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Abstract. In this paper we suggest an algorithm for solving a multiob-
jective stochastic linear programming problem with normal multivariate
distributions. The problem is first transformed into a deterministic multi-
objective problem introducing the expected value criterion and an utility
function. The obtained problem is reduced to a monobjective quadratic
problem using a weighting method. This last problem is solved by DC
algorithm.
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1 Introduction

Multiobjective stochastic linear programming (MOSLP) is a tool for modeling
many concrete real-life problems because it is not obvious to have the complete
data about problems parameters. Such a class of problems includes investment
and energy resources planning [10, 21], manufacturing systems in production
planning [7, 8], mineral blending [13], water use planning [2, 5] and multi-product
batch plant design [24]. So, to deal with this type of problems it is required to
introduce a randomness framework.

In order to obtain the solutions for these multiobjective stochastic problems,
it is necessary to combine techniques used in stochastic programming and multi-
objective programming. From this, two approaches are considered, both of them
involve a double transformation. The difference between the two approaches is
the order in which the transformations are carried out. Ben Abdelaziz qualified
as multiobjective approach the perspective which transform first, the stochastic
multiobjective problem into its equivalent multiobjective deterministic problem,
and stochastic approach the techniques that transform in first the stochastic
multiobjective problem into a monobjective stochastic problem [4].

Several interactive methods for solving (MOSLP) problems have been de-
veloped. We can mention the Probabilistic Trade-off Development Method or
PROTRADE by Goicoechea et al. (1976) [11], The Strange method proposed by
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Teghem et al. (1986) [22] and the interactive method with recourse which uses
a two stage mathematical programming model by Klein et al. (1990) [12].

In this paper, we propose another approach which is a combination between
the multiobjective approach and a nonconvex technique (Difference of Convex
functions), to solve the multiobjective stochastic linear problem with normal
multivariate distributions. The DC programming and DC Algorithm have been
introduced by Pham Dinh Tao in 1985 and developed by Le Thi Hoai An and
Pham Dinh Tao since 1994 [14–17]. This method has proved its efficiency in a
large number of noncovex problems [18–20].

The paper is structured as follows: In section 2, the problem formulation is
given. Section 3, shows how to reformulate the problem by introducing utility
functions and applying the weighting method. Section 4 presents a review of DC
programming and DCA. Section 5 illustrates the application of DC programming
and DCA for the resulting quadratic problem. Our, experimental results are
presented in the last section.

2 Problem statement

Let us consider the multiobjective stochastic linear programming problem for-
mulated as follows:

min (c̃1x, c̃2x, ..., c̃qx),
s.t. x ∈ S,

(1)

where x = (x1, x2, ..., xn) denotes the n-dimensional vector of decision variables.
The feasible set S is a subset of n-dimensional real vector space IRn characterized
by a set of constraint inequalities of the form Ax ≤ b; where A is an m × n

coefficient matrix and b an m-dimensional column vector. We assume that S

is nonempty and compact in IRn. Each vector c̃k follows a normal distribution
with mean ck and covariance matrix Vk. Therefore, every objective c̃kx follows
a normal distribution with mean µk = c̄kx and variance σ2

k = xtVkx.
In the following section, we will be mainly interested in the main way to

transform problem (1) into an equivalent multiobjective deterministic problem
which in turn will be reformulated as a DC programming problem.

3 Transformations and Reformulation

First, we will take into consideration the notion of risk. Assuming that deci-
sion makers’ preferences can be represented by utility functions, under plausible
assumptions about decision makers’s risk attitudes, problem (1) is interpreted
as:

min
x

(E[U(c̃1x)], E[U(c̃2x)], ..., E[U(c̃qx)]),

s.t. x ∈ S.
(2)

The utility function U is generally assumed to be continuous and convex. In this
paper, we consider an exponential utility function of the form U(r) = 1− e−ar,
where r is the value of the objective and a the coefficient of incurred risk (a
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large corresponds to a conservative attitude). Our choice is motivated by the fact
that exponential utility functions will lead to an equivalent quadratic problem
which encouraged us to design a DC method to solve it simply and accurately.
Therefore, if r ∼ N(µ, σ2), we have:

E(U(r)) =

∫ +∞

−∞

(1− e−ar)
e−(r−µ)2/2σ2

√
2π

dr

σ
= 1− e

σ2a2

2
−µa.

Minimizing E(U(r)) means maximizing σ2a2

2 − µa or minimizing µ− σ2a
2 .

Our aim is to search for efficient solutions of the multiobjective deterministic
problem (2) according to the following definition:

Definition 1. [3] A feasible solution x∗ to problem (1) is an efficient solution
if there is not another feasible x such that E[U(c̃kx))] ≥ E[U(c̃kx

∗)] with at
least one strict inequality. The resulting criterion vector E[U(c̃kx

∗)] is said to
be non-dominated.

Applying the widely used method for finding efficient solutions in multiobjective
programming problems, namely the weighting sum method [3, 6], we assign to
each objective function in(2) a non-negative weight wk and aggregate the objec-
tives functions in order to obtain a single function. Thus, problem (2) is reduced
to:

min
x

q
∑

k=1

wkE[U(c̃kx)],

s.t. x ∈ S,

wk ∈ Λ ∀k ∈ {1, . . . , q},
(3)

or equivalently

min
x

E[U(
q
∑

k=1

wk c̃kx)],

s.t. x ∈ S,

wk ∈ Λ ∀k ∈ {1, . . . , q},
(4)

where Λ = {wk :
q
∑

k=1

wk = 1, wk ≥ 0 ∀k ∈ {1, . . . , q}}.

Theorem 1. [9] A point x∗ ∈ S is an efficient solution to problem (2) if and
only if x∗ ∈ S is optimal for problem (4).

Given that the random variable F (x, c̃) =
q
∑

k=1

wk c̃kx in (4) is a linear function

of the random objectives c̃kx; its variance depends on the variances of c̃kx and
on their covariances. Since each c̃kx follows a normal distribution with mean µk

and covariance σ2
k, the function F (x, c̃) follows a normal distribution with mean

µ and covariance σ2 where,

µ =
q
∑

k=1

µk =
q
∑

k=1

wk c̄kx, (5)
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σ2 =
q
∑

k=1

w2
kσ

2
k + 2

q
∑

k,s=1

wkwsσks, (6)

where σks denotes the covariance of the random objectives c̄kx and c̄sx. Finally,
we obtain the following quadratic problem:

min
x

q
∑

k=1

wk c̄
t
kx− a

2





q
∑

k=1

w2
kσ

2
k + 2

q
∑

k,s=1

k<s

wkwsσks



 ,

s.t. x ∈ S,

(7)

or

min
x

q
∑

k=1

wk c̄
t
kx− a

2





q
∑

k=1

w2
kx

tVkx+ 2
q
∑

k,s=1

k<s

wkwsx
tVksx



 ,

s.t. x ∈ S,

(8)

where c̄k = (c̄k1, c̄k2, ..., c̄kn) is the k-th component of the expected value of the
random multinormal vector c̃, Vks and Vk are elements of the positive definite
covariance matrix V of c̃:

V =

















V1 V12 ... V1s ... V1q

V21 V2 ... V2s ... V2q

... ... ... ... ... ...

Vk1 Vk2 ... Vks ... Vkq

... ... ... ... ... ...

Vq1 Vq2 ... Vqs ... Vq

















.

4 Review of DC programming and DCA

A general DC program has the form:

α = inf{f(x) = g(x)− h(x) : x ∈ IRn}, (9)

where g, h are lower semicontinuous proper convex functions on IRn called DC
components of the DC function f while g − h is a DC decomposition of f .
The duality in DC associates to problem (9) the following dual program:

α = inf{h∗(y)− g∗(y) : y ∈ IRn}, (10)

where g∗ and h∗ are respectively the conjugate functions of g and h.
The conjugate function of g is defined by:

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ IRn}. (11)

From [16], the most used necessary optimality conditions for problem (9), is:

∅ 6= ∂h(x∗) ⊂ ∂g(x∗), (12)
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where ∂h(x∗) = {y∗ ∈ IRn : h(x) ≥ h(x∗)+ < x − x∗, y∗ >, ∀x ∈ IRn} is the
subdifferential of h at x∗.
A point x∗ is called critical point of g − h if

∅ 6= ∂g(x∗) ∩ ∂h(x∗). (13)

DCA constructs two sequences {xi} and {yi} (candidates for being primal and
dual solutions, respectively), such that their corresponding limit points satisfy
the local optimality conditions (12) and (13). There are two forms of DCA: the
simplified DCA and the complete DCA. In practice, the simplified DCA is most
used than the the complete DCA because it is less expensive [14]. The simplified
DCA has the following scheme [14, 19]:

Simplified DCA Algorithm

Step 1 : Let x0 ∈ IRn given. Set i = 0.
Step 2 : Calculate yi ∈ ∂h(xi).
Step 3 : Calculate xi+1 ∈ ∂g∗(yi).
Step 4 : If a convergence criterion is satisfied, then stop, else set i = i+ 1 and
goto step 2.

We also can note that: [16, 19]

- DCA is a descent method without linesearch.
- If g(xi+1)− h(xi+1) = g(xi)− h(xi), then xi is a critical point of f and yi is
a critical point of h∗ − g∗.

- DCA has a linear convergence for general DC programs, and has a finite
convergence for polyhedral programs.

- If the optimal value of problem (8) is finite and the sequences {xi} and {yi}
are bounded then every limit point x (resp. y ) of the sequence {xi} (resp.
{yi} is a critical point of g − h (resp. h∗ − g∗)

5 DCA Applied to Problem (8)

The function f(x) = min
x

q
∑

k=1

wk c̄kx− a
2





q
∑

k=1

w2
kσ

2
k + 2

q
∑

k,s=1

k<s

wkwsσks





in problem (8) will be decomposed in order to obtain a DC program of the form:

min{f(x) = g(x)− h(x) : x ∈ S}, (14)

with

g(x) = χS(x) +

q
∑

k=1

wk c̄
t
kx,

where χS(.) is the indicator function of the set S.
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and

h(x) =
a

2







q
∑

k=1

w2
kx

tVkx+ 2

q
∑

k,s=1

k<s

wkwsx
tVksx






.

After that, we will compute the two sequences {xi} and {yi} defined as follows:
yi ∈ ∂h(xi) and xi+1 ∈ ∂g∗(yi).

Computation of yi:
We choose yi ∈ ∂h(xi) =

{

∇h(xi)
}

.
It is equivalent to calculate:

yi = a





q
∑

k=1

w2
kVkx

i + 2
q
∑

k,s=1

k<s

wkwsVksx
i



 . (15)

Computation of xi:
We can choose xi+1 ∈ ∂g∗(yi) as the solution of the following convex problem

min

{

q
∑

k=1

wk c̄
t
kx− xtyi : x ∈ S

}

. (16)

The solution xi is optimal for the problem (14) if one of the following conditions
is verified

|(g − h)(xi+1)− (g − h)(xi)| ≤ ǫ, (17)

‖(xi+1)− (xi)‖ ≤ ǫ. (18)

Finally, the DC Algorithm that we can apply to problem (8) with the de-
composition (14) can be described as follows:

Algorithm DCAMOSLP

Step 1 : Initialization: Let x0 ∈ IRn, ǫ, k, w ∈ IR+,a > 0, V , A, b, c̄ given. Set
i = 0.
Step 2 : Calculate yi ∈ ∂h(xi) using (15).
Step 3 : Calculate xi+1 ∈ ∂g∗(yi), solution of the convex problem (16).
Step 4 : If one of the conditions (17) or (18) is verified, then stop xi+1 is opti-
mal for (14), else set i = i+ 1 and goto step 2.

6 Experimental Results

To demonstrate the performances of our algorithm, two numerical examples
will be given in this section. The first is taken from [6] to show the efficiency
of the algorithm. The second example is given to present the performances of
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DCAMOSLP according to the variation of certain parameters.
Let us consider the following stochastic bi-objective programming problem:















min
x

(c̃11x1 + c̃12x2, c̃21x1 + c̃22x2),

s.t. x1 + 2x2 ≥ 4,
x1, x2 ≤ 3,
x1, x2 ≥ 0,

(19)

with c̃ = (c̃11, c̃12, c̃21, c̃22)
t being a random vector multinormal with expected

value c = (0.5, 1, 1, 2.5)t and with positive definite covariance matrix:

V =









25 0 0 3
0 25 3 0
0 3 1 0
3 0 0 9









.

For this test, we will take ǫ = 10−6 and x0 = (0, 0) as initial point. The
application of algorithm DCAMOSLP to this problem for different values of the
coefficient of incurred risk a and a fixed weight vector µ = (0.8, 0.2)t gives the
results in Table 1 where nbr it is the number of iterations.

Table 1. Results for different values of parameter a.

a (x∗

1, x
∗

2) c1x
∗ c2x

∗ nbr it

10−30 (3, 0.5) 2 4.25 2
10−20 (3, 0.5) 2 4.25 2
10−10 (3, 0.5) 2 4.25 3
10−2 (3, 0.5) 2 4.25 3
1 (3, 3) 4.5 10.5 5
10 (3, 3) 4.5 10.5 5
102 (3, 3) 4.5 10.5 5

The non dominated solution (3, 0.5) is obtained for values of parameter
a ≤ 10−2. The non dominated solution for w = (0.8, 0.2)t in Ref. [6] is (3, 0.5).
We also note that the number of iterations decreases with the decrease of the
parameter a.

Now we will test the performance of the algorithm with a second problem which
has a larger set of feasible solutions.















min
x

(c̃11x1 + c̃12x2, c̃21x1 + c̃22x2),

s.t. 2x1 + 3x2 ≥ 10,
x1, x2 ≤ 5,
x1, x2 ≥ 0,

(20)
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with c = (6,−5, 3, 8)t and positive definite covariance matrix:

V =









14 0 0 3
0 12 3 0
0 3 2 0
3 0 0 8









.

The results of application of algorithm DCAMOSLP to this problem for different
values of parameter a and the weight vector w are given in Table 2.

Table 2. Results for different values of a and vector w.

a w (x∗

1, x
∗

2) nbr it

(0.2, 0.8) (0.5524, 2.9651) 2
(0.8, 0.2) (0, 5) 2

10−20 (0.6, 0.4) (0, 3.3333) 2
(0.5, 0.5) (0, 3.3333) 2
(0.9, 0.1) (0, 5) 2

(0.2, 0.8) (0.5506, 2.9663) 5
(0.8, 0.2) (0, 5) 2

10−10 (0.6, 0.4) (0, 3.3333) 3
(0.5, 0.5) (0, 3.3333) 3
(0.9, 0.1) (0, 5) 2

(0.2, 0.8) (0, 3.3333) 5
(0.8, 0.2) (0, 5) 3

10−2 (0.6, 0.4) (0, 3.3333) 4
(0.5, 0.5) (0, 3.3333) 3
(0.9, 0.1) (0, 5) 3

(0.2, 0.8) (5, 5) 5
(0.8, 0.2) (5, 5) 4

10 (0.6, 0.4) (5, 5) 4
(0.5, 0.5) (5, 5) 4
(0.9, 0.1) (5, 5) 5

(0.2, 0.8) (5, 5) 4
(0.8, 0.2) (5, 5) 5

102 (0.6, 0.4) (5, 5) 5
(0.5, 0.5) (5, 5) 5
(0.9, 0.1) (5, 5) 5

We observe from the results that the algorithm DCAMOSLP gives efficient
solutions of the multiobjective stochastic problem for small values of the coeffi-
cient of incurred risk (a ≤ 10−2). The number of iterations decreases with the
decrease of the parameter a.



A DC Algorithm for Solving Multiobjective Stochatic Problem 9

7 Conclusion

We have presented a DC optimization approach for solving a multiobjective
stochastic problem with multivariate normal distributions in which the objective
functions should be minimized. The experimental results show the efficiency of
the algorithm. However further experimental validation of this observation and
comparison with existing methods is needed. As future works, an algorithm for
a stochastic multiobjective maximization problem is planned.
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