REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU U.M.M.T.O

FACULTE DES SCIENCES DEPARTEMENT DE CHIMIE

THESE DE DOCTORAT EN SCIENCES

Présentée

Par Madame Malika ARABI épouse HOCINE

Pour l'obtention d'un Doctorat en Sciences

Spécialité : Chimie

Thème :

TRAITEMENT DES MARGINES PAR IRRADIATION GAMMA ET PAR ADSORPTION SUR DIFFERENTS SOLS DANS LES CONDITIONS CONVENTIONNELLES ET SOUS IRRADIATION DES MICRO-ONDES. ANALYSE ET CARACTERISATION.

Présenté et soutenu le 06 janvier 2021

Devant le jury composé de :

M. Ramdane MOUSSAOUI	Professeur à l'UMMTO	Président
M. Abdelhamid ELIAS	Professeur à l'UMMTO	Directeur de thèse
M. Slimane KADOUCHE	MCA à l'UMMTO	Examinateur
M. Hakim LOUNICI	Professeur à l'Université de Bouira	Examinateur
M. Smain CHEMAT	Directeur de Recherche au CRAPC	Examinateur
M. Smain KORICHI	Maître de Recherche classe A au CRND	Examinateur

À la mémoire de mon père loin d'ici mais jamais absent

A ma famille

A tous coux qui mo sont chors

Remerciements

Les travaux présentés dans cette thèse ont été réalisés au sein du Département des Applications en Industrie (DAI) de la Division des Applications Nucléaires (DAN), du Centre de Recherche Nucléaire d'Alger (CRNA).

En préambule de ce mémoire de thèse, je tiens à remercier tous ceux qui ont participé, de près ou de loin, à ce travail.

Tout d'abord, je remercie Monsieur A. MELLAH, ex. Directeur Général du CRNA et actuellement Commissaire A l'Energie Atomique, de m'avoir autorisée à réaliser ma thèse de Doctorat au niveau du DAI/DAN/CRNA.

Je voudrais exprimer ma profonde et sincère gratitude à l'égard de Monsieur R. TOUKAL, ex. Secrétaire Général et actuellement Directeur Général du CRNA, pour avoir facilité tous les aspects administratifs et logistiques (produits, petits équipements de laboratoire, ...) liés à la réalisation de ce travail ; et ce durant ses mandats de responsable.

Que Monsieur S. LOUELHI, Madame A. DJEFFAL et Monsieur A. MOULLA soient également remerciés en tant que Directeurs successifs de la DAN.

Je souhaite exprimer toute ma gratitude à mon directeur de thèse, Monsieur A.ELIAS, Professeur à l'Université Mouloud MAMMERI de Tizi-Ouzou, pour son accueil chaleureux dans son équipe, son encadrement efficace, son suivi régulier de l'avancement de ce travail ainsi que pour la confiance qu'il m'a accordé durant toutes ces années.

Je tiens également à remercier Monsieur R. MOUSSAOUI, Professeur à l'Université Mouloud MAMMERI de Tizi-Ouzou, pour avoir accepté de présider le jury de cette thèse, aussi, Monsieur S. KADOUCHE, Maître de Conférence classe A à l'Université Mouloud MAMMERI de Tizi-Ouzou; Monsieur H. LOUNICI, Professeur à l'Université de Bouira; Monsieur S. KORICHI, Maître de Recherche classe A au CRND, d'avoir accepté d'évaluer mon travail.

J'exprime toute ma reconnaissance à Monsieur S. CHEMAT, Directeur de Recherche au CRAPC d'avoir accepté de faire partie du jury. Je tiens à le remercier particulièrement pour son aide concernant la caractérisation de mes effluents.

Je remercie Madame BOUCHFER, Directrice du Laboratoire Central de l'Office National d'Assainissement de Baraki pour m'avoir permis et facilité la réalisation de quelques caractérisations, ainsi que tous les membres de son équipe qui m'ont toujours accueillie avec gentillesse.

Je tiens à remercier tout le personnel du DAI, en particulier Y. AIT YOUNES, pour sa patience et son soutien.

Je voudrais également remercier le personnel du CRND et du CRNA pour tous ce qu'ils ont fait pour mener à bien ce travail en particulier M. ATTOU, R. MERIKCHI, A. KABECHE, Z. KAMEL, I. TOUMERT, B. MANSOURI, N. SOUAMI, B. BADIS, H. HADOUN, R. YEFSAH, K. REKKIS, ...

Un grand merci à mes collègues de travail avec qui j'ai passé de beaux moments de rire et de complicité : S. BENAMER, H. HAMAI, L. ABERKANE, M. MEZAGUER, A. NACER KHOUDJA, K. ABDOUN, F. DARI, H. LARBI.

Les derniers remerciements seront pour ma petite famille qui a très vite compris que les questions concernant l'avancement de ma thèse n'étaient pas les bienvenues lors des discussions. Merci à mon défunt père et à ma mère de m'avoir soutenue et supportée durant mes études, d'avoir toujours été là pour moi et de croire en moi quoi que je fasse. Merci à mon frère F. de toujours me redonner le sourire et l'espoir.

"Agir avec honnêteté pour le bien de la dignité humaine est l'engagement le plus important dans notre court séjour sur cette planète".

> René Geronimo Favaloro 1923-2000

RÉSUMÉ

Cette étude porte sur l'application de trois procédés de traitement des eaux usées issues de l'industrie oléicoles (*margine*), riches en matières organiques toxiques comme les composés phénoliques, les acides organiques ... Les procédés de traitement étudiés sont : l'irradiation gamma, l'adsorption sur des sols naturels et enfin l'adsorption sous activation micro-ondes.

La particularité de ces procédés utilisés est que : dans l'irradiation gamma, les radicaux hydroxyles $^{\circ}$ OH formés sont capables d'oxyder les molécules organiques jusqu'à la minéralisation totale c'est-à-dire la transformation en CO₂ et H₂O, par contre dans l'adsorption, les adsorbants ont été choisis dans un concept de développement durable afin d'améliorer le processus de dépollution d'effluents non seulement du point de vue environnemental mais aussi économique dans le but de minimiser les coûts de la matière première servant à la dépollution elle-même et de son transport.

Le présent travail de recherche s'est articulé dans une première étape autour de la caractérisation physico-chimique de l'effluent oléicole avant irradiation gamma, aussi, la caractérisation physico-chimique, minéralogique et thermique de trois sols naturels échantillonnés dans la région Est d'Alger. Plusieurs techniques ont été sollicitées à savoir : IRTF, DRX, WD-XRF, ATG, ... Ceci nous a permis d'établir une fiche technique des différentes propriétés de ces matériaux.

Dans une deuxième étape, nous avons étudié l'effet des rayonnements gamma sur la teneur des composés phénoliques de l'eau usée oléicole et autres paramètres (*pH*, *C.E*, *d*, *DCO*, *DBO*₅, *NTK*, *NO*₃⁻, *NO*₂⁻, *NH*₄⁺, *PO*₄⁻³, P_b , $SO_4^{2^-}$, *MES*, M_M).

L'adsorption des composés phénoliques totaux a été étudiée en mode batch, et ce, dans la troisième et dernière partie dans les conditions classique et sous irradiation micro-ondes sur des sols naturels. Plusieurs paramètres ont été traités, tels que le temps de contact, la masse de l'adsorbant, la taille granulométrique de l'adsorbant, le pH de l'effluent et la concentration de ce dernier en composés phénoliques totaux (*CPT*). La cinétique de la mise en équilibre adsorbant/adsorbat est une étape essentielle pour optimiser les conditions de détermination des isothermes d'adsorption.

Dans cette thèse, la méthodologie de recherche expérimentale a été appliquée afin de réduire la teneur des CPT au maximum tout en valorisant les adsorbants utilisés (*sols naturels*). Les résultats expérimentaux montrent que l'irradiation gamma accélère seulement la réaction et que le sol N_1 présente un pouvoir d'adsorption plus important que les autres sols (N_3 et R).

Mots clés

Traitement, irradiation gamma, adsorption, irradiation micro-onde, sols naturels, composés phénoliques totaux, eaux usées oléicoles, pollution.

ABSTRACT

This study focuses on the application of three processes for treating of wastewater resulting from the olive industry (vegetable water) rich in toxic organic matters such as phenolic compounds, organic acids ... The treatment processes studied are: gamma irradiation, adsorption on natural soils and finally adsorption under activation in the microwave.

The particularity of these process used is that: in gamma irradiation, hydroxyl radicals $^{\circ}$ OH formed are capable of oxidizing the organic molecules up to the total mineralization, that is to say transformation in CO₂ and H₂O, by against in the adsorption, the adsorbents were chosen in a concept of sustainable development in order to improve the process of depollution of effluents not only from the environmental point of view but also economic in order to minimize the costs of the raw material used to the cleanup itself and its transportation.

The present research work was based in a first step around the physico-chemical characterization of the olive wastewater before gamma irradiation, also, the physico-chemical, mineralogical and thermal characterization of three natural soils sampled in the region East of Algiers. Several techniques have been requested namely FTIR, XRD, WD-XRF, TGA ... This allowed us to establish a technical sheet of the different properties of these materials.

In a second step, we studied the effect of gamma radiation on the content of phenolic compounds in olive mill wastewater and other parameters (*pH*, *EC*, *d*, *COD*, *BOD*₅, *TNK*, *NO*₃⁻, *NO*₂⁻, *NH*₄⁺, PO_4^{-3} , T_P , $SO_4^{2^-}$, *TSM*, M_M).

The adsorption of the total phenolic compounds was studied in batch mode, and this, in the third and last part under conventional and microwave irradiation conditions on natural soils. Several parameters have been treated, such as the contact time, the adsorbent mass, the particle size of the adsorbent, the pH of the effluent and the concentration of the latter in total phenolic compounds (*TPC*). The kinetics of the adsorbent/ adsorbate equilibrium is an essential step to optimize the conditions for determining the adsorption isotherms.

In this thesis, the experimental research methodology was applied in order to reduce the maximum of TPC content while enchancing the adsorbents used (*natural soils*). Experimental results show that gamma irradiation only accelerates the reaction and that soil N_1 has a greater adsorption capacity than other soils (N_3 and R).

Keywords

Treatment, gamma irradiation, adsorption, microwave irradiation, natural soils, total phenolic compounds, olive wastewater, pollution.

ملخص:

تركز هذه الدراسة على تطبيق ثلاث عمليات لمعالجة مياه الصرف الناتجة من مصانع زيت الزيتون (أمورج)، الغنية بالمواد العضوية السامة مثل المركبات الفينولية، الأحماض العضوية، إلخ . عمليات المعالجة التي تمت دراستها هي : تشعيع جاما، الإمتزاز على تربة طبيعية و أخيرا الإمتزاز تحت تفعيل الميكروويف . خصوصية هذه العمليات المستخدمة ما يلي : في تشعيع جاما جذور الهيدروكسيل OH المتكونة قادرة على أكسدة الجزيئات العضوية حتى التمعدن الكلي ، أي التحول إلى CO2 و H₂O ، من ناحية أخرى في الإمتزاز ، المواد الماصة أختيرت في مفهوم التنمية المستدامة لتحسين عملية إزالة النفايات السائلة ، ليس فقط من الناحية البيئية و لكن أيضا من الناحية الإقتصادية من أجل تقليل تكاليف المواد الخامة المستخدمة في إزالة التلوث نفسه و نقله .

يظم هذا العمل البحثي في مرحلة أولى حول التوصيف الفيزيوكيميائي لمياه صرف معاصر الزيتون قبل أشعة جاما، أيضا، التوصيف الفيزيوكيميائي ، المعدني و الحراري لثلاث ترب طبيعية عينت في الجهة الشرقية للجزائر . عدة تقنيات تم تطبيقها مثل : ATG ، WD-XRF ، DRX ، FTIR ، و ما إلى ذلك . هذا سمح لنا بتأسيس ورقة تقنية بعدة خصائص لهذه المواد .

في الخطوة الثانية ، درسنا تأتير أشعة جاما على محتوى المركبات الفينولية في مياه صرف معاصر الزيتون $P_t \cdot PO_4^{-3} \cdot NH_4^+ \cdot NO_2^- \cdot NO_3^- \cdot NTK \cdot DBO_5 \cdot DCO \cdot d \cdot CE \cdot pH$ ، $NH_4^+ \cdot NO_2^{-5} \cdot NO_3^{-2} \cdot NTK \cdot DBO_5 \cdot SO_4^{-2}$.

تمت دراسة إمتزاز المركبات الفينولية الكلية في طريقة batch ، و هذا ، في الجزء الثالث و الأخير في الظروف الثقليدية و تحت إشعاع الميكروويف في ترب طبيعية . عدة عوامل تمت معالجتها ، وقت التماس ، كتلة الممتزات ، حجم الممتزات ، درجة الحموضة (pH) للمخلفات السائلة و تركيز هذا الأخير في المركبات الفينولية الكلية . حركية وضع توازن Adsorbant/adsorbat هي خطوة أساسية لتحسين ظروف تحديد إيزوترم الإمتزاز .

في هذا الأطروحة ، تم تطبيق منهجية البحث التجريبي من أجل تقليل المحتوى من المركبات الفينولية إلى الحد الأقصى مع تقييم المواد الماصة المستخدمة (تربة طببيعية) . تظهر النتائج التجريبية أن أشعة جاما تؤدي فقط إلى تسريع التفاعل وأن التربة N_1 لديها قدرة إمتصاص أكبر من الترب الأخرى (N_3 و R) . كلمات مفتاحية :

المعالجة ، تشعيع جاما ، الإمتزاز ، تشعيع الميكروويف ، ترب طبيعية ، المركبات الفينولية الكلية ، مياه صرف معاصر الزيتون ، التلوث .

TABLE DES MATIERES

Pa LISTE DES ABREVIATIONS ET SYMBOLES (NOMENCLATURE) LISTE DES TABLEAUX LISTE DES FIGURES	age 1 6 8
INTRODUCTION GENERALE	11
Partie A : SYNTHESE BIBLIOGRAPHIQUE	
INTRODUCTION	14
Chapitre I. GENERALITES SUR LES EFFLUENTS OLEICOLES	16
I.1. Composition chimique des effluents oléicoles (margines). I I.2. Composés phénoliques dans les margines. I I.2.1. Classification des composés phénoliques. I a. Monomères phénoliques. I b. Polymères phénoliques. I I.3. Impact des effluents oléicoles sur le milieu naturel. I I.4. Normes Algériennes de rejets. I I.5. Procédés de traitement des effluents oléicoles. I I.6. Valorisation des effluents oléicoles. I	16 17 17 19 20 20 28
Chapitre II. LES SOLS	32
II.1. Composition du sol. II.1.1. Les argiles. II.1.1.1. Les argiles. II.1.1. Les argiles. II.1.1.1. Les argiles. II.1.1.1.1. Les argiles. II.1.1.1.1. Les argiles. II.1.1.1.1. Les argiles. II.1.1.1.1.1.1.1. Les argiles. II.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	32 32 33 34 36
Chapitre III. PROCEDES D'IRRADIATION	39
III.1. Irradiation gamma. 2 III.1. Principe de l'irradiation gamma. 2 a. Détermination de la dose absorbée. 2 b. Radiolyse de l'eau. 2 c. Dosimétrie de Fricke. 2 III.1.2. Interaction du rayonnement ionisant gamma avec la matière. 2 a. Effet photoélectrique. 2 b. Effet Compton. 2 c. Production de paire e ⁻ - e ⁺ 2 III.2. Intradiation micro-ondes. 2 III.2. Incorption d'un four micro-onde. 2 a. Réacteur monomode. 2 b. Réacteur stéréo-mode. 2	 39 40 41 42 43 44 44 44 45 46 47 47 47 48
III.2.2. Principe du chauffage par micro-ondes	48 48

Chapitre IV	GENERALITES SUR L'ADSORPTION 4	19
IV.1. Types of	l'adsorption	49
IV.1.1. A	Adsorption physique (<i>Physisorption</i>)	49
IV.1.2. A	Adsorption chimique (<i>Chimisorption</i>)	49
IV.2. Mécani	smes et cinétiques d'adsorption	50
IV.3. Equilib	res et isothermes d'adsorption	50
IV.3.1. (Classification des isothermes d'adsorption 5	51
<i>a</i> .	Isothermes de type S.	51
b.	Isothermes de type L	52
С.	Isothermes de type E	52
d	Isothermes de type C	52
IV 3 2 N	Aodèles d'isothermes d'adsorption	52
a a	Isotherme de FREUNDLICH	53
h a.	Isotherme de LANGMUIR	53
c.	Isotherme de DUBININ-RADUSHKEVICH (D-R)	54
IV 4 Modèle	s cinétiques d'adsorption	55
IV.4. WIOdele	Aodèles basés sur la réaction 5	55
IV.7.1.1	Modèle du preudo-premier ordre	55
u. b	Modèle du pseudo-premier ordre	55
U.	Modele un pseudo-secona orare	56
1 v .4.2. ľ	Modèle de la diffusion intra particulaire	56
a. b	Modèle de la diffusion intra-particulaire	50 57
D.)/
rartie D:	FARITE EAFERIMENTALE	
I. MATERI	ELS	58
I. MATERI	ELS	58
I. MATERI	ELS	58 58
I. MATERI I.1. Effluents I.2. Adsorbar	ELS	58 58 58
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO	ELS	58 58 58 58 50
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO	ELS	58 58 58 58 50
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II 1 1 M	ELS	58 58 58 58 50 50 50
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M	ELS 5 oléicoles 5 its (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (nH) 6	58 58 58 58 50 50 51 51
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M a. b	ELS 5 oléicoles 5 its (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6	58 58 58 58 50 50 51 51
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthoda II.1.1. M a. b. c	ELS 5 oléicoles 5 its (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6	58 58 58 58 50 50 51 51 51
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M a. b. c. d	ELS 5 oléicoles 5 its (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6	58 58 58 50 50 51 51 51 51 51 51
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M a. b. c. d. e	ELS 5 oléicoles 5 its (sols) 5 DES 6 es de caractérisation 6 réthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Tangur en azote total Kieldhal (NTK) 6	58 58 58 50 50 51 51 51 51 52 53
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthoda II.1.1. M a. b. c. d. e. f	ELS 5 oléicoles 5 its (sols) 5 DES 6 es de caractérisation 6 réthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Teneur en azote total Kjeldhal (NTK) 6 Spectromátria infrarouga à transformág de Fourier (IPTE) 6	58 58 58 50 50 51 51 51 51 51 52 53 53
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M a. b. c. d. e. f. a	ELS 5 oléicoles 5 its (sols) 5 ODES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Teneur en azote total Kjeldhal (NTK) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie da fluorascence des revons X à dispersion de longueur 6	58 58 58 50 50 51 51 51 51 51 52 53 53 53
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i>	ELS 5 oléicoles 5 tts (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Teneur en azote total Kjeldhal (NTK) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6	58 58 58 50 50 51 51 51 51 52 53 53 53
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthoda II.1.1. M a. b. c. d. e. f. g. II.1.2. M	ELS 5 oléicoles 5 tts (sols) 5 DES 6 es de caractérisation 6 réthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Teneur en azote total Kjeldhal (NTK) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6	58 58 58 50 50 51 51 51 51 52 53 53 53 55
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> II.1.2. M <i>a.</i>	ELS 5 oléicoles 5 ts (sols) 5 DES 6 es de caractérisation 6 réthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6 Teneur en matières en suspension (MES) 6	58 58 50 50 51 51 51 51 52 53 53 53 55 55
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> II.1.2. M <i>a.</i> <i>b.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> II.1.2. M	ELS 5 oléicoles 5 tts (sols) 5 DES 6 es de caractérisation 6 réthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6 Teneur en matières en suspension (MES) 6 Teneur en matières volatiles sèches (MVS) 6	58 58 50 50 51 51 51 51 51 52 53 53 53 55 55 55
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthoda II.1.1. M a. b. c. d. e. f. g. II.1.2. M a. b. c.	ELS 5 oléicoles 5 tts (sols) 5 DES 6 es de caractérisation 6 réthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6 Teneur en matières en suspension (MES) 6 Teneur en matières volatiles sèches (MVS) 6 Teneur en matières minérales dans la margine 6	58 58 58 50 50 51 51 51 51 52 53 53 55 55 55 55 55
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M a . b. c. d. e. f. g. II.1.2. M. a. b. c. d. d. e. f. g.	ELS 5 oléicoles 5 sts (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Teneur en azote total Kjeldhal (NTK) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6 Teneur en matières en suspension (MES) 6 Teneur en matières volatiles sèches (MVS) 6 Teneur en matières minérales dans la margine 6 Demande chimique en oxygène (DCO) 6	58 58 58 50 51 51 51 51 52 53 53 55 55 55 55 55 55 55
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthoda II.1.1. M a. b. c. d. e. f. g. II.1.2. M a. b. c. d. e. f. g.	ELS 5 oléicoles 5 tts (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Teneur en azote total Kjeldhal (NTK) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6 Teneur en matières en suspension (MES) 6 Teneur en matières volatiles sèches (MVS) 6 Demande chimique en oxygène (DCO) 6 Demande biochimique en oxygène (DBO ₅) 6	58 58 50 50 51 51 51 51 52 53 53 55 55 56 56 56
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthoda II.1.1. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> II.1.2. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> <i>II.</i> <i>I.</i> <i>f.</i> <i>g.</i> <i>II.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i></i>	ELS 5 oléicoles 5 sts (sols) 5 DES 6 es de caractérisation 6 éthodes de caractérisations communes aux margines et aux sols 6 Potentiel d'hydrogène (pH) 6 Humidité (H) 6 Conductivité électrique (CE) 6 Densité (d) 6 Spectrométrie infrarouge à transformée de Fourier (IRTF) 6 Spectrométrie de fluorescence des rayons X à dispersion de longueur 6 d'onde (WD-XRF) 6 éthodes de caractérisations spécifiques aux margines 6 Teneur en matières en suspension (MES) 6 Teneur en matières volatiles sèches (MVS) 6 Teneur en matières minérales dans la margine 6 Demande chimique en oxygène (DCO) 6 Demande biochimique en oxygène (MG) 6	58 58 58 50 51 51 51 51 52 53 53 55 56 57 57 57 57 56 57 56 56 57 56 56
I. MATERI I.1. Effluents I.2. Adsorbar II. METHO II.1. Méthode II.1.1. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> II.1.2. M <i>a.</i> <i>b.</i> <i>c.</i> <i>d.</i> <i>e.</i> <i>f.</i> <i>g.</i> <i>II.</i> <i>I.</i> <i>g.</i> <i>II.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i>I.</i> <i></i>	ELS5oléicoles5sts (sols)5DES6es de caractérisation6éthodes de caractérisations communes aux margines et aux sols6Potentiel d'hydrogène (pH)6Humidité (H)6Conductivité électrique (CE)6Densité (d)6Spectrométrie infrarouge à transformée de Fourier (IRTF)6Spectrométrie de fluorescence des rayons X à dispersion de longueur6d'onde (WD-XRF)6téhodes de caractérisations spécifiques aux margines6Teneur en matières en suspension (MES)6Teneur en matières minérales dans la margine6Demande chimique en oxygène (DCO)6Demande biochimique en oxygène (DBO ₅)6Teneur en matière grasse (MG)6Teneur en ammonium (NH4^+)6	58 58 58 50 51 51 52 53 53 55 55 56 57 55 56 57 55 56 56 57

i.	Teneurs en nitrates (NO_3^{-})
j.	Teneurs en orthophosphate $(PO_4^{3^2})$ et phosphore total (P_t)
k.	Teneurs en sulfates (SO_4^{-2}) .
l.	<i>Teneurs en composés phénoliques totaux(CPT)</i>
т.	Chromatographie liquide à haute performance (CLHP)
II.1.3. N	Méthodes de caractérisations spécifiques aux sols
а.	Détermination du pH au point zéro charge (pHpzc)
b.	<i>Teneurs en matières organique et minérale dans les sols</i>
С.	Perte au feu (P_f)
d.	Surface spécifique (Ss).
e.	Teneur en calcaire 74
f.	Capacité d'échange cationique (CEC) 75
у. Ф	Analyse granulométrique 76
8. h	Diffraction des rayons X (DRX)
i.	Microscope électronique à balavage (MEB)
i.	Analyse thermique différentielle et thermogravimétrique 78
<i>j</i> .	(ATD- ATG)
II 2 Traiten	hent des margines par irradiation gamma 78
II 2 1 H	Procédure de traitement des margines par rayonnement gamma 78
II 2 2 A	Annareillage 79
II 3 Traiten	pent des margines par adsorption 80
II 3 1 I	Protocole des essais d'adsorption des CPT dans les conditions classiques 81
a	<i>Cinétique d'adsorption des CPT</i>
b.	<i>Effet de la masse de l'adsorbant sur le pouvoir d'adsorption des CPT</i> 82
с. С	<i>Effet de la taille granulométrique du sol sur l'adsorption des CPT</i> 82
d.	Effet du pH sur le pouvoir d'adsorption des CPT 83
e. P	Effet de la concentration en CPT sur le pouvoir d'adsorption 83
II 3 2 I	Procédure d'adsorption des CPT sous activation micro-ondes
n.5.2.1	Détermination de la température à l'arrêt de la réaction de l'activation 84
u.	micro-ondes
b.	<i>Cinétique d'adsorption des CPT sous activation micro-ondes</i> 84
С.	<i>Effet de la masse de l'adsorbant sur l'adsorption des CPT sous activation</i> 85
	micro-ondes
d.	Effet de la taille des particules du sol sur l'adsorption des CPT sous 85
	activation micro-ondes
е.	<i>Effet du pH sur le pouvoir d'adsorption des CPT sous activation micro-</i> 85 <i>ondes</i>
f.	Effet de la concentration en CPT sur le pouvoir d'adsorption sous 85
0	activation micro-ondes
Partie C :	RESULTATS ET DISCUSSIONS
Chapitre 1	I. ETUDE ET CARACTERISATION DES MARGINES ET DES 86 SOLS
I.1. Caractéi	risation des margines
I.1.1. E	tude de la composition de la margine
I.1.2.	Analyse des espèces minérales de la margine par la méthode de 88
la	a fluorescence X
I.1.3. A	nalyse des composés phénoliques dans l'eau usée oléicole par CLHP
I.1.4. S	pectroscopie infrarouge à transformée de Fourier

 I.2. Caractérisation des sols. I.2.1. Propriétés physiques. I.2.2. Propriétés chimiques et composition des sols. I.2.3. Etude de la distribution granulométrique des sols. I.2.4. Détermination du pH au point zéro charge (pHpzc). I.2.5. Diffraction des rayons X (DRX). I.2.6. Analyse par spectrométrie de fluorescence X. I.2.7. Spectrométrie infrarouse à transformée de Fourier (IPTE). 		
1.2.7. Spectrometrie infrarouge a transformee de Fourier (<i>IRTF</i>)	100	
I.2.8. Microscope electronique à balayage (MEB)	101	
I.2.9. Analyse merinique differencie et gravinieurque (<i>ATD-ATO</i>)	105	
CLARKER H TRAITEMENT DE LA MARCINE DAD INDADIATION	105	
GAMMA	109	
II.1. Etude de la dégradation des composés phénoliques sous irradiation gammaII.1.1. Cinétiques des réactions des composés phénoliques sous irradiations gamma	109 109	
II.1.2. Etude du pouvoir des radiations gamma sur la dégradation des composés phénoliques	111	
a. Cas des échantilons dilués	111	
b. Cas des échantilons concentrés	112	
II.2. Etude de l'effet du traitement par irradiation gamma sur la composition de la margine.	113	
II.2.1. Etude par CLHP de l'effet des irradiations gamma sur les composés phénoliques	113	
II.2.2. Etude par spectroscopie infrarouge à transformée de Fourier de l'effet de l'irradiation gamma sur les groupements fonctionnels de l'EUO ₁	114	
II.2.3. Etude de l'effet de l'irradiation gamma sur quelques caractéristiques de la margine	115	
II.2.4. Effet de l'irradiation gamma sur la composition de la margine II 3 Conclusion	115 116	
Chapitre III. VALORISATION DES SOLS NATURELS - ETUDE DU POUVOIR	118	
D'ADSORPTION DES CPT PAR DIFFERENTS SOLS		
III.1. Etude paramétrique du pouvoir d'adsorption des composés phénoliques par les sols dans les conditions classiques	118	
III.1.1. Influence de la durée de contact adsorbant - adsorbat	118	
III.1.2. Influence de la masse sur la capacité d'adsorption des CPT	119	
III.1.3. Influence de la taille granulométrique sur la capacité d'adsorption des CPT	120	
III.1.4. Influence du pH sur la capacité d'adsorption des CPT	121	
III.1.5. Influence de la concentration initiale en CPT	122	
III.1.6. Etude des isothermes d'adsorption des CPT	122	
a. Modélisation des isothermes d'adsorption des CPT	123	
III.1.7 Application des modèles cinétiques d'adsorption	128	
III.2. Etude paramétrique du pouvoir d'adsorption des composés phénoliques par les		
sols sous activation micro-ondes		
III.2.1. Influence du temps de contact sur la capacité d'adsorption des CPT sous activation micro-ondes		
III.2.2. Influence de la masse sur la capacité d'adsorption des CPT sous activation micro-ondes	131	

III.2.3. Influence de la taille des grains sur la capacité d'adsorption des CPT sous activation micro-ondes	132	
III.2.4. Influence du pH des EUO ₂ sur la capacité d'adsorption des CPT sous activation micro-ondes.		
III.2.5. Influence de la concentration initiale en CPT	134	
III.2.6. Application des modèles cinétiques d'adsorption sous activation micro-ondes.	134	
III.3. Conclusion	136	
CONCLUSION GENERALE	138	
REFERENCES BIBLIOGRAPHIQUES	141	
ANNEXES		
Annexe 1.	160	
Annexe 2.	162	
Annexe 3.	164	
Annexe 4.	202	

LISTE DES ABREVIATIONS ET SYMBOLES (NOMENCLATURE)

%	:	Pourcentage.
·H	:	Espèce radicalaire hydrogène.
юн	:	Espèce radicalaire hydroxyle
°C	:	Degré Celsius, unité de mesure de la température.
μm	:	Micromètre.
μS/cm	:	Micro Siemens par centimètre, unité de mesure de la conductivité.
¹³⁷ Cs	:	Isotope radioactif du césium.
⁶⁰ Co	:	Isotope radioactif du cobalt.
Å	:	Angström, unité de mesure de la longueur $(1 \text{ Å} = 0, 1 \text{ nm})$.
Abs	:	Absorbance.
AG	:	Acide Gallique.
Al ₂ (SO ₄) ₃ ,18H ₂ O	:	Symbole chimique du Sulfate d'Aluminium hydraté.
Al ³⁺	:	Ion aluminium.
ATD	:	Analyse Thermique Différentielle.
ATG	:	Analyse Thermique Gravitationnelle.
BET	:	Brunauer, Emmett et Teller.
Bq	:	Becquerel, unité de l'activité radioactive.
BW30	:	Type de membrane pour purifier de l'eau.
c	:	Concentration, exprimée en g. L^{-1} ou en mole. L^{-1} .
С	:	Vitesse de la lumière (299792458 m/s).
C.A	:	Cristal analyseur.
CE	:	Conductivité électrique.
Ca(OH) ₂	:	Symbole chimique de l'hydroxyde de calcium.
CaCO ₃	:	Symbole chimique du calcaire.
Ce	:	Concentration de polluant adsorbée à l'équilibre.
CEC	:	Capacité d'Echange Cationique.
CH ₄	:	Symbole chimique du méthane.
Ci	:	Curie, unité de la radioactivité ($1 Ci = 3,7 10^{10} Bq$).
Cinorg	:	Carbone inorganique.
Cl	:	Symbole de l'élément chimique "Chlore".
CLHP	:	Chromatographie Liquide à Haute performance.
CO ₂	:	Symbole chimique du dioxyde de carbone.
Corg	:	Carbone organique.
CPG	:	Chromatographie Phase Gazeuse.
CPT	:	Composés Phénoliques Totaux.
CRNA	:	Centre de Recherche Nucléaire d'Alger.
Ct	:	Concentration absorbée à l'instant <i>t</i> .
D	:	Dose absorbée.
d _m	:	Densité de la margine
d _s	:	Densité du sol.
d _{hkl}	:	Distance entre deux plans parallèles du réseau cristallin.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

DBO ₅	Demande biologique en oxygène pour une période de cinq (5) jours.
DCO	Demande chimique en oxygène.
DO	Densité Optique.
DRX	Diffraction des Rayons X.
E	Energie.
e	Electron.
e ⁺ ::	Positron.
e _{aq}	Electron aqueux (espèce radicalaire).
E _D	Energie libre de l'isotherme de Dubinin-Radushkevich.
EDX	Energy Dispersive X-rays.
EUO	Eau usée oléicole.
EUO ₁	Eau usée oléicole prélevée en 2014 et utilisée pour l'irradiation gamma.
EUO ₂	Eau usée oléicole prélevée en 2016 et utilisée pour l'adsorption des CPT.
EUO ₁ I	Eau usée oléicole prélevée en 2014 irradiée.
eV	Electron volt, unité de mesure de l'énergie.
φ :	symbole du diamètre.
F ::	Coefficient de VAN BEMMELEN, égal à 2 pour les sols à végétation
A .	permanente et à 1,724 pour les sols cultivés.
Fe^{2+}	Ion Ferreux.
Fe^{3+}	Ion Ferrique.
F.C	Folin-Ciocalteu.
G	Rendement radiochimique (molécule. eV^{T}).
g.L ⁻¹	Gramme par litre, unité de mesure de la concentration.
GHz	Giga Hertz, unité de mesure de la fréquence ($1 GHz = 10^9 Hz = 10^9 s^{-1}$).
Gpa :	Giga pascal, unité de mesure de la pression.
Gy	Gray, unité de la dose d'irradiation gamma.
H :	Constante de Planck $(6,62607015 \ 10^{-54} \ J.s)$.
H	Humidité exprimée en pourcentage.
H_2O	Symbole chimique de l'eau.
H_2O_2	Peroxyde d'hydrogène.
HCl	Chlorure d'hydrogène.
hv	Energie du photon incident.
hv'	Energie du photon diffusé.
I	Débit de la dose d'irradiation gamma.
IR	Infra Rouge.
IRTF	Infra Rouge à Transformé de Fourier.
ISO	Organisation International de Standardisation.
JCPDS	Joint Committee for Powder Diffraction Studies (<i>Fiches étalons</i>).
JORADP	Journal Officiel de la République Algérienne Démocratique et Populaire.
K	Kelvin, unité de mesure de la température absolue.
k ₁	Constante de vitesse du processus d'adsorption du pseudo-premier ordre.
k ₂	Constante de vitesse du processus d'adsorption du pseudo-second ordre.
KBr	Symbole chimique du-Bromure de potassium.
Kcps	Kilo coups seconde, unité de mesure de l'intensité.

LISTE DES ABREVIATIONS ET SYMBOLES (NOMENCLATURE)

keV	: Kiloélectronvolt, unité de mesure de l'énergie.
K _f	: Constante de Freundlich.
kg	: Kilogramme, unité de quantification de la masse dans le système international.
Kg.m ⁻³	: Kilogramme par mètre cube, unité de mesure de la masse volumique su système international.
kGy	: Kilogray, unité d'énergie absorbée par la matière et traitée aux radiations ionisantes.
kint	: Constante de la diffusion intra particule.
KL	: Constante de Langmuir.
KMnO ₄	: Symbole chimique du Permanganate de potassium.
KNO ₃	: Symbole chimique du nitrate de potassium.
kV	: Kilovolt, unité de mesure de la tension.
kWh/m ³	: Kilowatt- heure (<i>symbole de l'énergie</i>) / mètre cube.
Κα	: Raie alpha des spectres caractéristiques des éléments.
LDL	: low Density Lipoproteins.
m_{θ}	: Masse de l'électron.
Μ	: Mole.
m ²	: Mètre carré.
m ³	: Mètre cube.
mA	: Milliampère, unité de mesure du courant.
MEB	: Microscopie électronique à balayage.
meq	: Milliéquivalent.
MES	: Matières en suspension.
MeV	: Méga électron volt, unité de mesure de l'énergie.
MG	: Matière grasse.
Mg. L ⁻¹	: Milligramme par litre, unité de mesure de la concentration.
Mg^{2+}	: Ion Magnésium.
MHz	: Mégahertz, unité de mesure de fréquence du Système international (SI).
MM	: Matières minérales.
mM. L ⁻¹	: Milli-mole par litre.
MO	: Matières organiques.
mS. cm ⁻¹	: Milli siemens par centimètre, unité de mesure de la conductivité électrique.
MVS	: Matières volatiles en suspension.
Ν	: Paramètre de Freundlich (<i>ordre de la réaction</i>).
N _a	: Nombre d'Avogadro ($6,023 \ 10^{25} \ mol^{-1}$).
Na ₂ CO ₃	: Symbole chimique du carbonate de sodium.
NaOH	: Symbole chimique de l'hydroxyde de sodium.
NF270	: Membrane de nanofiltration.
NH ₄ '	: Ion Ammonium.
nm	: Nanomètre, unité de mesure de la longueur d'onde.
NU ₂	: Ion Nitrite.
NU ₃	: Ion Nitrate.
NTK	: Azote total Kjeldhal ($azote \ organique + azote \ ammoniacal$).
O_2	: Gaz d'oxygène.

O_2^-	: Ion oxyde.
ОН	: Groupe hydroxyle.
Р	: Poids, exprimé en gramme ou en kilogramme.
Р'	: Puissance, exprimée en Watt.
P _f	: Perte au feu.
pH	: Potentiel d'hydrogène.
pHpzc	: Potentiel d'hydrogène au point zéro Charge.
pm	: Picomètre, unité de longueur du système métrique équivalente à 10^{-12} m.
PO_4^{-3}	: Ion phosphate (<i>Orthophosphate</i>).
POU	: Production d'Organismes Unicellulaires.
P _t	: Phosphore total.
0	: Quantité adsorbée.
Qe	: Quantité adsorbée à l'équilibre.
q _e	: Capacité d'adsorption à l'équilibre.
Q _{max}	: Capacité d'adsorption maximale.
q _t	: Capacité d'adsorption à l'instant "t".
R	: Constante des gaz parfaits $(8.314 J. mole^{-1}. K^{-1})$.
\mathbf{R}^2	: Coefficient de détermination.
R _L	: Facteur de séparation adimensionnel.
rpm	: Rotation per minute, unité de mesure de la vitesse.
S ₁	: Solution synthétique d'Acide Gallique à 0,079 g. L ⁻¹ .
S ₂	: Solution synthétique d'Acide Gallique à 6,05 g. L ⁻¹ .
sec	: Seconde, unité de temps.
SO ₄ ²⁻	: Ion sulfate.
Ss	: Surface spécifique.
SSAG	: Solution synthétique d'acide gallique.
SSAGI	: Solution synthétique d'acide gallique irradiée.
Т	: Température.
Τ	: Période de la source radioactive $[T ({}^{60}Co) = 5,271 \text{ ans} = 1923,915 \text{ jours}].$
TG	: Thermique Gravitationnelle.
Ti	: Symbole de l'élément chimique "Titane".
tr/min	: Tours/ minutes.
UI/mL	: Unité Internationale/ millilitre.
UV	: Ultra-violet.
UV-O ₃	: Ultra-violet- Ozone.
V _a	: Vitesse d'agitation.
V	: Volume de la prise d'essai.
W	: Watt, unité de mesure de la puissance $(I W = I J. s^{-1})$.
WD-XRF	: Fluorescence des rayons X à dispersion de longueur d'onde.
X	: Rayon X.
XLE	: Membrane Extra Low Energy.
∑ ≚	: Numéro atomique.
3	: Paramètre de l'équation de Webber et Morris de la diffusion intra- particulaire.
Zn	: Symbole de l'élément chimique "Zinc".
Α	: Rayonnement ionisant alpha.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

LISTE DES ABREVIATIONS ET SYMBOLES (NOMENCLATURE)

B :	Rayonnement ionisant béta.
β' :	Constante liée à l'énergie d'adsorption.
Γ :	Rayonnement ionisant gamma.
ΔDO :	Variation des densités optiques avant et après irradiation gamma.
Λ :	Longueur d'onde (<i>nm</i>).
P :	Masse volumique.
ρ^{25}_{4} :	Masse volumique mesurée à 25 °C par rapport à l'eau à 4 °C.
υ :	Nombre d'onde (cm^{-1}) .
v :	Fréquence avant le choc.
v ` :	Fréquence après le choc.

LISTE DES TABLEAUX

Page

Partie A :

Tableau A.I.1.	Teneurs et structure chimique de quelques monomères phénoliques retrouvés dans les margines	18
Tableau A.I.2.	Valeurs limites des paramètres de rejets d'effluents liquides industriels [1]	21
Tableau A.I.3.	Valeurs limites maximales de la teneur en substances nocives des eaux usées autres que domestiques au moment de leur déversement dans un réseau public d'assainissement ou dans un réseau public d'assainissement ou dans une station d'épuration [2]	22
Tableau A.I.4.	Différents procédés de traitement des margines	23
Tableau A.II.1.	Surface spécifique approximative de quelques types d'argiles $(m^2.g)$ [149]	37

Partie B :

Tableau B.II.1.	Conditions	d'analyses	par	la	fluorescence	des	rayons	Х	64
	(WD-XRF).							••	

Partie C :

Tableau C.I.1.	Principales caractéristiques de l'eau usée oléicole moderne (EUO1)	86	
Tableau C.I.2.	Composition en espèces minérales majeures existantes dans l'eau 89 usée oléicole moderne (<i>EUO</i> ₁)		
Tableau C.I.3.	Constituants identifiés par CLHP dans l'extrait séparé de la margine EUO ₁	90	
Tableau C.I.4.	Caractérisation physiques des adsorbants (sols) étudiés	92	
Tableau C.I.5.	Propriété chimiques et composition des sols		
Tableau C.I.6.	Taille granulométrique obtenue par granulométrie laser		
Tableau C.I.7.	Distribution granulométrique obtenue par la méthode de pipette de Robinson		
Tableau C.I.8.	Composition minéralogique des sols selon des diffractogrammes 99 des rayons X		
Tableau C.I.9.	Composition (% massique) en oxydes métalliques des sols 99		
Tableau C.I.10.	Interprétation des spectres IRTF des sols étudiés [256-269] 10		

Tableau C.II.1.	Taux d'élimination (τ) des composés phénoliques sous irradiation gamma dans les échantillons concentrés (<i>effluents oléicole et solution synthétique d'acide gallique</i>)	113	
Tableau C.II.2.	Composés phénoliques identifiés dans par CLHP dans les extraits de l'échantillon EUO ₁ avant et après irradiation gamma à 80 kGy	114	
Tableau C.II.3.	Variations de quelques caractéristiques de l'EUO ₁ sous l'effet des rayonnements gamma	115	
Tableau C.II.4.	Compositions de l'EUO ₁ avant et après irradiation gamma 116		
Tableau C.III.1.	Valeurs paramétriques des modèles choisis pour cette étude pour l'adsorption classique des CPT de la margine moderne étudiée (<i>EUO</i> ₂) sur les trois adsorbants	127	
Tableau C.III.2.	Paramètres cinétiques calculés des modèles étudiés pour l'adsorption classique des CPT dans l'EUO ₂ sur les trois adsorbants	129	
Tableau C.III.3.	Comparaison de la quantité de phénol adsorbée par différent adsorbants	131	
Tableau C.III.4.	Paramètres cinétiques calculés des modèles étudiés pour l'adsorption sous irradiation micro-onde des CPT dans l'EUO ₂ sur les trois adsorbants	136	

Page

LISTE DES FIGURES

Partie A :

Figure A.I.1.	Structure du noyau phénol	17
Figure A.II.1.	Schémas d'une unité tétraédrique à cœur de silicium (<i>a</i>) et d'une couche tétraèdre (<i>b</i>) [135]	33
Figure A.II.2.	Schémas d'une unité octaédrique (a) et d'une couche octaèdre (b) [135]	33
Figure A.II.3.	Association d'une couche tétraédrique et d'une couche octaèdre	34
Figure A.III.1.	Différents types de rayonnements	39
Figure A.III.2.	Désintégration radioactive du ⁶⁰ Co [160]	40
Figure A.III.3.	Schéma de désintégration du ⁶⁰ Co [161]	41
Figure A.III.4.	Effet photoélectrique	44
Figure A.III.5.	Effet Compton	45
Figure A.III.6.	Représentation schématique de la production de paire e^+ - e^- [162]	45
Figure A.III.7.	Importance relative des trois formes d'interaction des photons avec la matière [165]	46
Figure A.III.8.	Schéma d'un four micro-ondes monomode(a) et multi-mode (b)	47
Figure A.IV.1.	Différentes étapes de la cinétique d'adsorption [182]	50
Figure A.IV.2.	Classes des isothermes d'adsorption d'après Giles et al. [185]	51
Partie B :		

Figure B.I.1.	Textures et couleurs des sols à l'état brut			
Figure B.II.1.	Courbes spectrales de la longueur d'onde expérimentale	69		
Figure B.II.2.	Figure B.II.2. Droite d'étalonnage de l'acide gallique			
Figure B.II.3.	Protocole d'extraction liquide-liquide des CPT	71		
Figure B.II.4.	Allonge à percolation garnie	75		
Figure B.II.5.	Schéma d'une coupe transversale de l'irradiateur pilote du CRNA	80		
Figure B.II.6.	Dispositif d'irradiation micro-ondes	84		

Partie C :

Figure C.I.1.	Chromatogrammes : Mélange de composés phénoliques étalons $(\hat{a} \ droite)$; Extrait de composé phénoliques aromatiques séparés à partir de la margine EUO ₁ ($\hat{a} \ gauche$)		
Figure C.I.2.	Spectre infrarouge de l'eau usée oléicole (<i>margine EUO</i> ₁)	91	
Figure C.I.3.	Distribution granulométrique des sols bruts déterminées par tamisage		
Figure C.I.4.	Courbes pH _{final} = f (pH _{initial}), la droite pH _{final} =pH _{initial} et les points pHpzc des trois sols		
Figure C.I.5.	Diffractogramme des rayons X des sols bruts	98	
Figure C.I.6.	Spectres IRTF des sols N_1 , N_3 et R	00	
Figure C.I.7.	Micrographies MEB des sols: $N_1(a)$, $N_3(b)$ et $\mathbf{R}(c)$	02	
Figure C.I.8.	Analyse EDX des sols: $N_1(a)$, $N_3(b)$ et $\mathbf{R}(c)$	03	
Figure C.I.9.	Spectres TG-DTG des sols: $N_1(a)$, $N_3(b)$ et $\mathbf{R}(c)$	04	
Figure C.II.1.	Variation des concentrations en composés phénoliques en 10 fonction de la durée d'irradiation gamma	09	
Figure C.II.2.	Variation du taux d'élimination (τ) des composés phénoliques 11 dans les échantillons dilués en fonction de la dose d'irradiation gamma.		
Figure C.II.3.	Chromatogrammes (<i>CLHP</i>) des extraits de composés 1 phénoliques et aromatiques à partir de : la margine EUO ₁ non irradiée (<i>à gauche</i>) et la margine EUO ₁ I irradiée (<i>à droite</i>)		
Figure C.II.4.	Spectres infrarouge de l'EUO ₁ avant (<i>a</i>) et après (<i>b</i>) irradiation gamma		
Figure C.III.1.	Influence du temps de contact sur la capacité d'adsorption 11 classique des CPT	19	
Figure C.III.2.	Taux d'élimination des CPT en fonction de la masse de 1 l'adsorbant		
Figure C.III.3.	Influence de la taille granulométrique sur la capacité 12 d'adsorption classique des CPT	20	
Figure C.III.4.	Influence du pH sur la capacité d'adsorption classique des CPT.	21	
Figure C.III.5.	Influence de la concentration initiale en CPT.1212	22	
Figure C.III.6.	Isothermes d'adsorption des CPT.1212	23	
Figure C.III.7.	Linéarisation de l'isotherme de Freundlich pour l'adsorption 12 classique des CPT sur les sols N_1 (<i>a</i>) N_3 (<i>b</i>) et R (<i>c</i>) à température ambiante	24	
Figure C.III.8.	Linéarisation de l'isotherme de Langmuir pour l'adsorption 12 classique des CPT sur les sols N_1 (a) N_3 (b) et R (c) à température ambiante	25	

Figure C.III.9.	Linéarisation de l'isotherme de Dubinin-Radushkevich pour l'adsorption classique des CPT sur les sols $N_1(a) N_3(b)$ et $\mathbf{R}(c)$ à température ambiante	
Figure C.III.10.	Linéarisation cinétique de l'adsorption classique des CPT sur des sols naturels : pseudo premier-ordre (a) , pseudo second-ordre (b) , diffusion intra-particule (c) et diffusion externe (d)	128
Figure C.III.11.	Influence du temps de contact sur la capacité d'adsorption des CPT sous activation micro-ondes	130
Figure C.III.12.	Influence de la masse sur la capacité d'adsorption des CPT sous activation micro-ondes	132
Figure C.III.13.	Influence de la taille des grains sur la capacité d'adsorption des CPT sous activation micro-ondes	132
Figure C.III.14.	Influence du pH des EUO ₂ sur la capacité d'adsorption des CPT sous activation micro-ondes	133
Figure C.III.15.	Influence de la concentration initiale en CPT dans les EUO_2 sur l'adsorption sous activation micro-ondes sur des sols naturels N ₁ (<i>a</i>) N ₃ (<i>b</i>) et R (<i>c</i>)	134
Figure C.III.16.	Linéarisation cinétique de l'adsorption sous activation micro- ondes des CPT sur des sols naturels : pseudo premier-ordre (a) , pseudo second-ordre (b) , diffusion intra-particule (c) et diffusion externe (d)	135

INTRODUCTION GENERALE

INTRODUCTION GENERALE

La pollution de l'environnement, accidentellement ou volontairement, par certains produits chimiques d'origine industrielle (*hydrocarbures, phénols, colorants, ...*) ou agricole (*pesticides, engrais, ...*) constitue une source de dégradation de l'écosystème et suscite à l'heure actuelle un intérêt particulier à l'échelle internationale. Les deux Décrets exécutifs : n°6-141 du 19 avril 2006 [1] (*définissant les valeurs limites des rejets d'effluents liquides industriels*) et n°9-209 du 11 juin 2009 [2] (*relatif à l'autorisation de déversement des eaux usées autres que domestiques dans un réseau d'assainissement public ou dans une station d'épuration*) imposent des normes strictes aux collectivités locales en matière d'assainissement.

L'eau est indispensable à la vie, mais elle est aussi très souvent au cœur de nombreuses activités économiques. Les effluents oléicoles sont des eaux usées industrielles appelées communément "margines" provenant de l'eau lors du procédé d'extraction de l'huile d'olive (*l'eau ajoutée et l'eau de la pulpe*) et ont de sérieuses nuisances sur l'environnement **[3, 4]**. La plupart des pays méditerranéens sont actuellement concernés par le problème de pollution engendrée par ces effluents, relativement riche en matières organiques. L'Algérie fait partie des pays producteurs de l'huile d'olive. Elle est classée, selon un ordre d'importance en production, après l'Espagne, l'Italie, la Grèce, la Turquie, la Tunisie, le Portugal et le Maroc **[5]**. Selon les statistiques de l'Institut Technique de l'Arboriculture Fruitières et de la Vigne Algérien **[6]**, l'oléiculture Algérienne a enregistré, entre 1999 et 2020, une croissance de production en huile d'olive passant de 19000 tonnes à 1 million de tonnes.

Avant, ce problème ne se posait pas car la quantité d'huile produite était moins importante que la quantité produite actuellement et que la nature pouvait donc absorber et épurer les déchets de la production d'huile d'olive. L'augmentation de la production est due à la demande en huile d'olive qui ne cesse de croître avec l'élévation de la production. Cette dernière engendre des points de concentration des polluants non résorbables par le pouvoir épurateur des milieux, tels que les polyphénols, sachant que de grandes quantités de margines sont déversées (*environ un kilogramme d'olive fournit 1 à 1,5 litres de margines*). Les margines sont considérées comme l'un des effluents les plus nocifs produits par les industries agro-alimentaires [7] en raison de leur charge polluante et de leur toxicité pour l'ensemble de l'écosystème (*plantes, microorganismes et organismes aquatiques et aériens*). Cette propriété de nocivité est due à leur richesse en polyphénols et à leur pH acide [8-10]. Dans ce contexte, le traitement et/ou la

valorisation des margines constitue un enjeu environnemental majeur pour les pays Méditerranéens.

D'après la littérature, les composés phénoliques font parties de la matière organique oléicole relativement complexe. Ils sont les principaux responsables de la toxicité [11] et la phyto-toxicité [12] des eaux usées oléicoles. Ils sont caractérisés par leurs grandes variétés [13] (plus de 20 composés phénoliques selon De Marco et al. [14] et complexité [13]. Les types et les concentrations de ces composés dépendent d'un certain nombre de facteurs à savoir : le stade de maturation, le sol, les conditions climatiques, la culture de l'olivier et le traitement auquel il est soumis [15, 16]. En outre, chaque variété d'olive présente une composition différente en composés phénoliques. Les composés phénoliques présents généralement dans les eaux de rejets industries oléicoles sont les molécules aromatiques monocycliques, des tels que l'hydroxytyrosol, le tyrosol, le catéchol, le méthylcatéchol, l'acide caféique, et d'autres composés de masses moléculaires plus élevées obtenus par leur polymérisation [15, 16]. Ils sont trop résistants à la dégradation et dangereux lorsqu'ils sont ingérés par les animaux et les humains [17].

De nombreux procédés de traitement des eaux usées oléicoles (margines) ont été utilisés : processus thermiques, physiques, chimiques et biologiques. Actuellement, chaque type de procédé de traitement présente des avantages et des inconvénients.

L'apport de l'irradiation gamma (*par exemple avec une source de* ^{60}Co) ainsi que les accélérateurs à faisceau électronique pour le traitement des eaux ont déjà fait leurs preuves dans le traitement des déchets particulièrement dans les stations d'épurations des eaux usées **[18]** par : la désinfection des agents pathogènes **[19-21]**, la dégradation des polluants organiques toxiques, la réduction des métaux lourds solubles, les odeurs, la demande chimique en oxygène et la demande biologique en oxygène **[22]**. En effet, ces méthodes ne produisent pas de résidus radioactifs dans la matière irradiée et ainsi cette dernière est bonne à l'emploi après irradiation **[23]**. C'est un traitement qui se réfère à l'utilisation du rayonnement ionisant comme source d'énergie pour les processus industriels en impliquant différents facteurs tels que la distribution d'énergie, la pénétrabilité dans l'effluent, la géométrie du volume d'interaction rayonnement-effluent et l'épaisseur.

Aussi, différents procédés de traitement utilisant des matériaux à base des aluminosilicates (*argiles, zéolite, ...*) ont été développés. L'adsorption est une technique de traitement efficace qui fut développée en 1881. Sa mise en pratique nécessite l'utilisation d'un support solide appelé adsorbant.

Dans ce sujet, notre intérêt est porté sur les méthodes de traitements des effluents oléicoles afin d'éliminer la matière organique polluante (*composés phénoliques totaux*) par des rayonnements ionisants gamma et par les méthodes de séparation liquide-solide. Cette dernière implique essentiellement des phénomènes d'adsorption (*dans notre cas à l'état classique et sous irradiation micro-ondes*) et nécessitant des matériaux de structures adéquates aux opérations unitaires requises. Les matériaux utilisés sont inorganiques (*sols*) à leurs états naturels dans le cadre d'un développement durable (*environnement sain*).

En résumé, et nonobstant les enjeux socio-économiques importants pour le secteur oléicole, le but de ce sujet réside dans l'étude liée à la mise en œuvre d'un procédé efficace, en utilisant l'irradiation gamma et l'adsorption (*classique et micro-onde*), pour le traitement des effluents de l'industrie oléicole.

Cette thèse comporte différentes parties dont la première est réservée à la recherche bibliographique sur : la pollution de l'environnement particulièrement celle engendrée par les margines (*les composés phénoliques*), leurs composition, caractérisation et toxicité ; les argiles (*structures, classifications et propriétés*) ; les procédés d'irradiation (*gamma et micro-ondes*) et enfin les principes de l'adsorption (*types et modélisation dans le domaine du traitement des eaux*).

Après, une partie expérimentale qui regroupe les matériels et méthodes de caractérisation des matériaux (*margines et sols*), les modes opératoires pour chaque méthode utilisée, les expériences de l'application des irradiations gamma et du phénomène d'adsorption des composés phénoliques totaux dans les conditions classiques et sous activation micro-ondes.

Les résultats des différentes caractérisations réalisées sur nos matrices (*margines et sols*), du traitement par le rayonnement gamma sur les principaux constituants de l'effluent oléicole et du traitement par adsorption (*dans les conditions classiques et sous activation micro-ondes*) des composés phénoliques totaux issus des eaux usées oléicoles sur les trois sols naturels sont présentés dans la partie C ainsi que les études cinétiques et d'isothermes émanant de ces travaux.

Enfin, la dernière partie de ce manuscrit est réservée pour la présentation d'une conclusion générale rassemblant les principaux résultats obtenus.

Partie A : SYNTHESE BIBLIOGRAPHIQUE

INTRODUCTION

Les rejets des effluents oléicoles colorés, fortement chargés en matière organique et non traités nuisent à l'environnement même à travers le temps car ils peuvent se décomposer en d'autres composés encore plus toxiques. La protection des écosystèmes est devenue une préoccupation majeure dans les pays développés, encourageant donc le développement de procédés pour l'amélioration des méthodes de dépollution.

Selon la littérature, plusieurs études ont déjà été publiées sur le traitement et la dégradation des composés phénoliques issus des eaux usées oléicoles en utilisant les techniques physicochimiques [24, 25], biologiques [26, 27] ainsi que les procédés d'oxydation avancés (*POA*) [28-30]. Par contre, à notre connaissance, aucune publication n'a été trouvée sur la dégradation des composés phénoliques sous irradiation par les rayonnements ionisants gamma. Bien qu'il existe des études sur la dégradation du monophénol (*acide gallique*) étudiées par cette technologie en 2009 et 2010 par Melo et ses collaborateurs [31, 32], aucune étude ne fait état de l'identification de ses produits finaux.

Les traitements physiques permettent une simple séparation de l'eau des matières organiques et minérales. Par contre les traitements chimiques, nécessitent d'énormes quantités de réactifs afin d'éliminer les solides et les colloïdes en suspension. La combinaison de ces deux procédés ne résout pas le problème des eaux usées oléicoles car la pollution persiste et change seulement d'état. L'inconvénient de ce procédé est l'apparition de boues en fin de traitement dont la gestion n'est pas tout à fait rationnelle **[25]**. Quant aux traitements biologiques, ils sont à l'opposé des procédés physico-chimiques. C'est une dégradation plus saine par les micro-organismes **[33, 34]**, efficace et moins coûteuse pour la réduction des polluants **[34]**. En revanche, les procédés d'oxydation avancée offrent la possibilité d'évacuer les eaux traitées dans la nature. L'inconvénient de ce traitement réside dans le coût élevé de l'installation (*matériel résistant à la corrosion, forte demande d'énergie électrique, ...*) **[35]**.

La recherche dans ce domaine se concentre principalement sur la disparition des molécules initiales et l'identification de certains produits finaux. Pour cela, lors de l'utilisation de l'irradiation gamma pour la dégradation de la matière organique (*cas des phénols*), il a été conclu que les structures aromatiques de concentrations égales à 6,05 g. L⁻¹ ont été dégradées à 13,4 %, mais la dégradation du cycle contenant plusieurs phénols à l'état brut ($4 g. L^{-1}$) est plus lente comparativement à celui à monophénol vu que le taux d'élimination est égal à 8,16 %. En

utilisant l'irradiation gamma (à une dose de 80 kGy), il a été observé que le polyphénol 3,4,5-Trihydroxy-benzoesäure (*Acide Gallique*) a été dégradé en résorcinol. Il a été identifié comme un des produits finaux par la chromatographie liquide à haute performance (*CLHP*) **[36]**.

Selon Caqueret *et al.* (2008) **[37]**, le procédé d'adsorption des CPT est difficile. Lors de son utilisation, il a été constaté que les deux systèmes appliqués (*adsorption classique et adsorption sous l'effet des irradiations micro-ondes*) peuvent réduire la teneur des produits aromatiques en utilisant comme adsorbants des sols naturels. L'efficacité de l'irradiation micro-onde a été constatée dans la réduction du temps de contact et non pas dans le taux d'élimination des CPT. L'adsorption classique présente le meilleurs taux d'élimination avec un temps de contact plus élevé.

Chapitre I. GENERALITES SUR LES EFFLUENTS OLEICOLES

L'industrie oléicole, qui produit principalement de l'huile d'olive, engendre deux sous produits, l'un solide (*les grignons*) et l'autre liquide (*les margines*). Ces deux résidus représentent la biomasse restante de la trituration des olives dont l'évacuation engendre des problèmes environnementaux. Les rejets liquides sont une véritable calamité depuis quelques années car ils sont souvent déversés dans les égouts d'assainissement, stockés dans des bassins d'évaporation ou répandus directement sur le sol, sans traitement préalable. Il en résulte un impact négatif sur l'écosystème qui se traduit par le colmatage des sols, la pollution des eaux superficielles et souterraines et le dégagement d'odeurs nauséabondes.

I.1. Composition chimique des effluents oléicoles (margines)

Selon Fedeli et Camurati **[38]**, les margines sont des sous-produits liquides aqueux bruns qui sont séparés de l'huile selon un procédé d'extraction à savoir par centrifugation ou sédimentation après le pressage. Ces résidus varient beaucoup selon le procédé d'extraction, le pays **[38]**, et aussi, du degré de maturité des olives. Néanmoins, de nombreuses études **[39-41]** ont montré que la composition typique des margines est la suivante : eau (*83 à 88 %*), minéraux (*1,5 à 6 %*) et matières organiques (*4 à 16 %*). Ces matières organiques comprennent des composés phénoliques ayant une concentration de 4,5 à 6,5 kg. m⁻³.

I.2. Composés phénoliques

Les composés phénoliques, ou polyphénols, sont des métabolites secondaires omniprésents dans les plantes depuis les racines jusqu'aux fruits. Ils représentent des polluants organiques très fréquemment rencontrés dans les effluents, provenant des déchets de la production de l'huile d'olive en période hivernale. Ils désignent une famille de composés aromatiques mono ou polycyclique qui contribuent à la couleur et aux propriétés sensorielles telles que l'amertume et l'astringence **[42-44]**. Le principal élément structural qui caractérise les composés phénoliques est la présence, d'au moins, un noyau aromatique (*figure A.I.1*) auquel, au moins, un groupe hydroxyle (*OH*) est directement lié librement ou engagé avec une autre fonction (*glucides, lipides, protéines, autres métabolites secondaires pouvant être ou non des composés phénoliques*).

Certains d'entres eux font parties des substances apportées par l'alimentation. Ils présentent un intérêt considérable en raison de leurs propriétés anti-oxydantes naturelles **[45]** et de leurs effets potentiellement bénéfiques sur la santé. Ils interviennent dans la baisse du taux sanguin de LDL

(*low Density Lipoproteins*) **[46-47]**, la prévention de certains cancers **[48]** et de certaines maladies cardiovasculaires **[49-51]** et neurodégénératives **[52]**. Ceci est lié à leur caractère réducteur et à leur affinité pour les protéines et les ions métalliques **[53]**.

Figure A.I.1. Structure du noyau phénol.

Dans le secteur alimentaire, les composés phénoliques peuvent être utilisés dans la prévention de l'oxydation et du rancissement des aliments qui contiennent des quantités élevées de lipides **[54-55]**. Aussi, d'autres études ont montré que les extraits de raisin peuvent être utilisés comme agent antibactérien **[56]** afin d'empêcher la détérioration des aliments au cours de leur conservation **[55]**.

Dans les olives, les composés phénoliques se trouvent dans la peau, les graines et la chair et sont extraits des olives lors de la trituration. Par contre dans les margines, ils sont libérées lors du processus de fabrication de l'huile d'olive et réparties entre les phases liquide (*eau, huile*) et solide. Ils sont transférés à partir de la pâte d'olive au cours du broyage/malaxage des olives. Selon Rodis *et al.* 53 % des composés phénoliques originaires des olives sont transférés aux margines, 45 % aux grignons d'olives et seulement 2 % à l'huile [**57**].

I.2.1. Classification des composés phénoliques

Environ huit mille composé naturels sont classés parmi les composés phénoliques **[58]** et divisés en trois catégories **[59]** : les acides phénoliques (*Benzoïque, Cinnamique, Coumarique, Tannins hydrolysables*), les flavonoïdes (*Flavonols, Flavonoïdes, (Dihydro) chalcone, Anthocyanidines et Anthocyanines*) **[60]** et les tanins (*obtenus par polymérisation des flavonoïdes*) ainsi que les phyto-estrogènes (*lignanes et isoflavones*) **[61, 62**].

Les composés phénoliques détectés dans les effluents oléicoles sont classés selon leurs poids moléculaires en deux grandes catégories :

a. Monomères phénoliques

Les monomères phénoliques sont des composés à bas poids moléculaire ($<100 \text{ g. mole}^{-1}$) [50], de structures chimiques allant du simple phénol en C6 aux flavonoïdes en C15. Les plus identifiables par la Chromatographie Liquide à Haute Performance (CLHP) ou la Chromatographie Phase Gazeuse (CPG) sont [63] :

- Acides phénoliques tels que : caféique; p-coumarique ; protocatéchuique ; vanillique ; 4-hydroxyphénylacétique ; syringique ; vératrique ; p-hydroxybenzoique ; sinapique ; férulique ; p-vanilline ; 3,5-diméthoxy-4-hydroxycinnamique [43].
- Alcools phénoliques tels que : tyrosol (4-hydroxyphényléthanol), hydroxytyrosol (3,4-dihydroxyphényléthanol), syringaldéhyde qui peuvent être liés parfois à des glucosides comme le 4-diglucoside β (3,4 dihydroxyphényl) éthanol.
- Autres monomères phénoliques tels que : oleuropéine ; L-caféyl- glucose ; Apégine ; Lutéoline [64].

La teneur et la structure de quelques monomères phénoliques existants dans les eaux de végétation est donnée dans le tableau A.I.1.

Composés phénoliques	l eneurs (mNL ⁻)	Références	Structure
Ortho-diphénol	$6,66 \pm 0,11$	Casa <i>et al.</i> [65].	-
Acide para-coumarique	0,19	Casa et al. [65];	н соон
		D'Annibale et al. [66];	
	1,66	Fki <i>et al.</i> [67] ;	но
(0,08	Azabou <i>et al</i> . [68] ;	H Machaix at al [45]
(0,57	El Hajjouji <i>et al.</i> [69].	Macherx et al. [45]
Acide caféique	1,53	Casa <i>et al</i> . [65] ;	
	1,36	D'Annibale <i>et al.</i> [66] ;	
	1,78	Fki <i>et al.</i> [67] ;	HO V
(0,17	Azabou <i>et al.</i> [68] ;	H H
(0,032	El Hajjouji <i>et al</i> . [69] .	Macheix et al. [45]
Tyrosol	2,47	Casa <i>et al</i> . [65] ;	OT
4	4,73	Fki <i>et al.</i> [67] ;	
(0,556	Azabou <i>et al</i> . [68] ;	
:	52,38 10 ⁻³	Ergül <i>et al.</i> [70].	HO
	2		Long <i>et al.</i> [71]
Acide vanillique	11,11 10-2	Azabou et al. [68].	COOH
			H COOH
			X I
			осн ₃ у н
			Macheix et al. [45]
Catéchol	421,2	D'Annibale et al. [66].	
			OH L OH
			Macheix <i>et al</i> [45]

Tableau A.I.1. Teneurs et structure chimique de quelques monomères phénoliques retrouvés dans les margines.

b. Polymères phénoliques

Les polymères phénoliques sont des composés à haut poids moléculaire (>30000 g.mole⁻¹) [63] et de structures plus ou moins complexes. Ils sont formés par la polymérisation des monomères phénoliques. Les plus identifiables dans les margines sont : les anthocyanes et les tannins (*hydrolysables tels que les esters de glucides et condensés tels que la catécholmélaninique*) qui possèdent une structure très complexe et dont la concentration peut atteindre 12 g. L⁻¹ [64].

I.3. Impact des effluents oléicoles sur le milieu naturel

En Algérie, comme tout autre pays méditerranéen producteur d'huile d'olive, la composition des margines a un impact négatif sur l'environnement car elles sont riches en matières organiques particulièrement les composés phénoliques. Ces derniers ont des effets néfastes sur les eaux, les sols, les nappes phréatiques et la flore. Selon Ranalli [72], un mètre cube de margines provoque une pollution équivalente à celle engendrée par 1500 personnes en une journée.

L'écoulement direct de ces eaux usées dans les récepteurs naturels ou dans les cours d'eau endommage la qualité des eaux de surfaces en inhibant le développement des microorganismes (les bactéries) [73, 74] et ce par diminution de la teneur de l'oxygène dissous.

Les eaux souterraines sont polluées par épandage dans la zone ou à proximité de la zone d'épandage des margines sur les sols ce qui affecte la qualité de l'eau potable. Selon Slim *et al.* [75], la forte charge de ce type d'effluent en matière organique bloque l'autoépuration des eaux.

La décharge des margines, dans les bassins d'évaporation à ciel ouvert, engendre des processus de fermentation et l'émission de plusieurs gaz (*le méthane, le dioxyde de carbone et le sulfure d'hydrogène*) conduisant à des odeurs nauséabondes même à grandes distances, en particulier au cours de la période de trituration des olives **[76]**.

Sur les sols, les substances toxiques des margines provoquent un colmatage et une diminution de leurs qualité après fixation dans les sols. Ils peuvent inhiber l'activité microbienne dans les différentes couches du sol [11] et détruire la microflore du sol [76, 77] en induisant des effets toxiques aux cultures végétales. D'autres études ont montrées l'influence des eaux de végétations sur les plantes comme : Morisot *et al.* [77] sur une plantation ray-grass, DellaGRECA *et al.* [78], Muscolo *et al.* [79] sur le pin et Sampedro *et al.* [80] sur la tomate et le soja. Selon ces auteurs, le rejet direct de cet effluent diminue le rendement moyen des cultures (*45 % pour le ray-graas*) et inhibe la germination de quelques graines comme le pin et la tomate.

I.4. Normes Algériennes de rejets

Afin de préserver l'environnement et de lutter contre la pollution industrielle, l'Algérie a fixé législativement et réglementairement des valeurs limites maximales de rejet et de certains paramètres indicateurs de la pollution, dont le non respect peut entraîner la dégradation de l'écosystème.

Le décret exécutif n°06-141 du 20 Rabie El Aouel 1427 correspondant au 19 avril 2006 **[1]** définit les valeurs limites des rejets d'effluents industriels liquides. Ce texte réglemente les déversements liquides directs ou indirects, à travers vingt cinq (25) paramètres physiques qu'il faut contrôler pour pouvoir autoriser le rejet de ce type de déchets générés par les installations concernées (*tableau A.I.2*). Ces installations doivent donc prendre toutes les dispositions nécessaires pour appliquer un traitement approprié qui permet de réduire les caractéristiques physiques, chimiques, biologiques ou bactériologiques au minimum. Dans le cas contraire, l'exploitant devrait arrêter ses activités concernées. Ce décret définit également les modalités d'auto surveillance des exploitants, à leur frais, de leurs principaux rejets en fournissant un calendrier détaillé d'entretien du système industriel aux services de contrôle habilités.

Par ailleurs, le décret exécutif n°09-209 du 17 Journada Ethania 1430 correspondant au 11 juin 2009 **[2]** fixe les modalités d'octroi de l'autorisation de déversement des eaux usées, autres que domestiques dans un réseau public d'assainissement ou dans une station d'épuration. Ce texte prévoit certaines dispositions réglementaires pour le déversement (*tableau A.I.3*).

I.5. Procédés de traitement des effluents oléicoles

Les techniques de traitement des margines sont multiples et basées sur différents procédés : physiques, chimiques et/ou microbiologiques. Bien qu'il n'existe pas encore de solution parfaite permettant d'éliminer les principaux composés organiques toxiques des sousproduits oléicoles, certains procédés semblent être plus efficaces que d'autres. Le tableau A.I.4 résume les différentes technologies de traitement des margines rencontrés dans la littérature.

N°	Paramètres	Unités	Valeurs limites	Tolérance aux valeurs limites Anciennes installations
1	Température	°C	30	30
2	pH	-	6,5-8,5	6,5-8,5
3	MES	mg. L ⁻¹	35	40
4	Azote Kjeldahl	mg. L ⁻¹	30	40
5	Phosphore total	mg. L ⁻¹	10	15
6	DCO	mg. L ⁻¹	120	130
7	DBO5	mg. L ⁻¹	35	40
8	Aluminium	mg. L ⁻¹	3	5
9	Substances toxiques bioaccumulables	mg. L ⁻¹	0,005	0,01
10	Cyanures	mg. L ⁻¹	0,1	0,15
11	Fluor et composés	mg. L ⁻¹	15	20
12	Indice de phénols	mg. L ⁻¹	0,3	0,5
13	Hydrocarbures totaux	mg. L ⁻¹	10	15
14	Huiles et graisses	mg. L ⁻¹	20	30
15	Cadmium	mg. L ⁻¹	0,2	0,25
16	Cuivre total	mg. L ⁻¹	0,5	1
17	Mercure total	mg. L ⁻¹	0,01	0,05
18	Plomb total	mg. L ⁻¹	0,5	0,75
19	Chrome total	mg. L ⁻¹	0,5	0,75
20	Etain total	mg. L ⁻¹	2	2,5
21	Manganèse	mg. L ⁻¹	1	1,5
22	Nickel total	mg. L ⁻¹	0,5	0,75
23	Zinc total	mg. L ⁻¹	3	5
24	Fer	mg. L ⁻¹	3	5
25	Composés organiques chlorés	mg. L ⁻¹	5	7

Tableau A.I.2. Valeurs limites des paramètres de rejets d'effluents liquides industriels [1].

pH : Potentiel d'hydrogène ; DBO5 : Demande biochimique en oxygène pour une période de cinq (5) jours ; DCO : Demande chimique en oxygène ; MES : Matière en suspension.

Tableau A.I.3. Valeurs limites maximales de la teneur en substances nocives des eaux usées autres que domestiques au moment de leur déversement dans un réseau public d'assainissement ou dans un réseau public d'assainissement ou dans une station d'épuration [2].

Paramètres	Valeurs limites maximales (mg. L ⁻¹)
Azote global	150
Aluminium	5
Argent	0,1
Arsenic	0,1
Béryllium	0,05
Cadmium	0,1
Chlore	3
Chrome trivalent	2
Chrome hexavalent	0,1
Chromates	2
Cuivre	1
Cobalt	2
Cyanure	0,1
Demande biochimique en oxygène (DBO5)	500
Demande chimique en oxygène (DCO)	1000
Etain	0,1
Fer	1
Fluorures	10
Hydrocarbures totaux	10
Matières en suspension	600
Magnésium	300
Mercure	0,01
Nickel	2
Nitrites	0,1
Phosphore total	50
Phénol	1
Plomb	0,5
Sulfures	1
Sulfates	400
Zinc et composés	2
Cempérature inférieure ou égale à 30°C ; pH compris entre 5	

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE
Procédé	Processus	Traitement	Conclusions	Remarques	Auteurs
Physique	Thermique	Evaporation naturelle	 L'évaporation dépend des conditions climatiques éviter une pollution hydrique avec entrainement d'une pollution atmosphérique. 	 Faibles coûts. Long avec dégagement des mauvaises odeurs et prolifération des insectes. 	Roig et al. [24]
		Evaporation forcée (incinération)	- L'énergie nécessaire est obtenue par combustion du grignon		Ranalli [72]
	Adsorption	Charbon actif	 - 73 % de composés phénoliques et 34 % de DCO sont éliminés, respectivement au bout de 8 et 5 heures. 	- Couteux.	Galiatsatou <i>et al.</i> [81]
				- Uniquement pour des substances polaires.	Diamadopoulos <i>et al.</i> [82]
		Argiles activées (bentonite jordanienne)	 - 81 % de composés phénoliques et 71 % de DCO (4 h) sont éliminés. 	- Réalisation in-situ difficile (grande quantité d'argile).	Al-Malah <i>et al</i> . [83]
	Membranaire	Ultrafiltration	- 94 % DCO éliminée.		Drouiche et al. [84]
			- La DCO reste assez élevée.	 Etape de prétraitement, afin d'éliminer les CP avant un processus biologique conventionnel. Couteux 	Dhaouadi <i>et al</i> . [85]
			- Renouvellement permanent des membranes.	Couloux	Yahiaoui <i>et al.</i> [86]
		Osmose inverse	- 96,3 % de DCO éliminée.	- XLE à 10 bars	Coskun <i>et al.</i> [87]
		Nanofiltration	- 79,2 % de DCO éliminée.	- NF270 à 10 bars.	

Tableau A.I.4. Différents procédés de traitement des margines.

Tableau A.I.4. La suite n°1.

Procédé	Processus	Traitement	Conclusions	Remarques	Auteurs
Physico- chimique	Coagulation- floculation		- Système à deux phases réduit le besoin d'eau pendant l'extraction de l'huile.	- Diminution de la quantité de déchet produite.	Roig et al. [24]
		Sulfates d'Aluminium [Al ₂ (SO ₄) ₃ 18H ₂ O]	 41 % de composés phénoliques et 38 % de DCO sont éliminés. 	- Pollution persiste (transfert de la pollution de l'état soluble à l'état boueux.	Achak <i>et al.</i> [25]
		La chaux	 - 75 % de composés phénoliques et 43 % de DCO sont éliminés. 	- Une distillation doit précédée la neutralisation par la chaux et ce à cause de l'acidité du distillat.	Ouabou <i>et al</i> . [88]

Partie A/ Chapitre I

Tableau A.I.4. La suite n°2.

Procédé	Processus	Traitement	Conclusions	Remarques	Auteurs
Chimique	Electro- coagulation	Electrode en Ti-Pt	- Elimination de 99,4 % de composés phénoliques et 93 % de la DCO.	- 10 heures.	Israilides et al. [89]
		Electrode en Fe et/ou $Al-H_2O_2$ - chlorure poly	 Diminution du rapport DCO/DBO₅ de 68 %. Elimination de 73,8 % de composés phénoliques et 60,7 % de la DCO. 	 Composés phénoliques polymérisés puis sédimentés. 3 jours. 	Khoufi <i>et al.</i> [90]
		Electrode en Al	 Décoloration des margines diluées 5 fois comprise entre 96- 99 % Réduction de 75- 80 % de polyphénols totaux et de 80- 85 % de la DCO. 	- 15 minutes ; tension électrique de 20 volts	Hanafi <i>et al</i> . [91]
		Anode en Zn	- Elimination de 72,3 % de composés phénoliques et 20,9 % de la DCO	 Consommation d'énergie/ traitement est de 34 kWh/m³. Utiliser comme prétraitement 	Fajardo <i>et al</i> . [92]
	Oxydation avancée	Ozonation	 - 97,5 % de composés phénoliques et de 5 à 10 % de DCO sont éliminés 	- Utilisation des radiations UV.	Benitez et al. [28]
			- 20 à 30 % de DCO est réduite.	_	Andreozzi et al. [93]
			- Elimination de 21,5 % de la DCO.	_	Lafi <i>et al.</i> [29]
		UV	- Elimination de 5 % de la DCO.		Lafi <i>et al</i> . [29]
		UV-O ₃	- Elimination de 28,9 % de la DCO.		Lafi <i>et al</i> . [29]
		Fenton (H_2O_2/Fe^{2+}) (oxydation du peroxyde d'hydrogène/ fer ferreux)	 70°% de DCO sont éliminées (24H). 		Rivas <i>et al.</i> [30]
			- 86°% de DCO sont éliminées.	- $[H_2O_2] = 5 \text{ mole/L}$ et $[Fe^{2^+}] = 0.4 \text{ mole/L}$	Bensalah et al. [94]
			- 70°% de DCO sont éliminées.	- $[H_2O_2] > 25 \text{ Kg. m}^3$	Cañizares et al. [95]
			- 100°% de phénols sont réduits.		Justino <i>et al.</i> [96]

Tableau A.I.4. La suite n°3.

Procédé	Processus	Conclusions	Remarques	Auteurs
Biologique	Aérobie	 - 65 à 95 % de composés phénoliques et 63 à 75 % de DCO selon les cultures. 		Mantzavinos <i>et al.</i> [26]
				Yaakoubi <i>et al.</i> [26]
		- Efficace seulement pour les composés phénoliques de faible poids moléculaires.		Morillo <i>et al</i> . [97]
	Anaérobie	- Production du méthane.	- Traitement aérobie est nécessaire pour réduire le taux des composés phénoliques.	Hamdi <i>et al.</i> [98]
			• Aspergillus Niger: dédoublement de la production.	
			• <i>Chrysosporium</i> <i>phanerochaete</i> : décoloration de la margine, réduction de la DCO à 52 %.	Gharsallah <i>et al.</i> [99]
			 Augmentation de la masse moléculaire des CP diminution du taux d'élimination de la DCO. 	Sayadi <i>et al</i> . [100]
		• 1 litre de margine produit 57,1 litre.		Ergüder et al. [101]

Tableau A.I.4. La suite n°4.

Procédé	Processus	Conclusions	Remarques	Auteurs
Combiné	Fenton- Electrochimique	- Minéralisation complète de charge organique.	- Electrode en diamant	Cañizares et al. [95]
	Aérobie- Anaérobie	- Dégradation 2,5 à 4,5 fois plus élevée avec élimination de 65,95 % en composés phénoliques et de 63,75 % de DCO.	- 21 jours.	Mantzavinos <i>et al.</i> [26]
		- Développement des consortiums aérobies se développent sur les margines capables de métaboliser et d'éliminer les composés phénoliques.		Tsagaraki <i>et al.</i> [5]
	Centrifugation- d'ultrafiltration- osmose inverse	- Réduction de la DCO de 97,7 % avec des membranes XLE et BW30.	- < 25 bars	Coskun <i>et al.</i> [87]
Ozonation- biodégradation aérobie		- Elimination de 87,0 % de la DCO.		Lafi <i>et al</i> . [29]
	Biodégradation aérobie- ozonation	- Elimination de 80,0 % de la DCO.		Lafi <i>et al</i> . [29]
UV-O ₃ - biodégradation aérobie		- Elimination de 90,7 % de la DCO.		Lafi <i>et al.</i> [29]
	Biodégradation aérobie- UV-O ₃	- Elimination de 81,8 % de la DCO.		Lafi et al. [29]
	Distillation- La chaux	- Elimination 95 % de composés phénoliques et de 92 % de la DCO.	- Distillat peut être réutilisé en irrigation.	Ouabou <i>et al.</i> [88]

I.6. Valorisation des effluents oléicoles

Des recherches intensives dans le domaine de la gestion des eaux usées issues des industries oléicoles suggèrent que ces effluents pourraient et devraient être considérés comme une ressource utile : d'une part, pour la récupération de composants naturels utilisés dans l'industrie agroalimentaire, pharmaceutique, cosmétique, ..., et d'autre part, pour limiter la nature polluante des produits nocifs pour l'environnement qui se développe au cours du temps.

Cependant, les procédés développés restent très limités et leurs coûts économiques sont très élevés, principalement en raison du fait que le secteur de la valorisation des effluents agroalimentaires est encore sous-développé et dominé par les coûts de traitement. En Algérie, ces résidus n'ont, à ce jour, fait objet d'aucune attention ni par les pouvoir publics ni par les opérateurs, d'autant plus que la production est en nette hausse.

L'obligation faite aux huileries de se doter de bassins de décantation n'est pas du tout efficace car il ne s'agit pas uniquement de protéger la nature mais alors de recycler ce sous-produit pour des intérêts économiques.

Plusieurs voies de valorisation des effluents d'huileries d'olive ont été déjà entamées et utilisées comme substrats renouvelables à faible coût dans différents domaines : l'industrie, l'énergie et l'agriculture. Selon la littérature, cette biomasse sert à :

- La production des protéines d'organismes unicellulaires (*POU*): cette production entraine aussi la production de la biomasse protéique utilisée pour l'alimentation animale et la réduction de 50 à 70% de la charge polluante [102]. Les microorganismes les plus adaptés pour cette production sont la: *Torulopsis utilis, Saccharomycopsis lipolitica, Saccharomyces Candida* et *Saccharomyces cerevisiae*. La biomasse la plus digestible est lentement obtenue en utilisant des moisissures telles que l'*Aspergillus* et *Geotrichium codidum* [103].
- La production d'enzymes : 13 UI/mL de pectinases peuvent être produites au bout de 48 heures et ce en cultivant le *Cryptococcus albidus* sur les effluents oléicoles. Selon Francesco [104], l'élimination des phénols par floculation-clarification a plus que doublé la production (29,9 UI/mL).

D'autres travaux montrent que les effluents oléicoles favorisent la production d'enzymes extracellulaires telles que la peroxydase de lignine, la peroxydase à manganèse et laccase par un champignon de la pourriture blanche Phanerochaete flavido-alba [105]. Aussi, la

lipase extracellulaire par les champignons lipolytiques, tels que : Aspergillus oryzae, Aspergillus niger, Candida cylindracea [106].

En 2018, les travaux d'Elisashvili **[107]** ont indiqué que la fermentation des effluents oléicoles par un substrat spécifique (*basidiomycètes à pourriture blanche*) est une alternative économiquement réalisable et prometteuse pour la production simultanée d'enzymes modificateurs de la lignine, cellulase, xylanase, ... pouvant être exploités ultérieurement dans des applications biotechnologiques et agronomiques.

- La production d'antioxydants naturels: Les margines sont des sous-produits du processus d'extraction de l'huile d'olive. Elles constituent une importante source d'antioxydants naturels [16] peu coûteux et présentent un intérêt du point de vue environnemental et technologique. Parmi les antioxydants naturels qui peuvent être utilisés dans l'industrie agro-alimentaire et même pharmaceutique [108], il y a l'acide caféique, le tyrosol et l'acide 4-hydroxybenzoïque.

En 2002, la séparation sélective entre les lipides, sucre et composés phénoliques a été mis au point par Turano et ses collaborateurs **[109]**. Ils ont constaté que les composés phénoliques extraits sont plus efficaces que les antioxydants synthétiques avec un bas coût de production.

Une technique brevetée (*WO 2005/123603 A1*) décrit l'isolement de composés phénoliques au moyen d'une osmose inverse et de membranes micro-, ultra- et nanofiltration [110]. Agalias *et al.* [111] ont développé et mis au point un système de purification et d'isolement des composés phénoliques issus des déchets oléicoles (*l'hydroxytyrosol pur à 90 %*).

D'autres auteurs ont également testé l'utilisation de filtres fabriqués à partir de matériaux naturels, réduisant les coûts de récupération phénolique des déchets d'olives **[112, 113]**. Par exemple, Achak *et al.* **[112]** ont utilisé du son de blé comme adsorbant sur l'extraction phénolique des margines. Fernandez-Gutiérrez *et al.* **[113]** ont créé un procédé breveté utilisant des filtres à base d'amidon pour récupérer les composés bioactifs des sous-produits de stockage de l'huile d'olive. En bref, les filtres utilisés sont fabriqués à partir d'amidon naturel extrait des fruits, des céréales et des tubercules, qui contribuent à un matériau plus résistant à la pression, permettant une adsorption efficace des composés phénoliques.

La production de biogaz : le biogaz est une source d'énergie et de chaleur produit par transformation de la matière organique dans des conditions anaérobies (*absence d'oxygène*). C'est un processus qui transforme les grandes molécules de la matière organique en petites molécules, jusqu'à leur transformation en méthane (*CH*₄) et en gaz carbonique (*CO*₂). Le méthane issu du biogaz est utilisé dans de nombreuses applications comme carburant

automobile après épuration. En 2000, Ergüder et ses collaborateurs **[101]** ont montré que le traitement anaérobie d'un litre de margines permet une production de $57,1 \pm 1,5$ L de gaz méthanique.

- Au compostage pour la régénération des sols: le compost est obtenu par transformation des matières organiques en substances humiques tout en éliminant les micro-organismes pathogènes. Les nutriments (*l'azote, le phosphore et les oligo-éléments essentiels*) du compost peuvent améliorer la croissance des cultures et la résistance de celles-ci aux maladies [114].
- A l'épandage c'est-à-dire la fertilisation des terres agricoles : en Italie aussi bien qu'en Espagne, les chercheurs ont démontré que les margines fraîches peuvent être utilisées comme fertilisant pour la culture des vignes et du maïs. Cette expérience a donné de bons résultats aussi bien en Italie qu'en Espagne [115].

De même, en Tunisie, l'épandage des margines dans les sols sableux a apporté une amélioration de la fertilité du sol. Ceci est dû à l'augmentation de la teneur de la matière organique qui s'est accompagné par l'amélioration de la capacité de rétention en eau du sol sableux perméable [116].

En 2006, Roig et ses collaborateurs **[24]** ont montré que l'utilisation des margines comme engrais organique sur le sol a un double effet positif (*éléments nutritifs : N, P, K, Ca, Mg et Fe*) et négatifs (*forte teneur en sel minéraux, pH acide, présence de composés phénoliques*).

En 2012, les résultats de Sahraoui et ses collaborateurs [117] ont révélé que les phénols ont été dégradés ou réorganisés au cours du deuxième mois après l'épandage et que la matière organique des eaux de végétation n'engendre pas d'effet négatif sur les terres agricoles (*de texture sable limoneux*).

Sur les sols calcaires, Belaqziz *et al.* **[118]** montrent bien une augmentation significative du rendement de la production de maïs après application répétée des EUO.

A la fin, les travaux d'El-Abbassi *et al.* en 2017 **[119]**, ont montré l'utilisation potentielle de ce type de rejet et ce en tant que biopesticide contre les agents phytopathogènes et les mauvaises herbes bactériennes, fongisiques.

A l'utilisation en alimentation : L'exploitation des composés fonctionnels est un domaine prometteur interdisciplinaire des technologies alimentaires (*nutritionnistes, toxicologues,...*).
 La récupération des composés phénoliques naturels a un très grand intérêt pour la préservation de la qualité et de la durée de conservation des aliments [120]. Ils sont

bénéfiques pour la santé comme l'hydroxytyrosol **[121]** et l'oleuropéine. Ces deux derniers composés sont plus étudiés et s'avèrent être utilisés dans de multiples domaines, en plus de l'alimentation, tels que la cosmétique et la médecine **[122]**.

En 2014, Troise et ses collaborateurs **[123]** ont conclu que l'ajout de la poudre phénolique des eaux usées oléicoles dans le lait cru, inhibe la formation de composés désagrégés résultant des réactions de Maillard lors du traitement UHT et améliore la qualité sensorielle du lait ultra-pasteurisé.

De même, Caporaso *et al.* **[120]** ont utilisé les composés phénoliques provenant des eaux usées oléicoles en tant qu'ingrédients précieux pour les aliments fonctionnels. Ils ont montré que l'ajout de ces composés aux huiles végétales améliore le statut oxydatif du produit c'està-dire qu'il y a retardement de l'oxydation des lipides. Aussi, d'autres résultats prometteurs ont été constatés, par les mêmes auteurs dans les émulsions alimentaires, comme dans les produits laitiers sans qu'il y ait un impact sur les caractéristiques sensorielles ou d'autres propriétés.

D'autres composants extraits des eaux usées oléicoles peuvent être utilisés tels que les suspensions de fibres alimentaires afin de remplacer les graisses dans les boulettes de viande **[124].**

En outre, les composés phénoliques extraits des eaux usées oléicoles peuvent être utilisés dans l'emballage des produits alimentaires pour prolonger leur durée de conservation et concevoir un "emballage actif" [125].

Dans l'industrie cosmétique, les composés bioactifs (*les antioxydants, les acides gras et les minéraux*) des EUO sont des ingrédients prometteurs pour les produits anti-âges ou hydratants [126, 127].

Selon cette bibliographie, on peut dire que les applications des extraits phénoliques d'EUO en alimentation sont prometteurs avec un impact faible ou nul sur les caractéristiques sensorielles ou d'autres propriétés. Leur utilisation possible en tant qu'agents antimicrobiens constitue également une autre approche prometteuse, car des résultats positifs ont été obtenus lorsqu'ils ont été appliqués dans des produits carnés.

Chapitre II. LES SOLS

Le sol est la couche superficielle de l'écorce terrestre résultant de la transformation de la couche sous-jacente (*roche mère*) au contact de l'atmosphère (*air, eau*), sous l'effet de l'érosion et de à l'action de l'homme **[128]**. Donc, le sol est un assemblage hétérogène de particules ou de cristaux aux propriétés très variables (*dimensions, formes, ...*). Il représente l'un des écosystèmes les plus riches et les plus variés en organismes vivants jouant le rôle de filtre pour l'eau afin de réalimenter les nappes souterraines.

II.1. Composition du sol

En dehors des constituants primaires issus de la roche mère *(silicates, carbonates)*, le sol comprend des constituants secondaires constitués d'un mélange de matériaux minéraux *(argiles, oxydes, hydroxydes)* et organiques *(résidus végétaux et animaux)* servant de support et de milieu naturel pour la croissance des plantes. Il est considéré comme un système hétérogène poreux et polyphasique constitué de trois phases : solide, liquide et gazeuse. Aux interfaces entre ces différentes phases, d'importants phénomènes de rétention d'eau et de substances chimiques, des échanges d'ions et de molécules peuvent avoir lieu [129, 130].

Les minéraux argileux rencontrés dans un sol dépendent de la nature *(type)* du sol et de la profondeur. L'illite est le minéral argileux le plus abondant suivi du chlorite, des smectites et de la vermiculite, la kaolinite est plus rare.

II.1.1. Les argiles

L'argile est un ensemble de minéraux spécifiques, généralement de silicates d'aluminium et parfois de magnésium, de taille granulométrique généralement inférieure à 2 μ m, issus des décompositions physiques sous l'effet : des variations de température, des efforts mécaniques subis et des altérations chimiques au contact de l'eau **[131]** des anciennes roches siliceuses. L'argile présente une structure phylliteuse *(feuillet)* ou bien une structure fibreuse *(sépiolite et palygorskite)*.

Les intérêts scientifiques de l'utilisation de l'argile est très vague : en industrie pétrolière (*barrières aux hydrocarbures*), en génie civil, en agronomie (*complexe argilo-humique*), et encore pour la dépollution de l'eau ...

a. Structure des minéraux argileux

Les argiles sont des phyllosilicates formées de particules dont les unités de base sont des feuillets bidimensionnels. Chaque feuillet est composé de deux, trois, ou quatre couches associées [132].

Deux types de couches sont distincts :

• La couche tétraédrique, notée T, est formée par deux plans d'atomes d'oxygène et contient un atome de silicium en coordinence (*figure A.II.1*). L'atome "Si" peut être substitué par les atomes Al et Fe (Fe^{3+} et Fe^{2+}) [133].

Dans le tétraèdre, chaque atome de silicium est entouré par 4 oxygènes. Un tétraèdre est lié à un autre par le biais d'une liaison hautement covalente grâce au partage d'atomes d'oxygène [134].

Figure A.II.1. Schémas d'une unité tétraédrique à cœur de silicium (*a*) et d'une couche tétraèdre (*b*) [135].

• La couche octaédrique, notée O, est formée par deux plans d'atomes d'oxygène (*anions O*₂⁻) et des groupes d'hydroxyle (*anions OH*⁻), entre lesquels l'aluminium ou le fer ou le magnésium sont liés en coordination (*figure A.II.2*) [134].

Figure A.II.2. Schémas d'une unité octaédrique (a) et d'une couche octaèdre (b) [135].

Les cations $(Al^{3^+}, Fe^{3^+}, Mg^{2^+} ou Fe^{2^+})$ sont coordonnés avec les six anions (O_2^-) ou groupements hydroxyles (OH^-) et sont liés entre eux par le partage d'oxygènes dans une structure à 2 dimensions [132, 134].

Suivant le taux d'occupation des cavités octaédriques, on distingue deux variétés de pyllosillicates [132, 136] :

- Les phyllosilicates dioctaédriques dans lesquels les deux tiers des cavités octaédriques sont occupées par des cations métalliques trivalents (*Al*³⁺, *Fe*³⁺);
- Les phyllosilicates trioctaédriques dans lesquels toutes les cavités octaédriques sont occupées par des cations métalliques bivalents (Mg^{2+} , Fe^{2+}).

b. Classification des argiles

L'assemblage des deux couches tétraédrique et octaédrique (*figure A.II.3*) définit plusieurs feuillets élémentaires de phyllosilicates [132], les plus communs sont : la kaolinite, la halloysite, la montmorillonite, l'illite et la vermiculite. Leur classification est effectuée selon l'épaisseur des feuillets (0,7 ou 1 ou 1,4 nm), correspondant à un nombre de couches d'oxydes tétraédriques (*Si*) "structure moléculaire, cristalline" et octaédriques (*Al, Ni, Mg, Fe*²⁺, *Fe*³⁺, *Mn, Na, K, ...*) "composition chimique".

Figure A.II.3. Association d'une couche tétraédrique et d'une couche octaèdre.

Selon la littérature [137, 138], on distingue quatre groupes :

- Minéraux de classe 1:1 (T-O)

Ce feuillet est formé par la juxtaposition d'une couche tétraédrique et d'une couche octaédrique (*figure A.II.3*). Son épaisseur est d'environ 7 Å. Ces argiles sont représentées par le groupe des kaolinites et rarement par les serpentites.

✓ La kaolinite

La kaolinite est un minéral argileux, de formule chimique Al₂ Si₂ O₅ (OH)₄, du groupe des silicates et sous groupes des phyllosilicates. Elle se trouve dans les roches argileuses comme le kaolin ou dans les roches magmatiques comme le granite **[139]**.

✓ Les serpentites

La serpentite recouvre plusieurs espèces minérales, plus de 75% de phyllosilicate magnésien, en diverses proportions [140].

- Minéraux de classe 2:1 (T-O-T)

Cette classe résulte de la combinaison d'une couche octaédrique placée entre deux couches tétraédriques. Son épaisseur est d'environ 10 Å. Ces argiles comprennent de nombreux groupes à savoir les talcs, les micas, les smectites et les vermiculites.

✓ Les talcs

Le talc, de formule chimique $Mg_3Si_4O_{10}(OH)_2$, est une espèce minérale composée de silicate de magnésium doublement hydroxylé. Il peut contenir des traces de nickel, de fer, d'aluminium, de calcium, de sodium et d'autres silicates magnésiens comme l'amiante [141].

✓ Les micas

Les micas, de formule chimique $AC_{2-3}T_4O_{10}X_2$, regroupe une famille de minéraux du groupe des silicates sous groupes des phyllosilicates (feuillets) formé principalement de silicate d'aluminium et de potassium. Ils sont classés en deux séries : les micas blancs dioctaédriques (*le plus fréquement recontré est la muscovite de formule chimique KAl*₂(Si₃Al)O₁₀(OH, F)₂, riche en aluminium et en potassium) et les micas noirs trioctaédriques (*le plus fréquement est la biotite, contenant surtout du magnésium avec du potassium et du fer*) [142].

✓ Les smectites

Ces minéraux, dont la montmorillonite, sont classés en deux grandes catégories : smectites dioctaédriques et smectites trioctaédriques. La différence entre ces smectites réside dans l'occupation des sites octaédriques. Dans la première, deux sites octaédriques sur trois sont occupés par des ions métalliques contrairement à la seconde où tous les sites octaédriques sont occupés [143].

✓ La vermiculite

La vermiculite est un minéral naturel, de formule chimique $(Mg, Ca)_{0,7}(Mg, Fe, Al)_6(Al, Si)_8O_{22}(OH)_4 8H_2O$, formé par l'hydratation de certains minéraux basaliques. Les argiles de ce type ont une structure de micas au sein desquels les ions K⁺ situés entre les feuillets ont été remplacés par des cations Mg²⁺ et Fe²⁺ [144].

- Minéraux de classe 2:1:1 (T-O-T-O)

Cette classe est constituée de l'alternance de feuillets (*T-O-T*) et de couche octaédrique inter-foliaire. Son épaisseur est d'environ 14 Å. Ces argiles sont représentées par le groupe des chlorites.

✓ La chlorite

La chlorite est un minéral alumino-silicaté de fer ou de magnésium qui désigne une quinzaine de minéraux phyllosilicatés formant le groupe des chlorites de formule chimique générale (Fe, Mg, Al)₆ (Si, Al)₄ O₁₀ (OH)₈. La structure des chlorites est voisine de celle des micas **[145]**.

- Minéraux interstratifiés

L'épaisseur du feuillet est variable. Ces minéraux découlent du mélange régulier (*un seul type*) ou irrégulier (*plusieurs types*) des argiles appartenant aux groupes ci-dessus.

Selon les travaux de Mckenzie **[146]** et Brindley (*1966*) **[147]**, trois importantes familles d'argiles sont connues : les kaolinites, les illites et les smectites.

✓ Les illites

Les illites désignent un groupe de minéraux argileux composé de trois couches de phyllosilicates (*Si-Al-Si*). Elles sont très proches des micas (*muscovite, biotite*) et d'autres silicates (*feldspath,* ...) dans leurs structures. La formule chimique des illites est (K, H₃O) (Al, Mg, Fe) ₂ (Si, Al)₄ O₁₀ [(OH)₂, (H₂O)] **[148]**.

c. Propriétés des minéraux argileux

Les principales caractéristiques des minéraux argileux sont les suivantes :

- Surface spécifique

Une des particularités caractéristiques des argiles est leur grande surface spécifique qui leur donne la propriété d'adsorber l'eau ou des molécules organiques **[134]**. La surface totale des argiles comprend deux surfaces : externe et interne développée par l'espace interfoliaire durant son expansion. Les teneurs caractéristiques des grandes familles d'argiles sont regroupées dans le tableau A.II.1.

La méthode BET (*Brunauer, Emmett et Teller*) peut être aussi employée en utilisant l'adsorption d'azote. Elle conduit à des valeurs de surface spécifique beaucoup plus faibles, qui ne sont représentatives que de la surface externe.

Type d'argile	Surface Interne	Surface Externe	Totale
Smectite	750	50	800
Vermiculite	750	< 1	750
Chlorite	0	15	15
Kaolinite	0	15	15
Illite	0	25	30

Tableau A.II.1. Surface spécifique approximative de quelques types d'argiles (m^2, g^{-1}) [149].

- Capacité d'adsorption et de gonflement

Les argiles fixent l'eau par adsorption à leur surface et augmentent de volume par gonflement. C'est une réorganisation du réseau poreux qui constitue la texture (*forme, dimension, disposition des minéraux au sein du matériau du milieu adsorbant*) [150] et varie d'une argile à une autre. Parmi ceux qui ont une forte capacité d'adsorption d'eau entre les feuillets de leur structure, il y a les smectites (*montmorillonite*) qui ont une surface spécifique nettement supérieure (700- 840 m^2 . g^{-1}) aux autres argiles, puis viennent les chlorites (800 m^2 . g^{-1}), ensuite les illites (65- 100 m^2 . g^{-1}) et enfin la kaolinite (10- 20 m^2 . g^{-1}) [132, 150]. Le gonflement d'une argile est la réorganisation du réseau poreux constituant la texture (*forme, dimension, disposition des minéraux au sein du matériau*) du milieu adsorbant [151]. Il a un lien direct avec la capacité d'échange cationique (*CEC*). Les argiles, ayant une valeur modérée de cette dernière, possèdent les meilleures propriétés de gonflement comme pour les smectites [151].

- Capacité d'échange cationique (CEC)

Une autre propriété fondamentale des argiles est la capacité d'échange cationique que présentent les unités cristallines élémentaires. Elle est la somme en milliéquivalent de tous les cations (*ions*⁺) adsorbés à la surface de l'argile pour 100 g de matière sèche à un pH bien défini. Les capacités d'échanges cationiques des principales familles argileuses sont par ordre croissant : 3-15 ; 10-40 ; 10-40 ; 70-120 et 130-210 meq/100 g pour la kaolinite, illites, chlorite, montmorillonite et vermiculites, respectivement **[152]**.

La mesure de la CEC consiste à remplacer les cations compensateurs existants dans l'espace interfoliaire par d'autres éléments puis doser les concentrations résiduelles de ces derniers.

Chapitre III. PROCEDES D'IRRADIATION

Avant d'introduire les procédés d'irradiation, introduisons la notion de rayonnement ionisant et de rayonnement non ionisant (*voir figure A.III.1*).

Un rayonnement ionisant se présente sous la forme :

- d'un rayonnement corpusculaire: particules chargées (électron, positron, particule alpha, proton, deuton,...) ou neutres (neutrons),
- d'ondes électromagnétiques (rayons X, rayons gamma, rayonnement ultraviolet lointain);

ayant une énergie suffisante pour pouvoir ioniser directement (*particules chargées*) ou indirectement (*neutrons, rayons X et* γ) les atomes et les molécules de la matière traversée.

Un rayonnement non ionisant désigne un rayonnement dont l'énergie est insuffisante pour ioniser la matière traversée. Par exemple, les ondes radio, les micro-ondes, les rayonnements infrarouges et la lumière visible sont non ionisants car leur énergie est trop faible pour ioniser la matière. Dans le spectre électromagnétique, seuls les rayonnements X, γ et l'ultraviolet lointain sont ionisants.

Figure A.III.1. Différents types de rayonnements.

III.1. Irradiation gamma

L'irradiation gamma, appelée aussi la chimie sous rayonnement, est une technique d'analyse très utilisée dans différents domaines. Dans les années 60, elle a été utilisée pour la stérilisation des produits médicaux (*seringues jetables*, ...) [153-155] et les produits de

consommation (*produits alimentaires*) afin de prolonger leur durée de conservation [156] et d'éliminer les résidus de pesticides [157]. Dans les années qui suivent, d'autres études ont montré l'efficacité de cette technologie sur la dégradation des substances toxiques dans les sols [24], sur la désinfection des boues des stations d'épurations [158] avant leur épandage sur des terres agricoles. Pour d'autres utilisations [159], l'irradiation gamma s'avère également efficace grâce à la réduction : des micro-organismes et de la charge organique (*acides humiques*).

III.1.1. Principe de l'irradiation gamma

Le cobalt 60 (*noté*, ${}^{60}Co$) et le césium 137 (*noté*, ${}^{137}Cs$) sont des isotopes artificiels qui émettent un rayonnement gamma par désintégration bêta et donnent respectivement le Nickel 60 (*figure A.III.2*) et le Baryum 137.

Le rayonnement gamma (γ)

Figure A.III.2. Désintégration radioactive du ⁶⁰Co [160].

L'irradiation gamma consiste à exposer un échantillon aux rayons d'une source radioactive émettrice de rayonnement gamma (*par exemple :* ${}^{60}Co \ ou \ {}^{137}Cs$) pendant un temps **t**. L'unité de la dose absorbée par la matière est le gray (*Gy*), équivalent à une quantité d'énergie (*Joule*) déposée par unité de masse (*kg*) de la matière irradiée.

Au niveau de l'irradiateur gamma du CRNA, les matrices à irradier sont montées au dessus de la source de façon que quand celle-ci remonte au centre de la piscine, les échantillons sont exposés au rayon gamma à une distance bien déterminée de la source (*positions numérotées de 1 à 10*).

La source utilisée au niveau de l'irradiateur du CRNA est le Cobalt 60. La désintégration bêta de cette source (^{60}Co) est suivie par l'émission de deux photons gamma en cascade (*figure A.III.3*) d'énergie respectives 1,1732 MeV (γ_1) et 1,3325 MeV (γ_2).

Figure A.III.3. Schéma de désintégration du ⁶⁰Co [161].

Le schéma de désintégration du ⁶⁰Co peut être symbolisé de la manière suivante (*on omet de mentionner les neutrinos par souci de simplicité*).

- Dans 99,88 % des cas :

- Dans 0,12 % des cas :

où ${}^{60}_{28}Ni$ représente l'état fondamental du noyau du ${}^{60}Ni$, tandis que les symboles ${}^{60}_{28}Ni^{**}$ et ${}^{60}_{28}Ni^{*}$ désignent respectivement deux états excités du noyau du ${}^{60}Ni$.

Pour résumer, le noyau de ${}^{60}Co$ donne, par désintégration béta, un noyau de ${}^{60}Ni$ dans un état excité. Ce noyau dans son état excité transite vers son état fondamental (*état stable*) en libérant de l'énergie sous forme de rayonnement γ [162].

a. Détermination de la dose absorbée

La dose absorbée "D" est déterminée selon la formule (A.III.1). Elle est exprimée en Gray (Gy), unité du CIPM (Commission Internationale des Poids et Mesures) en collaboration avec ICRU (International Commission on Radiation Units and measurments USA) depuis 1975.

$$D(Gy) = \frac{275 \cdot \Delta DO}{1+0,0069(T-25)}$$
(A.III.1)

où, ΔDO est la variation des densités optiques avant et après irradiation gamma; T est la température au moment de la lecture des densités optique des solutions irradiées.

Cette dose "D" ou quantité d'énergie absorbée est fonction de plusieurs facteurs notamment l'activité de la source d'irradiation, l'énergie des photons, l'intensité du rayonnement, la densité du produit, la température de l'irradiation, l'humidité du milieu, etc.

Le débit de dose "I" est défini par le rapport de la dose absorbée sur le temps d'irradiation.

$$I = \frac{D}{t} \tag{A.III.2}$$

où, D est la dose absorbée (Gy) et t est le temps d'irradiation (min).

b. Radiolyse de l'eau

Le traitement des eaux usées par radiation gamma est un procédé sans additif qui utilise les espèces réactives à courte durée de vie formées pendant la radiolyse de l'eau pour une décomposition efficace des polluants à l'intérieur.

La radiolyse de l'eau, découverte en 1903 par Gisel, comprend plusieurs étapes (*ionisation et excitation*) entrainant la formation de plusieurs espèces, très réactifs : radicalaires tels que $^{\circ}$ OH, e_{aq}° , $^{\circ}$ H et moléculaires H₂O₂ et H₂. Les radicaux hydroxyles permettent une oxydation poussée de la matière organique, donc, on a initialement des molécules d'eaux ionisées et des molécules d'eaux excitées :

$$H_2O \rightarrow H_2O^{\dagger} + e^{-t}$$

 $H_2O \longrightarrow H_2O^*$

où: H₂O* est la molécule d'eau excitée.

Les électrons libres se combinent rapidement avec d'autres molécules d'eau donnant ainsi les électrons en milieu aqueux.

Les radicaux hydroxyles [•]OH proviennent des ions positifs formés par l'ionisation de l'eau :

$${}^{\bullet}\text{H}_{2}\text{O}^{\dagger} + \text{H}_{2}\text{O} \longrightarrow \text{H}_{3}\text{O}^{\dagger} + {}^{\bullet}\text{O}\text{H}$$

Les molécules d'eaux qui ne perdent pas d'électrons deviennent très excitées et subissent une rupture de liaison :

 H_2O (excité) $\longrightarrow OH + H$

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

La recombinaison des espèces formées (${}^{\bullet}OH$, e_{aq} , ${}^{\bullet}H$) conduisent à l'apparition des espèces moléculaires :

- $^{\bullet}OH + ^{\bullet}OH \longrightarrow H_2O_2$
- $^{\bullet}OH + ^{\bullet}H \longrightarrow H_2O$
- $H + H \longrightarrow H_2$

c. Dosimétrie de Fricke

La dosimétrie de Fricke est une dosimétrie chimique d'une solution liquide à base de sulfate ferreux (Fe^{2+} , SO_4^{2-}). Elle est basée sur la radio- oxydation des ions ferreux Fe^{2+} en ions ferriques Fe^{3+} par les espèces formées à la suite de la radiolyse de l'eau en milieu acide aéré. L'ion ferreux Fe^{2+} , en réagissant avec H_2O_2 , HO_2^{\bullet} et OH^{\bullet} se transforme en ions ferriques Fe^{3+} . La concentration de ce dernier est donc proportionnelle à la quantité d'énergie absorbée par le système dans la solution de Fricke. Elle est déterminée par spectrophotométrie UV à une longueur d'onde de 304 nm et exprimée en mol. L⁻¹.

$$[Fe^{3+}] = D.G.\rho \qquad (A.III.3)$$

où, **D** est la dose absorbée dans la solution de Fricke exprimée en Gy; **G** est le rendement radiochimique de Fe^{3+} produits pour 100 eV d'énergie absorbée (*ions/100 eV*) et ρ est la masse volumique de la solution, exprimée en kg. L⁻¹.

Le mécanisme d'oxydation est le suivant :

$$H^{\bullet} + O_{2} \longrightarrow HO_{2}^{\bullet}$$

$$Fe^{2+} + HO_{2}^{\bullet} \xrightarrow{H^{+}} Fe^{3+} + H_{2}O_{2}$$

$$Fe^{2+} + H_{2}O_{2} \longrightarrow Fe^{3+} + OH^{-} + OH^{\bullet}$$

$$Fe^{2+} + OH^{\bullet} \longrightarrow Fe^{3+} + OH^{-}$$

Selon le mécanisme, la valeur du rendement G (Fe^{3+}) = 15,6 molécules/ 100 eV.

III.1.2. Interaction du rayonnement ionisant gamma avec la matière

Les rayons gamma (γ) sont constitués, du point de vue corpusculaire, de photons d'origine nucléaire, c'est à dire issus de la désexcitation d'un noyau **[163]**. Ils sont émis à des longueurs d'ondes très courtes inférieures à 10 pm (10^{-12} mètres) et leurs énergies sont comprises dans une gamme d'énergie allant de 100 keV à quelques MeV.

Le mode d'interaction des γ avec la matière dépend de l'énergie transportée par le rayonnement. De manière générale, le rayonnement gamma peut interagir avec la matière selon trois principaux mécanismes: l'effet photoélectrique, la diffusion Compton où la production de paires électron-positron [161]. La suite de ce sous-chapitre est dédiée à la description générale de ces trois mécanismes.

a. Effet photoélectrique

Le photon cède toute son énergie (E) à la matière en la transmettant à un électron du milieu (*figure A.III.4*). L'électron frappé est d'une part arraché de son orbital atomique tout en réceptionnant de l'énergie. Cet effet est dominant pour des photons ayant une énergie inférieure à 0,5 MeV.

Figure A.III.4. Effet photoélectrique.

b. Effet Compton

Au cours de ce processus, le photon incident (*rayon X dur ou rayon \gamma de longueur d'onde* $\lambda < 10^{-10} m \text{ environ}$) diffuse sur un électron libre et au repos du milieu et lui cède une partie de son énergie avec déviation de sa trajectoire. Il en résulte un photon d'énergie inférieur à celle du photon incident [164] comme le schématise la figure A.III.5.

Figure A.III.5. Effet Compton.

L'énergie des électrons Compton varie avec la valeur de l'angle de diffusion du photon. Elle est mesurée par la formule°.

$$E' = h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_0 c^2} (1 - \cos \theta)}$$
(A.III.4)

où, *h* est la constante de Planck (6,62607015 10^{-34} J.s), *v*' est la fréquence avant le choc, *v* est la fréquence après le choc et m_{θ} est la masse de l'électron. *c* est la vitesse de la lumière (299792458 m/s).

c. Production de paire $e^- - e^+$

Ici, le photon va créer un négaton et son antiparticule un positon. C'est une réaction qui ne peut avoir lieu qu'avec des photons d'énergie supérieure à 1022 keV et dans le champ d'une particule chargée (*la plupart du temps un noyau*). Le positon va perdre de l'énergie puis s'annihiler avec un électron du milieu en donnant deux photons gamma d'énergie 511 keV chacun [164] comme le schématise la figure A.III.6.

Figure A.III.6. Représentation schématique de la production de paire $e^+ - e^-$ [162].

Pour conclure cette partie, soulignons que dans ce travail, les γ considérés étant issus de la désintégration du Cobalt 60, les énergies des rayonnements gamma émis sont de l'ordre de 1 MeV (*figure A.III.7*). Pour ces énergies, l'effet dominant de l'interaction des γ avec la matière est la diffusion Compton, indépendamment du numéro atomique de la matière traversée **[161]**.

Figure A.III.7. Importance relative des trois principales formes d'interaction des photons avec la matière [165].

III.2. Irradiation micro-ondes

Les appareils (fours) micro-ondes sont des enceintes qui ont fait leur première apparition aux Etats-Unis à la fin des années cinquante et importées pour la première fois en France en 1978. Ils sont caractérisés par des fréquences de 0,3 à 300 GHz et des longueurs d'onde qui s'étalent de 0,1 à 100 centimètres. La fréquence la plus utilisée est de 2450 MHz correspondant à une longueur d'onde de 12,2 cm et une énergie de 1,02 10⁻⁵ eV [166]. Ces ondes sont réfléchies par des métaux qui traversent certains matériaux (verre, porcelaine, plastique, terre cuite) et sont surtout absorbées par de l'eau présente en pourcentage élevé dans le matériau mis dans le microonde. Selon Ohlsson (*1989*) [167], les propriétés diélectriques (*constante diélectrique et coefficient d'absorption*) jouent un important rôle dans le chauffage micro-ondes. La chaleur générée dépend de : la fréquence des micro-ondes, la composition du produit et sa température, l'état physique de l'eau contenue dans le produit et de la densité du produit [168].

Les micro-ondes ont été utilisées dans différents domaines industriels tels que la synthèse organique et la synthèse chimique modernes **[169, 170]** en raison de leur grande efficacité et de leur rentabilité dues aux courts temps de réaction et aux meilleurs rendements **[171, 172]**.

Dans l'industrie, deux modèles d'instruments micro-ondes sont utilisés. L'un est un système clos

permettant la vérification de la température et de la pression, par contre l'autre, est un système ouvert soumis à la pression atmosphérique.

III.2.1. Description d'un four micro-onde

Un four micro-onde est constitué principalement : d'un magnétron (*convertisseur de l'énergie électrique en énergie de micro-ondes*), d'un guide d'onde (*canaliseur des ondes électromagnétiques*) et d'une cavité. A l'intérieur de cette dernière, les micro-ondes se répandent dans tous les sens et sont réfléchies par les parois métalliques afin de pénétrer dans les matériaux (*figure A.III.8*).

Figure A.III.8. Schéma d'un four micro-ondes monomode (a) et multi-mode (b).

Actuellement, les applicateurs micro-ondes sont classés en trois catégories :

a. Réacteur monomode (figure A.III.7.a)

Les ondes sont centralisées à l'aide d'une ligne de transmittance telle qu'un guide d'onde métallique. La distribution du champ électrique est homogène dans les produits à chauffer. Le principal inconvénient rapporté par la littérature **[173]** pour ce type de réacteur est la dimension du matériau à chauffer (*quelques dizaines de millilitres*). Ce type de fours micro-ondes peut être utilisé avec une puissance émise de 30 à 300 W.

b. Réacteur multi-modes (figure A.III.7.b)

La répartition du champ électrique sous forme d'énergie résulte de multiples réflexions des ondes électromagnétiques **[174]** sur les parois métalliques de la cavité et le produit à chauffer. Le champ électrique n'est pas homogène. Les fours dotés d'un disque tournant permettent une meilleure stabilité du chauffage. Ce type de four est utilisé pour des synthèses organiques à l'échelle du laboratoire.

c. Réacteur stéréo-mode

Ce modèle de réacteur a été développé pour réaliser des traitements thermiques plus homogènes, l'obtention d'un meilleur rendement énergétique qu'avec les cavités multi-modes et le traitement d'une quantité de produit plus importante qu'avec les réacteurs monomodes **[175]**.

III.2.2. Principe du chauffage par micro-ondes

Le transfert de chaleur sous micro-ondes est complètement inverse par rapport au chauffage conventionnel. Sous chauffage micro-onde, le volume traité devient lui-même source d'énergie. La chaleur se dégage de l'intérieur vers l'extérieur du récipient. La paroi externe du réacteur est plus froide que le milieu du réacteur. C'est un mode de chauffage instantané en volume et non en surface. L'équilibrage de la température est assuré par les phénomènes thermiques de conduction et de convection. Des surchauffes locales peuvent également se produire.

Les phénomènes thermiques de conduction et de convection n'ont qu'un rôle secondaire d'équilibrage de la température. Des surchauffes locales peuvent également se produire.

III.2.3. Interaction des micro-ondes avec la matière

L'interaction micro- ondes- matière est un mécanisme de chauffage de la matière irradiée. Elle diffère selon la nature de la matière, à savoir les conducteurs (*métaux et alliages*), les isolants (*quartz fondu, verres, céramique, téflon et polypropylène*) et les absorbants (*solution aqueuse et solvant polaire*), qui la traverse. Au niveau moléculaire, les matériaux polaires tels que l'eau, se présentent comme des entités globalement neutres en charge électrique car ils possèdent des parties chargées positive et négative. Ces molécules forment donc des dipôles électriques.

En l'absence de champ électrique, l'orientation de ces dipôles est aléatoire. En cas d'existence de champ électrique, les dipôles sont orientés selon le sens du champ électrique. Dans un champ électrique alternatif, l'orientation de chaque dipôle change avec alternance du sens du champ électrique.

L'énergie électrique est convertie en énergie cinétique par la rotation des dipôles. L'énergie cinétique est transformée partiellement en chaleur : l'alignement des dipôles par rapport au champ électrique est contrarié par les forces d'interactions entre molécules. Ces forces peuvent être assimilées à des forces de frottement internes qui existent dans les contacts solide-solide **[176]**.

Chapitre IV. GENERALITES SUR L'ADSORPTION

Afin de protéger l'environnement naturel, une limitation de propagation et de migration des polluants s'avère nécessaire et qui peut se faire par le biais de barrières dites géochimiques. Ces dernières utilisent les propriétés physico-chimiques des matériaux géologiques (*les argiles*) pour fixer les éléments polluants (*composés phénoliques dans notre cas*) et limiter leur transport dans les différents milieux (*l'eau, sol, ...*) par adsorption.

L'adsorption est un phénomène qui constitue, à la base un procédé de traitement adapté pour l'élimination de divers composés toxiques gazeux ou liquide dans l'environnement, tels que les métaux lourds, les pesticides, les phénols, ... ainsi que pour l'amélioration de la qualité organoleptique de l'eau en éliminant les matières organiques responsables du goût, des odeurs et des couleurs [177]. L'adsorption proprement dite résulte des liaisons qui se forment entre l'adsorbat (*soluté*) et l'adsorbant (*solide*). Les adsorbants utilisés dans la pratique sont caractérisés par une structure microporeuse qui leur confère une très grande surface active. Ces matériaux peuvent être inorganiques comme les argiles ou de nature organique (*végétal ou animal*), et sont employés tels quels ou après un traitement d'activation.

IV.1. Types d'adsorption

L'adsorption est la rétention des polluants par une matrice poreuse par deux modes d'adsorption : physique (*physisorption*) et chimique (*chimisorption*) [178].

Les types d'adsorption sont :

IV.1.1. Adsorption physique (*Physisorption*)

L'adsorption physique se produit à la surface de l'adsorbant sans modification de la structure moléculaire et est parfaitement réversible. Les forces impliquées sont faibles de type Van der Waals [179, 180] et ont des courts temps de rétention de la substance adsorbée [178].

IV.1.2. Adsorption chimique (Chimisorption)

Dans l'adsorption chimique, le processus résulte d'une réaction chimique avec formation de liaisons chimiques entre les molécules du soluté et la surface du solide (*adsorbant*). L'énergie de liaison est beaucoup plus forte que dans le cas de l'adsorption physique et le processus **[181]** est généralement irréversible **[179]**. Dans ce type d'adsorption, le temps de rétention est long et seule la première couche liée à la surface adsorbante est chimiquement adsorbée, les autres couches, dans le cas où elles existent, sont retenues par physisorption **[178]**.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

IV.2. Mécanismes et cinétique d'adsorption

L'adsorption se déroule en quatre étapes (figure A.IV.1) :

- 1. Diffusion au cœur de la solution (*bulck diffusion*) : c'est la diffusion de l'adsorbat dans la phase liquide externe vers celle située au voisinage de la surface de l'adsorbant. C'est une étape relativement rapide et dépendant des conditions hydrodynamiques.
- 2. Diffusion externe (*diffusion de film ou diffusion extragranulaire*) : elle consiste en la diffusion de l'adsorbat à travers le film de particules couvrant directement la surface de l'adsorbant.
- Diffusion interne (*diffusion intraparticulaire, diffusion intragranulaire ou diffusion de pores*): Elle concerne la diffusion de l'adsorbat à l'intérieur de la particule (*dans son réseau poreux*) vers les sites actifs.
- 4. Adsorption du soluté à l'intérieur des particules de l'adsorbant: elle consiste en l'interaction physique et/ou chimique des molécules de l'adsorbat avec les sites actifs de l'adsorbant.

Figure A.IV.1. Différentes étapes de la cinétique d'adsorption [182].

IV.3. Equilibres et isothermes d'adsorption

Une isotherme d'adsorption est une représentation graphique de la quantité adsorbée Qd'un soluté par unité de masse m de l'adsorbant en fonction de la concentration adsorbée à l'équilibre C_e . Le calcul de la quantité adsorbée par unité de masse de l'adsorbant peut être effectué selon l'équation suivante :

$$Q_t = \frac{(C_0 - C_t)V}{m} \tag{A.IV.1}$$

où, Q_t est la quantité adsorbée exprimée en milligramme de soluté par gramme d'adsorbant $(mg. g^{-1})$, C_o et C_t sont, respectivement, les concentrations $(mg. L^{-1})$ du soluté dans l'effluent oléicole initiale et à l'instant t. V est le volume de l'effluent (L) et m est la masse de l'adsorbant (g) [183].

A l'équilibre la relation devient :

$$Q_e = \frac{(C_0 - C_e)V}{m} \tag{A.IV.2}$$

où, Q_e est la quantité adsorbée à l'équilibre exprimée en milligramme de soluté par gramme d'adsorbant (*mg. g⁻¹*), C_e est la concentration du soluté dans l'effluent à l'équilibre (*mg. L⁻¹*).

IV.3.1. Classification des isothermes d'adsorption

D'après la littérature **[184]**, plusieurs classifications des isothermes d'adsorption ont été proposées. Elles dépendent de leur forme et de leur pente initiale. Les courbes représentant les isothermes d'adsorption sont principalement classées en quatre classes **[185-187]** et subdivisées en quatre groupes (*figure A.IV.2*).

Figure A.IV.2. Classes des isothermes d'adsorption d'après Giles *et al.* **[185]** S : Sigmoïde ; L : Langmuir ; H : Haute affinité ; C : Partition constante.

Les formes d'isothermes distinguées sont :

a. Isothermes de type S

Les isothermes de classe S présentent, à faible concentration, une concavité tournée vers le haut. Les molécules adsorbées s'accrochent par l'intermédiaire d'un seul groupement. Cette fixation est, favorisée quand le solvant est en compétition avec le soluté pour l'occupation des sites d'adsorption. Ceci est dû aux molécules qui s'attirent par des forces de Van Der Waals et se regroupent en îlots dans lesquels elles se tassent verticalement les unes contres les autres.

b. Isothermes de type L

Les courbes de ce type d'isotherme présentent une concavité tournée vers le bas qui traduit une diminution des sites libres au fur et à mesure de la progression de l'adsorption. C'est un phénomène qui se produit lorsque les forces d'attraction entre les molécules adsorbées sont faibles. Elle est souvent observée quand les molécules sont adsorbées horizontalement, ce qui minimise leur attraction latérale

c. Isothermes de type H

La partie initiale de l'isotherme est presque verticale, la quantité adsorbée apparaît importante à concentration quasiment nulle du soluté dans la solution. Ce phénomène se produit lorsque les interactions entre les molécules adsorbées et la surface du solide sont très fortes. Ces types d'isothermes s'obtiennent par chimisorption du soluté, par échanges d'ions et par adsorption des macromolécules.

d. Isothermes de type C

Les isothermes de cette classe se caractérisent par une partition constante entre la solution et le substrat jusqu'à un palier. La linéarité montre que le nombre de sites libre reste constant au cours de l'adsorption. Ceci signifie que les sites sont crées au cours de l'adsorption. Ce qui implique que les isothermes de cette classe sont obtenues quand les molécules de soluté sont capables de modifier la texture du substrat en ouvrant des pores qui n'avaient pas été ouverts préalablement par le solvant [**188**].

IV.3.2. Modèles d'isothermes d'adsorption

Une isotherme d'adsorption est la représentation de la quantité (Q_e) de composés adsorbés à l'équilibre et à température constante sur les adsorbants en fonction de la concentration à l'équilibre (C_e). L'établissement d'une isotherme d'adsorption s'accompagne très souvent d'une modélisation comme c'est le cas avec les données des cinétiques. Un très grand nombre de modèles mathématiques ont été développés pour la caractérisation des interactions adsorbantadsorbat depuis les modèles les plus simples élaborés par Freundlich et Langmuir jusqu'à des modèles plus complexes tel que Temkin, ... Les principaux modèles utilisés pour l'adsorption des molécules organiques sont:

a. Isotherme de FREUNDLICH

Ce modèle de sorption **[189]** est utilisé à de nombreux cas notamment dans le cas de l'adsorption multicouche avec interactions possibles entre les molécules adsorbées. L'isotherme est exprimée par l'équation suivante :

$$Q_e = K_f \cdot C_e^{1/n} \tag{A.IV.3}$$

où, Q_e est la capacité d'adsorption à l'équilibre ($mg. g^{-1}$), C_e est la concentration du soluté dans la phase liquide à l'équilibre ($mg. L^{-1}$), K_f et $\frac{1}{n}$ sont des constantes de Freundlich.

Les constantes de l'isotherme de Freundlich peuvent être déterminées en traçant $Ln Q_e$ versus $Ln C_e$ en utilisant l'équation logarithmique suivante :

$$LnQ_e = LnK_f + \frac{1}{n}LnC_e \tag{A.IV.4}$$

où, $\frac{1}{n}$ est la pente de la droite $Ln \ Q_e = f (Ln \ C_e)$ et $Ln \ K_f$ est l'ordonnée à l'origine. La constante $\frac{1}{n}$ donne une indication sur l'intensité de l'adsorption, et selon Hamdaoui *et al.* [190], elle est favorable quand $\frac{1}{n}$ est compris entre 2 et 10, modérée pour $\frac{1}{n}$ compris entre 2 et 1, faible pour $\frac{1}{n}$ inférieur à 1 et linéaire quand cette constante tend vers 1.

b. Isotherme de LANGMUIR

Ce modèle d'isotherme **[191]** est très fréquent. Il est valable pour une adsorption en monocouche à la surface de l'adsorbant où l'énergie d'adsorption de tous les sites est identique et indépendante de la présence de particules adsorbées sur les sites voisins **[192]**. L'équation empirique de Langmuir est représentée par la relation suivante :

$$Q_e = \frac{Q_{max} \cdot K_L \cdot C_e}{(1 + K_L \cdot C_e)} \tag{A.IV.5}$$

où, Q_e est la capacité d'adsorption à l'équilibre $(mg. g^{-1})$, Q_{max} est la capacité d'adsorption maximale de l'adsorbant $(mg. g^{-1})$, C_e est la concentration du soluté dans la phase liquide à l'équilibre $(mg. L^{-1})$ et K_L est la constante d'équilibre de Langmuir caractéristique de l'adsorbant $(L. mg^{-1})$.

La linéarisation de l'équation de LANGMUIR est donnée par l'équation A.IV.6, de pente $\frac{1}{Q_{max}}$ et d'ordonnée à l'origine $\frac{1}{Q_{max}K_L}$ ce qui permet de déterminer les deux paramètres Q_{max} et K_L .

$$\frac{C_e}{Q_{eq}} = \left(\frac{1}{Q_{max} \cdot K_L}\right) + \frac{1}{Q_{max}} C_e \qquad (A.IV.6)$$

La viabilité de l'isotherme de Langmuir peut encore être expliquée à partir du facteur de séparation adimensionnel R_L :

$$R_L = \frac{1}{1 + k_L \cdot C_0} \tag{A.IV.7}$$

si : $R_L > 1$, l'isotherme d'adsorption est défavorable ;

 $R_L = 1$, l'isotherme d'adsorption est linéaire ;

 $0 < R_L < 1$, l'isotherme d'adsorption est favorable ;

 $R_L = 0$, l'isotherme d'adsorption est irréversible.

c. Isotherme de DUBININ-RADUSHKEVICH (D-R)

C'est un modèle essentiellement utilisé pour décrire l'adsorption des gaz sur des surfaces microporeuses et parfois sur certaines surfaces non poreuses. Ce modèle est utilisé pour spécifier si l'adsorption est physique ou chimique **[193]**. Il est décrit par la relation suivante:

$$q_e = q_{max} \cdot exp\left[-\beta'\left(R \cdot Tln\left(1 + \frac{1}{c_e}\right)\right)^2\right]$$
(A.IV.8)

où, q_{max} est la capacité de saturation théorique $(mg. g^{-1})$, β ' est une constante liée à l'énergie d'adsorption $(mole^2. kJ^2)$, R est la constante des gaz parfait $(8,314.10^{-3} kJ. mole^{-1}. K^{-1})$, T est la température de la solution (K) et C_e est la concentration à l'équilibre des CPT dans la solution $(mg. L^{-1})$.

La linéarisation de l'équation de Dubinin- Radushkevich est donnée par la relation suivante :

$$Ln(q_e) = Ln(q_{max}) - \beta' R^2 T^2 \left(ln \left(1 + \frac{1}{c_e} \right) \right)^2 \qquad (A.IV.9)$$

La constante β ' est reliée à l'énergie libre E_D par la relation :

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

$$E_D = \frac{1}{\sqrt{2\beta'}} \tag{A.IV.10}$$

La valeur " E_D " permet de déterminer la nature du processus d'adsorption physique ou chimique. Selon la littérature [194, 195] :

Si : $E_D < 8$ kJ. mole⁻¹, le processus d'adsorption est physique ; E_D est compris entre 8 et 16 kJ. mole⁻¹, l'adsorption est un processus d'échange d'ions ; $E_D > 16$ kJ. mole⁻¹, le processus est dominé par la diffusion intra-particule (*chimique*).

IV.4. Modèles cinétiques d'adsorption

La cinétique d'adsorption nous permet d'examiner l'influence du temps de contact sur sa rétention. Elle détermine la durée minimale d'agitation des expériences d'adsorption qui permet d'atteindre l'équilibre. En plus, elle nous renseigne sur le mode de transfert des solutés de la phase liquide vers la phase solide.

Dans le présent travail, quatre modèles cinétiques ont été sélectionnés pour étudier le comportement cinétique des composés phénoliques totaux à la surface sur des sols, à savoir le modèle cinétique pseudo premier ordre, le modèle cinétique pseudo-second ordre, le modèle de diffusion intra-particulaire et le modèle de la diffusion externe. La conformité entre les résultats expérimentaux et les modèles cinétiques est exprimée par le coefficient de corrélation **R**. L'appréciation de la validité du modèle choisit est basé sur la valeur du coefficient de corrélation **R** ou de détermination \mathbf{R}^2 : plus ce coefficient est proche de l'unité plus les résultats sont en adéquation avec le modèle considéré.

IV.4.1. Modèles basés sur la réaction

a. Modèle du pseudo- premier ordre

Le pseudo- premier ordre exprimée par l'équation de Lagergren [196] est :

$$\frac{dq_t}{dt} = k_1 \cdot (q_e - q_t) \tag{A.IV.11}$$

où, q_e et q_t sont les capacités d'adsorption à l'équilibre et à l'instant t, respectivement (*mg. g⁻¹ d'adsorbant*). k_1 est la constante de vitesse du processus d'adsorption du pseudo premier ordre (*unité de temps⁻¹*).

Après intégration, la formule A.IV.11 devient logarithmique et s'écrit comme suit :

$$Ln(q_e - q_t) = Ln(q_e) - k_1 t$$
 (A.IV.12)

où, k_1 est la Pente de la droite $Ln (q_e - q_t)$ versus t, et $Ln q_e$ est l'ordonnée à l'origine.

b. Modèle du pseudo-second ordre

Selon Ho et al. [197], la cinétique du pseudo-second ordre est régie par l'équation suivante :

$$\frac{dq_t}{dt} = k_2 (q_e - q_t)^2 \tag{A.IV.13}$$

où, q_e et q_t sont les capacités d'adsorption à l'équilibre et à l'instant t, respectivement (*mg. g⁻¹ d'adsorbant*). k_2 est la constante de vitesse du processus d'adsorption du pseudo second ordre (*g. mg⁻¹. unité de temps⁻¹*).

L'intégration de l'équation A.IV.13 donne la formule linéaire suivante :

$$\frac{t}{q_t} = \frac{1}{k_2 \cdot q_e^2} + \frac{1}{q_e} \cdot t \tag{A.IV.14}$$

La quantité adsorbée q_e et la constante de vitesse k_2 peuvent être déterminées à partir de la pente et de l'ordonné à l'origine de la droite t/q_t versus t [198, 199].

IV.4.2. Modèles basés sur la diffusion

En général, lorsque les temps de contact pour atteindre l'équilibre sont longs ou bien que les adsorbats sont des molécules chargées de grande taille, les modèles de diffusion sont souvent plus appropriés que les modèles classiques de réaction pour décrire la cinétique d'adsorption

a. Modèle de la diffusion intra-particulaire

C'est un model proposé par Weber et Morris **[200]** portant sur l'adsorption des composés aromatiques simples sur charbon actif. L'expression mathématique de ce modèle est la suivante :

$$q_t = k_{int} \cdot t^{1/2} + \check{3} \tag{A.IV.15}$$

où, q_t est la capacité d'adsorption à l'instant t ($mg. g^{-1} d$ 'adsorbant); k_{int} est la constante de la diffusion intra-particule ($mg. g^{-1}$. unité de temps^{-1/2}) à un instant t donné et $\check{\mathbf{3}}$ est un paramètre de l'équation de Weber et Morris ($mg. g^{-1}$).

La courbe de ce modèle présente une multi-linéarité indiquant l'existence de plusieurs étapes :

- la première est légèrement concave, attribuée au phénomène de diffusion à la surface externe du solide (*adsorption instantanée*);
- la deuxième est linéaire, où l'adsorption est contrôlée par le phénomène de diffusion intra-particule (*adsorption graduelle*);
- la troisième est un plateau qui correspond à l'équilibre.

La constante k_{int} est déduite de la pente de la partie linéaire de l'équation représentant ce modèle [200, 201].

b. Modèle de la diffusion externe

Ce modèle est une approche développée par RUDZINSKI et PLAZINSKI en 2007, à partir du modèle de BOYD. L'équation cinétique est de la forme :

$$F_t = 1 - \left[\left(\frac{6}{\pi^2}\right) exp(-k_b, t) \right]$$
(A.IV.16)

où, F_t est le rapport de la quantité adsorbée à l'instant t (q_e) à la quantité adsorbée à l'équilibre (q_e); k_b est la constante cinétique de Boyd (*unité de temps*⁻¹).

La linéarisation de l'équation de BOYD est donnée par la relation suivante :

$$Ln\left(1 - \frac{q_t}{q_e}\right) = -0.497 - k_b.t \qquad (A.IV.17)$$

La constante k_b est déduite de la pente de la partie linéaire de l'équation représentant ce modèle [202].

Partie B : PARTIE EXPERIMENTALE
I. MATERIELS

Les sous-produits liquides issus de la production de l'huile d'olive ne sont pas traités et constituent un important problème environnemental car leurs rejets dans les cours d'eau entraînent la détérioration des plans d'eau naturels et donc la pollution.

Dans cette étude, nous nous sommes intéressés aux traitements des margines en vue de l'élimination des polluants organiques, notamment les composés phénoliques totaux. Les deux méthodes de traitement utilisées et étudiées, dans ce travail, sont les suivantes: l'irradiation gamma et l'application du phénomène d'adsorption (*classique et sous activation micro-ondes*).

D'abord, les caractéristiques essentielles (*paramètres de pollution, texture, morphologie,* ...) des deux matières premières (*margines et adsorbants*) étudiées ont été déterminées par différentes techniques expérimentales. Ensuite, les margines et les adsorbants ont été utilisés selon le protocole adéquat.

I.1. Effluents oléicoles

Deux échantillons d'eaux usées oléicoles "EUO", de couleur marron à noir et d'aspect trouble, ont fait l'objet de nos études. Ces deux échantillons ont été prélevés du premier bassin de stockage, de la même huilerie moderne de la région de Beni-Yenni (*wilaya de Tizi-Ouzou*), selon le calendrier suivant : le 1^{er} en décembre 2014 et le 2^{ème} en janvier 2016. Le prélèvement a été effectué conformément à la norme ISO 5667-3 **[203]** dans des jerricans sombres qui ont été couverts de sachet noir en vue de leurs transport au laboratoire pour une conservation à 4 °C jusqu'à utilisation.

I.2. Adsorbants (sols)

Trois matières premières représentatives de trois groupes de sols ont été choisies pour mener cette étude (*figure B.I.1*).

Le premier sol, noté " N_1 ", est prélevé d'un endroit dit "Thala Allam" de la ville de Tizi-Ouzou. Il est de couleur grise et de texture dure proche de celle de la pierre. Ce sol se présente en couche importante et très épaisse au dessous de 1 mètre de la surface de la terre (*figure B.I.1.a*).

Les deux autres échantillons de sols proviennent de la couche superficielle du village Ait Bouyahia, de la région de Beni Douala, plus précisément :

- Akhal Aberkane, pour l'échantillon de couleur noir noté "N₃" et présentant une texture poudreuse (*figure B.I.1.b*);
- Agouni, pour l'autre sol, noté "**R**", de couleur rouge et poudreux (*figure B.I.1.c*).

Ces trois échantillons ont été prélevés dans une période hivernale (*décembre 2011*) à différentes profondeurs.

(a): N₁ (b): N₃ (c): R Figure B.I.1. Textures et couleurs des sols à l'état brut.

II. METHODES

Ce chapitre décrit les différentes techniques de caractérisations employées sur les eaux de végétation et les sols, et ce, en fonction des divers besoins de ce travail. Il décrit aussi les procédés d'éliminations des composés phénoliques totaux : par irradiation gamma et par le phénomène d'adsorption (*classique et sous l'effet des irradiations micro-ondes*). Les méthodologies expérimentales appliquées y sont également décrites et détaillées. Le principal objectif est de mettre en œuvre des techniques de traitement des eaux usées oléicoles afin de réduire la matière organique polluante (*CPT*).

II.1. Méthodes de caractérisation

Cette partie traite de la caractérisation des: deux effluents oléicoles, notés EUO_1 , EUO_2 et trois adsorbants naturels notés N_1 , N_3 et **R**. Les propriétés physico-chimiques des matières premières ont été mesurées. La quantification de la teneur en composés phénoliques a été effectuée par la spectrométrie d'absorption UV-Visible. La caractérisation minéralogique a été réalisée par la diffraction des rayons X (*X'pert Pro-Panalytical*). La composition chimique a été déterminée par la spectrométrie de fluorescence des rayons-X (*MagixPro-Panalytical*). Les carbonates, ainsi que les groupements structuraux présent ont été détectés par la spectrométrie infrarouge à transformée de Fourier. L'analyse thermogravimétrique a été utilisée pour suivre le comportement thermique des sols. Enfin, la morphologie des sols a été observée par microscope électronique à balayage.

La caractérisation physico-chimique des eaux de végétation a été effectuée en mesurant plusieurs caractéristiques, à savoir : le pH, la conductivité électrique (*CE*), la densité (*d*), l'humidité, les matières solides (*M.S*), la demande chimique en oxygène (*DCO*), la demande biologique en oxygène (*DBO*₅) ainsi que les teneurs en : matières en suspension (*MES*), matières minérales (M_M), matières organiques (M_{org}), nitrate (NO_3^-), nitrite (NO_2^-), ammonium (NH_4^+), Azote Kjeldahl (*NK*), phosphate (PO_4^{3-}) et composés phénoliques totaux (P_t). La plupart de ces dosages ont été réalisés en milieu aqueux sans subir un traitement préalable sauf pour l'ammonium, le phosphate et les composés phénoliques.

Dans le cas des sols, les caractérisations ont été effectuées sur des échantillons préalablement séchés à l'air libre pendant quelques jours. Les caractéristiques physico-chimiques étudiés sont : le pH, la conductivité électrique (*CE*), la densité, l'humidité, la teneur en matières organiques (*MO*), la teneur en carbone organique (C_{org}), la teneur en matières minérales (M_M), la

teneur en carbone inorganique (C_{inorg}), la perte au feu (P_f), la surface spécifique (Ss), la teneur en Azote total (NT), la teneur en calcaire ($CaCO_3$) et la capacité d'échange cationique (CEC).

Toutes les extractions et les analyses ont été réalisées en trois fois dans un même intervalle de temps. La moyenne de ces trois analyses ainsi que les écart-types sont présentés dans les différents tableaux de données.

II.1.1. Méthodes de caractérisation communes aux margines et aux sols

a. Potentiel d'hydrogène (pH)

Le potentiel hydrogène a été déterminé au sein du laboratoire selon la norme française NF T 90- 008 **[204]** pour les effluents oléicoles, et ce en utilisant un potentiomètre de marque WTW multi 340i muni d'une électrode en platine et combinée à une sonde de température.

Le pH des sols a été déterminé, selon la norme ISO 10390 [**205**], dans une suspension de sol diluée dans l'eau à 1:5 (V/V) et en utilisant un Microprocessor pH Meter WTW pH537. Les mesures ont été effectuées, après un étalonnage préalable à l'aide de trois solutions tampons de pH 4; 6,88 et 9,22 à la température de 20 °C.

b. Humidité (H)

Le taux d'humidité (*ou de l'eau*) est estimé à partir de la perte en masse subie lors du chauffage des échantillons à 105 °C pendant 24 heures (*jusqu'à masse constante*). Il est exprimé en pourcentage massique et calculé par la formule :

$$H(\%) = \frac{m_0 - m_1}{m_0} * 100 \tag{B.II.1}$$

où, m_{θ} est la masse de l'échantillon avant séchage (g) et m_{I} est la masse de l'échantillon après séchage à 105 °C (g).

c. Conductivité électrique (CE)

La conductivité électrique de l'effluent oléicole a été mesurée, selon la norme NF EN 27888 [206], à l'aide d'un conductimètre de type Digital K120 de marque CONSORT. C'est une mesure du courant conduit par les ions présents dans la solution aqueuse. Elle est calculée par la formule :

$$\sigma = \Lambda. c \tag{B.II.2}$$

où: Λ est la conductivité molaire d'une solution ionique d'un soluté $(S.m^2.mole^{-1})$ et c est la concentration $(mole.m^{-3})$.

La conductivité électrique des sols a été mesurée aussi en milieu aqueux en préparant des suspensions sol/eau dans un rapport masse/volume égal à 1/5 **[207]**.

d. Densité (d)

Les densités des différentes matrices (*margines et sols*) ont été évaluées en utilisant des pycnomètres.

Les densités des effluents oléicoles ont été déterminées par un pycnomètre simple en verre. Le principe de la mesure est basé sur les pesées du pycnomètre vide (m_p) et du pycnomètre rempli avec l'effluent oléicole (m_{ef}) . La densité de la margine (d_m) est le rapport de la masse volumique de la margine par rapport à celle de l'eau à la température de 4°C. Elle est déterminée par la relation suivante:

$$d_m = \frac{\rho_m}{\rho_{eau}} = \frac{\frac{m_{ef}}{v_L}}{\rho_{eau}}$$
(B.II.3)

où: ρ_m est la masse volumique de la margine, ρ_{eau} est la masse volumique de l'eau à la température 4 °C, m_{ef} est la masse de la margine (kg) et v_L est le volume occupé par la margine (m^3).

Les densités des sols ont été mesurées en utilisant un pycnomètre à hélium (*Micromeritics*) relié à un système de vide et à une bouteille d'Hélium par l'intermédiaire d'un régulateur de pression (0,3-0,5 bar).

Le principe de la mesure est basé sur les pesées : du pycnomètre rempli avec de la poudre solide (m_s) et du liquide d'immersion *(eau distillée)*, et du pycnomètre rempli du liquide d'immersion seul (m_L) . Les densités des sols (d_s) ont été déterminées à l'état solide selon la norme ISO 3923-2 **[208]**. Elles sont calculées par la formule :

$$d_s = \frac{\rho_s}{\rho_{eau}} = \frac{\frac{m_s}{m_L - m_i}}{\rho_{eau}}$$
(B.II.4)

où: ρ_s est la masse volumique du sol, ρ_{eau} est la masse volumique de l'eau à la température de 4°*C*, m_s est la masse du sol (*kg*), m_L est la masse du liquide seul (*kg*) et m_i est la masse du liquide d'immersion (*kg*) dans le pycnomètre.

e. Teneur en azote total Kjeldhal (NTK)

L'azote total Kjeldahl est défini comme étant la teneur en azote organique et ammoniacal contenus dans l'échantillon. Il a été déterminé selon la norme internationale NI ISO 5663 **[209]** pour les margines et selon Mathieu *et al.* **[207]** pour les sols. Le principe de la méthode est basé sur la minéralisation des échantillons (*100 mL pour la margine ou 5 g de terre tamisée à 2 mm et séchée à 105* °*C*) à l'aide de l'acide sulfurique (*10 mL*) et d'un catalyseur en pastille (*sélénium*) (*5 g*) afin de former les sulfates d'ammonium. Ces derniers sont distillés puis titré, en présence d'un indicateur coloré (*rouge de méthyle*), par de l'acide chlorhydrique à faible concentration (*0,02 mole. L⁻¹*) jusqu'au virage. Les résultats sont exprimés en mg. L⁻¹.

f. Spectrométrie infrarouge à transformée de Fourier (IRTF)

La Spectroscopie Infrarouge à Transformée de Fourier est basée sur l'absorption d'un rayonnement infrarouge (*IR*) par un composé chimique. Elle permet, via la détection des vibrations de liaisons chimiques, de déterminer les fonctions chimiques caractéristiques des substancess analysées (*matériau solide ou liquide*). Lorsque l'énergie apportée par le faisceau lumineux est voisine de l'énergie de vibration d'une liaison de la molécule, cette dernière va absorber le rayonnement. Le domaine du moyen infrarouge (*entre 4000 et 400 cm⁻¹*) correspond au domaine d'énergie de vibration des molécules le plus utilisé.

Le spectre IRTF se présente soit en absorption soit en transmission. A chaque bande correspond une énergie particulière, et donc un mode de vibration propre à une liaison chimique donnée.

Des pastilles de bromure de potassium KBr (*Merck*) ont été préparées, contenant séparément la poudre de résidus secs de margine (*récupérée après évaporation totale de la fraction liquide*) ou de sols (*1 mg dans 100 mg de KBr*), par compression dans un moule à pastilles de 13,10⁻³ m de diamètre à l'aide d'une presse à 7 tonnes pendant 5 min. Les différentes pastilles ainsi préparées "sol ou margine et blanc à base de KBr seul" ont été mises à tour de rôle sur un porte échantillon pour analyse. L'analyse a été faite à l'aide d'un spectromètre de type NICOLET 380 avec une résolution de 4 cm⁻¹. Les spectres ont été traités par le logiciel OMNIC version 7,3 [**210**].

g. Spectrométrie de fluorescence des rayons X à dispersion de longueur d'onde (WD-XRF)

La spectrométrie de fluorescence des rayons X à dispersion de longueurs d'ondes est une technique d'analyse multi-élémentaire non destructive qui permet de déterminer avec précision la composition chimique globale d'un échantillon solide. Son domaine d'investigation, s'étend du Bore (Z = 5) à l'Uranium (Z = 92), à des concentrations atteignant quelques ppm à 100 % [211].

Elle présente les avantages suivants : une préparation simple des échantillons, la rapidité des analyses, ainsi qu'une bonne reproductibilité **[211]**.

En WD-XRF, l'échantillon à analyser est bombardé par un faisceau de rayons X (*primaires*) qui excite chaque atome des différents constituants, ce qui se traduit par un arrachement d'électrons au cœur des atomes (*près du noyau*). L'atome se retrouve donc ionisé. Un électron d'une couche périphérique va venir combler la place de l'électron éjecté. Cet électron (*électron secondaire*) va perdre de l'énergie, qui va être émise sous la forme de photon (*rayons X*), ayant une énergie qui leur est propre, et donc caractéristique. C'est cet effet photoélectrique, qui conduit au phénomène de "fluorescence".

Concernant les eaux de végétation, la mesure a été faite en milieu aqueux après filtration de la margine sur un papier filtre ordinaire. Des volumes de 5 mL d'effluents ont été mis dans des portes échantillons appropriés pour analyse des liquides supportés par des films en papier mylar d'épaisseur 0,6 μ m. Par contre, les échantillons de sols ont été finement broyés à l'aide d'un mortier en porcelaine, séchés à l'étuve pendant quelques heures à 105°C et mélangés avec un liant (*la cellulose*). Le mélange homogénéisé a été compacté sous une pression de (*2 GPa*) pendant 25 secondes.

Les analyses ont été réalisées à l'aide d'un équipement de marque Philips Analytical "MagiX'PRO" PW2540. Le système exploite un logiciel "le Super Q Version 5" pour l'acquisition des données dans les analyses qualitative et quantitative, et ce en utilisant les raies caractéristiques les plus intenses de chaque élément. Un générateur de haute tension délivre une puissance maximale de 4 kW pour l'excitation de l'échantillon. Aussi, le spectromètre est équipé de trois détecteurs : un détecteur à flux gazeux dédié à l'analyse des éléments légers, un détecteur à scintillation pour les éléments lourds et un détecteur à xénon scellé qui améliore la détection des éléments intermédiaires. Les conditions d'analyse sont illustrées dans le tableau B.II.1.

Elément	Raie	Position	Tension/ Courant	Cristal analyseur	Intensité
	Utilisée	de la raie (°2 <i>0</i>)	kV – mA	(<i>C</i> . <i>A</i>)	(Kcps)
Fe	Κα	85,77	50 - 80	Duplex (détecteur)	0,444
Ca	Κα	113,03	32 - 125	PX9 (C. A)	0,696
Κ	Κα	136,61	32 - 125	PX9 (C. A)	20,678
Cl	Κα	92,81	32 - 125	Ge (C. A)	3,233
S	Κα	110,66	32 - 125	Ge (C. A)	1,141
Р	Κα	141,05	32 - 125	Ge (C. A)	3,453
Mg	Κα	23,41	32 - 125	PX1 (C. A)	0,586
Na	Κα	28,29	32 - 125	PX1 (C. A)	0,083

Tableau B.II.1. Conditions d'analyses par la fluorescence des rayons X (WD-XRF).

II.1.2. Méthodes de caractérisations spécifiques aux margines

a. Teneur en matières en suspension (MES)

La teneur des matières en suspension a été déterminée, selon la norme NF T 90-105-2 [212]. Le protocole nécessite de prendre 200 mL d'eaux de végétation après homogénéisation et les centrifugées à 3000 tr/min pendant 20 mn. Le culot est récupéré dans des creusets en porcelaine et séché à 105 ± 2 °C dans une étuve (*nüve FN500*) pendant 24 heures. La teneur en MES, exprimée en g. L⁻¹, est calculée selon la formule suivante :

$$MES(g/L) = \frac{m_1}{v} * 1000 \qquad (B.II.5)$$

où, m_1 est la masse du culot *(échantillon)* après passage à 105 °C (mg) et v est le volume en litre de la prise d'essai.

b. Teneur en matières volatiles sèches (MVS)

La teneur en matières volatiles sèches a été déterminée selon Rodier **[213]** par chauffage des matières en suspension de la margine dans un four à moufle (*HERAEUS D 6450*) à 525 ± 25 °C et ce pendant 2 heures. La teneur en MVS, exprimée en g. L⁻¹, est calculée selon la formule suivante :

$$MVS(g/L) = \frac{m_1 - m_2}{v} * 1000$$
 (B.II.6)

où, m_1 et m_2 sont les masses des culots *(échantillons)* après passages à 105 °C et à 525 °C, respectivement (mg). **v** est le volume en litre de la prise d'essai.

La teneur en matières volatiles en suspension (MVS) est considérée aussi comme étant la teneur en matière organique dans la margine.

c. Teneur en matières minérales dans la margine

La teneur en matières minérales des margines, exprimée aussi en g. L⁻¹, est mesurée par la relation suivante :

$$M_M(mg/L) = \frac{m_2}{v} * 1000 \qquad (B.II.7)$$

où, m_2 est la masse (mg) du culot (échantillon) après passage à 525 °C et V est le volume de l'effluent traité (mL).

Thèse de Doctorat en Sciences/ ARABI Malika Epouse HOCINE

d. Demande chimique en oxygène (DCO)

La demande chimique en oxygène représente la quantité d'oxygène nécessaire pour oxyder, dans certaines conditions opératoires, les substances réductrices ou oxydables contenues dans l'échantillon de margine. Elle a été mesurée selon la norme internationale ISO 6060 [214]. C'est une oxydation à chaud ($150 \,^{\circ}C$) pendant 2 heures par le dichromate de potassium ($5 \, mL à 0,040 \, mole. L^{-1}$) en présence d'un catalyseur (*sulfate d'Argent*) dans un milieu fortement acidifié par l'acide sulfurique ($15 \, mL à 10 \, g. L^{-1}$). Après écoulement du temps programmé ($2 \, heures$), l'excès du dichromate est titré par une solution de sulfate de fer II et d'ammonium ($(NH_4)_2Fe(SO_4)_2$, $6H_2O à 0,12 \, mole. L^{-1}$) en présence de 2 à 3 gouttes de la solution d'indicateur ferroine ($0,7 \, g \, de \, FeSO_4, \, 7H_2O + 1,5 \, g \, de \, C_{12}H_8N_2, \, H_2O \, dans \, 100 \, mL \, d'eau \, distillée$). La DCO, exprimée en mg. L⁻¹, est calculée à partir de la quantité de dichromate réduite par la formule :

$$DCO (mg.L^{-1}) = \frac{8000.c.(V_1 - V_2)}{V_0}$$
(B.II.8)

où, C est la concentration du sulfate de fer II et d'ammonium $(0, 12 \text{ mole. } L^{-1})$; V_{θ} est le volume de la prise d'essai avant dilution (mL); V_1 est le volume de la solution de sulfate de fer II et d'ammonium utilisé pour l'essai à blanc (mL); la valeur 8000 $(en \text{ mg. moLe}^{-1})$ correspond à la moitié de la masse atomique de l'atome d'oxygène. Le volume V_2 est celui de la solution de sulfate de fer II et d'ammonium nécessaire pour le titrage de l'échantillon de mesure.

e. Demande biochimique en oxygène (DBO₅)

La demande biochimique en oxygène DBO_5 est un paramètre global de pollution et complémentaire à la DCO. Elle a été déterminée par la technique respirométrique selon le manuel d'utilisation de l'appareil DBO-mètre CF606 WTW [215]. Elle consiste à suivre l'évolution d'une culture en batch durant 5 jours dans le noir et en atmosphère close à 20 °C. Elle est exprimée en mg d'O₂. L⁻¹.

Le rapport DCO/DBO₅ définit le critère de biodégradabilité d'une eau usée. Il nous renseigne sur la faisabilité et la méthode de traitement. Pour un rapport inférieur à 2, l'eau usée est facilement biodégradable. Pour un rapport compris entre 2 et 3, l'effluent est comparable aux eaux résiduaires urbaines, la biodégradabilité doit être réalisée avec des souches bactériennes bien choisies. Enfin, pour un rapport supérieur à 3, la biodégradabilité est jugée difficile.

f. Teneur en matière grasse (MG)

La teneur en matière grasse dans la margine a été déterminée selon la norme V03-030

[216]. La procédure consiste à extraire ces substances par un mélange hexane-isopropanol. Les rapports volumiques hexane/ isopropanol/ margine sont de 3/2/3. Après une triple extraction, la phase organique supérieure (*hexane-isopropanol-matière grasse*) a été séparée par décantation. La matière grasse a été séparée par distillation des solvants dans un rotavapeur.

Le pourcentage de la matière grasse est donné selon la formule :

$$M(\%) = \frac{(m_g).100}{P}$$
(B.II.9)

où, m_g est la masse du résidu de distillation des solvants organiques et P est la masse de la margine. La moyenne de ces mesures, exprimée en %, est donnée dans le tableau C.I.1.

g. Teneur en ammonium (NH_4^+)

La teneur en ammonium a été déterminée selon la norme internationale NI ISO 7150/1 **[217]**. Le mode opératoire établi consiste à prendre une prise d'essai maximale de 40 ml d'un surnageant de margine mère centrifugée, dilué 200 fois, et d'y rajouter 4 mL de la solution colorée (*136 g de salicylate de sodiumde* + *130 g de citrate trisodique dihydraté* + 0,97 g de sodium nitrosopentacyanoferrate III dihydraté) et 4 mL de la solution de dichloroisocyanurate de sodium. La préparation est bien homogénéisée avant le développement de la couleur (*60 minutes*). Les densités optiques sont lues à la longueur d'onde de 655 nm et les dosages ont été effectués en se basant sur une droite d'étalonnage préalablement préparée. Le spectromètre UV- Visible utilisé est de type AMERSHAM Biosciences doté d'une cuve en quartz de 1 cm de trajet optique. La courbe obtenue est donnée en annexe (*figure 1 de l'annexe 1*). Les teneurs en ammonium sont exprimés en mg. L⁻¹.

h. Teneurs en nitrites (NO_2)

Les teneurs en nitrites, exprimées en mg. L⁻¹, ont été déterminées par spectroscopie d'absorption UV-Visible selon la norme NI ISO 6777 **[218]**. Cette dernière consiste à prendre une prise d'essai maximale de 40 mL d'un surnageant de margine mère centrifugée, dilué 100 fois, et d'y rajouter 1 mL de réactif coloré. La préparation est bien homogénéisée avant le développement de la couleur (*20 minutes*). Les densités optiques sont lues à la longueur d'onde de 540 nm et les dosages sont effectués en se basant sur une courbe d'étalonnage préalablement établie (*figure 2 de l'annexe 1*). Ces analyses ont été effectuées sur un spectromètre UV-Visible de type AMERSHAM Biosciences, doté d'une cuve en quartz de 1 cm de trajet optique.

i. Teneurs en nitrates (NO_3)

Les teneurs en nitrates, exprimées en mg. L⁻¹, ont été déterminés selon Rodier [213] par la méthode spectrométrique au salicylate de sodium. Le dosage des nitrates dans les eaux de végétation consiste à mettre 10 ml d'un surnageant de margine mère centrifugée, dilué 10 fois, dans des capsules en porcelaine de capacité 60 mL environ. Ces échantillons sont mis dans un bain marie jusqu'à évaporation à sec de l'eau (75 °C). Un millilitre de salicylate de sodium à 0,5 % est ajouté, mélangé puis évaporé. Après refroidissement, on ajoute au résidu: 2 mL d'acide sulfurique concentré ($\rho = 1,84 \text{ g. mL}^{-1}$). Après dix minutes, on rajoute encore 15 mL d'eau déionisée puis 15 mL d'hydroxyde de sodium qui développe la couleur jaune. Les densités optiques sont lues à la longueur d'onde de 415 nm et les dosages sont effectués en se basant sur une droite d'étalonnage préalablement établie (*figure 3 de l'annexe 1*). Ces analyses ont été réalisées sur un spectromètre UV- Visible de type AMERSHAM Biosciences doté d'une cuve en quartz de 1 cm de trajet optique.

j. Teneurs en orthophosphate (PO_4^{3-}) et phosphore total (P_t)

Les teneurs en orthophosphates et le phosphore total, exprimées en mg. L⁻¹, ont été déterminés par la méthode spectrométrique au molybdate d'ammonium selon la norme internationale NI ISO 6878 **[219]**.

Le dosage des orthophosphates est le même que le phosphore total sauf que pour ce dernier une digestion préalable avec le mélange acide nitrique- acide sulfurique est nécessaire. La digestion est réalisée, dans des matras Kjeldhal, sur des échantillons conservés à l'acide sulfurique à un pH inférieur à 2. Les densités optiques sont lues à la longueur d'onde de 880 nm et les dosages sont effectués en se basant sur droite d'étalonnage préalablement préparée (*figure 4 de l'annexe 1*). Ces analyses ont été réalisées sur un spectromètre UV- Visible de type AMERSHAM Biosciences en utilisant une cuve en quartz de 1 cm de trajet optique.

k. Teneurs en sulfates (SO_4^{-2})

Les teneurs en sulfates, exprimées en mg. L⁻¹, ont été déterminées par la méthode néphélometrique selon la norme française NF T90-040 **[220]**. Les densités optiques sont lues à 650 nm sur un spectromètre UV-Visible de type AMERSHAM Biosciences en utilisant une cuve en quartz de 1 cm de trajet optique. Les dosages sont réalisés en se basant sur une droite d'étalonnage préalablement établie (*figure 5 de l'annexe 1*).

l. Teneurs en composés phénoliques totaux (CPT)

- Préparation de la margine

Les margines utilisées sont prétraitées avant toute utilisation par filtration sur un morceau de tissu pour séparer les grosses particules solides de l'effluent. La matrice est ensuite soumise à une centrifugation (*BIOBLOCK Scientific Centrifugeuse 55702*) pendant 15 min à une vitesse correspondant à 3200 g. Trois phases sont ainsi obtenues : une phase huileuse, une phase aqueuse (*marron*) et un culot précipité (*marron foncé*). La phase aqueuse a subit trois fois la délipidation qui consiste à extraire les lipides par extraction liquide-liquide à l'aide d'un même volume d'hexane frais à chaque fois. Après chaque opération, on recueille deux phases:

- Un surnageant composé du solvant (*hexane*), les lipides extrait et éventuellement d'autres composés organiques co-extraits.
- Une phase inférieure composée de la margine délipidée.

Dosage des composés phénoliques

Le dosage des polyphénols totaux dans la margine délipidée repose sur la méthode colorimétrique de Box **[221]** utilisant le réactif de Folin-Ciocalteu. Ce dernier est, de couleur jaune, constitué d'un mélange d'acide phosphotungstique ($H_3PW_{12}O_{40}$) et d'acide phosphomolybdique ($H_3PM_{012}O_{40}$). L'oxydation des phénols réduit ce réactif en un mélange d'oxydes bleus de tungstène et de molybdène **[222]**. Ce milieu, après oxydation des composés phénoliques, est ensuite analysé par spectroscopie UV-Visible en effectuant les dosages à la longueur d'onde expérimentale de 765 nm (*figure B.II.1*). Ces dosages sont réalisés en se basant sur une droite d'étalonnage obtenu en utilisant de l'acide gallique (*Fluka AG, CH-9470 Buchs*) comme substance de référence des composés phénoliques.

Figure B.II.1. Courbes spectrales de la longueur d'onde expérimentale.

La procédure suivie, pour obtenir cette droite d'étalonnage et pour la réalisation des dosages, est la suivante:

Dans des tubes à essai de 20 mL, contenant préalablement 5 mL d'eau déionisée de conductivité électrique égale à 0,057 μ S/cm à 20 °C, un volume de 0,25 mL de chaque solution fille de l'acide gallique et 0,25 mL du réactif Folin-Ciocalteu (*SIGMA*) ont été ajoutés. Après 3 min, un volume de 0,5 mL d'une solution saturée de Na₂CO₃ (*Fluka Chemie AG, CH-9470 Buchs*) à raison de 20 % a été versé aux différentes solutions. Un blanc ainsi que les margines ont été préparés dans les mêmes conditions. Ces préparations ont été homogénéisées à l'aide d'un vortex (*Heidolph TOP-MIX 94323*) et maintenues à l'obscurité pendant 60 minutes à 20 ± 5 °C jusqu'à l'apparition d'une coloration bleue. Les densités optiques ont été lues sur un spectrophotomètre UV- Visible (*UV-visible, T60, PG. Instruments*) en utilisant une cellule en quartz suprasil de 1 cm.

Les absorbances, correspondantes aux différentes solutions d'acide gallique de référence, ont été représentées en fonction des concentrations. La courbe obtenue montre la linéarité de la réponse du détecteur en fonction des différentes concentrations (*figure B.II.2*).

Figure B.II.2. Droite d'étalonnage de l'acide gallique.

La concentration des composés phénoliques totaux dans les matrices d'intérêts (*margines diluées 50 fois*) a été obtenue à partir de la droite de calibration, exprimée en gramme d'équivalent d'acide gallique par litre.

Les protocoles qui englobent les extractions liquide-liquide des composés phénoliques totaux sont regroupés dans la figure B.II.3.

Figure B.II.3. Protocole d'extraction liquide-liquide des CPT. Concentrations initiales : $C_{0,EUO1} = 3,95$ g. L⁻¹ ; $C_{0,SSAG} = 6,05$ g. L⁻¹.

m. Chromatographie liquide à haute performance (CLHP)

La chromatographie liquide à haute performance est une technique de séparation et d'analyse qualitative et quantitative des constituants de la matière liquide. Le chromatographe utilisé est de marque YOUNG LIN. Il est composé : d'un dégazeur, d'un module d'injection, d'un détecteur d'absorption UV-Visible et d'une colonne chromatographique ODS A 120 A ($25 \times 0.46 \text{ mm}, 5 \mu m$ particle size, Teknokroma, Spain). Le système est piloté par un ordinateur muni d'un logiciel YLClarity.

L'analyse par CLHP a été effectuée sur les extraits phénoliques de la margine brute selon le protocole de Vinha *et al.* **[223]** qui consiste à peser 1,5 g d'un échantillon de margine et de le mettre en contact sous agitation avec du méthanol dans le but d'extraire les composés phénolique. L'extrait *(méthanol enrichi)* a été séparé ensuite par décantation. Cette opération a été répétée plusieurs fois sur le même échantillon de margine jusqu'à l'extraction complète, révélée par la réaction négative sur un prélèvement de l'extrait *(absence de trouble)* lorsqu'on lui ajoute du NaOH à 20 %. A la fin de l'opération d'extraction, le mélange d'extraits a été filtré pour séparer les particules solides en suspension puis soumit à une évaporation à sec sous vide à 40 °C. Le résidu de l'évaporation a été récupéré en le diluant dans 4 ml de méthanol. 20 μ L de la solution obtenue ont été ensuite analysées par CLHP.

La phase mobile était constituée de 2 % d'acide acétique (*A*) et de méthanol (*B*). Le volume injecté pour chaque échantillon a été élué selon le gradient suivant: au début 70 % de A et 30 % de B (*conditions initiales*), ensuite 5 % de A et 95 % de B à 30 min et finalement 70 % de A et 30 % de B à 35 min. Le débit était de 1 mL. min⁻¹. Le temps de fonctionnement était de 32 min pour les extraits phénoliques des eaux usées oléicoles **EUO**₁ (*non irradiée*), **EUO**₁I (*irradiée*) et le mélange de composés phénoliques étalons (*acide gallique, résorcinol, catéchine, acide trans-cinnamique, rutine, berbérine, myrcétine et quercetine*). Les données spectrales de tous les pics ont été accumulées à 254 nm. L'identification des constituants des extraits phénoliques a été réalisée par comparaison au chromatogramme du mélange étalon.

Les concentrations de chaque analyte dans les échantillons d'extraits analysés, ont été déterminées à partir de la droite d'étalonnage : aire du pic en fonction de la concentration du constituant dans la solution de référence.

II.1.3. Méthodes de caractérisations spécifiques aux sols

a. Détermination du pH au point zéro Charge (pHpzc)

Le pHpzc a été déterminé selon la méthode de Babic *et al.* **[224]**. La procédure consiste à placer dans une série d'erlenmeyers 40 ml de la solution de KNO₃ (10^{-1} *M*, *Fluka*), préalablement ajustée au pH désiré variant de 2 à 12 par addition de NaOH ou HCl (10^{-1} *M*), en contact avec 0,2 g de sol ($\phi < 500 \,\mu m$). Les suspensions doivent être maintenues sous agitation constante, à température ambiante, pendant 48 h. Le pH final est alors déterminé sur le surnageant après séparation des deux constituants par centrifugation à 3000 g et à 20 °C pendant 15 min. Le pHpzc est le point d'intersection entre la courbe représentant le pH_{final} en fonction du pH_{initial} et la ligne pH_{final} = pH_{initial}.

b. Teneurs en matières organique et minérale dans les sols

La teneur en matière organique dans les sols, a été déterminée selon la méthode de Wang *et al.* **[225]**. Cette méthode est basée sur la mesure de la perte de masse à différentes températures dans un four à moufle. A chaque température, une espèce chimique est libérée: à une température de l'ordre de 105 °C l'eau caractéristique de l'humidité est libérée (*taux d'humidité*) alors que la température de l'ordre de 375 - 400 °C (*2 heures*) permet de libérer la

matière organique. Par contre, la matière minérale est déterminée, après chauffage, à la température d'environ 800 °C (*8 heures*).

La procédure consiste à broyer et à tamiser préalablement les échantillons de sols et celui de référence ($CaCO_3$, Merck) pour obtenir des poudres de granulométrie d'environ 60 µm. Des prises d'essais (2 g) de chaque matrice sont ensuite mises dans des creusets en porcelaine et soumises au cycle thermique décrit dans le protocole de Wang *et al.* [225].

La teneur en matière organique, exprimée en pourcentage massique, est calculée par la formule suivante :

$$M_{\rm org} (\%) = \frac{m_1 - m_2}{m_1} * 100$$
 (B.II.10)

où, m_1 est la masse de l'échantillon après séchage à 105 °C (g) et m_2 est la masse de l'échantillon traité à 375 °C (g). La teneur en carbone organique (C_{org}) est calculée par la formule :

$$C_{org}(\%) = M_{org}(\%) / f$$
 (B.II.11)

où, *f* est le coefficient de VAN Bemmelen, égal à 2 pour les sols à végétation permanente et égal à 1,724 pour les sols cultivés **[226, 227]**.

Le taux de matière minérale, exprimée en pourcentage massique, est calculé selon la formule :

$$M_M(\%) = \frac{m_1 - m_3}{m_2} * 100 \tag{B.II.12}$$

où, m_2 et m_3 sont les masses des échantillons traités à 375 °C et à 800 °C, respectivement (g).

c. Perte au feu (P_f)

La perte au feu, correspond à la variation de la masse d'un échantillon après chauffage à une température donnée.

La procédure consiste à faire subir aux échantillons de sols une cuisson, par palier de 15 minutes jusqu'à 1000 °C, pendant une durée d'une heure dans un four de type Heraeus.

La perte au feu, exprimée en pourcentage massique, est calculée par la formule suivante :

$$P_f(\%) = \frac{m_1 - m_4}{m_1} * 100 \tag{B.II.13}$$

où, m_1 est la masse de l'échantillon après séchage à 105 °C (g) et m_4 est la masse de l'échantillon après cuisson à 1000 °C (g).

d. Surface spécifique (Ss)

La connaissance de la surface spécifique est d'une grande importance dans la caractérisation d'une poudre ou d'un solide et particulièrement dans l'étude du phénomène d'adsorption. La méthode la plus couramment employée pour évaluer la surface spécifique d'un matériau est la méthode dite BET (*Brunauer, Emmett et Teller*) [228]. La transformation linéaire de cette dernière est donnée sous la forme suivante :

$$\frac{P}{V(P_0 - P)} = \frac{(C - 1)}{V_m C} * \left(\frac{P}{P_0}\right) + \frac{1}{V_m C}$$
(B.II.14)

où, V est le volume de la vapeur adsorbée par gramme de solide (cm^3, g^{-1}) à la pression P, P_{θ} est la pression atmosphérique, V_m est le volume de vapeur nécessaire pour recouvrir entièrement la surface du solide d'une couche mono-moléculaire d'adsorbat $(cm^3, g^{-1}, d'adsorbant)$ et C est la constante caractéristique du système gaz-solide étudié.

Les valeurs de V_m et la constante C sont obtenues à partir de la pente et de l'ordonnée à l'origine de de la droite $\frac{P}{V(P_0-P)}$ versus $\left(\frac{P}{P_0}\right)$. A partir de V_m , il devient possible de calculer la surface spécifique Ss, exprimée en m². g⁻¹, grâce à la relation suivante :

$$S = \frac{V_m \cdot N_A \cdot a_m}{V_l \cdot m} \tag{B.II.15}$$

où, N_A est le Nombre d'Avogadro (6,023.10²³ mol⁻¹), a_m est la surface occupée par une molécule d'azote (0,162.10⁻⁹ m² à une température de 77 K), **m** est la masse de l'échantillon (g) et V_I est le volume molaire occupé par le gaz d'azote (22414 cm³).

Cette technique nécessite un prétraitement des échantillons : un dégazage et une déshydratation entre 150 et 300 °C, sous vide pendant 24 heures, afin d'évacuer tous les gaz préalablement absorbés. Les surfaces spécifiques de nos trois sols ont été déterminées au Centre de Recherche Nucléaire de Draria (*CRND*). Ces mesures ont été réalisées à l'aide d'un appareil de type Micrometritics ASAP 2010.

e. Teneur en calcaire

Dans le sol, le calcaire est la source la plus fréquente de calcium. Son dosage a été réalisé

par le calcimètre de Bernard, qui est une burette graduée (mL) et reliée par le bas à une ampoule et par le haut à un erlenmeyer. Le pourcentage en CaCO₃ total a été calculé par la relation suivante :

$$CaCO_3(\%) = \frac{0.3 \cdot V'}{P \cdot V}.100$$
 (B.II.16)

où, *V*' est le volume de CO₂ produit par un poids de CaCO₃ contenu dans un poids *P* de sol, *V* est le volume de CO₂ produit par 0,3 g de CaCO₃ pur et sec et *P* est le poids de la prise de sol (*g*) [207].

f. Capacité d'échange cationique (CEC) [207]

La capacité d'échange cationique des trois sols a été déterminée selon la méthode à l'acétate d'ammonium à pH = 9,0 sur des matrices brutes ($\emptyset < 2 mm$). C'est une technique qui nécessite une préparation dans un tube à percolation. Pour cela, un poids de sol (10 g) séché est placé dans une capsule et mélangé avec 30 g de sable quartzeux (150-300 µm). Ce mélange, bien homogénéisé, est ensuite mis dans un tube à percolation en sandwich entre deux couches de 10 g de sable. La couche inférieure reposant sur un préfiltre en fibre de verre (*voir figure B.II.4*).

Figure B.II.4. Allonge à percolation garnie.

La première percolation est une extraction des cations échangeables, et ce, en percolant l'échantillon avec de la solution d'acétate d'ammonium (25 mL, 1 mole. L^{-1}) à plusieurs reprises jusqu'à environ 250 mL. Le dosage des cations Na⁺ et K⁺ est effectué sur le percolât récupéré par

photomètre à flamme (*Model 420 flamme photometer, Sherwood*). Par contre, le dosage des cations Ca⁺⁺ et Mg⁺⁺ se fait par colorimétrie avec de l'EDTA en présence de l'ENT (*indicateur Eriochrome noir*).

La seconde percolation est l'élimination de l'excès des ions NH_4^+ par percolation de l'échantillon avec de l'alcool (25 mL, 95 °) répétée 4 à 5 fois. Cette étape est vérifiée avec le réactif de NESSLER.

La troisième et dernière percolation, après récupération du percolât dans une fiole jaugée de 250 mL et ajustement au trait jaugé avec du chlorure de sodium, est l'extraction des ions ammoniums par percolation de l'échantillon avec du chlorure de sodium (10%). Le dosage du NH₄⁺ est réalisé sur le percolât récupéré par colorimétrie.

g. Analyse granulométrique

Cette analyse a pour objet la mesure de la taille des particules qui constituent les échantillons de sols étudiés.

A l'état brut, la distribution granulométrique des sols (N_I , N_3 et R) a été effectuée, après séchage à température ambiante ($20 \pm 5 \,^{\circ}C$), par tamisage en utilisant un vibreur de type Retsch équipé de plusieurs tamis (*3150, 2000, 1000, 400, 250, 200, 180, 125, 100, 90, 80, 50 et 40µm*). L'amplitude de vibration a été fixée à 40 pour un temps de manipulation égal à 30 minutes. A la fin, les rejets sont pesés pour en déduire le pourcentage de rétention en masse pour chaque tamis.

Concernant la *fraction inférieure à 100 \mu m* des trois sols, la distribution granulométrique a été réalisée par granulométrie laser et par la pipette de Robinson afin de compléter, au maximum, l'identité granulométrique de nos adsorbants.

La première méthode est basée sur la diffraction laser qui utilise la théorie de diffusion de la lumière de **Mie** [229], et ce par deux rayons laser bleu et rouge permettant ainsi la mesure de la taille des particules entre 0,02 et 2000 microns en un temps relativement court. Les résultats sont exprimés sous forme de courbes cumulatives.

La seconde technique, nommée pipette de ROBINSON [207], est fondée sur l'application de la loi de stockes qui nous renseigne sur la vitesse de chute des particules légères et grosses dans un milieu fluide. Le principe de cette méthode est basé sur l'utilisation des échantillons de terre $(\phi=2 mm)$ décarbonatées et exemptes de la matière organique. Dans cette méthode, l'échantillon est pipeté à différentes périodes et à différentes profondeurs de la suspension du prélèvement dans une éprouvette. La suspension pipetée est condensée et séchée et la pesée détermine le ratio de masse de la fraction pipetée. Ici, les résultats sont exprimés sous forme de corrélations des

pourcentages des principales classes granulométriques (*argile, limon fin, limon grossier, sable fin, sable grossier*).

h. Diffraction des rayons X (DRX)

La méthode d'analyse par diffraction des rayons X est universellement utilisée pour identifier les phases minérales cristallines des matériaux (*roches, minéraux, etc.*). Le phénomène de diffraction de faisceaux de rayons X sur un réseau de plans cristallins est régie par la loi de Bragg :

$$n\,\lambda = 2\,\mathrm{d}_{\mathrm{hkl}}\,\sin\theta \qquad (B.II.17)$$

où, *n* est un nombre entier correspondant à l'ordre de réflexion, λ est la longueur d'onde du rayon X incident (*nm*), *d*_{hkl} est la distance (Å) entre deux plans parallèles successifs du réseau cristallin et θ est l'angle de diffraction (*degré*).

Cette méthode permet, entre autres, l'identification des composés présents dans un mélange en poudre cristalline par comparaison du diffractogramme enregistré avec ceux de composés de référence stockés dans la base de données PDF (*Powder Diffraction File de JCPDS* - *ICDD: International Centre for Diffraction Data qui contient 157000 fiches dont 133000 de composés inorganiques*) [230, 231].

L'analyse a été réalisée par un diffractomètre Philips X'Pert Pro. Il est doté d'un logiciel de traitement des données "X'Pert High Score Software" [232] en utilisant la raie monochromatique Cu-K α 1 du cuivre ($\lambda = 1,5418 \text{ Å}$), excitée sous une tension de 45 kV et une intensité de 40 mA.

Les échantillons de sols, à l'état de poudre (*environ 40 µm*), ont été séchés, compactés sous forme de pastille et enfin analysés en effectuant un balayage de 5 à 85° (*en 2θ*), avec des pas de $0,02^{\circ}$ /s (*en 2θ*) et un temps d'acquisition de 4024 secondes.

i. Microscope électronique à balayage (MEB)

La microscopie électronique à balayage est basée sur l'interaction entre un faisceau d'électrons et une matrice, cristalline ou non. Une image contrastée, appelée micrographie, est obtenue avec des facteurs de grandissement pouvant aller jusqu'à plusieurs dizaines de milliers. Les faisceaux d'électrons secondaires ou ceux rétrodiffusés, sont utilisés pour obtenir une image des échantillons peu conducteurs d'électricité, avec une résolution de l'ordre de 0,01 microns.

L'analyse MEB donne des informations sur la microstructure d'un échantillon, en particulier sur les reliefs présents, la morphologie ainsi que sur la taille des grains et leur agencement. L'appareil utilisé est de marque FEI Quanta 650.

j. Analyse thermique différentielle et thermogravimétrique (ATD-ATG)

La modification (*changement de phase, de structure, décomposition, variation de volume, etc.*) thermique des propriétés physico-chimiques des adsorbants (*sols*) a été suivie par analyse thermique différentielle couplée à l'analyse thermique gravitationnelle. L'ATD est basée sur les réactions thermiques (*endothermiques, exothermiques*) et les phénomènes d'oxydation de la matière organique qui se produisent lorsqu'un composé est chauffé. Par contre, l'ATG consiste à suivre la perte en masse d'un matériau au cours d'une chauffe. Plusieurs réactions peuvent se produire au cours du temps et ce en fonction de la température.

Les essais ont été réalisés sur des échantillons préalablement broyés dans un mortier en porcelaine et tamisés à une granulométrie inférieure à 40 μ m. L'analyse a été effectuée en atmosphère contrôlé par un gaz inerte (*argon*) au moyen d'un équipement de marque SETARAM, TG 96, dans une gamme de température allant de 32 à 1000 °C, avec une vitesse de chauffage de 10°C. min⁻¹ sur des échantillons de poids compris entre 20 et 30 mg.

II.2. Traitement des margines par irradiation gamma

L'apport de l'irradiation gamma ainsi que les accélérateurs à faisceau électronique, pour le traitement des eaux, ont déjà fait preuve d'efficacité dans le traitement des déchets particulièrement dans les stations d'épurations des eaux usées [18] par: la désinfection des agents pathogènes [19-21], la dégradation des polluants organiques toxiques, la réduction des métaux lourds solubles, la réduction de la demande chimique en oxygène et la demande biologique en oxygène [22]. L'irradiation gamma ne produit pas de résidus radioactifs dans la matière irradiée et que cette dernière est bonne à l'emploi après irradiation [23]. Ces résultats probants nous incitent à appliquer cette méthode de traitement aux effluents de l'industrie oléicole, et ce en nous intéressant à l'étude des effets engendrés sur leurs caractéristiques et leur composition chimique.

II.2.1. Procédure de traitement des margines par rayonnement gamma

La procédure de traitement consiste à soumettre des échantillons d'effluents de margines et des solutions synthétiques d'acide gallique à des irradiations gamma à différentes doses ou de durées d'irradiation pouvant aller jusqu'à cinq jours. Les volumes des échantillons ont été fixés à 10 millilitres et ont été traités dans des flacons en verre borosilicaté de 20 mL, couverts de papier aluminium et placés dans un champ de radiation à une distance spécifique de 20 cm de la source.

L'irradiation gamma a été réalisée par un irradiateur semi-pilote du CRNA (*figure B.II.4*). L'activité initiale de la source ⁶⁰Co était égale à 13,46 10¹⁴ Bq soit 36395 Ci. A la période où les irradiations gamma ont été effectuées, l'activité de la source était de 29,091 10¹³ Bq et le débit de dose était égal à I = 11,78 Gy. min⁻¹. Ce dernier a été préalablement déterminé par la solution de Fricke [233]. Il est donné par la loi de décroissance radioactive suivante: $\frac{dI}{dt} = -\lambda I$ où la constante de désintégration radioactive λ est définie par: $\lambda = \frac{Ln2}{T}$ avec T désignant la période de la source radioactive [T (⁶⁰Co) = 5,271 ans = 1923,915 jours].

En intégrant la loi de décroissance radioactive ($\frac{dI}{dt} = -\lambda I$), on obtient :

$$I = I_0 exp\left(-\frac{Ln2}{T}t\right) \tag{B.II.18}$$

où, I_0 est le débit de dose correspondant aux conditions initiales. Concrètement, l'instant initial (t = 0) est choisi au début de l'irradiation.

II.2.2. Appareillage

L'irradiateur gamma est composé : d'une cellule blindée afin de protéger le personnel d'exploitation et l'environnement, d'un système porteur d'échantillon, d'un système de commande et d'une source de rayonnement Gamma constituée de crayon en acier inoxydable type (*COP4*) fabriqué par Oris France contenant l'élément radioactif qui est le Cobalt 60. Cette dernière est stockée dans une piscine qui permet d'escamoter la source et de ne laisser échapper aucune fuite de radioactivité (*figure B.II.5*). Le ⁶⁰Co est une source d'irradiation gamma émettrice de rayons continuels dans toutes les directions.

Figure B.II.5. Schéma d'une coupe transversale de l'irradiateur pilote du CRNA.

II.3. Traitement des margines par adsorption

L'élimination des contaminants des eaux industrielles oléicoles (*margines*) est un objectif d'importance croissante car l'ampleur de la contamination a soulevé énormément d'inquiétude due aux souillures de l'écosystème liées à la forte teneur en matières organiques toxiques comme les composés phénoliques.

Dans ce travail, l'adsorption des composés phénoliques totaux originaires d'une eau de végétation moderne a été réalisée sur trois sols naturels, et ce, en utilisant deux méthodes d'adsorptions : classique et sous irradiation micro-ondes. Cette dernière est un procédé physico-chimique basé sur l'adsorption sous activation par les micro-ondes.

Les paramètres expérimentaux globaux choisis pour mener ces tests sont : le temps, le pH, le facteur de dilution (*concentration en CPT*), le poids et la granulométrie de l'adsorbant. L'ajustement des pH de l'eau usée oléicole aux pH requis a été réalisé en utilisant soit du NaOH 1 M, soit du HCl 1 M. La concentration des CPT est légèrement variable dans ces milieux.

Les effluents oléicoles à différentes concentrations sont préparés par dilution par l'eau ultra-pure $(0,057 \ \mu S. \ cm^{-1} \ a \ 20 \ ^{\circ}C)$.

A la fin de cette étude, une comparaison de la capacité d'adsorption des CPT par ces sols avec d'autres adsorbants a été réalisée afin de conclure sur l'efficacité de nos matériaux vis-à-vis de l'adsorption des CPT.

II.3.1. Protocole des essais d'adsorption des CPT dans les conditions classiques

A l'échelle laboratoire, les tests d'adsorption (*liquide/ solide*) ont été réalisés en "batch" séparément sur les trois types de sols échantillonnés.

Cette méthode consiste à mettre en contact un volume (10 mL) de la margine non délipidée et diluée à $\frac{1}{2}$ (*V/V*) avec un poids (2 g) connu d'adsorbant en suspension dans des réacteurs ouverts identiques (*erlenmeyers*), à température ambiante et à l'abri de la lumière. Les suspensions ont été secouées par un système à multiposte (*Gesellschaft für Labortechnik mbH, 3015*). Pour chaque expérience, un pot témoin a été réalisé dans les mêmes conditions sans le solide.

A la fin de chaque étude d'adsorption, les adsorbants ont été séparés par centrifugation à 3200g pendant 15 min et à 20 °C à l'aide d'une centrifugeuse (*SIGMA 3-30 KS*) afin de séparer la phase solide de la phase liquide. Une dilution a été effectuée sur la partie surnageante avant l'application du protocole de Box pour le dosage des composés phénoliques **[221]**. Après écoulement du temps d'incubation, les densités optiques ont été lues en utilisant un spectrophotomètre UV-Visible (*T60, PG. Instruments*) à une longueur d'onde de 765 nm. La concentration résiduelle en polyphénols a été déterminée à partir de la courbe d'étalonnage absorbance en fonction de la concentration massique de la substance de référence (*Acide gallique*) en phase aqueuse.

Les quantités adsorbées par unité de masse de l'adsorbant \mathbf{q}_{e} (*mg. g*⁻¹) ainsi que le taux d'élimination $\boldsymbol{\tau}$ (%) de ces composés ont été calculés à partir des relations suivantes :

$$q_e = \left(\frac{C_0 - C_e}{m}\right). V \tag{B.II.19}$$

$$\tau$$
 (%) = $\left(\frac{C_0 - C_t}{C_0}\right)$. 100 (B.II.20)

où, C_{θ} , C_{e} et C_{t} désignent, respectivement, les concentrations massiques : initiale, à l'équilibre et à l'instant t des CPT dans la solution au cours du processus d'adsorption (mg. L^{-1}). V est le volume de la solution utilisé (L) et m est la masse de l'adsorbant utilisée (g).

a. Cinétique d'adsorption des CPT

La durée de contact entre l'adsorbant (*sols*) et l'adsorbat (*composés phénoliques*) est un paramètre important qui influe généralement sur le processus d'adsorption. Il permet de déterminer la vitesse d'élimination des CPT et par conséquent d'évaluer l'efficacité de l'adsorbant. Les conditions d'adsorption appliquées dans la méthode classique ont été : 2 g de sol de taille granulométrique égale à 400 μ m, une concentration initiale de l'effluent oléicole (*EUO*₂) égale à 2,910 g. L⁻¹. Le temps a été varié de 5 à 420 minutes et la vitesse d'agitation a été fixée à 250 tr. min⁻¹. Le protocole expérimental qui a été réalisé, dans un réacteur de capacité 50 mL, est le suivant : 20 mL d'effluent oléicole dilué ([*CPT*] = 0,728 g. L⁻¹) avec de l'eau déionisée sont ajoutés à 2 g de sol de taille granulométrique égale à à 400 μ m. La suspension obtenue a été agitée jusqu'à atteindre l'équilibre. La charge en solides dans le liquide est de 100 g. L⁻¹. Plusieurs flacons ont été ainsi préparés et les suspensions ont été secouées à température ambiante (20 ± 5 °C) à 250 tr. min⁻¹, aux pH naturels de l'effluent et du sol pendant des temps variables allant de 5 à 420 minutes (*temps de contact par flacon*). Après agitation, la suspension a été ainsi centrifugée et prête pour le dosage des composés phénoliques par le protocole de Box **[221]**.

b. Effet de la masse de l'adsorbant sur le pouvoir d'adsorption des CPT

Ce test a été étudié dans l'intervalle 0,5 - 3,5 g avec des pas de 0,5 g pendant 24 h pour assurer l'équilibre. Plusieurs flacons ont été ainsi secoués, à température ambiante ($20 \pm 5 \,^{\circ}C$), à 250 tr. min⁻¹, aux pH naturels de l'effluent (4,55) et du sol. La taille granulométrie de ce dernier a été fixée à 400 µm. La teneur des CPT dans l'effluent, avant l'adsorption, a été mesurée et est égale à 0,728 g. L⁻¹.

Après agitation, la suspension a été centrifugée et prête pour application du protocole de dosage de Box [221].

c. Effet de la taille granulométrique du sol sur l'adsorption des CPT

L'effet de la granulométrie du sol a été étudié en utilisant différentes tailles granulométrique allant de < 40 jusqu'à 3150-4000 μ m pour les trois adsorbants et en prenant en considération le paramètre optimisé obtenu auparavant tels que la masse de l'adsorbant (*3,5 g*).

Les autres conditions opératoires ont été fixées à comme suit : à 250 tr. min⁻¹ pour la vitesse d'agitation, pH naturels de l'effluent (4,55) et du sol, température ambiante proche de 25 °C et enfin 0,728 mg. L⁻¹ pour la teneur des CPT dans l'effluent avant l'application du phénomène d'adsorption. Après agitation, la suspension a été centrifugée et prête pour application du protocole de dosage de Box **[221]**.

d. Effet du pH sur le pouvoir d'adsorption des CPT

L'influence du pH sur l'adsorption des CPT par des sols naturels a été étudiée en utilisant la masse (3,5 g) et la taille des grains $(40 \mu m)$ optimisées dans les expériences précédentes. La concentration initiale de l'effluent oléicole en CPT utilisé est 728 mg. L⁻¹. Les valeurs du pH explorées varient de 3 à 10. Les suspensions ont été agitées, à la vitesse de 250 tr. min⁻¹, pendant une durée de temps nécessaire pour atteindre l'équilibre préalablement déterminée par l'étude cinétique d'adsorption (24 h) à température ambiante $(20 \pm 5 \, {}^{\circ}C)$ et à l'abri de la lumière.

e. Effet de la concentration en CPT sur le pouvoir d'adsorption

Cette étude consiste à suivre l'influence de la concentration initiale du soluté sur la quantité adsorbée par l'adsorbant allant de la teneur 5 mg. L⁻¹ jusqu'à 189 mg. L⁻¹ et un pH naturel de l'effluent égal à 4,55. La masse (3,5g) et la taille des grains $(40 \,\mu m)$ utilisées sont ceux optimisées précédemment. Les suspensions ont été agitées à une vitesse égale à 250 tr.min⁻¹ pendant une durée de temps égale à 24 heures à température ambiante $(20 \pm 5 \, {}^{\circ}C)$ et à l'abri de la lumière.

II.3.2. Procédure d'adsorption des CPT sous activation micro-ondes

L'adsorption des composés phénoliques totaux sur les mêmes adsorbants (N_1 , N_3 et R) a été étudiée aussi sous l'effet des irradiations micro-ondes en mode statique (*batch*). L'adsorption assistée par micro-ondes est un autre procédé alternatif qui a récemment reçu beaucoup d'attention dans l'industrie et ce par rapport aux avantages qu'il présente tels que le gain de temps et l'amélioration des rendements d'adsorption. Les expériences ont été réalisées dans des réacteurs ouvert (*diamètre* = 4,5 cm; longueur = 6,8 cm) dans un four micro-onde domestique modifié de marque SAMSUNG (*Figure B.II.6*). La phase solide a été dispersée par agitation à l'aide d'une tige en verre placée dans un agitateur mécanique de marque IKA RW 20.n. Le mode opératoire du phénomène d'adsorption sous irradiations micro-ondes comporte les étapes suivantes :

- Préparer les effluents ($[EUO_2]_0 = 2,652 \text{ g } L^{-1}$) en faisant des dilutions ($^{1}/_{1}$) avec une eau ultra-pure (*Milli-Q*, *Millipore*) (0,058µS/cm à 18,8°C);
- Peser plusieurs échantillons d'adsorbant dans différents béchers ;
- Récupérer les béchers et ajouter un volume précis d'adsorbat non délipidé (10 mL);
- Placer les béchers à tour de rôle dans le micro-onde ;
- Mettre en agitation ;
- Lancer l'irradiation micro-onde pendant un temps programmé (*entre 5 et 50 sec*) à des pas égaux à 5 seconde et une puissance de 180W ;

- Laisser refroidir jusqu'à écoulement du temps de fin de réaction préalablement mesuré ;
- Séparer les deux phases solide et liquide par centrifugation à 3200g pendant 15 minutes à 20 °C ;
- Faire une dilution éventuelle pour chaque surnageant concentré afin de pouvoir lire l'absorbance dans la courbe d'étalonnage;
- Appliquer le protocole de Box pour le dosage des CPT [221] ;
- Lire les densités optiques à la longueur d'onde expérimentale égale à 765 nm par un spectrophotomètre UV-Visible (*UV-visible, T60, PG. Instruments*).

Figure B.II.6. Dispositif d'irradiation micro- ondes.

a. Détermination de la température à l'arrêt de la réaction de l'activation micro-ondes

Afin de corriger les différentes mesures effectuées pour chaque opération d'adsorption sous irradiations micro-ondes, la température du mélange à l'arrêt de l'irradiation a été déterminée et ce par extrapolation à l'origine de la droite **T** en fonction du temps écoulé après irradiation. La figure 6, donnée en annexe 2, représente la température à l'arrêt de la réaction pour chaque sol. Les valeurs mesurées sont illustrées dans le tableau 1 de l'annexe 2.

b. Cinétique d'adsorption des CPT sous activation µ-ondes

Le temps de contact adsorbant-adsorbat nécessaire pour atteindre l'équilibre a été déterminé avec une concentration de travail en composés phénoliques totaux de 663 mg. L^{-1} .

Les conditions d'adsorption sous activation des micro-ondes ont été : un poids égal à 0,2 g de sol à 180 μ m, une puissance de 180 W, une concentration initiale en composés phénoliques totaux de 1,326 g. L⁻¹, des temps variables allant de 5 jusqu'à 50 secondes avec des pas, de 5 secondes, répétés plusieurs fois afin d'éviter l'ébullition (*un temps de contact par flacon*) et une vitesse d'agitation égale à 250 rpm. L'étude cinétique a été effectuée sans ajustement du pH, c'est-à-dire aux pH naturels de l'effluent et du sol. Le protocole expérimental réalisé est le suivant : dans un premier temps, 0,2 g de sol sont mises dans un réacteur de 100 mL de volume. Ensuite, un volume d'effluent oléicole (20 mL) a été introduit à une concentration en CPT égale à 663 mg. L⁻¹ et une charge en solide dans le liquide de 10 g. L⁻¹. A la fin, le bécher a été introduit dans le four micro-onde afin de réaliser les tests d'adsorption prévus. L'agitation a été effectuée par une tige en verre. A la fin et après écoulement du temps programmé, la suspension a été centrifugée et prête pour application du protocole de Box [221].

c. Effet de la masse de l'adsorbant sur l'adsorption des CPT sous activation µ-ondes

Ce test a été effectué dans l'intervalle de masse 0,2-2 g avec des pas de 0,2 g tout en prenant en considération le paramètre optimisé précédemment (*temps de contact*). Après écoulement de ce dernier, le mélange adsorbant-adsorbat a été centrifugé et analysé par spectrophotomètre UV-Visible après application du protocole de Box **[221]**.

d. Effet de la taille des particules du sol sur l'adsorption des CPT sous activation µondes

L'adsorption des composés phénoliques totaux par des sols naturels a été étudiée à différentes tailles granulométriques allant de 40 jusqu'à 400 μ m. Les suspensions ont été agitées (*250 tr/min*), en utilisant les paramètres optimisés obtenus préalablement dans les études précédentes : temps d'équilibre déterminé par l'étude cinétique d'adsorption égal à 15 secondes et masse optimale égale à 2 g.

e. Effet du pH sur le pouvoir d'adsorption des CPT sous activation µ-ondes

L'effet du pH sur l'adsorption des CPT sous activation des micro-ondes a été étudié en utilisant les mêmes conditions qu'auparavant pour un temps de contact de 15 secondes (*avec des pats de 5 sec*) pour lequel le pseudo- équilibre est supposé déjà atteint. Les pH ont été variés de 2 jusqu'à 9.

f. Effet de la concentration en CPT sur le pouvoir d'adsorption sous activation μ ondes

Cette étude a été effectuée en prenant en considération tous les paramètres optimisés précédemment. La concentration des CPT dans l'effluent était comprise entre 17 et 232 mg. L⁻¹, la vitesse d'agitation a été fixée à 250 rpm. Les densités optiques des échantillons, obtenus après centrifugation et application du protocole de Box **[221]**, ont été lues par spectrométrie UV-visible.

Partie C: RESULTATS ET DISCUSSIONS

I.1. Caractérisation des margines

I.1.1. Etude de la composition de la margine

Les différentes analyses, selon le mode opératoire précisé pour chaque paramètre, ont été réalisées en trois fois pendant la même durée de temps. La moyenne des résultats ainsi obtenus (*avec ces trois analyses*) ainsi que les erreurs sont consignées dans le tableau C.I.1.

Paramètres	Unités	Valeurs (EUO1)	
рН	-	5,04	
С.Е	$mS. cm^{-1}$	7,72	
d ²⁵ ₄	-	$1,012 \pm 0,000$	
NO ₃ -	g. L ⁻¹	$0,351 \pm 0,001$	
NO ₂ ⁻	g. L ⁻¹	$0,050 \pm 0,000$	
$\mathrm{NH_4}^+$	g. L ⁻¹	$0,056 \pm 0,001$	
PO ₄ ⁻³	g. L ⁻¹	$0,656 \pm 0,005$	
P _t	g. L ⁻¹	$0,540 \pm 0,002$	
SO ₄ ²⁻	g. L ⁻¹	1,564	
NTK	g. L ⁻¹	0,585	
СРТ	g. L ⁻¹	$3,972 \pm 0,021$	
M.S	%	$2,717 \pm 0,156$	
Eau	%	$97,283 \pm 0,156$	
M.E.S	g. L ⁻¹	5,341	
M.V.S	g.L ⁻¹	0,179	
DCO	g. L ⁻¹	80,640	
DBO ₅	g. L ⁻¹	16,000	
DCO/ DBO ₅	-	5,040	
M.G	%	4,859	

Tableau C.I.1. Principales caractéristiques de l'eau usée oléicole moderne (EUO₁).

EUO₁ : eau usée oléicole récoltée en 2014 ; C.E : conductivité électrique ; d^{25}_{4} : densité mesurée à 25 °C par rapport à l'eau à 4 °C ; P_t : phosphore total ; NTK : azote total Kjeldahl ; CPT : composés phénoliques totaux ; MS : matières solides ; M.E.S : matières en suspension ; M.V.S. : matières volatiles sèches ; DCO : Demande chimique en oxygène ; DBO₅ : Demande biochimique en oxygène pendant cinq jours ; M.G : matière grasse. EUO₂ : eau usée oléicole récoltée en 2016 (pH = 4.55 ; $[CPT] = 2.910 \pm 0.014$ g. L^{-1}).

Les résultats montrent que les rejets sont chargés en matières polluantes vu que tous les paramètres ne correspondent pas aux normes adoptées par la réglementation Algérienne. Par contre, ils sont en général représentatifs des eaux usées oléicoles. Le pH est acide ($pH_{EUO}=5,04$). Ceci est confirmé par les résultats trouvés par Ayoub *et al.* [234], Eroğlu *et al.* [235], Michael *et al.* [236] et Ruggeri *et al.* [237], qui sont compris entre 4,14 et 5,7. La conductivité est inférieure à celle trouvée par Belaid *et al.* [12] égale à 15,1 mS. cm⁻¹. Par contre, elle se rapproche de celles trouvées par Ayoub *et al.* [234], Achak *et al.* [238], Mekki *et al.* [239] et Michael *et al.* [236] 7,64 ; 8,4 ; 8,56 ; 8,9 mS. cm⁻¹, respectivement. La différence de conductivité entre ces eaux usées oléicoles peut s'expliquer par la différence des quantités de sels rajoutée aux olives, conservés jusqu'à trituration.

La densité mesurée se rapproche (1,010) à celle trouvée par Eroğlu *et al.* [235]. La concentration des ortho phosphates est environ 2 fois plus grande (0,291 g. L^{-1}) que celle trouvée par Danellakis *et al.* [240]. Achak *et al.* [238] a trouvé une très faible teneur 0,030 g. L^{-1} . La teneur en phosphore total mesurée pour le type d'eau de végétation étudié est le double de celles mesurées par Danellakis *et al.* [240] ainsi que par Michael *et al.* [236] et Ayoub *et al.* [234] qui sont de 0,328 ; 0,30 et 0,245 g. L^{-1} , respectivement. Il est presque dix fois (0,062 g. L^{-1}) plus grand à celui mesuré par Achak°*et al.* [238].

Pour les des ions sulfates, sa concentration est assez remarquable dans l'effluent oléicole choisi pour réaliser cette étude, elle est supérieure (0,099 g. L^{-1}) à celle trouvée par Ayoub *et al.* [234].

La concentration de la margine brute en espèces azotées est relativement élevée. Elle est constituée de 0,585 g. L⁻¹ en NTK ; 0,056 g. L⁻¹ en NH₄⁺ ; 0,050 g. L⁻¹ en NO₂⁻ et 0,351 g. L⁻¹ en NO₃⁻. Ces valeurs ne se rapprochent pas de celles trouvées dans la littérature sauf pour l'ammoniaque où Achak *et al.* **[241]** ont trouvé 0,038 g. L⁻¹. Ce dernier auteur cité a trouvé 1,85.10⁻³ g. L⁻¹ de nitrates ; 1,41 10⁻³ g. L⁻¹ de nitrites et 1,68 g. L⁻¹ en NTK. Par contre, Mekki *et al.* **[239]** et Ayoub *et al.* **[234]** ont trouvé 0,6 g. L⁻¹ de NTK et 0,033 g. L⁻¹ de nitrates, respectivement.

On remarque, aussi, que la margine étudiée est riche en composés phénoliques totaux comparativement aux résultats des travaux de Achak *et al.* **[238]**; Ayoub *et al.* **[234]** et Michael *et al.* **[236]** qui ont trouvé 1,42 ; 2,269 et 3,1 g. L⁻¹, respectivement. Eroğlu *et al.* **[235]** ont trouvé 12,2 g. L⁻¹ par contre Belaid *et al.* **[12]**, ont trouvé 5,6 g. L⁻¹.

Le taux d'humidité est supérieur à 97 %. La valeur de la demande chimique en oxygène se rapproche (80,64 g. L^{-1}) au résultat de Achak *et al.* **[238]** qui est de 71,56 g. L^{-1} . La valeur mesurée par Daâsi *et al.* **[242]** est de 97 g. L^{-1} par contre celle trouvée par Danellakis *et al.* **[240]**

est élevée et est égale à 186,66 g. L⁻¹. Pour la demande biochimique en oxygène, elle est inférieure à celle trouvée par Achak *et al.* **[238]** 41,82 g. L⁻¹. Les valeurs trouvées par Danellakis *et al.* **[240]** et Daâsi *et al.* **[242]** sont 21,90 et 25 g. L⁻¹, respectivement.

Le rapport de biodégradabilité DCO/DBO₅ mesuré (5,040) sur la margine est élevé. Il est presque 2 fois plus grand de la valeur limite autorisée par la législation algérienne (3,428) [1] ce qui traduit la difficulté du traitement de ce genre d'effluents. On peut dire que les effluents oléicoles sont très polluants et difficilement biodégradable.

Les teneurs des paramètres restants de l'eau de végétation brute tels que les MES et MVS sont inférieures à celles trouvées dans la littérature dans les travaux Belaid *et al.* **[12]**. En 2009, Achak *et al.* **[241]** avaient trouvé une valeur inférieure pour les matières en suspension. Elle est égale à 1,23 g. L⁻¹.

La matière sèche mesurée est inférieure à celle mesurée par Michael *et al.* **[236]** qui ont trouvé 4,95 %, mais supérieure à celle donnée dans la littérature par Ruggeri *et al.* **[237]** ; Mekki *et al.* **[239]** et Eroğlu *et al.* **[235]** qui sont de 1,2 ; 1,59 ; 1,78 %, respectivement.

Pour la matière grasse calculée dans ce travail, elle est aussi beaucoup plus élevée (0,011 %) que la valeur donnée par Belaid *et al.* [12] et quatre fois plus grande $(1,14 \pm 0,18 \%)$ que celle trouvée par Ayoub *et al.* [234]. Cela signifie que l'EUO récoltée contient toujours un certain pourcentage d'huile d'olive.

Les différences de valeurs trouvées entre les différents travaux cités sont probablement dues à plusieurs paramètres, notamment l'origine des olives, les procédés de récolte et de traitement ainsi que la nature de l'eau (*composition*) utilisée au cours de traitement.

I.1.2. Analyse des espèces minérales de la margine par la méthode de la Fluorescence X

La composition en espèce minérales de l'effluent utilisé est déterminée par la méthode de la Fluorescence des rayons X à dispersion de longueur d'onde (*WD-X.R.F*). Les résultats de cette étude sont donnés dans le tableau C.I.2. Ils montrent que le potassium est prépondérant et que les teneurs des autres espèces minérales (*P, Cl, Ca, Mg, S, Fe, Na*) sont variables et restent inférieures au potassium. Le chlore mesuré se rapproche à celui donnée par Achak *et al.* [238] 6,15 g. L⁻¹ et est largement supérieur à ceux mesurés par Mekki *et al.* [239] 1,6 g. L⁻¹ et Ayoub *et al.* [234] 0,504 g. L⁻¹. La teneur assez élevée du chlore révèle la présence des sels chlorures, éventuellement du KCl et NaCl, ... La valeur du potassium est très élevée par rapport à ceux trouvées par Eroğlu *et al.* [235] 2,68 g. L⁻¹, Achak *et al.* [238] 2,97 g. L⁻¹, Mekki *et al.* [239]

8,8 g. L⁻¹, Ayoub *et al.* **[234]** 2,783 g. L⁻¹ et Daâsi *et al.* **[242]** 0,680 g. L⁻¹.Ceci confirme l'utilisation particulaire du KCl pour la conservation des olives, aussi, il peut être dû à la richesse des eaux, utilisées pour l'irrigation, en potassium. Selon la littérature **[243]**, les eaux des lacs et des rivières peuvent contenir jusqu'à 8,2 mg. L⁻¹ de potassium.

Tableau C.I.2. Composition en espèces minérales majeures existantes dans l'eau usée oléicole moderne (*EUO*₁).

Espèces minérales	Concentrations (g. L^{-1})
K	$39,95 \pm 0,4$
Cl	$5,89 \pm 0,2$
Ca	$3,72 \pm 0,2$
Mg	$1,02 \pm 0,09$
S	$0,94 \pm 0,09$
Fe	0,76 0,08
Na	$0,69 \pm 0,08$

Pour le sodium et selon la littérature, la valeur mesurée de notre effluent est largement supérieure à celle trouvée par Ayoub *et al.* **[234]** 0,059 g. L⁻¹. Elle est dans la gamme trouvée par Achak *et al.* **[238]** 0,37 g. L⁻¹ et Mekki *et al.* **[239]** 0,94 g. L⁻¹.

La teneur en fer est largement supérieure à celles données par Daâsi *et al.* **[242]** et Eroğlu *et al.* **[235]** qui sont de 1,33 10^{-3} g. L⁻¹ et 0,013 g. L⁻¹, respectivement. La teneur en calcium est aussi, largement supérieure par rapport à celle citée (0,13 g. L⁻¹) par Eroğlu *et al.* **[235]** et par rapport aux travaux de Ayoub *et al.* **[234]** et de Mekki *et al.* **[239]** qui ont trouvés 0,294 g. L⁻¹ et 1,2 g. L⁻¹, respectivement. Selon Daâsi *et al.* **[242]**, la teneur en ce minéral est de 4,33 g. L⁻¹.

La concentration en magnésium est beaucoup plus supérieure à celle donnée par Eroğlu *et al.* [235] 0,09 g. L⁻¹, Mekki *et al.* [239] 0,187 g. L⁻¹ et Ayoub *et al.* [234] 0,227 g. L⁻¹ mais inférieure à celle mesurée par Daâsi *et al.* [242] 2,5 g. L⁻¹.

Ce résultat montre globalement une composition en espèces minérales diverses avec une prépondérance nette du potassium.

I.1.3. Analyse des composés phénoliques dans l'eau usée oléicole par CLHP

L'extrait de composés phénoliques de la margine (EUO_I) , séparé selon la procédure mentionnée dans le paragraphe II.1.2.h de la partie expérimentale, est analysé par

chromatographie liquide à haute performance (*CLHP*). Les chromatogrammes de l'extrait et d'une solution de référence, contenant des composés phénoliques, sont présentés dans la figure C.I.1 suivante:

Figure C.1.1. Chromatogrammes : - Mélange de composés phénoliques étalons (à droite).
- Extrait de composés phénoliques et aromatiques séparés à partir de la margine EUO₁ (à gauche).

Certains constituants de cet extrait ont été identifiés par comparaison des valeurs des temps de rétention correspondant aux pics dans les deux chromatogrammes de l'extrait et de référence. Les composés phénoliques, dont la présence est confirmée par cette analyse, sont mentionnés dans le tableau C.I.3.

Tableau C.I.3. Constituants identifiés par CLHP dans l'extrait séparé de la margine EUO₁.

Constituants	$t_{r/R}(min)$	t _{r/EUO1} (min)
Acide Gallique	4,85	4,39
Resorcinol	7,04	6,91
Cathechine	13,20	13,23
Acide Vanillique	14,00	13,91
Acide Trans-cinnamique	18,17	18,44
Rutine	23,00	22,98
Berberine	23,92	24,01
Myrcetine	24,82	24,74
Quercetine	28,22	28,23

 $t_{r/R}$ et $t_{r/EUO1}$: temps de rétention des composés phénoliques, respectivement dans l'échantillon de référence et l'extrait de l'EUO₁

Parmi ces constituants on retrouve des composés phénoliques à un seul cycle aromatique comme l'acide gallique, l'acide vanilique et le résorcinol et d'autres plus lourds (*trois cycles et plus*) comme la cathechine, la rutine, la myrcetine et la quercetine. D'autres composés aromatiques, qui ne posèdent pas de groupement phénol, sont aussi présents dans l'extrait comme l'acide trans-cinnamique et la berberine, composé hétérocyclique azoté (*alcaloïde*), qui possède de nombreuses vertus médicinales.

I.1.4. Spectroscopie infrarouge à transformée de Fourier

Le spectre infrarouge de la margine étudiée (EUO₁) est présenté dans la figure C.I.2.

Figure C.I.2. Spectre infrarouge de l'eau usée oléicole (*margine EUO*₁).

L'identification des bandes d'absorption a été faite en se basant sur les données des tables de corrélation du domaine infrarouge et sur les résultats publiés dans plusieurs recherches, notamment celles de : Ait Baddi *et al.* **[244]**, Amir *et al.* **[245]**, Barje *et al.* **[246]**, El hajjouji *et al.* **[247]**, Hafidi *et al.* **[248]** et Justino *et al.* **[249]**.

Les principales bandes de vibration des liaisons, caractérisant les divers constituants de la margine étudiée (*EUO*₁), sont :

- Une bande large, qui s'étale de 3150 à 3500 cm⁻¹ et centrée à environ 3343 cm⁻¹. Elle peut être attribuée à l'allongement des liaisons O-H et/ ou N-H et =C-H dans divers composés qu'on peut trouver dans la margine comme : les phénols, les alcools OH, les acides carboxyliques, les amines, les amides, les cycles aromatiques et les oléfines.
- Deux bandes: une forte à 2924 cm⁻¹ et l'autre moyenne à 2854 cm⁻¹ correspondant aux allongements des liaisons C-H dans les groupements =CH-, -CH₂, -CH₃ des composés hydrocarbonés.

- Une bande à 1743 cm⁻¹, attribuée à la vibration d'élongation de la liaison C=O qui caractérise différents composés, comme les esters, les cétones, les acides carboxyliques et les aldéhydes.
- Plusieurs bandes qui se chevauchent entre 1500 et 1650 cm⁻¹, peuvent être dues aux allongements des liaisons C=C dans les aromatiques et les oléfines.
- Les bandes entre 1350 et 1450 cm⁻¹, relatives aux déformations de liaisons dans les groupements -CH₂, -CH₃ des composés hydrocarbonés.
- Les absorptions entre 1277-1163 cm⁻¹ sont attribuées aux vibrations d'allongement -C-O dans les éthers, alcools, phénols et acides.
- La bande aux environs de 721 cm⁻¹ correspond aux vibrations de déformation hors du plan des liaisons =C-H dans les aromatiques et les oléfines.

Le spectre infrarouge révèlent des bandes de vibration de liaisons qui correspondent aux composés organiques constituant habituellement les eaux usées oléicoles, notamment les composés aromatiques (*phénoliques*), les oléfines, les alcools et les acides carboxyliques entre autres.

I.2. Caractérisation des sols

I.2.1. Propriétés physiques

Différentes caractéristiques physiques de trois échantillons de sols (N_1, N_3, R) ont été déterminées et présentées dans le tableau C.1.4.

	Adsorbants →	N_1	N_3	R
Paramètres ↓				
Couleur		Grise	Noir	Rouge brique
Conductivité électrique	(dS. m ⁻¹)	0,13	0,04	0,06
Densité (g. cm ⁻³) à 20 °C	1	3,39	2,83	3,14
Surface spécifique (m ² .	g ⁻¹)	33,181	24,234	37,800

Tableau C.I.4. Caractéristiques physiques des adsorbants (sols) étudiés.

Les échantillons de terre étudiés ont des couleurs différentes liées à leur composition chimique. Les couches superficielles des sols (*premiers décimètres*) sont modifiées par la faune, la flore et l'activité de l'homme mais un peu plus en profondeur, différents composés solubles sont apportés par les eaux de pluie, tels que des oxydes de fer, de manganèse ou d'aluminium,
mais aussi des particules d'argile, des sels minéraux (carbonates, sulfates, phosphates) et des matières organiques.

Les couleurs sombres: gris, noir ou brun-foncé sont souvent attribuée à la présence de matières organiques, comme dans les échantillons N_1 et N_3 . La couleur rouge peut être due à la présence du fer à l'état Fe³⁺ comme dans le sol R. Cependant, la couleur ne peut pas fournir une description suffisante de données morphologiques ni de caractéristiques chimiques. Si l'on prend l'exemple des terres noires: il peut s'agir de sols très riches en matières organiques mal décomposées ou contenant en grande abondance du manganèse sous diverses formes ou de sols volcaniques ou de sols argileux profonds de marais asséchés.

Les caractéristiques physiques des deux sols N_1 et **R** sont comparables. Celles du sol noir (N_3) sont assez différentes des deux autres sols à l'exception de la conductivité électrique qui est faible pour l'ensemble des échantillons.

La surface spécifique varie entre 24,234 et 37,80 m²/g. Elle est relativement très faible comparée à celle d'une argile (700 à 800 m^2/g) [250].

I.2.2. Propriétés chimiques et composition des sols

Les principales propriétés chimiques et composition des sols étudiés sont données dans le tableau C.I.5.

	NT	NT.	
Adsorbants →	N_1	\mathbb{N}_3	K
Paramètres 🗸			
pH (H ₂ O)	8,9	4,6	8,4
Taux d'humidité (%)	4,25	3,95	4,90
Teneur en matière organique (%)	$1,822 \pm 0,429$	$2,122 \pm 0,113$	$2,383 \pm 0,383$
Teneur en carbone organique (%)	0,911 ± 0,214	$1,061 \pm 0,057$	$1,191 \pm 0,192$
Teneur en matière minérale (%)	$15,159 \pm 0,254$	$10,918 \pm 0,371$	5,860 ± 0,182
Teneur en carbone inorganique (%)	$4,137 \pm 0,069$	$2,980 \pm 0,101$	$1,599 \pm 0,050$
Teneur en carbone total (%)	5,048 ± 0,279	$4,041 \pm 0,151$	2,791 ± 0,219
Azote total Kjeldahl (%)	0,85	2,50	0,20
Perte au feu (%)	$16,\overline{547 \pm 0,075}$	$13,\overline{145 \pm 0,675}$	$7,\overline{631 \pm 0,078}$
Capacité d'échange cationique (mg/100 g)	24,54	22,77	24,32
Taux de calcaire (%)	25,78	1,87	1,87

Tableau C.I.5. Propriétés chimiques et composition des sols.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

Ces résultats montrent que le pH du sol noir N_3 est acide (pH=4,6). Cela est dû probablement à la présence des substances humiques et fulviques (*acides humiques et acides fulviques*) et à l'oxydation des composés inorganiques tels que le sulfure de fer [251, 252]. Les substances humiques sont des composés organiques résultant des transformations physiques, chimiques et microbiologiques des résidus végétaux et animaux dans les sols. Ce sont des substances ayant un grand poids moléculaire et dont la structure est constituée de cycles aromatiques et des hétérocycles oxygénés et azotés auxquels sont liés des chaînes aliphatiques liées aussi à plusieurs et différents groupements fonctionnels (*acides, hydroxyle, ...*).

Les sols N_1 et **R** présentent un pH alcalin de 8,9 et 8,4 respectivement, cela peut être dû à la présence des carbonates **[251, 253]**.

L'échantillon N_3 est caractérisé par une teneur plus élevée en azote total (2,5 %) contre 0,85 % pour l'échantillon N_1 et 0,2 % pour le sol **R**.

L'échantillon N_1 présente les teneurs les plus élevées en matières minérales (15,16%), en carbone inorganique (4,14%) et surtout en calcaire (25,78%). Ce dernier paramètre peut être à l'origine du caractère alcalin de ce sol. La plus grande valeur de la perte au feu est enregistrée aussi pour l'échantillon N_1 (16,55%), et ce contre 13,15% pour l'échantillon N_3 et 7,63% pour le sol **R**. Ces valeurs, jugées faibles pour l'ensemble des sols, indiquent que ces derniers sont faiblement chargés en espèces volatiles.

Les valeurs des autres caractéristiques sont assez proches pour l'ensemble des échantillons, notamment: la capacité d'échange cationique (22,77 - 24,54 mg/100g), le taux d'humidité (3,95 - 4,90 %), les teneurs en matières organiques (1,82 - 2,38 %) et en carbone organique (0,91 - 1,19 %).

I.2.3. Etude de la distribution granulométrique des sols

Les distributions granulométriques, obtenues par tamisage, sont représentées dans les courbes de la figure C.I.3.

Ces courbes révèlent une répartition unimodale des particules constituant les sols étudiés; la fraction de dimension supérieure à 40 μ m représente plus de 97 % de la masse analysée, et ce pour l'ensemble des échantillons. Les fractions inférieures à 40 μ m sont aussi présentes; elles constituent, respectivement: 0,42 ; 2,09 et 2,31 % pour les sols **R**, **N**₃ et **N**₁.

Les résultats de la distribution dimensionnelle de la fraction fine, obtenue par granulométrie laser, sont présentés dans le tableau C.I.6.

Figure C.I.3. Distribution granulométrique des sols bruts, déterminée par tamisage.

Fahantillan da narticulas	Taille de particules des sols (μm)				
Echantinon de particules	N ₁	N_3	R		
d(0,1)	20,274	6,952	9,330		
d(0,5)	986,063	44,696	41,731		
d(0,9)	1471,563	188,515	133,522		

Tableau C.I.6. Taille granulométrique obtenue par granulométrie laser.

d(0,1), d(0.5) et d(0.9): échantillons pour lesquels, respectivement: 10%, 50% et 90% des particules ont des tailles inférieures à celles mentionnées dans le tableau.

Le tableau C.I.6 montre que les tailles des particules des échantillons N_3 et **R** sont comparables et nettement plus petites que celles du sol N_1 . En effet, la majorité des particules (90 %) de N_1 ont un diamètre inférieur à 1471,563 µm alors que pour les deux autres échantillons, les tailles de la majorité des particules sont nettement inférieures (*188,515 µm pour* N_3 et 133,522 µm pour **R**).

La distribution des différentes classes granulométriques (*argile, limon fin, limon grossier, sable fin, sable grossier*) par la méthode de la pipette de Robinson est présentée dans le tableau C.1.7 suivant:

Classos granulamátriquos	Taux (%) des fractions granulométriques des sols				
	\mathbf{N}_1	N_3	R		
Argiles (< 2 µm)	18,65	19,45	28,25		
Limons (2 - 50 µm)	73,10	42,43	34,98		
Sables fins (50 - 200 µm)	5,89	13,34	22,78		
Sables grossiers (200 - 2000 µm)	2,26	23,78	13,85		

Tableau C.I.7. Distribution granulométrique obtenue par la méthode de pipette de Robinson.

A quelques exceptions près, la distribution granulométrique est globalement différente pour les trois sols où chacun présente un taux élevé spécifiquement pour une ou deux fractions. Ainsi, Pour la fraction argiles ($< 2 \mu m$), le taux le plus important correspond au sol **R** (28,5 %). Les taux dans le cas des deux autres sols sont plus faibles et comparables (18,65 – 19,45 %). Concernant la fraction Limon (2 - 50 μm), le taux le plus important se retrouve dans l'échantillon **N**₁ (73,10 %) suivi par l'échantillon **N**₃ (42,43 %) et enfin l'échantillon **R** (34,98 %).

Le taux de la fraction sables fins $(50 - 200 \ \mu m)$ est plus importante $(22, 78 \ \%)$ dans l'échantillon **R** alors que celui du sables grossiers $(200 - 2000 \ \mu m)$ est le plus élevé $(23, 78 \ \%)$ dans le sol **N**₃.

I.2.4. Détermination du pH au point zéro charge (pHpzc)

Le pH au point zéro charge ou potentiel hydrogène isoélectrique (*pHpzc*) est le pH d'une solution aqueuse dans laquelle un solide existe sous un potentiel électrique neutre. Sa valeur correspond au point d'intersection entre la courbe représentant le pH_{final} de la solution, contenant le sol, en fonction du $pH_{initial}$ et la ligne $pH_{final} = pH_{initial}$ (*figure C.1.4*).

Figure C.I.4. Courbes: $pH_{final} = f(pH_{initial})$, la droite: $pH_{final} = pH_{initial}$ et les points pH_{pzc} des trois sols.

Les valeurs du pH au point zéro charge (*pHpzc*) pour les trois sols N_3 , **R** et N_1 sont, respectivement: 4,11 ; 6,39 et 8,17. Cela montre que les caractéristiques physiques et chimiques des surfaces de ces sols sont différentes. Selon la littérature [254, 255], si le:

- pH de la solution > pHpzc, la charge nette de la surface des sols est négative.
- pH de la solution < pHpzc, la charge nette de la surface des sols est positive.

En générale, les minéraux argileux en phase aqueuse portent une charge électrique nette et devant être compensée par l'adsorption d'ions de signe opposé venant de la solution. Selon leur origine, cette charge est: soit permanente et donc indépendante des propriétés du milieu ou variable selon la composition de la solution et particulièrement la concentration des ions H^+ . Ainsi la connaissance de la valeur du *pHpzc* est importante dans l'interprétation des interactions électrostatiques entre les matériaux adsorbants et les molécules du milieu environnant.

I.2.5. Diffraction des rayons X (DRX)

Les diffractogrammes obtenus, des échantillons de sols à l'état brut, présentent plusieurs raies correspondant à différentes minéraux constituant les trois types de sols (*figure C.I.5*).

Figure C.I.5. Diffractogrammes des rayons X des sols bruts.

L'interprétation des diffractogrammes (*analyse qualitative*) est effectuée en se référant aux fiches JCPDS (*Joint Committee on Powder Diffraction Standards*) [231]. On constate que la composition minéralogique de chaque sol est complexe, variée et spécifique (*tableau C.I.8*).

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

Sal	Composition on minéraux argileux/formules	Composition en minéraux	
501	Composition on mineraux argneux/ for mules	divers/ formules	
	Muscovite $(KAl_2(AlSi_3O_{10})(OH)_2)$,	Quartz (SiO_2), Anatase (TiO_2),	
N_1	Montmorillonite ($Si_4O_{10}Al_{5/3}Mg_{1/3}Na_{1/3}(OH)_2$),	Calcite (CaCO ₃),	
	Kaolinite $(Al_2Si_2O_5(OH)_4))$	Dolomite ($CaMg(CO_3)_2$)	
N	Muscovite Clinochlore $(Al_{2}Ma_{2}Si_{2}O_{12}(OH)_{2})$	Quartz, Rutile (<i>TiO</i> ₂),	
183		Jarosite ($K(Fe_3(SO_4)_2(OH)_6)$	
P	Muscovite, Kaolinite,	Quartz	
ĸ	Vermiculite $(Mg, Ca)_{0,7}(Mg, Fe, Al)_6 (Al, Si)_8 O_{22}(OH)_4 \cdot 8H_2 O)$	Quartz	

Tableau C.I.8. Composition minéralogique des sols selon les diffractogrammes des rayons X.

Chaque sol est composé de plusieurs minéraux argileux et divers autres minéraux non argileux. Certains constituants se retrouvent dans l'ensemble des sols étudiés comme le quartz et la muscovite. La kaolinite est présente aussi dans deux échantillons de sols, notamment: N_1 et R.

I.2.6. Analyse par spectrométrie de fluorescence X

La composition en éléments métalliques des trois sols a été déterminée par la technique de fluorescence des rayons X à dispersion de longueur d'onde WD-XRF. Elle est exprimée en équivalent d'oxyde et présentée en pourcentages massiques dans le tableau C.I.9.

Adsorbants ->	N ₁	N ₃	R
Paramètres ↓			
SiO ₂	$42,21 \pm 0,10$	$45,15 \pm 0,10$	$44,84 \pm 0,10$
Al ₂ O ₃	$14,57 \pm 0,10$	$23,\!48 \pm 0,\!10$	$27,44 \pm 0,10$
Fe ₂ O ₃	$5,41 \pm 0,07$	$8,14 \pm 0,08$	$12,34 \pm 0,10$
CaO	$12,42 \pm 0,10$	$0,12 \pm 0,01$	$0,45 \pm 0,02$
MgO	$3,18 \pm 0,05$	$2,48 \pm 0,05$	$1,96 \pm 0,04$
K ₂ O	$2,33 \pm 0,04$	$4,76 \pm 0,06$	$1,34 \pm 0,03$
Na ₂ O	$0,51 \pm 0,02$	$0,63 \pm 0,02$	$0,29 \pm 0,02$
MnO	$0,040 \pm 0,006$	$0,020 \pm 0,004$	$0,11 \pm 0,01$
TiO ₂	$0,66 \pm 0,02$	$1,24 \pm 0,03$	$1,18 \pm 0,03$
P ₂ O ₅	$0,19 \pm 0,01$	$0,31 \pm 0,02$	$0,10 \pm 0,01$
SO ₃	$0,56 \pm 0,02$	$1,64 \pm 0,04$	$0,05 \pm 0,06$
Total	82,08	87,97	90,1

Tableau C.I.9. Composition (% massique) en oxydes métalliques des sols.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

Les pourcentages en silice (SiO_2) et en alumine (Al_2O_3) sont les plus importants dans l'ensemble des sols. Ces résultats sont en concordance avec ceux de la DRX qui a révélé la richesse de ses sols en mineraux argileux (*aluminosilicates*) et en quartz.

Ces sols sont aussi riches en fer; la valeur élevée dans l'échantillon **R** peut expliquer sa couleur rouge. La teneur élevé en oxyde de calcium dans le sol N_1 confirme aussi les résultats de la DRX qui a révélé la présence de la calcite seulement dans cet échantillon.

Les métaux Mg, Mn, Fe, Al et Si, constituent généralement les couches tétraédriques et octaédriques des argiles. Le sodium, le potassium et le calcium sont connue aussi comme cations échangeables incorporés dans l'espace interfoliaire des feuillets des argiles.

Les résultats de cette analyse sont en conformité avec ceux de la DRX en confirmant la composition, en argiles et en quartz, des sols bruts étudiés.

I.2.7. Spectrométrie infrarouge à transformée de Fourier (IRTF)

Les spectres IRTF des adsorbants N_1 , N_3 et R, représentés dans la figure C.I.6, révèlent les bandes de vibration des liaisons constituant les minéraux qui composent les sols étudiés.

Figure C.I.6. Spectres IRTF des sols N₁, N₃ et R.

Les principales bandes de vibration des liaisons qui caractérisent les minéraux présents dans les sols étudiés, sont regroupées dans le tableau C.I.10.

Sols et nom aux ban	bre d'onde co des de vibratio	rrespondant on (cm ⁻¹)	Type de vibration		
N_1	N_3	R			
3619,732	*	3619,732	Allongements des liaisons O-H de structure		
3426,885	*	3426,885	Allongements des liaisons O-H du H ₂ O hygroscopique		
1623,769	*	*	Déformation des liaisons O-H des molécules d'eau		
1428,994	*	*	Vibration C-O de la Calcite		
1095,369 et 1035,587	1095,369 et 1022,087	1095,369 et 1022,087	Vibration de valence Si-O dans les argiles		
914,09	914,02	914,09	Déformation AlAlOH		
875,5	*	*	Vibration de la liaison C-O de la Calcite		
796,457	*	*	Witnestions day linitary Si O da Occarto		
711,604	*	*	- vibrations des fiaisons SI-O du Quartz		
694,248	*	*	Vibration de déformation OH		
522,614	522,614	522,614	Vibrations de Si-O		
470,545	470,546	470,546	Liaisons Si-O du Quartz		

Tableau C.I.10. Interprétation des spectres IRTF des sols étudiés [256-269].

Le signe * indique que la bande n'est pas observée dans le spectre IR du sol correspondant.

Ces résultats montrent que les bandes de vibration observées correspondent bien à celles des liaisons de minéraux aluminosilicates qui composent généralement les argiles. Ces liaisons sont: Si-O, O-H, Al-O-H qu'on retrouve, notamment dans la montmorillonite, la muscovite, la kaolinite, la vermiculite, la clinochlore et le quartz. Cela confirme encore que ces minéraux composent les sols étudiés et rejoint ainsi les résultats révélés par la DRX et la WD-XRF.

I.2.8. Microscope électronique à balayage (MEB)

Les observations au microscope électronique à balayage montrent les caractéristiques microstructurales des trois sols (*figure C.I.7*). Les adsorbants N_1 et N_3 paraissent avoir une surface plus poreuse que le troisième adsorbant **R** qui parait avec une image rugueuse. La taille des grains varie entre 0,89 et 5,559 µm.

Figure C.I.7. Micrographies MEB des sols: $N_1(a)$, $N_3(b)$ et R(c).

L'analyse EDX confirme parfaitement les résultats obtenus par les analyses minéralogique et chimique. Elle montre bien l'intensité du pic du calcium, caractéristique des carbonates, qui apparait très élevée seulement dans le sol N_1 (*figure C.I.8 (a)*). La teneur élevé en calcium dans le sol N_1 est confirmée aussi par les résultats des autres analyses, notamment: la DRX et la fluorescence-X.

Les spectres EDAX révèlent aussi la présence des silicates, caractéristiques du quartz et des argiles qui composent les trois sols.

Il importe de noter, d'après les spectres EDX, que la composition chimique des sols est prédominée par les éléments: Si, Al et Fe avec en plus l'élément S pour le sol N_3 et Ca, Mg pour le sol N_1 qui contient de la calcite et de la dolomite d'après les analyses par DRX.

Les spectres EDX dévoilent aussi la présence d'autres pics de faibles intensités, traduisant la présence d'autres éléments avec des teneurs moins importantes, à savoir: le phosphore, le soufre, le titane dans le sol N_1 ; le calcium dans le sol N_3 ; le potassium, le calcium et le titane dans le sol **R**.

Figure C.I.8. Analyse EDX des sols: $N_1(a)$, $N_3(b)$ et R(c).

I.2.9. Analyse thermique différentielle et thermogravimétrique (ATD-ATG)

L'analyse thermique différentielle (*ATD*) met en évidence les réactions exothermiques ou endothermiques qui ont lieu lors des multiples transformations pouvant se produire au cours du chauffage d'une matrice. La figure C.III.9 présente les profils de la dégradation thermique des sols $N_1(a)$, $N_3(b)$ et $\mathbf{R}(c)$.

Figure C.I.9. Spectres TG-DTG des sols: $N_1(a)$, $N_3(b)$ et $\mathbf{R}(c)$.

Les trois thermogrammes présentent plusieurs pics endothermiques (DT < 0) entre 73 et 377,5 °C, le plus intense de ces pics apparait aux environs de 73-75 °C. Ils sont accompagnés de pertes de masses: 0,75 (N_I); 0,60 (N_3) et 0,85 % (R). Ils sont généralement attribués à la déshydratation due au départ de l'eau adsorbée à la surface et dans les pores des différents mineraux constituant les sols. Au-delà de 200 °C, les pertes de masses peuvent être dues aux transformations des substances humiques dans les sols, comme dans le cas de l'échantillon N₃ à 377,5 °C.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

Les thermogrammes présentent aussi, pour chaque sol, un pic endothermique aux environs de 500 °C; soit: 509,75 ; 517,49 et 486,93 °C pour les sols N_1 , N_3 et **R** et auxquelles correspondent des pertes de masse de 4,72 ; 5,31 et 6,58 %, respectivement.

Plusieurs phénomènes peuvent être attribués à ces températures, notamment:

- la déshydroxylation de la kaolinite par le biais du départ de l'eau structurale (OH des octaèdres Al (OH)₃) en formant la méthakaolinite,
- la déshydroxylation de la structure de silicate dans la montmorillonite,
- la transformation allotropique du quartz ($\alpha \rightarrow \beta$).

A 766.47 °C, un pic endothermique de grande intensité est observé pour le sol N₁. IL est associé à la quasi-totalité de la perte de masse (14,87 %) de cet échantillon. Il correspond, très probablement à la décomposition de la calcite ($CaCO_3 \rightarrow CaO + CO_2$) et de la dolomite qui sont particulièrement des constituants du sol N₁.

Les trois échantillons sont caractérisés aussi par un pic exothermique et sans perte de masse aux environs de 800 °C; soit : 890,8 ; 819,8 et 821,47, respectivement pour les sols N_1 , N_3 et **R**. Plusieurs phénomènes peuvent être attribués à cette température, on cite:

- la réorganisation structurale de la méthakaolinite par recristallisation en un nouveau silicate, la mullite qui se produit généralement aux environs de 950 °C,
- la destruction et la recristallisation du réseau silicate dans la montmorillonite,
- la déshydroxylation pour donner la muscovite haute température,
- les transformations dans les minéraux: clinochlore, vermiculite et dolomite entre 800 et 900 °C.

Les thermogrammes des trois sols présentent des pics à des températures qui correspondent aux transformations des minéraux constituant les échantillons analysés. Les résultats des analyses thermiques confirment ainsi ceux des autres méthodes d'analyse [270-276].

I.3. Conclusion

Les résultats montrent que l'effluent étudié est en général représentatif des eaux usées oléicoles. C'est un milieu aqueux (97 % en eau) et acide (pH = 5). Il est caractérisé par une composition riches et diverses en substances organiques et minérales. Ses teneurs en phosphore (PO_4^{-3} , ...) et en espèces azotées (NH_4^+ , NO_2^- , NO_3^-) sont relativement élevées comparés à

plusieurs rejets. Il contient aussi un pourcentage considérable en matière solides et en composés organiques, notamment les matières grasses (4,859 %) et les composés phénoliques ($\approx 4 \text{ g. } L^{-1}$).

L'étude, effectuée par la méthode de fluorescence X, à montré aussi que cette margine est composée d'espèces minérales diverses avec une prépondérance nette du potassium. La teneur des autres paramètres (*P, Cl, Ca, Mg, S, Fe, Na*) sont variables et restent inférieures au potassium.

La chromatographie liquide à haute performance à révélée aussi la présence de plusieurs et différents composés phénoliques et aromatiques. Parmi ces constituants on retrouve des composés phénoliques à un seul cycle aromatique comme l'acide gallique, l'acide vanilique et le resorcinol et d'autres plus lourds (*trois cycles et plus*) comme la catéchine, la rutine, la myrcetine et la quercetine. D'autres composés aromatiques, qui ne possèdent pas de groupement phénol, sont aussi présents dans l'extrait comme l'acide trans-cinnamique et la berbérine, composé hétérocyclique azoté (*alcaloïde*), qui possède de nombreuses vertus médicinales.

La spectroscopie infrarouge a confirmé la présence des bandes de vibration de liaisons qui correspondent aux composés organiques constituant habituellement les eaux usées oléicoles, notamment les composés aromatiques (*phénoliques*), les oléfines, les alcools et les acides carboxyliques entre autres.

L'effluent étudié est jugé polluant vu que tous les paramètres ne correspondent pas aux normes adoptées par la réglementation Algérienne. Le rapport de biodégradabilité DCO/DBO₅ mesuré (5,040) sur la margine est élevé. Il est presque 2 fois plus grand de la valeur limite autorisée par la législation Algérienne (3,428) ce qui traduit la difficulté du traitement de ce genre d'effluents.

Les échantillons de sols étudiés ont des couleurs différentes liées à leur composition chimique. Les couleurs sombres: gris, noir ou brun-foncé sont souvent attribuée à la présence de matières organiques, comme dans les échantillons N_1 et N_3 . La couleur rouge peut être due à la présence du fer à l'état Fe³⁺ comme dans le sol **R**. Cependant, la couleur ne peut pas fournir une description suffisante de données morphologiques ni de caractéristiques chimiques. Les caractéristiques physiques des deux sols N_1 et **R** sont comparables. Celles du sol noir (N_3) sont assez différentes des deux autres sols à l'exception de la conductivité électrique qui est faible pour l'ensemble des échantillons.

La surface spécifique varie entre 24,234 et 37,80 m²/g. Elle est relativement très faible comparée à celle d'une argile (700 à 800 m^2/g).

Le sol noir N_3 a un pH acide (pH=4,6). Cela est dû probablement à la présence des substances humiques et fulviques (*acides humiques et acides fulviques*) et à l'oxydation des composés inorganiques tels que le sulfure de fer. Il est caractérisé par une teneur plus élevée que les autres sols en azote total.

Les sols N_1 et **R** présentent un pH alcalin de 8,9 et 8,4 respectivement, cela peut être dû à la présence des carbonates.

L'échantillon N₁ présente les teneurs les plus élevées en matières minérales (15,1%), en carbone inorganique (2,98%) et surtout en calcaire (25,78%). Il est caractérisé aussi par la plus grande valeur de la perte au feu. L'ensemble des sols, sont cependant faiblement chargés en espèces volatiles. Les autres caractéristiques (capacité d'échange cationique, taux d'humidité, teneurs en matières organiques et en carbone organique) sont comparables entre les trois sols.

Les valeurs du pH au point zéro charge (*pHpzc*) pour les trois sols $N_3(4,11)$, **R** (6,39) et $N_1(8,17)$ sont nettement différentes.

Selon les diffractogrammes des rayons X, chaque sol est composé de plusieurs minéraux argileux (*muscovite, montmorillonite, kaolinite, vermiculite, clinochlore*) et divers autres minéraux non argileux (*quartz, calcite, dolomite, rutile, jarozite*). Certains constituants se retrouvent dans l'ensemble des sols étudiés comme le quartz et la muscovite. La kaolinite est présente aussi dans deux échantillons de sols, notamment: N_1 et **R**.

La composition en éléments métalliques des trois sols, déterminée par la technique de fluorescence X, a montré que les pourcentages en silice (SiO_2) et en alumine (Al_2O_3) sont les plus importants dans l'ensemble des sols. Ces résultats sont en concordance avec ceux de la DRX qui a révélé la richesse de ses sols en minerais argileux (*aluminosilicates*) et en quartz.

Ces sols sont aussi riches en fer; la valeur élevée dans l'échantillon **R** peut expliquer sa couleur rouge. La teneur élevé en oxyde de calcium dans le sol N_1 confirme aussi les résultats de la DRX qui a révélé la présence de la calcite et de la dolomite seulement dans cet échantillon.

Les métaux Mg, Mn, Fe, Al et Si, constituent généralement les couches tétraédriques et octaédriques des argiles. Le sodium, le potassium et le calcium sont connue aussi comme cations échangeables incorporés dans l'espace interfoliaire des feuillets des argiles.

La spectroscopie infrarouge a montré aussi que les bandes de vibration observées correspondent bien à celles des liaisons (*Si-O, O-H, Al-O-H*) de minéraux aluminosilicates qui composent généralement les argiles et le quartz.

L'analyse EDAX confirme parfaitement les résultats obtenus par la DRX et la

fluorescence-X. Elle a révélée la teneur élevé en calcium dans le sol N_1 et la présence des silicates, caractéristiques du quartz et des argiles qui composent les trois sols. Elle a montré aussi que la composition chimique des sols est prédominée par les éléments: Si, Al et Fe avec en plus l'élément S pour le sol N_3 et Ca, Mg pour le sol N_1 qui contient de la calcite et de la dolomite d'après les analyses par DRX.

Les thermogrammes des trois sols présentent des pics à des températures qui correspondent aux transformations des minéraux (*kaolinite, montmorillonite, muscovite, vermiculite, clinochlore, calcite, dolomite, quartz*) constituant les échantillons analysés.

L'étude est réalisée sur les effets des radiations gamma, issues d'une source de cobalt-60, sur la dégradation des composés phénoliques totaux, composés azotés et phosphorés et sur la variation de différentes caractéristiques, telle que la DCO et la DBO₅ de la margine étudiée.

II.1. Etude de la dégradation des composés phénoliques sous irradiations gamma

Cette étude consiste à suivre l'effet des irradiations gamma sur la cinétique des réactions de dégradation des composés phénoliques dans les échantillons dilués d'huilerie d'olive et de l'acide gallique en solution aqueuse. Elle a permis aussi d'évaluer le pouvoir de l'irradiation gamma en observant la variation du taux d'élimination τ (%) des composés phénoliques et de l'acide gallique en fonction de la dose d'irradiation. Les variations engendrées, par le traitement précité, sur quelques caractéristiques et sur les teneurs de certains constituants de l'effluent d'huilerie d'olives concentré, ont été aussi discutées.

II.1.1. Cinétiques des réactions des composés phénoliques sous irradiations gamma

Les tracés obtenus de la cinétique des réactions des composés phénoliques dans les échantillons (*l'effluent oléicole "EUO₁" et la solution d'acide gallique "SSAG"*) dilués et irradiés aux rayonnements gamma montrent une diminution de la concentration de ces composés avec l'accroissement de la durée d'irradiation (*figure C.II.1*).

Figure C.II.1. Variation des concentrations en composés phénoliques en fonction de la durée d'irradiation gamma. Concentration initiale de l'effluent: C_{0, EUOID} = 0,079 g. L⁻¹; Concentration initiale de la solution d'acide gallique: C_{0, SSAGD} = 0,121 g. L⁻¹.

Dans le cas de l'effluent oléicole dilué (EUO_1D) , la variation de la concentration (C_{EU01D}) des composés phénoliques totaux dans l'effluent en fonction du temps est représentée par une droite, d'expression:

$$C_{Euo1} = -K_{EUO1} \cdot t + C_{0,EUO1} = -6,6040 \cdot 10^{-4} \cdot t + 0,0858$$
 (C.II.1)

où, $C_{0,EU01}$ est la concentration initiale des composés phénoliques dans l'effluent dilué et $K_{EU01} = 6,6040 \ 10^{-4} \text{ g. L}^{-1}$. h^{-1} est la pseudo-constante de vitesse.

Ainsi, la vitesse de dégradation des composés phénoliques est exprimée par la relation:

$$-\frac{dC_{EU1}}{dt} = K_{EU01} = 6,6040 \ 10^{-4} g. L^{-1}. h^{-1}$$
(C.II.2)

La vitesse réactionnelle globale paraît indépendante de la concentration et elle est égale à la pseudo-constante de vitesse (K_{EUOI}). Cela implique que l'ordre apparent global de la réaction est égal à **0**.

Ce type de cinétique s'obtient souvent dans les cas des réactions complexes comme c'est le cas des effluents d'huileries d'olives, constitués d'un mélange de divers composés phénoliques et d'autres constituants organiques **[15-16, 22]**. En effet, un nombre important de réactions est possible entre les produits de la radiolyse de l'eau et les divers constituants de l'effluent **[31, 276-280]**.

A titre de comparaison, la cinétique de dégradation d'un seul composé phénolique (*l'acide gallique*) en milieux aqueux par effet de l'irradiation gamma, a été étudiée. Le résultat de cette expérience montre que la concentration de l'acide gallique au cours du temps est bien exprimée par la relation exponentielle suivante:

$$C_{SSAGD} = C_{SSAGD0} \exp(-K_{SSAGD} \cdot t) = 0,1252 \exp(-0.1853 \cdot t) \quad (C.II.3)$$

où, C_{SSAGD} est la concentration de l'acide gallique à l'instant t donné, C_{SSAGD0} est la concentration initiale de la solution de l'acide gallique et $K_{SSAGD} = 0,1853 h^{-1}$ est la pseudoconstante de vitesse de dégradation de l'acide gallique.

L'ordre apparent de la réaction de l'acide gallique est de 1. Dans ce cas aussi, le mécanisme réactionnel de dégradation est aussi complexe, comme c'est indiqué par des études antérieures [281] car la dégradation de l'acide gallique et ses produits intermédiaires, par

réactions avec les différentes espèces issues de la radiolyse de l'eau, peut suivre plusieurs voies en générant différents produits **[32]**.

Cette étude cinétique montre essentiellement, d'après les équations C.II.1 et C.II.3, que les réactions sous irradiation gamma des composés phénoliques dans l'effluent et même de l'acide gallique seul en phase aqueuse, sont très lentes. En effet, dans le cas de l'effluent concentré où la concentration initiale en composés phénoliques est de **3,95 g. L**⁻¹, 113 heures n'étaient suffisantes pour dégrader les CPT. Ce résultat est constaté aussi dans le cas d'une solution aqueuse contenant un seul composé phénolique (*l'acide gallique*) à **6,95 g. L**⁻¹.

II.1.2. Etude du pouvoir des radiations gamma sur la dégradation des composés phénoliques

Le pouvoir de dégradation des composés phénoliques par les rayonnements gamma est étudié en suivant le taux de variation de leur teneur τ (%), calculé par la formule :

$$\tau = \left(\frac{C_0 - C}{C_0}\right). \ 100 \tag{C.II.4}$$

où, C_{θ} et C sont les concentrations, exprimées en g. L⁻¹, des composés phénoliques dans les échantillons étudiés, respectivement avant et après irradiation gamma.

a. Cas des échantillons dilués

Les résultats du traitement par irradiation gamma des matrices diluées (*l'échantillon* EUO_1 dilué 50 fois nommé "EUO₁D" et la solution synthétique préparée au laboratoire à base de l'acide gallique à la concentration 0,121 g. L⁻¹ nommé "SSAGD") sont illustrés par des courbes, représentant l'évolution du taux de dégradation des composés phénoliques en fonction de la dose d'irradiation (*figure C.II.2*).

Figure C.II.2. Variation du taux d'élimination (τ) des composés phénoliques dans les échantillons dilués en fonction de la dose d'irradiation gamma. **EUO**₁**D**: Eau usée oléicole prélevée en 2014 de [Composé phénolique] = 0,079 g. L⁻¹, SSAGD: Solution synthétique à base d'Acide Gallique à C_{0, SSAGD} = 0,121 g. L⁻¹.

Ces figures montrent que le taux d'élimination des CP augmente avec l'augmentation de la dose d'irradiation. La dégradation de ces composés est quasi-totale à 80 kGy dans le cas des deux échantillons dilués.

b. Cas des échantillons concentrés

Dans les échantillons de l'effluent concentré (EUO_I), un changement de couleur a été observé après traitement aux doses supérieures à 50 kGy. Cela peut être un indicateur de la variation des caractéristiques et de la composition des effluents sous l'effet des rayons gamma. En effet, de nombreuses études antérieures ont révélé que les composés phénoliques et autres composés aromatiques récalcitrants, présents dans les différents rejets aqueux, se dégradent par radiolyse et peuvent se transformer en composés non aromatiques, notamment dans le cas de l'irradiation à forte doses. Par exemple, c'est le cas de l'acide gallique qui peut se dégrader jusqu'à la formation d'acides polycarboxyliques aliphatiques [**32**].

Le taux d'élimination des composés phénoliques dans l'effluent concentré et l'acide gallique de la solution synthétique concentrée, augmente avec la dose d'irradiation (*D*) mais ne dépasse pas 13,4 % même à une dose élevée de 80 kGy (*tableau C.II.1*).

Tableau C.II.1.	Faux d'élimination (τ) des composés phénoliques sous irradiation gamma dans
	les échantillons concentrés (effluent oléicole et solution synthétique d'acide
	gallique).

Echantillon ↓	D (kGy) →	5	25	30	40	80
EUO ₁	τ(%) →	1,754	1,849	4,363	8,013	8,156
SSAG		2,542	4,959	7,69	11,111	13,402

EUO₁ : Eau usée oléicole prélevée en 2014 de [Composé phénolique totaux] = 3,95 g. L⁻¹;

SSAG : Solution synthétique à base d'Acide Gallique à $C_{0, SSAG} = 6,05 \text{ g. L}^{-1}$.

Ce résultat peut s'expliquer par la cinétique lente des réactions des composés phénoliques sous l'effet des rayonnements gamma, comme c'est révélé par l'étude cinétique.

II.2. Etude de l'effet du traitement par irradiation gamma sur la composition de la margine

Cette étude est réalisée en utilisant différentes techniques d'analyse, à savoir la chromatographie liquide à haute performance, la spectroscopie infrarouge et les méthodes chimiques d'identification et de dosage des échantillons avant et après traitement.

II.2.1. Etude par CLHP de l'effet des irradiations gamma sur les composés phénoliques

Les chromatogrammes des extraits de composés phénoliques de l'effluent oléicole avant et après irradiation par les rayonnements gamma à 80 kGy sont différents. Cela montre que la composition de l'effluent a varié sous l'effet des radiations gamma (*figure C.II.3*).

Figure C.II.3. Chromatogrammes (*CLHP*) des extraits de composés phénoliques et aromatiques à partir de: - la margine EUO₁ non irradiée (*à gauche*),
- la margine EUO₁ irradiée (*à droite*).

Cependant, les composés identifiés par HPLC sont présents dans les deux chromatogrammes des deux extraits phénoliques avant et après irradiation (*tableau C.II.2*).

Constituants	t _{r/Référence} (<i>min</i>)	t _{r/EUO1} avant irradiation (<i>min</i>)	t _{r/EUO1} après irradiation (<i>min</i>)
Acide Gallique	4,85	4,39	4,48
Resorcinol	7,04	6,91	7,11
Cathechine	13,20	13,23	13,36
Acide Vanillique	14,00	13,91	14,01
Acide Trans-cinnamique	18,17	18,44	18,41
Rutine	23,00	22,98	22,86
Berberine	23,92	24,01	23,94
Myrcetine	24,82	24,74	24,66
Quercetine	28,22	28,23	28,13

Tableau C.II.2. Composés phénoliques identifiés par CLHP dans les extraits de l'échantillonEUO1 avant et après irradiation gamma à 80 kGy.

 $t_{r/R}$ et $t_{r/EUO1}$: temps de rétention des composés phénoliques, respectivement dans l'échantillon de référence et l'extrait de l'EUO₁

II.2.2. Etude par spectroscopie infrarouge à transformée de Fourier de l'effet de l'irradiation gamma sur les groupements fonctionnels de l'EUO₁

Les spectres infrarouges obtenus de l'eau usée oléicole étudiée (EUO_l) avant et après irradiation gamma sont illustrés dans la figure C.II.4.

Figure C.II.4. Spectres infrarouge de l'EUO₁ avant (*a*) et après (*b*) irradiation gamma.

Ces deux spectres présentent les mêmes bandes pour les deux margines: initiale et celle traitée. Cela montre que les constituants de la margine initiale n'ont pas été éliminés totalement par irradiation gamma. Cependant, les intensités des bandes dans le spectre de la margine irradiée ont globalement diminué, ce qui peut être expliquée, éventuellement par une dégradation partielle de ses constituants.

II.2.3. Etude de l'effet de l'irradiation gamma sur quelques caractéristiques de la margine

Les valeurs du pH, de la conductivité électrique et de la densité de l'effluent varient peu après irradiation (*tableau C.II.3*).

 Tableau C.II.3.
 Variation de quelques caractéristiques de l'EUO1 sous l'effet des rayonnements gamma.

Paramètres >	nЦ	CE	d ²⁵	DCO	DBO ₅	
Valeurs >	рн	$(mS. \ cm^{-1})$	u 4	$(g. L^{-1})$	$(g. L^{-1})$	
Après irradiation γ	5.0	774	1 0127	44544	71 070	0.(25
(80 kGy)	5,0	/,/4	1,0137	44,344	44,544 /1,270	0,625

CE : Conductivité électrique ; d^{25}_4 : densité mesurée à 25 °C par rapport à l'eau à 4°C ; γ : gamma.

La nature aqueuse, ionique et acide ne semble pas être affectées par les irradiations gamma même à une dose de 80 kGy; notamment après cinq jours d'irradiation.

La diminution de la DCO et inversement l'augmentation de la DBO₅, après irradiation, révèlent la diminution de la teneur en matières totales oxydables et l'augmentation des teneurs en matières organiques biodégradables. Cela indique que les réactions, sous irradiation gamma des composés organiques dans l'effluent, génèrent des produits organiques biodégradables dûs aux effets directs et/ ou indirects de la dégradation de la matière organique **[31]**. Cela est confirmé par la diminution du rapport DCO/ DBO₅ qui est de **5** dans l'effluent non irradié et de **0,6** dans celui irradié à **80** kGy. Le traitement par irradiation gamma permet donc de transformer, pour cet effluent, la charge organique difficilement biodégradable à celle dont la biodégradabilité est facile.

II.2.4. Effet de l'irradiation gamma sur la composition de la margine

La composition de l'effluent d'huilerie d'olive varie sous l'effet de l'irradiation gamma

à 80 kGy. Les réactions de dégradation des constituants, organiques ou minérales, sous l'effet de irradiations gamma semblent générer certains produits qui se précipitent et d'autres qui s'évaporent (*tableau C.II.4*).

Espèces	Teneurs des espèces (g. L ⁻¹)				
	Avant l'irradiation γ	Après l'irradiation γ			
NTK	0,585	0,230			
NO ₃	0,351	0,154			
NO ₂ ⁻	0,050	0,012			
$\mathbf{NH_4}^+$	0,056	0,065			
PO ₄ ⁻³	$0,656 \pm 0,005$	0,556			
P _t	$0,540 \pm 0,002$	0,179			
SO4 ²⁻	1,564	3,184			
M.E.S	5.341	5,896			
M _M	0,178	0,069			

Tableau C.II.4. Composition de l'EUO₁ avant et après irradiation gamma.

NTK: azote total Kjeldahl; Pt: phosphore total; M.E.S: matière en suspension; MM : matières minérales.

Ces résultats montrent que la composition en espèces azotées de l'effluent est affectée par l'irradiation gamma; les teneurs en NO_3^- , en NO_2^- et en azote totale diminuent sensiblement après irradiation à 80 kGy. Selon Chu et *al.* **[282]**, la diminution de la teneur en ions nitrate est probablement due à la réduction de ces derniers en gaz N_2 et N_2O **[283]**.

Les ions ammonium dans l'effluent aqueux peuvent être formés à partir de la dégradation des composés organiques azotés mais peuvent être aussi oxydés par les radicaux hydratés à des doses d'irradiation supérieures **[282]**. Dans le cas de l'effluent d'huilerie d'olive, le premier phénomène semble l'emporter par rapport à l'oxydation, étant donnée l'augmentation des teneurs en ions ammonium après irradiation. La précipitation de produits peut expliquer l'augmentation de la teneur des matières en suspension. La formation de produits volatiles explique la diminution des teneurs en matière minérale, en phosphore et des ions nitrate.

II.3. Conclusion

Le traitement par irradiations gamma a montré essentiellement que les réactions des

composés phénoliques dans les effluents et même dans l'acide gallique seul en phase aqueuse pour des teneurs supérieurs à 6 g. L⁻¹, sont très lentes. Une teneur de 0,121 g. L⁻¹ d'acide gallique se détériore à 30 kGy. De ce fait, le taux d'élimination des composés phénoliques dans l'effluent concentré (3,95 g. L⁻¹) ne dépasse pas 8,16 % même à une dose élevée de 80 kGy contrairement à l'effluent dilué où la quasi-totalité des composés phénoliques est dégradée (> 90 %). Une activation catalytique peut s'avérer utile pour accélérer les réactions de ces composés avec les radicaux et les autres espèces réactifs de la phase aqueuse lors de la radiolyse.

Les analyses de CLHP et de spectroscopie infrarouge ont montré que la composition de l'effluent est affectée par l'irradiation gamma.

Les réactions, sous irradiation gamma des composés organiques dans l'effluent, génèrent des produits organiques biodégradables. Cela est confirmé par le rapport DCO/DBO₅ qui diminue de 5 dans l'effluent non irradié à 0,6 dans celui irradié à 80 kGy. Le traitement par irradiation gamma permet donc de transformer des effluents à charge organique difficilement biodégradable à ceux dont la biodégradabilité est très facile.

Les réactions de dégradation des constituants organiques ou minéraux sous l'effet des irradiations gamma, génèrent différents produits dans l'effluent dont certains peuvent se précipiter et d'autres s'évaporent ce qui explique l'augmentation de la teneur des matières en suspension et la diminution des teneurs en matières minérales.

La composition, en espèces azotées et phosphorés de l'effluent, est affectée aussi par l'irradiation; les teneurs en NO_3^- , en NO_2^- et en azote totale diminuent sensiblement et celle des ions ammonium augmente par dégradation des composés organiques azotés.

L'irradiation gamma permet de diminuer les teneurs en composés organiques et des différentes espèces minérales dans la margine traitée. Elle constitue ainsi une procédure de traitement de ces effluents et particulièrement quand ils sont dilués.

Dans ce chapitre, nous présentons les résultats de l'étude du pouvoir d'adsorption des composés phénoliques (*CPT*) par les trois sols naturels étudiés. Pour ce faire, des expériences d'adsorption de ces composés sont réalisées dans des réacteurs ouverts "batch" et ce dans différentes conditions opératoires (*étude paramétrique*). Des études de cinétiques d'adsorption et thermodynamiques (*isothermes d'adsorption*) ont été aussi effectuées. Les résultats de la cinétique d'adsorption ont été modélisés en appliquant quatre modèles cinétiques, à savoir: modèle du pseudo premier- ordre, modèle du pseudo-second ordre, modèle de diffusion intraparticulaire et modèles empiriques: modèle de Langmuir, modèle de Freundlich et celui de Dubinin-Radushkevich. A la fin de cette étude, une comparaison de la capacité d'adsorption des CPT par ces sols avec d'autres adsorbants a été réalisée afin de conclure sur l'efficacité de nos matériaux vis-à-vis de l'adsorption des CPT.

III.1. Etude paramétrique du pouvoir d'adsorption des composés phénoliques par les sols dans les conditions classiques

Plusieurs paramètres ont été étudiés à savoir: la durée de contact adsorbant-adsorbat, la masse ainsi que la granulométrie de l'adsorbant, le pH et la concentration initiale de l'effluent oléicole en CPT.

III.1.1.Influence de la durée de contact adsorbant - adsorbat

Ces expériences ont été menées à 25 °C avec des échantillons de sols de masse m = 2 g et de taille granulométrique ϕ = 400 µm ; un volume d'effluent dilué v = 20 mL de concentration en composé phénolique [CPT] = 728 mg. L⁻¹. Le rapport solide/liquide est de 100 g d'adsorbant/L d'effluent, la vitesse d'agitation (V_a) a été fixée à 250 rpm. La concentration initiale de l'effluent oléicole en CPT égale à 2,91 g. L⁻¹ à un pH de 4,55.

L'influence de la durée de contact adsorbant-adsorbat sur la capacité d'adsorption des CPT par les différents sols naturels au cours du temps est révélée par l'allure des courbes de la figure C.III.1.

Figure C.III.1. Influence du temps de contact sur la capacité d'adsorption des CPT $(m = 2 g; \phi = 400 \ \mu m; pH_{effluent} = 4,55; [CPT] = 728 \ mg/L; V_a = 250 \ rpm; v = 20 \ mL; T = 25 \ ^{\circ}C).$

Ces courbes présentent deux phases et montrent que le temps pour atteindre presque l'équilibre d'adsorption est d'environ 2 h pour le sol N_1 et 4 h pour les sols N_3 et \mathbf{R} . La première phase, durant laquelle l'adsorption de la quasi-totalité des CPT se produit, est caractérisée par une durée relativement courte (*1 h*) et une vitesse d'adsorption rapide. Dans la deuxième phase, qui prend fin à l'équilibre, la vitesse d'adsorption et la quantité adsorbée sont faibles. L'adsorption est plus rapide dans le cas du sol N_1 et la capacité d'adsorption de ce dernier, à l'équilibre, est la plus importante; elle est le double de celle du sol \mathbf{R} . Cela peut être expliqué par la faible porosité du sol \mathbf{R} (*voir image MEB*).

En comparant nos résultats avec ceux de la littérature, nous déduisons que le processus d'adsorption des CPT sur nos adsorbants est lent aussi et s'accordent avec les résultats (*2-12 heures*) de nombreuses études **[284-292, 112]**, comme celles réalisées sur les minéraux argileux (*bentonites*) originaires de Maghnia (*Algérie*).

Cependant, d'après certaines études, la cinétique peut être beaucoup plus rapide dans le cas de certains adsorbants activés, comme dans l'adsorption du phénol sur le charbon actif et sur certaines argiles activées [293, 294].

Le temps de contact choisi pour la suite de nos études est 24 heures afin de s'assurer que l'équilibre est atteint pour les trois adsorbants N_1 , N_3 et R.

III.1.2. Influence de la masse sur la capacité d'adsorption des CPT

Les résultats montrent que lors de l'élimination des CPT par adsorption sur des sols naturels, le taux d'élimination des CPT croît avec le poids d'adsorbant utilisé (*figure C.III.2*).

Figure C.III.2. Taux d'élimination des CPT en fonction de la masse de l'adsorbant $(\phi = 400 \ \mu m; pH_{effluent} = 4,55; [CPT] = 728 \ mg/L; V_a = 250 \ rpm; v = 20 \ mL; T = 25 \ ^{\circ}C; t = 24h).$

Le taux maximal atteint est de 69, 70 et 73 %, respectivement par les sols N_3 , N_1 et R. Selon les travaux de Garg *et al.* [295], l'augmentation du pourcentage d'adsorption avec la masse des sols peut être due à l'augmentation de la surface de l'adsorbant et des sites d'adsorption [296, 297]. Le meilleur taux d'élimination est obtenu pour les poids allant de 3 à 4 g pour l'ensemble des sols.

III.1.3.Influence de la taille granulométrique sur la capacité d'adsorption des CPT

Les résultats sont donnés sous forme de courbes dans la figure C.III.3 ci-dessous.

Figure C.III.3. Influence de la taille granulométrique sur la capacité d'adsorption des CPT $(pH_{effluent} = 4,55; [CPT] = 728 mg/L; V_a = 250 rpm; v = 20 mL; T = 25 °C; t = 24h; m = 3,5g).$

Ils montrent que l'augmentation de la taille des particules fait diminuer la capacité d'adsorption des CPT en raison de la diminution de la surface spécifique, donc de la capacité d'adsorption. Le meilleurs taux d'élimination est obtenu pour les fractions fines ($\phi = 40 \ \mu m$).

III.1.4. Influence du pH sur la capacité d'adsorption des CPT

L'effet du pH sur le pouvoir d'adsorption des composés phénoliques de l'effluent par les adsorbants naturels (N_1 , N_3 et R) est représenté par les courbes de la figure C.III.4.

Figure C.III.4. Influence du pH sur la capacité d'adsorption des CPT ([*CPT*] = 728 mg/L ; $V_a = 250 \text{ rpm}$; v = 20 mL; T = 25 °C ; t = 24h ; m = 3.5g ; $\phi = 40 \text{ µm}$).

Ces courbes montrent que l'adsorption des CPT est largement affectée par le pH du milieu. La capacité d'adsorption des CPT, en milieu acide, est importante pour l'ensemble des sols. Elle est maximale aux environs du pH de l'effluent (4,55) pour les adsorbants nommés N_3 (88,8%) et N_1 (70,8%). Pour le sol **R**, la capacité d'adsorption (78,4%) est presque constante sur toute la gamme de pH.

D'après l'étude effectuée au chapitre I (*paragraphe I.2.4.*), les valeurs du pH au point zéro charge (*pHpzc*) pour les trois sols N₃, **R** et N₁ sont: **4,11**; **6,39** et **8,17**; respectivement. On sait que pour les valeurs du pH du milieu, inférieures au **pHpzc**, la charge nette de la surface des sols est positive, et c'est le cas en milieu acide pour l'ensemble des adsorbants étudiés. Ces sols argileux vont compenser alors leur charge électrique positive par l'adsorption d'ions de signe opposé venant de la solution. Ainsi, la fixation des ions Ar-O⁻ (Ar = aromatique) sur les sols, chargés positivement, peut expliquer le pouvoir d'adsorption important en milieu acide sachant que les composés phénoliques Ar-O-H se dissocient en milieu aqueux en ions Ar-O⁻ et H⁺.

Des résultats comparables ont été retrouvés aussi dans certaines études comme celle publiée par Djebbar *et al.* sur l'adsorption des phénols par des argiles **[291, 298]**.

III.1.5. Influence de la concentration initiale en CPT

Les capacités d'adsorption des composés phénoliques augmentent avec la concentration initiale de ce dernier jusqu'à la saturation des sites d'adsorption, indiquée par un palier sur les figures C.III.5 suivantes.

Figure C.III.5. Influence de la concentration initiale en CPT $(V_a = 250 \text{ rpm}; v = 20 \text{ mL}; T = 25 \text{ °C}; t = 24h; m = 3.5g; \phi = 40 \text{ µm}; pH_{effluent} = 4.55).$

La quantité maximale adsorbée Q_{max} est d'environ 0,1 mg de CPT/g d'adsorbant, soit exactement: 0,098; 0,103 et 0,108 mg. g⁻¹ pour N₃, N₁ et **R**, respectivement. Elle est atteinte à partir de la concentration initiale en CPT de 45,5 mg. L⁻¹.

III.1.6. Etude des isothermes d'adsorption des CPT

Les isothermes d'adsorptions des composés phénoliques totaux sur les trois sols naturels présentent une allure classique de type L, sous groupe 1 pour les sols N_1 , N_3 et sous groupe 2 pour le sol **R**. Les tracés obtenus sont illustrées à la figure C.III.6.

Figure C.III.6. Isothermes d'adsorption des CPT $(V_a = 250 \text{ rpm}; v = 20 \text{ mL}; T = 25 \text{ °C}; t = 24h; m = 3.5g; \phi = 40 \text{ }\mu\text{m}; pH_{effluent} = 4.55).$

La quantité maximale adsorbée à l'équilibre Q_{max} est d'environ 0,1 mg de CPT/g d'adsorbant, soit exactement: 0,098, 0,103 et 0,108 mg. g⁻¹ pour N₃, N₁ et **R**, respectivement. Ces quantités correspondent à des concentrations en équilibre en CPT de 22,5 mg. L⁻¹ pour les sols N₁ et N₃ et de 20 mg. L⁻¹ pour le sol **R**. Ces résultats montrent que les concentrations en CPT à l'équilibre dans la phase aqueuse et dans les trois adsorbants sont proches. Elles sont atteintent à partir de la concentration initiale en CPT de 22,5 mg. L⁻¹ pour les sols N₁ et N₃ et de 20 mg. L⁻¹ pour le sol **R**. Ces résultats sont proches pour l'ensemble des sols étudiés.

a. Modélisation des isothermes d'adsorption des CPT

Les isothermes d'adsorption ont été modélisées en utilisant les trois modèles empiriques déjà mentionnés en détails dans la partie bibliographique chapitre IV de la partie A : Freundlich, Langmuir et Dubinin-Radushkevich. Les données d'adsorption obtenues à partir des isothermes sont analysées par ces modèles. Les figures C.III.7- C.III.9 illustrent les tracés des formes linéaires de ces trois modèles pour l'adsorption des CPT à pH 4,55.

Partie C/ Chapitre III VALORISATION DES SOLS NATURELS – ETUDE DU POUVOIR D'ADSORPTION DES CPT PAR DIFFERENTS SOLS

Figure C.III.7. Linéarisation de l'isotherme de Freundlich pour l'adsorption classique des CPT sur les sols N₃ (a) N₁ (b) et R (c) à température ambiante.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

Figure C.III.8. Linéarisation de l'isotherme de **Langmuir** pour l'adsorption classique des CPT sur les sols N₁ (*a*) N₃ (*b*) et **R** (*c*) à température ambiante.

Partie C/ Chapitre III VALORISATION DES SOLS NATURELS – ETUDE DU POUVOIR D'ADSORPTION DES CPT PAR DIFFERENTS SOLS

Figure C.III.9. Linéarisation de l'isotherme de Dubinin-Radushkevich pour l'adsorption classique des CPT sur les sols $N_3(a) N_1(b)$ et R(c) à température ambiante.

Les paramètres obtenus à partir de ces modèles (K_F , 1/n, Q_{max} , K_L , β , E_D et \mathbb{R}^2) pour l'adsorption classique des CPT sur les trois naturels sols sont, déterminés graphiquement, listés dans le tableau C.III.1.

Tableau C.III.1. Valeurs paramétriques des modèles choisis pour cette étude pour l'adsorption classique des CPT de la margine moderne étudiée (*EUO*₂) sur les trois adsorbants.

Adsorbants →		N ₁	N ₃	R
↓ Isothermes				
	$\mathbf{K}_{\mathbf{F}}\left(\boldsymbol{L}.\ \boldsymbol{mg}^{-1}\right)$	7,702 10-6	12,354 10-6	10,451 10 ⁻⁶
Freundlich	1/n	1,011	0,802	0,891
	\mathbf{R}^2	0,644	0,453	0,957
	$K_L(L. mg^{-1})$	0,058	0,088	0,067
Langmuir	$\mathbf{Q}_{\max}(mg.\ g^{-1})$	0,180	0,140	0,190
	R _L	0,105	0,072	0,093
	\mathbf{R}^2	0,957	0,972	0,936
	q_{max} (mg. g^{-l})	10,696 10 ⁻⁵	9,847 10 ⁻⁵	10,667 10 ⁻⁵
Dubinin-Radushkevich	$\beta (mole/kJ)^2$	1,854	1,164	1,375
	E _D (<i>kJ/mole</i>)	0,519	0,655	0,603
	\mathbf{R}^2	0,385	0,298	0,464

Selon les valeurs du coefficient de détermination \mathbb{R}^2 , on constate que le modèle de Langmuir donne de bonnes représentation de l'adsorption des composés phénoliques totaux 0,957 (N_I); 0,972 (N_3) et 0,936 (\mathbb{R}). Le facteur de séparation adimensionnel \mathbb{R}_L confirme que cette isotherme est favorable car sa valeur mesurée se trouve entre le zéro et un. A savoir que le modèle de Langmuir est établie sur les hypothèses suivantes: l'équivalence de tous les sites d'adsorption, la nondépendance de l'énergie d'adsorption avec le taux de couverture de la surface, l'absence des interactions entre les espèces adsorbées et adjacents sur la surface, la réversibilité de l'adsorption qui est donc essentiellement physique et l'uniformité de la surface du solide.

Toutefois, l'isotherme de Freundlich a fourni une adéquation meilleure pour l'adsorption des CPT sur le sol R car la valeur du coefficient de détermination R^2 est la plus proche de l'unité (0,957). La classification de ces isothermes (L) confirme la lenteur du procédé car les forces d'attraction entre les molécules adsorbées sont faibles.

III.1.7. Application des modèles cinétiques d'adsorption

Afin de clarifier le mécanisme de la cinétique d'adsorption des CPT sur les trois adsorbants, quatre modèles cinétiques ont été appliqués aux données expérimentales: le pseudopremier ordre, le pseudo ordre de Lagergren, la diffusion intra-particulaire et la diffusion externe. Les tracés obtenus sont donnés dans la figure C.III.10.

Figure C.III.10. Linéarisation cinétique de l'adsorption classique des CPT sur des sols naturels: pseudo-premier ordre (*a*), pseudo-second ordre (*b*), diffusion intra-particule (*c*) et diffusion externe (*d*).

Selon ces derniers, on constate que le pseudo-second ordre est approprié pour décrire les réactions d'adsorption des CPT par les trois sols $(N_I, N_3 \text{ et } R)$ car les coefficients de détermination se rapprochent beaucoup plus de l'unité, donc ce modèle décrit bien les résultats empiriques. Les constantes de vitesse pour ce modèle pour l'adsorption des composés phénoliques totaux sur les trois adsorbants ont été calculées à partir des pentes des tracés t/q_t versus t. Les paramètres cinétiques $(k_2, q_e \text{ et } R^2)$ déduites à partir de ce modèle cinétique sont récapitulés dans le tableau C.III.2.

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE
Les coefficients de détermination \mathbf{R}^2 obtenus pour le modèle pseudo-second ordre sont égaux par ordre décroissant à 1,000 ; 0,975 et à 0,971 sur les sols nommés respectivement \mathbf{N}_1 , \mathbf{R} et \mathbf{N}_3 pour l'eau de végétation moderne étudiée.

Les valeurs des quantités adsorbées Q_e calculées par ce modèle sont très proches des valeurs expérimentales 2,671 ; 2,485 et 1,657 mg. g⁻¹ pour N₁, N₃ et **R**, respectivement. Ceci montre que la cinétique d'adsorption est parfaitement décrite par le modèle cinétique du pseudo-second ordre par les trois adsorbants choisis pour mener cette étude.

Adsorbants → ↓ Modèles cinétiques		N ₁	N ₃	R
	$k_1 (min^{-1})$	0,022	0,027	0,021
Pseudo- premier ordre	Q_{max} (mg. g ⁻¹)	0,693	2,793	1,684
	R ²	0,201	0,264	0,214
	$k_2 (g.mg^{-1}.min^{-1})$	0,211	1,479	8,923
Pseudo- second ordre	$q_e (mg. g^{-1})$	2,669	2,583	1,867
	\mathbf{R}^2	1,000	0,971	0,975
	$k_{int} (mg. g^{-1}. min^{-0,5})$	0,068	0,106	0,087
Intra-particulaire	ž	1,571	0,674	0,082
	R ²	0,389	0,689	0,934
	$\mathbf{k}_{\mathbf{b}} (min^{-1})$	0,025	0,025	0,019
Externe	R ²	0,475	0,429	0,377

Tableau C.III.2. Paramètres cinétiques calculés des modèles étudiés pour l'adsorption classiquedes CPT dans l'EUO2 sur les trois adsorbants.

Des résultats similaires ont été observés pour l'adsorption des CPT par la peau de banane, le son de blé et par le charbon actif **[112, 292, 299]**. Selon Ho et McKay **[300]**, l'adsorption est de type chimisorption avec implication des forces de valence par partage ou échange d'électrons entre l'adsorbant et l'adsorbat.

III.2. Etude paramétrique du pouvoir d'adsorption des composés phénoliques par les sols naturels sous activation micro-ondes

III.2.1. Influence du temps de contact sur la capacité d'adsorption des CPT sous avtivation micro-ondes

L'évolution de la quantité absorbée en CPT en fonction de la durée d'agitation est reportée sur la figure C.III.11.

L'analyse des trois courbes montre que la vitesse d'adsorption des CPT par les trois adsorbants $(N_1, N_3 et R)$ évolue rapidement jusqu'à atteindre la saturation en deux étapes.

Les irradiations micro-ondes engendrent la rotation très rapide des molécules. De ce fait, elle crée un chauffage instantané du milieu et un mouvement des chocs supplémentaires entre les molécules, ce qui augmente la probabilité d'interaction et de la vitesse des réactions.

Figure C.III.11. Influence du temps de contact sur l'adsorption des CPT sous activation microondes ($V_a = 250 \text{ tr/min}$; P' = 180 W; m = 0.2 g; $\phi = 180 \text{ }\mu\text{m}$; [CPT] = 663 ppm; v = 20 ml; $pH_{Travail \ EUO2} = 4.93$; $t_{total} = 60 \text{ sec avec des pas de 5 sec}$).

La rétention par l'adsorbant **R** est plus rapide que dans le cas des autres adsorbants **N**₁ ensuite **N**₃. Cette différence de rétention d'adsorption provient de la surface spécifique du sol **R** qui est relativement supérieure $(37, 8 m^2, g)$ à celles des autres sols **N**₁ $(33, 18 m^2, g)$ et **N**₃ $(24, 23 m^2, g)$. En effet, selon la littérature, les irradiations micro-ondes accélèrent les vitesses des réactions et augmentent la capacité d'adsorption [**301**] tout en préservant la structure des pores et les sites

actifs d'adsorption [302].

En comparant nos résultats avec des travaux similaires dans la littérature (*tableau C.III.3, figures C.III.1 et C.III.11 : effet du temps de contact sur l'adsorption des CPT*), nous remarquons que nos échantillons de sol sont efficaces pour éliminer les composés phénoliques des solutions aqueuses sous l'effet des irradiations micro-ondes et non pas dans les conditions classiques.

Auteur	Absorbant		Capacité d'adsorption maximale
Arellano-Cárdenas <i>et al.</i> [303]	Hétéro-structure d'argile poreuse		14,5 mg/g
Chen et al. [304]	Argile solidifiée		8,4 mg/g
Chaudhary et al. [288]	Cendres volantes imprégnées d'aluminium		12,67 mg/g
Ce travail	Sol naturel N1	Ads. Classique	2,67 mg/g
		Ads. Micro-ondes	10,63 mg/g
	Sol naturel N ₃	Ads. Classique	2,49 mg/g
		Ads. Micro-ondes	8,82 mg/g
	Sol naturel R	Ads. Classique	1,66 mg/g
		Ads. Micro-ondes	19,76 mg/g

Tableau C.III.3. Comparaison de la quantité de phénol adsorbée par différent adsorbants.

Finalement, l'utilisation des irradiations micro-ondes a permis de réduire la durée nécessaire pour atteindre l'équilibre.

III.2.2.Influence de la masse sur la capacité d'adsorption des CPT sous activation micro-ondes

Les résultats de la variation du taux d'adsorption des CPT en fonction du poids pour les trois adsorbants sont représentés graphiquement dans la figure C.III.12.

Le taux d'adsorption croit avec l'augmentation du poids d'adsorbant, il augmente environ de 7, 13 et 14 % pour N_1 , N_3 et R, respectivement. Ceci peut s'expliquer par l'augmentation de la grande surface et par conséquent du nombre de sites actifs [296]. Selon la littérature [305], l'adsorption est un phénomène lié à la surface et à la sélectivité des surfaces.

Figure C.III.12. Influence de la masse sur la capacité d'adsorption des CPT sous activation micro-ondes ($V_a = 250 \text{ tr/min}$; P' = 180 W; $\phi = 180 \text{ }\mu\text{m}$; [CPT] = 663 ppm ; v = 20 mL; $pH_{EUO2} = 4,93$; t = 15 sec avec des pas de 5 sec).

III.2.3.Influence de la taille des grains sur la capacité d'adsorption des CPT sous activation micro-ondes

Cet effet a été effectué jusqu'à l'équilibre et les résultats obtenus sont présentés sur la figure C.III.13.

Figure C.III.13. Influence de la taille des grains sur la capacité d'adsorption des CPT sous activation micro-ondes ($V_a = 250 \text{ tr/min}$; P' = 180 W; [CPT] = 663 ppm ; v = 20 mL; $pH_{Travail EUO2} = 4,93$; t = 15 sec avec des pas de 5 sec; m = 2 g).

L'augmentation de la taille des grains influe négativement sur la capacité d'adsorption des CPT. Le taux d'élimination est plus important avec les petites particules ($40 \ \mu m$).

III.2.4. Influence du pH des EUO₂ sur la capacité d'adsorption des CPT sous activation micro-ondes

La représentation graphique de cet effet est donnée dans la figure C.III.14. Les allures de cette dernière montrent l'effet inhibiteur des pH acides (2 et 4 pour les sols N_1 et R). Pour le sol N_3 , l'effet inhibiteur est remarqué à pH = 2 seulement. Au delà de ces pH, les capacités d'adsorptions des CPT sur ces adsorbants augmentent régulièrement pour atteindre les valeurs optimales à pH naturels (4,93) pour les adsorbants N_1 et $R(19,41 et 21,85 mg.g^{-1}, respectivement)$ et pH = 4 pour l'adsorbant restant c.-à-d. N_3 (9,12 mg.g^{-1}).

Figure C.III.14. Influence du pH des EUO₂ sur la capacité d'adsorption des CPT sous activation micro-ondes ($V_a = 250 \text{ tr/min}$; P' = 180 W; [CPT] = 663 ppm ; v = 20 mL; $pH_{Travail EUO2} = 4,93$; t = 15 sec avec des pas de 5 sec ; m = 2 g; $\phi = 40 \mu m$).

Selon Koh *et al.* **[306]**, l'augmentation de la capacité d'adsorption du phénol avec l'augmentation du pH (*modérément acide*) est due au fait que les groupes fonctionnels des surfaces ionisées conduisent à un plus grand pouvoir de rétention vis-à-vis du phénol (*voir paragraphe III.2.4*). Cette étude nous a permis de conclure que les CPT s'adsorbent mieux en milieu légèrement acide.

Selon la littérature **[307, 308]**, les minéraux argileux peuvent être modifiés à pH acide ce qui pourrait augmenter sa capacité d'adsorption et ce en stimulant la formation de sites de bord de feuillet chargé positivement.

La densité des charges induite par les groupements fonctionnels carboxyliques et phénoliques des EUO se manifeste habituellement sous forme d'un colloïde négatif, est réduite par les protons H⁺ libérés à faible pH **[309]**. La figure C.III.14 montre clairement que les composés phénoliques sont mieux éliminés dans une gamme de pH entre 4 et 5.

III.2.5. Influence de la concentration initiale en CPT

La figure C.III.15 représente l'effet de la concentration initiale des composés phénoliques totaux (*17-232 mg. L*⁻¹) sur la capacité d'adsorption des adsorbants naturels nommés respectivement N_1 , N_3 et R. Nous remarquons que la capacité d'adsorption croît avec l'augmentation de la concentration initiale des composés phénoliques totaux. Dans la gamme des concentrations étudiées, il y a apparition de palier pour les trois adsorbants, signifiant le début de saturation.

Figure C.III.15. Influence de la concentration initiale en CPT dans les EUO₂ sur l'adsorption sous activation micro-ondes sur des sols naturels N_1 (*a*) N_3 (*b*) et \mathbf{R} (*c*) $(V_a = 250 \text{ tr/min}; P' = 180 \text{ W}; v = 20 \text{ mL}; t = 15 \text{ sec avec des pas de 5 sec}; m = 2 \text{ g}; \phi = 40 \mu m; pH_{EUO2} = 4 "N_3" et naturel "N_1, R").$

III.2.6. Application des modèles cinétiques d'adsorption sous activation micro-ondes

Les résultats de la cinétique d'adsorption des CPT ont été analysés en appliquant les quatre modèles cinétiques cités dans la partie bibliographique : modèle du pseudo premierordre, modèle du pseudo-second ordre, modèle de diffusion intra-particulaire et modèle de diffusion externe. Elles sont trop rapides par rapport à l'adsorption classique. Les résultats des modèles présentés dans la figure C.III.16 nous permettent de constater que le modèle pseudopremier ordre, intra-particule et externe ne donnent pas satisfaction vu les faibles valeurs des coefficients de détermination \mathbb{R}^2 . Par contre, le modèle pseudo- second ordre reproduit les données expérimentales et ainsi est le modèle le plus adéquat pour décrire la cinétique d'adsorption des trois adsorbants.

Figure C.III.16. Linéarisation cinétique de l'adsorption sous activation micro-ondes des CPT sur des sols naturels : pseudo premier-ordre (a), pseudo second-ordre (b), diffusion intra-particule (c) et diffusion externe (d).

Le tableau C.III.4 regroupe les différents paramètres cinétiques (k_1 , Q_{max} , k_2 , q_e , k_{int} , \check{J} et \mathbb{R}^2) calculés à partir de ces modèles cinétiques. Les coefficients de détermination \mathbb{R}^2 obtenus pour le modèle pseudo-second ordre sont de l'ordre de 0,99. Les quantités d'adsorption déterminées par ce modèle sont proches de celles trouvées expérimentalement (11,689; 8,820 et 21,979 mg. g⁻¹) pour \mathbb{N}_1 , \mathbb{N}_3 et \mathbb{R} , respectivement. Les résultats obtenus confirment que le modèle pseudo second ordre est applicable pour décrire l'adsorption des CPT par les trois naturels sols. Le maximum taux de sorption obtenu est égal à 32,04; 26,60 et 17,63% pour les sols \mathbb{R} , \mathbb{N}_3 et \mathbb{N}_1 , respectivement. Silva *et al.* [310] ont montré que l'adsorption des composés aromatiques sur des supports argileux obéit au modèle cinétique du pseudo-second ordre.

Adsorbants →		N ₁	N_3	R
✓ Modèles cinétiques				
Pseudo- premier ordre	$k_1 (min^{-1})$	0,044	0,065	0,119
	Q_{max} (mg. g^{-1})	0,118	1,605	9,836
	\mathbf{R}^2	-0,070	0,016	0,114
Pseudo- second ordre	$k_2 (g. mg^{-1}. min^{-1})$	12,423 10 ⁻⁵	244,344 10 ⁻⁵	0,766 10 ⁻⁵
	q_{e} (<i>mg.</i> g^{-1})	10,807	8,752	20,602
	\mathbf{R}^2	0,991	0,993	0,991
	$k_{int} (mg. g^{-1}. min^{-0.5})$	1,033	1,049	2,081
Intra-particulaire	ž	5,135	2,455	9,187
	\mathbf{R}^2	0,383	0,701	0,450
	$\mathbf{k}_{\mathbf{b}} (min^{-1})$	0,072	0,099	0,113
Externe	R ²	0,283	0,534	0,585

 Tableau C.III.4. Paramètres cinétiques calculés des modèles étudiés pour l'adsorption sous irradiation micro-ondes des CPT dans l'EUO2 sur les trois adsorbants.

III.3. Conclusion

L'objectif de cette étude était de rechercher les conditions optimales pour l'élimination des composés phénoliques issus des effluents oléicoles. Nos essais expérimentaux ont eu pour but de tester d'une part le pouvoir adsorbant des sols naturels dans les conditions classiques et d'autre part d'améliorer les performances de ce test en le combinant avec des rayonnements micro-ondes. Les meilleures corrélations ont été obtenues avec le modèle de Langmuir pour l'adsorption classique ($R^2 > 0,95$) sur les sols N_1 et N_3 contrairement aux modèles de Freundlich et de Dubinin-Radushkevich ($R^2 < 0,65$). Le sol R peut être représenté par le modèle de Freundlich ($R^2 \ge 0,96$) et le modèle de Langmuir ($R^2 > 0,93$). Ce dernier est confirmé par la valeur du coefficient adimensionnel R_L .

La cinétique d'adsorption a été plus rapide dans l'adsorption sous activation micro-ondes (*quelques secondes*) contrairement au mode classique où l'adsorption a été relativement rapide que pour le sol N_I (*1 heure*). Le modèle pseudo- second ordre fournit la meilleure corrélation. Il représente le mieux la cinétique d'adsorption par les trois adsorbants naturels (N_I , N_3 et R) et ceci pour les deux modes d'adsorption étudiés (*classique et sous irradiations micro-ondes*).

Dans l'adsorption classique, les meilleurs résultats ont été obtenus pour un poids avoisinant les 3,5 g et une faible taille granulométrique ($40 \ \mu m$). Le pH optimal pour l'élimination des CPT par les sols naturels a été le pH naturel de l'effluent oléicole (4,55). Par contre dans l'adsorption sous irradiations micro-ondes, les meilleurs résultats ont été obtenus pour un poids de 2 g et une faible taille granulométrique ($40 \ \mu m$). Ici, le pH optimal pour l'élimination des CPT a été le pH naturel (4,93) de l'effluent oléicole à la période de travail pour les sols N₁, **R** et pH = 4 pour le sol N₃.

Les irradiations micro-ondes accélèrent la réaction et ce en réduisant le temps mais ne montre pas satisfaction car l'élimination des CPT est plus importante dans l'adsorption classique (44,17; 65,88 et 70,81 % pour les sols R, N_3 et N_1 , respectivement) que dans l'adsorption sous irradiations micro-ondes (32,04; 26,60 et 17,63 % pour les sols R, N_3 et N_1 , respectivement).

Les sols naturels sont des matériaux non couteux et leurs régénérations ne sont pas nécessaires. Il est donc recommandé de les valoriser en les utilisant comme adsorbants dans les unités d'extraction de l'huile d'olive.

CONCLUSION GENERALE

CONCLUSION GENERALE

Les effluents oléicoles provoquent des dommages dans l'environnement à cause de leurs charges en matières organiques toxiques et faiblement biodégradables. Pour remédier ce problème, de nombreux travaux ont été consacrés à l'étude de l'élimination de la toxicité de la matière organique polluante par différentes techniques à savoir les procédés physiques, chimiques, physico-chimiques et biologiques.

Ce travail a pour but le traitement des effluents oléicoles par une méthode nucléaire (*irradiation gamma*) et conventionnelle (*adsorption sur des matériaux naturels*) afin de réduire la matière organique particulièrement les composés phénoliques totaux, qui vont des monoaromatiques jusqu'aux polyphénols de hauts poids moléculaires, dans les eaux de pressage de l'huile d'olive sous différentes formes (*moderne ou traditionnel*).

Dans ce but, nous avons pu tester les capacités d'éliminations des CPT par irradiation gamma. Pour cela, les essais se sont déroulés sur des solutions réelles (*cas de l'effluent oléicole moderne*) et synthétiques (*cas de l'acide gallique*). Nous avons ainsi démontré que la dilution permet d'obtenir un taux d'élimination plus important surtout lorsqu'il s'agit d'un seul noyau aromatique. Cependant, la dégradation des composés phénoliques est fortement dépendante du nombre de cycle aromatique et de la teneur des CPT. A 80 kGy, le taux d'élimination des polyphénols est supérieur à 90 % (*79 ppm*). Par contre pour les mono-phénols, il est de 100 % seulement à 30 kGy et pour une teneur égale à 121 ppm. L'analyse infrarouge réalisée sur l'effluent oléicole avant et après irradiation gamma confirme la lenteur de la réduction de la matière organique pour les rejets bruts (*8,16 %*).

Nous avons ensuite travaillé sur une approche simple de traitement qui est l'adsorption (*classique et sous l'effet des irradiations micro-ondes*) des CPT sur trois adsorbants naturels (*sols*) nommés N_1 , N_3 et R. Ces derniers ont été choisis afin de réduire les coûts et de simplifier le processus de traitement des eaux de rejet oléicoles. Cette étude a montrée que le phénomène appliqué dépend fortement de certains paramètres réactionnels tels que le temps de contact, le pH des effluents, le poids de l'adsorbant, la taille granulométrique de l'adsorbant mais aussi de la concentration des composés phénoliques totaux dans les rejets oléicoles. Les résultats ont montré que la rétention des CPT est plus rapide dans les conditions sous irradiation micro-ondes que dans les conditions classiques. L'équilibre est atteint au bout de 5 à 10 secondes contrairement à l'adsorption classique ou le plus court temps d'équilibre est de 2 heures. L'élimination des CPT

par l'adsorption classique est meilleure que l'adsorption sous irradiation micro-ondes. La quantité de polluant absorbée dépend de la concentration de l'adsorbat en solution. Plus, le poids est élevé plus la capacité d'adsorption est importante. La fraction fine favorise l'adsorption. L'étude de l'effet du pH a montré que l'adsorption est favorisée dans la gamme du pH comprise entre 4- 5 où le taux d'élimination des CPT a atteint son maximum.

Les résultats de l'étude cinétique pour l'ensemble des polluants, montrent que la rétention est très rapide dans les conditions sous irradiation micro-onde, elle est presque instantanée. Les régressions linéaires ont montré que les cinétiques sont contrôlées par le modèle du pseudodeuxième ordre. Cela est clairement confirmé par les valeurs des coefficients de détermination correspondants à chaque modèle.

L'isotherme d'adsorption pour les CPT a été étudiée. Pour les concentrations choisies, les données expérimentales sont bien reproduites dans les conditions classiques par le modèle de Langmuir pour les adsorbants N_1 (0,180 mg. g⁻¹), N_3 (0,140 mg. g⁻¹) et par le modèle de Freundlich pour l'adsorbant **R**. L'adsorption avec ce dernier est faible car la constante 1/n est inférieure à 1. Le modèle de Langmuir peut être décrit aussi sur ce sol (**R**) car $R^2 = 0,94$. Le facteur de séparation adimensionnel confirme l'application de ce modèle vu que **R**_L est compris entre zéro et un, donc favorable.

Au vu de ces résultats, on conclut que le procédé d'adsorption classique est lent et mieux comparé à l'adsorption sous l'effet des irradiations micro-onde qui est plus que rapide. Le taux d'élimination des CPT est acceptable dans les conditions classiques car il atteint les 71 % sur le sol N_1 . Aussi, le traitement des effluents oléicoles avec l'irradiation gamma pourrait être davantage étudié à plus grande échelle. De plus, une évaluation de la toxicité comparée entre les effluents bruts et traités devrait compléter cette évaluation préliminaire.

En perspective, l'expérience acquise durant la réalisation de ce travail dans le domaine du génie des procédés associée aux méthodes développées telles que les irradiations gamma et l'activation par les micro-ondes pour la réduction et pourquoi pas l'élimination des polluants organiques particulièrement les composés phénoliques totaux permettent de progresser vers une meilleure connaissance de la dégradation des polluants. Il se trouve que l'irradiation gamma génère d'autres composés organiques dans la matrice étudiée, donc, il est nécessaire d'étudier les effluents après leurs irradiations gamma.

Cette étude n'est qu'une tentative qui avait comme objectif la réduction de la teneur des CPT issues des rejets oléicoles par irradiation gamma et par des tests d'adsorption sur des sols naturels comme adsorbant en vue de la dépollution des eaux usées. Le travail réalisé a mis en

évidence la nécessité de poursuivre l'étude dans le proche avenir par des essais expérimentaux sous conditions contrôlées de laboratoire (*batch*), puis en conditions réelles, sur les mêmes matériaux mais en apportant des modifications. Ces matériaux pourraient ainsi être comparés du point de vue de leur affinité et de leur capacité réelle d'adsorption. Les résultats permettraient ont de sélectionner les matériaux à tester en pilote de taille semi industrielle (*au plus proche des conditions réelles*) pour évaluer les capacités d'adsorption.

REFERENCES BIBLIOGRAPHIQUES

RÉFÉRENCES BIBLIOGRAPHIQUES

- 1. JORADP n°26 du 23 avril (2006) Décret exécutif n°06-141 du 20 Rabie El Aouel 1427 correspondant au 19 avril 2006.
- 2. JORADP n°36 du 21 juin (2009) Décret exécutif n°09-209 du 17 Journada Ethania 1430 correspondant au 11 juin 2009.
- 3. Chartzoulakis K., Psarras G., Moutsopoulou M., Stefanoudaki E. (2010) Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agriculture, Ecosystems and Environment, 138:293–298.
- 4. Karpouzas D.G., Ntougias S., Iskidoua E., Rousidou C., Papadopoulou K. K., Zervakis G.I., Ehaliotis C. (2010) Olive mill wastewater affects the structure of soil bacterial communities. Applied Soil Ecology, 45:101–111.
- Tsagaraki E., Lazarides H.N., Petrotos K.B. (2007) Olive mill wastewater treatment. 3:133-157. DOI: 10.1007/978-0-387-35766-9._8. In: Russ W. & Schnappinger M., Utilization of by-products and treatment of waste in the food industry. Oreopoulou V. & Russ W. (Eds.), Springer US. DOI: 10.1007/978-0-387-35766-9.
- 6. ITAFV, Consulté le 15 juillet 2018, http://www.algerie360.com/algerie/lextension-de-loleiculture-exige-une-organisationinterprofessionnelle/.
- Cardinali A., Cicco N., Linsalata V., Minervini F., Pati S., Pieralice M., Tursi N., Lattanzio V. (2010) Biological Activity of High Molecular Weight Phenolics from Olive Mill Wastewater. J. Agric. Food Chem. 58, 8585–8590. DOI: 10.1021/jf101437c.
- 8. Dermeche S., Nadour M., Larroche C., Moulti-Mati F., Michaud P. (2013) Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48:1532-1552.
- El-Abbassi A., Kiai H., Hafidi A. (2012) Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 132(1):406-412. DOI: 10.1016/j.foodchem.2011.11.013.
- 10. Justino C.I.L., Pereira R., Freitas A.C., Rocha-Santos T.A.P., Panteleitchouk T.S.L., Duarte A.C. (2012) Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicology, 21:615–629. DOI: 10.1007/s10646-011-0806-y.
- 11. Mekki A., Dhouib A., Sayadi S. (2007) Polyphenols dynamics and phytotoxicity in a soil amended by olive mill wastewaters. J Environ Manag. 84:134–140.
- Belaid C., Khadraoui M., Mseddi S., Kallel M., Elleuch B., Fauvarque J.F. (2013) Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. J Environ Sci. 25:220– 230. DOI: 10.1016/S1001-0742(12)60037-0.
- Belaid C., Kallel M., Elleuch B. (2002) Identification de nouveaux composés phénoliques présents dans les rejets liquides d'huileries d'olive (Margine). Rev Franco Ecol Ind. 27:30–34.
- 14. De Marco E., Savarese M., Paduano A., Sacchi R. (2007) Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104:858–867.

- 15. Kallel M., Belaid C., Mechichi T., Ksibi M., Elleuch B. (2009) Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chem Eng J. 150:391–395.
- 16. Niaounakis M., Halvadakis C.P. (2006) Olive processing waste management—literature review and patent survey (Waste Management Series, 5). Waste Manag Res. 24:402.
- 17. El-Motaium R.A. (2000) Alleviation of environmental pollution using nuclear techniques recycling of sewage water and sludge in agriculture: a case study. ICEHM, Cairo University, Egypt, pp.323–332.
- 18. Lessel T.H. (1988) In: TECDOC-454, Technical and economic comparison of irradiation and conventional methods. Report of Advisory Group Meeting, Dubrovnik, Yugoslavia.
- 19. Abo-State M.A., El-Gamal M.S., El-Danasory A., Mabrouk M.A. (2014) Radio-impact of gamma radiation on pathogenic bacterial strains isolated from Rosetta Branch and its Drains of River Nile water. J Sci Res. 21:776–781.
- 20. Furgeri C., Nunes T.C.F., Fanaro G.B., Souza M.F.F, Bastos D.H.M., Villavicencio A.L.C.H. (2009) Evaluation of phenolic compounds in mate' (Ilex paraguariensis) processed by gamma radiation. Radiat Phys Chem. 78:639–641.
- 21. Pandya G.A., Kapila S., Kelkar V.B., Negi S., Mod V.V. (1987) Inactivation of bacteria in sewage sludge by gamma radiation. Environ Pollut. 43:281–290.
- 22. El-Motaium R.A. (2006) Application of nuclear techniques in environmental studies and pollution control. In: Proceedings of the 2nd environmental physics conference, Alexandria, Egypt, pp.169–182.
- 23. Mussad R.M.A (2004) Disinfection of sewage water and sludge using gamma radiation. Thesis of science in fulfillment of the requirements, Sudan.
- 24. Roig A., Cayuela M.L., Sánchez-Monedero M.A. (2006) An overview on olive mill wastes and their valorisation methods. Waste Management, 26:960-969. DOI: 10.1016/j.wasman.2005.07.024.
- 25. Achak M., Ouazzani N., Yaacoubi A., Mandi L. (2008) Modern olive mill effluent characterization and their treatment by coagulation-floculation using lime and alumunium sulfate. Revue des Sciences de l'Eau, 21:53-67.
- 26. Mantzavinos D., Kalogerakis N. (2005) Treatment of olive mill effluent. Part I. Organic matter degradation by chemical and biological processes-an overview. Environment International, 31:289-295. DOI: 10.1016/j.envint.2004.10.005.
- 27. Yaakoubi A., Chahlaoui A., Rahmani M., Elyachioui M., Oulhote Y. (2009) Effet de l'épandage des margines sur la microflore du sol. Agro solutions, Ressources, 20(1):35-43.
- 28. Benitez F.J., Beltrán-Heredia J., Torregrosa J., Acero J.L. (1996) Treatment of wastewaters from olive oil mills by UV radiation and by combined ozone-UV radiation. Toxicological and Environmental Chemistry 61:173-185. DOI: 10.1080/02772249709358483.
- 29. Lafi W.K., Shannak B., Al-Shannag M., Al-Anber Z., Al-Hasan M. (2009) Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Separation and Purification Technology, 70:141–146. DOI: 10.1016/j.seppur.2009.09.008.
- Rivas F.J., Beltrán F.J., Gimeno O., Frades J. (2001) Treatment of olive oil mill wastewater by Fenton's reagent. J Agric Food Chem. 49:1873-1880. DOI: 10.1021/jf001223b.
- 31. Melo R., Leal J.P., Takács E., Wojnárovits L. (2009) Radiolytic degradation of gallic acid and its derivatives in aqueous solution. J Hazard Mater. 172:1185–1192.
- 32. Melo R.P., Leal J.P., Botelho M.L. (2011) Radiolytic degradation mechanism of gallic acid and its end-products. Rapid Commun Mass Spectrom. 25:218–222.

- 33. Hamdi M., Khadir A., and Garcia J.-L. (1991) The use of *Aspergillus niger* for the bioconversion of olive mill waste-waters. Appl Microbiol Biotechnol. 34:828-831.
- 34. Hamdi M. (1993) Future prospects and constraints of olive mill wastewaters use and treatment: A review. Bioprocess Engineering, 8 (5-6):209-214. DOI: 10.1007/bf00369831.
- 35. Kestioğlu K., Yonar T., Azbar N. (2005) Feasibility of physico-chemical treatment and Advanced Oxidation Processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochemistry, 40:2409–2416.
- 36. Arabi M., Elias A., Kamel Z., Ait younes Y., Mansouri B., Toumert I. (2018) Characterization of olive mill wastewater and gamma irradiation effects on some parameters of its composition. Journal of Radioanalytical and Nuclear Chemistry. 317(2):1095–1106.
- 37. Caqueret V., Bostyn S., Cagnon B., Fauduet H. (2008) Purification of sugar beet vinasse-Adsorption of polyphenolic and dark colored compounds on different commercial activated carbons. Bioresource Technology, 99(13):5814-5821. DOI: 10.1016/j.biortech.2007.10.009.
- 38. Fedeli E. et Camurati F. (1981) Valorisation des margines et des grignons épuisés par récupération de quelques composants. in. Séminaire International sur la valorisation des sous-produits de l'olivier PNUD/FAO/COI. Monastir, Tunisie.
- 39. Codounis M. (1973) Report on the possibilities of utilizing residues of the Greek agricultural industries (plant production) as feedingstuffs. Ministry of National Economy, Athens (In Greek).
- 40. Cucurachi A. (1973) Aspetti del problema dello smaltimento delle acque di vegetazione delle olive in relazione agli inquinamenti, con particolare referimento alla Regione Abruzzo. Ann. Ist. Sper. Elaiot. 3:69–86.
- 41. Fiestas Ros de Ursinos J. (1981) Différentes utilisations des margines: recherches en cours, résultats obtenus et applications. In. Séminaire International sur la valorisation des sous-produits de l'Olivier- PNUD/FAO/COI- Monastir, Tunisie, pp.93–95.
- 42. Ojeil A., El Darra N., El Hajj Y., Bou Mouncef P., Rizk T.J., Maroun R.G. (2010) Identification et caractérisation de composes phénoliques extraits du raisin château ksara. Lebanese Science Journal, 11(2):117-131.
- 43. Dai J., Mumper R.J. (2010) Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15:7313-7352. DOI: 10.3390/molecules15107313.
- 44. Ignat I., Volf I., & Popa V.I. (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126(4):1821–1835. DOI: 10.1016/j.foodchem.2010.12.026.
- 45. Macheix J.-J., Fleuriet A., Jay-Allemand C. (2005) Les composés phénoliques des végétaux : un exemple de métabolites secondaires d'importance économique. Presses polytechniques et universitaires romandes. Collection biologie, 185p. Consulté le 16/01/2019.
- 46. Teissedre P.L., Waterhouse A.L., Walzem R.L., German J.B., Frankel E.N., Clifford A.J. (1995) Composés phénoliques du raisin et du vin et santé. Académie Amorim.
- 47. El Gharras, H. (2009) Polyphenols: food sources, properties and applications a review. International Journal of Food Science & Technology, 44(12):2512–2518. DOI: 10.1111/j.1365-2621.2009.02077.x.
- 48. Yi W., Fischer J., Akoh C.C. (2005) Study of anticancer activities of muscadine grape phenolics in vitro. J. Agric. Food Chem. 53(22): 8804–8812. DOI: 10.1021/jf0515328.
- 49. Scalbert A., Williamson G. (2000) Dietary intake and bioavailability of polyphenols. Journal of Nutrition, 130:2073-2085.

- 50. Stoclet J.-C., Chataigneau T., Ndiaye M., Oak M.-H., El Bedoui J., Chataigneau M., Schini-Kerth V.B. (2004) Vascular protection by dietary polyphenols. European Journal of Pharmacology, 500:299-313. DOI: 10.1016/j.ejphar.2004.07.034.
- 51. Leifert W.R, Abeywardena M.Y. (2008) Cardioprotective actions of grape polyphenols. Nutrition Research, 28:729–737.
- 52. Ramassamy C. (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. European Journal of Pharmacology, 545:51–64.
- 53. Achat S. (2013) Polyphénols de l'alimentation : extraction, pouvoir antioxydant et interactions avec des ions métalliques. Thèse de Doctorat de l'Université A.MIRA-BEJAIA.
- 54. Andrich G., Stevanin E., Zinnai A., Venturi F. and Fiorentini R. (2003) Extraction kinetics of natural antioxidants from potato industry by-products. In: France In the 6th International Symposium on Supercritical Fluids, pp.159-163.
- 55. Shahidi F., Ambigaipalan P. (2015) Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects A review. Journal of Functional Foods, 18, 820–897. DOI: 10.1016/j.jff.2015.06.018.
- 56. Proestos C., Bakogiannis A., Psarianos C., Koutinas A.A., Kanellaki M., Komaitis M. (2005) High performance liquid chromatography analysis of phenolic substances in Greek wines. Food Control, 16:319–323. DOI: 10.1016/S0956-7135(04)00076.
- 57. Rodis P.S., Karathanos V.T., Mantzavinou A. (2002) Partitioning of Olive Oil Antioxidants between Oil and Water Phases. J. Agric. Food Chem. 50:596–601.
- 58. Robbins R.J. (2003) Phenolic Acids in Foods: An Overview of Analytical Methodology J. Agric. Food Chem. 51:2866–2887.
- 59. Ding Y., Yao H., Yao Y., Fai L.Y., Zhang Z. (2013) Protection of Dietary Polyphenols against Oral Cancer. Nutrients, 5(6):2173-2191. DOI: 10.3390/nu5062173.
- Bröhan M., Callemien D., Cissé M., Collin S., Counet-Kersch C., Crouzet J., Jerkovic S. et Laille J. (2011) Polyphénols et procédés. Editions TEC & DOC, Lavoisier. ISBN : 978-2-7430-1338-7. ISSN : 0993-3948 (AUF) p6.
- 61. SFA (Société Française des Antioxydants) (2005) Conte rendu de la conférence polyphénols (23/24 NOV). Institut des corps gras. ITERG.
- 62. Gharras H. (2009) Polyphenols: food sources, properties and applications a review. International Journal of Food Science and Technology, 44:2512–2518.
- 63. El Darra N. (2013) Les composés phénoliques des raisins : étude du potentiel qualitatif et des procédés émergeants d'extraction. Thèse de Doctorat de l'Université de Technologie Compiègne.
- 64. Aissam H. (2003) Etude de la biodégradation des effluents des huileries (margines) et leur valorisation par production de l'enzymz tannase. Thèse de Doctorat de l'Université Sidi Mohamed Ben Abdellah.
- 65. Casa R., D'Annibale A., Pieruccetti F., Stazi S.R., Giovannozzi S., Lo Cascio B.,(2003) Reduction of the phenolic components in olive-mill wastewater by enzymatic treatment and its impact on durum wheat (*Triticum durum* Desf.) germinability. Chemosphere. 50:959-66.
- 66. D'Annibale A., Casa R., Pieruccetti F., Ricci M. et Marabottini R. (2004) *Lentinula edodes* removes phenols from olive-mill wastewater: impact on durum wheat (*Triticum durum* Desf.) germinability. Chemosphere. 54:887-894. DOI: 10.1016/j.chemosphere.2003.10.010.

- 67. Fki I., Allouche N., Sayadi S. (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem. 93:197-204. DOI: 10.1016/j.foodchem.2004.09.014.
- 68. Azabou S., Najjar W., Gargoubi A., Ghorbel A., Sayadi S. (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Part II. Degradation and detoxification of low-molecular mass phenolic compounds in model and real effluent. Applied Catalysis B: Environmental. 77(1-2):166-174. DOI: 10.1016/j.apcatb.2007.07.008.
- 69. El Hajjouji H., Pinelli E., Guiresse M., Merlina G., Revel J.-C., Hafidi M. (2007) Assessment of the genotoxicity of olive mill waste water (OMWW) with the Vicia faba micronucleus test. Mutation Research, 634:25–31.
- 70. Ergül F.E., Sargin S., Öngen G., Sukan F.V. (2009) Dephenolisation of olive mill wastewater using adapted *Trametes versicolor*. International Biodeterioration and Biodegradation. 63:1-6. DOI: 10.1016/j.ibiod.2008.01.018.
- 71. Long H.S., Tilney P.M., Van Wyk B.-E. (2010) The ethnobotany and pharmacognosy of Olea europaea subsp. africana (Oleaceae). South African Journal of Botany, 76:324–331.
- 72. Ranalli A. (1991) The effluent from olive mills: proposals for re-use and purification with reference to Italian legislation. Olivae, 38:26-40.
- 73. Ben Sassi A., Boularbah A., Jaouad A., Walker G., Boussaid A. (2006) A comparison of Olive oil Mill Wastewaters (OMW) from three different processes in Morocco. Process Biochemistry. 41:74-78. DOI: 10.1016/j.procbio.2005.03.074.
- 74. Filidei S., Masciandaro G., Ceccanti B. (2003) Anaerobic digestion of olive oil mill effluents: evaluation of wastewater organic load and phytotoxicity reduction. Water, Air, and Soil Pollution, 145:79–94. DOI: 10.1023/A:1023619927495.
- 75. Slim K., Atoui A., Temsaha M. (2013) Impact des rejets de margines sur la qualité des eaux du Nahr Hasbani (Sud Liban) par référence spéciale aux indices diatomiques. Nature & Technologie, 9:02-12.
- 76. Angiolini C., Vesprini J., Castagnini P., Torres P., Nucci A., Perini C. (2018) Experimental addition of olive mill waste compost in an old agroecosystem: identifying main shortterm vegetation responses. Agroforest Syst. DOI: 10.1007/s10457-018-0189-7.
- 77. Morisot A, Tournier J.-P. (1986) Répercussions agronomiques de l'épandage d'effluents et déchets de moulins à huile d'olive. Agronomie, 6(3):235–241.
- DellaGreca M., Monaco P., Pinto G., Pollio A., Previtera L., Temussi F. (2001) Phytotoxicity of low-molecular-weight phenols from olive mill waste waters. Bulletin of Environmental Contamination and Toxicology, 67(3):352-359. DOI: 10.1007/s001280132.
- 79. Muscolo A., Panuccio M.R., Sidari M. (2001) The effect of phenols on respiratory enzymes in seed germination respiratory enzyme activities during germination of *Pinus laricio* seeds treated with phenols extracted from different forest soils. Plant Growth Regulation, 35(1):31-35. DOI: 10.1023/A:1013897321852.
- Sampedro I., Aranda E., Martin J., Garcia-Garrido J.M., Garcia-Romero I., Ocampo J.A. (2004) Saprobic fungi decrease plant toxicity caused by olive mill residues. Applied Soil Ecology, 26:149-156. DOI: 10.1016/j.apsoil.2003.10.011.
- 81. Galiatsatou P., Metaxas M., Arapoglou D., Kasselouri-Rigopoulou V. (2002) Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Management, 22:803-812. DOI: 10.1016/S0956-053X(02)00055-7.

- 82. Diamadopoulos E., Samaras P., Sakellaropoulos G.P. (1992) The effect of actived carbon properties on the adsorption of toxic substances. Wat. Sci. Tech. 25:153-160.
- 83. Al Mallah K., Asma O.J., Abu Lail N.I. (2000) Olive mills effluent (OME) wastewater post-treatment using activated clay. Separation and Purification Technology, 20:225-234. DOI: 10.1016/S1383-5866(00)00114-3.
- Drouiche M., LeMignot V., Lounici H., Belhocine D., Grib H., Pauss A., Mameri N. (2004) A compact process for the treatment of olive mill wastewater by combining of UF and UV/H₂O₂ techniques. Desalination, 169:81-88. DOI: 10.1016/j.desal.2004.08.009.
- 85. Dhaouadi H et Marrot B. (2008) Olive mill wastewater treatment in a membrane bioreactor: Process feasibility and performances. Chemical Engineering Journal, DOI: 10.1016/j.cej.2008.04.017.
- Yahiaoui O., Lounici H., Abdi N., Drouiche N., Ghaffour N., Pauss A., Mameri N. (2011) Treatment of olive mill waste water by the combination of ultrafiltration and bipolar electrochemical reactor processes. Chemical Engineering and Processing, 50:37-41. DOI: 10.1016/j.cep.2010.11.003.
- 87. Coskun T., Debik E., Demir N.M. (2010) Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination, 259:65–70.
- 88. Ouabou E., Anouar A. et Hilali S. (2014) Traitement de la margine brute d'huile d'olive par distillation suivi de neutralisation par chaux. Journal of Applied Biosciences, 79:6867–6872. ISSN 1997–5902.
- 89. Israilides C.J., Vlyssides A.G., Mourafeti V.N., Karvouni G. (1997) Olive oil wastewater treatment with the use of an electrolysis system. Bioresource Technology, 61:163-170. DOI: 10.1016/S0960-8524(97)00023-0.
- 90. Khoufi S., Feki F., Sayadi S. (2007) Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes. Journal of Hazardous Materials, 142:58-67. DOI: 10.1016/j.jhazmat.2006.07.053.
- 91. Hanafi F., Sadif N., Assobhei O., Mountadar M. (2009) Traitement des margines par électrocoagulation avec des électrodes plates en aluminium. Revue des sciences de l'eau, 224:473–485. DOI: 10.7202/038326ar.
- 92. Fajardo A.S., Rodrigues R.F., Martins R.C., Castro L.M., Quinta-Ferreira R.M. (2015) Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, 275:331-341. DOI: 10.1016/j.cej.2015.03.116.
- 93. Andreozzi R., Caprio V., Insola A., Marotta R. (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53:51–59.
- 94. Bensalah N., Bedoui A., Gadri A. (2004) Fenton treatment of olive oil mill wastewaterapplicability of the method and parameters effects on the degradation process. Journal of Environmental Sciences, 16(6):942-944.
- 95. Cañizares P., Lobato J., Paz R., Rodrigo M.A., Sáez C. (2007) Advanced oxidation processes for the treatment of olive oil mills wastewater. Chemosphere, 67:832–838. DOI: 10.1016/j.chemosphere.2006.10.064.
- 96. Justino C., Marques A.G., Duarte K.R., Duarte A.C., Pereira R., Rocha-Santos T., Freitas A.C. (2010) Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation. Environ Sci Pollut Res. 17:650–656. DOI: 10.1007/s11356-009-0256-8.
- Morillo J.A., Antizar-Ladislao B., Monteoliva-Sánchez M., Ramos-Cormenzana A., Russell, N.J. (2009) Bioremediation and biovalorisation of olive-mill wastes. App. Microbiol. Biotechnol. 82(1):25–39. DOI: 10.1007/s00253- 008-1801-y. Dans: Otles S.

(2012) Treatment of Olive Mill Wastewater and the Use of Polyphenols Obtained after Treatment. International Journal of Food Studies, 1:85-100.

- 98. Hamdi M., Garcia J.L. (1991) Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters. Bioresource Technology, 38:23–29.
- 99. Gharsallah N., Labat M., Aloui F., Sayadi S. (1999) The effect of Phanerochaete chrysosporium pretreatment of olive mill waste waters on anaerobic digestion. Resources, Conservation & Recycling, 27(1-2):187–192.
- Sayadi S., Allouche N., Jaoua M., Aloui F. (2000) Detrimental effects of high molecularmass polyphenols on olive mill wastewater biotreatment. Process Biochemistry, 35:725– 735. DOI: 10.1016/S0032-9592(99)00134-X.
- 101. Ergüder T.H., Güven E., Demirer G.N. (2000) Anaerobic treatment of olive mill wastes in batch reactors. Process Biochemistry, 36:243-248.
- 102. Zenjari I. (2000). Etude écotoxicologique des effluents liquides des huileries de la ville de Marrakech, impact sur les milieux récepteurs et détoxication. Thèse de Doctorat de l'Université Cadi Ayyad, Marrakech, Maroc, 149p. Dans : El hajjouji H. (2007) Evolution des caractéristiques physico-chimiques, spectroscopiques et écotoxicologiques des effluents d'huileries d'olive au cours de traitements biologique et chimique. Thèse de Doctorat de l'Institut National Polytechnique de Toulouse, 148p.
- 103. Hamdi M. (1993) Valorisation et épuration des effluents des huileries d'olive: l'utilité de la microbiologie industrielle. Olivae, 46:20-24. Dans : El hajjouji H. (2007) Evolution des caractéristiques physico-chimiques, spectroscopiques et écotoxicologiques des effluents d'huileries d'olive au cours de traitements biologique et chimique. Thèse de Doctorat de l'Institut National Polytechnique de Toulouse, 148p.
 - 104. Francesco GL. (1993) Evaluations économiques sur l'innovation technologique. Les problèmes de l'environnement dans le secteur oléicole en Italie. Olivae. 74:15-20. Dans : El hajjouji H. (2007) Evolution des caractéristiques physico-chimiques, spectroscopiques et écotoxicologiques des effluents d'huileries d'olive au cours de traitements biologique et chimique. Thèse de Doctorat de l'Institut National Polytechnique de Toulouse, 148p.
 - 105. Ruiz J.C., De la Rubia T., Pérez J., Lopez J.M. (2002) Effect of olive oil mill wastewater on extracellular ligninolytic enzymes produced by Phanerochaete flavido-alba. FEMS Microbiology Letters, 212:41-45. DOI: 10.1111/j.1574-6968.2002.tb11242.x.
 - 106. D'Annibale A., Sermanni G.G., Federici F., Petruccioli M. (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource Technology, 97(15):1828–1833. DOI: 10.1016/j.biortech.2005.09.001.
 - 107. Elisashvili V., Kachlishvilia E., Asatiania M.D. (2018) Efficient production of ligninmodifying enzymes and phenolics removal in submerged fermentation of olive mill byproducts by white-rot basidiomycetes. International Biodeterioration & Biodegradation, 134:39–47. DOI: 10.1016/j.ibiod.2018.08.003.
 - 108. Knupp G., Rücker G., Ramos-Cormenzana A., Garrido Hoyos S., Neugebauer M., Ossenkop T. (1996) Problems of identifying phenolic compounds during the microbial degradation of olive mill wastewater. International Biodeterioration & Biodegradation, 38(3-4):277-282. DOI: 10.1016/S0964-8305(96)00062-5.
 - 109. Turano E., Curcio S., De Paola M.G., Calabrò V., Iorio G. (2002) An integrated centrifugation-ultrafiltration system in the treatment of olive mill wastewater. Journal of Membrane Science, 209:519- 531. DOI: 10.1016/S0376-7388(02)00369-1.
 - 110. Pizzichini M., Russo C. (2005) Process for recovering the components of olive mill wastewater with membrane technologies. WIPO patent WO 2005/123603 A1.

- 111. Agalias A., Magiatis P., Skaltsounis A.L., Mikros E., Tsarbopoulos A., Gikas E., Spanos I. and Manios T. (2007) A new process for the management of olive oil mill waste water and recovery of natural antioxidants. Journal of Agricultural and Food Chemistry, 55:2671-2676. DOI: 10.1021/jf063091d.
- Achak M., Hafidi A., Mandi L. & Ouazzani N. (2014) Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran. Desalination and Water Treatment, 52:2875-2885. DOI: 10.1080/19443994.2013.819166.
- 113. Fernández-Gutiérrez A., Segura-Carretero A., Lozano Sánchez J. (2013) Procedimiento para filtrar aceite usando tortas filtrantes de almidón nativo. Spain Patent ES 2 374 247 B1.
- 114. Ezelin De Souza K. (1998) Contribution à la valorisation de la bagasse par transformation biologique et chimique. Valeur agronomique des composts et propriétés suppressives visvis du champignon phytopathogène Fusarium solanium. Thèse de troisième cycle. Institut national polytechnique de Toulouse, 386p. Dans : EL hajjouji H. (2007) Evolution des caractéristiques physico-chimiques, spectroscopiques et écotoxicologiques des effluents d'huileries d'olive au cours de traitements biologique et chimique. Thèse de Doctorat de l'Institut National Polytechnique de Toulouse.
- 115. ODI, 2000. Dans : Ranalli G., Alfano G., Bahammi M., Belli C., Lustrato G., (Septembre 2002– Juillet 2003) Gestion des sous-produits de la filière oléicole au Maroc. Identification des solutions eco-compatibles et économiquement soutenables pour la valorisation des résidus de l'huile d'olive et la réduction de l'impact environnemental dans les régions de Fès, Meknès et Marrakech.
- 116. Abichou M., Ben Rouina B., Taamallah H. et Gargouri K. (2003) Essais de valorisation des margines par épandage en oliveraies. Revue Ezzaitouna, 9 (1 et 2).
- 117. Sahraoui H., Jrad A. et Mellouli H.J. (2012) Épandage des margines sur les sols agricoles: impacts environnementaux microbiologiques. Afrique SCIENCE, 08(1):97–106.
- Belaqziz M., El-Abbassi A., Lakhal E., Agrafioti E.K., Galanakis C.M. (2016) Agronomic application of olive mill wastewater: Effects on maize production and soil properties. Journal of Environmental Management, 171:158-165. DOI: 10.1016/j.jenvman.2016.02.006.
- 119. El- Abbassi A., Saadaoui N., Kiai H., Raiti J., Hafidi A. (2017) Potential applications of olive mill wastewater as biopesticide for crops protection. Science of the Total Environment, 576:10–21. DOI: 10.1016/j.scitotenv.2016.10.032.
- Caporaso N., Formisano D. & Genovese A. (2017) Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Critical Reviews in Food Science and Nutrition. DOI: 10.1080/10408398.2017.1343797.
- 121. Hamza M. & Sayadi S. (2014) Valorisation of olive mill wastewater by enhancement of natural hydroxytyrosol recovery. International Journal of Food Science and Technology, 50(3):826-833. DOI: 10.1111/ijfs.12704.
- 122. Mirabella N., Castellani V., Sala S. (2014) Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65:28-41. DOI: 10.1016/j.jclepro.2013.10.051.
- 123. Troise A.D., Fiore A., Colantuono A., Kokkinidou S., Peterson D.G. and Fogliano V. (2014) Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk. Journal of Agricultural and Food Chem. 62:10092-10100. DOI: 10.1021/jf503329d.
- Galanakis C.M., Tornberg E., Gekas V. (2010) Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT - Food Science and Technology, 43:1018–1025. DOI: 10.1016/j.lwt.2009.09.011.

- 125. Barbaro G., Savarese M., Paduano A., Sacchi R., Galdi M., & Incarnato M. (2015) Realization of a natural antioxidant based biodegradable active coating for shelf life prolongation of fatty foods. Conference: Shelf Life International Meeting (SLIM for Young), At Vimercate (Monza).
- 126. Rodrigues F., Nunes M.A. da M., Olveira M.B.P.P. (2017) Applications of recovered bioactive compounds in cosmetics and health care products. In: C. M. Galanakis (Ed.), Olive Mill Waste: Recent Advances for Sustainable Management (Chap.12, pp.255-274). DOI: 10.1016/b978-0-12-805314-0.00012-1.
- Mandeau A., Black D. (2015) Utilisation cosmetique d'un extrait de margines d'olivier pour redensifier le cheveu. WO 2015/144656 (01.10.2015 Gazette 2015/39); Fascicule de brevet europeen, EP 3 122 427 B1. https://data.epo.org/publicationserver/rest/v1.0/publication-dates/20180725/patents/EP3122427NWB1/document.pdf. (Consulté le 13/ 02/ 2019).
- 128. Guibert M., Jean Y., Andrieu D., Cailly L., Chaléard J.-L., *et al.* (2011) Dynamiques des espaces ruraux dans le monde. ISBN: 978-2-200-27296-8. Armand Colin Ed. P1-10.
- 129. El Azzouzi M. (1999) Persistance, mobilité et photodégradation de l'imazapyr dans le sol et l'eau. Thèse d'état.
- 130. El Arfaoui Benaomar A. (2010) Etude des processus d'adsorption et de désorption de produits phytosanitaires dans des sols calcaires. Thèse de Doctorat de l'Université de Reims Champagne-Ardenne.
- 131. Gaombalet J. (2004) Le gonflement des argiles et ses effets Sur les ouvrages souterrains de stockage. Thèse de Doctorat de l'Ecole Polytechnique. www.iaea.org/inis/collection/NCLCollectionStore/_Public/37/038/37038435.pdf.
- 132. Cojean R., Audiguier M., Geremew Z., Laribi S., Thénevin I., Cui Y.J., Tang A.M., Ta A.N., Heck J.-V., Taillefer N., Deffontaines B., Kaveh F., Fruneau B. (2009) Rapport collectif coordonné par Cojean R., en partenariat entre Armines– Mines ParisTech/ Centre de Geosciences, l'Ecole des Ponts ParisTech/ UR Navier- Géotechnique, le CSTB et UPE-MLV/OTIG. Rapport de synthèse final du projet «Alea et risque sécheresse»- Projet Fondation MAIF. Rapport N°. R090130RCOJ, Centre de Géosciences, Mines ParisTech, Fontainebleau, France.
- 133. Stucki J. W., Lee K., Zhang L., Larson R. A. (2002) Effects of iron oxidation states on the surface and structural properties of smectites. Pure Appl. Chem. 74(11):2145-2158.
- 134. Perronnet M. (2004) Réactivité des matériaux argileux dans un contexte de corrosion métallique. Application au stockage des déchets radioactifs en site argileux. Thèse de Doctorat de l'I.N.P.L. de l'Institut National Polytechnique de Lorraine.
- 135. Gautier M. (2008) Interactions entre argile ammonie et molécules organiques dans le contexte du stockage des déchets. Thèse de doctorat. Université d'Orléans, 276 p..
- Nelson S.A. (2015) Phyllosilicates (Micas, Chlorite, Talc, & Serpentine). Phyllosilicates, Mineralogy 1-7. https://www.tulane.edu/~sanelson/eens211/phyllosilicates.pdf. Consulté le 15 juillet 2019.
- 137. Jozja N. (2003) Etude de matériaux argileux Albanais. Caractérisation "multi-échelle" d'une bentonite magnésienne. Minéralogie. Thèse de Doctorat de l'Université d'Orléans.
- 138. Brindley G.W., Brown G. (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical society. (Consulté le 18/02/2019).
- 139. https://fr.wikipedia.org/wiki/Kaolinite. Consulté le 30/12/2019.
- 140. https://fr.wikipedia.org/wiki/Serpentite. Consulté le 30/12/2019.
- 141. https://fr.wikipedia.org/wiki/Talc. Consulté le 30/12/2019.
- 142. https://fr.wikipedia.org/wiki/Vermiculite. Consulté le 30/12/2019.

- 143. https://fr.wikipedia.org/wiki/Smectite. Consulté le 30/12/2019.
- 144. https://fr.wikipedia.org/wiki/Vermiculite. Consulté le 30/12/2019.
- 145. https://fr.wikipedia.org/wiki/Groupe_des_chlorites. Consulté le 30/12/2019.
- 146. Mckenzie R.C. (1975) The classification of soil silicates and oxydes. In: Soil components vol. 2; Inorganic components. Gieseking J. E. (Ed.) Spring-Verlag, New York, Berlin, Heidelberg, 1-25. Dans : Jozja N. (2003) Etude de matériaux argileux albanais. Caractérisation "multi-échelle" d'une bentonite magnésienne. Minéralogie. Thèse de Doctorat de l'Université d'Orléans.
- 147. Brindley G.W. (1966) Discussions and recommendations concerning the nomenclature of clay minerals and related phyllosilicates. *In: Clays and Clay Minerals*. 14(1):27-34. DOI: 10.1346/CCMN.1966.0140103. Dans : Jozja N. (2003) Etude de matériaux argileux albanais. Caractérisation "multi-échelle" d'une bentonite magnésienne. Minéralogie. Thèse de Doctorat de l'Université d'Orléans.
- 148. https://fr.wikipedia.org/wiki/Illite. Consulté le 30/12/2019.
- 149. Eslinger E. and Pevear D. (1988) Clay minerals for petroleum geologists and engineers. SEPM Short course n°22. Society of Economic Paleontologists and Mineralogists, Tulsa, USA. Dans : Khenifi A. (2010) Elaboration de materiaux à base d'argiles, caractérisation, et application à l'élimination des pollutants organiques. Thèse de Doctorat de l'Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf.
- 150. Bultel F. (2001) Prise en compte du gonflement des terrains pour le dimensionnement des revêtements des tunnels. Thèse de Doctorat de l'Ecole Nationale des Ponts et Chaussées.
- 151. Khenifi A. (2010) Elaboration de materiaux à base d'argiles, caractérisation, et application à l'élimination des pollutants organiques. Thèse de Doctorat de l'Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf.
- 152. Bergaya F., Theng B.K.G., Lagaly G. (2006) Handbook of clay science. Vol 1, Elsevier Publications (Editors), 1224p. Dans : Maubec N. (2010) Approche Multi-Echelle du traitement des sols à la chaux - Etudes des interactions avec les argiles. Matériaux. Université de Nantes.
- Chu R.D.H. & Vandyk G.G. (1993) The effect of dose distribution on sterility assurance for gamma sterilized medical products. Radiation Physics and Chemistry, 42(4-6):585– 589. DOI: 10.1016/0969-806x(93)90329-s.
- 154. Qichang A., Qing W., Junjie F., Renhua J. & Wei J. (1993) Studies of radiosterilization and radiation effect on disposable medical products and their packing materials. Radiation Physics and Chemistry, 42(4-6):637–639. DOI: 10.1016/0969-806x(93)90341-q.
- 155. Parsons B.J. (2012) Sterilisation of healthcare products by ionising radiation: principles and standards. Sterilisation of Biomaterials and Medical Devices, 56–70. DOI: 10.1533/9780857096265.56.
- 156. Le Bars M. et Bouroche A. (1998) L'ionisation dans l'industrie agroalimentaire INRA. ISBN : 2-7380-0815-1- ISSN : 1159-5663.
- 157. Basfar A.A., Mohamed K.A., & Al-Saqer O.A. (2012) De-contamination of pesticide residues in food by ionizing radiation. Radiation Physics and Chemistry, 81(4):473–478. DOI: 10.1016/j.radphyschem.2011.12.040.
- Swinwood J.F. & Fraser F.M. (1993) Environmental application of gamma technology: Update on the Canadian sludge irradiator. Radiation Physics and Chemistry, 42(4-6):683– 687. DOI: 10.1016/0969-806x(93)90352-u.
- 159. Swinwood J.F., Waite T.D., Kruger P. et Rao S.M. (1/1994) Technologies faisant appel aux rayonnements pour le traitement des déchets: aperçu général. AIEA Bulletin.
- 160. Commissariat à l'Énergie Atomique (2002) La radioactivité. ISSN 1637-5408.

- 161. Knoll G.F. (1979) Radiation detection and measurement. John Wiley & Sons.
- 162. Cember H. & Johnson T.E. (2009) Introduction to Health Physics. Fourth Edition (Edited by Johnson C.A., & Naglieri C.), McGraw Hill Companies, Inc., New York, United States of America, 868 pp. https://www.academia.edu/8806167/Cember_Introduction_to_Health_Physics_4th_ed_00 71423087. (Consulté le 21/ 02/ 2019).
- 163. Stalter R., Howarth D. (2012) Gamma Radiation. In : Adrovic F., Gamma Radiation. In Tech, Croatia.
- 164. Corbin D. (2001) Etude de l'oxydation et de la tenue d'élastomères irradiés : conséquences sur l'intégrité des câbles électriques lors d'une situation accidentelle d'un réacteur à eau pressurisée. Physique [physics]. Université de Caen. Français. <tel-00003430>.
- 165. Noblet C. (2014) Calcul tridimentionel de la dose absorbée par simulation Monte Carlo Gate pour la radiothérapie guide par l'image dédiée au petit animal. Thèse de Doctorat de l'Université Nantes.
- Yuen F.K., Hameed B.H. (2009) Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid and Interface Science 149:19– 27.
- Ohlsson T. (1989) Dielectric Properties and Microwave Processing. Food properties and computer-aided engineering of food processing systems. 73-92. DOI: org/10.1007/978-94-009-2370-6_3.
- 168. Mudgett R.E. (1986) Microwave properties and heating characteristics of foods. Food technology (USA). 40(6):84–93.
- 169. Meziane D. (2010) Synthèse de ligands phosphorylés sous irradiations micro-ondes. Application à l'extraction liquide-liquide des métaux. Thèse de Doctorat de l'Université Mouloud Mammerie de Tizi-ouzou.
- 170. Gedye R., Smith F., Westaway K., Ali H., Baldisera L., Laberge L., Rousell J. (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3):279-282. DOI: 10.1016/S0040-4039(00)83996-9.
- 171. Oliver Kappe C. (2008) Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 37:1127–1139. DOI: 10.1039/b803001b.
- 172. Oliver Kappe C., Dallinger D. and Murphree S.S. (2009) Pratical microwave synthesis for organic chemists : strategies, instruments and protocols. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- 173. Bogdal D., & Prociak A. (2007) Microwave-enhanced polymer chemistry and technology. 1st Ed. Blackwell, USA Dans : Balleststas Castro D.J. (2010) Études d'un réacteur microondes monomode de type cuve agitée pour la synthèse chimique et proposition d'une méthodologie d'extrapolation. Thèse de Doctorat de l'Université Claude Bernard- Lyon I.
- 174. Dressen M.H.C.L. (2009) Microwave heating in fine chemical applications: role of heterogeneity. Eindhoven: Technische Universiteit Eindhoven. DOI: 10.6100/IR642819.
- 175. Hanna-Wakim L. (2008) Effet d'un chauffage micro-ondes et conventionnel sur la thermorésistance d'une Salmonelle traitée dans un produit à basse activité d'eau. Conséquences sur la qualité du produit. Sciences du Vivant [q-bio]. ENSIA (AgroParisTech). Français. NNT : 2008AGPT0047. pastel-00005601.
- 176. Iboukhoulef- Bekda H. (2014) Traitement des margines des huileries d'olive par les procédés d'oxydation avancée basés sur le système Fenton –like (H₂O₂/Cu). Thèse de Doctorat de l'Université Mouloud MAMMERI, Tizi-Ouzou.

- 177. Berikbolov B.R., Kayukov P.G., Vyatchennikova L.S. (2004) Radiochemical characterization of groundwater in Kazakhstan uranium province, prediction of influence of uranium ISL well fields on of a co-ordinated research project (1996-2000). IAEA-TECDOC-1419.
- 178. Bouzid S. (2015) Adsorption de polluants organiques sur une argile échangée aux phosphoniums. Thèse de Doctorat en Chimie de l'Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF.
- 179. Chitour S.E. (1981) Chimie des surfaces : Introduction à la catalyse. Ed. OPU.
- 180. Chitour S.E. (1992) Physico-chimie des surfaces. Tome II. Ed. OPU.
- 181. Sun L.-M., Meunier F. (2003) Adsorption- Aspects théoriques. In: Technique de l'Ingénieur. Traité Génie des procédés J2730.
- 182. Lesage N. (2005) Etude d'un procédé hybride Adsorption/Bioréacteur à membranes pour le traitement des effluents industriels. Thèse de Doctorat de l'Institut National des Sciences Appliquées de Toulouse. 302p.
- 183. Madrigal-Monarrez I. (2004) Rétention de pesticides dans les sols des dispositifs tampon, enherbés et boisés : rôle des matières organiques. Thèse de Doctorat de l'Institut Agronomique Paris-Grignon.
- 184. Giles C.H. and Smith D. (1974) A General Treatment and Classification of the Solute Adsorption Isotherm I. Theoretical. Journal of Colloid and Interface Science, 47(3):755-765. DOI: 10.1016/0021-9797(74)90252-5.
- 185. Giles C.H., MacEwan T.H., Nakhwa S.N. and Smith D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids. J. Chem. Soc. 10:3973-3993.
- 186. Hinz C. (2001) Description of sorption data with isotherm equations. Geoderma, 99:225-243. DOI: 10.1016/S0016-7061(00)00071-9.
- 187. Limousin G., Gaudet J.-P., Charlet L., Szenknect S., Barthès V., Krimissa M. (2007) Sorption isotherms: A review on physical bases, modelling and measurement. Applied Geochemistry, 22:249-275.
- 188. Belmouden M. (2000) Contribution a l'étude de l'adsorption de deux familles de polluants organiques sur charbons actifs et sols. Thèse de Doctorat, Faculté des Sciences d'Agadir.
- 189. Freundlich H.M.F. (1906) Über die Adsorption in Lösungen. J. Phys. Chem. 57:385-470.
- 190. Hamdaoui O., Naffrechoux E. (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1-2):381-394. DOI: 10.1016/j.jhazmat.2007.01.021.
- Langmuir I. (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11):2221-2295. DOI: 10.1021/ja02268a002.
- 192. Rocher V. (2008) Synthèse et caractérisation de billes d'alginate magnétiques pour l'élimination de polluants organiques dans les effluents par séparation magnétique. Thèse de Doctorat de l'Université Pierre et Marie Curie.
- 193. Foo K.Y., Hameed B.H. (2010) Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156:2-10. DOI: 10.1016/j.cej.2009.09.013.
- 194. Benhammou A., Yaacoubi A., and Tanouti B. (2005) Study of mercury (II) and chromium (VI) adsorption from aqueous solution by Moroccan stevensite. Journal of Hazardous Materiels, 117:243-249.
- 195. Erhayem M., Al-Tohami F., Mohamed R., Ahmida K. (2015) Isotherm, Kinetic and Thermodynamic Studies for the Sorption of Mercury (II) onto Activated Carbon from

Rosmarinus officinalis Leaves. American Journal of Analytical Chemistry, 6:1-10. http://dx.doi.org/10.4236/ajac.2015.61001.

- 196. Srivastava V.C., Swamy M.M., Malli D., Prasad B. et Mishra I.M. (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids Surfaces A: Physicochem. Eng. Aspects. 272:89-104.
- 197. Ho Y.S., MCKay G. (1999) Pseudo-second order model for sorption processes. Proc. Biochem. 34:451-465.
- 198. Martins A.E, Pereira M.S, Jorgetto A.O., Martines M.A.U., Silva R.I.V., Saeki M.J. & Castro G.R. (2013) The reactive surface of Castor leaf (Ricinus communis L.) powder as a green adsorbent for the removal of heavy metals from natural river water. Applied Surface Science, 276:24–30. DOI: 10.1016/j.apsusc.2013.02.096.
- 199. Li W., Zhang L., Peng J., Li N., Zhang S., and Guo S. (2008) Tobacco Stems as a Low Cost Adsorbent for the Removal of Pb(II) from Wastewater: Equilibrium and Kinetic Studies. Industrial Crops and Products, 28:294-302.
- 200. Weber W.J., Morris J.C. (1963) Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division. American Society of Civil Engineers, 89(2):31–60.
- 201. Hameed B.H., Tan I.A.W., Ahmad A.L. (2008) Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chemical Engineering Journal, 144(2):235–244. DOI: 10.1016/j.cej.2008.01.028.
- 202. Al Mardini F. (2008) Etude de l'adsorption du pesticide Bromacil sur charbon actif en poudre en milieu aqueux- Effet compétiteur des matières organiques naturelles. Thèse de Doctorat de l'Université de Poitiers.
- 203. NI ISO 5667-3 (2012) Qualité de l'eau- Echantillonnage. Partie 03: Conservation et manipulation des échantillons d'eau.
- 204. NF T 90-008 (2001) Qualité de l'eau- Détermination du pH.
- 205. NF ISO 10390 (2005) Qualité du sol- Détermination du pH.
- 206. NF EN 27888 (1994) Qualité de l'eau-Détermination de la conductivité électrique.
- 207. Mathieu C., Pieltain F. (2003) Analyse chimique des sols : méthodes choisies. TEC & DOC (Ed.). LAVOISIER. ISBN : 2-7430-0620-X.
- 208. ISO 3923-2 (1981) Poudres métalliques- Détermination de la masse volumique apparente. Ed. Int.Org. Standard, Geneva.
- 209. NI ISO 5663 (1984) Qualité de l'eau- Dosage de l'azote Kjeldahl- Méthode après minéralisation au sélénium.
- 210. OMNIC Software (1992-2006) Thermo Election- Corporation, Version 7.3.
- 211. Markowicz A.A. and Van Grieken R.E. (1993) Handbook of X-ray spectrometry: methods and techniques. Practical Spectroscopy, 14.
- 212. NF T 90-105-2 (1997) Qualité de l'eau- Dosage des matières en suspension. Méthode par centrifugation.
- 213. Rodier J. (2009) L'analyse de l'eau, neuvième éd. DUNOD, Paris.
- 214. NI ISO 6060 (1989) (F) Qualité de l'eau- Détermination de la demande chimique en oxygène.
- 215. Manuel d'utilisation de l'appareil DBO-mètre CF606 WTW.
- 216. NF V03-030 (1991) Extraction de la matière grasse en vue de sa caractérisation, Produits agricoles et alimentaires, ISSN 0335-3931.
- 217. NI ISO 7150/1 (1984) Qualité de l'eau- Dosage de l'ammonium- Partie 1: Méthode spectrométrique manuelle.

- 218. NI ISO 6777 (1984) (F) Qualité de l'eau- Dosage des nitrites- Méthode par spectrométrie d'absorption moléculaire.
- 219. NI ISO 6878 (2004) Qualité de l'eau-Dosage du phosphore : Méthode spectrométrique au molybdate d'ammonium.
- 220. NF T90-040 (1986) Essais des eaux- Dosage des ions Sulfates: Méthode néphélométrique.
- 221. Box J.D. (1983) Investigation of the Folin–Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Research, 17:511-525.
- 222. Catalano L., Franco I., De Nobili M. et Leita L. (1999) Polyphenols in olive mill waste waters and their depuration plant effluents: a comparaison of the Folin-Ciocalteau and HPLC methods. Agrochimica, 43:193-205.
- 223. Vinha A.F., Silva B.M., Andrade P.B., Seabra R.M., Pereira J.A., Oliveira M.B. (2002) Development and evaluation of an HPLC/DAD method for the analysis of phenolic compounds from olive fruits. J Liq Chromatogr RT. 25:151-160.
- 224. Babić B.M., Milonjić S.K., Polovina M.J., Kaludierović B.V. (1999), Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37:477–481.
- 225. Wang X., Wang J., Zhang J. (2012) Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China. PLOS ONE 7(8): e44334. https://doi.org/10.1371/journal.pone.0044334.
- 226. Lavaud A. (2006) Extraction et caracterisation de la matiere organique soluble des horizons profonds d'un sol arable. Thèse de Doctorat de l'Université de Poitiers. 238p.
- 227. Delaune M., Reiffsteck M., Feller C. (1991) L'analyse granulométrique de sols et sédiments à l'aide du microgranulomètre «Sedigraph 5000 ET» Comparaison avec la méthode «pipette Robinson». Cah. Orstom, sér, Pédol., vol. XXVI, n°2, 183-189.
- 228. Brunauer S., Emmet P.H., Teller E. (1938) The use of low temperature Van der Waals adsorption isotherm in determining surface area. J. Amer. Chem. Soc. 60:309-317.
- 229. Guimberteau F., Leal Calderon F. (1999) Granulométrie des émulsions de bitume. Bulletin des laboratoires des Ponts et chaussées 222. 4203, PP.13-22.
- 230. Mathon M.-H. (2008) Caractérisation des textures par diffraction neutronique. Collection SFN 9:49-64.
- 231. JCPDS, PCPDwin (2000) Diffraction data CD-ROM. Ed. of the International Centre of Diffraction Data, Newtown Square P.A.
- 232. X'Pert High Score, PCPDF win (2004) Diffraction data CD-ROM. International Center for Diffraction Data, NewtownSquare.
- 233. IAEA (Internacional Atomic Energy Agency) (1977) Manual of food irradiation, Technical Reports Series No. 178, Vienna.
- 234. Ayoub S., Al-Absi K., Al-Shdiefat S., Al-Majali D., Hijazean D. (2014) Olive Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Sci Hortic. 175:160–166. DOI: 10.1016/j.scienta.2014.06.013.
- 235. Eroğlu E, Eroğlu I', Gündüz U, Yücel M (2008) Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour Technol. 99:6799–6808.
- 236. Michael I., Panagi A., Ioannou L.A., Frontistis Z., Fatta-Kassinos D. (2014) Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation- floculation. Water Res. 60:28–40.
- 237. Ruggeri B., Battista F., Bernardi M., Fino D., Mancini G. (2015) The selection of pretreatment options for anaerobic digestion (AD): a case study in olive oil waste production. Chem Eng J. 259:630–639.

- 238. Achak M., Ouazzani N., Yaacoubi A., Mandi L. (2008b) Caractérisation des margines issues d'une huilerie moderne et essais de leur traitement par coagulation-floculation par la chaux et le sulfate d'aluminium. Rev Sci Eau, 21:53–67.
- 239. Mekki A., Dhouib A., Sayadi S. (2009) Evolution of several soil properties following amendment with olive mill wastewater. Prog Nat Sci. 19:1515–1521.
- 240. Danellakis D., Ntaikoub I., Kornarosb M., Dailianis S. (2011) Olive oil mill wastewater toxicity in the marine environment: alterations of stress indices in tissues of mussel Mytilus galloprovincialis. Aquat Toxicol. 101:358–366.
- 241. Achak M., Ouazzani N., Mandi L. (2009) Traitement des margines d'une huilerie moderne par infiltration-percolation sur un filtre a' sable. Rev Sci Eau, 22:421–433.
- 242. Daâsi D., Lozano-Sánchez J., Borrás-Linares I., Belbahri L., Woodward S., Zouari-Mechichi H., Mechichli T., Nasri M., Segura-Carretero A. (2014) Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica. Chemosphere, 113:62–70. DOI: 10.1016/j.chemosphere.2014.04.053.
- 243. Santé Canada (2008) Document de conseil sur le potassium provenent des adoucisseurs d'eau. Ottawa (Ontario), Bureau de l'eau, de l'air et des cangements climatiques, Direction générale de la santé environnementale et de la sécurité des consommateurs.
- 244. Ait Baddi G., Alburquerque J.A., Gonza'Ivez J., Cegarra J., Hafidi M. (2004) Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. Int Biodeterior Biodegrad. 54:39–44.
- 245. Amir S., Jouraiphy A., Meddich A., El Gharous M., Winterton P., Hafidi M. (2010) Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater. 177:524–529.
- 246. Barje F., El Fels L., El Hajjouji H., Amir S., Winterton P., Hafidi M. (2012) Molecular behaviour of humic acid-like substances during co-composting of olive mill waste and the organic part of municipal solid waste. Int Biodeterior Biodegrad. 74:17–23.
- 247. El Hajjouji H., Fakharedine N., Baddi G.A., Winterton P., Bailly J.R., Revel J.C. et Hafidi M. (2007) Treatment of olive mill waste water by aerobic biodegradation: an analytical study using gel permeation chromatography, ultraviolet–visible and Fourier transform infrared spectroscopy. Bioresour.Technol. 98:3513-3520. DOI: 10.1016/j.biortech.2006.11.033.
- 248. Hafidi M., Amir S., Revel J. C. (2005) Structural characterization of olive mill wastewater after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochem 40:2615–2622.
- 249. Justino C.I., Duarte K., Loureiro F., Pereira R., Antunes S.C., Marques S.M., Gonc, alves F., Rocha-Santos T.A.P., Freitas A.C. (2009) Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. J Hazard Mater 172:1560–1572.
- 250. Calvet R. (2003) Le sol, propriétés et fonctions. Tome 1 : Constitution et structure, phénomènes aux interfaces. Dunod, Paris.
- 251. Oertli, J.J. (2008) Soil fertility, In: Chesworth, W. (Ed.), Encyclopedia of soil science. Springer-Verlag GmbH, Heidelberg Germany, pp.656-668.
- 252. Kedi A.B.B. (2011) Fonctionnement des phosphatases dans les sols tropicaux : Influence de la composition organo-minérale sur l'expression de l'activité enzymatique. Doctorat du Centre International d'Etudes Supérieures en Sciences Agronomiques (Montpellier SupAgro), En cotutelle avec l'Université de Cocody- Abidjan UFR Sciences des Structures de la Matière et Technologie (SSMT).

- 253. Rowell D.L. (1988) Soil acidity and alkalinity. Wild, Alan (Ed.). Longman scientific & technical, UK, 844-898 pp.
- 254. Cardenas-Peña A.M., Ibanez J.G., Vasquez-Medrano R. (2012) Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int. J. Electrochem. Sci. 7:6142-6153.
- 255. LBR 815Point of ZeroCharge, 05 (2006) An explanation of "point of zero charge" Part I. Railsback's Some Fundamentals of Mineralogy and Geochemistry. www.gly.uga.edu/railsback/.../8150PointofZeroCharge05Pt1P.pdf.
- 256. Reig F.B., Gimeno Adelantado J.V., Moya Moreno M.C.M. (2002) FTIR Quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58: 811-821. PMID: 18968811.
- 257. Ndzana G.M., Huang L., Wang J.B., Zhang Z.Y. (2018) Characteristics of clay minerals in soil particles from an argillic horizon of Alfisol in central China. Applied Clay Science, 151:148-156. DOI: 10.1016/j.clay.2017.10.014.
- 258. Madejová J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31: 1–10. DOI: 10.1016/S0924-2031(02)00065-6.
- 259. Van der Marel H.W. and Beutelspacher H. (1977) Atlas of infrared spectroscopy of clay Minerals and their admixtures.
- 260. Böke H., Akkurt S., Özdemir S., Göktürk E.H., Saltik, E.N.C. (2004) Quantification of CaCO₃–CaSO₃ 0.5H₂O–CaSO₄ 2H₂O mixtures by FTIR analysis and its ANN model. Materials Letters 58:723–726.
- Marinovic' S., Vukovic' Z., Nastasovic' A., Milutinovic'-Nikolic' A., Jovanovic' D. (2011) Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)/clay composites. Materials Chemistry and Physics 128:291-297. DOI: 10.1016/j.matchemphys.2011.03.018. Dans: Awaleh M.O., Farah I.G., Adawe L.F., Egueh N.M., Soubaneh Y.D., Caminiti A.M., Hoch F.B., Etoubleau J. (2014) Potentialite d'utilisation d'argiles Djiboutiennes dans l'industrie céramique. ScienceLib Editions Mersenne, 6, N°141106, ISSN 2111-4706.
- 262. Trezza M.A., Lavat, A.E. (2001) Analysis of the system 3CaO·Al₂O₃- CaSO₄·2H₂O-CaCO₃-H₂O by FT-IR spectroscopy. Cement and Concrete Research 31: 869–872. DOI: 10.1016/S0008-8846(01)00502-6. Dans: Awaleh M.O., Farah I.G., Adawe L.F., Egueh N.M., Soubaneh Y.D., Caminiti A.M., Hoch F.B., Etoubleau J. (2014) Potentialite d'utilisation d'argiles Djiboutiennes dans l'industrie céramique. ScienceLib Editions Mersenne, 6, N°141106, ISSN 2111-4706.
- 263. Maglione G. et Carn M. (1975) Spèctres infrarouges des minéraux salins et des silicates néoformes dans le bassin Tchadien. Cah. ORSTOM, sér. Géol., Vol.VII, 1:3-9.
- 264. Saikia N.J., Bharali D.J., Sengupta P., Bordoloi D., Goswamee R.L., Saikia P.C., Borthakur P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24:93–103.
- 265. Saikia B.J., Parthasarathy G. (2010) Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1:206-210. DOI: 10.4236/jmp.2010.14031.
- Ding G., Novak J.M., Amarasiriwardena D., Hunt P.G. and Xing B. (2002) Soil Organic Matter Characteristics as Affected by Tillage Management. SOIL SCI. SOC. AM. J. 66:421-429.
- 267. Filip Z., Demnerova K. (2007) Humic substances as a natural factor lowering ecological risk in estuaries. I. Linkov et al. (Eds.), Environmental Security in Harbors and Coastal Areas, 343–353.

- 268. Handke M. and Mozgawa W. (1993) Vibrational spectroscopy of the amorphous silicates. Vibrational Spectroscopy, 5:75–84.
- 269. Lee B.-S., Lin H-P., Chan J. C-C., Wang W-C., Hung P-H., Tsai Y-H., Lee Y-L. (2018) A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations. International Journal of Nanomedicine; Dovepress, 13:261-271.
- 270. Tankpinou Kiki Y.S. (2016) Caractérisation minéralogique, thermique et microscopique de sols fins en technique routière. Thèse de Doctorat de l'Université de Bordeaux, France.
- 271. Lecomte Gisèle Laure N.K. (2004) Transformations thermiques, organisation structurale et frittage des composés kaolinites-muscovite. Thèse de Doctorat de l'Université de Limoges, France.
- 272. Michot A. (2008) Caractéristiques thermophysiques de matériaux à base d'argiles : évolution avec des traitements thermiques jusqu'a 1400°C. Thèse de Doctorat de l'Université de Limoges, France.
- 273. Rahmouni A. et Belbachir M. (2016) Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT) Under Microwave Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 11(2):170-175.
- 274. Kam S., Zerbo L., Mohamed S., Soro J., Traoré K., Bathibo J.D., Millogo Y., Ouédraogo R., Gomina M., Blanchart P. (2009) Céramiques d'argile du Burkina Faso utilisées en construction immobilière, J. soc. Ouest-Afr. Chim. 027:55-62.
- 275. Caillère S. et Hénin S. (1963) Minéralogie des argiles. Masson et Cie Ed. Paris, 355 p.
- 276. Chmielewski A.G. (2005) Application of ionizing radiation to environment protection. NUKLEONIKA; 50 (Supplement 3):S17–S24.
- 277. Gehringer P. (1997) Radiation induced oxidation for water remediation. In: IAEA-TECDOC-971 (1994) Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the IAEA Division of Physical and Chemical Sciences, and held in Vienna.
- 278. Pikaev A.K. (1997) Current status of radiation treatment of water and wastewater. In: IAEA-TECDOC-971 (1994) Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings organized by the Joint FAO/IAEA; Division of Nuclear Techniques in Food and Agriculture and the IAEA; Division of Physical and Chemical Sciences, and held in Vienna.
- 279. Wojnárovits L. & Takács E. (2017) Wastewater treatment with ionizing radiation. J Radioanal Nucl Chem., 311(2):973-981. DOI: org/10.1007/s10967-016-4869-3.
- 280. Wojnárovits L. & Takács E. (2016) Radiation induced degradation of organic pollutants in waters and wastewaters. Topics in Current Chemistry Collections (Z); Springer, 374:50. DOI: org/10.1007/s41061-016-0050-2.
- 281. Galvão R.L.P.De M. (2012) Application of ionizing radiation to persistent organic pollutants decomposition. Thèse de Doctorat en Chimie. Université de Lisbon. https://pdfs.semanticscholar.org/710b/a6e07e5e5ec33eacdb2ea66d3a1c7e2994dc.pdf?_ga =2.91117914.1738974846.1577181136-561252395.1547124887.
- 282. Chu L., Wang J., Wang B. (2011) Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge. Biochemical Engineering Journal, 54(1):34–39. DOI: 10.1016/j.bej.2011.01.004.
- 283. Getoff N. (1997) A comparative view of radiation, photo and photocatalytically induced oxidation of water pollutants. In: IAEA-TECDOC-971 (1994) Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings organized by the

Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the IAEA Division of Physical and Chemical Sciences, and held in Vienna.

- 284. Achak M., Hafidi A., Ouazzani N., Sayadi S., Mandi L. (2009b) Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. Journal of Hazardous Materials, 166:117–125. DOI:°10.1016/j.jhazmat.2008.11.036.
- 285. Singh B., Mish N., Rawat N. (1994) Sorption characteristic of Phenols on fly ash and impregnated fly ash. Ind. J. Env. Hlth. 38(1):1-14.
- 286. Kannam N, Krauppasmy K. (1998) Low cost adsorbents for removal of phenolic acid from aqueous solution. Ind. J. Env. Prot. 18(9):683-697. In: NUMBONUI GHOGOMU J., TSEMO NOUFAME D., BULENG NJOYIM TAMUNGANG A., AJIFACK D.L., NSAMI NDI J., and MBADCAM KETCHA J. (2014) Adsorption of phenol from aqueous solutions onto natural and thermall-modified kaolinitic materials. Int. J. Biol. Chem. Sci. 8(5):2325-2338.
- 287. Karbowiak T., Mansfield A.K., Barrera-García V.D., Chassagne D. (2010) Sorption and diffusion properties of volatile phenols into cork. Food Chemistry, 122:1069-1094.
- 288. Chaudhary N., Balomajumder C. (2014) Optimization study of adsorption parameters for removal of phenol on aluminum impregnated fly ash using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers 45:852–859.
- 289. Buran T.J., Sandhu A.K., Li Z., Rock C.R., Yang W.W., Gu L. (2014) Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 128:167–173. DOI: 10.1016/j.jfoodeng.2013.12.029.
- 290. Biglari H., Afsharnia M., Javan N., Sajadi S.A. (2016) Phenol removal from aqueous solutions by adsorption on activated carbon of miswak's root treated with KMnO₄. Iranian Journal of Health Sciences, 4(1):20-30. DOI: 10.18869/acadpub.jhs.4.1.20.
- 291. Djebbar M., Djafri F., Bouchekara M., Djafri A. (2012) Adsorption of phenol on natural clay. Appl. Water Sci., 2:77–86. DOI: 10.1007/s13201-012-0031-8.
- 292. Thawornchaisit U., Pakulanon K. (2007) Application of dried sewage sludge as phenol biosorbent. Bio. Tech. 98(1):140–144. DOI: 10.1016/j.biortech.2005.11.004.
- 293. Qadeer R., Rehan A.H. (2002) A study of the adsorption of phenol on activated carbon from aqueous solutions. Tur. J. Chem., 26:357-361.
- 294. El Gaidoumi A., Chaouni Benabdallah A., Lahrichi A., Kherbeche A. (2015) Adsorption du phénol en milieu aqueux par une pyrophyllite Marocaine brute et traitée. J. Mater. Environ. Sci. 6(8):2247-2259.
- 295. Garg V.K., Kumar R., Gupta R. (2004) Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes and Pigments, 62:1–10.
- 296. Aarfane A., Salhi A., El Krati M., Tahiri S., Monkade M., Lhadi E.K., Bensitel M. (2014) Etude cinétique et thermodynamique de l'adsorption des colorants Red195 et Bleu de méthylène en milieu aqueux sur les cendres volantes et les mâchefers. J. Mater. Environ. Sci. 5(6):1927-1939.
- 297. Uddin M.T, Islam M.S. and Abedin M.Z. (2007) Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN Journal of Engineering and Applied Sciences. 2:11-17.
- 298. Datta C., Dutta A. Dutta D., Chaudhuri S. (2011) Adsorption of polyphenols from ginger rhizomes on an anion exchange resin Amberlite IR-400 Study on effect of pH and temperature. Procedia Food Science, 1:893–899. DOI: 10.1016/j.profoo.2011.09.135.

- 299. Aliakbarian B., Casazza A.A., and Perego P. (2015) Kinetic and isotherm modelling of the adsorption of phenolic compounds from olive mill wastewater onto activated carbon. Food Technol. Biotechnol. 53(2):207–214. DOI: 10.17113/ft b.53.02.15.3790.
- 300. Ho Y.S., MCKay G. (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Wat. Res. 34:735-742.
- Foo K.Y., Hameed B.H. (2009) Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid and Interface Science, 149:19– 27. DOI: 10.1016/j.cis.2008.12.005.
- 302. Foo K.Y., Hameed B.H. (2012) Microwave-assisted regeneration of activated carbon. Bioresource Technology, 119:234–240. DOI: 10.1016/j.biortech.2012.05.061.
- 303. Arellano-Cárdenas S., Gallardo-Velázquez T., Osorio-Revilla G., López-Cortéz M.S. and Gómez-Perea B. (2005) Adsorption of phenol and dichlorophenols from aqueous solutions by porous clay heterostructure (PCH). J. Mex. Chem. Soc. 49(3):287-291.
- Chen Y., Ye W., Zhang K. (2011) Factors affecting phenol adsorption on clay-solidified grouting curtain. J. Cent. South. Univ. Technol. 18:854-858. DOI: 10.1007/s11771-011-0773-8.
- 305. Keller G.E., Anderson R.A. and Yon C.M. (1987) Adsorption, in Handbook of Separation Process Technology, Ed by Rousseau RW, John Wiley and Sons Inc, United State of America. Dans: Ahmad A.L., Bhatia S., Ibrahim N. and Sumathi S. (2005) Adsorption of residual oil from palm oil mill effluent using rubber powder. Brazilian Journal of Chemical Engineering. 2(3):371-379.
- 306. Koh S.M., Dixon J.B. (2001) Preparation and application of organominerals as sorbents of phenol, benzene and toluene. App Clay Sci. 18:111-122.
- 307. Assaad E., Azzouz A., Nistor D., Ursu A.V., Sajin T., Miron D.N., Monette F., Niquette P., Hausler R. (2007) Metal removal through synergic coagulation-flocculation using an optimized chitosan-montmorillonite system. Appl. Clay Sci. 37(3-4):258–274. DOI: 10.1016/j.clay.2007.02.007.
- 308. Permien T., Lagaly G. (1995) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds V. Bentonite and sodium montmorillonite and surfactants. Clays and Clay Minerals, 43(2):229-236.
- 309. Achour S., Guergazi S., Guesbaya N., Seghairi N., Youcef L. (2002) Incidence des procédés de chloration, de flocculation et d'adsorption sur l'évolution de composes organiques et minéraux des eaux naturelles. LARHYSS Journal, N°.1.107-128.
- 310. Silva M.M.F., Oliveira M.M., Avelino M.C., Fonseca M.G., Almeida R.K.S., Silva Filho E.C. (2012) Adsorption of an industrial anionic dye by modified-KSF-montmorillonite: Evaluation of the kinetic, thermodynamic and equilibrium data. Chemical Engineering Journal, 203:259–268.

ANNEXES

Annexe 1.

Figure 1. Droite d'étalonnage de l'ammonium.

Figure 2. Droite d'étalonnage des nitrites.

Figure 3. Droite d'étalonnage des nitrates.

Figure 4. Droite d'étalonnage des phosphates.

Figure 5. Droite d'étalonnage des sulfates.
Annexe 2.

a. Détermination de la température à l'arrêt de la réaction de l'activation micro-ondes

La figure 6 représente la température à l'arrêt de la réaction pour chaque sol. Les valeurs mesurées sont illustrées dans le tableau 1.

Figure 6. Variation de la température après irradiation micro-ondes des sols naturels $N_1(a)$, $N_3(b)$ et $\mathbf{R}(c)$ (250 tr/min ; 180 W ; 0,2 g ; 180 μ m ; 60 sec avec des pas de 5 sec ; [EUO₂] = 663 ppm à pH = 4,93).

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

 Tableau 1. Valeurs approximatives des températures à l'arrêt de la réaction des adsorbants étudiés.

Adsorbants	N_1	N_3	R
Températures (°C)	33,10	36,81	35,00

Annexe 3.

Name and formula

Reference code:	01-082-0576
Mineral name:	Muscovite 2M1
ICSD name:	Potassium Alumipnum Silicate Hydroxide
Empirical formula:	Al ₃ H ₂ KO ₁₂ Si ₃
Chemical formula:	KAl ₂ (AlSi ₃ O ₁₀) (OH) ₂

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	C2/c
Space group number:	15
a (Å):	5,2108
b (Å):	9,0399
c (Å):	20,0210
Alpha (°):	90,0000
Beta (°):	95,7600
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,82
Volume of cell (10^6 pm^3):	938,33
Z:	4,00
RIR:	0,38

Status, subfiles and quality

Status: Subfiles: Quality:	Diffraction data collected at non ambient pressure Inorganic Mineral Corrosion Modelled additional pattern Calculated (C)
<u>Comments</u>	
Sample source: ICSD collection code:	Specimen from Effingham Township, Ontario, Canada. 074608
<u>References</u>	
Primary reference: Structure:	Calculated from ICSD using POWD-12++, (1997) Catti, M., Ferraris, G., Hull, S., Pavese, A., <i>Eur. J. Mineral.</i> , 6 , 171 (1994)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	9,95996	8,871	64,1
2	0	0	4	4,97998	17,796	23,4
3	1	1	0	4,49736	19,724	33,8
4	-1	1	1	4,47136	19,840	69,8
5	0	2	1	4,40790	20,129	11,7

6	1	1	1	4,30712	20,605	14,7
7	0	2	2	4,11595	21,573	13,3
8	1	1	2	3,97124	22,369	7,1
9	-1	1	3	3,88393	22,879	44,5
10	0	2	3	3,73642	23,795	45,2
11	1	1	3	3,58166	24,839	2,6
12	-1	1	4	3,49239	25,484	58,3
13	0	2	4	3,34693	26,612	46,6
14	0	0	6	3,31999	26,832	53,4
15	1	1	4	3,20195	27,841	63,0
16	-1	1	5	3,12003	28,587	5,8
17	0	2	5	2,98872	29.872	64.1
18	1	1	5	2,86109	31,237	40,5
19	-1	1	6	2,78959	32,059	38,3
20	0	2	6	2,67574	33,463	0.7
21	-1	3	1	2,60014	34,465	36,1
22	2	0	0	2,59225	34.574	34.7
23	1	3	1	2,56663	34,930	100.0
2.4	-1	1	7	2,50531	35,813	6.3
25	0	0	8	2,48999	36.041	5.3
26	-1	3	3	2,46792	36.375	15.2
27	2	0	2	2,44946	36,659	8.2
2.8	0	2	7	2,40817	37,310	5,1
29	-2	0	4	2,40015	37,439	13.7
30	1	3	3	2,38468	37,691	28.3
31	_1	3	4	2 35778	38 138	0 6
32	1	1	7	2,33770	38 864	0,8
33	0	4	0	2,25649	39,921	9.4
34	2	2	0	2,24868	40,065	6.8
35	0	4	1	2,24557	40.123	6,0
36	-2	2	2	2 23260	40 366	54
37	2	2	1	2,23200	40 738	8 2
38	0	4	2	2,20395	40,915	6,6
39	-2	2	3	2,18853	41,216	7,2
40	0	2	8	2,18095	41,366	4.2
41	2	2	2	2,15058	41,977	15.0
42	0	4	3	2,13945	42,206	6.1
43	1	3	5	2,13173	42.366	28.7
44	1	1	8	2,10166	43,002	0.6
45	2	2	3	2,07566	43,568	4.8
46	-1	1	9	2,05797	43,962	£,0
47	-2	2	5	2,03561	44,471	2,2
48	0	0	10	1,99199	45,498	25.6
49	0	2	- 0	1,98780	45,600	15.3
50	-1	3	7	1,97174	45,992	13.4
51	0	4	5	1,96572	46,141	7,6
52	2	0	6	1,95045	46,524	6,6
53	-2	2	6	1,94197	46,739	2,2
54	1	1	9	1,92072	47,287	0,1
55	-2	0	8	1,89318	48,018	1.7
56	2	2	5	1,88914	48,127	1,0
57	-1	1	10	1,88305	48,293	0,6
58	1	3	7	1,87505	48,512	1,8
59	0	4	6	1,86821	48,701	2,8
60	-1	3	8	1,84718	49,292	1.0
61	-2	2	- 7	1,84415	49,379	0.7
62	0	2	10	1,82282	49,996	0,8
63	2	2	6	1,79083	50,952	0.5
64	0	4	- 7	1,76976	51,603	0,5
65	1	1	10	1,76531	51,743	0,4
66	1	3	8	1,75635	52,027	0,3
67	-2	2	8	1,74620	52,352	3,0
68	-1	3	9	1,73038	52,867	8,9

69	2	0	8	1,71196	53,481	3,5
70	1	5	0	1,70715	53,644	3,8
71	2	4	0	1,70349	53,768	4,0
72	-2	4	2	1,69781	53,963	2,2
73	3	1	0	1,69616	54,020	2,2
74	2	2	7	1,69404	54,093	2,5
75	2	4	1	1,68787	54,307	1,2
76	-3	1	3	1,68488	54,411	2.7
77	0	2	11	1,68100	54,547	, 1,7
78	3	1	1	1,67688	54,692	2.3
79	0	4	8	1,67347	54,813	1.6
80	-2	0	10	1,66215	55.218	15.0
81	-3	1	4	1,65732	55,393	9.0
82	1	3	9	1,64630	55,796	31.5
83	-1	5	4	1,63152	56.346	7.8
84	2	4	3	1,62446	56,613	2.7
85	-3	1	5	1,62025	56,773	7.1
86	-2	4	5	1 60504	57 361	6 1
87	2	2	8	1 60097	57 521	6 0
88	1	5	4	1 59877	57 607	5,0
89	_1	5	5	1 58828	58 024	0 6
90	0	1	9	1 58120	50,021	0,0
90 91	-3	1	5	1 57561	58 535	2 6
02 02	2	1	1	1 56027	50,555	2,0
02	0	2	10	1 55702	59 265	,,, 5 5
01	1	5	12	1 55072	59 569	2,5
95	_1	5	5	1 53002	59,509	2,2
95	-T 2	1	5	1 53025	60,008	2,0
97	_1	3	11	1 52340	60 748	15 0
97	-⊥ 1	1	1 2	1 51504	61 110	10,0
90	1 2	1	12 7	1 50472	61 502	2,5
100	-2	2	י ר	1 50179	61 717	17 5
101	- 3	1	10	1 /0/36	62 058	17,5 26
101	_3	2	70	1 / 2070	62,050	2,0
102	_1	5	5 7	1 48525	62 481	2 9
104	1 2	1	6	1 47658	62,401	2,5
105	_2	1	Q	1 17169	62 1 2 2	2,7 1 Q
105	- 2		12	1 46636	62 270	1 1
107	-2	3	12 2	1 16278	63 504	1,1
100	1	2	 11	1 / 5201	64 020	0,0
100	1 2	2	тт о	1 45301	64,030	2,4
110	-2	-±	0 7	1 44205	64 525	2,5
111	⊥ 2	2	10	1,44305 1,420E4	64,525 65 150	0,0
112	2	2	14	1,43054 1,4220E	65,139 65 555	3,4 1 E
	0	1	14	1,42205	05,555	1 2
114	- 3	⊥ 2	9	1,41002	65,911	1,3
11F	-3	3	ь Г	1,41318	66,061	2,4
110	0	0	5	1,40924	60,209	1,2
117	-2	4	9 14	1,39510 1,20107	67,026	0,7
110	-1	1	14	1,3918/	67,205	1,6
110	- 3	3	/	1,3/668	68,04/	0,9
119	-1	5	9	1,3/391	68,203	0,8
120	0	6	6	1,3/198	68,312	0,9
121	Ţ	3	12	1,36902	68,481	0,5
122	2	4	8	1,36447	68,741	0,7
123	2	2	12	1,35400	69,348	3,3
⊥24 105	-1	3	13	1,35089	69,531	15,6
125	3	Ţ	8	1,34230	/0,040	0,8
126	2	0	12	1,33826	70,283	10,7
127	0	6	.7	1,33067	70,744	0,7
128	Ţ	1	14	1,32384	71,164	1,2
129	-2	2	13	1,32091	71,346	4,1
T30	-1	5	10	1,31795	71,531	2,2
131	2	б	0	1,30261	72,506	7,3

-2	6	2	1,30007	72,670	10,3
4	0	0	1,29612	72,927	7,4
-3	3	9	1,29464	73,024	5,5
1	3	13	1,29260	73,158	4,4
0	6	8	1,28904	73,393	4,1
-4	0	4	1,28619	73,582	2,0
-2	4	11	1,28376	73,745	1,0
3	3	7	1,28114	73,921	4,5
-2	6	4	1,27607	74,264	4,6
4	0	2	1,26909	74,742	3,3
2	6	3	1,26624	74,939	1,9
-2	6	5	1,25698	75,587	0,3
-2	2	14	1,25256	75,901	4,7
-3	5	2	1,25064	76,038	4,4
3	5	0	1,24875	76,174	3,5
-1	7	2	1,24707	76,295	2,7
2	6	4	1,24494	76,449	б,4
3	5	1	1,24120	76,721	3,4
-4	2	4	1,23687	77,039	1,7
3	1	10	1,23301	77,325	0,9
3	5	2	1,22859	77,655	2,1
1	7	3	1,22598	77,852	2,5
-4	2	5	1,22321	78,061	3,4
	$ \begin{array}{r} -2 \\ 4 \\ -3 \\ 1 \\ 0 \\ -4 \\ -2 \\ 3 \\ -2 \\ 4 \\ 2 \\ -2 \\ -2 \\ -3 \\ 3 \\ -1 \\ 2 \\ 3 \\ -1 \\ 2 \\ 3 \\ -1 \\ 2 \\ 3 \\ -1 \\ 2 \\ 3 \\ -1 \\ 2 \\ 3 \\ -1 \\ -4 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 6 2 $1,30007$ 4 0 0 $1,29612$ -3 3 9 $1,29464$ 1 3 13 $1,29260$ 0 6 8 $1,28904$ -4 0 4 $1,28619$ -2 4 11 $1,28376$ 3 3 7 $1,28114$ -2 6 4 $1,27607$ 4 0 2 $1,26909$ 2 6 3 $1,26624$ -2 6 5 $1,25698$ -2 2 14 $1,25256$ -3 5 2 $1,24707$ 2 6 4 $1,244707$ 2 6 4 $1,24494$ 3 5 1 $1,24301$ 3 5 2 $1,22859$ 1 7 3 $1,22598$ -4 2 5 $1,22321$	-2621,3000772,6704001,2961272,927 -3 391,2946473,02413131,2926073,1580681,2890473,393 -4 041,2861973,582 -2 4111,2837673,7453371,2811473,921 -2 641,2760774,2644021,2690974,7422631,2662474,939 -2 651,2569875,587 -2 2141,2525675,901 -3 521,2470776,2952641,2440476,4493511,2430177,3253521,2285977,6551731,2259877,852 -4 251,2232178,061

Reference code:	01-085-0796
Mineral name:	Quartz
ICSD name:	Silicon Oxide
Empirical formula:	O₂Si
Chemical formula:	SiO₂

Crystallographic parameters

Crystal system: Space group:	Hexagonal P3221
Space group number:	154
a (Å):	4,9118
b (Å):	4,9118
c (Å):	5,4034
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	120,0000
Calculated density (g/cm^3):	2,65
Volume of cell (10 ⁶ pm ³):	112,90
Z:	3,00
RIR:	3,10

Subfiles and Quality

Subfiles:	Inorganic
	Mineral
	Alloy, metal or intermetalic
	Corrosion
	Modelled additional pattern
Quality:	Calculated (C)

Comments

ICSD collection code:	027832
Test from ICSD:	At least one TF missing.

References

Primary reference:	
Structure:	

Calculated from ICSD using POWD-12++, (1997) Young, R.A., Mackie, P.E., Dreele, R.B.von, J. Appl. Crystallogr., **10**, 262, (1977)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	0	4,25374	20,866	16,5
2	0	1	1	3,34233	26,649	100,0
3	1	1	0	2,45590	36,559	6,9
4	1	0	2	2,28059	39,481	6,2
5	1	1	-1	2,23580	40,306	2,1
б	2	0	0	2,12687	42,468	3,5
7	2	0	1	1,97908	45,812	1,9
8	1	1	-2	1,81728	50,159	11,8

9	0	0	3	1,80113	50,640	0,2
10	0	2	2	1,67116	54,895	3,1
11	0	1	3	1,65858	55,347	1,1
12	1	2	0	1,60776	57,255	0,4
13	2	1	-1	1,54100	59,983	7,1
14	1	1	-3	1,45240	64,060	1,6
15	3	0	0	1,41791	65,812	0,2
16	1	2	2	1,38163	67,770	3,5
17	2	0	3	1,37449	68,171	5,3
18	0	3	1	1,37148	68,341	5,2
19	1	0	4	1,28749	73,496	1,1
20	3	0	2	1,25551	75,691	1,9
21	2	2	0	1,22795	77,703	1,1
22	1	2	-3	1,19942	79,916	2,0
23	2	2	-1	1,19742	80,077	1,2
24	1	1	-4	1,18361	81,205	1,7
25	1	3	0	1,17978	81,524	2,3
26	3	1	-1	1,15262	83,873	1,1
27	2	0	4	1,14029	84,991	0,3
28	2	2	-2	1,11790	87,111	0,1
29	3	0	3	1,11411	87,483	0,1

Reference code:	01-072-1652
Mineral name:	Calcite
ICSD name:	Calcium Carbonate
Empirical formula:	CCaO ₃
Chemical formula:	CaCO ₃

Crystallographic parameters

Crystal system:	Rhombohedral
Space group:	R-3c
Space group number:	167
a (Å):	4.9900
b (Å):	4.9900
c (Å):	17.0020
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Calculated density (g/cm^3):	2.72
Volume of cell (10^6 pm^3):	366.63
Z:	6.00
RIR:	3.20

Subfiles and Quality

Subfiles:	Inorganic
	Mineral
	Modelled additional pattern
Quality:	Calculated (C)

Comments

ICSD collection code:	018166
Test from ICSD:	At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Chessin, H., Hamilton, W.C., Acta Crystallogr., 18, 689, (1965)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	1	2	3,85229	23,069	9,8
2	1	0	4	3,03034	29,452	100,0
3	0	0	6	2,83367	31,547	2,1
4	1	1	0	2,49500	35,966	13,9
5	1	1	3	2,28351	39,429	18,4
6	2	0	2	2,09415	43,164	14,5
7	0	2	4	1,92614	47,146	6,3
8	0	1	8	1,90710	47,646	18,4
9	1	1	б	1,87258	48,580	19,3
10	2	1	1	1,62588	56,559	3,2
11	1	2	2	1,60402	57,401	8,8

12	1	0	10	1,58215	58,270	1,0
13	2	1	4	1,52466	60,693	4,8
14	2	0	8	1,51517	61,114	2,1
15	1	1	9	1,50610	61,521	2,6
16	1	2	5	1,47231	63,093	2,0
17	3	0	0	1,44049	64,654	5,7
18	0	0	12	1,41683	65,869	3,2
19	2	1	7	1,35539	69,267	1,1
20	0	2	10	1,33615	70,410	1,8
21	1	2	8	1,29507	72,996	2,4
22	3	0	6	1,28410	73,722	0,5
23	2	2	0	1,24750	76,264	1,0
24	1	1	12	1,23204	77,397	1,7
25	2	2	3	1,21833	78,434	0,1
26	1	3	1	1,19559	80,224	0,1
27	3	1	2	1,18682	80,939	0,5
28	2	1	10	1,17788	81,683	2,1
29	0	1	14	1,16914	82,426	0,3
30	1	3	4	1,15357	83,788	3,7
31	2	2	6	1,14175	84,856	1,8
32	3	1	5	1,13039	85,914	0,1
33	1	2	11	1,12266	86,650	0,5

Reference code:	01-075-0938
Mineral name:	Kaolinite
ICSD name:	Aluminum Silicate Hydroxide
Empirical formula:	Al ₂ H ₄ O ₉ Si ₂
Chemical formula:	Al ₂ Si ₂ O ₅ (OH) ₄

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	Cc
Space group number:	9
a (Å):	5,1400
b (Å):	8,9000
c (Å):	14,5100
Alpha (°):	90,0000
Beta (°):	100,2000
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,62
Volume of cell (10^6 pm^3):	653,28
Z:	4,00
RIR:	1,06

Subfiles and Quality

Subfiles: Quality:	Inorganic Mineral Corrosion Modelled additional pattern Calculated (C)		
<u>Comments</u>			
Sample source: ICSD collection code:	Specimen from Brooklyn, NY, USA. 030285		

	Specimen from Brooklyn, N
e:	030285
	No R value given.
	At least one TF missing.

References

Test from ICSD:

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Gruner, W.J., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.,
	83 , 75, (1932)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	7,14034	12,386	100,0
2	1	1	0	4,39792	20,175	42,5
3	0	2	1	4,24851	20,892	22,2
4	1	1	1	4,03208	22,027	43,0
5	0	2	2	3,77661	23,538	22,2
6	0	0	4	3,57017	24,920	46,4
7	1	1	2	3,51095	25,348	17,0

Thèse de Doctorat en Sciences / ARABI Malika Epouse HOCINE

8	0	2	3	3,25077	27,414	8,4
9	1	1	3	3,00775	29,678	б,б
10	0	2	4	2,78473	32,117	2,7
11	1	1	4	2,58401	34,687	9,3
12	1	3	0	2,55908	35,036	6,9
13	2	0	0	2,52935	35,462	16,0
14	1	3	1	2,48064	36,182	15,5
15	0	2	5	2,40364	37,383	2,5
16	0	0	6	2,38011	37,766	7,9
17	1	3	2	2,34328	38,383	49,7
18	2	0	2	2,26143	39,830	23,0
19	1	1	5	2,24275	40,176	5,б
20	-2	2	1	2,22500	40,510	1,8
21	-2	2	2	2,19896	41,012	3,7
22	1	3	3	2,17420	41,500	1,4
23	2	2	1	2,12472	42,513	1,9
24	0	2	6	2,09877	43,064	1,1
25	2	2	2	2,01608	44,925	3,3
26	1	3	4	1,99695	45,379	10,7
27	1	1	6	1,97008	46,033	1,1
28	2	0	4	1,91041	47,558	7,0
29	-2	2	5	1,88831	48,150	4,2
30	0	2	7	1,85450	49,085	0,6
31	1	3	5	1,82633	49,893	2,8
32	0	0	8	1,78508	51,128	1,6
33	-2	2	6	1,75547	52,055	2,9
34	1	1	7	1,75061	52,210	2,3
35	-2	4	1	1,68216	54,506	1,3
36	-3	1	1	1,67953	54,599	3,0
37	-2	4	2	1,66983	54,943	13,9
38	0	2	8	1,65634	55,428	4,5
39	2	4	1	1,63733	56,128	1,5
40	2	2	5	1,62561	56,569	2,1
41	-3	1	4	1,61388	57,018	2,8
42	2	0	6	1,59783	57,644	6,3
43	2	4	2	1,58603	58,114	0,8
44	1	1	8	1,57185	58,689	0,8
45	3	1	2	1,55542	59,371	1,7
46	1	3	7	1,52980	60,468	б,4
47	2	4	3	1,52170	60,823	1,1
48	2	2	6	1,50387	61,623	2,3
49	0	2	9	1,49457	62,048	0,3
50	1	5	4	1,48616	62,439	2,4
51	-3	3	1	1,48168	62,649	12,5
52	3	3	0	1,46599	63,397	5,4
53	0	6	2	1,45233	64,063	2,3
54	2	4	4	1,44944	64,206	1,9
55	3	3	10	1,43602	64,880	0,5
56	0	0	10	1,42807	65,286	1,4
57	1	1	9	1,42419	65,486	1,0
58	1	5	5	1,41167	66,140	1,2
59	1	3	8	1,4061/	66,432	1,/
60	-2	2	9	1,39236	6/,1/8	2,3
60	2	4	5 1	1,3/309	68,210 69,426	0,4
02 63	0	0 2	4 1 0	1 25077	00,430 69 010	1,U
61	U O	⊿ ∩	0 T U	1 25016	09,014 69 671	U,1 5 0
04 65	⊿ 2	U S	0 2	1 21102 1 21102	07,5/4 60 027	⊃,∠ 1 1
65	د _ 2	כ 1	د م	1,344U3 1 22E7E	ひタ,ダろ/ 70 オマロ	1,1 0 7
67	- 5	⊥ 1	10	1 20071	70,400 70 600	0,7
69		т Л	Δ TU	1,300/1 1,207/2	14,049 72 820	0,0 7 0
60	-2 -2	т Э	10	1 20100	73 205 73 205	1 3
70	2	2	1 U	1 28822	73 447	±,5 1 0
10	د	د	-1	1,40044	15,771	±,0

71	-4	0	2	1,28500	73,662	1,1
72	2 4	0	0	1 26469	74,029	3,5
74	3	1	6	1,26080	75,318	2,1
75	0	6	6	1,25887	75,454	0,6
76	0	2	11	1,24629	76,351	0,1
77	2	6	2	1,24032	76,786	3,8
78	-4	2	2	1,23456	77,210	0,5
79	1	7	0	1,23308	77,320	0,8
80	-4	2	3	1,22955	77,583	1,2
81	1	7	1	1,22399	78,002	1,1
82	4	2	0	1,21650	78,575	0,2
83	-4	0	б	1,20906	79,153	0,8
84	-3	5	4	1,20655	79,350	1,1
85	1	3	10	1,20206	79,705	2,0
86	0	6	7	1,19973	79,891	1,0
87	1	1	11	1,19611	80,182	0,3
88	4	2	1	1,19501	80,271	0,4
89	0	0	12	1,19006	80,673	1,0
90	-3	1	10	1,18881	80,776	0,6
91	3	5	2	1,18153	81,378	0,5
92	2	6	4	1,17163	82,213	2,3
93	4	2	2	1,16678	82,629	0,6
94	2	0	10	1,15877	83,327	0,5
95	2	4	8	1,15424	83,728	0,3
96	1	7	4	1,15030	84,080	0,5
97	0	6	8	1,14086	84,938	0,5
98	4	2	3	1,13321	85,648	0,3
99	4	0	4	1,13075	85,880	1,5
100	-2	2	12	1,12132	86,780	1,0
101	1	3	11	1,11806	87,096	0,5
102	Ţ	/	5	1,114/0	87,425	0,4
103	0	8	0	1,11209	87,682	0,6
104 105	-4	4	10	1,10940	87,949	0,2
105	1	Т И	⊥∠ ∧	1,10039 1,00040	00,43U 00 0E1	U, 1 0 0
107	-4	4	4	1,09948	00,751 00,220	0,2
TO 1	-4	2	Ø	т,09589	89,320	0,3

Reference code:	01-074-1687
Mineral name:	Dolomite
ICSD name:	Calcium Magnesium Carbonate
Empirical formula:	C ₂ CaMgO ₆
Chemical formula:	CaMg (CO ₃) ₂

Crystallographic parameters

Crystal system:	Rhombohedral
Space group:	R-3
Space group number:	148
a (Å):	4,8150
b (Å):	4,8150
c (Å):	16,1190
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	120,0000
Calculated density (g/cm^3):	2,84
Volume of cell (10^6 pm^3):	323,64
Z:	3,00
RIR:	2,79

Subfiles and Quality

Subfiles:	Inorganic		
	Wilheral		
	CONUSION		
	Modelled additional pattern		
Quality:	Calculated (C)		
•			

Comments

ICSD collection code: 027540

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Steinfink, H., Sans, F.J., Am. Mineral., 44, 679, (1959)

No.	h	k	1	d [A]	2Theta[d	eg] I [%]
1	0	0	3	5,37300	16,485	0,1
2	1	0	1	4,03702	22,000	2,4
3	0	1	2	3,70356	24,009	2,8
4	1	0	4	2,89775	30,832	100,0
5	0	0	6	2,68650	33,325	4,3
б	0	1	5	2,55047	35,158	5,2
7	1	1	0	2,40750	37,321	11,3
8	1	1	-3	2,19703	41,049	22,3
9	0	2	1	2,06773	43,744	3,9
10	2	0	2	2,01851	44,868	13,1
11	0	2	4	1,85178	49,162	4,1

12	0	1	8	1,81419	50,250	16,5
13	1	1	-6	1,79291	50,889	18,3
14	2	0	5	1,75072	52,207	0,2
15	1	2	-1	1,56860	58,823	3,8
16	2	1	-2	1,54678	59,736	8,7
17	1	0	10	1,50348	61,640	0,6
18	1	2	-4	1,46781	63,309	4,9
19	2	0	8	1,44887	64,235	2,3
20	1	1	-9	1,43698	64,831	2,7
21	2	1	-5	1,41592	65,917	2,5
22	3	0	0	1,38997	67,309	5,5
23	0	0	12	1,34325	69,984	3,1
24	1	2	-7	1,30061	72,635	1,9
25	0	2	10	1,27524	74,320	2,4
26	2	1	-8	1,24140	76,707	2,4
27	0	3	6	1,23452	77,213	0,6
28	2	2	0	1,20375	79,571	1,2
29	2	0	11	1,19888	79,959	0,4
30	1	0	13	1,18849	80,802	0,2
31	1	1	-12	1,17302	82,094	1,8
32	1	3	1	1,15356	83,789	0,1
33	3	1	2	1,14480	84,578	0,7
34	1	2	-10	1,12691	86,243	1,9
35	3	1	-4	1,11165	87,726	4,6
36	2	2	6	1,09852	89,049	1,8

Reference code:	01-071-1166		
Mineral name:	Anatase		
ICSD name:	Titanium Oxide		
Empirical formula:	O ₂ Ti		
Chemical formula:	TiO ₂		

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	I41/amd
Space group number:	141
a (Å):	3,7842
b (Å):	3,7842
c (Å):	9,5146
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	3,89
Volume of cell (10^6 pm^3):	136,25
Z:	4,00
RIR:	5,00

Subfiles and Quality

Subfiles:	Inorganic
	Mineral
	Alloy, metal or intermetalic
	Corrosion
	Modelled additional pattern
Quality:	Calculated (C)

Comments

Sample source:Specimen from Binntal, Wallis, Switzerland.ICSD collection code:009852Test from ICSD:At least one TF implausible.

References

Primary reference:Calculated from ICSD using POWD-12++, (1997)Structure:Horn, M., Schwerdtfeger, C.F., Meagher, E.P., Z. Kristallogr.,
Kristallgeom., Kristallphys., Kristallchem., 136, 273, (1972)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	3,51629	25,308	100,0
2	1	0	3	2,43073	36,951	6,1
3	0	0	4	2,37865	37,791	18,6
4	1	1	2	2,33222	38,572	7,0
5	2	0	0	1,89210	48,047	24,2
6	1	0	5	1,70007	53,885	15,0
7	2	1	1	1,66619	55,073	14,8

ANNEXES

8	2	1	3	1,49308	62,117	2,6
9	2	0	4	1,48076	62,692	11,0
10	1	1	б	1,36420	68,756	4,7
11	2	2	0	1,33792	70,304	5,1
12	1	0	7	1,27921	74,051	0,5
13	2	1	5	1,26459	75,053	7,7
14	3	0	1	1,25046	76,051	2,1
15	0	0	8	1,18933	80,733	0,4
16	3	0	3	1,17210	82,173	0,5
17	2	2	4	1,16611	82,687	3,8
18	3	1	2	1,16052	83,174	1,6

Reference code:	01-072-1503
Mineral name:	Muscovite
ICSD name:	Potassium Aluminum Silicate Hydrate
Empirical formula:	Al ₃ H ₂ KO ₁₂ Si ₃
Chemical formula:	KAl ₂ (Si ₃ Al) O ₁₀ (OH) ₂

Crystallographic parameters

Crystal system: Space group: Space group number:	Monoclinic C2/c 15
a (Å): b (Å): c (Å):	5,1998 9,0266 20,1058
Alpha (°): Beta (°): Camma (°):	90,0000 95,7820
Calculated density (g/cm ³):	2,82
Z:	938,90 4,00
RIR:	0,37

Subfiles and Quality

Subfiles:	Inorganic Mineral
	Corrosion
	Modelled additional pattern
Quality:	Calculated (C)
Commonto	

Comments

Sample source:	Specimen from Archer's Post, Kenya.
ICSD collection code:	017049

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Richardson, S.M., Richardson, Jr., J.W., <i>Am. Mineral.</i> , 67 , 69, (1982)

No.	h	k	1	d [A]	2Theta[de	eg] I [%]
1	0	0	2	10,00180	8,834	69,4
2	0	0	4	5,00088	17,721	29,5
3	1	1	0	4,48844	19,764	40,2
4	-1	1	1	4,46369	19,875	85,2
5	0	2	1	4,40263	20,153	11,5
6	1	1	1	4,29999	20,639	22,1
7	0	2	2	4,11385	21,584	16,4
8	1	1	2	3,96751	22,390	10,4
9	-1	1	3	3,88402	22,878	53,0
10	0	2	3	3,73759	23,787	55,4

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1	1	3	3,58125	24,842	3,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	-1	1	4	3,49567	25,460	69,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0	2	4	3,35054	26,583	48,3
151143,2040227,82263,116-1153,1253028,5386,6170252,9938229,81964,1181152,8647531,19640,719-1162,7959231,98532,6200262,6616333,3870,3211302,5961034,52135,2222002,5866734,65128,7231312,5626934,985100,024-1172,5120835,7146,8250082,5004435,8857,526-1332,4657736,40817,4272022,4452736,7249,2280272,4143837,2157,9301332,3826137,72527,931-1342,3569038,1530,6321172,3204238,7760,233-1182,2703539,6670,734-2212,2821540,0108,3352202,2424340,1826,536-1352,1318442,36430,042212,2089440,816 <td>14</td> <td>0</td> <td>0</td> <td>б</td> <td>3,33392</td> <td>26,718</td> <td>55,8</td>	14	0	0	б	3,33392	26,718	55,8
16 -1 1 5 3,12530 28,538 6,6 17 0 2 5 2,99382 29,819 64,1 18 1 1 5 2,86475 31,196 40,7 19 -1 1 6 2,79592 31,985 32,6 20 0 2 6 2,68163 33,387 0,3 21 1 3 0 2,59667 34,651 28,7 23 1 3 1 2,56269 34,985 100,0 24 -1 1 7 2,51208 35,714 6,88 26 -1 3 2,46577 36,408 17,4 27 2 0 2,44527 36,7470 11,5 30 1 3 3,232621 37,470 11,5 31 -1 8 2,27035 39,667 0,7 33 -1 1 8 2,27035 39,667 0,7 34 -2 2 1 2,20424	15	1	1	4	3,20402	27,822	63,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	-1	1	5	3,12530	28,538	6,6
181152.8647531.19640.719-1162.7959231.98532.62002.6616333.3870.3211302.5961034.52135.2222002.5866734.65128.7231312.5526934.985100.024-1172.5120835.7146.8250082.5004435.8857.526-1332.3465736.7249.2280272.4143837.747011.5301332.3826137.72527.931-1342.3569038.1530.6321172.3204238.7760.233-182.2703539.6670.734-2212.2521540.0018.3352202.4243440.1826.536-1352.1318442.36430.042-1352.1318442.36430.0432232.0729143.6295.1372252.0346544.4933.1461362.003545.29821.7470291.9339445.45112.2<	17	0	2	5	2,99382	29,819	64,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1	1	5	2.86475	31,196	40.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	-1	1	6	2,79592	31,985	32.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	0	2	6	2,68163	33,387	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	3	0	2,59610	34,521	35.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	2	0	0	2 58667	34 651	28 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	3	1	2,56067	34 985	100 0
111 <th< td=""><td>22</td><td>_1</td><td>1</td><td>- 7</td><td>2,50209</td><td>35,714</td><td>±00,0</td></th<>	22	_1	1	- 7	2,50209	35,714	±00,0
26 -1 3 3 2 , 46577 36 , 408 17 , 4 27 2 0 2 2 , 44527 36 , 724 9 , 2 28 0 2 7 2 , 44438 37 , 211 $3, 3$ 29 -2 0 4 2 , 39823 37 , 470 11 , 5 30 1 3 3 2 , 38261 37 , 775 27 , 99 31 -1 3 4 2 , 35690 38 , 153 0 , 66 32 1 1 7 2 , 22042 38 , 776 0 , 2 33 -1 1 8 2 , 27035 39 , 667 0 , 7 34 -2 2 1 2 , 225215 40 , 0011 8 , 3 35 2 , 20 2 , 24243 40 , 818 10.2 38 0 4 2 2 , 20131 40 , 966 8 , 6 37 2 1 2 , 20694 40 , 818 10.2 38 0 4 2 2 , 20131 40 , 966 8 , 6 39 0 2 8 2 , 15135 41 , 961 15 , 9 41 1 3 5 2 , $11, 961$ 15 , 9 41 1 3 6 2 , 00365 44 , 42 , 364 30 , 0 42 -1 3 6 , 2 , 03465 44 , 493 $3, 11$ 46 1 4 2 , 205692 43 , 986 7 , 6	25			, Q	2,51200	35 885	75
20-1332,4057736,70017,72272022,4452736,7249,2280272,4143837,2113,329-2042,3982337,47011,5301332,3826137,72527,931-1342,3569038,1530,6321172,3204238,7760,233-1182,2703539,6670,734-2212,2521540,0018,3352202,2424340,1826,536-1352,22013140,9668,6390282,1855241,2758,240-2062,1513541,96115,9411352,1318442,36430,042-1362,003545,29821,7432232,0729143,9867,6440442,0569243,9867,645-2252,0346544,4933,1461362,003545,29821,7470291,9939445,45112,2482241,9837545,6981,549-1371,876774	25	_1	3	3	2,30044	36 108	17 /
21 2 0 2 $2, 41438$ $37, 211$ $3, 3$ 29 -2 0 4 $2, 39823$ $37, 470$ $11, 5$ 30 1 3 3 $2, 38261$ $37, 725$ $27, 9$ 31 -1 3 4 $2, 35690$ $38, 153$ $0, 6$ 32 1 1 7 $2, 32042$ $38, 776$ $0, 2$ 33 -1 1 8 $2, 27035$ $39, 667$ $0, 7$ 34 -2 2 1 $2, 25215$ $40, 0011$ $8, 3$ 35 2 20 $2, 24243$ $40, 182$ $6, 5$ 36 -1 3 5 $2, 23292$ $40, 360$ $6, 6$ 37 2 2 1 $2, 20894$ $40, 818$ $10, 2$ 38 0 4 2 $2, 20131$ $40, 966$ $8, 6$ 6 $2, 15135$ $41, 961$ $15, 9$ 41 1 3 5 $2, 13184$ $42, 364$ $30, 0$ 42 -1 3 6 $2, 10031$ $42, 973$ $0, 6$ 43 2 2 3 $2, 07291$ $43, 629$ $5, 1$ 44 0 4 4 $2, 05692$ $43, 986$ $7, 6$ 45 -2 2 5 $2, 04465$ $44, 493$ $3, 1$ 46 1 3 6 $2, 00035$ $45, 298$ $1, 7$ 47 0 2 9 $1, 93394$ $45, 4511$ <	20	-1	0	2 2	2,40577	26 724	1/, 1
200272,414363,7,4103,329-2042,3982337,47011,5301332,3826137,72527,931-1342,3569038,1530,6321172,3204238,7760,233-1182,270339,6670,734-2212,2521540,0018,3352202,2424340,1826,536-1352,2329240,3606,6372212,2089440,81810,2380422,2013140,9668,6390282,1855241,2758,240-2062,1513541,96115,9411352,1030142,9730,6432232,0729143,6295,1440442,0569243,9867,645-2252,0346544,44933,1461362,0003545,29821,7470291,9939445,45112,2482241,9837545,6981,549-1371,9739245,93915,9502061,9507246,	27	2	0	2 7	2,44327	30,724	9,4 2 2
239 -2 0 4 $2,39223$ $37,470$ $11,5$ 30 133 $2,3823$ $37,725$ $27,9$ 31 -1 34 $2,35690$ $38,153$ $0,6$ 32 117 $2,32042$ $38,776$ $0,2$ 33 -1 18 $2,27035$ $39,667$ $0,7$ 34 -2 21 $2,25215$ $40,0001$ $8,3$ 35 2 20 $2,24243$ $40,182$ $6,5$ 36 -1 3 5 $2,23292$ $40,360$ $6,6$ 37 2 2 1 $2,20894$ $40,818$ $10,2$ 38 0 4 2 $2,20131$ $40,966$ $8,6$ 39 0 2 8 $2,18552$ $41,275$ $8,2$ 40 -2 0 6 $2,15135$ $41,961$ $15,9$ 41 1 3 5 $2,13184$ $42,364$ $30,0$ 42 -1 3 6 $2,10301$ $42,973$ $0,6$ 43 2 2 3 $2,07291$ $43,629$ $5,1$ 44 0 4 4 $2,05692$ $43,986$ $7,6$ 45 -2 2 5 $2,03465$ $44,493$ $3,1$ 46 1 3 6 $2,0035$ $45,5939$ $15,9$ 9 -1 3 7 $1,97392$ $45,9399$ $15,9$ 9 2 <	20	0	2	/	2,41430	37,ZII 27,470	з,з 11 г
30 1 3 3 $2,36261$ $37,723$ $27,9$ 31 -1 3 4 $2,35690$ $38,153$ $0,6$ 32 1 1 7 $2,32042$ $38,776$ $0,2$ 33 -1 1 8 $2,27035$ $39,667$ $0,7$ 34 -2 2 1 $2,24243$ $40,001$ $8,3$ 35 2 2 0 $2,24243$ $40,182$ $6,5$ 36 -1 3 5 $2,23292$ $40,360$ $6,6$ 37 2 2 1 $2,20894$ $40,818$ $10,2$ 38 0 4 2 $2,20131$ $40,966$ $8,6$ 39 0 2 8 $2,18552$ $41,275$ $8,2$ 40 -2 0 6 $2,15135$ $41,961$ $15,9$ 41 1 3 5 $2,13184$ $42,364$ $30,0$ 42 -1 3 6 $2,007291$ $43,629$ $5,1$ 44 0 4 4 $2,05692$ $43,986$ $7,6$ 45 -2 2 5 $2,03465$ $44,493$ $3,1$ 46 1 3 7 $1,97392$ $45,939$ $15,9$ 50 2 0 6 $1,95072$ $46,517$ $9,0$ 51 -2 2 6 $1,94201$ $46,738$ $2,9$ 52 1 1 9 $1,92957$ $47,151$ $0,2$	29	-2	2	4 2	2,39023	37,470	11,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3U 21	1	с С	2	2,30201	3/,/45	27,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	-1	3	4	2,35690	38,153	0,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3∠ 22	1	1	/	2,32042	38,776	0,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	-1	T	8	2,2/035	39,667	0,7
35 2 2 0 $2,24243$ $40,182$ $6,5$ 36 -1 3 5 $2,23292$ $40,360$ $6,6$ 37 2 2 1 $2,20894$ $40,818$ $10,2$ 38 0 4 2 $2,20131$ $40,966$ $8,6$ 39 0 2 8 $2,18552$ $41,275$ $8,2$ 40 -2 0 6 $2,15135$ $41,961$ $15,9$ 41 1 3 5 $2,10301$ $42,973$ $0,6$ 43 2 2 3 $2,07291$ $43,629$ $5,1$ 44 0 4 4 $2,05692$ $43,986$ $7,6$ 45 -2 2 5 $2,03465$ $44,493$ $3,1$ 46 1 3 6 $2,00035$ $45,298$ $21,7$ 44 0 4 4 $2,05692$ $43,986$ $7,6$ 45 -2 2 5 $2,03465$ $44,493$ $3,1$ 46 1 3 7 $1,97392$ $45,939$ $15,9$ 50 2 0 6 $1,99394$ $45,451$ $12,2$ 48 2 2 4 $1,98375$ $45,698$ $1,5$ 49 -1 3 7 $1,97392$ $45,939$ $15,9$ 50 2 0 6 $1,992597$ $47,151$ $0,2$ 53 -2 0 8 $1,89576$ $47,949$ $1,1$ <	34	-2	2	Ţ	2,25215	40,001	8,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	2	2	0	2,24243	40,182	6,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	-1	3	5	2,23292	40,360	6,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	2	2	1	2,20894	40,818	10,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	0	4	2	2,20131	40,966	8,6
40 -2 062,1513541,96115,9411352,1318442,36430,042 -1 362,1030142,9730,6432232,0729143,6295,1440442,0569243,9867,645 -2 252,0346544,4933,1461362,0003545,29821,7470291,9939445,45112,2482241,9837545,6981,549 -1 371,9739245,93915,9502061,9507246,5179,051 -2 261,9420146,7382,9521191,9259747,1510,253 -2 081,8957647,9491,154 -1 1101,8895548,1160,8551371,8767748,4651,1560461,8687949,3531,05902101,8287849,8220,76022261,7906350,9580,4610471,7710251,5640,8621381,7478352,7801,365-139	39	0	2	8	2,18552	41,275	8,2
41135 $2,13184$ $42,364$ $30,0$ 42-136 $2,10301$ $42,973$ $0,6$ 43223 $2,07291$ $43,629$ $5,1$ 44044 $2,05692$ $43,986$ $7,6$ 45-225 $2,03465$ $44,493$ $3,1$ 46136 $2,00035$ $45,298$ $21,7$ 47 029 $1,99394$ $45,451$ $12,2$ 48 224 $1,98375$ $45,698$ $1,5$ 49 -137 $1,97392$ $45,939$ $15,9$ 50 206 $1,95072$ $46,517$ $9,0$ 51 -226 $1,94201$ $46,738$ $2,9$ 52 119 $1,92597$ $47,151$ $0,2$ 53 -208 $1,89576$ $47,949$ $1,1$ 54 -1110 $1,88955$ $48,116$ $0,8$ 55 137 $1,87677$ $48,465$ $1,1$ 56 046 $1,86879$ $48,685$ $2,0$ 57 -138 $1,79063$ $50,958$ $0,4$ 61 047 $1,79063$ $50,958$ $0,4$ 62 138 $1,75861$ $51,955$ $0,4$ 63 -228 $1,74783$ $52,299$ $2,5$ 64 <td>40</td> <td>-2</td> <td>0</td> <td>6</td> <td>2,15135</td> <td>41,961</td> <td>15,9</td>	40	-2	0	6	2,15135	41,961	15,9
42 -1 3 6 $2,10301$ $42,973$ $0,6$ 43 2 2 3 $2,07291$ $43,629$ $5,1$ 44 0 4 4 $2,05692$ $43,986$ $7,6$ 45 -2 2 5 $2,03465$ $44,493$ $3,1$ 46 1 3 6 $2,00035$ $45,298$ $21,7$ 47 0 2 9 $1,99394$ $45,451$ $12,2$ 48 2 2 4 $1,98375$ $45,698$ $1,5$ 49 -1 3 7 $1,97392$ $45,939$ $15,9$ 50 2 0 6 $1,95072$ $46,517$ $9,0$ 51 -2 2 6 $1,94201$ $46,738$ $2,9$ 52 1 1 9 $1,92597$ $47,151$ $0,2$ 53 -2 0 8 $1,89576$ $47,949$ $1,1$ 54 -1 1 10 $1,88955$ $48,116$ $0,8$ 55 1 3 7 $1,87677$ $48,465$ $1,1$ 56 0 4 6 $1,86879$ $48,685$ $2,0$ 57 -1 3 8 $1,84998$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,770063$ $50,958$ $0,4$	41	1	3	5	2,13184	42,364	30,0
43223 $2,07291$ 43,6295,144044 $2,05692$ 43,9867,645-225 $2,03465$ 44,4933,146136 $2,00035$ 45,29821,7470291,9939445,45112,2482241,9837545,6981,549-1371,9739245,93915,9502061,9507246,5179,051-2261,9420146,7382,9521191,9259747,1510,253-2081,8957647,9491,154-11101,8895548,1160,8551371,8767748,4651,1560461,8687949,3531,05902101,8287849,8220,7602261,7906350,9580,4610471,7710251,5640,8621381,7478352,2992,564-11111,7391652,5801,365-1391,7336352,7619,0662081,7135953,4263,467-2411,70315<	42	-1	3	6	2,10301	42,973	0,6
44044 $2,05692$ $43,986$ $7,6$ 45 -2 25 $2,03465$ $44,493$ $3,1$ 46 136 $2,00035$ $45,298$ $21,7$ 47 029 $1,99394$ $45,451$ $12,2$ 48 224 $1,98375$ $45,698$ $1,5$ 49 -1 37 $1,97392$ $45,939$ $15,9$ 50 206 $1,95072$ $46,517$ $9,0$ 51 -2 26 $1,94201$ $46,738$ $2,9$ 52 119 $1,92597$ $47,151$ $0,2$ 53 -2 08 $1,89576$ $47,949$ $1,1$ 54 -1 110 $1,88955$ $48,116$ $0,8$ 55 137 $1,87677$ $48,465$ $1,1$ 56 046 $1,86879$ $48,685$ $2,0$ 57 -1 38 $1,84998$ $49,213$ $1,3$ 58 -2 27 $1,84507$ $49,353$ $1,0$ 59 0210 $1,82878$ $49,822$ $0,7$ 60 226 $1,79063$ $50,958$ $0,4$ 61 047 $1,77102$ $51,564$ $0,8$ 62 138 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$	43	2	2	3	2,07291	43,629	5,1
45 -2 2 5 $2,03465$ $44,493$ $3,1$ 46 1 3 6 $2,00035$ $45,298$ $21,7$ 47 0 2 9 $1,99394$ $45,451$ $12,2$ 48 2 2 4 $1,98375$ $45,698$ $1,5$ 49 -1 3 7 $1,97392$ $45,939$ $15,9$ 50 2 0 6 $1,95072$ $46,517$ $9,0$ 51 -2 2 6 $1,94201$ $46,738$ $2,9$ 52 1 1 9 $1,92597$ $47,151$ $0,2$ 53 -2 0 8 $1,89576$ $47,949$ $1,1$ 54 -1 1 10 $1,88879$ $48,685$ $2,0$ 57 -1 3 8 $1,84978$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,79063$ $50,958$ $0,4$ 61 0 4 7 $1,77102$ $51,564$ $0,8$ 62 1 3 8 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 3 9 $1,73363$ $52,761$ $9,0$ 66 2 0 8 $1,71359$ $53,426$ $3,4$	44	0	4	4	2,05692	43,986	7,6
46136 $2,00035$ $45,298$ $21,7$ 47 029 $1,99394$ $45,451$ $12,2$ 48 224 $1,98375$ $45,698$ $1,5$ 49 -1 37 $1,97392$ $45,939$ $15,9$ 50 206 $1,95072$ $46,517$ $9,0$ 51 -2 26 $1,94201$ $46,738$ $2,9$ 52 119 $1,92597$ $47,151$ $0,2$ 53 -2 08 $1,89576$ $47,949$ $1,1$ 54 -1 110 $1,88955$ $48,116$ $0,8$ 55 137 $1,87677$ $48,685$ $2,0$ 57 -1 38 $1,84998$ $49,213$ $1,3$ 58 -2 27 $1,84507$ $49,353$ $1,0$ 59 0210 $1,82878$ $49,822$ $0,7$ 60 226 $1,79063$ $50,958$ $0,4$ 61 047 $1,77102$ $51,564$ $0,8$ 62 138 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 39 $1,73363$ $52,761$ $9,0$ 66 208 $1,71359$ $53,426$ $3,4$ 67 -2 41 $1,70048$ $53,871$ <	45	-2	2	5	2,03465	44,493	3,1
470291,99394 $45,451$ 12,2 48 2241,98375 $45,698$ 1,5 49 -1 371,97392 $45,939$ 15,9 50 2061,95072 $46,517$ 9,0 51 -2 261,94201 $46,738$ 2,9 52 1191,92597 $47,151$ 0,2 53 -2 081,89576 $47,949$ 1,1 54 -1 1101,88955 $48,116$ 0,8 55 1371,87677 $48,465$ 1,1 56 0461,86879 $48,685$ 2,0 57 -1 381,84998 $49,213$ 1,3 58 -2 271,84507 $49,353$ 1,0 59 02101,82878 $49,822$ 0,7 60 2261,79063 $50,958$ 0,4 61 0471,77102 $51,564$ 0,8 62 1381,75861 $51,955$ 0,4 63 -2 281,74783 $52,299$ 2,5 64 -1 1111,70315 $53,780$ 2,2 64 -1 111,70315 $53,871$ 3,8 69 2271,69451 $54,077$ 2,7 70 -1 521,68960 <td>46</td> <td>1</td> <td>3</td> <td>6</td> <td>2,00035</td> <td>45,298</td> <td>21,7</td>	46	1	3	6	2,00035	45,298	21,7
482241,98375 $45,698$ 1,5 49 -1371,97392 $45,939$ 15,9 50 2061,95072 $46,517$ 9,0 51 -2261,94201 $46,738$ 2,9 52 1191,92597 $47,151$ 0,2 53 -2081,89576 $47,949$ 1,1 54 -11101,88955 $48,116$ 0,8 55 1371,87677 $48,465$ 1,1 56 0461,86879 $48,685$ 2,0 57 -1381,84998 $49,213$ 1,3 58 -2271,84507 $49,353$ 1,0 59 02101,82878 $49,822$ 0,7 60 2261,7906350,9580,4 61 0471,7710251,5640,8 62 1381,7586151,9550,4 63 -2281,7478352,2992,5 64 -11111,7391652,5801,3 65 -1391,7336352,7619,0 66 2081,7135953,4263,4 67 -2411,7031553,7802,2 68 -3111,704853,8713,8	47	0	2	9	1,99394	45,451	12,2
49 -1 3 7 $1,97392$ $45,939$ $15,9$ 50 2 0 6 $1,95072$ $46,517$ $9,0$ 51 -2 2 6 $1,94201$ $46,738$ $2,9$ 52 1 1 9 $1,92597$ $47,151$ $0,2$ 53 -2 0 8 $1,89576$ $47,949$ $1,1$ 54 -1 1 10 $1,88955$ $48,116$ $0,8$ 55 1 3 7 $1,87677$ $48,465$ $1,1$ 56 0 4 6 $1,86879$ $48,685$ $2,0$ 57 -1 3 8 $1,84998$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,79063$ $50,958$ $0,4$ 61 0 4 7 $1,77102$ $51,564$ $0,8$ 62 1 3 8 $1,75861$ $51,955$ $0,4$ 63 -2 2 8 $1,71359$ $53,426$ $3,4$ 67 -2 4 1 $1,70315$ $53,780$ $2,2$ 68 -3 1 1 $1,7048$ $53,871$ $3,8$ 69 2 2 7 $1,69451$ $54,077$ $2,7$ 70 -1 5 2 $1,68960$ $54,247$ $1,7$ </td <td>48</td> <td>2</td> <td>2</td> <td>4</td> <td>1,98375</td> <td>45,698</td> <td>1,5</td>	48	2	2	4	1,98375	45,698	1,5
50 2 0 6 $1,95072$ $46,517$ $9,0$ 51 -2 2 6 $1,94201$ $46,738$ $2,9$ 52 1 1 9 $1,92597$ $47,151$ $0,2$ 53 -2 0 8 $1,89576$ $47,949$ $1,1$ 54 -1 1 10 $1,88955$ $48,116$ $0,8$ 55 1 3 7 $1,87677$ $48,465$ $1,1$ 56 0 4 6 $1,86879$ $48,685$ $2,0$ 57 -1 3 8 $1,84998$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,79063$ $50,958$ $0,4$ 61 0 4 7 $1,77102$ $51,564$ $0,8$ 62 1 3 8 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 3 9 $1,73363$ $52,761$ $9,0$ 66 2 0 8 $1,71359$ $53,426$ $3,4$ 67 -2 4 1 $1,70048$ $53,871$ $3,8$ 69 2 2 7 $1,69451$ $54,077$ $2,7$ 70 -1 5 2 $1,68960$ $54,247$ $1,7$ </td <td>49</td> <td>-1</td> <td>3</td> <td>7</td> <td>1,97392</td> <td>45,939</td> <td>15,9</td>	49	-1	3	7	1,97392	45,939	15,9
51 -2 2 6 $1,94201$ $46,738$ $2,9$ 52 1 1 9 $1,92597$ $47,151$ $0,2$ 53 -2 0 8 $1,89576$ $47,949$ $1,1$ 54 -1 1 10 $1,88955$ $48,116$ $0,8$ 55 1 3 7 $1,87677$ $48,465$ $1,1$ 56 0 4 6 $1,86879$ $48,685$ $2,0$ 57 -1 3 8 $1,84998$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,79063$ $50,958$ $0,4$ 61 0 4 7 $1,77102$ $51,564$ $0,8$ 62 1 3 8 $1,75861$ $51,955$ $0,4$ 63 -2 2 8 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 3 9 $1,73363$ $52,761$ $9,0$ 66 2 0 8 $1,71359$ $53,426$ $3,4$ 67 -2 4 1 $1,70048$ $53,871$ $3,8$ 69 2 2 7 $1,69451$ $54,077$ $2,7$ 70 -1 5 2 $1,68960$ $54,247$ $1,7$ <	50	2	0	б	1,95072	46,517	9,0
52119 $1,92597$ $47,151$ $0,2$ 53 -2 08 $1,89576$ $47,949$ $1,1$ 54 -1 110 $1,88955$ $48,116$ $0,8$ 55 137 $1,87677$ $48,465$ $1,1$ 56 046 $1,86879$ $48,685$ $2,0$ 57 -1 38 $1,84998$ $49,213$ $1,3$ 58 -2 27 $1,84507$ $49,353$ $1,0$ 59 0210 $1,82878$ $49,822$ $0,7$ 60 226 $1,79063$ $50,958$ $0,4$ 61 047 $1,77102$ $51,564$ $0,8$ 62 138 $1,75861$ $51,955$ $0,4$ 63 -2 28 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 39 $1,73363$ $52,761$ $9,0$ 66 208 $1,71359$ $53,426$ $3,4$ 67 -2 41 $1,70048$ $53,871$ $3,8$ 69 227 $1,69451$ $54,077$ $2,7$ 70 -1 5 2 $1,68960$ $54,247$ $1,7$ 71 02 11 $1,68498$ $54,408$ $1,2$ 72 -3 13 $1,67451$ $54,776$ <	51	-2	2	б	1,94201	46,738	2,9
53 -2 0 8 $1,89576$ $47,949$ $1,1$ 54 -1 1 10 $1,88955$ $48,116$ $0,8$ 55 1 3 7 $1,87677$ $48,465$ $1,1$ 56 0 4 6 $1,86879$ $48,685$ $2,0$ 57 -1 3 8 $1,84998$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,79063$ $50,958$ $0,4$ 61 0 4 7 $1,77102$ $51,564$ $0,8$ 62 1 3 8 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 3 9 $1,73363$ $52,761$ $9,0$ 66 2 0 8 $1,71359$ $53,426$ $3,4$ 67 -2 4 1 $1,70048$ $53,871$ $3,8$ 69 2 2 7 $1,69451$ $54,077$ $2,7$ 70 -1 5 2 $1,68960$ $54,247$ $1,7$ 71 0 2 11 $1,68498$ $54,408$ $1,2$ 72 -3 1 3 $1,67451$ $54,776$ $2,8$	52	1	1	9	1,92597	47,151	0,2
54 -1 1 10 $1,88955$ $48,116$ $0,8$ 55 1 3 7 $1,87677$ $48,465$ $1,1$ 56 0 4 6 $1,86879$ $48,685$ $2,0$ 57 -1 3 8 $1,84998$ $49,213$ $1,3$ 58 -2 2 7 $1,84507$ $49,353$ $1,0$ 59 0 2 10 $1,82878$ $49,822$ $0,7$ 60 2 2 6 $1,79063$ $50,958$ $0,4$ 61 0 4 7 $1,77102$ $51,564$ $0,8$ 62 1 3 8 $1,75861$ $51,955$ $0,4$ 63 -2 2 8 $1,74783$ $52,299$ $2,5$ 64 -1 1 11 $1,73916$ $52,580$ $1,3$ 65 -1 3 9 $1,73363$ $52,761$ $9,0$ 66 2 0 8 $1,71359$ $53,426$ $3,4$ 67 -2 4 1 $1,70048$ $53,871$ $3,8$ 69 2 2 7 $1,69451$ $54,077$ $2,7$ 70 -1 5 2 $1,68960$ $54,247$ $1,7$ 71 0 2 11 $1,68498$ $54,408$ $1,2$ 72 -3 1 3 $1,67451$ $54,776$ $2,8$	53	-2	0	8	1,89576	47,949	1,1
551371,8767748,4651,1 56 0461,8687948,6852,0 57 -1381,8499849,2131,3 58 -2271,8450749,3531,0 59 02101,8287849,8220,7 60 2261,7906350,9580,4 61 0471,7710251,5640,8 62 1381,7586151,9550,4 63 -2281,7478352,2992,5 64 -11111,7391652,5801,3 65 -1391,7336352,7619,0 66 2081,7135953,4263,4 67 -2411,7004853,8713,8 69 2271,6945154,0772,7 70 -1521,6896054,2471,7 71 02111,6849854,4081,2 72 -3131,6745154,7762,8	54	-1	1	10	1,88955	48,116	0,8
560461,8687948,6852,0 57 -1 381,8499849,2131,3 58 -2 271,8450749,3531,0 59 02101,8287849,8220,7 60 2261,7906350,9580,4 61 0471,7710251,5640,8 62 1381,7586151,9550,4 63 -2 281,7478352,2992,5 64 -1 1111,7391652,5801,3 65 -1 391,7336352,7619,0 66 2081,7135953,4263,4 67 -2 411,7004853,8713,8 69 2271,6945154,0772,7 70 -1 521,6896054,2471,7 71 02111,6849854,4081,2 72 -3 131,6818754,5173,2 73 -2 431,6745154,7762,8	55	1	3	7	1,87677	48,465	1,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	0	4	б	1,86879	48,685	2,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	-1	3	8	1,84998	49,213	1,3
5902101,82878 $49,822$ 0,7 60 2261,79063 $50,958$ 0,4 61 0471,77102 $51,564$ 0,8 62 1381,75861 $51,955$ 0,4 63 -2281,74783 $52,299$ 2,5 64 -11111,73916 $52,580$ 1,3 65 -1391,73363 $52,761$ 9,0 66 2081,71359 $53,426$ 3,4 67 -2411,70315 $53,780$ 2,2 68 -3111,70048 $53,871$ 3,8 69 2271,69451 $54,077$ 2,7 70 -1521,68960 $54,247$ 1,7 71 02111,68498 $54,408$ 1,2 72 -3131,68187 $54,517$ 3,2 73 -2431,67451 $54,776$ 2,8	58	-2	2	7	1,84507	49,353	1,0
	59	0	2	10	1,82878	49,822	0,7
610471,77102 $51,564$ 0,8 62 1381,75861 $51,955$ 0,4 63 -2281,74783 $52,299$ 2,5 64 -11111,73916 $52,580$ 1,3 65 -1391,73363 $52,761$ 9,0 66 2081,71359 $53,426$ 3,4 67 -2411,70315 $53,780$ 2,2 68 -3111,70048 $53,871$ 3,8 69 2271,69451 $54,077$ 2,7 70 -1521,68960 $54,247$ 1,7 71 02111,68498 $54,408$ 1,2 72 -3131,68187 $54,517$ $3,2$ 73 -2431,67451 $54,776$ 2,8	60	2	2	6	1,79063	50,958	0,4
621381,75861 $51,955$ 0,4 63 -2 281,74783 $52,299$ 2,5 64 -1 1111,73916 $52,580$ 1,3 65 -1 391,73363 $52,761$ 9,0 66 2081,71359 $53,426$ 3,4 67 -2 411,70315 $53,780$ 2,2 68 -3 111,70048 $53,871$ 3,8 69 2271,69451 $54,077$ 2,7 70 -1 521,68960 $54,247$ 1,7 71 02111,68498 $54,408$ 1,2 72 -3 131,68187 $54,517$ 3,2 73 -2 431,67451 $54,776$ 2,8	61	0	4	7	1,77102	51,564	0,8
	62	1	3	8	1,75861	51,955	0,4
	63	-2	2	8	1,74783	52,299	2,5
	64	-1	1	11	1,73916	52,580	1,3
	65	-1	3	9	1,73363	52,761	9,0
	66	2	0	8	1,71359	53,426	3,4
68-3111,7004853,8713,8692271,6945154,0772,770-1521,6896054,2471,77102111,6849854,4081,272-3131,6818754,5173,273-2431,6745154,7762,8	67	-2	4	1	1,70315	53,780	2,2
692271,6945154,0772,770-1521,6896054,2471,77102111,6849854,4081,272-3131,6818754,5173,273-2431,6745154,7762,8	68	-3	1	1	1,70048	53,871	3,8
70-1521,6896054,2471,77102111,6849854,4081,272-3131,6818754,5173,273-2431,6745154,7762,8	69	2	2	7	1,69451	54,077	2,7
7102111,6849854,4081,272-3131,6818754,5173,273-2431,6745154,7762,8	70	-1	5	2	1,68960	54,247	1,7
72 -3 1 3 1,68187 54,517 3,2 73 -2 4 3 1,67451 54,776 2,8	71	0	2	11	1,68498	54,408	1,2
73 -2 4 3 1,67451 54,776 2,8	72	-3	1	3	1,68187	54,517	3,2
	73	-2	4	3	1,67451	54,776	2,8

74	1	5	2	1,67113	54,896	2,1
75	-2	0	10	1,66567	55,091	11,7
76	2	4	2	1,65837	55,355	5,4
77	-3	1	4	1,65482	55,484	4,2
78	1	3	9	1,64896	55,698	22.2
79	3	1	2	1,64348	55,900	14.8
80	1	5	3	1,63841	56,088	5.5
81	_1	5	4	1 62998	56 404	73
82	_1	2	10	1 62593	56 557	4 5
02 02	⊥ 2	1	70	1 62221	56,599	т, J О Л
0 J Q /	_2	1	5	1 61922	56 847	2,7 7 7
01	1	1	10	1 60025	50,047	,,,
00	-1	⊥ 1	2	1 60269	57,197	0,9
00	1	т	2	1,00300 1,00307	57,414	7,9
0/	1	5 F	4 F	1,59727	57,000	4,4
00	-1	2	2	1,50/24	50,005	0,4
89	0	4	9	1,58352	58,215	0,3
90	-3	Ţ	6	1,5/432	58,588	2,3
91	0	2	12	1,56265	59,069	2,3
92	3	1	4	1,55813	59,257	8,0
93	1	5	5	1,54968	59,613	1,9
94	-1	5	6	1,53850	60,090	2,8
95	-1	3	11	1,52712	60,585	11,4
96	1	1	12	1,51991	60,903	1,8
97	2	0	10	1,51046	61,325	5,4
98	-2	4	7	1,50443	61,597	15,8
99	-3	3	1	1,50178	61,718	33,4
100	1	5	6	1,49765	61,907	18,6
101	-3	3	3	1,48770	62,367	2,3
102	3	3	1	1,48237	62,616	2,1
103	2	4	6	1,47577	62,928	2,9
104	-3	1	8	1,47160	63,127	2,0
105	-2	0	12	1,47027	63,191	1,5
106	0	б	3	1,46754	63,322	0,8
107	0	2	13	1,45612	63,877	4,2
108	3	1	б	1,45315	64,023	2,3
109	-3	3	5	1,44296	64,530	0,8
110	0	6	4	1,44065	64,646	0,5
111	-1	3	12	1,43691	64,834	0,3
112	3	3	3	1,43237	65,065	2,7
113	0	0	14	1,42882	65,247	2,4
114	1	1	13	1,41805	65,805	1,2
115	-3	1	9	1,41647	65,888	1,9
116	-3	3	6	1,41187	66,130	1,0
117	0	6	5	1,40816	66,326	0,2
118	3	1	7	1,39726	66,912	1,3
119	1	5	8	1,38714	67,465	0,1
120	-3	3	7	1,37581	68,096	1,2
121	1	3	12	1,37128	68,352	1,0
122	2	4	8	1,36472	68,727	0,5
123	3	3	5	1,36282	68,836	0,6
124	-1	3	13	1,35474	69,305	12,3
125	2	0	12	1,34103	70,117	9,6
126	1	5	9	1,33139	70,700	0,6
127	1	1	14	1,32836	70,885	1.0
128	-2	2	13	1,32421	71,141	3,0
129	-1	1	15	1,30998	72,034	0,8
130	-2	0	14	1,30770	72,179	0.7
131	-3	1	11	1,30555	72,317	0.7
132	-2	6	1	1,30201	72,545	2.4
133	2	6	0	1,30047	72,644	4.4
134	-2	6	2	1,29805	72,801	8,4
135	-3	3	9	1,29467	73,022	8.7
136	2	6	1	1,29334	73,109	6.3
					-	

137	0	6	8	1,28909	73,390	3,9
138	2	2	12	1,28524	73,646	1,8
139	3	3	7	1,28028	73,979	4,7
140	1	5	10	1,27664	74,225	2,7
141	-2	6	4	1,27443	74,375	3,6
142	0	4	13	1,27131	74,589	3,1
143	4	0	2	1,26653	74,919	2,4
144	-2	2	14	1,25604	75,654	1,3
145	-1	7	1	1,25069	76,035	4,4
146	-4	0	б	1,24896	76,159	4,5
147	0	6	9	1,24586	76,382	3,2
148	2	6	4	1,24337	76,563	4,4
149	-1	7	3	1,23523	77,160	1,4
150	-1	1	16	1,23188	77,409	0,9
151	3	5	2	1,22648	77,814	1,9
152	1	7	3	1,22437	77,973	2,1

Reference code:	01-078-2315		
Mineral name:	Quartz		
ICSD name:	Silicon Oxide		
Empirical formula:	O ₂ Si		
Chemical formula:	SiO ₂		

Crystallographic parameters

Crystal system: Space group: Space group number:	Hexagonal P3221 154
epace group nameen	
a (Å):	4,9124
b (Å):	4,9124
c (Å):	5,4039
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	120,0000
Calculated density (q/cm^3):	2,65
Volume of cell (10 ⁶ pm ³):	112,93
Z:	3,00
RIR:	3,10

Subfiles and Quality

Inorganic Mineral
Alloy motal or intermetalia
Alloy, metal of intermetalic
Corrosion
Modelled additional pattern
Calculated (C)

Comments

ICSD collection code: 063532

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Will, G., Bellotto, M., Parrish, W., Hart, M., J. Appl. Crystallogr., 21 ,
	182, (1988)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	0	4,25425	20,864	20,8
2	0	1	1	3,34268	26,646	100,0
3	1	1	0	2,45620	36,554	б,8
4	1	0	2	2,28080	39,478	б,5
5	1	1	1	2,23605	40,302	3,2
6	2	0	0	2,12713	42,462	4,9
7	2	0	1	1,97930	45,807	2,8
8	1	1	2	1,81747	50,153	11,0
9	0	0	3	1,80128	50,636	0,4

10	0	2	2	1,67134	54,889	3,4
11	0	1	3	1,65873	55,342	1,5
12	2	1	0	1,60796	57,247	0,2
13	1	2	1	1,54118	59,975	8,3
14	1	1	3	1,45254	64,053	1,4
15	3	0	0	1,41808	65,803	0,4
16	1	2	2	1,38178	67,762	4,б
17	2	0	3	1,37463	68,163	5,8
18	0	3	1	1,37164	68,332	6,2
19	1	0	4	1,28760	73,489	1,8
20	3	0	2	1,25565	75,681	2,5
21	2	2	0	1,22810	77,692	1,4
22	2	1	3	1,19955	79,906	2,4
23	1	1	4	1,18372	81,196	1,9
24	3	1	0	1,17992	81,512	2,6
25	1	3	1	1,15276	83,860	1,5
26	2	0	4	1,14040	84,980	0,2
27	2	2	2	1,11803	87,099	0,1
28	3	0	3	1,11423	87,471	0,2

Reference code:	01-074-1137
Mineral name:	Clinochlore
ICSD name:	Aluminum Magnesium Silicate Hydroxide
Empirical formula:	Al ₂ H ₈ Mg ₅ O ₁₈ Si ₃
Chemical formula:	Al ₂ Mg ₅ Si ₃ O ₁₀ (OH) ₈

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	C2/c
Space group number:	15
a (Å):	5,3040
b (Å):	9,1870
c (Å):	28,4940
Alpha (°):	90,0000
Beta (°):	97,1440
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,68
Volume of cell (10^6 pm^3):	1377,67
Z:	4,00
RIR:	0,99

Subfiles and Quality

Subfiles: Quality:	Inorganic Mineral Corrosion Modelled additional pattern Calculated (C)
<u>Comments</u>	
Sample source: ICSD collection code: Test from ICSD:	Specimen from Philipsburg, MT, USA. 026850 No R value given.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	McMurchy, G.C., Z. Kristallogr., Kristallgeom., Kristallphys.
	Kristallchem., 88, 420, (1934)

At least one TF missing.

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	14,13630	6,247	100,0
2	0	0	4	7,06815	12,513	44,4
3	0	0	6	4,71210	18,817	43,4
4	0	2	0	4,58677	19,336	16,9
5	0	2	1	4,53405	19,563	8,8
б	-1	1	2	4,48956	19,759	7,8
7	1	1	1	4,43344	20,012	15,5

8	0	2	2	4,36865	20,311	1,0
9	-1	1	3	4,29554	20,661	3,5
10	1	1	2	4,21442	21,063	5,2
11	0	2	3	4,12913	21,503	14,7
12	-1	1	4	4,03961	21,986	1,3
13	1	1	3	3,94578	22,515	0,9
14	0	2	4	3,85159	23,073	3,1
15	-1	1	5	3,75644	23,666	11,8
16	1	1	4	3,65981	24,300	1,5
17	0	0	8	3,53408	25,179	23,0
18	-1	1	6	3,47196	25,637	1,7
19	1	1	5	3,37887	26,356	8,2
20	0	2	6	3,28923	27,088	1,5
21	-1	1	7	3,20178	27,842	0,2
22	1	1	6	3,11552	28,629	0,6
23	0	2	7	3,03318	29,424	5,0
24	-1	1	8	2,95346	30,237	1,3
25	1	1	7	2,87527	31,079	0,6
26	0	0	10	2,82726	31,621	12,1
27	0	2	8	2,80101	31,925	0,4
28	-1	1	9	2,72939	32,786	2,8
29	1	1	8	2,65937	33,675	1,0
30	-1	3	1	2,65076	33,787	0,7
31	-1	3	2	2,63159	34,041	0,3
32	0	2	9	2,59302	34,563	1,2
33	-2	0	4	2,57268	34,845	18,7
34	-1	3	4	2,53131	35,433	29,9
35	1	1	9	2,46678	36,392	1,6
36	-1	3	5	2,45697	36,543	1,1
37	-2	0	б	2,42933	36,973	41,2
38	0	2	10	2,40775	37,317	1,5
39	-1	3	6	2,37195	37,901	17,3
40	-1	1	11	2,35094	38,253	1,3
41	1	3	5	2,34162	38,411	0,7
42	-2	2	1	2,29585	39,208	0,4
43	0	4	1	2,28921	39,327	0,5
44	2	2	0	2,28329	39,433	0,5
45	-2	2	3	2,27603	39,564	0,4
46	0	4	2	2,26702	39,728	0,3
47	-2	0	8	2,24841	40,070	15,2
48	0	2	11	2,24299	40,171	9,3
49	-2	2	5	2,20131	40,966	0,6
50	-1	1	12	2,19247	41,138	0,6
51	-1	3	8	2,18517	41,282	2,4
52	2	2	3	2,16622	41,660	0,2
53	1	1	11	2,14312	42,130	0,8
54	0	4	5	2,12791	42,446	0,6
55	2	2	4	2,10721	42,883	0,3
56	0	2	12	2,09638	43,116	0,1
57	-2	2	7	2,08650	43,330	0,3
58	-2	0	10	2,05767	43,969	0,8
59	-1	1	13	2,05136	44,111	0,6
60	2	2	5	2,04204	44,323	0,7
61	-2	2	8	2,01947	44,845	2,4
62	-1	3	10	1,99554	45,413	27,2
63	0	2	13	1,96564	46,143	0,7
64	-2	2	9	1,94978	46,541	0,7
65	0	4	8	1,92579	47,155	0,4
66	2	2	7	1,90166	47,791	0,4
67	-2	0	12	1,87460	48,525	7,3
68	0	4	9	1,85406	49,097	0,6
69	0	2	14	1,84870	49,249	0,4
70	2	2	8	1,82991	49,789	0,4

71	-1	3	12	1,81722	50,161	4,1
72	-1	1	15	1,81265	50,296	2,7
73	-2	2	11	1,80658	50,477	0,8
74	1	1	14	1,77732	51,368	0,1
75	0	0	16	1,76704	51,689	0,2
76	2	2	9	1,75886	51,947	0,5
77	-1	5	1	1,73582	52,689	1,6
78	-3	1	1	1,73285	52,786	1,4
79	-2	4	3	1,72718	52,973	1,6
80	-3	1	4	1,72326	53,103	0,8
81	-1	5	3	1,71856	53,260	0,4
82	1	5	2	1,71260	53,460	1,1
83	-3	1	5	1,70751	53,632	2,3
84	-2	4	5	1,69373	54,103	0,1
85	-3	1	6	1,68590	54,375	0,4
86	-1	5	5	1,67769	54,664	1,4
87	1	5	4	1,66723	55,036	0,4
88	-1	3	14	1,65628	55,431	2,9
89	0	4	12	1,64461	55,858	0,5
90	-2	4	7	1,63983	56,035	1,3
91	-3	1	8	1,62925	56,432	0,3
92	2	2	11	1,62226	56,697	0,6
93	-1	5	7	1,61816	56,853	0,4
94	-2	4	8	1,60668	57,297	0,1
95	-2	2	14	1,60089	57,524	0,1
96	-3	1	9	1,59484	57,762	0,9
97	1	1	16	1,59117	57,908	0,5
98	-1	5	8	1,58312	58,231	0,3
99	0	4	13	1,57917	58,391	0,4
100	-2	4	9	1,57092	58,727	0,4
101	1	3	14	1,55917	59,214	17,9
102	-1	5	9	1,54542	59,794	0,8
103	-2	2	15	1,53732	60,141	1,3
104	0	6	0	1,53114	60,409	22,1
105	-3	3	4	1,52228	60,798	1,0
106	-3	1	11	1,51973	60,911	0,6
107	-1	3	16	1,51403	61,164	0,9
108	0	6	3	1,51111	61,295	0,5
109	0	6	4	1,49635	61,966	8,7
110	1	5	9	1,49288	62.126	5,0
111	-3	1	12	1,47926	62,763	0,2
112	3	3	3	1,47673	62,883	0,3
113	-1	5	11	1,46601	63,396	0,3
114	-1	1	19	1,46207	63,587	0,3
115	0	6	6	1,45607	63.879	2.3
116	-2	4	12	1,45248	64,056	1,2
117	3	1	9	1,43847	64,756	0,2
118	-2	0	18	1,42892	65,242	0,5
119	-1	5	12	1,42488	65,450	0,4
120	0	0	20	1,41363	66,037	2,1
121	1	5	11	1,41128	66,161	1,2
122	0	6	8	1,40481	66,505	1,1
123	0	4	16	1,40051	66,736	0,7
124	-3	1	14	1,39787	66.879	0.2
125	-1	3	18	1,38946	67,337	8.2
126	2	2	15	1,38215	67,741	0.8
127	1	5	12	1,37034	68,406	0.1
128	-2	2	18	1.36470	68.728	0.1
129	-3	1	15	1,35704	69,171	0.3
130	0	2	20	1,35110	69,518	0.1
131	0	6	10	1,34622	69,807	1.2
132	-1	5	14	1,34340	69,975	0,7
133	1	5	13	1,32968	70,804	0 <i>.</i> 1
				-		•

ANNEXES	

134	-2	6	1	1,32586	71,039	0,1
135	2	б	0	1,32342	71,190	0,8

Reference code:	01-076-0629
Mineral name:	Jarosite
ICSD name:	Potassium Iron Sulfate Hydroxide
Empirical formula:	Fe ₃ H ₆ KO ₁₄ S ₂
Chemical formula:	K (Fe ₃ (SO ₄) ₂ (OH) ₆)

Crystallographic parameters

Crystal system:	Rhombohedral
Space group:	R-3m
Space group number:	166
a (Å):	7,3040
b (Å):	7,3040
c (Å):	17,2680
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	120,0000
Calculated density (g/cm ³):	3,13
Volume of cell (10 ⁶ pm ³):	797,80
Z:	3,00
RIR:	2,17

Subfiles and Quality

Subfiles:	Inorganic Mineral
	Corrosion
	Modelled additional pattern
Quality:	Calculated (C)
Comments	

Sample source:	Specimen from Meadow Valley 1, Pioche, NV, USA.
ICSD collection code:	034344

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Kato, T., Miura, Y., <i>Mineral. J.</i> , 8 , 419, (1977)

No.	h	k	1	d [A]	2Theta[d	leg] I [%]
1	1	0	1	5,93950	14,903	43,2
2	0	0	3	5,75600	15,381	18,4
3	0	1	2	5,10261	17,365	63,5
4	1	1	0	3,65200	24,353	13,0
5	1	0	4	3,56572	24,952	2,5
6	0	2	1	3,11098	28,672	63,9
7	1	1	3	3,08370	28,931	100,0
8	0	1	5	3,03122	29,443	1,6
9	2	0	2	2,96975	30,067	15,0
10	0	0	б	2,87800	31,049	19,3

11	0	2	4	2,55130	35,146	17,5
12	2	1	1	2,36820	37,964	2,2
13	2	0	5	2,33245	38,568	1,4
14	1	0	7	2,29827	39,165	30,2
15	3	0	0	2,10848	42,856	0,1
16	2	1	4	2,09148	43,222	0,1
17	0	1	8	2,04284	44,305	0,2
18	0	3	3	1,97983	45,794	29,1
19	1	2	5	1,96574	46,141	1,6
20	0	2	7	1,94514	46,658	6,9
21	0	0	9	1,91867	47,341	4,7
22	2	2	0	1,82600	49,903	28,0
23	2	0	8	1,78286	51,197	5,3
24	1	3	1	1,74538	52,378	0,6
25	2	2	3	1,74052	52.536	2.8
26	3	1	2	1,71923	53,237	3.7
27	2	1	7	1,71681	53,318	3,3
28	1	1	9	1 69852	53 939	23
29	1	0	10	1 66584	55 085	0.2
30	1	2	4	1 62528	56 582	18
31	1	2	8	1 60214	57 475	35
30	т 4	0	1	1 57477	58 570	3,5
22	2	1	т Б	1 56/12	50,570	3,7
21	0	1	2	1 555413	59,007	5,0
34 2E	0	4	2	1,55549 1 E410E	59,300	р,4 12 г
35	2	∠ 1	11	1,54105	59,940	13,5
30	0	1		1,5236U	60,740	0,4
3/	0	2	10	1,51501	61,094	10,9
38	4	0	4	1,4848/	62,499	4,/
39	3	2	10	1,44606	64,375	⊥,4
40	0	0	12	1,43/80	64,/89	2,3
41	2	3	2	1,43108	65,131	3,2
42	Ţ	3	7	1,42969	65,202	3,4
43	0	3	9	1,41907	65,752	2,8
44	2	0	ΤT	1,40614	66,434	2,4
45	4	Ţ	0	1,38033	67,843	0,9
46	3	2	4	1,37552	68,112	0,6
47	3	1	8	1,36141	68,917	0,3
48	4	1	3	1,34227	70,042	7,3
49	1	1	12	1,33882	70,249	4,0
50	4	0	7	1,33131	70,705	1,4
51	2	2	9	1,32272	71,233	2,6
52	1	2	11	1,31223	71,891	0,1
53	1	0	13	1,29995	72,678	1,5
54	0	4	8	1,27565	74,292	0,6
55	0	5	1	1,26171	75,254	0,1
56	3	2	7	1,25079	76,028	5,2
57	1	3	10	1,23066	77,500	1,2
58	0	2	13	1,22468	77,950	0,2
59	3	3	0	1,21733	78,511	1,8
60	0	5	4	1,21403	78,766	1,0
61	0	1	14	1,21063	79,030	0,1
62	2	3	8	1,20430	79,528	0,1
63	2	4	1	1,19254	80,471	2,1
64	3	3	3	1,19099	80,597	2,1
65	3	0	12	1,18857	80,795	1,5
66	4	2	2	1,18410	81,164	1,3
67	3	1	11	1,16985	82,365	0,1
68	4	0	10	1,16622	82,678	2,7
69	2	1	13	1,16113	83,120	3,2
70	2	4	4	1,15205	83,923	2,7
71	2	0	14	1,14913	84,186	1,9
72	5	1	1	1,13363	85,609	0,1
73	2	2	12	1,12964	85,984	3,7

ANNEXES

74 75 76 77 78 79 80	1 4 0 3 5 1	5 1 2 1 1 2	2 9 11 10 4 15 14	1,12638 1,12049 1,11409 1,11095 1,09868 1,09794 1,09615	86,294 86,860 87,485 87,795 89,033 89,109 89,293	2,2 0,9 1,2 0,7 0,2 0,2 0,8
80	1	0	14	1,09615	89,293	0,8
81	5		8	1,09144	89,783	0,4

Reference code:	01-073-1765
Mineral name:	Rutile, syn
ICSD name:	Titanium Oxide
Empirical formula:	O ₂ Ti
Chemical formula:	TiO ₂

Crystallographic parameters

Crystal system: Space group: Space group number:	Tetragonal P42/mnm 136
a (Å):	4,5890
b (Å):	4,5890
c (Å):	2,9540
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	4,26
Volume of cell (10 ⁶ pm ³):	62,21
Z:	2,00
RIR:	3,45

Subfiles and Quality

Inorganic Mineral
Alloy, metal or intermetalic
Corrosion
Modelled additional pattern
Calculated (C)

Comments

ICSD collection code:	024277
Test from ICSD:	No R value given.
	At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Schossberger, F., Z. Kristallogr., Kristallgeom., Kristallphys.,
	Kristallchem., 104 , 358, (1942)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	1	0	3,24491	27,465	100,0
2	1	0	1	2,48387	36,133	45,7
3	2	0	0	2,29450	39,232	5,9
4	1	1	1	2,18442	41,297	17,4
5	2	1	0	2,05226	44,091	5,1
6	2	1	1	1,68543	54,392	45,0
7	2	2	0	1,62246	56,689	14,0

Q	Ο	0	С	1 47700	62 870	5 0
0	0	0	2	1,47700	02,870	5,9
9	3	1	0	1,45117	64,121	б,4
10	2	2	1	1,42208	65,595	0,3
11	3	0	1	1,35835	69,094	13,3
12	1	1	2	1,34429	69,922	6,7
13	3	1	1	1,30249	72,514	1,0
14	3	2	0	1,27276	74,489	0,2
15	2	0	2	1,24194	76,667	1,3
16	2	1	2	1,19881	79,965	0,6
17	3	2	1	1,16888	82,448	2,7
18	4	0	0	1,14725	84,355	2,0
19	4	1	0	1,11300	87,592	0,6
20	2	2	2	1,09221	89,702	4,2

Reference code:	01-076-0929
Mineral name:	Muscovite 2M1
ICSD name:	Potassium Aluminum Oxide Silicate Hydroxide
Empirical formula:	Al ₃ H ₂ KO ₁₂ Si ₃
Chemical formula:	KAl ₂ Si ₃ AlO ₁₀ (OH) ₂

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	C2/c
Space group number:	15
a (Å):	5,1906
b (Å):	9,0080
c (Å):	20,0470
Alpha (°):	90,0000
Beta (°):	95,7570
Gamma (°):	90,0000
Calculated density (g/cm^3):	2,84
Volume of cell (10^6 pm^3):	932,61
Z:	4,00
RIR:	0,39

Subfiles and Quality

Subfiles:	Inorganic Mineral
	Corrosion
	Modelled additional pattern
Quality:	Calculated (C)
Comments	

Sample source:	Specimen from GA, USA.
ICSD collection code:	034921

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Gueven, N., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.,
	134 , 196, (1971)

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	9,97295	8,860	64,2
2	0	0	4	4,98647	17,773	27,1
3	1	1	0	4,48033	19,800	37,0
4	-1	1	1	4,45509	19,913	79,8
5	0	2	1	4,39338	20,196	10,4
б	1	1	1	4,29226	20,677	20,0
7	0	2	2	4,10480	21,632	15,9
8	1	1	2	3,96007	22,433	9,5
9	-1	1	3	3,87501	22,932	49,3

10	0	2	3	3,72892	23,843	51,8
11	1	1	3	3,57411	24,892	3,7
12	-1	1	4	3,48696	25,525	67,4
13	0	2	4	3,34240	26,649	47,5
14	0	0	б	3,32432	26,796	55,3
15	1	1	4	3,19724	27,882	62,5
16	-1	1	5	3,11711	28,614	6,5
17	0	2	5	2,98628	29.896	64.0
18	1	1	5	2.85837	31,268	41.4
19	-1	1	6	2,78833	32.074	32.4
20	0	2	6	2,67468	33,476	0.5
21	1	3	0	2.59087	34,593	34.8
22	2	0	0	2,58221	34,712	30.8
23	1	3 3	1	2,55765	35,056	100.0
24	-1	1	7	2,50510	35,816	5.6
25	0	0	, 8	2,49324	35,993	7,6
26	-1	з З	3	2 46044	36 489	19 1
27	2	0	2	2,10011	36 789	10 4
28	0	2	7	2 40799	37 313	3 6
29	-2	0	4	2,10,55	37 553	10 9
30	1	3	3	2,35312	37 805	26.8
31	_1	3	4	2,37,77	38 242	20,0 0 5
32	1	1	7	2,331486	38 873	0,5
22	_1	1	, 8	2,31100	39 784	0,5
32	-2	2	1	2,20391	40 079	79
35	2	2	0	2,21727	40 269	65
36	_1	2	5	2,23770	40,200	6,5
30	1 2	2	1	2,22700	40,400	10 2
38	0	4	2	2,20199	41 056	77
20	0	2	8	2,19009	41 363	79
40	-2	0	6	2,10111	42 066	17 2
40 41	1	3	5	2,14024	42,000	20 7
42	_1	3	5	2,12725	43 083	0 7
43	2	2	3	2,05750	43 713	5 1
44	0	4	4	2,00012	44 088	8 1
45	-2	2	5	2,03210	44 597	3 0
46	0	0	10	1 99459	45 436	25 4
47	0	2	10 Q	1 98852	45 582	14 5
19 19	2	2	2 4	1 980032	45 789	1 7
10	_1	2	т 7	1 96898	46 061	172
49 50	-1	0	6	1 94696	40,001	±7,3 8,6
50	_2	2	6	1 92751	40,013	0,0
51	- <u>2</u> 1	ے 1	0	1 00114	40,000	2,7 0 2
52			و و	1 80000	47,270	0,2 1 /
53	2	2	5	1 99/11	40,000	1,4 0 0
55	2 1	2	5 7	1 972/9	40,204	1 6
55		1	6	1 86446	40,505	1,0 2 2
50	_1	2	Q	1 8/522	40,000	2,3 1 /
58		2	7	1 84062	49 480	1 2
50	0	2	10	1 82276	49,400	1,2 0 8
50	2	2	10	1 78706	51 068	0,0
61	0	2. 4	7	1 76681	51 696	1 0
62	1	3	, 8	1 75450	52 086	1,0 0 4
63		2	Q	1 7/2/9	52,000	3 0
64	-2 _1	1	11	1 73410	52,440	3,0 1 7
65	1	エ ス	а а	1 72908	52,74J	11 2
66	- 2	0	ر م	1 70005	52,5±0 53 540	1 , 2 1 , 5
67		о 4	1	1 60067	53,545	т, J О 2
68	2	ч 4	⊥ ∩	1 69700	53,099	2,2
60	2	ュ 2	ט ד	1 69102	54 107	<i>د</i> , د ۲ ۲
70	_1	5	, 2	1 68611	54 368	5,5 2 1
71	<u> </u>	2	11	1,68177	54,500	1 5
72	_ ٦	1	 2	1,67869	54.628	÷,5 २ ७
	5	-	5	_,0,000	5-7520	5,1

73	-2	4	3	1,67110	54,897	3,3
74	1	5	2	1,66774	55,017	2,2
75	-1	5	3	1,66118	55,253	13,0
76	2	4	2	1,65521	55,470	8,3
77	-3	1	4	1,65157	55,602	4,2
78	1	3	9	1,64502	55,843	26,8
79	3	1	2	1,64065	56,005	20,8
80	1	5	3	1,63506	56.213	6.0
81	1	1	11	1,63216	56.322	2.0
82	-1	5	4	1,62647	56.537	8.3
83	-1	3	10	1,62160	56,722	4.9
84	2	4	- 3	1,61910	56,817	2.6
85	-3	1	5	1,61502	56,974	7.8
86	-2	4	5	1 60022	57 550	8 1
87	1	5	4	1,59395	57,798	5.4
88	-1	5	5	1,58374	58,206	0.6
89	0	4	9	1 57960	58 373	0 4
90	-3	1	6	1 57096	58 725	2 4
91	0	2	12	1 55856	59 239	3 2
92	3	1	12 4	1 55539	59 372	3,2 8 0
93	1	5	5	1 54642	59 751	2.2
91	_1	5	5	1 52502	50,751 60 240	2,2
94	-1 -1	2	11	1 5000	60 766	1/ 6
95	-1	1	12	1 5150/	61 079	2 /
90	1 2	2	12	1 51110	61 295	2,4
00	2	2	10	1,51112	61 477	1,J
90	2	1	10	1,50707	61 720	20 1
100	-2	+ 2	1	1 /0000	61 044	20,1
101	-3	2	1 2	1 /0//2	62 055	20 0
101	-3	2	2	1 / 9/61	62,000	20,0
102	- 5	2	1	1 47070	62,JII	2,0
104	3 0	2 2	⊥ 11	1 47200	62,741	2,5
105	-2	2 1	Q L L	1 46822	63,070	3,J 2 1
105	- 2		12	1 /6617	63 388	∠,⊥ 1 7
107	-2	2	2	1 /5850	63 760	1,7
107	1	2	11	1 45252	64 054	0,Z
100	1 2	3	о ТТ О	1 //010	64,034	2,4
110	-2	2	0 5	1 /2000	64,272	2,9
111	- 3 _ 1	2	10	1 /2208	65 034	1,0
110	-1	2 2	10	1 /2010	65,034	0,4
112	2	2 0	14	1 42910	65 159	2,0
111	_3	1	14 0	1 /1225	66 104	2,5
115	-3	2	5	1 /0880	66 288	2,5
116	0	5	5	1 40512	66 489	1,3
117	_1	1	14	1 39318	67 133	2 1
118	1	5	2	1 38404	67 636	0.2
110	_3	3	7	1 37280	68 266	13
120	1	3	12	1 36827	68 523	1 4
120	2	4	8	1 36186	68 891	0 5
122	2	3	5	1 36031	68 981	0,3
122	0	2	14	1 35837	69 093	0,7
123	-3	1	10	1 35744	69 147	0,5
125	-1	3	13	1 35100	69 524	17 2
126	2	0	12	1 33789	70 305	12 1
127	_ 3	2	2	1,33335	70,580	
128	1	5	9	1,32836	70,885	0,1
129	1	1	14	1,32483	71,103	1 5
130	-2	2	1 २	1 32057	71 367	1,5 1
131	2	4	- J G	1,30615	72,278	1 1
132	_ 3	1	11	1,30029	72.527	±,± 1 1
133	2	- 6	0	1.29790	72.811	6.0
134	-2	6	2	1.29544	72.972	10.4
135	-3	3	9	1.29167	73.219	10.8
	-	-	-	-,	- /	_ , , ,

136	0	6	8	1,28615	73,585	4,5
137	2	2	12	1,28200	73,863	2,4
138	2	6	2	1,27784	74,143	5,3
139	0	2	15	1,27531	74,315	3,4
140	-2	6	4	1,27178	74,557	4,9
141	0	4	13	1,26798	74,818	3,6
142	4	0	2	1,26437	75,069	3,3
143	2	6	3	1,26195	75,238	1,6
144	-2	2	14	1,25255	75,902	2,1
145	-1	7	1	1,24813	76,219	5,0
146	0	0	16	1,24662	76,327	6,9
147	0	6	9	1,24297	76,592	4,8
148	4	2	0	1,24089	76,744	5,0
149	-3	5	3	1,23975	76,827	4,1
150	-1	7	3	1,23266	77,351	1,8
151	-1	1	16	1,22871	77,646	1,1
152	3	5	2	1,22419	77,987	2,4
153	1	7	3	1,22186	78,164	3,0

Name and formula

Reference code:	01-074-1732
Mineral name:	Vermiculite
ICSD name:	Magnesium Silicate Hydroxide
Empirical formula:	H ₂ Mg ₃ O ₁₂ Si ₄
Chemical formula:	Mg ₃ Si ₄ O ₁₀ (OH) ₂

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	Cc
Space group number:	9
a (Å):	5,3300
b (Å):	9,1800
c (Å):	28,8500
Alpha (°):	90,0000
Beta (°):	93,2500
Gamma (°):	90,0000
Calculated density (g/cm^3):	1,79
Volume of cell (10^6 pm^3):	1409,34
Z:	4,00
RIR:	21,37

Subfiles and Quality

	Corrosion
Quality:	Calculated (C)

Comments

ICSD collection code:	027644
Test from ICSD:	No R value given.
	At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Hendricks, S.B., Jefferson, M.E., Am. Mineral., 23, 851, (1938)

Peak list

No.	h	k	1	d [A]	2Theta[d	.eg] I [%]
1	0	0	2	14,40180	6,132	100,0
2	0	0	4	7,20090	12,282	1,2
3	0	0	б	4,80060	18,467	0,5
4	1	1	0	4,60385	19,264	1,2
5	0	2	1	4,53281	19,569	0,5
6	1	1	1	4,51178	19,661	0,5
7	-1	1	2	4,44898	19,941	0,1
8	0	2	2	4,37326	20,290	1,0
9	1	1	2	4,32415	20,523	0,4

10	-1	1	3	4,23301	20,970	0,3
11	0	2	3	4,14111	21,440	0,3
12	1	1	3	4,07410	21,797	0,3
13	-1	1	4	3,96818	22,387	0,7
14	0	2	4	3,87055	22,959	0,3
15	1	1	4	3,79528	23,421	0,3
16	-1	1	5	3,68568	24,127	0,2
17	0	0	8	3,60045	24,707	1,0
18	1	1	5	3,51338	25,330	0,2
19	-1	1	6	3,40733	26,132	0,1
20	0	2	6	3,31757	26,852	0,2
21	1	1	6	3,24425	27,470	0,3
22	-1	1	7	3,14560	28,350	0,1
23	0	2	7	3,06388	29,122	0,1
24	1	1	7	2,99585	29,799	0,1
25	-1	1	8	2,90615	30,741	0,1
26	0	0	10	2,88036	31,023	0,8
27	0	2	8	2,83289	31,556	0,2
28	1	1	8	2,77095	32,281	0,1
29	-1	1	9	2,69041	33,275	0,1
30	2	0	0	2,66071	33,657	0,1
31	1	3	0	2,65269	33,762	0,1
32	-2	0	2	2,64335	33,885	0,1
33	1	3	1	2,63473	33,999	0,1
34	0	2	9	2,62204	34,169	0,4
35	1	3	2	2,59577	34,525	0,9
36	2	0	2	2,59033	34,600	0,7
37	1	1	9	2,56943	34,890	0,1
38	-2	0	4	2,54310	35,263	0,7
39	-1	3	4	2,51230	35,710	0,2
40	-1	1	10	2,49754	35,928	0,1
41	1	3	4	2,46666	36,394	1,6
42	0	2	10	2,43976	36,810	0,1
43	-2	0	6	2,38522	37,682	0,7
44	-1	3	6	2,35009	38,268	0,1
45	-1	1	11	2,32566	38,685	0,1
46	0	4	0	2,29452	39,232	0,9
47	-2	2	2	2,29065	39,301	0,5
48	0	2	11	2,27317	39,616	0,1
49	0	4	2	2,26640	39,739	0,1
50	2	2	2	2,25589	39,932	0,1
51	0	4	3	2,22960	40,423	0,1
52	-2	2	4	2,22449	40,520	0,1
53	2	2	3	2,21400	40,721	0,1
54	1	3	./	2,20027	40,986	0,2
55	0	4	4	2,18663	41,253	0,1
56	-1	3	8	2,16506	41,683	0,3
57	0	4	5	2,13204	42,360	0,1
58	0	2	12	2,12702	42,465	0,1
59	-2	2	6	2,11650	42,686	0,1
60	⊥ ∩	3	8	2,10739	42,880	0,2
61	2	2	5	2,10235	42,987	0,1
62	1	Ţ	12	2,08409	43,383	0,1
63	-1	3	9	2,07056	43,681	0,1
64	U	U	⊥4	2,05740	43,975	0,2
05	-2	2		2,05228	44,090	U,L
66	2	2	6	2,03705	44,438	U,L
ю/ СС	Ţ	3	9	2,01214	45,U18	U,L
60	U	4	1 2	2,00433	40,203	U,L
צט סר	U	2	5 ⊥ م	L, YY535 1 00400	45,418 15 600	U,1
70 71	-∠ . 1	⊿ ว	0 1 0	1,904U9 1 07024	43,09U 15 006	U,1
/ ⊥ 7 ⊃	- T 2	3 0	ΤŪ	1 06000	40,000 16 070	U,1
12	2	2	/	1,90822	40,0/9	υ,⊥

73	1	1	13	1,95929	46,302	0,1
74	0	4	8	1,93528	46,910	0,1
75	1	3	10	1,92436	47,192	0,1
76	-2	2	9	1,91366	47,473	0,1
77	2	0	10	1,90146	47,796	0,1
78	2	2	8	1,89764	47,898	0,1
79	0	2	14	1,87742	48,447	0,1
80	0	4	9	1,86503	48,790	0,1
81	1	1	14	1,84284	49,416	0.1
82	1	3	11	1,83775	49,562	0.1
83	-2	0	12	1,83473	49,649	0.1
84	2	2	9	1,82676	49,881	0.1
85	-1	3	12^{-1}	1,80397	50,555	0,1
86	0	0	16	1,80022	50,668	0,1
87	0	4	10	1,79491	50,828	0,1
88	-2	2	11	1,77251	51,517	0,1
89	2	2	10	1,75532	52.059	0.3
90	3	1	0	1,74058	52.534	0.1
91	1	5	0	1,73560	52,696	0,1
92	-2	4	2	1,73298	52,782	0,1
93	-3	1	3	1,73054	52,862	0,1
94	0	4	11	1,72592	53.015	0.1
95	-2	4		1,72126	53,169	0,1
96	2	4	2	1,71764	53,290	0,1
97	-3	1	4	1,71474	53,388	0,1
98	-2	2	12	1,70366	53,763	0,1
99	2	4		1,69906	53,920	0,1
100	-1	5	4	1,69444	54,079	0,1
101	2	2	11	1,68828	54,292	0,1
102	-2	4		1,68022	54.575	0,1
103	2	4	4	1,67415	54,789	0,2
104	-1	5	5	1,67037	54,923	0,1
105	0	4	12	1,65879	55,340	0,1
106	-2	4	6	1,65378	55,522	0,1
107	1	1	16	1,64845	55,717	0,1
108	3	1		1,64194	55,957	0,1
109	-2	2	13	1,63695	56,143	0,1
110	1	5	6	1,62264	56,682	0,1
111	-1	5	7	1,60873	57,217	0,1
112	1	3	14	1 60393	57 404	03
113	0	0	18	1 60020	57 551	0,3
114	1	5	±0 7	1 58826	58 024	0,2
115	2	0	14	1 58468	58 168	0 1
116	2	4	- 1	1 58009	58 353	0 1
117	-2	2	14	1 57280	58 650	0 1
118	2	2	13	1,55860	59,237	0,1
119	1	5	- 3	1,55149	59,536	0,1
120	2	4	8	1,54286	59,903	0,1
121	3	3	0	1,53462	60,258	0,£
122	0	6	0	1 53000	60 459	0,5
122	0	6	2	1 52144	60 835	0,3
124	3	3	2	1 51815	60 981	0,2
125	1	5	9	1 51400	61 166	0,2
126	-2	4	10	1 51147	61 279	0,1
127	_1	۲ ۲	16	1 50955	61 366	0,1
128	-1	5	10	1,49792	61,894	0,2
129	0	6	4	1,49659	61,955	0 1
130	1	1	18	1,48885	62.313	0 1
131	<u>ר</u> א	<u>ר</u>	4	1,48612	62,441	0 1
132	1	5	10	1,47458	62.985	0 1
132	-2	4	11	1,47272	63.074	0 1
134	1	3	16	1.47041	63.184	0.1
135	2	4	10	1,46420	63.483	0 1
100	2	-	Ŧ0	-, 10120	55,105	0,1

136	-1	5	11	1,45915	63,729	0,1
137	2	0	16	1,45326	64,018	0,2
138	-3	1	12	1,44847	64,255	0,1
139	2	2	15	1,44018	64,669	0,1
140	-3	3	8	1,43739	64,810	0,1
141	-2	4	12	1,43307	65,030	0,1
142	2	4	11	1,42388	65,502	0,1
143	1	1	19	1,41939	65,735	0,1
144	0	4	16	1,41645	65,889	0,1
145	3	1	11	1,41429	66,002	0,1
146	-3	3	9	1,41100	66,176	0,1
147	0	6	8	1,40813	66,328	0,1
148	-2	2	17	1,39767	66,889	0,1
149	1	5	12	1,39426	67,075	0,1

Stick Pattern

Annexe 4.

(a)

(b)

Figure 7. Evolution de la teneur en composés phénoliques après traitement par irradiation gamma : EUO₁ (*a*) et solution synthétique (*b*). Concentrations initiales des effluents : $C_{0,EUO1D} = 0,079 \text{ g. L}^{-1}$; $C_{0,EUO1} = 3,95 \text{ g. L}^{-1}$; Concentrations initiales des solutions synthétiques d'acide gallique $C_{0,SSAGD} = 0,121 \text{ g. L}^{-1}$; $C_{0,SSAG} = 6,05 \text{ g. L}^{-1}$.

Figure 8. Profil CLHP de l'extrait phénolique de la SSAG.

Composés	Echantillons									
phénoliques	<i>(a)</i>			(<i>b</i>)	Mixture de standard					
	T.R	Surfaces	Conc.	T.R	Surfaces	Conc.	T.R	Surfaces	Conc.	
	(min)	(mV. s)	$(mg L^{-1})$	(min)	(mV. s)	$(mg L^{-1})$	(min)	(<i>mV</i> . s)	$(mg L^{-1})$	
A.G	3,66	1480,21	95,04	3,67	15034,82	2486,68	4,85	5769,23	300	
	4,39	347,44		4,27	32785,87					
Resorcinol	6,91	246,10	60,29	-	-	-	7,04	4489,80	1100	
Cathechine	13,23	127,93	2,17	-	-	-	13,20	11764,71	200	
A. Vanilliq	13,91	1252,77	137,80	-	-	-	14,00	1818,18	200	
A. T-cin.	18,44	83,05	8,31	-	-	-	18,17	2000,00	200	
Rutine	22,98	39,94	1,08	-	-	-	23,00	14814,81	400	
Berberine	24,01	1340,24	31,03	-	-	-	23,92	8333,33	200	
Myrcetine	24,74	288,55	3,75	-	-	-	24,82	7692,31	100	
Quercetine	28,23	94,16	0,75	-	-	-	28,22	25000,00	200	

Tableau 2. Composés phénoliques identifiés dans l'EUO₁ (a) et la SSAG (b) à l'état brut.

 EUO_1 : Eau usée oléicole récoltée en 2014; SSAG: Solution synthétique d'acide gallique à 6,05 g. L⁻¹; T.R: Temps de rétention, Conc.: Concentration; A.G: Acide Gallique; A. Vanilliq: Acide Vanillique; A. T-cin.: Acide Trans-cinnamique.