bounded, uniformly continuous and can be defined as uniform
limits of generalized trigonometric polynomials sequences. More precisely,

AP(R,C) = Trig(R,C)‖.‖∞, (1)

where

Trig(R,C) =

{
P(t) =

n

∑
k=1

akekλkt , λk ∈ R, ak ∈ C, n ∈ N

}
.

The equality (1) is the starting point for new generalizations of the concept of
almost periodicity. First, it was generalized to include discontinuous functions by V. V.
Stepanov in 1926 [92] and subsequently by A. S. Besicovitch [12].

In fact, considering the closure of Trig(R,C) with respect to the following pseudo-
norms of Lp type

‖ f‖Sp = sup
x∈R

 x+1∫
x

‖ f (t)‖p dµ

 1
p

, ‖ f‖Bp = lim
T→∞

 1
2T

T∫
−T

‖ f (t)‖p dµ

 1
p

.

Stepanov [92] and A.S. Besicovitch [12] have defined, respectively, the spaces cal-
led Stepanov (Spa.p) and Besicovitch (Bpa.p) spaces of almost periodic functions
containing the class of Bohr almost periodic functions.

The theory of Orlicz spaces was appeared in 1932 in the work of W. Orlicz [85],
it became usually known with the publishing of a monograph on the subject and its
applications by M. A. Krasnoselskii and Ya B. Rutitskii [61]. From the 1980s forward,
the geometry of Orlicz spaces, as well as several topological questions, have been
extensively researched, the various results obtained are published in monographs by S.
Chen [21], J. Musielak [83], M. M. Rao and Z. D. Ren [87], and P. Kosmol et.al [59].

In his well-known paper [47], T.R Hillmann has extended the Bohr almost periodi-
city within the framework of Orlicz spaces, revealing a new space called Besicovitch-

ix



Orlicz of almost periodic functions. Namely, let φ be a Young function. We consider
the (pseudo) modular,

ρBφ ( f ) = lim
T→+∞

1
2T

∫ T

−T
φ(| f (t|))dt, (2)

to which we associate the Luxemburg norm

‖ f‖Bφ = inf{k > 0 : ρBφ (
f
k
)≤ 1}. (3)

The modular space Bφ (R,C) = { f ∈M (R,C) , ρBφ (λ f )< ∞, for someλ > 0} is cal-
led Besicovitch-Orlicz space.

The closure of Trig(R,C) with respect to the norm ‖.‖Bφ allows to define the space
Bφ a.p.(R,C) the space of almost periodic functions in the sense of Besicovitch-Orlicz.

The general structure as well as certain topological properties of these spaces are
studied in [47]. In the recent years, some geometrical properties of Bφ

a.p. (R), have
been considered by M. Morsli and his collaborators in [8,9,76,79,81].

M. Morsli [79] has discussed the criteria of rotundity of Bφ
a.p. (R) equipped with the

Luxemburg norm. He proved that Bφ
a.p. (R) is strictly convex if and only if φ is strictly

convex and has at most polynomial growth (φ satisfies the ∆2-condition see (2.2.1)).
In [81], M. Morsli and F. Bedouhene have characterized the rotundity of Bφ

a.p. (R),
when it is endowed with the Orlicz norm. However, to our knowledge, the criteria
for extreme points has not been discussed yet. The main goal of this thesis is to
characterize extreme points of the unit ball of Bφ

a.p..
The organization of this thesis is as follows.
In the first chapter, we are concerned with the geometric properties of a general

Banach space. First we start with a survey over some of special points of its unit
ball : extreme points, strongly extreme points, denting points, exposed points, strongly
exposed points. We give characterizations of these points in classical Banach spaces and
the relations between them and the strict (uniform) convexity. The results presented
are standard and well known. The second section of this chapter summarizes some
geometric properties of a Banach space such as B- convexity, uniform non squareness,
normal structure, property β . We conclude the chapter with some applications of
the geometric properties in fixed point theory as well as the characterizations of
the reflexivity which is a topological property. In the second chapter, we first recall
definitions and results concerning Orlicz spaces and their geometric. Then we present
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Bohr, Besicovitch and Besicovitch-Orlicz almost periodicity. Many results concerning
the geometry of the Besicovitch- Orlicz space of almost periodic functions are given in
the end of this chapter.

In the third chapter of this thesis, is focused on the extreme points of the unit ball
of the Besicovitch-Orlicz space of almost periodic functions.

In the first section, we have established necessary and sufficient conditions for an
element of the unit sphere of Bφ

a.p(R,C), equipped with the Luxemburg norm to be an
extreme point. The conditions are determined by the structure affine intervals and the
points of strict convexity of φ . The obtained results provides the sufficient conditions
for the strict convexity of Bφ

a.p(R,C) equipped with the Luxemburg norm, which were
presented by M. Morsli in ( [79]). In order to demonstrate our main results, we have
constructed an example to show that f χA (A ∈ Σ(R)) is not in Bφ

a.p(R,C) even when
the function f is in Bφ

a.p(R,C).
In the second section of this chapter, we have characterized the extreme points

of the unit ball of Bφ
a.p(R) endowed with the Orlicz norm (equal to Amemiya norm).

Before giving our principal result about the extreme point of this space, we have
showed several properties of the set K( f ) ( f ∈ Bφ

a.p(R)), the set of real numbers k > 0
for which the infimum is attained in the Amemiya formula.

xi
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On the geometry of Banach spaces

When studying the geometry of a Banach space one often seeks to determine the
geometry of its unit ball. A common way to distinguish "round" and "flat" parts of
the boundary of the unit ball is through extreme and non-extreme points. Among the
extreme points, or "round" parts of the boundary, further refinements can be made,
for example exposed and strongly exposed points. In this chapter we first review
the most important definitions and results about special points of the unit ball of a
Banach space (extreme points, strongly extreme points, denting points, exposed points,
strongly exposed points), and then we look at how these points are connected to other
geometric properties. The last section is devoted to the several conclusions concerning
the geometry of Banach spaces applications : characterization of the reflexivity and
fixed point theory.

1.1 Special points of the unit sphere of a Banach space

1.1.1 Extreme points

Definition 1.1. [64]
A point x in a convex set K is called an extreme point of K (we write x ∈ extr[K]) if it

1



1.1. Special points of the unit sphere of a Banach space

does not belong to the interior of any open line segment joining tow points of K, i.e,

a1,a2 ∈ K and a1 6= a2⇒ x /∈]a1,a2[.

In other words, x ∈ K is said to be an extreme point of K if it can not be written as the
arithmetic mean 1

2 (y+ z) of two distinct points y,z ∈ K. Equivalently x /∈ conv(K\{x}).

In [86], M. A. Picardello has used the following Proposition as another definition
of extreme point.

Proposition 1.1. [23] f ∈ extr[B(X)] if and only if whenever g ∈ X and ‖ f ∓ g‖ ≤ 1
then g = 0.

Proof. Assume f ∈ extr[B(X)],g ∈ X, and ‖ f ±g‖ ≤ 1. Then

f +g ∈ B(X), f −g ∈ B(X) and f =
1
2
[( f +g)+ f −g].

Since f ∈ extr[B(X)], we get f +g = f −g. Which implies that g = 0. Now, suppose that
f ∈ B(X) and x /∈ extr[B(X)]. Then there exist elements g and h of the unit ball such that
f = g+h

2 and h 6= g. So we can write

h = f − 1
2
(g−h) and g = f +

1
2
(g−h).

Hence ‖ f ± 1
2(g−h)‖ ≤ 1 and g−h 6= 0. This is contrary to the hypothesis so it follows

that f ∈ extr[B(X)].

Convexity and extreme points (see [57])

Rotundity is a basic notion in the investigation of geometry of Banach spaces.
Recall that a Banach space (X,‖.‖) is said to be strictly convex if the mid-point of any
line segment joining tow different points on the unit sphere of X does not lie on it.
Namely : a Banach space X is called strictly convex (or rotund) (write SC) if

∀x,y ∈ S(X), such that x 6= y then ‖x+ y
2
‖< 1. (1.1)

Example 1.1. R2 is strictly convex when it is equipped with Euclidean norm, but it is
not strictly convex for the norms ‖.‖1, ‖.‖∞

2



1.1. Special points of the unit sphere of a Banach space

FIGURE 1.1 – Extreme points of B(R2)

Example 1.2. The space C([a,b],R) equipped the norm ‖ f‖= sup{| f (t)| : t ∈ [a,b]} is
not strictly convex. In fact, if we take the functions f ,g defined by

f (t) = 1 and g(t) =
t−a
b−a

, t ∈ [a,b],

we get ‖ f‖= ‖g‖= 1, and f 6= g but the mid-point is in the unit sphere, i.e.,

‖ f +g
2
‖= 1

2
(

max
t∈[a,b]

|1+ t−a
b−a

|
)
= 1.

Lemma 1.1. [57] The sum of an arbitrary norm and a strictly convex norm is also a
strictly convex norm. More generally, if we define a new norm by the following formula

‖x‖p = (‖x‖p +‖x‖p
c )

1
p , 0≤ p < ∞,

where ‖.‖ is arbitrary norm and ‖.‖c is a strictly convex norm, then ‖.‖p is also a strictly
convex norm.

Theorem 1.1. (see [21])
A Banach space. (X,‖.‖) is strictly convex if and only if any point of S(X) is extreme point
of B(X), this means that extr(B(X)) = S(X),

Proof. Suppose that X is strictly convex. Let x∈ S(X) and suppose x= y+z
2 with y,z∈ S(X)

then
‖y+ z

2
‖= ‖x‖= 1,

since X is strictly convex we get x = y = z. Thus x is extreme point of B(X).

3



1.1. Special points of the unit sphere of a Banach space

Now, suppose that any point of S(X) is an extreme point of B(X) then,

∀x,y,z ∈ S(X) : x =
y+ z

2
⇒ x = y = z.

Let x,y ∈ S(X) with x 6= y we assume that

‖x+ y
2
‖= 1 which means that (

x+ y
2

) ∈ S(X) = extr[B(X)].

Thus x = y contradiction with ‖ x+y
2 ‖= 1. Finally, ‖ x+y

2 ‖< 1. So X is strictly convex.

Uniform convexity

The notion of uniformly convex Banach space was introduced by J.A Clarkson in
his paper [24] on the theory of integration of functions whose range lies in a Banach
space. We observed that in the definition of strict convexity the difference 1−‖ x+y

2 ‖
needed not be uniformly bounded from below. This justifies the following definition

Definition 1.2. [6] A Banach space (X,‖.‖) is said to be uniformly convex if, for every
ε > 0, there is a number δ (ε)> 0 such that, for all x, y in X,

(‖x‖= ‖y‖= 1, ‖x− y‖ ≥ ε)⇒‖x+ y
2
‖ ≤ 1−δ (ε).

The number

δX(ε) = inf{1−‖x+ y
2
‖, ‖x‖= ‖y‖= 1, ‖x− y‖> ε},

is called the modulus of convexity of X. The space X is uniformly convex if and only
if, δX(ε)> 0 for all ε ∈ (0,2]. Indeed,

1. If X is uniformly convex, given ε > 0 there exists δ > 0 such that δ ≤ 1−‖x+y
2 ‖

for every x and y such that ‖x‖= ‖y‖= 1 and ε ≤ ‖x− y‖. Therefore δX(ε)> 0.

2. For the converse, assume δX(ε)> 0 for every ε ∈ (0,2]. Fix ε ∈ (0,2] and take x,y
with ‖x‖= ‖y‖= 1 and ε ≤ ‖x− y‖, then

0 < δX(ε)≤ 1−‖x+ y
2
‖,

and therefore ‖ x+y
2 ‖ ≤ 1−δ with δ = δX(ε) which does not depend on x or y.

4



1.1. Special points of the unit sphere of a Banach space

Uniform convexity implies strict convexity, and, at least formally, is strictly stronger,
since it assumes the differences 1−‖ x+y

2 ‖ to be uniformly bounded from below, for all
x,y in X, ‖x‖= ‖y‖= 1, ‖x− y‖ ≥ ε.

Lemma 1.2. (see [2])
Let X be a uniformly convex Banach space. Then we have for any r > 0 and ε with
r ≥ ε > 0 and elements x,y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r, ‖x− y‖ ≥ ε, there exists δ = δ ( ε

r )

such that

‖x+ y
2
‖ ≤ r[1−δ (

ε

r
)]

Proof. Suppose that ‖x‖ ≤ r, ‖y‖ ≤ r, ‖x− y‖ ≥ ε > 0. Then we have

‖x
r
‖ ≤ 1, ‖y

r
‖ ≤ 1 and ‖x

r
− y

r
‖ ≥ ε

r
> 0.

By the definition of uniform convexity, there exists δ = δ ( ε

r )> 0 such that

‖x+ y
2r
‖ ≤ (1−δ ), which yields ‖x+ y

2
‖ ≤ r(1−δ ).

Proposition 1.2. Let H be Hilbert space with dimH ≥ 2. Then

δH(ε) = 1−
√

1− 1
4

ε2.

In particular.
ε2

8
≤ δH(ε)≤

ε2

4
.

Proof. Since H is characterized by the parallelogram identity we have that if x,y ∈ H
satisfy ‖x‖= ‖y‖= 1 and ‖x− y‖= ε, then

‖x+ y
2
‖2 =

1
2
‖x‖2 +

1
2
‖y‖2− 1

4
‖x− y‖2 and ‖x+ y

2
‖=

√
1− 1

4
ε2.

Consequently,

δH(ε) = 1−
√

1− 1
4

ε2.

5



1.1. Special points of the unit sphere of a Banach space

Moreover, as it is easy to see that

1−
√

1− 1
4

ε2 =
ε2

4(1+
√

1− 1
4ε2)

≥ ε2

8
and

ε2

4(1+
√

1− 1
4ε2)

≤ ε2

4
.

Example 1.3.

1. The most immediate example of uniformly convex space is Hilbert space. This
follows from the Parallelogram identity.

2. Lp spaces are uniformly convex for 1 < p < ∞ (see [33])

Remark 1.1. Any uniformly convex space is strictly convex. The tow concepts are equiva-
lent in finite dimensional space. In the case of infinite dimensional Banach spaces these
concepts can be different in the sense that there are strictly convex Banach spaces which
are not uniformly convex as it is illustrated by the following examples :

1. The space C([0,1]) with the norm

‖x‖1 = sup
t∈[0,1]

|x(t)|+(
∫ 1

0
|x(t)|2dt)

1
2

and the space l1 equipped with the equivalent norm

‖x‖0 =
∞

∑
k=1
|xk|+(

∞

∑
k=1
|xk|2)

1
2

are strictly convex (see Lemma 1.1) but they are not uniformly convex (see [57]),
and so on

2. The space l1 equipped with the equivalent norm

‖x‖1 =
∞

∑
k=1
|xk|+(

∞

∑
k=1
|xk

k
|2)

1
2

is strictly convex (see Lemma 1.1 and theorem 1.1), but it is not uniformly convex.
Recall that a Banach space X is uniformly convex if and only if for all (xn)n,(yn)n

in S(X) we have

lim
n→+∞

‖xn + yn‖= 2 ⇒ lim
n→+∞

‖xn− yn‖= 0 (see [16]).

6



1.1. Special points of the unit sphere of a Banach space

Now, take
xn =

n
n+1

en and yn = xn+1.

For n ∈ N we have

‖xn‖1 =
n

n+1
+

1
n+1

= 1, and ‖yn‖1 = 1,

and

‖xn− yn‖1 = ‖xn + yn‖1 =
2n+1
n+1

+(
1

(n+1)2 +
(n+1)2

n2(n+2)2 )
1
2 → 2

as n→ ∞ and it means that (l1,‖.‖1) is not uniformly convex.

Extreme points of classical Banach spaces

The purpose of this section is to characterize the extreme points of the unit ball
in some well known Banach spaces. We start by recalling that Hilbert spaces are
uniformly convex which implies that extreme points of their unit ball are exactly the
points of norm one which means extr[B(H)] = S(H).

Extreme points of sequence spaces c0 and l1 (see [23])

Theorem 1.2. [23]

1. x ∈ extr[B(l1)] if and only if x = λδ j for some j ∈ N∗ and some complex number λ

with of modulus equal 1. Where δ j = (0,0, ...,0,1,0,0, ...) is the element in l1 which
has a 1 in the j-th position and zeros elsewhere.

2. The unit ball of c0 doesn’t contain an extreme point.

Proof.

1. First we prove that x j = λ , with |λ |= 1 is an extreme point. Suppose

x =
1
2
(y+ z),

where y,z ∈ B(l1). Then

xk =
1
2
(yk + zk) = 0,k ∈ N∗,k 6= j and x j = λ .

7



1.1. Special points of the unit sphere of a Banach space

Since λ is an extreme point of the unit disk in the complex plane we get

x j = y j = z j = λ .

For k 6= j, yk = zk = 0, because ‖y‖= Σ
n∈N∗
|yn| ≤ 1 and ‖z‖= Σ

n∈N∗
|zn| ≤ 1.

Hence x = y = z which implies that x ∈ extr[B(l1)].

Now, suppose ‖x‖= 1 and x 6= λδ j for any j ∈ N∗, with |λ |= 1.

Let xn0 = reiθ , n0 6= 0. Since x 6= λδ j,∀ j ∈ N∗, we have 0 < r < 1.

Define y = (yn),z = (zn) as follows

yn =

{
eiθ n = n0

0 n 6= n0
and zn =

{
0 n = n0

1
1−r xn n 6= n0.

Then ‖y‖= 1 and ‖z‖= Σ
n∈N∗
|zn|= 1

1−r ( Σ
n∈N∗
|xn|− |reiθ |) = (1− r) 1

1−r = 1.

Thus x,y,z ∈ S(l1) and x = ry+(1− r)z, 0 < r < 1, with y 6= z.
Hence x is not an extreme point of B(l1).

2. Let (xn) ∈ B(c0). Since lim
n→+∞

xn = 0 there exists a positive integer n0 such that

|xn0| ≤ 1
2 . Let

yn =

{
xn i f n 6= n0

xn +
1
4 i f n = n0

and zn =

{
xn i f n 6= n0

xn− 1
4 i f n = n0

Then yn,zn ∈ B(c0), yn 6= zn and xn =
1
2(yn + zn). Hence (xn) is not an extreme point

of B(c0).

Extreme points of Lebesgue spaces.

First, note that if 1 < p < +∞, then Lp([0,1]) is uniformly convex so each point of
S(Lp([0,1])) is an extreme point of B(Lp([0,1])) (see [6,53]).

The unit ball in L1([0,1]) has no extreme point. Indeed, Let f : [0,1]→ C such that

‖ f‖=
∫ 1

0
| f (t)|dt ≤ 1

Define g : [0,1]→ R by

g(t) =
∫ t

0
| f (x)|dx.

8



1.1. Special points of the unit sphere of a Banach space

g is continuous and g(0) = 0. Let

ψ(t) = g(t)− 1
2

∫ 1

0
| f (t)|dt,

then by the intermediate value theorem there exists t0 ∈ [0,1] such that

g(t0) =
1
2

∫ 1

0
| f (t)|dt.

Define
h(t) = 2 f (t)χ[0,t0](t), k(t) = 2 f (t)χ[t0,1](t)

we have k+h = 2 f and k 6= h

‖h‖=
∫ 1

0
|2 f (t)χ[0,t0](t)|dt = 2

∫ t0

0
| f (t)|dt = 2g(t0) =

∫ 1

0
| f (t)|dt ≤ 1,

and

‖k‖ =
∫ 1

0
2| f (t)χ[t0,1](t)|dt =

∫ 1

0
2| f (t)|dt−

∫ t0

0
2| f (t)|dt

= 2(‖ f‖−g(t0)) = 2(‖ f‖− 1
2
‖ f‖)≤ 1.

So f is not extreme point of B(L1([0,1])).
Now, we proceed to the case of the space of all essentially bounded functions L∞([0,1]).

We recall that the norm

‖ f‖∞ = esssup
0≤t≤1

| f (t)|= inf{c≥ 0 : µ{t ∈ [0,1] : | f (t)|> c}= 0}.

Theorem 1.3. [23]
f ∈ extr[L∞([0,1]))] if and only if | f (x)|= 1 almost every where on [0,1].

Proof. Suppose | f (x)|< 1 for x ∈ P, where P = {x ∈ [0,1] : | f (x)|> 0} and µ(P)> 0.
Define {

g(x) = f (x)+(1−| f (x)|)
h(x) = f (x)− (1−| f (x)|)

Since 1−| f (x)| ≥ 0, we get

‖g‖∞ = esssup| f +(1−| f |)| ≤ esssup(| f |+1−| f |) = 1.

9
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Similarly we have ‖h‖ ≤ 1. Therefore g,h ∈ B(L∞([0,1])).

f =
g+h

2
and f 6= g

Thus f /∈ extr(B(L∞([0,1]))).
Let | f (x)|= 1 a.e. and suppose f = 1

2(g+h) a.e. where g,h ∈ B(L∞([0,1])).
Then for almost all x ∈ [0,1]

f (x) =
1
2
(g(x)+h(x)), | f (x)|= 1, |g(x)| ≤ 1, |h(x)| ≤ 1

Then
| f (x)|= |g(x)|= |h(x)|= 1 implies f = g = h a.e.

Extreme points of the space C(K) (see [6])

Extreme points of the unit ball of C(K) are the continuous functions f such that
| f (x)|= 1 for all x ∈ K.

Indeed, let f ∈ B(C(K)) and suppose that | f (x)|< 1 on some nonempty subset of K.
Define {

g(t) = f (t)+ 1
2(1−| f (t)|)

h(t) = f (t)− 1
2(1−| f (t)|)

We have g,h ∈C(K) and

|g(t)| ≤ | f (t)|+ 1
2
(1−| f (t)|) = 1

2
(1+ | f (t)|)≤ 1, f orallt ∈ K.

Similarly |h(t)| ≤ 1 for all t ∈ K.

Therefore g,h ∈ B(C(K)), f = 1
2(g+h) and g 6= h. This implies that

f /∈ extr[B(C(K))] which prove that the condition is necessary.
Suppose | f (t)|= 1 for all t ∈ K and let g ∈C(K) be such that

| f (t)±g(t)| ≤ 1 f or all t ∈ K,

by Proposition 1.1, we have g≡ 0. Hence f ∈ extr[B(C(K))].

10



1.1. Special points of the unit sphere of a Banach space

1.1.2 Strongly extreme points

The notion of strongly extreme point is more special than that of extreme point. A
strongly extreme point is extreme, thus justified the vocabulary of strongly.
Intuitively speaking, a strongly extreme point x of a convex set K is a point of K
such that for each real number r > 0, segments of length 2r and centered x are not
uniformly closer to K than some positive number d(x,r). More precisely, we have the
following definitions.

Definition 1.3. [30]
A point x ∈ S(X) is said to be strongly extreme point of B(X) if for any sequences

(xn),(yn)⊂ X with ‖xn‖→ 1,‖yn‖→ 1, and 2x = xn + yn. There implication holds

lim
n→+∞

‖xn− yn‖→ 0.

We denote by sextr[B(X)] the set of strongly extreme point of B(X).

There are equivalent descriptions of strongly extreme points as follows

Definition 1.4. (see [54])

1. A point x in a Banach space X, with ‖x‖= 1 is a strong extreme point of the unit
ball of X if for each ε > 0 there is a δ > 0 such that

max(‖x+ y‖,‖x− y‖)≤ 1+δ implies ‖y‖ ≤ ε.

2. x is strongly extreme point of B(X) if for any sequences (xn),(yn) in B(X) we have

lim
n→∞
‖x− yn + zn

2
‖= 0⇒ lim

n→∞
‖yn− zn‖= 0.

This condition can be replaced by

lim
n→∞
‖x± xn‖= 1⇒ lim

n→∞
‖xn‖= 0.

If the set of all strongly extreme points of B(X) is equal to S(X), then X is said
middle locally uniformly convex.

Remark 1.2. (see [45]) Let S be a convex subset of a Banach space X, if S is compact
then every extreme point of S is strongly extreme point of S. So in R2 the two notions (
extreme points and strongly extreme points) coincide because B(R2) is compact.

11



1.1. Special points of the unit sphere of a Banach space

1.1.3 Denting points

The notion of denting point plays an important role because it is connected with
the Radon- Nikodým Property (RNP). Namely, H. B. Maynard [70] proved that X has
the RNP if and only if every non-empty bounded closed set K in X has at least one
denting point.

Definition 1.5. [67] Let K be a bounded closed convex set of a Banach space X. An
element x in K is called a denting point of K if

x /∈ conv(K\B(x,ε)) f or all ε > 0,

where B(x,ε) = {y : y ∈ X,‖y− x‖< ε}.

Definition 1.6. [14,67]
A point x ∈ S(X) is called a denting point of the unit ball B(X) (we write x ∈

Dent(B(X))) if we have

x /∈ conv{B(X)\[x+ εB(X)]}, f or each ε > 0

. The following is an equivalent description of denting points (see [45,54]) :
A point x ∈ S(X) is a denting point of the unit ball of X if for each ε > 0 the closed

convex hull of the set

{y ∈ X : ‖y‖ ≤ 1 and ‖y− x‖ ≥ ε}

dose not contain x.

Remark 1.3. If x is a denting point of B(X) then x is a strongly extreme point of B(X).
More precisely, we have

Dent[B(X)]⊂ sextr[B(X)]⊂ extr[B(X)].

Example 1.4. The following figure shows denting points of the unit ball of R2 equipped
with Euclidean norm.

12



1.1. Special points of the unit sphere of a Banach space

FIGURE 1.2 – Denting points of unit ball of R2

1.1.4 Exposed points.

x ∈ S(X) is exposed of B(X) if there exists a functional L ∈ X∗ witch attains its
norm only at x. The functional L is assumed to be of norm 1.

Definition 1.7. ( [53]) Let X be a Banach space and let A⊆ X. A point a ∈ X is called
an exposed point of A if there exists a bounded linear functional L ∈ X∗ such that

L(y)< L(a) f or all y ∈ A\{a}.

We call L an exposing functional (or we say that L expose a).
The following is an equivalent definition of exposed points.

1. Given a closed convex set C, a point x ∈ C is exposed if there exists supporting
hyperplane H for C such that H ∩C = {x} (see [48]).

2. A point x ∈ S(X) is called exposed if there exists a continuous linear functional L on
X such that L(x) = ‖L‖= 1 and x is the only point in the unit ball that is mapped
to 1 ( see [10]).

The set of exposed points of a set A will be denoted exp(A).

Proposition 1.3. Every exposed point is an extreme point [53].

Proof. let X be a Banach space and let x be an exposed point of A ⊂ X with exposing
functional L. Suppose there exist y1,y2 ∈ A and λ ∈ (0,1) such that

x = λy1 +(1−λ )y2.

13
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This implies
L(x) = λL(y1)+(1−λ )L(y2)

However, this means we cannot have both L(y1) < L(x) and L(y2) < L(x). This is a
contradiction. Therefore x is an extreme point.

The converse of need do not hold in general but we have the following result :
If extr[B(X)] = S(X). Then all points of S(X) are also exposed.

Example 1.5. [53] In following figure, the point P is exposed but Q isn’t because the
tangent line at Q intersects the running track in infinitely many points.

FIGURE 1.3 – Extreme non exposed point

Example 1.6. [53] For 1 < p < ∞ the exposed points of the unit ball in Lp(X) are the
functions of norm one.

Example 1.7. ( [68]) Consider the set K = conv({(1,1)}∪B(R2) when R2 is equipped
with Euclidean norm. Then x = (1,0) is a denting point of K which is not exposed.

FIGURE 1.4 – The set K ,conv(K\B(x,ε))
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1.2 Other geometric properties of a Banach space

1.2.1 B-convexity and uniform non-squareness

The B-convexity was introduced by A. Beck [7] as a characterization of Banach
spaces X for which the Strong Law of Large Numbers is valid for X-valued random
variables. A general study of B-convexity is given in [7] and [51].

A Banach space X is called uniformly non-l1
n ((n, ε)-convex ) according to the

terminology used by D.P.Giesty [39] if there is a number ε > 0 such that for each n
elements x1,x2, ...,xn of S(X) it is true that

1
n
‖x1± x2± ...± xn‖ ≤ 1− ε,

for some choice of signs.
A Banach space X is called B-convex if it is uniformly non-l1

n for some n≥ 2 [51,63].
Geometrically, a uniformly non-l1

n space is one which does not have dimensional
subspaces whose norms are arbitrarily good approximations of the l1 norm (see
[39, 51, 63]). Note that each uniformly non-l1

n Banach space is uniformly non-l1
n+1

(see [77]).

Remark 1.4. When X is finite dimension, the uniformly non-l1
n of X is said non-l1

n . It
characterized by the number of extreme points of its unit ball, more precisely X is non-l1

n

if and only if
Card (extr[B(X)])≥ 2n+2.

Example 1.8.

1. The space l1
n = {(x1, x2, ..., xn), ‖x‖1 =

n
∑

i=1
|xi|< ∞} is not uniformly non-l1

n , because

Card(extr(B(l1
n))) =Card({∓ei, i = 1,2, ...,n}) = 2n

2. For the space l∞
n = {(x1,x2, ...,xn),‖x‖∞ = max

i=1,n
|x1|< ∞}, we can see that we have

Card(extr[B(l∞
n )]) = 2n,

we will notice that if n = 2, then 2n < 2(n+ 1) and so l∞
2 is not uniformly non-l1

2 .
However l∞

n is uniformly non-l1
n for every n≥ 3.
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Uniform non-squareness

Uniform non-l1
2 Banach spaces are called uniform non-square (see [6,51]), uniform

non-squareness of Banach spaces has been defined by R.C. James [51] as the geometric
property which implies super-reflexivity.

A Banach space (X,‖.‖) is non-square if for any x and y from S(X) we have

min(
‖x+ y‖

2
,
‖x− y‖

2
)< 1,

and it is uniformly non-square if there exists δ ∈ (0,1) such that for any x,y ∈ S(X),
we have

‖x+ y‖
2

≤ 1−δ or
‖x− y‖

2
≤ 1−δ .

This condition is of the same kind as uniform convexity, but involves only points which
are large distance from each other. In the definition of uniform convexity we know
that ‖ x+y

2 ‖ ≤ 1−δ if ‖x− y‖> ε, here we have the same condition if ε = 2(1−δ ).
Note that each uniformly convex Banach space X is uniform-non square, but the
inverse statement is not true : there exist uniformly non-square Banach spaces that
are not rotund. Example R2 equipped with the norm ‖(x1,x2) = ‖max(2|x1|, |x1|+ |x2|)
is not rotund (see the following figure). But it is uniformly non square. Namely

FIGURE 1.5 – The unit ball B(R2) equipped with max(2|x1|, |x1 + x2|)
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B(R2) = {x ∈ R2 : ‖x‖ ≤ 1}

= {x ∈ R2 : |x1| ≤
1
2

et |x2| ≤ 1}∩{x ∈ R2 : |x1|+ |x2| ≤ 1}.

Since B(R2) is compact, and min(‖x+ y‖,‖x− y‖)< 2 for any x,y ∈ B(R2), we have

sup
x,y∈B(R2)

min(‖x+ y
2
‖,‖x− y

2
‖)< 1.

1.2.2 Normal structure

The concept of normal structure was introduced in 1948 by M.S. Brodskii et
al. [18] to study fixed points of certain application and it is a property shared by all
uniformly convex spaces. In 1965, W.A. Kirk [56] observed that normal structure
implies that a closed bounded convex subset C of X has the fixed point property if X
is a reflexive Banach space.

Definition 1.8. [89]
A Banach space X is said to have normal structure if every bounded and convex subset of
X has normal structure.

A nonempty bounded, convex subset K of a Banach space X is said to have normal
structure if every convex subset H of K, that contains more then one point, there is a
point x0 ∈ H such that

rH(x0) = sup{‖x0− y‖ : y ∈ H}< diam(H),

where diam(H) = sup{‖x− y‖ : x,y ∈ H} denotes the diameter of H (see the following
figure).

FIGURE 1.6 – The set H has the normal structure.
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The following notions play an important role in the study of normal structure. Let
C be a nonempty bounded subset of a Banach space X. Then a point x0 ∈C is said to
be a diametral point of C if

sup{‖x0− x‖ : x ∈C}= diam(C).

A bounded sequence (xn)n in a Banach space is said to be a diametral sequence if

lim
n→∞

d(xn+1,conv({x1,x2, ...,xn})) = diam({xn}),

where d(x,A) = inf
y∈A

d(x,y).

Theorem 1.4. [2]
Every compact convex subset C of a Banach space X has normal structure.

Proof. Suppose, for contradiction, that C dose not have normal structure. Let D be a
convex subset of C that has at least two points. Because C dose not have normal structure,
all point of D are diametral. Now we construct a sequence (xi)

∞
i=1 in D such that

‖xi− x j‖ = diam(D) for all i, j ∈ N, i 6= j.

For this, let x1 be an arbitrary point in D, then there exists a point x2 ∈ D such that
diam(D) = ‖x1− x2‖. Because D is convex, there exists a point x1+x2

2 ∈ D. Next we choose
a point x3 ∈ D such that

diam(D) = ‖x3−
x1 + x2

2
‖.

Proceeding in the same manner, we obtain a sequence (xn) in D such that

diam(D) = ‖xn+1−
x1 + x2 + ...+ xn

n
‖, n≥ 2.

Because

diam(D) = ‖xn+1−
x1 + x2 + ...+ xn

n
‖

= ‖(xn+1− x1)+(xn+1− x2)+ ...+(xn+1− xn)

n
‖

≤ 1
n
(‖xn+1− x1‖+‖xn+1− x2‖+ ...+‖xn+1− xn‖) = diam(D)
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it follows that diam(D) = ‖xn+1− xi‖, 1≤ i≤ n. This implies that the sequence (xn) has
no convergent subsequences. This contradicts the compactness of C.

Corollary 1.1. ( [2])
Every finite dimensional Banach space has normal structure.

Theorem 1.5. Every closed convex bounded subset C of uniformly convex Banach space
X has normal structure.

Proof. Let D be a closed convex subset of C with diam(D) = d > 0. Let x1 be an arbitrary
point in D.

Choose a point x2 ∈ D such that ‖x1− x2‖ ≥ d
2 . Because D is convex, x1+x2

2 ∈ D. Set
x0 =

x1+x2
2 . By the uniform convexity,

‖u‖ ≤ r,‖v‖ ≤ r and ‖u− v‖ ≥ ε > 0⇒‖u+ v
2
‖ ≤ (1−δX(

ε

r
))r.

Hence for x ∈ D we have

‖x− x0‖ = ‖x− x1 + x2

2
‖= ‖(x− x1)+(x− x2)

2
‖

≤ d(1−δX(
d

2d
)) = d(1−δX(

1
2
))< d (as δX(

1
2
)> 0).

Then

‖x− x0‖ ≤ d(1−δX(
1
2
))< d (1.2)

Consequently,
sup‖x− x0‖ : x ∈ D}< diam(D).

Example 1.9. The space C([0,1]) of continuous real-valued functions with sup norm
doesn’t have normal structure.
To see it, consider the subset C of C([0,1]) defined by

C = { f ∈C([0,1]) : 0 = f (0)≤ f (t)≤ f (1) = 1, t ∈ [0,1]}.

Let f1, f2 ∈C, λ ∈ (0,1) and f = λ f1+(1−λ ) f2. Then f (0) = 0, f (1) = 1 and 0≤ f (t)≤
1 for all t ∈ [0,1]. Hence C is convex. Thus, C is a closed convex bounded subset of C([0,1]
with diam(C) = sup{‖ f −g‖ : f ,g ∈C}= 1. Then each point of C is a diametral point. In
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fact, for f0 ∈C
sup{‖ f0− f‖ : f ∈C}= 1 = diam(C).

Therefore, C dose’nt have normal structure.

Proposition 1.4. [2]
A convex bounded subset C of a Banach space X has normal structure if and only if it
dose not contain a diametral sequence.

Example 1.10. In the space l1, the basis vectors {en} form a diametral sequence. Hence
l1 dose not have normal structure.

Uniform normal structure

Definition 1.9. [89]
X is said to have uniform normal structure if there exists 0 < c < 1 such that for any
subset K as above, there exists x0 ∈ K such that

sup{‖x0− y‖,y ∈ K}< c.diam(K).

Proposition 1.5. The following assertions hold :

1. Let X be a Banach space with δX(
3
2)>

1
4 , Then X has uniform normal structure [37].

2. If ε0(X)< 1, then X has normal structure (where ε0(X) = sup{ε ∈ (0,2],δX(ε) = 0}
the coefficient of convexity of X)(see( [40])).

Theorem 1.6. Every uniformly convex Banach space X has uniformly normal structure.

Proof. For a closed convex bounded subset C of X with d = diam(C) > 0 from (1.2),
there exists a point x0 ∈C such that

‖x− x0‖ ≤ (1−δX(
1
2
))d.

This implies that
sup{‖x− x0‖ : x ∈C} ≤ αdiam(C),

where α = 1−δX(
1
2). Therefore, X has uniformly normal structure.
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1.2.3 Property β

In 1987, S. Rolewicz [88] introduced the property called by him property β . It is
intermediate between convexity and nearly uniform convexity, and defined by the
drop property and the Kuratowski measure.

Recall that

1. X is said to be nearly uniformly convex (we write NUC) if for every ε > 0
there exists δ ∈]0,1[ such that for every sequence (xn) ⊂ B(X) with sep(xn) =

inf{‖xn− xm‖ : n 6= m} ≥ ε, we have

conv((xn))∩ (1−δ )B(X) 6= /0.

2. X has the drop property (we write (D)) if for every closed set C disjoint with
B(X) there exists an element x ∈C such that

D(x,B(X))∩B(X) = {x}.

D(x,B(X)) = conv({x}∪B(X)) is the drop determined by x, (x /∈ B(X)).

FIGURE 1.7 – Drop D(x,B(R2)) determined by x.

Definition 1.10. ( [28,31,72]) A Banach space X is said to have property (β ) if for any
ε > 0, there exists δ > 0 such that

α(D(x,B(X))\B(X))< ε,

whenever 1 < ‖x‖< 1+δ .
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1.2. Other geometric properties of a Banach space

α(D(x,B(X)) is the Kuratowski measure of non compactness of D(x,B(X)). It is
the infimum of such ε > 0 for which there is a covering of D(x,B(X) of a finite number of
sets of diameter less then ε.

Definition 1.11. [8,28,31] A Banach space X has property (β ) if and only if for every
ε > 0 there exists δ > 0 such that for each element x ∈ B(X) and each sequence (xn) in
B(X) with sep(xn)≥ ε there is an index k for which

‖x+ xk

2
‖ ≤ 1−δ .

Summarizing the above discussion we have

(UNC)⇒ (property

β)⇒ (NUC)⇒ (D)⇒ (Reflexive).

1.2.4 P-convexity

A measure of the "massiveness" of the unit ball of a Banach space X is introduced
in terms of an efficiency of the tightest packing of balls of equal size in the unit ball.
Recall that family of balls {B(xi,r)}i∈I of radius r and center xi can be packed in the
unit ball B(X) if

B(xi,r)⊂ B(X), ∀i ∈ I, and intB(xi,r)∩ intB(x j,r) = /0, ∀i 6= j,

where intB(xi,r) is the interior of B(xi,r).
In 1970 C A. Kottman [63] introduced the P-convexity property, as an evaluation

of the efficiency of the tightest packing of balls of equal size in the unit ball of this
space. Namely, A Banach space (X,‖.‖) is said to be P−convex if

P(n,X) = Sup{r : there exist n disjoint balls of radius r in B(X)}< 1
2
,

for some natural number n
This definition is equivalent to the following

Definition 1.12. A Banach space X is P−convex if there exists ε > 0 and n ∈N such that
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1.3. Some applications

for any x1,x2, ...,xn ∈ S (X)

min
{∥∥xi− x j

∥∥ , i, j ≤ n, i 6= j
}
≤ 2− ε

In the following, we summarize some properties of the P−convexity property.

1. P−convexity implies B−convexity

2. Every uniformly convex space is P−convex.

3. Every P−convex space is super-reflexive.

1.3 Some applications

In this section we discuss some applications of geometric properties in the fixed
point theory and in the characterization of the reflexivity of Banach spaces.

1.3.1 Characterization of the reflexivity

First, recall that a Banach space X is reflexive if the canonical injection from X into
X∗∗ is surjective. Reflexivity is a topological property i.e., a reflexive space remains
reflexive for an equivalent norm. This property plays an important role in the theory
of Banach spaces in particular "B(X) is compact in the weak topology σ(X,X∗) if and
only if X is reflexive", and every reflexive space X has the Radon-Nikodym Property.

Remember that Hilbert spaces as finite-dimensional spaces are reflexive, and if
1 < p < ∞ the Lebesgue spaces Lp and lp are reflexive. But L1,L∞, l∞ are not reflexive.

In practise, the above definition of reflexivity is difficult, so it was necessary
to introduce other, simpler properties (e.g., related to the norm) to characterize
reflexivity.

The first contribution in this sense is due to D. Milman in 1938 [71] according
to which "any uniformly convex space is reflexive". This result is paradoxical : a
topological property implied by a metric property.

We note that the same result holds if X is not uniformly convex but can be given a
new norm defining the same topology under which the space is uniformly convex.

Millman’s result is restrictive since "uniform convexity" is a strong geometric
property. As a result, other geometric characterizations of the reflexivity are given :

F. Smulian [91] has characterized a reflexive Banach space as follows : X is
reflexive if and only if every decreasing sequence of nonempty bounded closed convex
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1.3. Some applications

subsets of X has a nonempty intersection.
In 1964, James [52] gave his following famous intrinsic geometric characterization

of reflexivity

Theorem 1.7. A Banach space X is reflexive if and only if there is a θ ∈]0,1[ such
that if (xn)n≥1 is a sequence of elements of the unit sphere of X, with ‖u‖> 0 for all u ∈
conv{x1,x2, ...}, then there are nO ∈N,u∈ conv{x1,x2, .....,xno} and v∈ conv{xnO+1,xnO+1., ..}
such that ‖u− v‖< 0.

Looking for some weaker geometric condition implying reflexivity, Giesy [39],
James [51] raised the question whether Banach spaces which are uniformly non−l1

n

with some positive integer n≥ 2 are reflexive. James [51] settled the question affirma-
tively for n = 2, in other words he proved that uniformly non-square Banach spaces
are reflexive, and gave a partial result for n = 3.

Different uniform geometrical properties have been defined between the uniform
convexity and the reflexivity of Banach spaces. Relationships between theme and
reflexivity have been developed by many authors. It was proved in [2] that a Banach
space with a uniformly normal structure is reflexive. C A. Kottman [63] has showed
that P−convex Banach spaces are reflexive. In the same purpose, S. Rolewicz [88]
proved that if a Banach space has the property-β then it is reflexive.

1.3.2 Fixed point property

The aim of this section is to present some results concerning geometric properties
related to the metric fixed point theory. This theory has been a large subject of
mathematical research for decades due to its many diverse applications, example in
differential and integral equations.

The most known and important result in metric fixed point theory is the Banach
fixed point theorem also called the Contractive Mapping Principle, given by S. Banach
in 1922, which assures that every contraction from a complete metric space into itself
has a unique fixed point.

We recall that a mapping T from a Banach space (X,‖.‖) into it self is said to be a
contraction if there exist 0 < k < 1 such that ‖T (x)−T (y)‖ ≤ k‖x− y‖, for all x,y ∈ X.
The Banach theorem does not hold if k = 1 that is ‖T (x)−T (y)‖ ≤ ‖x− y‖ for every
distinct points x,y ∈ X. Such 1−Lipschitzian mappings are called nonexpansive. The
problem of the existence of a fixed point for such functions was neglected for several
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1.3. Some applications

years. However, these mappings have received a lot of attention in recent works in
this field.

For simplicity, it is usual to say that a Banach space (X,‖.‖) has the fixed point
property (FPP) if every nonexpansive self mapping of every nonempty, closed convex
bounded subset C of X has a fixed point. When the same holds for every weakly
compact convex subset of X we say that X has the weak fixed point property for
nonexpansive mappings (WFPP in short). For reflexive Banach spaces both properties
are obviously the same.

The FPP is strongly influenced by the geometric properties of the norm of the
space X. In 1965, Browder [19] proved that every nonexpansive mapping T from a
convex bounded closed subset C of a Hilbert space X into C has a fixed point, and
Browder [20] and Gôhde [42] proved independently that the previous result could be
improved assuming the weaker condition that X is uniformly convex. More precisely,
every uniformly convex Banach space enjoys fixed point property (FPP).

In the same year, W.A. Kirk [56] gave a more general sufficient condition for (FPP).
Namely, every reflexive Banach space with normal structure has (FPP). In other words,
it is sufficient to assume that the set is weakly compact and the space has the normal
structure to have the fixed point property. Kirk’s use of normal structure in his result
has led to further works which tries to find more general conditions on the Banach
space X and the subset C which still assures the existence of fixed point.

As mentioned in the section on normal structure, compact convex subset of a
Banach space X always has normal structure. The problem whether every weakly
compact convex subset of X has normal structure was answered negatively by Alspach
[3]. He showed that there is a weakly compact convex subset C of L1([0,1]) which
does not have the fixed point property. In particular, C cannot have normal structure.

In their paper [41], A. A. Gillespie and B. B. Williams replaced uniformly convex
(or reflexive and normal structure) as required by Browder and Kirk, by uniformly
normal structure to obtain a fixed point theorem for non-expansive self mappings.

Building from the initial results of Browder, Gôhde and Kirk we now have a
rich, though still far from complete, theory of nonexpansive in Banach spaces.To our
knowledge, the problème wether" every reflexive Banach space have (FPP)" remains
unsolved, and it may be the oldest and most difficult in this theory.

We shall now turn to other geometric properties that implies FPP. It is well known
that uniform non-squareness implies reflexivity (see [52]), but the new interest on
this property was motivated by its connection with the fixed point property. In 2006,
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J.García-Falset et al [38] proved that uniformly non-square Banach spaces have the
fixed point property.

The importance of the property (β ) is related to the following assertions :
If X has the property (β ) then it is reflexive and, X and X∗ have the fixed point
property.The following figure gives link between the different geometric properties,
the reflexivity and FPP of a Banach space.

FIGURE 1.8 – Link between the different geometric properties, the reflexivity and
(FPP)
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Besicovitch-Orlicz spaces of almost periodic func-
tions

2.1 Introduction

The theory of almost periodic functions was initiated by H. Bohr [15], and then
developed by A.S. Besicovitch [12,13] within the framework of Lebesgue spaces Lp.

T.R Hillmann [47], has widened this theory to Orlicz spaces thus emphasis three
new classes of spaces : Stepanov-Orlicz Sφ

a.p, Weyl-Orlicz W φ
a.p and Besicovitch-Orlicz

Bφ
a.p of almost periodic functions.

We start this chapter with recalling necessary definitions and results of Young
functions and modular spaces. Then we summarize the known results about Orlicz
spaces, in particular those about their extreme points. The third and the forth sections
are devoted respectively to Besicovitch-Orlicz spaces and Bohr almost periodicity.

In the last section we introduce the Besicovitch-Orlicz almost periodic functions
and we synthesize some results obtained in the study of geometric properties of Bφ

a.p.

2.2 Orlicz spaces

The theory of Orlicz spaces has been developed and advanced in a variety of
directions due to its significant theoretical properties and imposed applications
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in various domains of mathematical analysis including nonlinear analysis see for
examples [21,62,83,87].

Among the reasons for the development of this theory the many applications to
differential and integral equations with kernels of non power types. Krasnoselskii and
Rutickii [61] have shown that the use of Orlicz spaces is essential to obtain existence
theorems for solutions of non linear integral equations of exponential type. Similarly,
the study of nonlinear partial differential in the case where the coefficients are of
exponential type has lead mathematicians to look for solutions in generalized sobolev
spaces constructed using Orlicz spaces. It’s interesting to note that the fact that Orlicz
spaces are Banach and modular spaces adds to their richness.

In order to define Orlicz spaces Lφ , the famous Polish mathematician W. Orlicz in
1930 [85] extended the Lebesgue spaces Lp. Indeed, the power function t 7→ |t|p, p≥ 1
entering the definition of Lp is replaced by a more general convex function φ called
a Young function and sometimes Orlicz function. These functions have properties
similar to those of the powers functions. For a detailed account of these spaces we
refer to [21,61,62,87] and references therein.

Before presenting these spaces and their basic properties. We’ll begin with a review
of modular spaces.

The theory of modular spaces englobe a large class of functional spaces, including
Orlicz spaces [85], generalized Lebesgue spaces [32], Musielak-Orlicz spaces [83],
Besicovitch spaces [11], Orlicz Lorentz spaces and many others. This theory was
initiated by Nakano [84] in 1950 and redefined and generalized by Musielak and
Orlicz [87] in 1959.

Thanks to the theory of modular spaces, new generalized Orlicz spaces have been
introduced : Stepanov-Orlicz, Weyl-Orlicz, and Besicovitch-Orlicz spaces ( see [47]).

For more details about modular spaces, we refer to W. Kozlowski’s monograph
"Modular Function Spaces" [60], the book of M. Khamsi and Kozlowski [55] and
Musielak’s book [82].
Here is a brief summary of basic concepts in modular spaces.

Definition 2.1. A functional ρ : X→ [0,+∞] is a pseudomodular if it satisfies

(i) ρ(0) = 0,

(ii) ρ(x) = ρ(−x), ∀x ∈ X,

(iii) ρ(αx+βy)≤ ρ(x)+ρ(y), ∀α,β ≥ 0,α +β = 1, ∀x,y ∈ X.
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2.2. Orlicz spaces

ρ is a modular when, instead of (i), we have

ρ(x) = 0 if and only if x = 0.

If the condition (iii) is replaced by

ρ(αx+βy)≤ αρ(x)+βρ(y), ∀α,β ≥ 0,α +β = 1, ∀x,y ∈ X,

the pseudomodular ρ is called convex.
The linear space Xρ = {x ∈ X : lim

α→0
ρ(αx) = 0} associated to the modular ρ is called

a modular space.

Norms in modular spaces

When ρ is a convex modular the modular Xρ coincide with

X∗ρ = {x ∈ X, ∃λ = λ (x)> 0, s.t ρ(λx)<+∞},

and the formula
‖x‖

ρ
= inf

{
k > 0, ρ

(x
k

)
≤ 1
}

defines a norm in the modular space Xρ (see [83,87]), which is frequently called the
Luxemburg norm.
Note that if ρ is not convex, then ‖.‖

ρ
is not a norm.

Another norm called "Amemiya norm " is defined in Xρ by

‖ f‖A
ρ = inf

λ>0

1
λ
{1+(λ f )}.

In recent years, there was an increasing interest in the study of the geometry of
modular spaces and their fixed points see for example [55].

2.2.1 Young functions

First, we recall that a real function defined on an interval I of R is called convex if
its graph is "turned upwards". In other words, for all points a and b of its graph, the
segment [a,b] is entirely located above the graph. Namely : a function φ defined on
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2.2. Orlicz spaces

an interval I of R is convex if

∀x, y ∈ I, ∀λ ∈ [0, 1] : φ(λx+(1−λ )y)≤ λφ(x)+(1−λ )φ(y). (2.1)

In this section we present a collection of important notions and facts about Young
(Orlicz) functions that we will need for the studying of Orlicz spaces and almost
periodic functions of Orlicz type. At first we will investigate the properties of these
functions and their conjugates.

A function φ : R→ R+ is said to be a Young function if it is even, convex, and
satisfies φ (0) = 0,φ (u)> 0 if u 6= 0 moreover lim

u→∞
φ (u) = +∞.

If we have also lim
x→0

φ(x)
x = 0 and lim

x→+∞

φ(x)
x = +∞, the function φ is called Orlicz

function (sometimes N−function). Note that a Young function φ is strictly increasing
and continuous on [0,+∞[.

The following functions

φ1(x) = exp(|x|)−1, φp(x) =
|x|p

p
,1≤ p <+∞,

and

φ∞,1 (x) =

{
0 if x ∈ [−1, 1]
|x|−1 or else.

are Young functions and φp is an N−fonction.
For every Young function φ we define the complementary function ψ by the formula

ψ (y) = sup{x |y|−φ (x) ,x≥ 0} , ∀ y ∈ R. (2.2)

The complementary function ψ may not be a Young function in the preceding sense.
The pair (φ ,ψ) satisfies the Young inequality

xy≤ φ (x)+ψ (y) , x ∈ R, y ∈ R.

Note that equality holds in the Young’s inequality if and only if x = ψ
′
(y) or y = φ

′
(x) .

Example 2.1.

1. The complementary functions of φp, 1 ≤ p < ∞ and φ∞,1 defined below are the
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functions ψp and ψ∞,1 given by

ψp(y) =
|y|q

q
with

1
p
+

1
q
= 1, if p > 1,

ψ1(y) =


0 if −1≤ y≤ 1,

+∞ if |y|> 1 if p = 1

and

ψ∞,1 (y) = φ1,∞ (y) =

{
|y| if y ∈ [−1, 1]
+∞ elsewhere.

2. φ(x) = ex−|x|−1 and ψ(y) = (1+ |y|) ln(1+ |y|)−|y|.

∆2-condition
A Young function is said to satisfy the ∆2-condition (we write φ ∈ ∆2 ) if there exists
K > 2 and u0 ≥ 0 such that

φ(2u)≤ Kφ(u) ∀u≥ u0 (see [21,87]).

Remark 2.1. When φ /∈ ∆2 there exists a sequence (an)n≥1 of positive reals numbers
increasing to infinity for which

φ

((
1+

1
n

)
an

)
≥ 2n

φ (an) , ∀ n≥ 1 .

2.2.2 Orlicz spaces : Definition and examples

Throughout this section I denotes an interval of R equipped with the Lebesgue
measure µ and M(I) the set of all Lebesgue measurable functions defined on the
interval I with values in R modulo the equivalence relation (= µ−a.e) and Σ(R) be
the σ− algebra of all Lebesgue-measurable subsets of R.

The functional ρφ : M(I)→ [0,+∞], defined by

ρφ ( f ) =
∫

I
φ(| f (t)|)dt
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is a modular convex on M(I) called Orlicz modular. The associated modular space

Lφ (I) = { f ∈M(I), lim
λ→0

ρφ (λ f ) = 0}

= { f ∈M(I), ρφ (λ f )<+∞ f or some λ > 0},

is called Orlicz space (see [21,61,87]).
The subspace Eφ (I) of Lφ (I) defined by

Eφ (I) = { f ∈M(I), ρφ (λ f )<+∞ ∀λ > 0}

is usually called the subspace of finite elements or "small Orlicz space".
It is well known that Eφ (I) is a closure in Lφ (I) of the set of simple functions with
finite measure supports. Moreover, from [21,61,82] we know that

Lφ (I) = Eφ (I) if and if φ ∈ ∆2.

Remark 2.2. Note that the Orlicz class Lφ (I) defined by

Lφ (I) =
{

f ∈M(I) such that ρφ ( f )< ∞
}

is not a linear space.

Norms in Orlicz spaces.

Three norms have been established in the theory of Orlicz spaces. In the thirties
Orlicz introduced the following norm called Orlicz norm.

‖ f‖o
φ = sup

{∫
I
| f (t)g(t)|dµ : g ∈ Lψ (I) ,ρψ (g))≤ 1

}
,

where ψ is the complementary of φ .
Next, Nakano [84] in (1950) , Morse-Transue [73] in (1950) and Luxemburg in [69]
(1955) have considered another norm, which is sometimes called the Luxemburg-
Nakano norm but generally in the literature, it is called the Luxemburg norm. This
norm is the Minkowski functional of the modular unit ball ({ f ∈ Lφ (I), ρφ ( f ))≤ 1}).
That is to say,

‖ f‖
φ
= inf{λ > 0 : ρφ

(
f
λ

)
≤ 1}.
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Around the same time, I. Amemiya has considered the norm called "Amemiya norm"
defined by

‖ f‖A
φ
= inf

k>0

1
k
[1+ρφ (k f )] [21].

Note that Orlicz norm is equal to the Amemiya norm (see [50]) and is equivalent to
the Luxemburg norm (see [21]). When equipped with one of the above norms, Lφ (I)
and Eφ (I) are Banach spaces. However Eφ (I) is always separable, while Lφ (I) is not if
φ does’nt verify the ∆2− condition.

Here after, we give some examples of Orilcz spaces equipped with Orlicz norm
(see [59]). To simplify notations, we put Lφ = (Lφ ,‖.‖φ ) and L0

φ
= (Lφ , ‖.‖0

φ
).

Example 2.2. [59]
The Lebesgue spaces Lp (1≤ p < ∞) are Orlicz spaces Lo

φp
with φp (x)= |x|p . Furthermore,

if (1 < p < ∞) we have

‖ f‖o
φp

= ωp ‖ f‖Lp with ωp = p(p−1)
(

1−p
p

)
.

If p = 1
‖ f‖o

φ1
= ‖ f‖L1 .

If p = ∞ then, L∞ is the space Lo
φ∞

with φ∞ : R−→ R defined by :

φ∞(x) =

{
0 if x ∈ [−1, 1]
+∞ elsewhere,

and
‖ f‖o

φ∞
= ‖ f‖L∞ .

2.2.3 Extreme points of Orlicz spaces

There is a large literature dedicated to the geometry of Orlicz spaces, we can
cite for example, Chen’s fundamental paper [21] where some of these properties are
summarizing.

In this section, we’ll go over the results on extreme points of Orlicz spaces. We
will consider only the case of Lebesgue measure, for more details about extreme
points, strongly extreme points and exposed points in Orlicz spaces equipped with
the Luxemburg norm and the Orlicz norm, we refer to [21,27,43,44] and references
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therein.
Here after, we expose some criteria of special points of the unit ball of Orlicz spaces

given in [21].
It is proved in [21] that x ∈ extr[B(Lφ )] if and only if

ρφ (x) = 1 and µ
{

t ∈ I : x(t) /∈ Sφ

}
= 0.

Moreover, criterion that an element in the unit sphere of Orlicz spaces equipped
with the Orlicz norm is a extreme point has been obtained, namely x ∈ S(L0

φ
) is an

extreme point of B
(

L◦
φ

)
if and only if

µ
{

t ∈Ω : kx(t) ∈ R\Sφ

}
= 0 for all k ∈ K (x) .

Note that results on the strict convexity of Orlicz spaces are obtained by several
authors, and some of them are obtained by using criteria of extreme points for details
we refer to [21].

In [29], Cui and Wang investigated strongly extreme points in Orlicz spaces
equipped with the Luxemburg norm. The case of the Orlicz norm is studied by Cui et
al. [27].

Theorem 2.1. x ∈ Lφ is an exposed point of B(Lφ ) if and only if

1. ρφ (x) = 1 and µ{t ∈ R, x(t) /∈ Sφ}= 0.

2. p(|x|) ∈ Lψ and

3. µ(G(a))µ(G(b)) = 0 for all structure affine interval [a,b] of φ such that the deriva-
tive of φ is continuous at a,b.

G(r) = {t ∈ R, |x(t)|= r} and p the right derivative of φ .

Theorem 2.2. x ∈ L0
φ

is an exposed point of B(L0
φ
) if and only if

1. K(x) = {k} and µ{t ∈ R : kx(t) /∈ Sφ}= 0.

2. For any extreme point γ of any SAI of φ , if p is continuous at γ, then µ{t ∈ G :
kx(t) = γ}= 0.

3. If ρψ(p(k|x|)) = 1, then µ{t ∈ G : kx(t) = b}= 0 for any SAI [a,b] of φ

4. If θ(kx) < 1 and ρψ(p(kx(t))) = 1, then µ{t ∈ R : kx(t) = a} = 0 for any Structure
affine interval [a,b] of φ , where θ = θ(u) = inf{λ > 0 : ρφ (

u
λ
)< ∞}.
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Theorem 2.3. If X= Lφ or X = L0
φ

and x ∈ S(X). Then the following are equivalent :

1. x is a denting point of B(X).

2. x is an strongly extreme point of B(X).

3. x is an extreme point of B(X) and φ ∈ ∆2.

2.3 Besicovich-Orlicz spaces Bφ(R,C)

Let φ be a Young function. We denote by Lφ

loc (R,C) the subspace of M (R,C) such
that for each bounded interval U there exists α > 0 such that∫

U
φ (α| f (s) |)ds < ∞.

When U = [0,1], we get the Orlicz space Lφ ([0,1] ,C) (see [21]).
The Besicovitch-Orlicz pseudomodular ρBφ is defined in [47] as follows

ρBφ : Lφ

loc (R) → R+

f 7→ lim
T→+∞

1
2T

T∫
−T

φ |( f (t)) |dt.
(2.3)

Its associated modular space, called Besicovitch-Orlicz space, is

Bφ (R,C) =
{

f ∈ Lφ

loc (R,C) , ρBφ (λ f )<+∞, for some λ > 0
}
.

This space is endowed with the Luxemburg pseudonorm

‖ f‖Bφ = inf
{

k > 0,ρBφ

(
f
k

)
≤ 1
}
.

Let us consider the equivalence relation

f ∼φ g⇔‖ f −g‖Bφ = 0, ∀ f ,g ∈Bφ (R,C) .

We denote by Bφ (R,C) :=Bφ (R,C)/∼φ the quotient space. Henceforth, we will not
distinguish between an element of Bφ (R,C) and its equivalence class in Bφ (R,C) .

Endowed with the Luxemburg norm ‖.‖Bφ , Bφ (R,C) is a Banach space.
When φ is the function x 7→ |x|p we obtain the Besicovitch space denoted Bp(R)

(see [13]).
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New norm in Bφ (R)

In 1993 A.G. Aksoy and J.B. Baillon [1] have defined a new norm in Orlicz space
as follows :

‖ f‖= ξ

s( f )

where f ∈ Lφ , ξ > 0 a fixed real number and s( f ) = sup{s : ρ(s f )≤ ξ}> 0.
Our objective is to show that the map f → ξ

λ ( f ) where f ∈ Bφ (R), ξ > 0 a fixed real
number and λ ( f ) = sup{s : ρ(s f )≤ ξ}> 0 defines a norm in Bφ (R).

Proof. let f ∈ Bφ (R), suppose v > 0 and consider the new pseudomodular ρv = vρBφ then
Luxemburg norm ‖ f‖L

ρv
we can write

‖ f‖L
ρv

= inf{t > 0,ρv(
f
t
)≤ 1}

= inf{t > 0,vρBφ (
f
t
)≤ 1}

= inf{t > 0,ρBφ (
f
t
)≤ 1

v
}.

Take

i( f ) = inf{t > 0,ρBφ (
f
t
)≤ ξ}

= inf{t > 0,
1
ξ

ρBφ (
f
t
)≤ 1}= ‖ f‖L

ρ 1
ξ

.

Since λ ( f ) = 1
i( f ) , we get

‖ f‖= ξ

λ ( f )
= ξ i( f ) = ξ‖ f‖L

ρ 1
ξ

.

Topology and convergence in the Besicovitch-Orlicz space

Let us recall that the modular space Bφ (R) can be with the topology induced by
the norm, we consider as open elementary the sets

B( f0,ε) = { f ∈ Bφ (R,C),‖ f − f0‖Bφ < ε}, f0 ∈ Bφ (R,C),ε > 0.

Modular convergence in the modular space Bφ (R,C) is defined as follows
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2.4. Bohr almost periodic functions

A sequence ( fn)n≥1 ⊂ Bφ (R,C) is called modular convergent to f ∈ Bφ (R), if there
is a real number k > 0 such that

lim
n→+∞

ρBφ (k( fn− f )) = 0.

The following is the relation between modular convergence and convergence in the
sense of the norm

lim
n→+∞

‖ fn− f‖Bφ = 0 if and only if lim
n→+∞

ρBφ (k( fn− f )) = 0,∀k > 0.

2.4 Bohr almost periodic functions

The almost periodic functions, initiated by H. Bohr [15], in the mid twenties, are
initially defined as a natural generalization of the periodicity in the class of continuous
functions. Namely, a continuous function f : R→ C is said to be Bohr almost periodic,
(we write f ∈ AP(R,C)) if for all ε > 0 the set

T ( f ,ε) := {τ ∈ R, ‖ fτ − f‖
∞
< ε}

is relatively dense in R (see [4], [25]). Recall that the AP(R,C) contains the space
Pw(R,C) consisting of all continuous w-periodic functions f : R→ C (w > 0). Bohr’s
theory of almost periodic functions has been extensively studied especially in connec-
tions with differential equations.

The main theorem in the theory of the almost periodic functions states that an
almost periodic functions can be characterized as uniform limits of sequences from the

Trig(R,C) : the set of generalized trigonometric polynomials Pn(t) =
n
∑

k=1
ak exp(iλkt),

t ∈ R, where ak ∈ C and λ1,λ2, ...,λn, are mutually different real numbers. More
precisely,

AP(R,C) = Trig(R,C)‖.‖∞.

It is this property of almost periodic function which is used at their generalizations :
the uniform convergence is replaced by other norms of type Lp or Lφ .

The previous definition is equivalent to the so-called Bochner’s criterion : f ∈
AP(R,C) if and only if for every sequence of reals (a

′
n) there exists a subsequence (an)

such that ( f (·+an)) is uniformly convergent in BC(R,C).
The theory of almost periodic equations has recently been explored in relation
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2.4. Bohr almost periodic functions

to differential equations, stability theory, dynamical systems, and other topics. The
theory’s variety of applications has grown significantly, now including not just ordinary
differential equations and classical dynamical systems, but also a vast variety of partial
differential equations and equations Banach spaces.

2.4.1 Properties of Bohr almost periodic functions

Numerical Bohr almost periodic functions have a lot of useful properties, we collect
them in the following theorem.

Theorem 2.4. Let f ∈ AP(R,C). Then the following holds :

1. f is bounded and uniformly continuous.

2. If g ∈ AP(R,C), h ∈ AP(R,C), α, β ∈ C, then α f +βg and h f ∈ AP(R,C);

3. Im( f ) is relatively compact in C;

4. If f ′ is uniformly continuous then f ′ ∈ AP(R,C);

5. If F(t) =
∫ t

0 f (s)ds (t ∈ R) is bounded, then F ∈ AP(R,C);

6. If (gn)n∈N is a sequence in AP(R,C) and (gn)n∈N converges uniformly to g, then
g ∈ AP(R : C);

7. (Convolution invariance) if g ∈ L1(R), then g∗ f ∈ AP(R,C), where

(g∗ f )(t) =
∫

∞

−∞

g(t− s) f (s)ds, t ∈ R.

8. The mean value of f

M( f ) = lim
T→+∞

1
2T

∫ T

−T
f (t)dt = lim

T→+∞

1
2T

∫ T+α

−T+α

f (t)dt,

exists and is finite.

9. Bohr-Fourier coefficient of f ,

a(λ , f ) := lim
T→∞

1
T

∫ T

0
e−iλ s f (s)ds,

exists for all λ ∈ R and

a(λ , f ) := lim
T→∞

1
T

∫ T+α

α

e−iλ s f (s)ds
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for all α ∈ R, λ ∈ R.

10. If a(λ , f ) = 0 for all λ ∈ R, then f (t) = 0 for all t ∈ R;

11. Bohr’s spectrum σ( f ) := {λ ∈ R : a(λ , f ) 6= 0} is at most countable ;

12. The Perseval equality Σ
n≥1

a(λn, f ) = M[ f (|x|)2].

2.5 Besicovitch-Orlicz almost periodic functions Bφ
a.p

2.5.1 Different definitions of Bφ
a.p

Let us recall that many different definitions are employed in the theory of almost-
periodic functions, which are mostly associated to the names of H. Bohr, S. Bochner, V.
V. Stepanov, H. Weyl, and A. S. Besicovitch. It is well-known that some of them are
equivalent [4,5,13], for example definitions of almost periodic functions in terms of a
relative density of the set of almost-periods (the Bohr-type criterion), a compactness
of the set of translates (the Bochner-type criterion, sometimes called normality), and
the closure of the set of trigonometric polynomials in the sup-norm are equivalent (see
for example [4,5]. The same is true for the Stepanov class of almost periodic functions
(see [13]). However, if one wants to make some analogy for the Besicovitch class of
almost periodic functions, the equivalence is no longer true. Bersani et al. [5] clarify
the hierarchy of such classes. In this section we will review Hillmann’s definitions of
Besicovitch-Orlicz almost periodic functions.

As repeatedly mentioned

AP(R,C) = Trig(R,C)‖.‖∞,

where Trig(R,C) is the set of generalized polynomials. The above equality is the
starting point for new generalizations of the concept of almost periodicity. Considering
the closure of the set Trig(R,C) with respect to the ‖.‖Bφ T.R. Hillmann [47] has
obtained a new classes of almost periodic functions containing the class of Besicovitch
of almost periodic functions Bp

a.p called Besicovitch-Orlicz almost periodic and denoted
Bφ a.p.(R,C).

The general structure as well as certain properties topological of these spaces are
studied in [47].

Definition 2.2. The Besicovitch-Orlicz space of almost periodic functions Bφ
a.p. resp.(B̃φ

a.p.)
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is the closure of Trig(R,C) in Bφ (R) with respect to the pseudonorm ‖.‖Bφ (resp. to the
modular convergence), more exactly :

Bφ
a.p.(R,C) = { f ∈ Bφ (R,C),∃(Pn)n≥1 ⊂ Trig(R,C), s.t lim

n→+∞
‖ f −Pn‖Bφ = 0}

= { f ∈ Bφ (R),∃(Pn)n≥1 ⊂ Trig(R,C), s.t ∀k > 0, lim
n→+∞

ρBφ (k( f −Pn)) = 0}.

B̃φ
a.p.(R,C)= { f ∈Bφ (R,C),∃(Pn)n≥1⊂ Trig(R,C), s.t ∃k> 0, lim

n→+∞
ρBφ (k( f−Pn))= 0}.

Clearly Bφ
a.p.(R,C)⊂ B̃φ

a.p.(R,C) and equality holds whenever φ ∈ ∆2( [47]).
It is known that Bφ a.p.(R,C) = B̃φ a.p.(R,C) if and only if φ ∈ ∆2 ( [79]) From

( [79]), we know that when f ∈ Bφ
a.p. (R) the limit exists and is finite in the expression

of ρBφ ( f ) , i.e.,

ρBφ ( f ) = lim
T→+∞

1
2T

T∫
−T

φ (| f (t) |)dµ. (2.4)

This fact is very useful in our computations.
This space is endowed with the Luxemburg pseudonorm

‖ f‖Bφ = inf
{

k > 0,ρBφ

(
f
k

)
≤ 1
}
.

Beside the Luxemburg norm Morsli et al [74] have defined in Bφ
a.p.(R) another norm,

called Orlicz norm, by the formula

‖ f‖o
Bφ = sup

{
M (| f g|) , g ∈ Bψ

a.p. (R) , ρBψ (g) ≤ 1
}
, (2.5)

where ψ is the complementary function of φ and M ( f ) = lim
T→+∞

1
2T

+T∫
−T

f (t)dµ.

Remarks 2.1. If we note by B1
a.p(R,C) the space associated with the function φ(x) = |x|,

we have

Trig(R,C)⊂ AP(R,C)⊂ Bφ
a.p.(R,C)⊂ B̃φ

a.p.(R,C)⊂ B1
a.p(R,C).

The almost periodicity in the sense of Besicovitch-Orlicz was defined in a Bohr-
like manner, by using the notion of satisfactorily uniform sets (see e.g. [13] and [5,
Definition 5.10, Definition 5.11]).
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We’ll start with a definition of a numerical set property.

Definition 2.3. [5]
A set K is said to be satisfactorily uniform (s.u.) if there exists a positive number l

such that the ratio r of the maximum number of elements of K included in an interval of
length l to the minimum number is less than 2.

Example : The set Z is relatively dense and satisfactorily uniform in R.

Remark 2.3. Every satisfactorily uniform set is relatively dense. In general, the converse
is not true. For example, the set K = Z∪{1

n , n ∈ N} is relatively dense, but it is not
satisfactorily uniform : this is caused by the presence of the accumulation point 0, r =
+∞, ∀l > 0. Thus, a relatively dense set, in order to be satisfactorily uniform, cannot
have any finite accumulation point.

Definition 2.4. ( [47,77]) A function f ∈ Bφ (R) satisfies the Bφ− translation (we write
f ∈ Bφ

t.p.(R)), if for each ε > 0, there exists a satisfactorily uniform sequence (τi)i∈Z ⊂ R
such that :

1. ρBφ (
fτi− f

α
)< ε, ∀i ∈ Z.

2. MxMi{1
c
∫ x+c

x φ( | f (x+τi)− f (x))|
α

)dµ} ≤ ε, ∀i ∈ Z, ∀c > 0,

where α depends only on the function f .

The space Bφ

t.p.(R) dose not coincide with Bφ
a.p.(R) when φ dose not obey the ∆2−

condition.

Approximation property in Bφ
a.p(R) Let f be a function of Bφ

a.p(R), we have the
following properties [77]

1. If P is the Bochner-Fejèr polynomial of f , we have ρBφ (P)≤ ρBφ ( f ).

2. For all ε > 0, there is a Bochner-Fejèr Pε polynomial for which we have

‖ f −Pε‖Bφ ≤ ε.

2.5.2 Geometric properties of Bφ
a.p

We will end this chapter by collecting results obtained on the geometry of Bφ
a.p

First, M. Morsli [79] has characterized the uniform and strict convexity of the Bφ
a.p

with Luxemburg norm. Then M. Morsli and F. Bedouhene gave necessary and sufficient
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conditions for the strict and uniform convexity of the space Bφ
a.p equipped with Orlicz

norm (see [75,81].)
In [8, 76] F. Boulahia and M. Morsli have characterized the uniform non-l1

n , the
uniform non-squareness and the property (β ) of Bφ

a.p in the case of Orlicz norm.
These properties are summarized in the following table

φ satisfies ↓ if and only if→ (Bφ
a.p(R),‖.‖Bφ ) (B̃φ

a.p(R),‖.‖Bφ ) (Bφ
a.p(R),‖.‖0

Bφ )

SC SC
SC+∆2 SC

SC+UNC.L+∆2 UNC UNC
∆2∩∇2 UN-NS

UNC+∆2 UNC+ Pro.β
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Extreme points of the Besicovitch-Orlicz space
of almost periodic functions

3.1 Introduction

It is well known that extreme points, which are connected with strict convexity of
the space, are the most basic concepts in the geometric theory of Banach spaces see for
example [33].

In this chapter we are interested in the extreme points of the Besicovitch-Orlicz spaces
of almost periodic functions Bφ a.p(R,C). As mentioned in the previous chapter, these
spaces are the closure of the set of generalized trigonometric polynomials relative to the
Luxemburg norm (3), where φ is a Young or an Orlicz function.

The general structure as well as certain topological properties of these spaces are
studied in [47]. In the recent years, some geometrical properties of Bφ

a.p. (R,C) have been
considered by Morsli and his collaborators in [8,9,76,79,81].

Morsli [79] has discussed the criteria of rotundity of Bφ
a.p. (R) equipped with Luxem-

burg norm. He proved that Bφ
a.p. (R) is strictly convex if and only if φ is strictly convex

and has at most polynomial growth (φ satisfies the ∆2-condition ).
In [81], Morsli et al have characterized the rotundity of Bφ

a.p. (R), when it is endowed
with the Orlicz norm. However, to our knowledge, the criteria for extreme points has not
been discussed yet.
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3.2. Extreme points of Bφ
a.p(R,C) equipped with the Luxemburg norm

The first objective of this chapter is to characterize the extreme points of the unit
ball of Bφ a.p(R,C) equipped with the Luxemburg norm (3), and the second when it is
endowed with the Orlicz norm (3.11).

3.2 Extreme points of Bφ
a.p(R,C) equipped with the Luxem-

burg norm

This following section will be devoted to proving some properties of the Besicovitch-
Orlicz almost periodic functions.

3.2.1 Properties of the Besicovitch-Orlicz almost periodic func-

tions

We give here some technical results that are helpful to characterize extreme points of
Bφ

a.p. (R,C) spaces.
First, remember that for a function f ∈ Bφ

a.p. (R,C) we have

ρBφ (k f )<+∞, ∀k > 0.

Indeed, f ∈ Bφ
a.p. (R,C) then for any ε > 0 there exists a trigonometric polynomial Pε

such that for any k > 0
ρBφ (k ( f −Pε))≤

ε

2
.

Then using the convexity of φ and the fact that the trigonometric polynomial Pε is
bounded we get

ρBφ (k f )≤ 1
2

ρBφ (2k ( f −Pε))+
1
2

ρBφ (2kPε)<+∞.

Now, let P (R) be the family of subsets of R and Σ(R) the σ−algebra of its Lebesgue
measurable sets. Hillmann in [47] has introduced the set function µB : Σ(R)→ [0,1] as
the following

µB (A) = lim
T→∞

1
2T

T∫
−T

χA (t)dµ = lim
T→∞

1
2T

µ (A∩ [−T,T ]) , (3.1)

where χA denotes the characteristic function of A.
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µB is not a measure on Σ(R) : it is increasing, null on sets with µ−finite measure,
additive and it is not σ−additive since

R= ∪
n∈Z

[n,n+1[, and µB([n,n+1[) = 0.

Our first goal in [46] is to show that if f ∈ Bφ
a.p. (R,C) then we do not necessarily

have f χA ∈ Bφ
a.p. (R,C) for any A ∈ Σ(R).

Lemma 3.1. There is a Lebesgue measurable subset A of R, for which the limit

lim
T→∞

1
2T

µ([−T,T ]∩A), (3.2)

does not exist.

Proof. Let us note first that if the limit (3.2) exists, it would be the same if T is an integer.
So to show this lemma, it is sufficient to find a subset A ∈ Σ(R) such that

lim
N→∞

1
N

µ([0,N]∩A),

does not exist.
Since for n≥ 1, there exists k ∈ N for which n ∈

[
32k,32k+1[ , we define the sequences

(un)n≥1 and (An)n≥1 as following

un =

{
0 if n ∈

[
32k,32k+1[

1 if n ∈
[
32k+1,32(k+1)

[
,

(3.3)

and

An =

{
/0 if n ∈

[
32k,32k+1[

[n,n+1[ if n ∈
[
32k+1,32(k+1)

[
.

We have µ(An) = un, ∀n≥ 1.

Defining A = ∪
n≥1

An and SN = 1
N

N
∑

n=1
un, we get lim

N→∞

1
N

µ (A∩ [0,N]) = lim
N→∞

SN .

The limit, lim
N→∞

SN does not exist. Indeed, for each N ≥ 1 we have

S32N =
1

32N

32N

∑
n=1

un =
1

32N

N−1

∑
k=0

(
32k+1−1

∑
n=32k

un +
32(k+1)−1

∑
n=32k+1

un

)
+u32N
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=
1

32N

N−1

∑
k=0

(
32(k+1)−32k+1

)
=

6
32N

N−1

∑
n=1

32k =
6

32N

(
32N−1

8

)
.

It follows that lim
N→∞

S32N =
3
4
.

In the other hand,

lim
N→∞

S32N+1 = lim
N→∞

(
1
3

S32N +
1

32N+1

)
=

1
4
.

This ends the proof.

Remark 3.1. If we take f the constant function equal to 1, then using (2.4) and lemma
3.1, we deduce that there exists A ∈ Σ(R) such that f χA /∈ Bφ

a.p (R,C).

In the following, we give another property of µB. We think it can allow us to have
characterization more precise for extreme points.

Lemma 3.2. The function µB : Σ(R)→ [0,1] is surjective.

Proof.

1. Let A ∈ Σ(R) .

(a) It is clearly, by the definition of µB, that if µ(A)< ∞ we have µB(A) = 0.

(b) Since µB(R) = 1, we obtain µB(A) = 1 when µ(Ac)< ∞.

2. Let β ∈ ]0,1[, there exists α > 0 such that β = α

α+1 . We define

An = [(α +1)(n−1),(α +1)(n−1)+α], n ∈ Z∗ and A = ∪
n∈Z∗

An.

Then,

µB(A) = lim
T→+∞

1
T

µ

(
[0,T ]∩ ( ∪

n≥1
An)

)
= lim

T→+∞

1
T ∑

n≥1
µ(An∩ [0,T ]).
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It is easy to show that for any n≥ 1,

An∩ [0,T ] =



An if n≤
⌊T+1

1+α

⌋
φ if n >

⌊
1+ T

α+1

⌋
[T+1

1+α
,T
]

if n ∈ [T+1
1+α

,1+ T
1+α

],

where b.c denotes the floor function.

Since there is at most one integer in the interval [T+1
1+α

,1+ T
1+α

], it follows that there
exists 0≤ θ ≤ 1 such that

µB(A) = lim
T→+∞

1
T ∑

n≥1
µ(An∩ [0,T ]) = lim

T→+∞

1
T

b T+1
1+α c
∑
n=1

µ(An)+θα


= lim

T→+∞

1
T

(
bT +1

1+α
cα +θα

)
Using the inequalities : ∀x ∈ R, x−1 < bxc ≤ x, we get µB(A) =

α

α+1 = β .

In the following we characterize extreme points of the unit ball of Bφ
a.p. (R,C). We

start with some auxiliary lemmas.

Definition 3.1. A function f ∈ Bφ (R,C) is said to be absolutely φ -integrable in µ̄B

sense, if for every ε > 0, there exists δ = δ (ε) > 0, such that for every measurable
subset A ∈ Σ(R) with µ̄B (A)< δ we have

‖ f χA‖Bφ ≤ ε.

Lemma 3.3. Functions f ∈ Bφ
a.p. (R,C) are absolutely φ -integrable in the µ̄B sense.

Proof. First, let us show that bounded functions are absolutely φ− integrable in µ̄B sense.
Let ε > 0, A ∈ Σ(R) and f : R→ C be a bounded function. Put C = sup

t∈R
| f (t) |. Here,

we exclude for simplicity the trivial case, when µ̄B (A) = 0. Clearly, we have

‖χA‖Bφ =
1

φ−1( 1
µ̄B(A)

)
and ‖ f χA‖Bφ ≤ C ‖χA‖Bφ .

Since the function t →
(
φ−1 (1/t)

)−1 is continuous and increasing on ]0,+∞[, we

47



3.2. Extreme points of Bφ
a.p(R,C) equipped with the Luxemburg norm

deduce that there exists δ :=
(

φ

(
C
ε

))−1
such that ‖ f χA‖Bφ ≤ ε, whenever µ̄B(A)< δ .

Now, let us assume that f ∈ Bφ
a.p (R,C). There exists a trigonometric polynomial Pε

such that
‖ f −Pε‖Bφ ≤

ε

2
. (3.4)

Since Pε is absolutely φ -integrable in the µ̄B sense, there exists δ > 0 such that ‖Pε χA‖Bφ ≤
ε

2 whenever µ̄B(A)< δ . For such δ , we have

‖ f χA‖Bφ ≤ ‖( f −Pε)χA‖Bφ +‖Pε χA‖Bφ ≤ ‖ f −Pε‖Bφ +‖Pε χA‖Bφ ≤ ε.

This completes the proof of the lemma.

Let us recall that a sequence ( fn)n≥1 ⊂ Bφ (R,C) is called

1. modular convergent to some f ∈ Bφ (R,C) when there exists α > 0 such that

lim
n→∞

ρBφ (α ( fn− f )) = 0.

2. µB−convergent to a function f when, for all ε > 0,

lim
n→∞

µB {t ∈ R, | fn (t)− f (t)| ≥ ε}= 0.

In his work [80], M. Morsli showed that if ( fn)n∈N is modular convergent to some f ∈
Bφ (R,C) , it is also µB−convergent to f . He also gave in [80] a similar result of the
usual Lebesgue dominated convergence theorem in the space Bφ (R,C), as it can be seen
in the following proposition.

Proposition 3.1. (See [80]) Let ( fn)n∈N be a sequence of functions in Bφ (R,C). Then
if ( fn)n∈N is µB−convergent to some f ∈ Bφ (R,C) and there exists g ∈ Bφ

a.p. (R,C) such
that max(| fn (x)| , | f (x)|)≤ |g(x) |, ∀x ∈ R. Then, lim

n→∞
ρBφ ( fn) = ρBφ ( f ) .

The next Lemmas will appear very useful in the proof of the main result.

Lemma 3.4 (see [9]). Let f ∈ Bφ
a.p. (R,C) then

1. ‖ f‖Bφ ≤ 1 if and only if ρBφ ( f )≤ 1.

2. ‖ f‖Bφ = 1 if and only if ρBφ ( f ) = 1.
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Lemma 3.5 (see [79]). Let f ∈ Bφ
a.p. (R,C) such that ‖ f‖Bφ = a, a > 0. Then there exists

real numbers 0 < α < β and θ ∈ ]0,1[ such that µB (G)≥ θ , where

G = {t ∈ R, α ≤ | f (t)| ≤ β} .

Lemma 3.6. Let f be a function in Bφ
a.p (R,C), then there exists δ > 0 such that

f χEc ∈ Bφ
a.p (R,C) ,

for any E ∈ Σ(R) with µB(E)< δ . Consequently, f χE ∈ Bφ
a.p (R,C) .

Proof. Let ε > 0, there exists a trigonometric polynomial Pε such that

‖ f −Pε‖Bφ ≤
ε

2
. (3.5)

Using lemma 3.3, there exists δ > 0 such that ‖Pε χE‖Bφ ≤ ε

2 , for every measurable subset
E ∈ Σ(R) with µ̄B (E)< δ .

For the above Pε , E and δ we have

‖ f χEc−Pε‖Bφ = ‖ f χEc−Pε χEc−Pε χE‖Bφ ≤ ‖( f −Pε)χEc‖Bφ +‖Pε χE‖Bφ

≤ ‖ f −Pε‖Bφ +‖Pε χE‖Bφ ≤ ε.

This show that f χEc ∈ Bφ
a.p (R,C) . Hence, the space Bφ

a.p (R,C) being linear, we get
f χE ∈ Bφ

a.p (R,C) .

Lemma 3.7. [46] Let f be a function in Bφ
a.p. (R), then there exists δ > 0 such that

f χEc ∈ Bφ
a.p. (R) ,

for any E ∈ Σ(R) with µB(E)< δ . Consequently, f χE ∈ Bφ
a.p. (R) .

Now, using the following Lemma [79, Lemma 4], we give an example of a function in
B̃φ

a.p. (R) .

Lemma 3.8. Let (an)n≥1, an > 0 be a sequence of real numbers. With every n ≥ 1, we
associate a measurable set An ⊂ [0,1[ such that :

1. Ai∩A j = /0 if i 6= j and ∪
n≥1

An ⊂ [0,α[, where 0 < α < 1.
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2. Σ
n≥1

φ(an)µ(An)<+∞.

Consider the function f = Σ
n≥1

anχAn on [0,1]. Let f̃ be the periodic extension of f to

the whole R, with period τ = 1. Then f̃ ∈ B̃φ
a.p.(R).

Example 3.1. Let (an)n≥1 and (un)n≥1 be two sequences defined by

an = φ
−1(

1
2n ) and un =

1
2n for every n≥ 1.

Put Sn =
n
∑

k=1
uk = 1− 1

2n . We define a set sequence (An)n≥1 by An = [Sn,Sn+1[. Then we

have :

(i) Ai∩A j = /0, ∀i 6= j because (Sn)n is strictly increasing.

(ii) lim
n→+∞

Sn = 1 which implies that ∪
n≥1

An ⊂ [0,1[.

(iii) µ(An) = un+1, φ(an) =
1
2n and ∑

n≥1
φ(an)µ(An) =

1
2 ∑

n≥1

1
4n < ∞.

Consider the function defined on [0,1] by

f = ∑
n≥1

φ
−1(

1
2n )χ[

1− 1
2n ,1− 1

2n+1

[.
Let f̃ be the periodic extension of f to the whole R, with period τ = 1. Then by [79,
Lemma 4] we have f̃ ∈ B̃φ

a.p.(R).

3.2.2 Extreme points of Bφ
a.p((R,C),‖.‖Bφ )

We start by recalling some definitions, and auxiliary results we need to prove our
main results

Definition 3.2. A Young function φ is called

1. strictly convex (SC) if

φ

(
u+ v

2

)
<

1
2
(φ (u)+φ (v)) , ∀u,v ∈ R, u 6= v.

2. uniformly convex for large u (UNCL), if for every a ∈ (0,1) there exists δ (a) ∈ (0,1)
such that

φ(
u+au

2
) = (1−δ (a))

(φ(u)+φ(au)
2

)
∀u, |u| ≥ d > 0.
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3. uniformly convex (UNC) on [d,+∞[ (see [21]), if for any ε > 0 there exists δ (ε) ∈
]0,1[ such that the inequality

φ(
u+ v

2
)≤ (1−δ (ε))

φ (u)+φ (v)
2

,

holds true for all u,v ∈ [d,+∞[ satisfying |u− v| ≥ ε max(|u| , |v|) .

Recall that if φ is strictly convex then it is uniformly convex on any bounded interval
(see [21, Proposition 1.4]). Namely, for any l > 0 and ε > 0, and [c,d]⊂ ]0,1[ there exists
δ > 0 such

φ (λu+(1−λ )v)≤ (1−δ )(λφ (u)+(1−λ )φ (v)) (3.6)

for any λ ∈ [c,d] and all u,v ∈ R satisfying |u| ≤ l, |v| ≤ l and |u− v| ≥ ε.

Following [21], an interval [a,b] is called a structural affine interval of a Young function
φ , provided that φ is affine on [a,b] and it is not affine on either [a− ε,b] or [a,b+ ε] for
any ε > 0.

Let {[ai,bi]}i be all the structural affine intervals of φ . We denote Sφ = R\
[
∪
i
]ai,bi[

]
the set of strictly convex points of φ . Clearly, if u,v∈R, α ∈ ]0,1[ and αu+(1−α)v∈ Sφ ,

then
φ (αu+(1−α)v)< αφ (u)+(1−α)φ (v) .

Now, we give our principal result.

Theorem 3.1. Let f ∈ S
(

Bφ
a.p (R,C)

)
. We suppose that µB( f−1([a,b])) = 0 for any

structural affine interval [a,b] of φ . Then
f ∈ extr

[
B
(

Bφ
a.p (R,C)

]
if and only if µ

({
t ∈ R, f (t) /∈ Sφ

})
= 0.

Proof. The proof is inspired from the Proof of [79, Theorem 1]) and [21, Theorem 2.1].
Sufficiency : Suppose that there exists g,h ∈ S

(
Bφ

a.p. (R,C)
)

(g 6= h) such that

2 f = g+h. By lemma 3.4 we have ρBφ (
g+h

2 ) = ρBφ ( f ) = ρBφ (g) = ρBφ (h) = 1.
Since ‖g− h‖Bφ 6= 0, lemma 3.5 ensures the existence of constants 0 < α < β and

θ ∈ ]0,1[ for which µB (G1)> θ , where

G1 = {t ∈ R,α ≤ |g(t)−h(t)| ≤ β} .

Define M = φ−1
(

2
µB(G1)

)
, then M ≤ φ−1 ( 2

θ

)
.
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Denoting G2 = {t ∈ R, s.t |g(t)| ≥M} we will have,

1 = ρ
Bφ (g)≥ ρ

Bφ (gχG2)≥ φ (M)µB (G2) = 2
µB (G2)

µB (G1)
.

Consequently, we have

µB (G2)≤
µB (G1)

2
. (3.7)

Consider now the subset Q of R2 defined by

Q=

{
(u,v) ∈ R2, u,v ∈

[
−
(

φ
−1
(

2
θ

)
+β

)
,

(
φ
−1
(

2
θ

)
+β

)]
, |u− v| ≥ α,

u+ v
2
∈ Sφ

}
.

Q is compact. Indeed, we have Q = Q1∩Q2, where

Q1 =
{
(u,v) ∈ R2,u,v ∈

[
−(φ−1(

2
θ
)+β ),φ−1(

2
θ
)+β

]
, |u− v| ≥ α

}
,

and
Q2 =

{
(u,v) ∈ R2,

u+ v
2
∈ Sφ

}
.

Q1 is a closed bounded set of R2 so it is compact, and Q2 = g−1(Sφ ), where g denotes the
continuous map defined on R2 by g(u,v) = u+v

2 .
Then Q2 is closed because Sφ = R\ (∪

i
]ai,bi[), so Q = Q1∩Q2 is a closed subset of the

compact Q1.
Consequently, we conclude that Q is compact.
Now, let F : R2\(0,0)→ R the function defined by

F (u,v) =
2φ
(u+v

2

)
φ(u)+φ(v)

.

F is continuous and F (u,v)< 1, ∀u,v ∈ Q.

Since Q is compact, there exists 0 < δ < 1 such that sup
(u,v)∈Q

F (u,v) = 1−δ .

So we have

φ

(
u+ v

2

)
≤ (1−δ )

φ (u)+φ (v)
2

, ∀(u,v) ∈ Q. (3.8)

Let us define G = (G1∩E)\G2, where E =
{

t ∈ R, s.t f (t) ∈ Sφ

}
. It is clear that

∀t ∈ G,(g(t) ,h(t)) ∈ Q. We have also µB(G)≥ θ

2 .
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Indeed, since µ(Ec) = 0 we have µB(G1∩E) = µB(G1). Then using (3.7) we get

µB(G) = µB((G1∩E)\G2)≥ µB(G1∩E)−µB(G2)≥ θ − θ

2
=

θ

2
. (3.9)

We denote G = G∩ [−T,T ] and ρT

(
g+h

2

)
= 1

2T

T∫
−T

φ

(
|g(t)+h(t)|

2

)
dµ, then by (3.8) we

obtain

ρT

(
g+h

2

)
=

1
2T

∫
G

φ

(
|g(t)+h(t)|

2

)
dµ +

1
2T

∫
Gc

φ

(
|g(t)+h(t)|

2

)
dµ

≤ (1−δ )
1

2T

∫
G

1
2
[φ (|g(t)|)+φ (|h(t)|)]dµ +

1
2T

∫
Gc

1
2
[φ (|g(t)|)+φ (|h(t)|)]dµ

≤ 1
2T

T∫
−T

1
2
[φ (|g(t)|)+φ (|h(t)|)]dµ−δ

1
2T

∫
G

1
2
[φ (|g(t)|)+φ (|h(t)|)]dµ

Since φ is an increasing convex function we have

1
2
(φ (|g(t)|)+φ (|h(t)|))≥ φ

(
|g(t)|+ |h(t)|

2

)
≥ φ

(
|g(t)−h(t)|

2

)
Using the fact that G⊂ G1 we obtain

1
2
(ρT (g)+ρT (h))−ρT

(
g+h

2

)
≥ δφ

(
α

2

)
µ
(
G
)

2T
.

Letting T →+∞, then by (2.4) and (3.1) we get

1
2
[ρBφ (g)+ρBφ (h)]−ρBφ

(
g+h

2

)
≥ δφ

(
α

2

)
µB (G) .

Consequently, by the inequality (3.9), we deduce that

1 = ρBφ

(
g+h

2

)
≤ 1

2
[ρBφ (g)+ρBφ (h)]−δφ

(
α

2

)
µB (G)≤ 1−δφ

(
α

2

)
θ

2
.

Which is absurd. Thus we showed that f is an extreme point.
Necessity : Suppose that µ

({
t ∈ R, f (t) /∈ Sφ

})
> 0.

Let ε > 0. Since R\Sφ is the union of at most countably many open intervals, there
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exists an interval ]a,b[ such that for ε > 0

µ ({t ∈ R : f (t) ∈ ]a+ ε,b− ε[})> 0,

and φ is affine on [a,b]. That is,

φ(u) = ku+β for u ∈ [a,b] with k ∈ R+ and β ∈ R.

We divide the set H = {t ∈ R : f (t) ∈ ]a+ ε,b− ε[} into two sets A and B. Then we define

(g(t),h(t)) =


( f (t), f (t)) i f t ∈ R\(A∪B)
( f (t)− ε, f (t)+ ε) i f t ∈ A
( f (t)+ ε, f (t)− ε) i f t ∈ B

(3.10)

Then g 6= h, g+h = 2 f and g,h ∈ Bφ
a.p (R,C) . Indeed, we have µB(H) = 0 because H ⊂

f−1([a,b]), then by lemma 3.7 we get

f χHc ,( f − ε)χA,( f + ε)χB ∈ Bφ
a.p (R,C) .

Now, we should show that ‖g‖Bφ ≤ 1.

ρT (g) = ρT
(

f χ(A∪B)c
)
+ρT ( f χA)+ρT ( f χB)

= ρT
(

f χ(A∪B)c
)
+

1
2T

∫
[−T,T ]∩A

(k| f (t)− ε|+β )dµ +
1

2T

∫
[−T,T ]∩B

(k| f (t)+ ε|+β )dµ

≤ ρT
(

f χ(A∪B)c
)
+

1
2T

∫
[−T,T ]∩A

(k| f (t)|+β )+ kε))dµ +
1

2T

∫
[−T,T ]∩B

(k| f (t)|+β )+ kε))dµ

≤ ρT
(

f χ(A∪B)c
)
+ρT

(
f χ(A∪B)

)
+ kε

1
2T

µ ([−T,T ]∩ (A∪B))dµ.

Letting T →+∞, we get

ρBφ (g)≤ ρBφ ( f )+ kεµB(H)≤ 1.

By applying the hypothesis µB( f−1([a,b])) = 0 for any structural affine interval [a,b] of
φ , we deduce that µB(H) = 0. Then we get

ρBφ (g)≤ ρBφ ( f ) = 1.
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Using same arguments, we obtain ‖h‖Bφ ≤ 1. Which completes the proof.

The following corollary gives sufficient conditions for the strict convexity of the
Besicovitch-Orlicz space of almost periodic functions equipped with the Luxemburg norm.
Note that the conditions are the same as those given in [79, Theorem 1] when we consider
Bφ

a.p. (R,C) instead of B̃φ
a.p. (R,C). Recall that

B̃φ
a.p. (R,C)=

{
f ∈ Bφ (R,C) ,∃(Pn)n≥1 ⊂ Trig(R,C) ,∃k > 0 s.t. lim

n→∞
ρBφ (k ( f −Pn)) = 0

}
.

Corollary 3.1. If φ is strictly convex on R then Bφ
a.p (R,C) is strictly convex.

Proof. We know that the hypotheses of strict convexity of φ on R means that Sφ = R
and then by Theorem 3.1 we get extr

[
B
(

Bφ
a.p (R,C)

]
= S

(
Bφ

a.p (R,C)
)

and the claim is
proved.

3.3 Extreme points of Bφ
a.p. (R) equipped with the Or-

licz norm

The criteria for extreme points and strict convexity in Orlicz spaces and Musielak-
Orlicz spaces equipped with the Orlicz norm and Amemiya norm, have been obtained
earlier see for instance [21,35,36,90,96] and references therein.

Beside the Luxemburg norm Morsli et al [74] have defined in Bφ
a.p.(R) another norm,

called Orlicz norm, by the formula

‖ f‖o
Bφ = sup

{
M (| f g|) , g ∈ Bψ

a.p. (R) , ρBψ (g) ≤ 1
}
, (3.11)

where ψ is the complementary function of φ and M ( f ) = lim
T→+∞

1
2T

+T∫
−T

f (t)dµ.

In [81], M. Morsli et al have characterized the rotundity of Bφ
a.p. (R), when it is

endowed with the Orlicz norm. Others geometric properties of Bφ
a.p. (R) in the case of

Orlicz norm have been considered by M. Morsli and F. Boulahia [8]. But The extreme
points are not yet studied.

In this section, we give results obtained in [17]. We give criteria for the existence of
extreme points of the Besicovitch-Orlicz space of almost periodic functions equipped with
Orlicz norm, and we study some properties of the set K( f ), set of attainable points of the
Amemiya norm in this space, defined in Proposition 3.2.
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In order to apply the results of the proposition 3.2, φ will denote, in this section, an
Orlicz function (N−function), i.e., φ : R→ R+ is even, convex, vanishing only at zero and

lim
|x|→+∞

φ(x) = +∞ and lim
x→0

φ(x)
x = 0 and lim

x→+∞

φ(x)
x =+∞. Note that the complementary

function ψ of φ is also an Orlicz function when φ is.
The norm (3.11) is not easy to deal with. So Morsli et al [74] expressed it by the

Amemiya formula (3.12) which is far more convenient to make use.

Proposition 3.2. (see [74,81])
Let f ∈ Bφ

a.p. (R) , ‖ f‖Bφ 6= 0. Then ,

1. the Orlicz norm and the Amemiya norm are equal i.e.,

‖ f‖o
Bφ = inf

k>0

1
k
[1+ρBφ (k f )] . (3.12)

Moreover, there is exists k0 ∈ K ( f ) =
{

k > 0, ‖ f‖o
Bφ = 1

k [1+ρBφ (k f )]
}
.

2. ρBφ (
f

‖ f‖0
Bφ

))≤ 1.

3. ‖ f‖Bφ ≤ ‖ f‖o
Bφ ≤ 2‖ f‖Bφ .

These two norms are equivalent, nevertheless, the corresponding geometric properties
between them are different. So their extreme points need not be the same.

Theorem 3.2. [8]

1. If φ ∈ ∆2 then

k = inf{k ∈ K( f ) : ‖ f‖0
Bφ = 1, f ∈ Bφ

a.p(R)}> 1.

2. If ψ, the conjugate function of φ , is of ∆2− type, then the set

Q = {k ∈ K( f ),a≤ ‖ f‖0
Bφ ≤ b, f ∈ Bφ

a.p(R)}

is bounded for each 0 < a≤ b.

3.3.1 Some properties of set K( f )

Now, we prove some basic properties of the set K( f ) when f ∈ Bφ
a.p.(R).
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Lemma 3.9. Let f ∈ Bφ
a.p.(R). Then

K( f ) = {k > 0,‖ f‖0
Bφ =

1
k
(1+ρBφ (k f )}

is an interval.

Proof. Let s,m ∈ K( f ) such that s 6= m, we will prove that [s,m]⊆ K( f ).
Let a ∈ [0,1]. By the convexity of φ we get,

ρBφ ((as+(1−a)m) f )≤ aρBφ (s f )+(1−a)ρBφ (m f ).

It follows that

1+ρBφ ((as+(1−a)m) f ) ≤ 1+aρBφ (s f )+(1−a)ρBφ (m f )

= a(1+ρBφ (s f ))+(1−a)(1+ρBφ (m f )).

Then

1
as+(1−a)m

[1+ρBφ ((as+(1−a)m) f )] ≤ a(1+aρBφ (s f ))
as+(1−a)m

+
(1−a)(1+ρBφ (m f ))

as+(1−a)m

=
as

as+(1−a)m
(
1
s
(1+ρBφ (s f )))

+
(1−a)m

as+(1−a)m
(

1
m
(1+ρBφ (m f )))

=
as

as+(1−a)m
‖ f‖0

Bφ +
(1−a)m

as+(1−a)m
‖ f‖0

Bφ

= ‖ f‖0
Bφ . (3.13)

In the other hand, by item 1 of the Proposition 3.2 we have

‖ f‖0
Bφ = inf

k>0

1
k
[1+ρBφ (k f )]≤ 1

as+(1−a)m
[1+ρBφ ((as+(1−a)m) f ] (3.14)
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Combining (3.13) and (3.14) we get,

‖ f‖0
Bφ =

1
as+(1−a)m

(1+ρBφ ((as+(1−a)m) f ),

and so, as+(1−a)m ∈ K( f ) for all a ∈ [0,1]. This means that [s,m]⊆ K( f ).

Now, let us introduce this notation. For k > 0 ; f ∈ Bφ
a.p.(R), define the following set :

Sφ ( f ,k) = {t ∈ R,k f (t) /∈ Sφ},

and Sφ ( f ,k) its complementary.

Lemma 3.10.
Let f ∈ Bφ

a.p.(R), ‖ f‖Bφ 6= 0. We suppose that µ(Sφ ( f ,k)) = 0 for any k ∈ K( f ). Then
K( f )consists exactly of one element from ]0,+∞[.

Proof. Suppose that there exists m,s ∈ K( f ) such that s < m.

Then ‖(s−m) f‖0
Bφ > 0 because ‖ f‖0

Bφ 6= 0.
By lemma 3.5 there exist reals numbers 0 < α < β , and θ ∈]0,1[ such that µB(G)≥ θ

where
G = {t ∈ R,α ≤ |(s−m) f (t)| ≤ β}.

We know that µ(Sφ ( f ,k)) = 0, with k ∈ K( f ) this implies that

µB(Sφ ( f ,k)∩G) = µB(G). Just write G = (G∩Sφ ( f ,k))∪ (G∩Sφ ( f ,k)). (3.15)

By the convexity of φ and item 1 of the Proposition 3.2 we have

‖ f‖0
Bφ ≤

2
s+m

[
1+ρBφ

(
s+m

2
f
)]

≤ 2
s+m

[
1+

1
2

ρBφ (s f )+
1
2

ρBφ (m f )
]

≤ 2
s+m

[
1
2
(1+ρBφ (s f ))+

1
2
(1+ρBφ (m f ))

]
=

2
s+m

[
s
2

(
1
s
[1+ρBφ (s f )]

)
+

m
2

(
1
m
[1+ρBφ (m f )]

)]
=

2
s+m

[ s
2
‖ f‖0

Bφ +
m
2
‖ f‖0

Bφ

]
= ‖ f‖0

Bφ .

58



3.3. Extreme points of Bφ
a.p. (R) equipped with the Orlicz norm

So all the inequalities in the above formulae are, in fact, equalities. Therefore s+m
2 ∈ K( f ),

and
ρBφ (

s f +m f
2

) =
1
2
[ρBφ (s f )+ρBφ (m f )] . (3.16)

Let a = ‖m f‖0
Bφ . Choose η such that min(aη ,η)> 1. Put

A = {t ∈ R, |m f (t)|> aη}.

Using item 2 of the Proposition 3.2 we get

a = ‖m f‖0
Bφ ≥ ‖m f‖Bφ ≥ ‖m f χA‖Bφ ≥ aη‖χA‖Bφ .

Which implies that ‖χA‖Bφ ≤ 1
η
< 1, and then, by Remark ??, ρBφ (χA)≤ 1

η
.

In view of the following implication (see, e.g. [78, lemma 1])

∀ε > 0,∃δ > 0, ∀A ∈ Σ(R), ρBφ (χA)≤ δ ⇒ µB(A)< ε, (3.17)

we get that µB(A)<
θ

4 .

Let

F1(u,v) =
2φ(u+v

2 )

φ(u)+φ(v)
, for each (u,v) ∈ R2 \{(0,0)}.

We have F1(u,v)< 1 for all (u,v) ∈ Q1, where

Q1 = {(u,v) ∈ R2, |u| ≤ aη , |v| ≤ aη , |u− v| ≥ α,
u+ v

2
∈ Sφ}.

Then using the continuity of F1 on the compact set Q1, it follows that there exists
0 < δ < 1 such that

sup
(u,v)∈Q1

F1(u,v) = 1−δ .

More precisely, we have

φ(
u+ v

2
)≤ (1−δ )

φ(u)+φ(v)
2

, ∀(u,v) ∈ Q1.

Let now t ∈ (G∩Sφ ( f ,k))\A. Then (s f (t),m f (t)) ∈ Q1.

On the other hand we have

µB((G∩Sφ ( f ,k))\A)≥ µB(G∩Sφ ( f ,k))−µB(A)≥
3θ

4
.
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Take G = (G∩Sφ ( f ,k))\A, it follows that

1
2T

∫ T

−T
φ(
|s f (t)+m f (t)|

2
)dt =

1
2T

∫
[−T,T ]∩G

φ(
|s f (t)+m f (t)|

2
)dt

+
1

2T

∫
[−T T ]∩Gc

φ(
|s f (t)(t)+m f (t)|

2
)dt

≤ (1−δ )
1

2T

∫
[−T,T ]∩G

φ(|s f (t)|)+φ(|m f |)
2

dt

+
1

2T

∫
[−T,T ]∩Gc

φ(|s f (t)|)+φ(|m f (t)|)
2

dt

≤ 1
2T

∫ T

−T

φ(|s f (t)|)+φ(|m f (t)|)
2

dt

− δ
1

2T

∫
[−T,T ]∩G

φ(|s f (t)|)+φ(|m f (t)|)
2

dt

≤ 1
2

[
1

2T

∫ T

−T
φ(|s f (t)|dt)+

1
2T

∫ T

−T
φ(|m f (t)|)dt

]
− δ

1
2T

∫
[−T,T ]∩G

φ(
|s f (t)−m f (t)|

2
)dt

≤ 1
2

[
1

2T

∫ T

−T
φ(|s f (t)|dt)+

1
2T

∫ T

−T
φ(|m f (t)|)

]
dt−δφ(

α

2
)

µ(G)

2T
.

Letting T tend to infinity we get

ρBφ (
s f +m f

2
)≤ 1

2
[ρBφ (s f )+ρBφ (m f )]−δφ(

α

2
)µB(G).

Then we get,

1
2
(ρBφ (s f )+ρBφ (m f ))−ρBφ (

s f +m f
2

)≥ δφ(
α

2
)µB(G)≥ 3θ

4
δφ(

α

2
)> 0.

This contradicts equality (3.20). Then, we have necessarily s = m.

Remark 3.2. It follows from lemma 3.10 that if the function φ is strictly convex then
the set K( f ) consists of exactly one element.

3.3.2 Extreme points of Bφ
a.p((R,C),‖.‖o

Bφ )

Now, we characterize the extreme points of the unit ball of Bφ
a.p.(R) equipped with the

Orlicz norm.
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3.3. Extreme points of Bφ
a.p. (R) equipped with the Orlicz norm

Theorem 3.3. Let f ∈ S(Bφ
a.p.(R)).

f is an extreme point of B(Bφ
a.p.(R)) if and only if µ

(
Sφ ( f ,k)

)
= 0 for any k ∈ K( f ).

Proof. Sufficiency : Suppose that µ
(
Sφ ( f ,k)

)
= 0 for any k∈K( f ) and f /∈ extr

[
B(Bφ

a.p.(R))
]
.

So there exists g,h ∈ S(Bφ
a.p(R)) such that

g 6= h and f =
g+h

2
.

By Proposition 3.2, we know that K(g) 6= /0 and K(h) 6= /0. For k1 ∈K(g) and k2 ∈K(h)
we have ‖k1g− k2h‖0

Bφ > 0.
By lemma 3.5 there exist α,β > 0 and θ ∈]0,1[ such that for the set

G = {t ∈ R, α ≤ |k1g(t)− k2h(t)| ≤ β},

we have µB(G)> θ .

In order to simplify the notation, we put k = k1k2
k1+k2

. By the convexity of φ we get

2 = ‖g‖0
Bφ +‖h‖0

Bφ =
1
k1

[1+ρBφ (k1g)]+
1
k2

[1+ρBφ (k2h)]

=
k1 + k2

k1k2

[
1+

k2

k1 + k2
ρBφ (k1g)+

k1

k1 + k2
ρBφ (k2h)

]
≥ 1

k
[1+ρBφ (kg+ kh)] = 2.

1
2k

[1+ρBφ (2k f )] (3.18)

≥ 2‖ f‖0
Bφ = 2. (3.19)

This implies that 2k ∈ K( f ) and

ρBφ (2k f ) =
k2

k1 + k2
ρBφ (k1g)+

k1

k1 + k2

ρBφ (k2h). (3.20)

By hypothesis µ
(
Sφ ( f ,2k)

)
= 0. Then, as in (3.15) we get

µB(G) = µB(G∩Sφ ( f ,2k)).

Let ξ > 1. Define the sets

A1 = {t ∈ R, |g(t)| ≥ ξ}; A2 = {t ∈ R, |h(t)| ≥ ξ}.
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Our first claim is that

1 = ‖g‖0
Bφ ≥ ‖g‖Bφ ≥ ‖gχA1‖Bφ ≥ ξ‖χA1‖Bφ .

thus ‖χA1‖Bφ ≤ 1
ξ
. Similar computations we get also ‖χA2‖Bφ ≤ 1

ξ
.

Then, by using (3.17), we get µB(Ai)<
θ

4 , ∀i = 1,2.
Now, we choose b = max(k1,k2) and consider the set

Q = {(u,v) ∈ R2, |u| ≤ bξ +β , |v| ≤ bξ +β , |u− v| ≥ α,
k2

k1 + k2
u+

k1

k1 + k2
v ∈ Sφ},

and define the map F on R2 \{(0,0)} by

F(u,v) =
φ( k2

k1+k2
u+ k1

k1+k2
v)

k2
k1+k2

φ(u)+ k1
k1+k2

φ(v)
.

For all t ∈ (Sφ ( f ,2k)∩G) \ (A1 ∪A2), we have (k1g(t),k2h(t)) ∈ Q. Then, using same
arguments as in the Proof of lemma 3.10, there exists 0 < δ < 1 such that

φ(
k1k2

k1 + k2
(g(t)+h(t))) = φ

(
k2

k1 + k2
(k1g(t))+

k1

k1 + k2
(k2h(t))

)
≤ (1−δ )

(
k2

k1 + k2
φ(k1g(t))+

k1

k1 + k2
φ(k2h(t))

)
.

Denote Θ = k1+k2
k1.k2

[
k2

k1+k2
ρBφ (k1g)+ k1

k1+k1
ρBφ (k2h)−ρBφ (2k f )

]
. By (3.20), we have Θ = 0.

On the other hand, if we denote G = [−T,T ]∩
(
(Sφ ( f ,k)∩G)\ (A1∪A1)

)
, we have

Θ ≥ 1
k1

ρBφ (k1gχG)+
1
k2

ρBφ (k2hχG)

− k1 + k2

k1.k2

[
(1−δ )

k2

k1 + k2
ρBφ (k1gχG)+

k1

k1 + k2
ρBφ (k2hχG)

]
≥ δ

k1
ρBφ (k1gχG)+

δ

k2
ρBφ (k2hχG)

≥ 2δ

b

(
ρBφ (k1gχG)+ρBφ (k2hχG)

2

)
≥ 2δ

b
lim

T→∞

1
2T

∫
G

φ(k1|g(t)|)+φ(k2|h(t)|)
2

dt

≥ 2δ

b
lim

T→∞

1
2T

∫
G

φ(
|k1g(t)− k2h(t)|

2
)dt
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≥ 2δ

b
lim

T→∞

1
2T

∫
G

φ(
|k1g(t)− k2h(t)|

2
)dt

≥ 2δ

b
φ(

α

2
)µB

(
G
)
≥ δ

b
φ(

α

2
)θ > 0.

Contradiction with Θ = 0. Therefor the sufficiency is proved.
Necessity : we will show that if f ∈ extr

[
B
(

Bφ
a.p.

)]
then we have

µ
(
Sφ ( f ,k)

)
= 0 f or any k ∈ K( f ).

We assume that there exists k0 ∈ K( f ) such that µ
(
Sφ ( f ,k0)

)
> 0

Since R\Sφ is the union of at most countably many open intervals, there exists an
interval ]a,b[ such that for any ε > 0,

µ ({t ∈ R,k0 f (t) ∈ ]a+ ε,b− ε[})> 0,

and that φ is affine on [a,b] i.e., for any t ∈ [a,b], φ(t) = α1t +β1, α1 > 0 .
Let ε > 0. Taking

H ′ = {t ∈ R, k0 f (t) ∈]a+ ε,b− ε[}.

Then there are two subsets A,B of H ′ such that 0< µ(A)<∞, 0< µ(B)<∞ and A∩B= /0.
Indeed, let γ > 0, we know that R= ∪

n∈Z
[γn,γ(n+1)[. Then H ′ = ∪

n∈Z
H ′n, where H ′n =

H ′∩ [γn,γ(n+1)[. We have

H ′i ∩H ′j = /0, ∀i 6= j, µ(H ′n)≤ µ
(
[γn,γ(n+1)

[
) = γ, and µ(H ′) = ∑

n∈Z
µ(H ′n).

Since µ(H ′)> 0, two cases may arise

1. µ(H ′)< ∞. Then there exists at least two sets H ′1,H
′
2 such that

0 < µ(H ′i )< γ, ∀i = 1,2, (just choose γ =
µ(H ′)

2
).

2. µ(H ′) = ∞. There exists infinitely many sets H ′n such that

0 < µ(H ′n)< γ.
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Now, we put H = A∪B we define{
g(t) = f (t)χHc(t)+( f (t)− ε)χA(t)+( f (t)+ ε)χB(t)
h(t) = f (t)χHc(t)+( f (t)+ ε)χA(t)+( f (t)− ε)χB(t)

Then g 6= h and g+h = 2 f .
By lemma 3.7, we get

f χHc,( f − ε)χA,( f + ε)χB ∈ Bφ
a.p.(R).

Which implies that g,h ∈ Bφ
a.p.(R).

Now, we should show that ‖g‖0
Bφ ≤ 1.

Let ρT (k0g) = 1
2T
∫ T
−T φ(|k0g(t)|)dt. Then, by using the fact that φ is affine on H we

get

ρT (k0g) = ρT (k0 f χHc)+ρT (k0 f χA)+ρT (k0 f χB)

= ρT (k0 f χHc)+
1

2T

∫
[−T,T ]∩A

φ

(
k0
(
| f (t)− ε|

))
dt +

1
2T

∫
[−T,T ]∩B

φ

(
k0| f (t)+ ε|)

)
dt

≤ ρT (k0 f χHc)+
1

2T

∫
[−T,T ]∩A

φ

(
k0| f (t)|+ k0ε

)
dt +

1
2T

∫
[−T,T ]∩B

φ

(
k0| f (t)|+ k0ε

)
dt

≤ ρT (k0 f χHc)+
1

2T

∫
[−T,T ]∩A

(
α1k0| f (t)|+β1 +α1k0ε

)
dt

+
1

2T

∫
[−T,T ]∩B

(
α1k0| f (t)|+ k0β1 +α1k0ε

)
dt

≤ ρT (k0 f χHc)+ρT (k0 f χH)+α1k0ε
1

2T
µ(H ∩ [−T,T ])

≤ ρT (k0 f )+α1k0ε
1

2T
µ(H ∩ [−T,T ]).

Then letting T →+∞ we get

ρBφ (k0g)≤ ρBφ (k0 f )+ k0εµB(H).

Since µB(H) = 0, we obtain

ρBφ (k0g)≤ ρBφ (k0 f ),with k0 ∈ K( f ).
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It follows that

‖g‖0
Bφ = inf

k>0

1
k
[1+ρBφ (kg)]≤ 1

k0
[1+ρBφ (k0g)]≤ 1

k0
[1+ρBφ (k0 f )] = 1.

Using same arguments, we get ‖h‖0
Bφ ≤ 1.

Finally, we have g,h∈B
(

Bφ
a.p.(R)

)
with 2 f = g+h, this shows that f /∈ extr

[
B
(

Bφ
a.p(R)

)]
.

The proof is complete.

Remark 3.3. Criteria for the strict convexity of Bφ
a.p.(R) endowed with the Orlicz norm

is known (see [81, Theorem 4.1]), we can easily deduce this result by our main Theorem
3.3.

Corollary 3.2. Let f ∈ S(Bφ
a.p.(R)).

If the set K( f ) consists of exactly one element (K( f ) =
{

k
}
, k > 0), and µ

(
Sφ ( f ,k)

)
<

+∞ then µ
(
Sφ ( f ,k)

)
= 0.

Proof. Assume that 0 < µ
(
Sφ ( f ,k)

)
<+∞. Then by Theorem 3.3, we deduce that f /∈

extr
[
B(Bφ

a.p(R),‖.‖0
Bφ )
]
.

It follows that there exist two functions g,h, g 6= h such that

‖g‖0
Bφ = ‖h‖0

Bφ = 1 and f =
g+h

2
.

Using same notations and arguments as in the proof of the necessity of Theorem 3.3, we
get

µB(G) = µB(G∩Sφ ( f ,k)), (3.21)

and µB(Ai)<
θ

4 , ∀i = 1,2.
Taking Ω = (G∩Sφ ( f ,k)))\(A1∪A2) then

µB(Ω) ≥ µB(G∩Sφ ( f ,k))−µB(A1)−µB(A2)

≥ µB(G)−µB(A1)−µB(A2)≥
θ

2
. (3.22)

We have k1 ∈ K(g), k2 ∈ K(h) and ‖g‖0
Bφ = ‖h‖0

Bφ = 1, f = g+h
2 with g 6= h. By similar

computations as in (3.18) we get

1 = ‖ f‖0
Bφ =

1
2k1k2
k1+k2

(
1+ρBφ (

2k1k2

k1 + k2
f
)
.
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Then
1− k1 + k2

2k1k2
− k1 + k2

2k1k2
ρBφ (

2k1k2

k1 + k2
f ) = 0. (3.23)

Put ρT ( f ) = 1
2T
∫ T
−T φ(| f (t)|)dt,ρT (g) = 1

2T
∫ T
−T φ(|g(t)|)dt,ρT (h) = 1

2T
∫ T
−T φ(|h(t)|)dt,

Then

ρT (
2k1k2

k1 + k2
f ) =

1
2T

∫ T

−T
φ

(
2k1k2

k1 + k2
| f (t)|

)
dt

=
1

2T

∫ T

−T
φ

(
| k2

k1 + k2
(k1g(t))+

k1

k1 + k2
(k2h(t))|

)
dt

=
1

2T

∫
[−T,T ]∩Ω

φ

(
| k2

k1 + k2
(k1g(t))+

k1

k1 + k2
(k1h(t))|

)
dt

+
1

2T

∫
[−T,T ]∩Ωc

φ

(
| k2

k1 + k2
(k1g(t))+

k1

k1 + k2
(k2h(t))|

)
dt

≤ (1−δ )
1

2T

∫
[−T,T ]∩Ω

[
k2

k1 + k2
φ(k1|g(t)|)+

k1

k1 + k2
φ(k2|h(t)|)

]
dt

+
1

2T

∫
[−T,T ]∩Ωc

[
k2

k1 + k2
φ(k1|g(t)|)+

k1

k1 + k2
φ(k2|h(t)|)

]
dt

≤ 1
2T

∫ T

−T

[
k2

k1 + k2
φ(k1|g(t)|)+

k1

k1 + k2
φ(k1|h(t)|)

]
dt

− δ
1

2T

∫
[−T,T ]∩Ω

[
k2

k1 + k2
φ(k1|g(t)|)+

k1

k1 + k2
φ(k2|h(t)|)

]
dt.

We multiply both sides by −k1+k2
2k1k2

we get

−k1 + k2

2k1k2
ρT (

2k1k2

k1 + k2
f ) ≥ −1

2
1

2T

∫ T

−T

[
1
k1

φ(k1|g(t)|)+
1
k2

φ(k2|h(t)|)
]

dt

+
δ

2
1

2T

∫
[−T,T ]∩Ω

[
1
k1

φ(k1|g(t)|)+
1
k2

φ(k2|h(t)|)
]

dt.

Since 1
k1
> 1

b and 1
k1
> 1

b , we obtain

−k1 + k2

2k1k2
ρT (

2k1k2

k1 + k2
f ) ≥ −1

2
(

1
k1

ρT (k1g)+
1
k2

ρT (k1h))+
δ

b
1

2T

∫
[−T,T ]∩Ω

φ(
|k1g(t)− k2h(t)|

2
)dt

≥ −1
2
(

1
k1

ρT (k1g)+
1
k2

ρT (k2h))+
δ

b
φ(

α

2
)

µ([−T,T ]∩Ω)

2T
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Letting T tend infinity we have

−k1 + k2

2k1k2
ρBφ (

2k1k2

k1 + k2
f ) ≥ −1

2
(

1
k1

ρBφ (k1g)+
1
k2

ρBφ (k2h))+
δ

b
φ(

α

2
)µB(Ω)

≥ −1
2
(

1
k1
(1+ρBφ (k1g))+

1
k2
(1+ρBφ (k2h))− 1

k1
− 1

k2
+

δ

b
φ(

α

2
)
θ

2

=
−1
2
(‖g‖0

Bφ )+‖h‖0
Bφ −

k1 + k2

k1k2
)+

δ

b
φ(

α

2
)
θ

2

= −1+
k1 + k2

2k1k2
+

δ

b
φ(

α

2
)
θ

2
.

This implies

1− k1 + k2

2k1k2
− k1 + k2

2k1k2
ρT (

2k1k2

k1 + k2
f )≥ δ

b
φ(

α

2
)
θ

2
> 0,

which contradicts the equality (3.23). This contradiction shows that µ
(
Sφ ( f ,k)

)
= 0.

The following corollary is an immediate consequence of the previous results.

Corollary 3.3. Let f ∈ S(Bφ
a.p(R),‖.‖o

Bφ ) and µ
(
Sφ ( f ,k)

)
< ∞ for every k ∈ K( f ). Then

the following statements are equivalent :

1. the set K( f ) consists of exactly one element K( f ) = {k}, k > 0 ;

2. µ
(
Sφ ( f ,k)

)
= 0 ;

3. f ∈ extr
[
B(Bφ

a.p.(R),‖.‖o
Bφ )
]
.
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Conclusion and Perspectives

With the knowledge that certain points of the unit sphere of a Banach space ( such as
extreme points, strongly extreme points, exposed points and denting points) are crucial in
the understanding of its geometry, we are interested in this work to the characterization of
extreme points of the unit ball of the Besicovitch-Orlicz spaces of almost periodic functions
Bφ a.p.(R,C).

Our first results are obtained when Bφ a.p.(R,C) is equipped with Luxemburg norm.
Namely, under specific restriction on the structure affine intervals of φ , a function f
of the unit sphere of Bφ a.p.(R,C) is an extreme point if and only if f (t) is a point
of strict convexity of φ almost for all t ∈ R. To prove this claim, we have showed an
important result which states that even if f ∈ Bφ a.p.(R,C), f χA is not necessarily almost
periodic in the sense of Besicovitch-Orlicz. Thanks to this result "on the extreme points",
we refound the sufficient conditions for the strict convexity of Bφ a.p.(R,C) in the case of
the Luxemburg norm.

In the case where Bφ a.p.(R,C) is endowed with the orlicz norm (which is equal to the
Amemiya norm), we started by showing some properties of the set K( f ) (set of elements
where the infimum is attained in the Amemiya formula for a function f ∈ Bφ a.p.(R,C)).
In particular, the set K( f ) is an interval and under some conditions over φ this set is a
singleton. Then, we showed that a function f of the unit sphere of Bφ a.p.(R,C) is an
extreme point if and only if k f (t) is a point of strict convexity of φ , for any k ∈ K( f ) and
for almost any t ∈ R.

In the past few years, several interesting results have been obtained concerning the
geometric properties of these spaces, such as uniform and strict convexity, uniform non-l1

n

(B-convexity), uniform non-squareness, property β etc, the results achieved depend closely
on the growth and on the strict (or uniform) convexity of the function φ . However, there
are still a number of unanswered questions in this field of study.
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At the end of this work, the perspectives opened up are for example

1. Characterization of others special points of the unit ball of Bφ a.p. like strongly
extreme points, exposed and denting points.

2. Investigation of others geometric properties of Bφ a.p.

3. The study of the extremal structure of the unit ball of the space of Stepanov-Orlicz
almost periodic functions

4. The investigation into the geometry of others spaces of generalized almost periodic
functions and other functional spaces.
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