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Abstract

This thesis deals with existence and uniqueness of almost periodic solutions in distribution for
stochastic differential equations driven by a fractional Brownian motion with almost periodic

coefficients.

More precisely we are interested in the study of existence and uniqueness of almost peri-
odic solutions in distribution to affine stochastic differential equation driven by a fractional
Brownian motion with Hurst parameter H € (0,3) U (3,1) of the form :

dX, = (ag(t) — X,)dt + (bo(t) + b(t) X, )dB]

where ag, by and b are real valued deterministic functions which assumed to be almost periodic.

Here the stochastic integral corresponds to the divergence integral from Malliavin calculus.

Key words : Stochastic differential equations, fractional Brownian motion, almost pe-

riodic solution, multiple stochastic integrals, chaos decomposition.



Introduction

Since the introduction of the theory of almost periodic functions by Harald Bohr [9, 10] in
the 1920s, it has aroused great interest. In recent years, it has become one of the most attrac-
tive topics in the qualitative theory of differential equations because of their significance and
applications in physics, mathematical biology, telecommunication, network, finance, control

theory and others related fields. For more details on this theory, see for instance [35, 4, 16, 27].

The extension of almost periodicity theory given by Bochner [7] for functions with values
in Polish spaces, especially in Banach spaces, allowed to generalize this theory for a wider class
of functions, in particular for the class of random functions (stochastic processes): almost
periodicity in p-mean, in probability, in distribution (one-distribution, finite distribution and
infinite distribution), almost periodicity of moments. Some characterizations of almost peri-
odic functions with values in a Polish space, especially in the space of probability measures,

are given in [3, 40, 32].

It is well known that the natural application of the concept of almost periodic random
functions is the study of stochastic differential equations, with almost periodic coefficients,
driven by different noises (standard Brownian motion, fractional Brownian motion, Lévy,
etc.). During the last 30 years, the class of stochastic differential equations driven by stan-
dard Brownian motion, W = {W};,t € R} is the most studied. The existence and uniqueness
of almost periodic solution is carried out by several authors, as L. Arnold, C. Tudor, T. Mo-
rozan and G. Da Prato (see e.g. [2, 17, 32]). All these authors deal with almost periodicity
in distribution. O. Mellah and P. Raynaud De Fitte [31] show, by counterexamples, that
the almost periodicity in p-mean is a strong property for solutions of stochastic differential
equations, which implies the nonexistence of almost periodic solution in p-mean in general.
However, in the class of stochastic differential equations driven by fractional Brownian mo-
tion (fBm for short), until now, to our best knowledge, there are only few works dedicated to
the study of existence and uniqueness of almost periodic solutions. We can cite for example,
P. Bezandry [5] who attempted to show the existence and uniqueness of almost periodic so-
lutions. Recently, F. Chen and X. Yang [12] showed the existence and uniqueness of almost
automorphic (which is a generalization of almost periodicity) solutions in distribution while
F. Chen and X. Zhang [13] obtained the same result for another class of differential equations

namely the mean-field stochastic differential equations driven by fBm. Note that in all the



works cited above, the authors assumed that the coefficients of fractional stochastic part is
deterministic. In this thesis, without this condition, we will show the existence and unique-

ness of almost periodic solution to affine stochastic differential equations driven by fBm.

A fBm, with Hurst parameter H € (0, 1), introduced by Kolmogorov [26] and studied by
Mandelbrot and Van Ness [29], is a centered Gaussian process BY = {BF t+ € R} which has

stationary increments and with the covariance function
1
E(B{B) = Ru(t,s) = 5 (Is/*" + |t — |t — s""). (1)

Notice that if H = %, we recover the standard Brownian motion. For H # % the increments of
the fBm are no longer independent (i.e. they are positively correlated if H > %, and negatively
correlated if H < %) Furthermore, when H > %, the fBm exhibits long-range dependence.
namely, at large time lags, the dependence is so strong that it implies the divergence of the
series y . Ry(1,k). Also the fBm is neither a Markov process nor a semimartingale, as a
result, one cannot use the usual 1t6 stochastic calculus, and alternative methods are required
in order to define stochastic integrals with respect to fBm. For this, several different ways of

defining stochastic integrals with respect to f{Bm, fg f (s) dBE  have been suggested:

e the pathwise approach, using the results of Young [41], Ciesielski [15] and Zihle [42]. In
general, in this case, the property E( fot f(s)dBH) = 0 is not satisfied, see for instance
Lin, SJ [28] and Gripenberg and Norros [25].

e The Malliavin calculus approach introduced by Decreusefond and Ustiinel [19], Car-
mona and Coutin [11]. In this approach, the property E(f, f(s)dBX) = 0 is satisfied.
We refer for instance to [23, 36] for equivalent approaches. In some cases, this integral is
called Skorohod integral with respect to fBm. It is well known that in the case H = %,
the Skorohod integral may be regarded as an extention of the It6 integral to integrands

that are not necessarily adapted, see [20, Theorem 2.9].

Motivated by the previous works, our aim is to study the existence and uniqueness of
almost periodic solution in distribution to affine stochastic differential equation driven by a

fractional Brownian motion with Hurst parameter H € (0,1) U (3,1), of the form :

dXy = (ao(t) — X;)dt + (bo(t) + b(t)X;)dB/, (2)

where ag, by and b are real valued almost periodic functions.

The main idea in our approach for solving the differential equation (2) consists of ap-
plying the chaos decomposition approach. This chaotic expansion method is introduced by
Shiota [39] for H = % (in the case of standard Brownian motion), and used for H € (3,1) by
Peérez-Abreu and C. Tudor [36] where multiple fractional integrals were defined by using frac-
tional integrals and derivatives for deterministic functions of several variables and a transfer

principle from the multiple Wiener It6 integrals.



The structure of the thesis

The rest of this thesis is organized as follows :

e Chapter 1 gathers the needed preliminary results, in particular, it recalls the concept
of almost periodicity for deterministic functions and for random functions in different
sense (almost periodicity in distribution, in quadratic mean...), as well as their basic
properties. It also presents fractional Brownian motion and provides some of its main

properties as well as some ways of stochastic integration with respect to it.

e The second chapter of the present PhD project is devoted to study the existence
and uniqueness of almost periodic solution in distribution to affine stochastic differ-
ential equation driven by a fractional Brownian motion with Hurst parameter H €

(0,2) U (3,1) of the form (2).

The evolution solution of (2) can be expressed as follows
t t
X, = / e ag(s)ds + / e~ [bo(s) + b(s) X, dB

—00 —00

with the chaos decomposition
+oo
Xe =Y L),
p=0
where [f is the multiple stochastic integral with respect to the fBm and

Filte, o ty) = sym{l_oocr <. ctycie” T bo(t1)b(E2) . .. b(E,)}

1 t1A.Ntp

+ H]l]_oo’t]p (tl, c. ,tp)b(tl) ce b(tp) / 67(tis)a0<8)d8,

—00

where sym{.} is the symmetrization function. Under some conditions, we show that the

stochastic differential equation (2) has a unique almost periodic solution in distribution.



Chapter 1

Basic tools and definitions

The purpose of this chapter is to describe the framework that will be used in this thesis.

1.1 Almost periodicity

In this section we review some basic definitions and results for the notion of almost periodicity.
For additional details, we refer the reader to the books [1, 4, 24].

1.1.1 Almost periodic functions

Definition 1.1.1 (Relatively dense set). A set A C R is relatively dense if there exists a real
number [ > 0, such that
ANfa,a+1] #0, for all a in R.

Definition 1.1.2 (Bohr almost periodicity). Let (E,d) be a complete metric space, we say
that a continuous function f : R — E is Bohr almost periodic (or almost periodic) if for all

g€ > 0, the set

T(f,e) = {T € ]R,supd(f(t—i-T),f(t)) < 5},

teR
is relatively dense (each number 7 € T'(f,¢) is called e-almost period or e—translation).
That is for any € > 0, there exists {(¢) > 0 such that any interval of length I(¢) contains at
least an e-period, that is, a number 7 for which

supd(f(t +7), f(t)).

teR

Definition 1.1.3 (Bochner almost periodicity). Let (E,d) be a complete space, let f: R —

(E,d) be a continuous function. We say that f is Bochner-almost periodic if the set

{f(t),teR} — {f(t+.),tER},

is totally bounded in the space of continuous functions from R to E (C(R,E)) endowed with
the topology of uniform convergence on R. That is for every sequence (h/,),en of real numbers
there corresponds a subsequence (h,),en such that the sequence of functions (f(t + hy))nen

is uniformly convergent.
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Definition 1.1.4 (Bochner’s double sequence criterion). A function f satisfies Bochner’s

double sequences criterion, that is, for every pair of sequences
())CR and  (8,)CR,
there are subsequences
() C(ap)  and  (Bn) C (B)

respectively with same indexes such that, for every ¢ € R, the limits

lim lim f(t+a,+5,) and lim f(t+ ay + ), (1.1)
n—o0

n—o0 m—oo

exist and are equal.

Remark 1.1.1. A striking property of Bochner’s double sequence criterion is that the limits
in (1.1) exist in any of the three modes of convergences: pointwise, uniform on compact
intervals and uniform on R. This criterion has thus the advantage that it allows to establish

uniform convergence by checking pointwise convergence.
We have the following characterization, due to Bochner.

Theorem 1.1.1 ([8]). Let f : R — (E, d) be a continuous function. The following statements

are equivalent

1. f is Bohr almost periodic.
2. f is Bochner-almost periodic.

3. f satisfies Bochner’s double sequences criterion.
In the following we shall give elementary properties of almost periodic functions.

Proposition 1.1.1. Every almost periodic function f : R — (E, d) has the following proper-

ties :
1. f is uniformly bounded.
2. f is uniformly continuous.

3. If a sequence of almost periodic functions f, converges uniformly in R to a function f,

then f 1s also almost periodic.

Proof. 1. The function f is Bohr almost periodic, that is for all ¢ > 0 JI. > 0, such that
any interval of length [(¢) contains e— translation. We put e = 1, 3l = I3 > 0, such
that any interval of length [; contains 1 translation. The function f is continuous on
[0, 1], then there exists M > 0 and b € E such that

sup d(f(z),b) < M.
z€[0,]]
Let z € R, there exists 7 € [—x, —z+!] such that d (f(z + 7), f(z)) < land 247 € [0,].
Then
d(f(z),b) <d(f(z), f(x+7))+d(f(z+7),b) <1+ M.
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2. Let € > 0, there exists [ > 0 such that each interval of length [. contains $—translation.
The function f is continuous on the compact [—1, 1+1] then the function f is uniformly
continuous on [—1,1 + ], there exists 0 < § < 1 such that, if y;,y, € [-1,1 + ] and
|y1 — y2| < 0 then we have

d(f(n), f(y2)) < %

Let 1,2, € R such that |v; — 25| < 6. There exists 7 € T(f,5) U [~21, —21 + ],
we have 1 +7 € [0,]] C [-1,]] C [-1,1+ ] and -1 < = < @9 — 21 < 29+ 7 <
xo—x1+1 < I+1 <1+, thenaxo+7 € [—1,1] and [(z2+7)— (21 4+ 7)| = |x2a — 21| <6
then d(f (21 +7), f(z2 + 7)) < 5. Since 7 € T(f, §) then d(f(z1), f(z1 + 7)) < § and
d(f(z2), flxa+ 1)) < <. We get then

d(f(x1), f(x2)) < d(f(21), (a1 + 7)) + d(f (21 4 7), f(22 + 7)) + d(f(22), f (22 + 7))

E.

IN

3. Let (fn),en be , given € > 0, Ing € N such that d(fy,(z), f(z)) <
then

d(f(z + 1), f(2)) < d(f (@ +7), o (2 + 7)) + d(fug (€ + 7), frg () + d(fno (), [ (2))

<e,

we get then 7 € T'(f,¢).

1.1.2 Almost periodic stochastic processes

The purpose of this subsection is to introduce the concept of almost periodicity for random
functions. For these functions, the notion of almost periodicity gives rise to several definitions,
mainly: in distribution, in one dimensional distribution, in finite dimensional distribution,
in mean square, in probability .... For details we refer the reader to [32, 40, 3] and to the

references therein.

Let (2, F, P) be a probability space. We shall denote by C,(E) the Banach space of

continuous and bounded functions f : E — R with
[ flloe = sup |f ()],
z€E

and by P(E) the set of all probability measures on the Borel o- field of E.

For f € Cy(E) we define
- f(x) = fly) |
||f||L—SUP{M .x#y},

| flgr, = max {[| flloo, £}



CHAPTER 1. BASIC TOOLS AND DEFINITIONS 10

and we define

BL(E) = {f € Gy(E); [|f]lsr < o0} .

For p,v € P(E) we define

dpL(p,v) = sup

I fllBL<1

bl

/Efd(# —v)

which is a complete metric on P(E) and generates the weak topology [22].

Let X = (Xt)tE]R
the distribution of the random variable X; : Q — R, i.e. law(X;) € P(R).

be a continuous real-valued stochastic process, we denote by law(X})

We say that X is stochastically continuous at the random variable X; : Q@ — R, if for
every s € R,
IimE |X; — X,|=0.

t—s
Definition 1.1.5. A stochastically continuous process X is said to be almost periodic in
one-dimensional distribution (APOD for short), if the mapping

R — P(R)
{t = law(X})

is almost periodic.

Definition 1.1.6. A stochastically continuous process X is said to be almost periodic in
finite dimensional distributions (APFD for short), if for all n € N et t; < ty < ... < t, the

mapping &)
R — PR
{ t — 13W<Xt1+t> e 7th+t)

is almost periodic.

Definition 1.1.7. A stochastic process X with continuous trajectories is said to be almost

periodic in distribution (or in infinite dimensional distributions APD for short) if the mapping

{R — P(Cr(R,R))
t — laW(XH.)

is almost periodic (the space of continuous functions Cy (R, R) is endowed with the topology

of uniform convergence on compact sets).

A comparative study between different almost periodicity of stochastic processes is given
by C. Tudor [40] and completed by F. Bedouhene et al. [3].

1.2 Fractional integrals and derivatives

In this section we recall some important notions and results related to fractional calculus, an

exhaustive survey may be found in [38].
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1.2.1 Fractional calculus over |[a, b)

Let a,b € R, a < b. For p > 1, let L?([a,b]) be the space of real-valued functions on R such

that /
b 1/p
Hfl!mz( / |f<x>!pda:) |

Definition 1.2.1. For ¢ € L'([a,b]) and a € (0,1), the left- and right-sided fractional

Riemann Liouville integrals of ¢ of order a on [a, b] are given at almost all s by

(a+¢ / (b d'U/ SER

and
(I / ¢(u)(u — s) “ldu, s€ER,

respectively, where I' denotes the gamma function (the gamma function is defined via a

convergent improper integral I'(z) = [ ¢*'e~'dt, Re(z) > 0).

Definition 1.2.2. For a function ¢(s) given in the interval [a,b] and for « € (0,1), the left-

and right-sided fractional Riemann Liouville derivatives of ¢ of order « are given by

D (@)(s) = 2O / oWy

M'l—a)ds J, (s—u)
d
" P B L O
b (0)(s) == —m%/s 5w
respectively.

Remark 1.2.1. Let I$, (L”[a,b]) (vesp. I;* (LP[a,b]) the image of LP([a,b]) by the operator

I¢. (vesp. I ). The following inversion formulas hold:

I3 (D f) = f ¥f € I3 (L¥[a, ),
and

Dg (I3 f) = f vfeLab]),

and the statements are true for (I , Dy ).

1.2.2 Fractional calculus over R

Definition 1.2.3. For o € (0,1), the Liouville left- and right-sided fractional integral are
defined respectively by

(1% / o(u du, seR

and
1 oo

(I%9)(s) := () d(u)(s — u)a_ldu, seR.

S
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For p > 1 we denote by I$(LP(R)) the class of functions f which can be represented as

an /¢ of some LP-function ¢.

In a similar fashion, we recall the left- and right-sided Liouville fractional derivative.

Definition 1.2.4. For a € (0, 1), the left- and right-sided Liouville fractional derivatives are
respectively defined by

(D26) (s) = ﬁ%/s ﬂ)adu, s € R,

oo (85— 1)
and
d [* u
(D2¢) (s) := —ﬁ£ /_OO %du, seR.

Now let us recall the Marchaaud fractional derivatives (see Samko et al. [38], p.111).

Definition 1.2.5. The Marchaud fractional derivatives D¢ of order o € (0, 1) for a function

¢ on the whole real line is defined by

(D26) (x) :=lim (D2..0) (x), 7 €R,
where

(Di,egzﬁ) (x) := ﬁ i ~ ola) ;iff + T)dr. (1.2)

The next theorem is fundamental for the demonstration of our result, it gives a useful

characterization of the space I* in terms of Marchaud fractional derivatives.

Theorem 1.2.1 ([38]). The necessary and sufficient conditions for f € I*(LP(R)), 1 <p <

1/« are

1. one of two following conditions is valid

e ,
lim DS f € L"(R),

sup || D3 flae) < +o0.
e>0

2. f € L"(R), where r = ¢ = p/(1 — ap) in the necessity part and r is arbitrary
(1 <r < +400) in the sufficiency part.

Moreover there is the following corollary on the equivalence of norms.
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Corollary 1.2.1 ([38]). The norm

Dl 1o r@y) = | fllze@) — With ¢ = IT(f),

in the space I¢(LP(R)) is equivalent to the norms

I6lly + I tim D],

||¢||q + S;ig | lg% Di,ef”pa

with
__ b
1—ap

q

1.3 Fractional Brownian motion

The fractional Brownian motions are self-similar special process which have several applica-
tions in different areas, as : biology, hydrology, finance, telecommunication .... They have

the particularity of preserving their distribution by changing scale and time.

In what follows, we will define and give the basic properties of the fBm : properties on the
trajectories and two essential properties such as the absence of Markov and semi-martingale

properties.

1.3.1 Definition and properties of fBm

Definition 1.3.1. Let H € (0,1]. A fractional Brownian motion (fBm) B = {Bﬁ}teR of

Hurst index H is a continuous and centered Gaussian process, with covariance function

1
Ru(t,s) =E (BtHBSH) =3 (|t|2H + |82 — |t — s|2H) . (1.3)
Remark 1.3.1. 1. For H = %, the covariance can be written as
1
Ri(t,s) = §(t+8— it —s])=tAs,

and the process B 2 is a standard Brownian motion.
2. For H =1, B =tBf almost surely for all ¢ > 0. Indeed
E[(B{" —tB{")’] =E[(B{')’] + t*E[(B{)*] — 2t E[B/' B{']

=t*+t* —t{t* +1— (t —1)%)
=0.
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Existence of the fBm

The existence of the fBm follows from the general existence theorem of centered Gaussian

processes with given covariance functions (see [21, page 443]).

Theorem 1.3.1 (Kolmogorov). Let a symmetric function C' : R?> — R. Then there is a
unique centered Gaussian process X = (X;)er having C for covariance function if and only

if C' is of nonnegative type.

Proposition 1.3.1 ([33]). For any H € (0,1] the fBm B of Hurst parameter H exists (and

unique in law).

Proof. We have to show that Ry is of positive type if and only if H < 1. First assume that
H>1 ifweputt; =1,t=2a; =—2 and ay = 1, we have

(Z%RH(tl,tl) -+ 2a1a2RH(t1,t2) + a%RH(tg, tg) =4 — 22H < 0,

as a result Ry is negative type when H > 1.

Now assume that H = 1, we observe that
L oo o 2
Ry(s,t) = 5(5 +t°—(t—s)°) = st,

then for alld > 1, t1,...,t; > 0 and aq,...,aq € R, we have

d d d d d
Z R tz, t &ZCZ] Z t t; jaAit; = Z Z titjaiaj = Z tiai Z tj@j
=1 j=1

i,j=1 1,j=1 i=1 j=1

d 2
= <Z tjCLj) 2 0.
j=1

Now consider the case H € (0,1). By the change of variable v = u|z| for  # 0, we have

2,2

oo | _ gtz . oo 1 _ e—v2 @ B +oo | _ 6—1)2 |x‘1+2Hdv
0 ult2H - 0 <L>1+2H m - 0 pl+2H |3:|

|z

“+oo 1— 6—1)2
2H
p— —d .
] /0 vz Y

So we get
2.2

1 ToO ] —eum
2H
- - 4
|| w(H)/o ylt2H u,

+00 | _ g T(1—H
w(H) = / S dw= ra-H) (using integration by parts).
0

where

v1+2H 2H

We have that for s, > 0,
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1 +oo 1 — 6—u2t2 1 +oo 1— e_u2s2 1 400 1— 6—u2t2—u232+2u2ts
R d du —
o(H) /0 a T /0 ae T L) /0 MEET
1 +oo (1 _ 67u2t2> (1 _ 67u232> +00 67u2t2 <€2u2ts _ 1) 67u232
R d d
w(H) /0 ul+2H ut w(H) /0 yl+2H u
_ 1 /+oo (1 _ et > (1 — e s )du . 1 /+oo e—u2t2e—u252 En21(2t5u2)ndu
w(H) Jo utt2 w(H) Jo n!

B 1 /+oo (1 — 6_u2t2> (1 — 6_u282> 1 on /+oo tne—u2t28716—u252
0 0

d - i
w(H) ez 4T o(H) 2w EECTCT
oVd>1,ty,...,tg>0and ay,...,as € R,
2
d 0o d 1— €_u2t?)0f
L on | om 2H 1 - (Zl:l( !
ijzli (tz +tj — |t1 —t]‘ )CLi(Zj _QW(H) ; u1+2H du

d 2.2
thevwliq

2
1 on [+ (Zi:l i 1)
. du > 0.
2w(H) ; n! /0 "=

u172n+2H

That is Ry is non-negative definite for H € (0, 1).
Proposition 1.3.2. By Definition 1.5.1 we obtain the following properties:
1. For H € (0,1) the fBm B is a Gaussian H selfsimilar process, i,e.

va>0,{a"BE}, . = {BI'}, .

teR
2. For H € (0,1) the fBm B has stationary increments, i,e.
W 0, (B, — B 2 (B
3. For H € (0,1) and t € R, we have
E(BI)* = |t]*".
4. For any s,t € R we have
E(|Bf' — BI?) = |t — s]*".
Proof. 1. Let us prove the selfsimilarity property. We have
E (B BI) :% (\as]QH + |t — |at — as|*)
:a2H% (|S|2H R - S|2H)
=E (" B'a" BI") .

: H HpH
Thus, since {Bat rer and {a Boifier

{a_HBﬂ teR < {BtH}teR

15

du

are centered Gaussian processes, it implies that
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2. Let us show that the fBm has stationary increments.
E((Biin = B))?) =E((Biin)*) + E((B))?) — 2E(BL,By)
1
=t + hl*" + |n[*" — 25 (Jt + A" + |h*" = |t + h — h[*7)

:‘L‘|2H.

3. If we put s =t in the definition 1.3.1, we get

E(BI)" = 2 (|t + [t — |t — ) = [t

N | —

4. Fix s,t € R. Then

E (1B = BI[") =B ((B")* + (B
=E(B")?*+E(B

~—

*—2(B/"B"))
= 2B(B/B')

=

=t (s = 25 ([ + s — [t — )

N | —

=|t — s|*H.

Holder continuity

Proposition 1.3.3. Let H € (0,1), the sample paths of fBm B are almost surely Holder

continuous of any order strictly less than H.
Proof. For any a > 0 we have
E (1B - BJ|*) = E(IBZL,]*) = E(|BY|*)|t — s|*"".

Hence, from the Kolmogorov’s continuity criterion we get that the process B¥ has sample

paths a.s Holder continuous of order strictly less than H. ]
Path differentiability

Proposition 1.3.4 ([29]). For H € (0,1), the fBm B is almost surely not differentiable.

Proof. We want to show that for all ¢ € R,

H BH
. t to
P (hm sup | ——| = +oo> =1
t—to t— to
Let us denote by
Ny 1= B~ P
PO T

Using the self similarity of B¥ we get

law _
Nigi = (t—t)" B
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>M},

with M > 0, then for any sequence (t,),en decreasing to zero, we have

Define the events -

s

S

A(t) = { sup

0<s<t

A(ty) D Altpsr).

Thus
P im 0) -t Pt
and B
P(A(t,) > P ‘( tt" > M) =P (|B'| >t "' M)
which tends to one as n — +oo0. O]

Long-range dependence

Definition 1.3.2. A stationary sequence (X,,),en exhibits long-range dependence if p : N —
R, defined p(n) = Cov(Xy, Xii,) satisfy the condition :

for some constant ¢ and « de ]0; 1].

Remark 1.3.2. If a stationary sequence (X,,)nen is long-range dependent, then the depen-

dence between X, and Xy, decays slowly as n tends to infinity and

Z p(n) = oo.

Proposition 1.3.5. The increments
X = Bf — Bf_l and Xy = Blin - Blﬁ-n—l?
of fBm B have the Long-range dependence property when H > %

Proof. For all n € N*, using the selfsimilarity of BY, we get

pr(n) : = Cov(Xy, Xiin)
= E(X Xjtn)
= B(BY(B{},, — B,))
1
=5 ((n + 1) 4 (n—1)2H — 2n2H)
~ H(2H —1)n*"72

n—-+oo

Note that py(n) is the general term of a divergent series if and only if 2H — 2 > —1 ie. if
and only if H > 1. In this case we have Y, |pg(n)| = +oc.
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Semimartingale property

Proposition 1.3.6 ([34]). Let B be a fractional Brownian motion with Hurst parameter
H e (0,5)U(3,1), then B? is not a semimartingale.

Proof. Let us consider for fixed p > 0,

p

n
_ pH—-1 H H
Yop=n E ‘Bz — B
n n

J=1

We consider also
n

Yop=n"Y |Bff - B,
j=1

p
)

By the selfsimilar property of B, the sequence {Y; ,;n > 1} has the same distribution as

{ffn’p; n > 1}. On the other hand we have the sequence (B} — B!

" 1)jez is stationary (due

to the stationarity of fBm) and ergodic. Thus by the ergodic theorem we get
f/n,p — E (|B{{ - Bé‘f|p) = (‘Blyp) )

almost surely in L'(Q2) as n — +oo. So that , Y},,, converges in probability to E (| B;|P) when
n — +o0o. Therefore,

0 0 if pH>1
. H g [P Yap P
Vip = ‘B% - BIL| = e |
j=1 oo if pH <1
Then the index of p—variation of B is % Since for every semimartingale the index must
belong to [0,1] or 2, the fBm B cannot be a semimartingale except when H = % ]

Markov property

Proposition 1.3.7. Let H € (0, %) U (%, 1), the fractional Brownian motion BY is not a

Markov process.

Proof. We proceed by contradiction. Assume that B¥ is a Markov process. Since it is a

Gaussian process, we must have for all 0 < s <t <wu
E [BY BY] BI(B,)") - E [BY B E [BI'BY]. (1.9
If we put s = 1,¢ =2,u =3 in (1.4), we obtain
Ry(1,3)Rp(2,2) =Rp(1,2)Ry(2,3)

DO | —

3 1 3

_22H _'22H‘ 2H _22H‘22H —

4 + 4 3 4 0
2H

T (3+ 3" —3.2°2") = 0.
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It follows that the function
Hw— 3+ 3% —322 =,

for H = % or for H = 1. The only possible case (H = %) corresponds to standard Brownian
motion.

The proof of the proposition is done.

1.3.2 Stochastic integral representations

In this section, we will present three different integral representations of the fBm with respect
to classical Brownian motion. These representations establish a relation between the classical
Brownian motion with rich properties and the fBm (without Markov and semi-martingale

properties).
The first representation of fBm in terms of classical Brownian motion on the whole real
line is due to Mandelbrot and Van Ness [30].

Proposition 1.3.8. Let B be a fBm with Hurst parameter H € (0,3)U(3,1) and {W,},5

be a classical Brownian motion. Then B has the moving average representation

B — ﬁ (/0 (¢ =)™ — ()2, + /Ot(t _ u)H—équ> (L)

—00

with

C\(H) = (/;OO [(1 ) sH—%rds + %)m.

flwy=(t—uw! 2= (=wi72 ueR t>o0.

Proof. Let us set

Notice that f; € LA(R), i.e. [y fi(u)*du < +00. Now for H > 4, fi(s) ~ (H — §)(=s)""% as

u — —oo. Hence, the Wiener integral is well defined. For ¢ > 0, we set

Xo= [ (=T = =9 ) aw

we have then

Making the change of variable s = %, we get

1 _1 _172
E(Xt)2:/ U YRS ]
R
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2H H H-1 2 t°
— 2 _ H—-3 z
t /0 [(1—{—3) S 2] ds+2H
— [Cl(li )]2 t2

For all s < t, we have

X, / t—uH_—(—u)f_é>qu—/R((s—u)f_é—(—u)f_§> A,
= [ (=t = =) aw,

and

BIX =X =B [ (=0 = -l ) awp

(=0 -0

by the change of variable v = u — s, we get

H—L1 H—1L1 2
E|Xt—Xs|2—/R((t—s—u)+ P )

= s (- <t‘_”s>f—%)2du,

Making the change of variable v = -, we get

E|X, — X2 =(t — 5)2~ 1/ 1—U)H‘—(U)f‘5)2(t—s)du

We have

E|X; - X,)?=E(X,)’+E(X,)’ - 2E|X,X,],
we get then

E|X,X,| = w ([t + s = |t = s") .

We deduce that the Gaussian centered {X;,¢ > 0} has the same covariance function as the

fBm. We obtain then the following equality in distribution

Bl éﬁ /0 [(t — )z — (_u)H*%] AW, + ﬁ/ot(t — W)z qw,

—00
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1
~ Ci(H)

t-

]

The equality (1.5) is a representation of the fBm on the whole real line. For a second
representation of the fBm, we propose its representation on a finite interval [0, T']. We will see
that the fBm is a special case of the Volterra processes, that is to say defined as a stochastic
integral of a time-dependent deterministic kernel K with respect to a standard Brownian

motion W

t
BtH:/ Ky(t,s)dWs.
0

Case H € (3,1)

Proposition 1.3.9. Let H € (%, 1), the kernel Kpyis given by

(M9

H—1
u- 2,

t
Ky(t,s) = cHsé_H/ (u— s)H_

e (5@ - Sf}} i)1/2>) .

with B is the Béta function *.

where

Proof. 1t is readily checked that the covariance function Ry(¢, s) can be written as

t s
Ry(t,s) = H(2H — 1)/ / Ir — u*" % dudr-.
0 0

r—uv
u—v’

If we suppose that » A u = u making the change of variable z = we get

u
/ v 72 (p — U)H_%(u — U)H_%d’l)
’ 3
2

_/;OO (Z:__f)l_m(z(u—v))ff— (T;v)H_ %dz

o0 _ 2H—-1 3 _ 2
:/ (zu—r)l_QHzH_%(u—v)H_% (T u) (u—v)H_E—(u v) dz

N

u—v

oo <
:/ (zu — ) 25 (p — )22

=(r — u)2H_2/ (zu — r)l_QHzH_%dz.

T

Then by making the change of variable again v = %, dr = ﬁdz, we obtain

o0
(r — u)2H2/ (zu — r)I’ZHzH’%dz

L B(a,b) = [ t*1(1 — )b~ Ldt.
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1 2
=(r —u)*f2 / (zu — mzu)l_Qth_%—(uz) dx
0 U

=(r — u)2H2/0 (zu)l’zH(l _ x)172HZH7%Md$

ru

—(r — u)?H? /1 /1 <L>_H+g W22H (1 )2 g
o Jo \zu

1

=(ru)z A (r —u)?1? / (1—a)a"2de

0

:(Tu)%_H(r — u)2H_2ﬁ (2 —2H H — %) )

We then have

H-1 rAu
r— w7 = e (T;L;_] I; ) / o 2H ()5 (0w — )T 2w, (1.6)
—2H,H —3) Jo

If we consider
t
Ku(t5) = CHS;H/ (u— 5)T 22 du,

where

[N

_ (H(2H — 1))
Cn = (5(2 —2H,H — 1/2))
By (1.6) we have thus

, and t > s.

tAs
/ Ky(t,u)Ky(s,u)du
0

tAs t s
=C"? / (/ (y — u)H_ng_édy) (/ (z — u)H_ng_édz) w2y

H
0
t s 1 YAz 5 5
- [ [ o < / u1-2H<z—u>H-z<y—u>H-zdu) dzdy
0 0 0

1 t s
=C%B(2—2H, H — 5)/ / ly — 2|22 dzdy
0 Jo
:RH<t,8).
[

Remark 1.3.3. Using the fractional calculus, the covariance function Ry can be rewritten

as

- ()
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Case H € (0, 1)

Proposition 1.3.10 ([34]). Let H € (0,3). The kernel Ky is given by

t o2 L I 1 K 1 3
Ku(t,s) = bH[ (‘) (t—s)""2—(H- —)SQ_H/ (u—s)* 20" 2 dul,

S

where

- 2H :
e {(1 —2H)3(1 —2H, H + 1/2)}

and satisfies
t
Ry = / Ky(t,u)Kg(s,u)du.
0
Proof. First we consider the diagonal case t = s. Let us set
o) = | Kus,udu,
0

then we have

o(s) =02, [ /0 s (f)ﬂ“ (s — )2 Ldu

u

— (2H — 1)/ sH_%ul_QH(s - u)H_% (/ UH_%<U - u)H_édv) du
0 U

1, [* 5 L\
+ (H - 5)2/ w2 (/ vH2(v—u)H2dv> du].
0 u

By making the change of variable u = sx in the first integral, we get
o(s) =b2, |:82H /1x1—2H(1 _ )y
0
—(2H -1) /s o3 </U u' (s — u)H_%(v - u)H_édu) dv
0 0
+2(H — %)2 /OS /Ov /Ow w2 (v — u)H’%(w — u)Héngqugdudwdv].
Now we make the change of variable u = vx and v = sy for the second term, we get

o(s) =b%, {32%(2 —2H,2H)

(S

1l
—(2111—1)311’_%(911”r / / :171_2H(1—y:B)H_%(l—:B)H_%dxdy
o Jo

_12 A 1-2H/, _  \H-1 o NH-1 H-2 H-3
+2(H 2) u (v—u)" "2 (w—u)" 2w" 20" T 2dudwdy|.
o Jo Jo

We make the change of variable u = wx, w = vy for the third term, we get

b(s) =b% [32%@ —2H,2H)
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1 ) )
—(2H — 1)32H/ / 221 — yx) 2 (1 — ) 2 dady
1,1 I . .
+2(H — 5)2E52H/0 /0 o1 —yr) e (1 - x)H2dxdy}

4H 2
1 ) )
//x1_2H(1—yx)H_Q(l—x)H_2dxdy]
o Jo

=b2, 5% {6(2 —2H,2H) — (2H — 1) <i + 1)

2H

Notice that

1
0Ky 1\ /t\72 o3
We suppose that s < ¢. Differentiating equality (1.7) with respect to ¢, we would like to show
S OK
H#H — (1 —5)2H 1) = / aa—tH(t,u)KH(s,u)du. (1.9)
0
Let us set s 0K
¢(t7 S) = —H(t,u)KH<S,U)dU
o Ot

Using equality (1.8), we get

o= (1=3) [ (1) -t 0 -t

Now we make the change of variable u = sx for the first integral and u = vx for the second,

we get
1 1 1 t H_% L
oty =y (- 3) o=t [ (La) -
0 S
1 2 e L[t H-3
- b%{ (H - 5) =z / xlfQH(l — x)Hf? (; — g;) dx
0
1 1 t
=02 (H— 2 (ts)2 2~ (2
ACEH TN
2 1 )
iy (m-g) o [ @y (L)
0 v
where
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for y > 1. Therefore equality (1.9) is equivalent to

(o) [ ()= () [ ()]
= H(t"5 — (t — s)2141-3),

Differentiating the left-hand of equality (1.10) with respect to ¢, we get

i (-g) (m=2) [ () - (m2) [ (D] oy
=t ),
where ! 1
I

for y > 1. Using the change of variable z = y(;f_;’), we obtain

1 ' syl = DN
:y—3H+§ (y _ 1)—1/ (1 _ Z)l_zHZH_§ < ) (y . Z)QH—le
0 y—=

1
—y Ha(y —1)2H-23 (2 —2H,H + 5) :

And finally, replacing (1.12) in (1.11), we get
) 1 3 LY pt 2H 2
w(t,s) = by H—§ H—§ g 2—2H,H+§ ™7 2s(t — s)

2
1 T
b (r2) (r-2) (- ) [l
0

(- 2) (- 2) e )i

+ b (H - %) (H — g) 6 (2 —2H H + %) %tH5 ((t— st — 2T

2 1 3 1

[t—H—;s(t . S)ZH—2 + %t—H—; ((t . 8)2H—1 . 7521{-1)] .

We have
1 1 1
I5; 2—2H,H+§ =0 H+§,2—2H =0 H+§,1—2H—|—1

B (1—2H) 1
—(H+%)+(1—2H)B(H+§’1_2H>
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(1-2H)

:m@ (1—2H,H+%).

2

We deduce that

1 1 1
u(t,s) = H(1 — 2H) (t_H_2s(t —§)2H-2 4 §t—H—%(t — g)2H-1 étH—S) .

u(t, s) corresponds to derivative with respect to ¢ of the right-hand side of (1.10). O

Remark 1.3.4. We have by using the fractional calculus, the kernel Ky can be expressed as

H H—1

Kpy(t,s) = cs2 <D%: u 511[0,7&)(“)) (s).

Case H :%

It is obvious that

Ki(t,s) = ]l[O,t](S)-

1
2

Indeed

B

ol

t
(t, $)dW, — / Lo (s)dWV, = Wi,
0

t
:/K
0

And finally for a third representation of the fBm, we propose "the spectral representation”

=

also called "the harmonizable representation” (see [33]).

Proposition 1.3.11. For H € (0, 3)U(%, 1), the fractional Brownian motion BY = {BtH}t>0,

has the following representation

1 01— cos(ut) +°° sin(ut)
BH — / —lquJr/ Law, |, 1.13
t CQ(H) ( . ’u‘H+§ 0 |u’H+§ ( )

+00 1—

0

where

Proof. The Wiener integral (1.13) is well defined. For ¢ > s set

1 01— cos(ut) +° sin(ut)
Y, = —1qu+/ ——=dW, | .
t CQ(H) (/Oo ’u‘H+§ 0 |'U/’H+§
We have

1 O 1 — cos(ut) y T sin(ut) .

L L (7 dcos(us) gy [ SIS
CalH) </oo v [ ))
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1 ( /0 cos(us) — cos(ut) /+°° sin(ut) — sin(us) qu>’

Cao(H) \J o [ul 3 [ul 3
then
o1 0 (cos(ut) — cos(us))” ’ +o (sin(ut) — sin(us))® ’

B = G l/m TEcRy Ml v i ]
1 +2° (cos(ut) — cos(us))? " 1 +°° (sin(ut) — sin(us))” "
G ), e o o
_ 1 /+O° cos?(ut) + cos?(us) — 2 cos(ut) cos(us) + sin?(ut) + sin®(us) — 2 sin(ut) sin(us) du

[Co(H)2 J, u2HT1
1 %02 — 2cos(ut) cos(us) — 2sin(ut) sin(us) "
_[CQ(H)]Q /o w2H+1 d
_; T2 — 2cos(u(t — s)) "
_[02(H ]2/0 u2H+1 d
L 2(t—s)*M [T 1 —cosv .,
o [Cy(H)]? /0 p2H+1 d
:(t 8)2H

Now using the fact that Yy = 0 we get that for any t > s > 0,

B(Y.Y:) = (B (¥ = ) + B (% = ¥o)?) — B (% = i)

:% (S2H FH (- S)QH) 7

we deduce that the centered Gaussian process {Y;,t > 0} has the covariance Ry of a fBm
with index H. H
1.3.3 The integrand space

We fix a fBm {B}},cg with Hurst parameter H € (0,1) defined on the probability space
(Q, F, P) such that F = o (Bf',t € R). Let L?(2) be the space of real-valued random vari-

ables with a finite quadratic-mean.

We denote by £ the space of elementary (or step) functions defined on real line by all

functions of the form

f(u) - Z fk]]'[uk7uk+1)(u)7 Yu € R,
k=1
where f, € R. The integral on this space with respect to the fBm is defined by
P = 3 i (B () — B () o= [ F(wdB!
k=1 R

which is a centred Gaussian random variable. The linear Gaussian space

{17(f); feé&},
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is a subset of

L*(Q)

I(BY) :={X € L*(Q); s.t. I fu)nen C &, T7(fn) — X},

which is also a linear space of centred Gaussian random variables with variance

Var(X) = E(X?) = lim E(I"(f,)?) = lim Var(I"(f,)),

n—o0 n—o0

for every X € J(B).

If f is an element of equivalence class of sequences of elementary functions (f,,)nen such that
2

TH(f) LN ( X € 3(Bf)), then X can be defined as the integral of f with respect to

the fBm
X::/f(u)dBf.

For every X € J(B"), the existence of function (or integrand) f such that X = [, f(u)dBY

is insured according to the values of H :

1. In the case H = 1 (which means that Bz = W) the set of all functions f forms the
whole Hilbert space L*(R) which is isometric to J(WW).

2. In the case H # %, the problem is dealt by V. Pipiras and M.S. Taqqu [37, Proposition
2.1], where for H € (0, %), the authors show the existence of a functional space which is
a Hilbert space isometric to J(B¥). However, for H € (3,1), they show the existence of

a functional space which is not complete and isometric to a proper subspace of J(B).
In the following, we will give the construction of the integrand spaces for H € (0, 3)U(3,1)
(for more details see [37]). The representation of fBm on the whole real line will allow us to

define the integrand space. But before, let us recall the definition of fractional integrals and

fractional derivatives.

Let W be a red two-sided standard Brownian motion. Recall that a fBm with Hurst

) U (5,1) has the moving average representation :

parameter H € (0, 5

B — dH/R((t gl (—s)f‘%>dws, (1.14)

where . .
dy = T

Gl (o 9d 1) s 4 )’

Remark 1.3.5. Some remarks are in order.

1
e For H € (3,1) the fractional kernel K can be expressed as a function of I oz, Precisely,

we have

K(ts) = (=9 = (=9)1 )
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1 _3
=dy(H — 5) / Lo (u)(u — s)f 2du
R

1 _1
= dpT(H + §)IH 2 (Tjo.) (),

where Il is interpreted as —1I ¢, if £ < 0.

1
If H € (0,3) the fractional Kernel K(t,s) is given as function of D? " (for the proof,
see [37, Lemma 3.1])

_1 _1 1 1_
K(t,s) = dH<(t N L z) = dul(H +3)(D* H
e Using the representation (1.14), we define the fractional integral, with respect to BH,

of every step function f € £, by the Wiener-Ito integral, with respect to the standard
Brownian motion W as follows.

1. If% <H<1
17(f) = /R F(s)dBY = duT(H + 1) /R (1"

2
2. f0<H <3

"(f) = /Rf(u)dBf = dyl(H + %)/R(Dé_Hf) (5)dW,.

We say that the definition of fractional integral is obtained by using the transfer prin-
ciple from the Wiener-1to integral.

For every f,g € £, we have

E(I"(f)I"(g)) = (dg)PT(H + +)? / (1

for H € (3,1) and

E(I"(£)I"(9)) = (d)*T(H + 57 / (Di

for H € (0, 3).

We start by giving the class of integrands when H € (0, %) It follows from Theorem 6.1
in [38] that, for every f = LTHQS for some ¢ € L*(R),

=
|
T

~

=

) =6,

and hence

[ s = [
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It is natural to introduce the following class of functions(see [37])
1 p—
L} (R) = {f : 3¢ € L*(R) such that f =12 Hqg}’

which is a linear space with the inner product

(f,9)2,m) = (dHF(H+ %))7}{@5

and with the associated norm
1£0Z2 &) = {f. ez ey-

The set of elementary functions £ is dense in L%(R). The space L% (R) is complete and hence
it is isometric to J(B) (see Theorem 3.3 of [37] ).

We now consider the case when the Hurst parameter H belongs to the interval H € (3,1).
The space of integrands with respect to the fBm B, denoted by £%(R), is defined as follows

c® = {1 () e @) = {f; / ( [ fwt- s>f‘3du)2ds < oo}.

This space is linear and endowed with the inner product

g = (P 37 (OO @) fae y®. (115)

The set of elementary functions £ is dense in £%(R). The space £%(R) is not complete ([37,
Proposition 3.2]).

Remark 1.3.6. From the definition of the inner product (1.15), the following isometry holds

(f.9)i = (dm)T(H + 223 (), 1"

5 2(9)>L2(R)-

We observe that the elements of the integrand space £%(R) are not explicitly defined.
However, Proposition 1.3.12 and the following identity (given in [25, page 404] )

(H - %)gd%/ S(s—u)H_%(t—u)H_%du:go(s,t), (1.16)

where
o(s,t) = H(2H —1)|s —t|*72; s;teR
give the explicit form of the elements of £%(R).

Proposition 1.3.12. Let f : R — R be a measurable function. Then f € L%(R) if and only
if
F@)f(s)p(t,s)dtds < .
R2
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Proof. Let f € L%(R). We have by Fubini Theorem and identity (1.16)

JAVRCCS S)fgd“)st = [([ 6= ar [ soe = ar)as

_ /R</ RQf(r)(r—s)f_gf(t)(t—s)f_gdrdt>ds
_ / / s ([ W(r — syt — o) Eds ) dras
d2 //R2 o(r, t)drdt.

Remark 1.3.7. 1. The space £%(R) can be endowed with another scalar product

ngR—//f o(r,t)drdt

\flig = (/. ar

2. The operator 'y defined from £%(R) to L*(R) by

with the associated norm

H-—L1

P10 = du(H = 5) [ £ =t = duT (1 + ) ),
for every f € £%(R), is an isometry.

3. The stochastic integral with respect to the fBm B¥ is defined by
B / f(s)aB; = / Li(f)(s)dW, = IV*(Ti(f)). (1.17)
R R
4. The fractional kernel, which fits to the definition (1.17), still denoted by K, is given by
1 H-1
K(t:s) = dul(H + 3) (1" 2 10) (s).

For more details, see [25].

5. The set
L3 (R ): f: R—HR// (r, )] f(r) )]drdt<oo}

is a strict subspace (dense) of £%(R). Endowed with the norm
1V =< LIS > s

it is Banach space. For more details on this space, see for instance [37].

Proposition 1.3.13 ([37]). We have the following space embeddings:

LY(R) N L2(R) C L#(R) C L% (R) C £L2(R).
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1.3.4 The multiple integrand space

All the results and definitions seen in the subsection below are naturally generalized to the
case of multiple integrals with respect to the fBm, but with some different properties, as the
Gaussian property (the multiple integral is not a Gaussian random variable in general). In

this subsection, we just recall the most important definitions and results for our work.

We fix H such that 1 < H < 1 and denote by L% (RP) the class of all functions f € L*(RP)
such that

/ ngxj,yj |f(z1, . s 2p) f(yr, oy yp)| day . dapdyy ... dy, < 00,
R2P 5y

which is a Banach space with the norm

1 Vorgen = (LSS e,

for f € L3 (RP), where (.,.)yge is an inner product on L%, (R?) defined, for f,g € L% (RP), by

(f, @) ure = / ng i, y) (@1, 2) gy, - yp)de . dapdyy - dy,.
R2p

J=1

The multiple fractional integral denoted by I 727 6f a function f € L%(RP) is given by

H—l7p 1 +oo oo (tl, .. ,tp>

I~ *f (xl,...,a:p):—/ dty...dt,.

( > F(H_%)p z1 Tp Hg 1( l‘])% -
The operator

TP . 12, (RP) — L*(R?),
defined, for every f € L%(RP), by
+oo too t,.. .t

TP () x,... ) = dH H—— ] / ((1 ;”) dty ... dt,

1 +°° oo
= dHF (H+_):| / pf(tl? 1
L 2 j:l(tj — T

= :dHF (H + %)}p (Ii{_%’pf) (@1, .., 2p),

~ |3

is an isometry.

1_ 1\ ®p
Remark 1.3.8. Observe that 12" is the product operator <IE H) .

1
fOo< H < %, we denote by D? P the right-sided multiple fractional derivatives of order

1
% — H, which is the inverse of the multiple fractional integrals 12 P 11 this case

[2,(RP) = {f 3¢ € L*(RP) such that f = ITHpgb} .
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Thus

l7I_I7p

L) = I (L2

We define the operator
E(f) : Ly (R?) — L*(R)

by )
I'(H+3)

CH

LD (f) (1, 2p) = [ (DX F) (1) £ € Li(RY),

1_ 1_ P
where D? P s the product operator (DE H) .
Proposition 1.3.14. ([36, Proposition 3.7])

1. The space L2, (RP) is a Hilbert space with respect to the inner product

_ (p) (p)
(f, g)qu(Rﬁ) = <FH gy 9>L2(RP) .

2. The operator Fg) 1s one to one and onto.

For H € (0, 3)U(%, 1), we denote by ];/Z(f) the multiple Wiener It6 integral of f € L*(RP)

with respect to the standard Brownian motion W (for more details on multiple Wiener Ito
integral see [34] and [20]), that is,

[;/Z(f) _

RP

f(t, . tp)dWey o dW,.
The following definition of the multiple integral with respect to the fBm B¥ is one of the
most important tools in this work.

Definition 1.3.3. For an element f € L% (RP), we define its multiple integral by

() = i flty, .. tp)dBfl .. dB],

p

and we have

() = Aren, (1.18)
that is,

ftr,....t,)dB}! .. dB]! ::/ (TP F)(ty, - ty) AWy .. AW,
RP Rp

This definition is the same as that given in [23] and [18], for the proof see [36, Theorem
3.14]. Notice that for p = 0 and f = f, (constant), we set I(fy) = fo. For more details on

multiple integrals with respect to fBm, see [6].

We denote by L2 ;;(RP) the subspace of all symmetric functions f € L%(RP). Every
function f € L% (RP) is symmetrizable, we denote sym(f) its symmetrization. In [36, Lemma

3.4], the following inequality is proved

|Sym(f)|H7Rp < |f|H7Rp . (1.19)
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1.3.5 Chaos Expansion

We denote by L% (), F, P) the space of all random variables F' which have an orthogonal

fractional chaos decomposition of the form

F=E(F)+ ilf(fp), (1.20)

where f, € L2 ;(R?) and

+00
> D fplie < +oo.
p=1

The chaos decomposition (1.20) is unique, i.e.
Ly (Q,F, P) = @551 (L3 41 (RP)).

The following two results point out the difference between the two cases, H € (0, %) and

He (3,1).

Proposition 1.3.15 ([36]). If H € (3,1), then the subspace L%(Q2, F, P) is total in L*(Q, F, P).
Moreover, for every p > 1, the fractional chaos of order p, If(LiH(RP)) is not closed. In
particular L, F, P) is not closed and it is strictly included in L*(Q2, F, P).

Proposition 1.3.16 ([36]). If H € (0, 3), the fractional chaos of order p > 1, I (L? ;(RP)),
is closed and agrees with the Wiener chaos I,}/Q(Lg(Rp)). We have the equality

L%(Q, F, P) = L}(Q, F, P).

1.3.5.1 Fractional anticipating integral

We denote by L? (9, F, P, L%(R)) the space of all measurable processes with trajectories in
the Banach space (L3 (R),||.||[gr). For every X € L*(Q,F, P, L3 (R)), we have, for a.e
teR, X; € L3 (Q, F, P), ie. for each p € N, there exists f,(.,t) € L2 ;(RP) such that

“+o0o
Xy = ZL?(fp('vt))?
p=0
with f, € L% (RPT!) (t is considered here as variable) , for all p > 1 and
+o0o
Zp!”pr%{,]RPH < +00.
p=1

We consider the operator

. { Ly (UFP.Ly(R) » DQFP) |
! X = 0 (X) = p:0]p+1(sym(fp))
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The domain of definition of this operator, denoted by D¢, is the set of all processes X €
L*(Q, F, P,L%(R)) such that the series

Z p+1 (sym(fp))

converges in L?(Q, F, P).
Proposition 1.3.17. (/36, Proposition 3.35])

1. Assume that the space Ly (R) is endowed with the norm |.|y 5 and X € D§f, then

E(1X[hz) = Yoo s

1

2. The operator ¢ : DS* — L2(Q, F,P) is closable.

The closure of the operator defined above is denoted again by §*. If the process X I_oa €
D$* then we define

/ X, dB = §3(X 1) o0 ).

Note that in the case H € (0, %), the operator 6! corresponds to the extended divergence
operator (see the work of Cheridito and Nualart [14]).



Chapter 2

Almost periodic solutions in
distribution to affine stochastic
differential equations driven by a
fractional Brownian motion

The aim of this chapter is to use the chaos expansion approach to show an existence and
uniqueness of almost periodic solution for linear stochastic differential equation driven by a
fractional Brownian motion with Hurst parameter H € (0,4) U (3,1). Here the coefficients
are real valued almost periodic functions. We provide an explicit expression for the chaos
decomposition of the solution and show the almost periodicity in infinite dimensional distri-

bution of the solution.

In the sequel, we fix a normalized fBm (B/),cg with H € (0, 3)U(3,1) and (W,),cr a stan-

dard Brownian motion defined on the same stochastic basis (Q, F, (F)ier, P) (i.e (Bf)icr
and (W;):er generate the same filtration (F;):cr), we recall the well known representation

formula
BU(t) = / Knlt, s)dWV.,
R
where

o Ky(t,s)=dyl'(H + 1) (Ifli

1
2]1[07,5[)(3), for 3 < H < 1.

H

1_
o Kpl(t,s)=dyl(H+ %)(Di n[o,t[) (s), for 0 < H < 1.

We consider the fractional affine equation
42X, = lao(t) — X.Jdt + [bo(t) + b(t) X,]dB]", (2.1)
where, ag, by, b:R — R are continuous functions. In the sequel, we suppose that

1. The mappings ag, by, b are almost periodic.

36
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2. The functions
(t,s) € R? s Gy(t, s) == ]l],ooyt](s)e_(t_s)bo(s),

and
(t,s) € R* > G(t,5) = ﬂ]_ooyt](s)e_(t_s)b(s),

are elements of L% (R?).

3. Moreover, in the case 0 < H < % we add the condition

1

‘ (/+OO G(ZL’l,Ig) — G(thQ_'—TZ)d?” )q < 00
— 3 2 )
0

Tg(g—H)

L2(R2)

where (7 = ﬁ

Theorem 2.1. Under the conditions (1)-(3), the equation (2.1) has a unique evolution so-

lution X € Dji?, which can be expressed as follows :

t t
X, = / e 9ay(s)ds +/ e~ [bo(s) + b(s) X, dBH

—00 —00

and with the chaos decomposition
“+oo
X = S IA(f). (2:2)
p=0

where

fi= /t 6_(t_5)a0(s)d3; (2.3)

fi(s) = Lj-ceg(s)e” I [bo(s) + b(s) fo): (2.4)
foltisoooty) = %Z oy (t)e” () 10 ) p > 2. (2.5)

and f;ﬂl(., t;) denote the function of (p — 1) variables without the variable t;. More precisely

filty, o ty) = sym{T_ocr cctpare” o (t1)b(t2) .. b(L,)}
1 t1A.Ntp
Ut t)b(0) bl / 0= g0(s)ds.  (2.6)

—0o0

Furthermore, X s almost periodic in distribution.

Remark 2.1. It is straightforward to see that the solution X = (X; : ¢ € R) (which is a

two-sided process) satisfies the condition
lim X, =0,
t——00

and the evolution solution X is actually a strong solution (see [36]).
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To prove this result, we use the following two lemmas, but before stating them, let us denote
by

M = max(sup(b(t), sup(bo(t)), m = sup(a({)), L = sup(F(t,5)) and C = Fl_—+H)

N[ —=

—~

where

t s
F(t,s) :/ / o(r,u)eTHs=+W) gy,

Lemma 2.1. Let (a,)nen be a real sequence, [ : R — R a continuous bounded function such
that
]l}_ooﬂ(s)e’(t’s)l(s) € L3 (R?).

If the sequence (I(. + ay,))nen converges uniformly to [*(.), then
1oy (s)e™ 20" (s) € L3 (R).

Proof. Case % < H<1.

By dominated convergence theorem and Fatou lemma we get:

to So
// @(t% 32)/ / QO(tl,81)6_(t2_t1)€_(82_81)|l*(t1)l*(81)|dt1d81dt2d$2 =
R2 —o0 J -0
to So
// ©(tz, s2) lim / / o(ty, 51)e” e 27111 4 q,)(s) + ) |dtids dtadsy <
R2 =0 J_ o J—0o

totan Ssa2ton
h_m// Qp(t2752)/ / Qp(tl,51)67(t2+a”7t1)67(52+a”751)‘l(tl)l(sl)‘dtldsldthSQ < 00,
R2 —00 —0o0

thus
1) g (s)e_(t_s)l* (s) € L%{ (R2) .

Case 0 < H < %
We denote by

gn(t,s) = ﬂ]_oo,t](s)e_(t_s)l(s + ),

and
g (ts) = L_o gy(s)e (s + ).

1
By the definition of D2 H, given in (1.2), and using the fact that
D(e")(z) =",

the calculation of the first fractional derivative of g,, with respect to the first variable ¢, gives

l—H +o0 ]1 5400 €T e_(wl—s) — ]1 5400 T + r 6—(x1+7~1_s)
0 Tf

+o00 6—(901—3) . 6—(:(31+r1—s)

=Cyl(s + ay) / ET; dry ﬂ[s,+oo[(371)

0 7"12
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+o0 67(901 +r1—s)

_ CHl(S + Oén)/ THd'rl]l]—oo,s[(xl>

s—x1 7"12
400 e—(:cﬁ—rl—s)

=I(s + an)e” I oo(@1) — Crrl(s + ) / Al (21)-

s—x1 T12

Thus, for every n € N,

D%_Hg(gn)(th) = D%_H (D%_H@n)(%)) (xz) =Cy (/Ooo (An(%’ xZ) _SA"(xhx? i rQ)dT?)

T2§7H
> Bn ) _ Bn )
—(Ch)? </ (Bn (21, ) §_H(ilﬁl T +7’2)dr2> |
0 7’22
where
A1, 22) = Nj_ooy(w2)e” T2y + on,),
and
+oo e—(961+7"1—:v2)
Bn(ilfl, .CEQ) = l(ZUQ + Oln) / Tdrl ﬂ}xl,oo[(xg).
To—T1 7”12
Since g, € L% (R?) for every n € N, then
1_
HDE H’an < 00.
L2(R2)

By using the dominated convergence theorem, the uniform convergence of (I(. + ay))nen to
I*(.) and Fatou lemma, with the same techniques those used in the case 3 < H < 1(inversion

of limits and inversion between limits and integrals), we obtain:

‘D%*H’2 . — | 1im D272 |
B r2@2) oo T ThlLee2)
1_ 1_
<lim||D¥""%, = [z
- L2(R2) L2(R2)

<+ 00.
Thus
]1]_007t](8)6_(t_8)l*(8) c L%(RQ).
Lemma 2.2. The operator Sy : D — L?(Q, F, P), defined by
¢ t
Sp(X)(t) = / e~ 9ag(s)ds +/ e =) [bo(s) + b(s)X,|dBY; teR,

—0o0 —00

for every X € D! is well-defined. Moreover, if X € D% with the chaos decomposition
+o0o
p=0

then X is a fixed point of Iy if and only if f}(.) satisfies (2.3), (2.4) and (2.5).
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Proof. First, let us show that the operator Sy is well-defined. Let X € D$*, therefore, for
cach p € N, there exist f,(.,t) € L2 ;(RP) such that

=> LI 0), (2.7)

with f, € L% (RPTY), for all p > 1 and

400
ZP!HJCPH?LLRPH < +00.
p=1
We denote by (Y;) the image of (X;) by Sp, that is
t t
Y, = / e ag(s)ds + / e~ =) [by(s) + b(s) X, dBY, vt € R. (2.8)
By replacing (2.7) in (2.8) we get

¢
Y, = / e Vag(s)ds 4 6 ZY), Vt € R,

where -
= LM(gh(.9))
p=0

and

Case 3 < H < 1. As X € D!, by and b are bounded (almost periodic), it is straightforward
to show that, for every t € R, Z* € D¢ and thus

(e 9]

S Zt) = Z sym gp
p=0
converges in L*(Q2, F, P).
Case 0 < H < 3. Let us check that, for every t € R, g}, € L/(RP), for every p € N,
We start with the case p = 0, then

96(5) =Mj—so(s)e™ o (s) + Wj—se(s)e™ " b(s) fo(s)
=G(s) + G'(s) fols)-
Since G{ € L%(R), then
(D%_HGB)(:E) o, /+°O G () —3?}}3@ + T)dr

0 r2
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is in L*(R).

The fractional derivative of G* fy gives:

(DG ) (=) :CH{H}_OO,ﬂ (2)e=p(x) / * Lhl@) = flw 1),

0 ra—H
oo Gt _ Gt + _|_
[ le@-ctr it
0 T5_H (2.9)
(g —H
—e )ﬂ],ooyt](x)b(x)( 3 fo) (z)
T IGHz) — GHx +r T+
+CH/ [G'() - (S_H ol )dr.
0 T2
Therefore
e R e I e
L2(R) L2(R) L2(R)
G'(z) — Gz +r T+
Y A GRS VAT
0 ra—H
12(R)
The first two terms of the previous sum are finite. It remains to show that the last term is
finite too.
The Holder’s inequality (with ¢ = % = m and its conjugate ¢ = =) and the

2

assumption (3) imply

- /+oo [G!(z) — Gz +7)] folz +7) 0

3
3 H

r

L2(R)

q 1/q 1/
o |GHz) = Gz + )| oo . !
<Cy ( / ) ([ e npar)
+00 ‘Gt< Gt<x+r q 1/q
<Cy /0 ) /|f0 x +7)|edr

7 1/q
o |G x) — Gl (a + 7))
<Cyg Hf0||L<Z(R) (/0 ra(3—H) ar

L2(R)

L2(®)

L*(R)

From the equivalent norms given in [38, Corollary 1 page 129], we deduce that there exists a
real constant K > 0 such that

[ foll Loy < K [ foll

Thus, we can conclude that g4 € L% (R), for every ¢t € R. Furthermore,

1960l 11 < NG5l + M N foll s + CrE Nl foll e

where

0 q 1/q
+ |Gt(x) — Gz + 7’)|da
L2(R)
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42
Now, let us show that g, € L7 (RP*!), for p > 1. We have
Hp+1 g 1_m
(D_ P gt)(xl, T, 1) = (DE (DE pg;)(xl, Ty ))(xpﬂ)
i _Hp 1_
too (D2 x z—H Tpp1 + 1
_CH{Gt(xp+l)/ ( f )( P+1 ( _H ) p+1 p+1 dT'erl
0 ri (2.10)
1_H,
oo [Gt(xpﬂ) - Gt(po + Tp+1)] (DE pfp) (xp+1 + Tp+1)
+ 3_p dTp+1
0 Tpi1

With the same manner as in the case p = 0, we get g; € L% (Rrt1) for all p > 1 and

ngHI—LRP"'l S M ||fp||H,RP+1 + CHKNt HfPHH]RIH-l
Thus,

> Plgp e < oo

p=1

We deduce that,

52 = Z 21 (sym(gl))

converges in L?(Q, F, P).

Then, in both cases, for every t € R, Y; € L*(Q, F, P) with the chaos decomposition

= LIh()

where

¢
hé :—/ e ag(s)ds;

—0o0

hi(s) = ]11 ooﬂ( s)e” " [bo(s) + b(s) fo(s)];

ho(ty, ...t Z]l] oot ( () £ ().
With the same arguments as used to prove that Z! € D¢, we can also show that for every
t € R, the kernels hl(.) € L2 ;(RP).

Second, let X € D such that Sy (X)(t) =

X; for every t € R, we have then
+oo

> L) = /_ e~ ag(s)ds  + / e 1bo(s) +b(s) Y L (f3) | dB"(s),

— 00

Fo TG+ I + 3 1 (Y /

p>3 -
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+/ e_(t_s)bo(s)dBH(s)+/ e 9)p(s) f3d B (s)

—00 —0o0

n / e~ 0p(s) I (f7)dBH (3)

—0o0
t

N e S AU B ) AT

By identifying the corresponding Wiener chaos, we get
t
fi= / e~ ag(s)ds,
f1(5) = Lo (5)e"™ [bo(s) + b(s) f]

/ e_(t_s)b(s)le(fls)dBH(S) _ ]2H (fl*(,)]l]oo;_(:)/@—(t—*)b(*)) )

— 00

—_——

where f{(.)1)_ g (%)e~(=9)p(x) denotes the symetrization of the function Oy (¥)e~ )b (%)
in 2 variables. We get then

S5t te) = 3 [Moco(t1)e™ T b(t1) f1 (t2) + Nj—co(t2)e™ T "2b(L2) f12(t1)] -

By induction we will get identity (2.5) for every p .
Conversely, assume that f; satisfy (2.3), (2.4) and (2.5), it’s straightforward to check that X

is a fixed point of &y. O

Proof of Theorem 2.1. Step 1: existence and uniqueness of evolution solution
in DSP.

For the existence, by using Lemma 2.2, it suffices to show that the process X defined in
(2.2)-(2.6) is an element of DS,
Case H € (3,1): Clearly by using (1.19), for every p € Nand ¢ € R, we have f!(.) € L2 ;;(R?)

and

+o0
> PN e < 00,
p=1

which means that for every t € R, X(¢) € L}(Q, F,P). Let us show that f, € L} (RPt!) for
every p > 1. We denote by g, the multiple function

Gp(te, ... tp) = ﬂ—oo<t1<...<tp<tp+167(%“7“)50@1)5@2) . b(ty)

and by h, the multiple function

[SRAAS

Byt tyin) = Lo e (frs s £)B(E) - B(Ey) / e~(tr1=5) g (5)ds.

—0o0

Thanks to the condition (2), we can show that g,, h, € L} (RPT!), therefore f, € L7, (RP*)

and
2

pr — (p!)g

(MZLP (llgllr 2 + mllAlle2), ¥ > 1,
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thus
+oo
D ULl e < oo
p=1

It remains to show that

Z p+1 Sym fp

converges in L?(Q2, F,P). For this purpose, it is enough to show that

—+00

S 0+ DUl < +oo.

p=0

We have

4 -
(P + DUl g < » (ML) (|lgl gz + mllAllE g2), P =1,

—1)!
which gives the convergence in L*(Q, F,P) of the series

o0

Z Sym fp

=0

Case H € (0,1):
With the same manner as the calculations made in the proof of Lemma 2.1 (case 0 <
H < %), the assumption G(¢, s), Go(t,s) € L3 (R?) gives us

H,2

D (@) (21, 25) =
CH /+00 G(l’l,l’g) — G(l’l,l'g —+ T2)dr2 B (C’H)2 /+OO B(l‘l,l'g) — B($1,.’L’2 + r2)d7‘2
0

is in L?(R?), where
—+o0 e—(zl—‘rTl—:EQ)
B(I‘hl’g) = b(xg)/ Tdrl]l]xhoo]<l'2).
To—1T1 7~12

In the same way, we get the calculation for Gy(¢, s).
Now, let us check that f; € L% (R?), where

Fi(s,8) = L g(s)e™ " bo(s) + Lyawg(s)eV0(s) fols) = Golt, s) + Fi(s,t).

By assumption, Go(t,s) € L%(R?). It remains to show that Fy(t,s) € L%(R?). Using the
fact that
g, _
DZ (e () = e,
the calculation of the first fractional derivative of Fi(t, s) with respect to the first variable ¢,
gives

+o00 e—(xl—i-rl—s)

D%_H (FY) (z1) = b(S)fo(S)ef(mfs)n[s,+oo[<371) - CHb(S)fO(S)/ 3

s—x1 T12

d’rlll]_oo,s[(xl)
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+o0 67(x1+r175)
= b(s) fol)e e oi(s) — Curb(s) fols) / T (5)

s—x1 7”12

= (G(z1,5) — CuB(x1,5)) fols).
We have
D2 (Fy) (wr, 0) = DF 1 (D%‘H (F) (1)) ()

=Cy /+0° (G(z1, ) — CyB(w1,22)) folwe) — (G(x1, 22 + 12) — CuB(w1, 22 + 12)) folza + 12)

S—H dTQ
r3
= Cy ((G(z1, 22) — CyB(z1, 22))) /+oo fo(x2) —gffl({azg + rz)dm
0 7,.22
+Cx /+oo ((G(w1,22) — CyB(w1,22)) — (G(xl’?:[ ro) — CuB(x1, 20 +12))) folzs + TQ)dTQ.
0 7«22

By using the Holder’s inequality and the assumption (3) as in the proof of Lemma 2.2, the
norm of the above quantity in L?(R?) gives:

Fl)

1 -Ho2 ( <

L2(R2)

|»

sup |G(.,z2) — CyB(., x2)|

ro€ER

1_
D",

(@) ‘ 12(R)
CH /+oo ((G(Q?l,xg) — CHB(LCl,.CCQ)) — (G(SL’l, To + 7’2) — CHB(.CCl,QTQ + TQ))) fg(l’Q -+ r2)d’l“2
S_H
0 7*22

+

L2(R?)
1
q

1
TGy, 2) — Gz, ma +19)|T N ([T
+CH / ’ (IE1 Iz) 7§E¢f{1 T2 7’2)‘ dTQ (/ ’f0($2 +7,2)|q d7"2>
L*(R) 0 pIG=H) 0

T B(xq, 22) — By, xo + 172)|7 ‘ too i
+(C’H)2 |Bz1, 22) _g_( LT F 1)l dry | fo(xa + 12)|% dry
0 rq(g H) 0
2

1_
Dy,

L2(R

L2(R2)
1 +oo 17 e T\ ‘
SKQHDE Hf0 +Cy / ’ (xl,m) _§E$1;x2+r2)‘ dry (/ |f0(r2)|qdr2)
L2(R) 0 AAG—H) R
2 L2(R?)
TN B(xy, 29) — By, o + 19)|7 / .
+(CY ( | R tentnl,, ([ htarar.)
0 riz R
2
L2(R?)
i_H
< B [ DX R, 4 Qolliaey < Ko lfollgs + QK [ oll e

where K is the same constant as that given in the proof of lemma 2.2, which is obtained from
the equivalent norms given in [38, Corollary 1 page 129],

0= | (cny (/0+°° |B(x1,22) — B(x1, 22 +7’2)|da2> !

a(3—H)
Ty’ L2(R2)

Q=

e, (/*‘X’ |G(x1,x2) — G(x1, 29 +r2)|qdr2>
0

(3 _
7"(21(2 o L2(R2)
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and

K2 = ||sup |(G(,IL’2) — CHB(7x2)|

x2€R

L2(R)

Thus f; € L% (R?) and

1l g2 < 1Goll g + K2 [ foll g + QK [l foll e -

For p > 2, we use the recurrence form (2.5) and with the same manner we obtain:

||fp+1||H7Rp+1 < K2 prHH,Rp + QK ||fp||H7Rp-

Thus X € D$ in both cases . The uniqueness is deduced from the explicit form (2.6).

Step 2: almost periodicity. To prove that X is almost periodic in distribution, we use

Bochner’s double sequences criterion. Let (o)) and (5)) be two sequences in R, we show that
there are subsequences («,) C (o)) and (8,) C (f]) with same indices such that, for every
t € R, the limits

lim lim p(t+ o, +Bn) and hT p(t + oy + Br),
n—-+0oo

n—-+o00 m—-+00

exist and are equal, where p(t) := law(X;) is the distribution of Xj.
We have assumed that the functions ag, by and b are almost periodic, then there are subse-

quences (o) C (o) and (8,) C (/) with same indices such that

n

lim lim ao(t + an + B) = hm ao(t + a, + Bn) =: q5(t), (2.11)

n—00 M—00

lim lim by(t + ay, + Bm) = hm bo(t + ap, + Bn) =: bj(t), (2.12)

n—o0 m—oo

and

lim lim b(t + o, + B) = hm b(t + ay, + Br) =: b*(1). (2.13)

n—00 M—r00

These limits exist in any of the three modes of convergences: pointwise, uniform on compact
intervals and uniform on R. We now denote by (v,)nen the sequence (v, + B,)nen. From

step 1, we can deduce that, for each fixed integer n,

t t
th — / e_(t_s)ao(s + 7n>d8 + / 6_(t_s) [bO(S + /Vn) + b(S + VH)X;L] stH

—00 —0o0

is the solution of

with chaos decomposition

Zfot” ZIW( ().
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where

f;’n(tb cee atp) = Sym{]l—oo<t1<...<tp<te_(t_t1)b0(tl + Vn)b(t2 + ’Yn) e b(tp + P)/n)}

tiA. Nty

1
+ Hl]_oqt]p (tl, ce ,tp)b(tl + ’Yn> R b(tp + ’)/n) / 6_(t_s)a0(8 + ’Yn)dS (215)

— 00

Also from step 1 and Lemma 2.1, we deduce that

t t
X; = / e =9)ak(s)ds +/ e by(s) + 0% (s)X;] dBY,

—00 — 00

is the solution of
AX; = [ay(t) — X7)dt + [53() + b (1) X 1B (2.16)

with chaos decomposition

ZIH ft* 211/2< ft* )))

where

For(t, . ty) = sym{llsoc, <cty<ie” TG () . 07 (8,)}

tiA.Np

1
Tty BV (B). B (5) / =g (5)ds. (2.17)

—00

We have
KX, = ZJH (5 () ZIW( ()

The changes of variables, o =t + v, and 0; = t; + v, for all j = 1, p, transform

S (P )

p=0

to
Zp/z( ftn )>

where

BA(R ) = [ TR G0 )W T,

and ij = Wi, 1+, —W,, is a two-sided standard Brownian motion with the same distribution
as Wi,.
Let us show that, for each fixed t € R,

I;/Q <Fg§)(f;’”(.))> converges in quadratic mean to ];/2 <F5§)(f;*())>
Note that for p = 0 the process is deterministic and we get the convergence easily. Let

M* = max (M, sup(bg), sup(b*)).
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For p > 0, using the Ito isometry and the fact that the operator Fg) is an isometry, we obtain

B (TR ) - 12 (rRaeo)] = [r (510 - #40)
= 50 = " Ol

2

E

L2(RP)

For § < H < 1, it is adequate to replace fi" and fI* with their explicit forms (2.15) and
(2.17) respectively. We get

n * 2 —(t—.
‘f;’ () - f;’ (‘)|H,Rp SQ‘Sym{n_oo<tl<m<tp<te (t 1)b0(.1 + r)/n)b(Q + ’yn) o b(p + Vn)}

- Sym{]lfoo<t1<...<tp<t€7(t7'1)bg(-1)b*(-2) .. -b*(-p)}ﬁﬂgp
1 AN Ap

+ 2|Hﬂ}_oo7t}p(.1, ce ‘p)b(‘l —+ ’)/n) c. b(p + ’Yn> / 6_(t_s)a0(8 + ’yn)ds

o0

1 1IN Ap
— H]]_]_oo,t]p(.l, ceey p)b*(l) ce b*(p) / (& —(t=s) *( )d8|HRp

o0

<p(h+L+... Iy+...+ 1)
+2p+ 1) (J1+Jot .o+ T+t ),

where I, and J, are such that

I, =
k * 2
[sym {1l aocr < <tyei€” IO (2) O () (BCk 4 ) = (1)) DCrrr + 1) D+ ) H o

< sup b+ 70) = 07 (1) ﬁ((M*)QL)pE

Jp =
]_ AN A 2
‘Hﬂ]—oo,t]pb*(-l) c. b*(k_1>(b(k + ’)/n) - b*(k))b<k+1 + ’Yn) c. b<p + ’}/n) / 6_(t s)ao(S + ’Yn)d
. —00 H,RP
* 2 Lm2 %\ 2 p—1
< sup [tk + ) — 0" (t)|” —3 ((M)2L)".
R §2)
and
1 1N ANAp 2
Jp+1 = ‘Tﬂ]—oo,t]Pb*(-l) e b*(p) / 67(tis) (Clo(S + ’}/n) — GS(S))dS
b —00 H,RP
2 L(M*)?

((M*)QL)p_l.

< sup |ao(s + ) — ag(s)]

(p!)?

From (2.11)-(2.13) and the above inequalities, we deduce that

lim E

n—oo

(TR ) - B (T e )] <o

Hence

LR(TP(0)),
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converges in quadratic mean (uniformly with respect to t) to

LT ).

Using the previous inequalities again, we get the convergence of X;' in quadratic mean to X/
uniformly with respect to ¢ € R, which gives the convergence in distribution of X' to X

For 0 < H < %, we use the recurrence form (2.5). First, let us show that, for p = 1,
Hff”() — flt’*(')”H,Rl — 0 asn — oo.
We have
A7) = Lo (s)e™ I bo(s + ) + Li—se(s)e™ (s +7a) £ (5) = 61" (5) + hy"(s)
and
A7 (5) = Lo (8)e™05(8) + Lo g(s)e™ 0% (5) f () = 917 (s) + hy" (s),

The fractional derivative of gf’" — gi’*, with respect to the variable s, gives

L 40 t,n otk o t,n _ tx
p" (Qin - Qi*) (71) = CH/ (") = 91" (1)) (ng(xl ) (o 4 ) dr
0 re
t—xy _ r _ %
— e (=) </ [bo(21 4+ ¥n) — b5(z1)] — € [gbo(l‘l + 7+ ) — bG(x1 £ T)]dr> 1o (o)
0 re

+ e =) (V’ 021 +7n) = bg
(% - )(t - $1)

) o

By using the limits inversion theorems, we get the convergence of this sequence to zero
uniformly with respect to ¢ and z; (here we use the uniform norm) and by the dominated

convergence theorem, we obtain the convergence in L*(R) uniformly with respect to ¢t. Thus
t, t,
‘ g () — gl*(.)HHJR — 0asn— o0.

It remains to show that

Hhi"() — hi*()HHR — 0 asn— oo.
We have
1 TN b n —b*
DE H (htl,n - htl,*)( ) CH@ (t— .ibl)(/ov | t] (.I'l)[ (.’,Cl + IYTQ{H(‘Tl) (xl)f() (’Il)]
B 1) oo (w1 +7)e [b(x1 + 7+ 90) f3 (21 + 1) = 0" (21 +7) fo (21 + T)]dr>
T%_H '

With the same manner as below, we can show that this sequence converges to zero in L?(R)

uniformly with respect to ¢t . Thus, we conclude that

A7) = f*()HH]R — 0 as n — oo,
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We have also

D (W ) () = e % @b + ) DEH (f2) (@)
n OHe (t—z1 / []l 1'1 + ")/n) ]l],oot (331 + 7“) (331 +7r+ ")/n)} fén(.’ﬂl + 7”)
0 rs—H

dr

— e (@) (20) DE (f) ()
oy [T (oo (@) (21) = 1o g1 +7)b* (21 +7)] f (1 +7)
- CHe ! 3 d
0 2

by using the same development as used for the formula (2.9), we obtain

T,
.
187" = By e < M f3 e + M f g + Ca KN 3l g + Cal N fi i
Thus,
A" = f e < 1" = By [lae + (M + Ca KN || fi g + (M + Ca KN, || 5 |11 -
Now, let us show that for p > 2,
1fo" = fo* | ape — 0 as n — oco.

By formula (2.5), we have
tn t.n 1 - ) % tj,* ~
Fp (s stp) = (b ) = ];Z Wjoo ()T [b(t; + 9) £ (£) = 07 (1) £ 25 (E5)].
p=1

By using the same technique as in formula (2.10) and with the same manner as the case p = 1
(the second step, for h}), we obtain

||f£" — f]f,’*HHRp — 0 as n — oo.
Furthermore,

11" = fo llape < (M + CaKN) || fyilare + (M 4+ CalKN) || fo_y | pe-

Using the last inequality, we deduce that the series

“+oo
ZP'Hft" fy e <Z (M + CuKN) | llipe + Y (M + CaK N pll| £yl o,
p=1 p=1 p=1

converges uniformly with respect to n, thus by the inversion limits we get the convergence
of X/ in quadratic mean to X, which gives the convergence in distribution of X' to X;. It
remains to show that X" and X,,,, have the same distribution for every ¢ € R. From the
transfer principle given by (1.18), we are able to define the Skorohod integral with respect
to fBm (B/?) by Skorohod integral with respect to the two-sided standard Brownian motion
(W) as follows :

t t
X, = / e ag(s)ds + / e [bo(s) + b(s)X,| dBT = ZIH (fi()
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=S (PRG0N = e S (FRH0) = i B (T 0)

¢
—/ e_(t_s)ao(s)der/ Utdwi,

where (U!)4er, for each ¢ € R, is a process with chaos decomposition

Ut = ff;/z (TR (a9)
p=0

If the integrand process (U!)ser is predictable, we get the classical It6 integral. The change of
variable 0 = s+, gives another [t0 integral with respect to Wn,t, where Wn,t = Wiy, —W,,
is standard Brownian motion with the same distribution as W; and from the independence of
the increments of standard Brownian motion, we deduce that the process X, has the same
distribution as X;'. Thus it suffices to show that the solution X is predictable process. From
the definition of iterated Wiener integrals, the explicit definition of the kernels f, and the
convergence in square mean of the series we deduce that the process (U!),cr is predictable.

Thus for ¢ € R, the sequence X;,,, converges in distribution to X7, i.e.

lim p(t+ ap + Bn) = p*(t) :==law X,

n—-+00

By analogy and using (2.11)-(2.13) we can prove that
lim lm p(t+ o + 5n) = 1 (1).

m—-+00 n—+00

We have thus proved that X has almost periodic one-dimensional distributions.

Now, let us show that the solution X is almost periodic in distribution (infinite dimen-

sional distributions). For fixed 7 € R and for each n € N, we consider
t t
X=X 4 / e~ ag(s + ay)ds +/ Ubmdwi,
the evolution solution to the equation (2.14) and
t t
X =etX* 4 / e~ gk (s)ds + / Ut dwi,
the evolution solution to the equation (2.16). By the forgoing :

the sequence (X7'), _y converges in quadratic mean to X,

and since (U)o and (UL*), g are predictable, the processes

t t
(/ U;ndWS) and, for everyn € N, </ Ust’*dWs> 7
T tG[T»T} T tG[T,T]
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are martingales for every 7' > 7. Thus, by using the Doob’s inequality, we obtain

sup [ X{" — X[| =0,
7]

in quadratic mean for all 7" > 7, then

dp, (X", X*) — 0in P(C([r,T],R)) for all T" > 7.

The uniqueness in law of the distribution of the evolution solution to (2.14) and (2.16) and

the convergence in distribution of X, to X; imply that
dpr(X 4+,, X*) — 0in P(C([7,T],R)) for all T > 7.

Therefore
dBL(X.+7n7X*) — 0 in P(Ck(R,R))

Now we can easily conclude the almost periodicity in distribution of the solution. O



Conclusion

The purpose of this thesis was to study the existence and uniqueness of almost periodic solu-
tion to stochastic differential equations driven by a fractional Brownian motion with almost
periodic coefficients. We are interested in a stochastic affine differential equation generated
by a fractional Brownian motion of Hurst index H € (0,1) and H € (3,1), the coefficient

were deterministic functions. In this perspective the stochastic integral considered was in the
1
2
case H € (0, %) from Malliavin calculus. We have used the chaos decomposition approach to

sense of divergence operator for H € (5,1), and the extended divergence operator for the

establish our result Theorem 2.1. The solution is given in terms of explicit expressions for
the kernels of the fractional multiple integrals in its chaos expansion. We have shown that

this solution is almost periodic in distribution (infinite dimensional distribution).

As a research prospect, our work can be pursued in different directions :

e Studying a more general class of stochastic differential equations driven by a fractional

Brownian motion.

e Consider another type of almost periodicity : in the sense of Stepanov, Weyl, .. ..

33
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Résumé

Cette these porte sur I’étude d’éxistence et unicité de solution presque périodique en distribu-
tion pour des équations différentielles stochastiques gouvernées par un mouvement brownien

fractionnaire.

En particulier, nous nous intéressons a I’étude d’existence et unicité d une solution presque
périodique en loi infinidimensionnelle pour une équation différentielle stochastique affine régie

par un mouvement brownien fractionnaire d’indice de Hurst H € (0,3) U (3, 1), sous la forme

dX, = (ag(t) — X;)dt + (bo(t) + b(t) X;)dB,

ol ag,by et b sont des fonctions définies de R a valeurs dans R, presque périodiques et

I'intégrale stochastique considérée est I'intégrale divergence du calcul de Malliavin.

Mots clefs : Equations différentielles stochastiques, mouvement brownien fractionnaire,

solution presque périodique, intégrales stochastiques multiples, décomposition chaotique.
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