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General introduction

Historical preamble

The almost periodicity is an old notion whose traces date to ancient Greece, starting
from Hipparchus theories up to the celestial model of Ptolemy. This last model, ta-
king into account the observations of that time, was intended to describe the periodic
cycles of the celestial bodies of our solar system by decomposing them into elementary
cycles and thanks to this idea which essentially characterizes the almost periodic func-
tions by using trigonometric polynomials to approach them. But it took time until the
works of H. Bohr, published between 1923 and 1926, for a formal and detailed study of
the class of almost periodic functions. Since then, numerous generalizations have been
made of this last class of functions, as varied as the distances or topologies used, among
which we can cite the classes of Weyl, Stepanov and Besicovitch of almost periodic func-
tions [11, 19, 43, 2, 26] and the class of almost automorphic functions [20, 21]. Later,
pseudo almost periodic functions were invented by Zhang [85,86,87] and the generali-
zation of this concept to pseudo almost automorphic functions was investigated in [55]
which opened the field to other generalizations of almost periodic functions class, thus
classes of weighted pseudo almost periodic functions and weyl-like, Stepanov-like and
Besicovich- like pseudo periodic functions were defined with their analogue in almost
automorphy [17, 34, 25, 38, 16, 37, 35, 83]. The question of studying the concept of al-
most periodic or almost automorphic stochastic processes arises naturally in connection
with stochastic differential equations. As can be seen in Tudor’s survey [77], almost per-
iodicity forks into many different notions when applied to stochastic processes : almost
periodicity in probability, in p-mean, in one-dimensional distributions, in finite dimen-
sional distributions, in distribution, almost periodicity of moments, etc. These notions
are not all comparable : for example, almost periodicity in distribution does not imply
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General introduction

almost periodicity in probability, and the converse implication is false too [10]. The si-
tuation for almost automorphy is no different. Furthermore, things become even more
complicated if one takes into account different generalizations of almost automorphy
(which have their analogue in almost periodicity) : on the one hand, changing the
mode of convergence in the definition leads to the notions of Stepanov-like, Weyl-like
and Besicovitch-like almost automorphy. On the other hand, for the study of asymptotic
properties of functions, it is natural to consider functions which are the sum of an al-
most automorphic function and of a function vanishing in some sense at infinity. In this
way, one gets the notions of asymptotically almost automorphic functions and of pseudo
almost automorphic functions and their weighted variants. Each of these notions can be
interpreted in different manners for stochastic processes, exactly in the same way as for
“plain” almost periodicity and almost automorphy. It is an objective of this work to cla-
rify the hierarchy of those various concepts. We did not try to list all possible variants,
one can imagine many other extensions and combinations, as the reader will probably
do. This is rather a preliminary groundwork, in which we investigate some notions we
think particularly useful. For example, when we describe the different modes of pseudo
almost automorphy in distribution, we concentrate on a stronger notion, which is not
purely “distributional” but seems to be the relevant one for stochastic differential equa-
tions. As we have in view applications in spaces of probability measures, which do not
have a vector space structure and whose topology can be described by different non
uniformly equivalent metrics, A natural application of these concepts is the study of sto-
chastic differential equations with almost automorphic or almost periodic coefficients.
We provide examples of stochastic semilinear evolution equations, with almost periodic
and with almost periodic coefficients, whose unique bounded solution is almost au-
tomorphic (respectively almost periodic) in distribution. It is another objective of this
work to point out a common error in many papers which claim the existence of nontri-
vial solutions which are almost automorphic or almost periodic in quadratic mean. We
show by a counterexample borrowed from [60] that this claim is false, even for several
extensions of almost automorphy or almost periodicity. .

Context of a work

The study of almost periodic random functions has a relatively long story, starting from
Slutsky [72] in 1938, who focused on conditions for weakly stationary random pro-
cesses to have almost periodic trajectories in Besicovitch’s sense. The investigation of
almost periodicity in probability was initiated later by the Romanian school [66,24,68].
It is only in the late eighties that almost periodicity in distribution was considered, again
by the Romanian school (mainly by Constantin Tudor), in connection with the study of
stochastic differential equations with almost periodic coefficients [47,61,76,7,28]. Star-
ting from 2007, many papers appeared, claiming the existence of square-mean almost
periodic solutions to almost periodic semilinear stochastic evolution equations, using a
fixed point method. Despite the counterexamples given in [60], new papers in this vein
continue to be published. The story of almost automorphy and its generalizations is
much shorter. Almost automorphic functions were invented by Bochner since 1955 [20]
(the terminology stems from the fact that they were first encountered in the context
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of differential geometry on real or complex manifolds). Almost automorphic stochastic
processes and their generalizations seem to have been investigated only since 2010,
starting with [44], which was followed by many other papers. Most of these papers
claim almost automorphy (or one of its generalizations) in square mean for solutions
to stochastic equations. There are only few papers we are aware of [46, 57] which in-
vestigate almost automorphy in a distributional sense. Recently, the notion of almost
automorphic random functions in probability has been introduced by Ding, Deng and
N’Guérékata

Structure of the dissertation

This manuscript is divided into two parts and each part is composed of two chapters.
The first part of the thesis is consecrated, on the one hand, to the introduction of almost
automorphy notions and the stepanov almost perioicity for the functions and the sto-
chastic processes and on the other hand to the various useful superposition theorems.
The second part of the thesis which is also composed of two chapters, is devoted to
document the results obtained by the study of the solutions of a stochastic differential
equation with almost automorphic terms for the first chapter and Stepanov almost per-
iodic for the second. The distribution of our work in chapter is given hereafter

Chapter 1 :In Section 1.1, we present the concept of almost automorphy and some of its
generalizations : µ-pseudo almost automorphy, Stepanov-like, Weyl-like and Besicovitch-
like µ-pseudo almost automorphy. Our setting is that of functions of a real variable with
values in a metrizable space. Metrizability seems a sufficiently general frame to investi-
gate almost automorphy in many useful spaces of probability measures, while avoiding
complications. We show that almost automorphy and a slightly generalized notion of
pseudo almost automorphy can be defined in a topological way, without any reference
to a metric nor to a vector structure. In Section 1.2.4, we investigate several notions of
almost automorphy and pseudo almost automorphy for stochastic processes. First, we
investigate almost automorphy and its variants in pth mean : the stochastic processes
are seen as almost automorphic (or, more generally, µ-pseudo almost automorphic)
functions from R to Lp, p≥ 0 (p = 0 corresponds to almost automorphy and its variants
in probability). Then we move to almost automorphy in distribution and its variants.
For p > 0, we introduce the notion of almost automorphy in p-distribution, which is
obtained by adding to the preceding notions a condition of p-uniform integrability. For
µ-pseudo almost automorphy, the situation becomes even more complicated, because
there are several ways to take into account the ergodic part. We introduce also the
notion of processes which are µ-pseudo almost automorphic in p-distribution, which
are the sum of a process which is almost automorphic in p-distribution and a process
which is µ-ergodic in pth mean. We also carry out a comparison of these notions of
(generalized) almost automorphy for stochastic processes : in probability, in pth mean,
and in p-distribution. In Section 1.2, we investigate several notions of Stepanov al-
most periodicity in Lebesgue measure, and Stepanov (µ-pseudo) almost periodicity for
metric-valued functions. We see in particular that almost periodicity in Stepanov sense
depends on the uniform structure of the state space. Next, we proceed like for section
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General introduction

1.2.4, we present various definitions of stochastic processes of almost periodic type.

Chapter 2 : In the section 2.1, we study the superposition operators (also called Nemyts-
kii operators) between spaces of almost automorphic (compact almost automorphic,
and µ-pseudo compact almost automorphic) processes in distribution. In the section
2.2, we study some properties of parametric functions, especially Nemytskii’s operators
N ( f )(x) := [t 7→ f (t,x(t))] built on f : R×E → E in the space of Stepanov (µ-pseudo)
almost periodic functions.

Chapter 3 : In this chapter, we consider two semilinear stochastic evolution equations
in a Hilbert space. The first one has almost automorphic coefficients, and the second
one has µ-pseudo almost automorphic coefficients. We show that each equation has a
unique mild solution which is almost automorphic in 2-distribution in the first case, and
µ-pseudo almost automorphic in 2-distribution in the second case.

Chapter 4 : The aim of this chapter is to study existence and uniqueness of boun-
ded mild solutions to a semilinear stochastic evolution equation on a Hilbert separable
space with Stepanov (µ-pseudo) almost periodic terms, satisfying Lipschitz and growth
conditions. In the case of uniqueness, the solution can be (µ-pseudo) almost periodic
in 2-distribution. Our approach is inspired from Kamenskii et al. [49], Da Prato and
Tudor [28], and [9]. The major difficulty is the treatment of the limits of the terms pro-
vided by the Bochner criterion in Stepanov sense. Thanks to an application of Komlós’s
Theorem [50], this difficulty dissipates by showing that those limits inherit the same
properties of the first terms. Finally, Section 4.2 is devoted to some remarks and conclu-
sions about the problem of existence of purely Stepanov almost periodic solutions. We
showed by a simple example in a one-dimensional setting, that one can obtain bounded
purely Stepanov almost periodic solutions when the forcing term is purely almost per-
iodic in Lebesgue measure.
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Contribution to superposition
theorems for almost periodic and

almost automorphic type functions and
processes
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CHAPITRE

1
Almost periodic type and almost

automorphic type functions and pro-
cesses

In the sequel, X and Y are metrizable topological spaces. When no confusion may arise,
we denote by d a distance on X (respectively on Y) which generates the topology of X
(respectively Y). Most of our results depend only on the topology of those spaces, not
on the choice of particular metrics. When X and Y are Banach spaces, their norms are
indistinctly denoted by ‖.‖, and d is assumed to result from ‖.‖.
We denote by C(X,Y) the space of continuous functions from X to Y. When this space
is endowed with the topology of uniform convergence on compact subsets of X, it is
denoted by Ck(X,Y).
For a continuous function f : R→ X, we define its translation mapping

f̃ :

{
R → C(R,X)
t → f (t + .).

1.1 Almost automorphy type functions and processes

1.1.1 Almost periodicity and almost automorphy

Almost periodicity We say that a continuous function f : R→ X is almost periodic if,
for any ε > 0, there exists l(ε) > 0 such that any interval of length l(ε) contains at least
an ε-almost period, that is, a number τ for which

d( f (t + τ), f (t))≤ ε, for all t ∈ R.

We denote by AP(R,X) the space of X-valued almost periodic functions.
By a result of Bochner [20], f : R→ X is almost periodic if, and only if, the set{

f̃ (t), t ∈ R
}

= { f (t + .), t ∈ R}
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

is totally bounded in the space C(R,X) endowed with the norm ‖.‖∞ of uniform conver-
gence.
Another very useful characterization is Bochner’s double sequence criterion [20] : f is
almost periodic if, and only if, it is continuous and, for every pair of sequences (t ′n) and
(s′n) in R, there are subsequences (tn) of (t ′n) and (sn) of (s′n) respectively, with same
indexes, such that, for every t ∈ R, the limits

lim
n→∞

lim
m→∞

f (t + tn +sm) and lim
n→∞

f (t + tn +sn), (1.1)

exist and are equal. This very useful criterion shows that the set AP(R,X) depends only
on the topology of X, i.e. it does not depend on any uniform structure on X, in particular
it does not depend on the choice of any norm (if X is a vector space) or any distance on
X.

Almost automorphy Almost automorphic functions were introduced by Bochner [20]
and studied in depth by Veech [79], see also the monographs [71, 65, 63] for applica-
tions to differential equations. A continuous mapping f : R → X is said to be almost
automorphic if, for every sequence (t ′n) in R, there exists a subsequence (tn) such that,
for every t ∈ R, the limit

g(t) = lim
n→∞

f (t + tn) (1.2)

exists and
lim
n→∞

g(t− tn) = f (t). (1.3)

The range Rf of f is then relatively compact, because we can extract from every se-
quence ( f (tn)) in Rf a convergent subsequence.
Clearly, the space of almost automorphic X-valued functions depends only on the topo-
logy of X.
Almost automorphic functions generalize almost periodic functions in the sense that f
is almost periodic if, and only if, the above limits are uniform with respect to t.
Note that, in (1.2) and (1.3), the limit function g is not necessarily continuous. Let us
consider the following property :
(C) For any choice of (t ′n) and (tn), the function g of (1.2) and (1.3) is continuous.
Functions satisfying (C) are called continuous almost automorphic functions in [79].
They were re-introduced by Fink [?] under the name of compact almost automorphic
functions. This terminology is now generally adopted, so we stick to it.
It has been shown by Veech in [79, Lemma 4.1.1] (see also [62, Theorem 2.6] and
[64, 58]) that, if f satifies (C), f is uniformly continuous. The proof of Veech is given
in the case when X is the field of complex numbers, but it extends to any metric space.
Furthermore, f satifies (C) if, and only if, the convergence in (1.2) and (1.3) is uniform
on the compact intervals. We denote by AAc(R,X) the subspace of functions satisfying
(C).
We have the inclusions

AP(R,X)⊂ AAc(R,X)⊂ AA(R,X).

All these spaces depend only on the topological structure of X and not on its metric.
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1.1. Almost automorphy type functions and processes

Almost automorphic functions depending on a parameter Following [55], we say
that a function f : R×Y → X is almost automorphic with respect to the first variable,
uniformly with respect to the second variable in bounded subsets of Y (respectively in
compact subsets of Y) if, for every sequence (t ′n) in R, there exists a subsequence (tn)
such that, for every t ∈ R and every y∈ Y, the limit

g(t,y) = lim
n→∞

f (t + tn,y)

exists and, for every bounded (respectively compact) subset B of Y, the convergence is
uniform with respect to y∈ B, and if the convergence

lim
n→∞

g(t− tn,y) = f (t,y)

holds uniformly with respect to y∈B. We denote by AAUb(R×Y,X) and AAUc(R×Y,X)
respectively the spaces of such functions.
Similarly, one can define the spaces of functions f : R×Y→X which are compact almost
automorphic with respect to the first variable, uniformly with respect to the second variable
in bounded (or in compact) subsets of Y. We denote these spaces by AAcUc(R×Y,X) and
AAcUb(R×Y,X) respectively.
These notions are different from the notion of functions almost automorphic uniformly
in y defined in [18,16].

Proposition 1.1.1. Let f ∈ AAcUc(R×Y,X). Assume that f is continuous with respect to
the second variable. Then f is continous on R×Y, and, for every compact subset K of Y, f
is uniformly continuous on R×K.

Proof : For simplicity, we use the same notation d for distances on Y and X which
generate the topologies of Y and X respectively.
First step Let us show that f is jointly continuous. Let (t,x) ∈ R×Y, and let (tn,xn) be a
sequence in R×Y which converges to (t,x). Let ε > 0. The set K = {xn; n∈ N}∪{x} is
compact, thus there exists N1 ∈ N such that, for any y∈ K,

n,m≥ N1 ⇒ d( f (tn,y), f (tm,y)) < ε/3.

Now, there exists N2 ∈ N such that

n≥ N2 ⇒ d( f (tN1,xn), f (tN1,x)) < ε/3.

We deduce, for n≥ (N1∨N2),

d( f (tn,xn), f (t,x))≤ d( f (tn,xn), f (tN1,xn))
+d( f (tN1,xn), f (tN1,x))+d( f (tN1,x), f (t,x)) < ε/3+ ε/3+ ε/3 = ε,

which proves the continuity of f .

Second step Let (t ′n) be a sequence in R. Let (tn) be a subsequence of (t ′n) such that, for
every y∈ Y, and for every t ∈ R, the limit

g(t,y) = lim
n→∞

f (t + tn,y)
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

exists, uniformly with respect to y in compact subsets of Y, and

lim
n→∞

g(t− tn,y) = f (t,y).

By our hypothesis, for each y∈ Y, the function g(.,y) is continuous. A similar reasoning
to that of the first step shows that g is continuous on R×Y. Indeed, let (t,x) ∈ R×Y,
and let (sk,xk) be a sequence in R×Y such that (t +sk,xk) converges to (t,x). Let ε > 0.
The set K = {xn; n ∈ N}∪ {x} is compact, thus there exists an integer N such that, for
every y∈ K,

n≥ N⇒ d
(

g(t,y), f (t + tn,y)
)

< ε/3.

By continuity of f at the point (t + tN,x), there exists N′ ∈ N such that

k≥ N′⇒ d
(

f (t +sk + tN,xk), f (t + tN,x)
)

< ε/3.

We have thus, for k≥ N′,

d
(

g(t +sk,xk),g(t,x)
)
≤d
(

g(t +sk,xk), f (t +sk + tN,xk)
)

+d
(

f (t +sk + tN,xk), f (t + tN,x)
)

+d
(

f (t + tN,x),g(t,x)
)

<ε/3+ ε/3+ ε/3 = ε.

Third step Let K be a compact subset of Y. Assume that f is not uniformly continuous
on R×K. We can find two sequences (sn,xn) and (tn,yn) in R×K such that (sn− tn)+
d(xn,yn) converges to 0 and d

(
f (sn,xn), f (tn,yn)

)
> 2δ for some δ > 0 and for all n∈ N.

By compactnes of K, and extracting if necessary a subsequence, we can assume that (xn)
and (yn) converge to a common limit x∈ K. We have thus

liminf
n→∞

d
(

f (sn,xn), f (sn,x)
)

+ liminf
n→∞

d
(

f (tn,yn), f (tn,x)
)

≥ liminf
n→∞

d
(

f (sn,xn), f (tn,yn)
)

> 2δ ,

which implies that at least one term in the left hand side is greater than δ . So, we can
assume, without loss of generality, that

liminf
n→∞

d
(

f (tn,yn), f (tn,x)
)

> δ . (1.4)

Extracting if necessary a further subsequence, we can assume also that there exists a
function g : R×Y→ X such that

lim
n→∞

f (tn,y) = g(0,y)

uniformly with respect to y∈K. We have proved in the second step that g is continuous.
But, then, we have

10



1.1. Almost automorphy type functions and processes

limsup
n→∞

d
(

f (tn,yn), f (tn,x)
)

≤ limsup
n→∞

d
(

f (tn,yn),g(0,yn)
)

+d
(

g(0,yn),g(0,x)
)

+d
(

g(0,x), f (tn,x)
)= 0,

which contradicts (1.4).

1.1.2 (Weighted) pseudo almost automorphy

Pseudo almost periodic functions were invented by Zhang [84,85,86,87]. The generali-
zation of this concept to pseudo almost automorphic functions was investigated in [55].
To define pseudo almost automorphy, we need another class of functions. Assume for
the moment that X is a Banach space. Let

E (R,X) =
{

f ∈ BC(R,X); lim
r→∞

1
2r

∫
[−r,r]

‖ f (t)‖ dt = 0

}
,

where BC(R,X) denotes the space of bounded continuous functions from R to X. We
say that a continuous function f : R→X is pseudo almost automorphic if it has the form

f = g+Φ, g∈ AA(R,X), Φ ∈ E (R,X). (1.5)

The space of X-valued pseudo almost automorphic functions is denoted by PAA(R,X).
Weighted pseudo almost automorphic functions were introduced by Blot et al. in [14]
and later generalized in [16]. They generalize the weighted pseudo almost periodic
functions introduced by Diagana [34, 35, 37], see also [17]. Let µ be a Borel measure
on R such that

µ(R) = ∞ and µ(I) < ∞ for every bounded interval I . (1.6)

We define the space E (R,X,µ) of µ-ergodic X-valued functions by

E (R,X,µ) =
{

f ∈ BC(R,X); lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖ f (t)‖ dµ(t) = 0

}
.

The space PAA(R,X,µ) of µ-pseudo almost automorphic functions with values in X is the
space of continuous functions f : R→ X of the form

f = g+Φ, g∈ AA(R,X), Φ ∈ E (R,X,µ). (1.7)

The space PAA(R,X,µ) contains the asymptotically almost automorphic functions, that
is, the functions of the form

f = g+Φ, g∈ AA(R,X), lim
|t|→∞

‖Φ(t)‖= 0,

see [16, Corollary 2.16].
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

Note that, contrarily to (1.5), the decomposition (1.7) is not necessarily unique [16,
Remark 4.4 and Theorem 4.7], even in the case of weighted almost periodic functions
[54,17]. A sufficient condition of uniqueness of the decomposition is that E (R,X,µ) be
translation invariant. This is the case in particular if Condition (H) of [16] is satisfied :
(H) For every τ ∈ R, there exist β > 0 and a bounded interval I such that µ(A+ τ) ≤

β µ(A) whenever A is a Borel subset of R such that A∩ I = /0.
The following elementary lemma will prove useful.

Lemma 1.1.2. Let f ∈ E (R,X,µ), with µ satisfying (1.6). There exists a sequence (tn) in
R such that (|tn|) converges to ∞ and ( f (tn)) converges to 0. If furthermore

liminf
r→∞

µ([0, r])
µ([−r, r])

> 0, (1.8)

one can choose (tn) converging to +∞.

Proof : Observe first that, for every bounded interval I , the function f satisfies

lim
r→∞

1
µ([−r, r]\ I)

∫
[−r,r]\I

‖ f (t)‖ dµ(t) = 0

(see [16, Theorem 2.14] for a stronger result). Assume that the first part of the lemma
is false. There exist ε > 0 and R> 0 such that, for |t| ≥ R, ‖ f (t)‖ ≥ ε. Then we have

0 = lim
r→∞

1
µ([−r, r]\ [−R,R])

∫
[−r,r]\[−R,R]

‖ f (t)‖ dµ(t)

≥ lim
r→∞

ε
µ([−r, r]\ [−R,R])
µ([−r, r]\ [−R,R])

= ε,

a contradiction.
In the case when (1.8) is satisfied, we have

limsup
r→∞

1
µ([0, r]\ [0,R])

∫
[0,r]\[0,R]

‖ f (t)‖ dµ(t)

≤ limsup
r→∞

µ([−r, r]\ [−R,R])
µ([0, r]\ [0,R])

1
µ([−r, r]\ [−R,R])

∫
[−r,r]\[−R,R]

‖ f (t)‖ dµ(t)

= limsup
r→∞

µ([−r, r])
µ([0, r])

1
µ([−r, r]\ [−R,R])

∫
[−r,r]\[−R,R]

‖ f (t)‖ dµ(t)≤ 0.

Then we only need to reproduce the reasoning of the first part of the lemma, replacing
[−r, r] by [0, r].

Pseudo almost automorphic functions depending on a parameter Let µ be a Borel
measure on R satisfying (1.6). We say that a continuous function f : R×Y → X is µ-
ergodic with respect to the first variable, uniformly with respect to the second variable in
bounded subsets of Y (respectively in compact subsets of Y) if, for every x∈ Y, f (.,x) is
µ-ergodic, and the convergence of 1/µ([−r, r])

∫ r
−r ‖ f (t,x)‖ dµ(t) is uniform with respect

to x in bounded subsets of Y (respectively compact subsets of Y). The space of such
functions is denoted by E Ub(R×Y,X,µ) (respectively E Uc(R×Y,X,µ)).

12



1.1. Almost automorphy type functions and processes

Remark 1.1.3. If for each x∈Y, f (.,x) ∈ E (R,X,µ) and f (t,x) is continuous with respect
to x, uniformly with respect to t, then f ∈ E Uc(R×Y,X,µ).
Indeed, let K be a compact subset of Y, and let ε > 0. Let d be any distance on Y which
generates the topology of Y. There exists η > 0 such that, for all x,y∈K satisfying d(x,y) <
η , we have ‖ f (t,x)− f (t,y)‖ < ε for every t ∈ R. Let x1, . . . ,xm be a finite sequence in K
such that K ⊂ ∪m

i=1B(xi ,η). We have, for every r > 0,

sup
x∈K

1
µ([−r, r])

∫ r

−r
‖ f (t,x)‖ dµ(t)

≤ max
1≤i≤m

sup
x∈B(xi ,η)

 1
µ([−r, r])

∫ r

−r
‖ f (t,x)− f (t,xi)‖ dµ(t)

+
1

µ([−r, r])

∫ r

−r
‖ f (t,xi)‖ dµ(t)


≤ε + max

1≤i≤m

1
µ([−r, r])

∫ r

−r
‖ f (t,xi)‖ dµ(t),

which shows that f ∈ E Uc(R×Y,X,µ).

We say that a continuous function f : R×Y → X is µ-pseudo almost automorphic with
respect to the first variable, uniformly with respect to the second variable in bounded subsets
of Y (respectively in compact subsets of Y) if it has the form

f = g+Φ, g∈ AAUb(R×Y,X), Φ ∈ E Ub(R×Y,X,µ)
(respectively f = g+Φ, g∈ AAUc(R×Y,X), Φ ∈ E Uc(R×Y,X,µ)).

The space of such functions is denoted by PAAUb(R×Y,X,µ) (respectively PAAUc(R×
Y,X,µ)).

1.1.3 Stepanov, Weyl and Besicovitch-like pseudo almost automor-
phy

Stepanov-like pseudo almost automorphy and variants The notion of Stepanov-
like almost automorphy was proposed by Casarino in [23]. Then Stepanov-like pseudo
almost automorphy was first studied by Diagana [38]. Stepanov-like weighted pseudo
almost automorphy seems to have been investigated first and simultaneously in [82]
and [88].
Let p > 0. We say that a locally p-integrable function f : R → X is Sp-almost automor-
phic, or Stepanov-like almost automorphic if, for every sequence (tn) in R, there exists a
subsequence (t ′n) and a locally p-integrable function g : R→ R such that

lim
n→∞

∥∥ f (t + t ′n)−g(t)
∥∥

Sp

and
lim
n→∞

∥∥g(t− t ′n)− f (t)
∥∥

Sp ,

13



Chapitre 1. Almost periodic type and almost automorphic type functions and processes

where, for any locally p-integrable function h : R→ X,

‖h‖Sp = sup
x∈R

(∫ x+1

x
‖h(t)‖p dt

)1/p

.

The space of Sp-almost automorphic X-valued functions is denoted by AASp(R,X).
The Bochner transform1 of a function f : R→ X is the function

f b :

{
R → X[0,1]

t 7→ f (t + .).

We have
AASp(R,X) =

{
f ; f b ∈ AA(R,Lp([0,1],dt,X))

}
.

We define the Stepanov-like µ-ergodic functions in a similar way :

ESp(R,X,µ) =
{

f ; f b ∈ E (R,Lp([0,1],dt,X),µ)
}

.

Let µ be a Borel measure on R satisfying (1.6). We say that f : R → X is Sp-pseudo
almost automorphic, or Stepanov-like weighted pseudo almost automorphic if f has the
form

f = g+Φ, g∈ AASp(R,X), Φ ∈ ESp(R,X,µ).

A further extension has been imagined by Diagana [39] : it consists in adding a weight
in the Stepanov norm ‖.‖Sp. Let p and µ as before, and let ν be a Borel measure on the
interval [0,1] such that

0 < ν([0,1]) < +∞. (1.9)

Set

‖h‖Sp
ν
= sup

x∈R

(∫ 1

0
‖h(x+ t)‖p dν(t)

)1/p

.

Then, by replacing ‖.‖Sp by ‖.‖Sp
ν
, one defines in the obvious way the space AASp

ν
(R,X)

of Sp
ν -almost automorphic X-valued functions, the space ESp

ν
(R,Lp(Ω,P,R),µ) of Sp

ν -µ-
ergodic functions, and the space PAASp

ν
(R,X) of Sp

ν -pseudo almost automorphic functions.

Weyl-like and Besicovitch-like pseudo almost automorphy The concept of Weyl-
like pseudo almost automorphy has been recently explored by Abbas [1]. The definition
is similar to that of Stepanov-like pseudo almost automorphy, replacing ‖.‖Sp by the
weaker seminorm ‖.‖Wp, defined by

‖h‖Wp = lim
r→+∞

sup
x∈R

(
1
2r

∫ x+r

x−r
‖h(t)‖p dt

)1/p

.

A further weakening leads to the Besicovitch seminorm, which does not seem to have
been investigated in the context of almost automorphy :

‖h‖Bp = limsup
r→+∞

(
1
2r

∫ r

−r
‖h(t)‖p dt

)1/p

.

1The terminology is due to the fact that Bochner was the first to use this transform, for Stepanov
almost periodicity, in [19].
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1.1. Almost automorphy type functions and processes

1.1.4 Weighted pseudo almost automorphy in topological spaces

We have seen that, to define the space of almost automorphic functions, as well as
that of almost periodic functions, on a space X, there is no need to assume that X is a
vector space, nor a metric space, these spaces depend only on the topological structure
of X. We prove in this section that the definition of PAA(R,X,µ) is metric (independent
of the vector structure of X but dependent on the metric), and that it can be made
purely topological if one allows for a slight change of the definition. This leads to two
topological concepts of µ-pseudo almost automorphy : in Tudor and Tudor’s sense, and
in the wide sense.
In this section, unless otherwise stated, X is only assumed to be a topological space, not
necessarily metrizable.

Remark 1.1.4. Assume that X is a Banach space. By definition, the space E (R,X,µ)
consists of continuous functions f : R→ X satisfying

(i) f is bounded,

(ii) lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖ f (t)‖ dµ(t) = 0.

Condition (i) is of metric nature. By [16, Theorem 2.14], Condition (ii) implies Condition
(1.10) below, and the converse implication is true if we assume (i) :

For any ε > 0, lim
r→∞

µ{t ∈ [−r, r]; ‖ f (t)‖> ε}
µ([−r, r])

= 0. (1.10)

Thus f satisfies (1.10) if, and only if,

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖ f (t)‖∧1
dµ(t) = 0.

Condition (1.10) can be reformulated as

For any neighbourhood U of 0, lim
r→∞

µ{t ∈ [−r, r]; f (t) 6∈U}
µ([−r, r])

= 0. (1.11)

The vector structure of X is still involved in (1.11) through the vector 0. But we use
E (R,X,µ) only in order to ensure that a function is close in a certain sense to AA(R,X).
To that end, as AA(R,X) contains the constant functions, we can allow a generalization of
E (R,X,µ) by replacing 0 in (1.11) by any other fixed point x0 of X.2

An elegant metric definition of µ-pseudo almost periodic functions has been proposed
by Constantin and Maria Tudor in [78]. If we adapt their definition, a continuous func-
tion f : R→ X is µ-pseudo almost automorphic in Tudor and Tudor’s sense if f has relati-
vely compact range and there exists g∈ AA(R,X) such that the function t 7→ d( f (t),g(t))

2 Actually, the terminology “ergodic” is misleading but it has the advantage of shortness. It would
be more appropriate to follow Zhang’s terminology (e.g. [85, 87]), and call µ-ergodic perturbations the
elements of E (R,X,µ), and call ergodic the functions f such that 1/µ([−r, r])

∫ r
−r f (t)dµ(t) converges to

some limit, not necessarily 0.
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

is in E (R,R,µ). This definition is more restrictive than the standard one because the
metric condition (i) is replaced by the stronger topological condition that f have re-
latively compact range (note that a subset A of X is relatively compact if, and only if,
it is bounded for every metric which generates the topology of X, see [41, Problem
4.3.E.(c)]).
Let us say that a continuous function f : R → X is µ-pseudo almost automorphic in the
wide sense if there exists g ∈ AA(R,X) such that the function t 7→ d( f (t),g(t))∧ 1 is in
E (R,R,µ). We can get rid of the distance d in this definition by using the fact that the
closure of the range of any function in AA(R,X) is compact. On a compact space K,
there is one and only one uniform structure, a basis of entourages of which consists
of all sets of the form V = ∪m

i=1(Ui ×Ui), where U1, . . . ,Um is a finite open cover of K,
see e.g. [22] or [41]. In this way, we obtain (ii) below, which shows that the space of
functions which are µ-pseudo almost automorphic in the wide sense depends only on
the topology of X.
We have thus two possible topological definitions of µ-pseudo almost automorphy : in
Tudor and Tudor’s sense, and in the wide sense. The former is stronger than (1.7), while
the latter is weaker.

Proposition 1.1.5. (Topological characterization of µ-pseudo almost automorphy in the
wide sense) Let f : R→X be continuous. Let µ be a Borel measure on R satisfying (1.6). If
X is a metric space, the following propositions are equivalent.

(i) f is µ-pseudo almost automorphic in the wide sense, i.e. there exists a function g∈
AA(R,X) such that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

d( f (t),g(t))∧1
dµ(t) = 0.

(ii) There exists a function g∈ AA(R,X) such that, for any finite open cover U1, . . . ,Um of
the closure K of {g(t); t ∈ R},

lim
r→∞

µ{t ∈ [−r, r]; ( f (t),g(t)) 6∈V}
µ([−r, r])

= 0,

where V = ∪m
i=1(Ui ×Ui).

Proof : (i)⇒ (ii). Recall that K is compact because g∈ AA(R,X). Let V = ∪m
i=1(Ui ×Ui)

be as in (ii). Then V is an open neighborhood in X×X of the diagonal ∆ = {(x,x); x∈K}.
Define the distance d2 on X×X by

d2

(
(x,y),(x′,y′)

)
= d(x,x′)+d(y,y′).

As ∆ is compact, the distance ε = d2(∆,X×X\V) is positive. Let

Bε := {(y,z) ∈ X×X; d2

(
(y,z),∆

)
< ε} ⊂V.

For each (y,z) ∈ Bε , there exists x∈ K such that d2

(
(y,z),(x,x)

)
< ε, thus

d(y,z)≤ d(y,x)+d(x,z) < ε.
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1.1. Almost automorphy type functions and processes

On the other hand, if z∈ K and d(y,z) < ε, we have

d2

(
(y,z),(z,z)

)
= d(y,z) < ε,

thus (y,z) ∈ Bε . Applying this to ( f (t),g(t)), we get, for every r > 0,

µ{t ∈ [−r, r]; ( f (t),g(t)) 6∈V}
µ([−r, r])

≤ µ{t ∈ [−r, r]; d( f (t),g(t))≥ ε}
µ([−r, r])

.

But (i) means that the function t 7→ d( f (t),g(t))∧1 is in E (R,R,µ), thus, by [16, Theo-
rem 2.14], the latter term goes to 0 when r goes to ∞.

(ii) ⇒ (i). Let ε > 0. Let U1, . . . ,Um be a finite open cover of K such that Diam(Ui) > ε,
i = 1, . . . ,m, and let V = ∪m

i=1(Ui ×Ui). We have

µ{t ∈ [−r, r]; d( f (t),g(t)) > ε}
µ([−r, r])

≤ µ{t ∈ [−r, r]; ( f (t),g(t)) 6∈V}
µ([−r, r])

,

where the latter term goes to 0 when r goes to ∞. The conclusion follows from [16,
Theorem 2.14].

Remark 1.1.6. The reasoning of Proposition 1.1.5 can be applied without change to give a
topological characterization of µ-pseudo almost periodic functions in the wide sense. More
generally, AA(R,X) can be replaced in this reasoning by any class of functions which have
relatively compact range.

Theorem 1.1.1. (Uniqueness of the decompostion of pseudo almost automorphic functions
in the wide sense) Let µ be a Borel measure on R satisfying (1.6) and Condition (H). Let
f : R → X satisfying Condition (ii) of Proposition 1.1.5. Then the function g ∈ AA(R,X)
given by Condition (ii) is unique and satisfies

{g(t); t ∈ R} ⊂ { f (t); t ∈ R}.

Proof : Let g and K as in Condition (ii). Let ϕ : X → R be a continuous function.
Then ϕ ◦ g ∈ AA(R,R). Let Û1, . . . ,Ûm be a finite open cover of the closure ϕ(K) of
{ϕ ◦g(t); t ∈ R}, and let V̂ = ∪m

i=1

(
Ûi ×Ûi

)
. Then U1 = ϕ−1(Û1), . . . ,Um = ϕ−1(Ûm) form

a finite open cover of K. Let V = ∪m
i=1(Ui ×Ui). We have

µ{t ∈ [−r, r]; (ϕ ◦ f (t),ϕ ◦g(t)) 6∈ V̂}
µ([−r, r])

≤µ{t ∈ [−r, r]; ( f (t),g(t)) 6∈V}
µ([−r, r])

.

Thus, by Proposition 1.1.5, ϕ ◦ f is in PAA(R,R,µ) and the function ϕ ◦ f −ϕ ◦g is in
E (R,R,µ). By [16, Theorem 4.1], we have

{ϕ ◦g(t); t ∈ R} ⊂ {ϕ ◦ f (t); t ∈ R},

and, by the uniqueness of the decomposition of vector-valued µ-pseudo almost auto-
morphic functions [16, Theorem 4.7] if g′ ∈ AA(R,X) satisfies the same condition as g,
we have ϕ ◦g′ = ϕ ◦g. As ϕ is arbitrary, we deduce g′ = g.
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

1.1.5 Weighted pseudo almost automorphy for stochastic processes

From now on, X and Y are assumed to Polish spaces, i.e. separable metrizable topolo-
gical spaces whose topology is generated by a complete metric.

1.1.6 Weighted pseudo almost automorphy in pth mean

We assume here that X is a Banach space. Let X = (Xt)t∈R be a continuous stochastic
process with values in X, defined on a probability space (Ω,F ,P). Let µ be a Borel
measure on R satisfying (1.6).
Let p> 0. We say that X is almost automorphic in pth mean (respectively µ-pseudo almost
automorphic in pth mean) if the mapping t 7→X(t) is in AA(R,Lp(Ω,P,X)) (respectively in
PAA(R,Lp(Ω,P,X),µ), i.e., if it has the form X =Y+Z, where Y ∈ AA(R,Lp(Ω,P,X)) and
Z ∈ E (R,Lp(Ω,P,X),µ)). When p = 2, we say that X is square-mean almost automorphic
(respectively square-mean µ-pseudo almost automorphic).
The process X is said to be almost automorphic in probability if the mapping X : t →
L0(Ω,P,X) is almost automorphic, where L0(Ω,P,X) is the space of measurable map-
pings from Ω to X, endowed with the topology of convergence in probability. Recall
that the topology of L0(Ω,P,X) is induced by e.g. the distance

dProb(U,V) = E(‖U −V‖∧1) ,

which is complete.
The process X is said to be µ-pseudo almost automorphic in probability, and we write
X ∈ PAA(R,L0(Ω,P,X),µ), if the mapping t 7→ X(t), R → L0(Ω,P,X) is µ-pseudo almost
automorphic in the wide sense (or, equivalently, if it is µ-pseudo almost automorphic
when L0(Ω,P,X) is endowed with dProb), i.e. if it has the form X = Y + Z where Y ∈
AA(R,L0(Ω,P,X)) and Z satisfies

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

E
‖Z(t)‖∧1

dµ(t) = 0. (1.12)

We denote by E (R,L0(Ω,P,X),µ) the set of stochastic processes Z satisfying (1.32).
Note that, for p ≥ 0, the previous decompositions of X ∈ PAA(R,Lp(Ω,P,X),µ) are
unique under the condition (H).
Clearly, for 0≤ p≤ q, we have

AA(R,Lq(Ω,P,X))⊂ AA(R,Lp(Ω,P,X))

and
PAA(R,Lq(Ω,P,X),µ)⊂ PAA(R,Lp(Ω,P,X),µ).

Conversely, if the set {‖X(t)‖q ; t ∈ R} is uniformly integrable, we have the implicationsX ∈ AA(R,Lp(Ω,P,X))
⇒

X ∈ AA(R,Lq(Ω,P,X))
,X ∈ PAA(R,Lp(Ω,P,X),µ)

⇒
X ∈ PAA(R,Lq(Ω,P,X),µ)

.
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1.1. Almost automorphy type functions and processes

A process X is Stepanov-like almost automorphic in pth mean if X is in AASp(R,Lp(Ω,P,X)).
We define in the same way the processes which are Stepanov-like µ-pseudo almost auto-
morphic in pth mean, Weyl-like (µ-pseudo) almost automorphic in pth mean, Besicovitch-
like (µ-pseudo) almost automorphic in pth mean.

1.1.7 Weighted pseudo almost automorphy in distribution

We denote by law(X) the law (or distribution) of a random variable X. For any topo-
logical space X, we denote by M 1,+ (X) the set of Borel probability measures on X,
endowed with the topology of narrow (or weak) convergence, i.e. the coarsest topo-
logy such that the mappings µ 7→ µ(ϕ), M 1,+ (X) → R are continuous for all bounded
continuous ϕ : X→ R.
If τ : X → Y is a Borel measurable mapping and µ is a Borel measure on X, we denote
by τ] µ the Borel measure on Y defined by

τ] µ(B) = µ(τ−1(B))

for every Borel set of Y.
Let BC(X,R) denote the space of bounded continuous functions from X to R, which we
endow with the norm

‖ϕ‖∞ = sup
x∈X

|ϕ(x)| .

For a given distance d on X, and for ϕ ∈ BC(X,R) we define

‖ϕ‖L = sup
{

ϕ(x)−ϕ(y)
d(x,y)

; x 6= y
}

‖ϕ‖BL = max{‖ϕ‖∞ ,‖ϕ‖L}.

We denote
BL(X,R) =

{
ϕ ∈ BC(X,R);‖ϕ‖BL < ∞

}
.

The bounded Lipschitz distance dBL associated with d on M 1,+ (X) is defined by

dBL(µ,ν) = sup
ϕ∈BL(X,R)
‖ϕ‖BL≤1

∫
X

ϕ d(µ −ν).

This metric generates the narrow (or weak) topology on M 1,+ (X).
Let p≥ 0, and let (Xn) be a sequence in Lp(Ω,P,X). We say that (Xn) converges in p-
distribution (or simply converges in distribution if p = 0) to a random vector X if

(i) the sequence (law(Xn)) converges to law(X) for the narrow topology on M 1,+ (X),

(ii) if p > 0, the sequence (‖Xn‖p) is uniformly integrable.
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Almost automorphy in distribution If X is continuous with values in X, we denote
by X̃(t) the random variable X(t + .) with values in C(R,X).
We say that X is almost automorphic in one-dimensional distributions if the mapping
t 7→ law(X(t)), R 7→M 1,+ (X) is almost automorphic.

Remark 1.1.7. One-dimensional distributions of a process reflect poorly its properties. For
example, consider the Ornstein-Uhlenbeck process

X(t) =
√

2ασ

∫ t

−∞
e−α(t−s)dW(s),

and set Y(t) = X(0), t ∈R. The processes X and Y have the same one-dimensional distribu-
tions with completely different trajectories and behaviors. The trajectories of Y are constant,
whereas the covariance Cov(X(t + τ),X(t)) converges to 0 when τ goes to ∞.

We say that X is almost automorphic in finite dimensional distributions if, for every finite
sequence t1, . . . , tm ∈ R, the mapping t 7→ law(X(t + t1), . . . ,X(t + tm)), R 7→ M 1,+ (Xm) is
almost automorphic.
We say that X is almost automorphic in distribution if the mapping t 7→ law(X̃(t)), R 7→
M 1,+ (Ck(R,X)) is almost automorphic, where Ck(R,X) denotes the space C(R,X) en-
dowed with the topology of uniform convergence on compact subsets. The Ornstein-
Uhlenbeck process

X(t) =
√

2ασ

∫ t

−∞
e−α(t−s)dW(s)

is almost automorphic in distribution because the mapping t 7→ law(X̃(t)) is constant.

Remark 1.1.8. If X is a deterministic process R→ X, we have the equivalences

X ∈ AA(R,X)⇔X is almost automorphic in one-dimensional distributions
⇔X is almost automorphic in finite dimensional distributions

and

X ∈ AAc(R,X)⇔X is almost automorphic in distribution.

Actually, as Remark 1.1.8 suggests, the definition of almost automorphy in distribution
implies a stronger property for the mapping t 7→ law(X̃(t)). We need first some notations.
For simplicity, we set Ck = Ck(R,X). For every t ∈R, we define a continuous operator on
Ck :

τt :

{
Ck → Ck

x 7→ x(t + .) = x̃(t).

Proposition 1.1.9. If X is almost automorphic in distribution, the mapping t 7→ law(X̃(t))
is in AAc(R,M 1,+ (Ck(R,X))). Furthermore, for any sequence (tn) in R such that, for every
t ∈ R, (law(X̃(t + tn))) converges to a limit g(t) ∈ M 1,+ (Ck), the function g satisfies, for
every t ∈ R, the consistency relation

g(t) = (τt)] g(0). (1.13)
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1.1. Almost automorphy type functions and processes

Proof : Let us denote f (t) = law(X̃(t)). We have, for every t ∈ R,

f (t) = law(τt ◦X) = (τt)] f (0).

Let (tn) be a sequence in R such that, for each t ∈ R, the sequence ( f (t + tn)) converges
to some g(t) ∈M 1,+ (Ck). Then, for every t ∈ R, (1.13) is satisfied by continuity of the
operator (τt)]. To prove the continuity of g, let us endow Ck with the distance

d(x,y) = ∑
k≥1

2−k sup
−k≤t≤k

(
d
(
x(t),y(t)

)
∧1
)
, (1.14)

and let dBL be the associated bounded Lipschitz distance on M 1,+ (Ck). Let us show that
the convergence of ( f (.+ tn)) is uniform for dBL on compact intervals. Let r ≥ 1 be an
integer. For every t ∈ [−r, r], and for all x,y∈ Ck, we have

d(τt(x),τt(y)) = ∑
k≥1

2−k sup
−k≤s≤k

(
d
(
x(s+ t),y(s+ t)

)
∧1
)

≤∑
k≥1

2−k sup
−k−r≤s≤k+r

(
d
(
x(s),y(s)

)
∧1
)

≤2rd(x,y).

Thus, for any 1-Lipschitz mapping ϕ : Ck → R, the mapping ϕ ◦ τt is 2r -Lipschitz. We
deduce that, if ‖ϕ‖BL ≤ 1, we have ‖ϕ ◦ τt‖BL ≤ 1+2r . We have thus

dBL

(
f (t + tn), f (t + tn+m)

)
= sup
‖ϕ‖BL≤1

E
(

ϕ ◦ τt ◦ X̃(tn)−ϕ ◦ τt ◦ X̃(tn+m)
)

≤(1+2r) sup
‖ϕ‖BL≤1

E
(

ϕ ◦ X̃(tn)−ϕ ◦ X̃(tn+m)
)

=(1+2r)dBL

(
f (tn), f (tn+m)

)
,

which shows that ( f (.+ tn)) is uniformly Cauchy on [−r, r]. Thus g is continuous, and
f ∈ AAc(R,M 1,+ (Ck(R,X))).

We denote by
– AAD1(R,X) the set of X-valued processes which are almost automorphic in one-

dimensional distributions,
– AAD f (R,X) the set of X-valued processes which are almost automorphic in finite

dimensional distributions,
– AAD(R,X) the set of X-valued processes which are almost automorphic in distribu-

tion.
(In these notations, we omit the probability space (Ω,F ,P), as there is no ambiguity
here.) We have the inclusions

AAD(R,X)⊂ AAD f (R,X)⊂ AAD1(R,X).

The following result is in the line of [10, Theorem 2.3].
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Theorem 1.1.2. Let X be an X-valued stochastic process, and let d be a distance on X
which generates the topology of X. Asume that X satisfies the tightness condition

∀[a,b]⊂ R, ∀ε > 0, ∀η > 0, ∃δ > 0, ∀r ∈ R,

P
{

sup
|t−s|<δ

t,s∈[a,b]

d(X(r + t),X(r +s)) > η
}

< ε. (1.15)

Then the following properties are equivalent :

(a) X ∈ AAD f (R,X).

(b) X ∈ AAD(R,X).

Proof : Clearly (b)⇒(a). Assume that X ∈AAD f (R,X). Let (γ ′n) be a sequence in R, and,
for t1, t2, . . . , tk, t ∈ R define (using notations of [77])

µ
t1,...,tk
t := law(X(t1 + t), . . . ,X(tk + t)).

By a diagonal procedure we can find a subsequence (γn) of (γ ′n) such that, for every
k≥ 1, for all q1,q2, . . . ,qk ∈Q

⋂
R (where Q is the set of rational numbers), and for every

t ∈ R,
lim

n
lim
m

µ
q1,...,qk
t+γn−γm

= µ
q1,...,qk
t .

Let dk be the distance on Xk defined by

dk
(
(x1, . . . ,xk),(y1, . . . ,yk)

)
= max

1≤i≤k
d(xi ,yi),

and let dBL the associated bounded Lipschitz distance on M 1,+ (Xk
)
. We have, for all

t1, t2, . . . , tk, t ∈ R, for all q1,q2, . . . ,qk ∈Q
⋂

R, and for all n,m∈ N,

dBL

(
µ

q1,...,qk
t+γn−γm

,µ
t1,...,tk
t+γn−γm

)
= sup

‖ f‖BL≤1

∫
Xk

f d
(
µ

q1,...,qk
t+γn−γm

−µ
t1,...,tk
t+γn−γm

)
≤ max

1≤i≤k

∫
Ω

d
(

X(qi + t + γn− γm),X(ti + t + γn− γm)
)

dP,

so that, by (1.15), if (q1, . . . ,qk)→ (t1, . . . , tk), then

dBL

(
µ

q1,...,qk
t+γn−γm

,µ
t1,...,tk
t+γn−γm

)
→ 0

uniformly with respect to t ∈ R and n,m∈ N. By a classical result on inversion of limits,
we deduce that, for all k≥ 1 and t1, . . . , tk, t ∈ R,

lim
n

lim
m

µ
t1,...,tk
t+γn−γm

= µ
t1,...,tk
t .

Therefore, to show that

lim
n

lim
m

law(X̃(t + γn− γm)) = law(X̃(t)),
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1.1. Almost automorphy type functions and processes

it is enough to prove that (X̃(t))t∈R is tight in Ck(R,X). Since X ∈ AAD f (R,X), the family
(X(t))t∈R = (X̃(t)(0))t∈R is tight, by Prokhorov’s theorem for relatively compact sets of
probability measures on Polish spaces. By (1.15) and the Arzelà-Ascoli-type characteri-
zation of tight subsets of M 1,+ (X) (see e.g. the proof of [13, Theorem 7.3] or [81, Theo-
rem 4]), we conclude that (X̃(t))t∈R is tight in Ck(R,X), which proves our claim.

Remark 1.1.10. Assume that X is a vector space. The spaces AAD(R,X), AAD f (R,X), and
AAD1(R,X) are not vector spaces. Indeed, the Ornstein-Uhlenbeck process

X(t) =
√

2ασ

∫ t

−∞
e−α(t−s)dW(s)

. For each t ∈ R, let Y(t) = X(0). The processes X and Y are stationary in the strong sense,
thus they are in AAD(R,X). For each t ∈ R, the variable Z(t) = X(t) +Y(t) is Gaussian
centered with variance

VarZ(t) = E
(
X2(t)

)
+E

(
Y2(t)

)
+2Cov

(
X(t),Y(t)

)
= 2σ

2 +2σ
2exp(−α |t|)

→ 2σ
2 when |t| → ∞.

Thus law(Z(t)) is the Gaussian distribution N (0,2σ2(1+ exp(−α |t|))), which converges
when |t| → ∞ to N (0,2σ2). Set m(t) = N (0,2σ2), t ∈ R. For each t ∈ R, we have

lim
n→∞

law(Z(t +n)) = m(t)

lim
n→∞

m(t−n) = m(t) 6= law(Z(t)).

Thus Z 6∈ AAD1(R,X).
This contradicts [45, Lemma 2.3].

Almost automorphy in p-distribution A useful variant of almost automorphy in dis-
tribution takes into account integrability of order p. Let p≥ 0. We say that a continuous
X-valued stochastic process is almost automorph in p-distribution if

(i) X ∈ AAD(R,X),

(ii) if p > 0, the family (‖X(t)‖p)t∈R is uniformly integrable.

These conditions imply that the mapping t 7→ X(t), R→ Lp(Ω,P,X), is continuous.
We denote by AADp(R,X) the set of X-valued processes which are almost automorphic
in p-distribution, in particular we have AAD0(R,X) = AAD(R,X). Similarly, for p≥ 0,
one defines the sets AADp

f (R,X) and AADp
1(R,X) of processes which are respectively

almost automorphic in one-dimensional p-distributions and almost automorphic in finite
dimensional p-distributions.
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

Weighted pseudo almost automorphy in distribution and variants As usual, we
assume that µ is a Borel measure on R satisfying (1.6).
Tudor and Tudor proposed in [78] a very natural and elegant notion of pseudo almost
periodicity in (one-dimensional) distribution that can easily be extended to weighted
µ-pseudo almost automorphy : X is µ-pseudo almost periodic in one-dimensional distri-
butions in Tudor and Tudor’s sense if it satisfies
(TT1) The mapping t 7→ law(X(t)) is continuous with relatively compact range in M 1,+ (X),

and there exists an almost automorphic function m : R→M 1,+ (X) such that

lim
r→∞

1
µ([−r, r])

∫ r

−r
dBL(law(X(t)),m(t))dµ(t) = 0. (1.16)

Similar definitions are easy to write for µ-pseudo almost automorphy in finite distribu-
tions or in distribution.
Recall that dBL is bounded. If we remove the condition of relatively compact range (as in
Proposition 1.1.5), we get three distributional notions of µ-pseudo almost automorphy
in the wide sense : in one-dimensional distributions, in finite dimensional distributions,
and in distribution.
We propose three stronger notions of µ-pseudo almost automorphy in a distributional
sense, that seem to be particularly useful for stochastic equations.
Assume that X is a vector space. Let p≥ 0. We say that X is µ-pseudo almost automorphic
in p-distribution if X can be written

X = Y +Z, where Y ∈ AADp(R,X) and Z ∈ E (R,Lp(Ω,P,X),µ).

The set of X-valued processes which are µ-pseudo almost automorphic in p-distribution
is denoted by PAADp(R,X). Similar definitions hold for the spaces PAADp

1(R,X,µ) and
PAADp

f (R,X,µ) of processes which are µ-pseudo almost automorphic in one-dimensional
p-distributions and in finite dimensional p-distributions respectively.

Remark 1.1.11. The definitions we propose for µ-pseudo almost automorphy in distri-
bution, or in finite dimensional distributions, or in one-dimensional distributions, are in
a way stronger and less natural than those in the wide distributional sense, because they
involve (at least, apparently) not only the distribution of the process, but the probability
space (Ω,F ,P). For example, a random process X is in PAAD0

1(R,X,µ) if, and only if, there
exists a process Y defined on the same probability space such that m(.) := law(Y(.)) is in
AA(R,M 1,+ (X)) and satisfies (1.16). Note also that, in our definition, the ergodic part is
ergodic in pth mean. Our definitions are thus intermediate between µ-pseudo almost auto-
morphy in a purely distributional sense and µ-pseudo almost automorphy in pth mean.
However, our definitions seem to be convenient for calculations, and Theorem 4.1.1 shows
that, for some stochastic differential equations with µ-pseudo almost automorphic coeffi-
cients, the process Y appears naturally : it is the solution of the corresponding SDE where
the coefficients are the almost automorphic parts of the coefficients of the original SDE.

1.1.8 Pseudo-almost automorphy in p-mean vs in p-distribution

Let X = (Xt)t∈R be a continuous stochastic process with values in X, defined on a proba-
bility space (Ω,F ,P). Let µ be a Borel measure on R satisfying (1.6). Clearly, we have
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1.2. Stepanov Almost periodicity and its variants in metric space

for all p≥ 0, X ∈ AA(R,Lp(Ω,P,X))
⇒

X ∈ AADp
f (R,X)

.

Using Theorem 1.1.2, we can get more : if X satisfies (1.15), we deduce, for every p≥ 0,X ∈ AA(R,Lp(Ω,P,X))
⇒

X ∈ AADp(R,X)
,X ∈ PAA(R,Lp(Ω,P,X),µ)

⇒
X ∈ PAADp(R,X,µ)

.

The converse implications are false. Indeed, Example 3.0.4 shows that a process which is
almost automorphic in distribution is not necessarily almost automorphic in probability
or in p-mean, see also [10, Counterexample 2.16]3.
The same counterexample also shows that a process which is µ-pseudo almost automor-
phic in p-distribution is not necessarily µ-pseudo almost automorphic in probability or
in p-mean.

1.2 Stepanov Almost periodicity and its variants in me-
tric space

In this section, we present the concept of Stepanov (µ-pseudo) almost periodic function
and related concepts like almost periodicity in Lebesgue measure. Moreover, we also
recall some useful and key results. We begin with some notations.

1.2.1 Notations

In what follows, (E,d) is a complete metric space. If X and Y are two metric spaces, we
indistinctly denote by d a distance on X (respectively on Y). When X and Y are Banach
spaces, their norms are denoted by ‖.‖, and d is assumed to result from ‖.‖. We denote
by C(X,Y) the space of continuous functions from X to Y. When this space is endowed
with the topology of uniform convergence on compact subsets of X, it is denoted by
Ck(X,Y).

1.2.2 Stepanov and Bohr almost periodicity

Let us recall some definitions of (Stepanov) almost periodic functions and some keys
results.
Stepanov almost periodicity Following [30,33], let M(R,E) be the class of measurable
functions from R to E. Let p≥ 1. We fix a point x0 in E. We denote by Lp(R,E), the

3 Let us here point out an infortunate error in [60] : it is mistakenly said at the end of Section 1 of [60]
that almost periodicity in square mean implies almost periodicity in distribution, and that the converse
is true under a tightness condition. The first claim is true under the tightness condition (1.15), whereas
Example 3.0.4, which is also Example 2.1 of [60], disproves the second claim.
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

subset of M(R,E) of locally p-integrable functions, that is,

Lp(R,E) =
{

f ∈M(R,E), for any a,b∈ R;
∫

[a,b]

dp( f (t),x0)dt < +∞
}

.

Define Lp(0,1;E) as the class

Lp(0,1;E) =
{

f ∈M(R,E),
∫

[0,1]

dp( f (t),x0)dt < +∞
}

which is a complete metric space, when it is endowed with the metric

DLp( f ,g) =

 ∫
[0,1]

dp( f (t),g(t))dt


1/p

.

We denote by L∞(R,E) the space of all E-valued essentially bounded functions, endowed
with essential supremum metric. Obviously, all the previous spaces do not depend on
the choice of the point x0 ∈ E.
Recall that a set A⊂ R is relatively dense if there exists a real number ` > 0, such that
A∩ [a,a+ `] 6= /0, for all a in R.
We say that a locally p-integrable function f : R→ E is Stepanov almost periodic of order
p or Sp-almost periodic, if, for all ε > 0, the set

SpT( f ,ε) :=
{

τ ∈ R, Dd
Sp ( f (.+ τ) , f (.))≤ ε

}
is relatively dense, where, for any locally p-integrable functions f ,g : R→ E,

Dd
Sp( f ,g) = sup

x∈R

(∫ x+1

x
dp( f (t),g(t))dt

)1/p

.

The space of Sp-almost periodic E-valued functions is denoted by SpAP(R,E) (or SAP(R)
when E = R and p= 1). Let S∞AP(R,E) be the space of functions f ∈ L∞(R,E) such that
for any ε > 0, there exists a relatively dense Td

L∞( f ,ε) such that

Dd
L∞ ( f (.+ τ) , f (.))≤ ε, for allτ ∈ Td

L∞( f ,ε).

The relation limp→∞ Dd
Sp( f ,g) = Dd

L∞( f ,g) holds for any functions f ,g∈M(R,E), see [6]
for the proof.
As in the case of Bochner-almost periodic functions, we have similar characterizations
of Stepanov almost periodic functions. Let f ∈Lp(R,E), p∈ [1,+∞[. Then, the following
statements are equivalent (compare with [48, Theorem 1]) :
– f is Sp-almost periodic.
– f is Sp-almost periodic in Bochner sense, that is, from every real sequence (α ′

n) ⊂ R
one can extract a subsequence (αn) of (α ′

n) and there exists a function g ∈ Lp(R,E)
such that

lim
n→+∞

Dd
Sp

( f (.+αn),g(.)) = 0.
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1.2. Stepanov Almost periodicity and its variants in metric space

– f satisfies Bochner’s type double sequence criterion, that is, for every pair of sequences
{α

′
n} ⊂ R and {β

′
n} ⊂ R, there are subsequences (αn)⊂ (α ′

n) and (βn)⊂ (β ′
n) respecti-

vely with same indexes such that, for every t ∈ R, the limits

lim
n→∞

lim
m→∞

f (t +αn +βm) and lim
n→∞

f (t +αn +βn), (1.17)

exist and are equal, in the sense of the Lp-metric

Dd
Lp(h(t + .),g(t + .)) =

(∫
[0,1]

dp(h(t +s),g(t +s))ds

)1/p

for h,g∈ Lp(R,E).
The proof of these equivalences follows from the fact that the concept of Stepanov
almost periodicity can be seen as Bohr almost periodicity of some function with values
in the Lebesgue space Lp(0,1;E). More precisely, one defines the Bochner transform [19]
of a function f ∈ Lp(R,E) as follows

f b :

{
R → E[0,1]

t 7→ f (t + .).

Then f ∈ SpAP(R,E) if, and only if, f b ∈ AP(R,Lp(0,1;E), and the previous equivalences
become a simple consequence of the fact that fn → f if and only if f b

n → f b (see e.g.
[2,4,8,52]).
Since functions in SpAP(R,E) are bounded with respect to the Stepanov metric, one
denotes by Sp(R,E) (or Sp(R) when E = R, and S(R,E) when p = 1) the set of all Dd

Sp-
bounded functions, that is, for some (or any) fixed x0 ∈ E

Sp(R,E) = { f ∈M(R,E);Dd
Sp( f ,x0) < +∞}.

So from now on, the space SpAP(R,E) will be seen as a (closed) subset of the complete
metric space (Sp(R,E),Dd

Sp). We have the following inclusions :

AP(R,E)⊂ S∞AP(R,E)⊂ SpAP(R,E)⊂ SqAP(R,E)⊂ SAP(R,E)⊂ S(R,E)

for p≥ q≥ 1 and AP(R,E) = SpAP(R,E)∩Cu(R,E), where Cu(R,E) denotes the set of
E-valued uniformly continuous functions on R.
For more properties and details about real and Banach-valued Stepanov almost periodic
functions, we refer the reader for instance to the papers and monographs [2,3,8,11,27,
43,51,52].
Beside the previous characterization of the class SpAP(R,E), there is an other one based
on the concept of Stepanov almost periodicity in Lebesgue measure, invented by Stepa-
nov [73]. This concept plays a significant role in the proof of our superposition theorem
in SpAP(R,E) (Theorem 2.2.2).
Stepanov almost periodicity in Lebesgue measure For any measurable set A⊂ R, let

κ(A) = sup
ξ∈R

meas([ξ ,ξ +1]∩A) ,
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

where meas is Lebesgue measure. A measurable function f : R→E is said to be Stepanov
almost periodic in Lebesgue measure or κ-almost periodic if for any ε, δ > 0, the set

Tκ( f ,ε,δ ) :=

{
τ ∈ R, sup

ξ∈R
meas

{
t ∈ [ξ ,ξ +1],d

(
f (t + τ), f (t)

)
≥ ε
}

< δ

}
is relatively dense. We denote by Sκ(R,E) (Sκ(R) when E = R) the space of such
fonctions. This space was studied in depth by several authors (in both normed and
metric spaces). One can mention Stoinski’s works [74, 75], where an approximation
property and some compactness criterion are given. Danilov [30, 31, 33] has explored
this class in the framework of almost periodic measure-valued functions. The recently
published paper [67], that we discovered at the time of writing this paper, completes the
previous ones. The authors of this paper investigate some other properties, in particular,
they show that in general the mean value of κ-almost periodic functions may not exist,
furthermore, κ-almost periodic functions are generally not Stepanov-bounded.
As pointed out by Danilov [31], κ-almost periodicity coincides with classical Stepanov
almost periodicity when replacing the metric d by d′ = min(d,1). In other words, we
have the following characterization (see [31,32])

Sκ(R,E) = S1AP
(
R,(E,d′)

)
. (1.18)

More generally, Stepanov almost periodicity can be seen as κ-almost periodicity under a
uniform integrability condition in Stepanov sense (see [73], [30]). To be more precise,
let M′

p(R,E) be the set of Dd
Sp-bounded functions such that

lim
δ→0+

sup
ξ∈R

sup
T⊂[ξ ,ξ+1]
measT≤δ

∫
T

dp( f (t),x0
)
dt = 0. (1.19)

The space M′
p(R,E), p≥ 1, is a closed subset of (Sp(R,E),Dd

Sp). In [31, pp. 1420], Dani-
lov gives an elegant characterization of Stepanov almost periodic functions in terms of
M′

p(R,E) and Sκ(R,E), more precisely :

SpAP(R,E) = Sκ(R,E)∩M′
p(R,E). (1.20)

A rather interesting result about the space Sκ(R,E) is reported in the following theorem
[32, Theorem 3], which gives a uniform approximation of Stepanov almost periodic
functions by Bohr almost periodic functions, in the context of normed space E. Before,
let us denote by S (R) the collection of measurable sets T ⊂ R such that 1lT ∈ SAP(R),
and by Tc the complementary set of T.

Theorem 1.2.1 (Danilov [32]). Let f ∈ Sκ(R,E), then for any δ > 0, there exist a set
Tδ ∈S (R) and a Bohr almost periodic function Fδ such that κ(Tc

δ
) < δ and f (t) = Fδ (t)

for all t ∈ Tδ .

As consequence, we have the following corollary :

Corollary 1.2.2. Let f ∈Sκ(R,E). Then, for all ε > 0, there exist a measurable set Tε ∈
S (R) and a compact subset Kε of E such that κ(Tc

δ
) < ε and f (t) ∈ Kε ,∀t ∈ Tε .
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1.2. Stepanov Almost periodicity and its variants in metric space

Danilov has shown that this property remains valid even in the metric framework [33].

Remark 1.2.3. 1. Unlike almost periodicity in Bohr sense and almost periodicity in
Lebesque measure for function with values in a metric space (E,d), which depend
only on the topological structure of E and not on its metric (see e.g., [10] and [31]
respectively), Stepanov almost periodicity is a metric property. In fact, as the metrics
d and d′ = min(d,1) are topologically equivalent on E, we only need to show that the
inclusion SAP

(
R,(E,d)

)
⊂ SAP

(
R,(E,d′)

)
is strict, since in view of (1.18), we have

SAP
(
R,(E,d′)

)
= Sκ(R,E). Take for instance the example given in [6, Remark 3.3].

As shown by the authors, the function g = exp
(
∑+∞

n=2gn
)
, where gn is the 4n-periodic

function, given by

gn(t) = βn

(
1− 2

αn
|x−n|

)
χ[n− 2

αn
,n+ 2

αn
], t ∈ [−2n,2n],

with αn = 1/n5 and βn = n3, is not in SAP
(
R
)
. Using Danilov’s Corollary [31], we get

that g belongs to Sκ(R), as a superposition of a continuous function and a periodic,
continuous and bounded function.

2. Still in the spirit of the link between the spaces SAP
(
R
)

and Sκ(R), an interesting
property established by Stoiński says that the inverse of any trigonometric polynomial
with constant sign is κ-almost periodic. In particular, the Levitan’s function f : R→R
given by f (t) = 1

2+cos(t)+cos(2t) is κ-almost periodic but not Stepanov almost periodic
(see Example 4.2.1 and [67] for the second statement).

3. An immediate consequence of this statement is that the uniform integrability in Ste-
panov sense is a metric property, that is, the space M′

p(R,(E,d)) depends on the metric
d.

Let us now introduce Stepanov almost periodicity for functions a parameter.
Bohr and Stepanov almost periodic functions depending on a parameter

1. We say that a parametric function f : R×X → Y is almost periodic with respect to
the first variable, uniformly with respect to the second variable in bounded subsets of
X (respectively in compact subsets of X) if, for every bounded (respectively com-
pact) subset B of X, the mapping f : R→C(B,Y) is almost periodic. We denote by
APUb(R×X,Y) and APUc(R×X,Y) respectively the spaces of such functions.

2. We say that a function f : R×X → Y is Sp-almost periodic if, for every x∈ X, the
Y-valued function f (.,x) is Sp-almost periodic. We denote by SpAP(R×X,Y) the
space of such functions.

3. If f (.,x) is Sp-almost periodic uniformly with respect to x ∈ K (resp. x ∈ B), for
any compact (resp. bounded) subset K (resp. B) of X, we say that f is Sp-almost
periodic uniformly with respect to the second variable in compact (resp. bounded)
subset of X. The space of such functions is denoted by SpAPUc(R×X,Y) (resp.
SpAPUb(R×X,Y)).

Clearly, we have the following inclusions :

SpAPUb(R×X,Y)⊂ SpAPUc(R×X,Y)⊂ SpAP(R×X,Y)⊂ Lp(R×X,Y),
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

where Lp(R×X,Y) denotes the set of measurable functions f : R×X→Y such that, for
all x∈ X ; f (.,x) ∈ Lp(R,Y).
The following proposition will be very useful in the sequel.

Proposition 1.2.4. Let Y be a complete metric space, and let X be a complete separable
metric space. Let f ∈ SpAP(R×X,Y) satisfying the following Lipschitz condition :

d( f (t,x), f (t,y))≤ K(t)d(x,y) , (1.21)

where K(.) is a positive function in Sp(R). Then for every real sequence (α
′
n), there exist a

subsequence (αn)⊂ (α
′
n) (independent of x) and a function f ∞ ∈ SpAP(R×X,Y) such that

for every t ∈ R and x∈ X, we have

lim
n

∫ t+1

t
d( f (s+αn,x), f ∞(s,x))pds= 0. (1.22)

Proof : Firstly, let us show that f ∞ is Lipschitz with respect to the second variable in
the Stepanov metric sense. Let x,y ∈ X. We consider a real sequence (α

′
n) ⊂ R. Since

f ∈ SpAP(R×X,Y), for every x∈ X, we can find a subsequence (αn)⊂ (α
′
n) (depending

on x) such that
lim

n
Dd

Sp
( f (.+αn,x)− f ∞(.,x)) = 0. (1.23)

For the same reason, for every y∈ X, there exists a subsequence of (αn), (depending on
both x and y still noted (αn) for simplicity) such that

lim
n

Dd
Sp

( f (.+αn,y), f ∞(.,y)) = 0. (1.24)

Then, by (1.21), (1.23) and (1.24), we get

Dd
Sp

( f ∞(.,x), f ∞(.,y))≤ lim Dd
Sp

( f ∞(.,x), f (.+αn,x))+ lim Dd
Sp

( f (.+αn,x), f (.+αn,y))

+ lim Dd
Sp

( f (.+αn,y), f ∞(.,y))

≤ ‖K‖Spd(x,y).
(1.25)

Secondly, let us show (1.22). Let (α
′
n) be a real sequence. Since X is separable, let D be

a dense countable subset of X. Using (1.23) and a diagonal procedure, we can find a
subsequence (αn) of (α

′
n) such that for every t ∈ R and x∈ D, we have

lim
n

∫ t+1

t
(d( f (s+αn,x), f ∞(s,x)))pds= 0 (1.26)

Let x ∈ X, there exists a sequence (xk) ⊂ D such that lim d(xk,x) = 0. From (1.21), we
deduce

lim
k

∫ t+1

t
(d( f (s+αn,xk), f (s+αn,x)))

pds= 0, (1.27)

uniformly with respect to n∈N. Now from (1.26), we obtain, for every t ∈R and k∈N,

lim
n

∫ t+1

t
(d( f (s+αn,xk), f ∞(s,xk)))

pds= 0. (1.28)
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1.2. Stepanov Almost periodicity and its variants in metric space

Using (1.27), (1.28) and by a classical result on interchange of limits, we deduce

lim
n

f (s+αn,x) = lim
k

f ∞(s,xk) = f ∞(s,x)

in Stepanov metric. The last equality follows from (1.25).

1.2.3 Bohr and Stepanov weighted pseudo almost periodic func-
tions with values in metric space

The notions of Stepanov-like weighted pseudo almost periodicity and Stepanov pseudo
almost periodicity of functions, with values in Banach space X, were introduced by T.
Diagana [34,35,36] as natural generalizations of the pseudo almost periodicity invented
by Zhang [85,86].
Here we give the definitions of these different notions for functions with values in a
complete metric space E. Constantin and Maria Tudor [78] have proposed an elegant
definition of pseudo almost periodicity in the context of metric spaces, which is slightly
restrictive, since it requires compactness of the range of the function instead of its boun-
dedness. A more general definition of weighted pseudo almost periodicity has been in-
troduced in [9], where it is shown that there is no need to assume that E is a vector
space, nor a metric space, and these notions depend only on the topological structure of
E. The definition we propose here is intermediate to C. and M. Tudor’s definition, and
those in the wide sense [9, Proposition 2.5 (i)], and coincides with the one existing in
the literature when E is a normed space. Let µ be a Borel measure on R satisfying 1.6

Definition 1.2.5. A continuous and bounded function f : R→ E is said to be pseudo al-
most periodic if there exists a function g∈AP(R,E) such that the mapping t →d( f (t),g(t))
is in E (R,R), and it’s said to be µ-pseudo almost periodic or weighted pseudo almost per-
iodic if there exists a function g∈ AP(R,E) such that the mapping t → d( f (t),g(t)) is in
E (R,R,µ).

We denote respectively by PAP(R,E) and PAP(R,E,µ) the spaces of such functions. Note
that g is uniquely determined by f in the first case (see [78]). This is not necessarily
the case when considering f ∈ PAP(R,E,µ). However, it is easy to see that a sufficient
condition of uniqueness of g is that E (R,X,µ) is translation invariant. This is the case
in particular if Condition (H) of [16] is satisfied. Let p≥ 1. We use Bochner’s transfor-
mation to define the Stepanov µ-pseudo almost periodic functions :

Definition 1.2.6. 1. We say that f : R → E is Sp-weighted pseudo almost periodic, or
Stepanov µ-pseudo almost periodic if

f b ∈ PAP(R,Lp(0,1;E),µ),

that is, if there exists g∈ SpAP(R,E) such that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

DLp

(
f b(t),gb(t)

)
dµ(t) = 0, (1.29)
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

or, equivalently,

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

 1∫
0

dp( f (t +s),g(t +s))ds

1/p

dµ(t) = 0. (1.30)

We denote by SpPAP(R,E,µ) the space of such functions. Note that, in this case, the
function g is uniquely determined if µ satisfies Condition (H). In fact, assume that
g1,g2 ∈ SpAP(R,E) define the same function f . Then, the mapping t → DLp(gb

1(t),g
b
2(t))

is in E (R,R,µ)∩AP(R,R). It follows that DLp(gb
1(t),g

b
2(t)) = 0, for all t ∈R. Consequently

g1 = g2, a.e..
We have the following characterization of SpPAP(R,E,µ) :

Proposition 1.2.7. Eq. (1.30) is equivalent to

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

1∫
0

dp( f (t +s),g(t +s))dsdµ(t) = 0. (1.31)

Our proof is inspired from J. Blot and P. Cieutat [15, Proposition 6.6].

Proof : The case when p= 1 is obvious. Set, for simplicity, d( f (t +s),g(t +s)) := h(t +s)

and |H|Sp(t) :=
(

1∫
0
‖H(t +s)‖pds

)1/p

, for any p-locally integrable Banach-space valued

function, H. Let us assume that t 7→ |h|pSp(t) ∈ E (R,R,µ), p> 1. Using Hölder’s inequality,
we have ∫

[−r,r]
|h|Sp(t) dµ(t)≤ (µ([−r, r]))1/q

{∫
[−r,r]

|h|pSp(t) dµ(t)
}1/p

.

Thus,
1

µ([−r, r])

∫
[−r,r]

|h|Sp(t) dµ(t)≤
{

1
µ([−r, r])

∫
[−r,r]

|h|pSp(t) dµ(t)
}1/p

which leads to |h|Sp(.) ∈ E (R,R,µ). Conversely, set M = sup
t∈R

|h|p−1
Sp(t) < ∞. We have

1
µ([−r, r])

∫
[−r,r]

|h|pSp(t) dµ(t)≤ 1
µ([−r, r])

∫
[−r,r]

|h|Sp(t) |h|
p−1
Sp(t) dµ(t)

≤M
1

µ([−r, r])

∫
[−r,r]

|h|Sp(t) dµ(t)

which means that |h|pSp(.) ∈ E (R,R,µ).

From now on, we only deal with the weighted pseudo almost periodicity since pseudo
almost periodicity is a special case.
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1.2. Stepanov Almost periodicity and its variants in metric space

Weighted pseudo almost periodic and Stepanov-like weighted pseudo almost per-
iodic functions depending on a parameter Let µ be a Borel measure on R satisfying
(1.6). The definition of µ-pseudo almost periodicity for functions with parameter is the
same as in [9].
– We say that a continuous and bounded function f : R×X → Y is µ-pseudo almost

periodic with respect to the first variable, uniformly with respect to the second variable
in compact subsets of X if, for every x∈ X, f (.,x) is µ-pseudo almost periodic (in this
case, we write f ∈ PAP(R×X,Y,µ), and there exists g∈ APUc(R×X,Y) such that the
convergence of 1/µ([−r, r])

∫ r
−r d( f (t,x),g(t,x))dµ(t) is uniform with respect to x in

compact subsets of X. The space of such functions is denoted by PAPUc(R×X,Y,µ).
– If (Y;‖.‖) is a Banach space, we say that a function f ∈ Lp(R×X,Y) is Stepanov-like

µ-ergodic with respect to the first variable, uniformly with respect to the second variable
in compact subsets of X) if, for every x∈ X, f b(.,x) is µ-ergodic, and the convergence
of

1/µ([−r, r])
∫ r

−r
| f (.,x)|Sp(t) dµ(t)

is uniform with respect to x in compact subsets of X. The space of such functions is
denoted by SpE Uc(R×X,Y,µ).

– A function f ∈ Lp(R×X,Y) is said to be Stepanov-like µ-pseudo almost periodic with
respect to the first variable, uniformly with respect to the second variable in compact
subsets of X if there exists g∈ SpAPUc(R×X,Y) such that[

(t,x) 7→ d
(

f (t,x),g(t,x)
)]

∈ SpE Uc(R×X,R,µ).

The space of such functions is denoted by SpPAPUc(R×X,Y,µ).

1.2.4 Weighted pseudo almost periodicity for stochastic processes

To define weighted pseudo almost periodicity in pth mean, we assume that (X,‖.‖) is a
separable Banach space.

Weighted pseudo almost periodicity in pth mean

Let X = (Xt)t∈R be a continuous stochastic process with values in X, defined on a proba-
bility space (Ω,F ,P). Let µ be a Borel measure on R satisfying (1.6).
Let p > 0. We say that X is almost periodic in pth mean (respectively µ-pseudo almost
periodic in pth mean) if the mapping t 7→ X(t) is in AP(R,Lp(Ω,P,X)) (respectively in
PAP(R,Lp(Ω,P,X),µ), i.e., if it has the form X = Y + Z, where Y ∈ AP(R,Lp(Ω,P,X))
and Z ∈ E (R,Lp(Ω,P,X),µ)). When p = 2, we say that X is square-mean almost periodic
(respectively square-mean µ-pseudo almost periodic).
The process X is said to be almost periodic in probability if the mapping X : t → L0(Ω,P,X)
is almost periodic.
The process X is said to be µ-pseudo almost periodic in probability, and we write X ∈
PAP(R,L0(Ω,P,X),µ), if the mapping t 7→ X(t), R→ L0(Ω,P,X) is µ-pseudo almost per-
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Chapitre 1. Almost periodic type and almost automorphic type functions and processes

iodic, i.e. if it has the form X = Y +Z where Y ∈ AP(R,L0(Ω,P,X)) and Z satisfies

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

E
‖Z(t)‖∧1

dµ(t) = 0. (1.32)

We denote by E (R,L0(Ω,P,X),µ) the set of stochastic processes Z satisfying (1.32).

Weighted pseudo almost periodicity in p-distribution

Let X and Y be two Polish spaces. In what follows, we recall a useful variant of (weigh-
ted pseudo) almost periodic in distribution, that combines the well-known almost per-
iodicity in distribution [77] and a uniform integrability condition.
Let τ : X→ Y a Borel measurable mapping and µ is a Borel measure on X.
If X is continuous with values in X, we denote by X̃(t) the random variable X(t + .) with
values in C(R,X).
Following Tudor’s terminology [77], we say that X is almost periodic in one-dimensional
distributions if the mapping t 7→ law(X(t)), R 7→M 1,+ (X) is almost periodic.
If X has continuous trajectories, we say that X is almost periodic in distribution, and write
X ∈ APD(R,X), if the mapping t 7→ law(X̃(t)), R 7→M 1,+ (Ck(R,X)) is almost periodic.
Let us recall the definition of almost periodicity in p-distribution that we introduced
in [9], which takes into account integrability of order p.

Definition 1.2.8 ( [9]). Let p≥ 0. A continuous X-valued stochastic process is called
almost periodic in p-distribution if

(i) X ∈ APD(R,X),

(ii) if p > 0, the family (‖X(t)‖p)t∈R is uniformly integrable.

We denote by APDp(R,X) the set of X-valued processes which are almost periodic in
p-distribution, in particular we have APD0(R,X) = APD(R,X).
The previous conditions imply that the mapping t 7→ X(t), R → Lp(Ω,P,X), is conti-
nuous. In the same way, for p≥ 0, one defines the sets APDp

f (R,X) and APDp
1(R,X) of

processes which are respectively almost periodic in one-dimensional p-distributions and
almost periodic in finite dimensional p-distributions.
The following definition proposed in [9] turns out useful in the context of stochastic
differential equation.

Definition 1.2.9 ( [9]). Assume that X is a vector space. Let p≥ 0. We say that X is
µ-pseudo almost periodic in p-distribution if X can be written

X = Y +Z, where Y ∈ APDp(R,X) and Z ∈ E (R,Lp(Ω,P,X),µ).

The set of X-valued processes which are µ-pseudo almost periodic in p-distribution
is denoted by PAPDp(R,X). Similar definitions hold for the spaces PAPDp

1(R,X,µ) and
PAPDp

f (R,X,µ) of processes which are µ-pseudo almost periodic in one-dimensional p-
distributions and in finite dimensional p-distributions respectively.
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CHAPITRE

2

Some superposition theorems

2.1 Superposition theorems for almost automorphy type
functions and processes

Almost automorphy in distribution and some of its variants enjoy some stability proper-
ties, as shows the following superposition lemma. Similar results could be proved by
the same method for one-dimensional or for finite dimensional distributions.

Theorem 2.1.1. (Superposition lemma) Let X be a continuous X-valued stochastic process,
and let f : R×X→ Y be a continuous mapping.

1. If X is almost periodic in distribution and f is almost periodic with respect to the first
variable, uniformly with respect to the second variable in compact subsets of X, then
f (.,X(.)) is almost periodic in distribution.

2. If X is almost automorphic in distribution and f is compact almost automorphic with
respect to the first variable, uniformly with respect to the second variable in compact
subsets of X, then f (.,X(.)) is almost automorphic in distribution.

3. Let µ be a Borel measure on R satisfying (1.6), and let p≥ 0. Assume that f is µ-
pseudo compact almost automorphic with respect to the first variable, uniformly with
respect to the second variable in compact subsets of X, i.e.

f = g+h, with g∈ AAcUc(R×X,Y) and h∈ E Uc(R×X,Y,µ).

Assume that g is continuous with respect to the second variable. Assume furthermore
that f is uniformly continuous in the second variable in compact subsets of X, uni-
formly with respect to the first variable, that is,
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Chapitre 2. Some superposition theorems

for every ε > 0, and for every compact subset K of X,
there exists η > 0 such that, for all x,y∈ K,

‖x−y‖ ≤ η ⇒ sup
t∈R

‖ f (t,x)− f (t,y)‖ ≤ ε. (2.1)

Let X be µ-pseudo almost automorphic in p-distribution, with decomposition (Y,Z),
namely,

X = Y +Z, Y ∈ AADp(R,X), Z ∈ E (R,Lp(Ω,P,X),µ).

If p > 0, assume also that f and g satisfy the growth condition

‖ f (t,x)‖+‖g(t,x)‖ ≤C(1+‖x‖) (2.2)

for all (t,x)∈R×X and for some constant C, and that, either the family (‖Z(t)‖p)t∈R
is uniformly integrable, or f is Lipschitz with respect to the second variable, uniformly
with respect to the first one. Then f (.,X(.)) is µ-pseudo almost automorphic in p-
distribution.

Proof : We only prove the second and third items, the first one can be proved in the
same way as 2, using, for example, Bochner’s double sequence criterion.

2. For each t ∈ R, for each x∈ Ck(R,X), and for each s∈ R, let us denote

f̃ (t,x)(s) = f (s+ t,x(s)).

By continuity of f on R×X, f̃ (t, .) maps Ck(R,X) to Ck(R,Y).
Let K be a compact subset of Ck(R,X). By the Arzelà-Ascoli Theorem (see e.g. [41,
Theorems 8.2.10 and 8.2.11]), this means that K is closed in Ck(R,X) and equicon-
tinuous, and that, for every compact interval I of R, the set {x(t); x ∈ K , t ∈ I} has
compact closure in X. Let t ∈ R, and let (tn) be a sequence in R converging to t. Let I be
a compact interval of R, and let K be the closure of {x(s); x∈ K , s∈ I}. We have, for
any y∈ K, and for any s∈ R,

lim
n

f (tn +s,y) = f (t +s,y)

where the convergence is uniform with respect to y∈ K and s∈ I , because f is compact
almost automorphic uniformly with respect to the second variable in compact subsets
of X. In particular we have, uniformly with respect to x∈K and s∈ I ,

lim
n

f̃ (tn,x)(s) = lim
n

f (tn +s,x(s)) = f (t +s,x(s)) = f̃ (t,x)(s),

which proves that the mapping f̃ (.,x) : R → Ck(R,X), is continuous, uniformly with
respect to x in compact subsets of Ck(R,X).
Let us check that f̃ : R×Ck(R,X)→ Ck(R,X) is compact almost automorphic with res-
pect to the first variable, uniformly with respect to the second variable in compact sub-
sets of Ck(R,X). Let (t ′n) be a sequence in R. There exists a subsequence (tn) such that,
for every t ∈ R and every y∈ X,

lim
n

lim
m

f (t + tn− tm,y) = f (t,y),

36



2.1. Superposition theorems for almost automorphy type functions and processes

where the convergence is uniform with respect to y in compact subsets of X and t in
compact intervals of R. For each t ∈ R, and for each s∈ R, we have

lim
n

lim
m

f̃ (t + tn− tm,x)(s) = lim
n

lim
m

f (s+ t + tn− tm,x(s))

= f (s+ t,x(s)) = f̃ (t,x)(s),

and these convergences are uniform with respect to t and s in compact intervals, and
with respect to x∈K , which proves our claim.
Let ϕ : Ck(R,Y) → R be bounded Lipschitz, with ‖ϕ‖BL ≤ 1, where ‖.‖BL is taken relati-
vely to a distance d which generates the topology of Ck(R,Y), for example the distance
defined by (1.14). Let (t ′n) be a sequence in R. Let (tn) be a subsequence such that, for
every t ∈ R and every y∈ X,

lim
n

lim
m

f (t + tn− tm,y) = f (t,y),

lim
n

lim
m

law(X̃(t + tn− tm)) = law(X̃(t)).

Let ε > 0. We can find a compact subset Kε of Ck(R,X) such that, for every t ∈ R,

P
{

X̃(t) ∈Kε

}
≥ 1− ε.

Let t ∈ R be fixed, and, for all n,m, let Ωε,n,m be the measurable subset of Ω on which
X̃(t + tn− tm) ∈Kε . We have∣∣∣Eϕ ◦ f̃ (t + tn− tm, X̃(t + tn− tm))−ϕ ◦ f̃ (t, X̃(t))

∣∣∣
≤
∣∣∣Eϕ ◦ f̃ (t + tn− tm, X̃(t + tn− tm))−ϕ ◦ f̃ (t, X̃(t + tn− tm))

∣∣∣
+
∣∣∣Eϕ ◦ f̃ (t, X̃(t + tn− tm))−ϕ ◦ f̃ (t, X̃(t))

∣∣∣
≤E
1lΩε,n,md

(
f̃ (t + tn− tm, X̃(t + tn− tm)), f̃ (t, X̃(t + tn− tm))

)
+E
1lΩc

ε,n,m

∣∣∣ϕ ◦ f̃ (t + tn− tm, X̃(t + tn− tm))−ϕ ◦ f̃ (t, X̃(t + tn− tm)))
∣∣∣

+
∣∣∣Eϕ ◦ f̃ (t, X̃(t + tn− tm))−ϕ ◦ f̃ (t, X̃(t))

∣∣∣
=An,m+Bn,m+Cn,m.

We have

An,m≤ E
1lΩε

sup
x∈Kε

d
(

f̃ (t + tn− tm,x), f̃ (t,x)
)≤ sup

x∈Kε

d
(

f̃ (t + tn− tm,x), f̃ (t,x)
)

thus by the almost automorphy property of f̃ , we have limn limmAn,m = 0. Furthermore,
Bn,m ≤ 2P(Ωc

ε,n,m) ≤ 2ε because ‖ϕ‖BL ≤ 1. Finally, limn limmCn,m = 0 by boundedness
and continuity of f̃ (t, .) : Ck(R,X) → Ck(R,X) and the convergence in distribution of
X̃(t + tn− tm) to X̃(t) for each t ∈ R. As ε and ϕ are arbitrary, we have proved that

lim
n

lim
m

law( f̃ (t + tn− tm, X̃(t + tn− tm))) = law( f̃ (t, X̃(t))),
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thus the mapping t 7→ law( f̃ (t, X̃(t))) is almost automorphic in distribution.

3. We use ideas of the proof of [16, Theorem 5.7]. The function f (.,X(.)) can be decom-
posed as

f (t,X(t)) = g(t,Y(t))+ f (t,X(t))− f (t,Y(t))+h(t,Y(t)).

Let G(t) = g(t,Y(t)) and H(t) = f (t,X(t))− f (t,Y(t))+h(t,Y(t)). By using 2. and (2.2), we
see that t 7→ G(t) is in AADp(R,Y). Furthermore, by (2.2), the continuity of f and the
µ-pseudo almost automorphy in p-distribution of X, we have, using Vitali’s theorem,
that f (.,X(.)) is a continuous Lp(Ω,P,Y)-valued function. Indeed, if tn → t, then the
sequence (‖X(tn)‖p) is uniformly integrable, by continuity of the mapping t 7→ X(t),
R→ Lp(Ω,P,X), and this entails that ( f (tn,X(tn))) is uniformly integrable. To show that
f (.,X(.)) is in PAADp(R,Y), it is enough to prove that H ∈ E (R,Lp(Ω,P,Y),µ).
Clearly H is in C(R,Lp(Ω,P,Y)), and bounded in Lp(Ω,P,X) (when p > 0), by (2.2). As
Y is in AAD(R,X), the family (Ỹ(t))t∈R = (Y(t + .))t∈R is uniformly tight in Ck(R,X). For
each ε > 0, there exists a compact subset Kε of Ck(R,X) such that, for every t ∈ R,

P
{

Ỹ(t) ∈Kε

}
≥ 1− ε.

By the Arzelà-Ascoli Theorem (see e.g. [41, Theorems 8.2.10 and 8.2.11]), this implies
that, for every ε > 0, and for every compact interval I of R, there exists a compact subset
Kε,I such that, for every t ∈ R ;

P{(∀s∈ I) Y(t +s) ∈ Kε,I} ≥ 1− ε.

In particular, we have, for each integer n,

P
{
(∀t ∈ [n,n+1]) Y(t) ∈ Kε,[0,1]

}
≥ 1− ε.

Let Ωε,n be the measurable subset of Ω on which Y(t) ∈ Kε,[0,1] for all t ∈ [n,n+1]. The
function g is uniformly continuous on R×Kε,[0,1] by Proposition 1.1.1. We deduce by
(2.1) that there exists η(ε) > 0 such that, for all y1,y2 ∈ Kε,[0,1],

‖y1−y2‖ ≤ η(ε)⇒ sup
t∈R

(
‖h(t,y1)−h(t,y2)‖

)
≤ ε.

We can find a finite sequence (yi)1≤i≤m in Kε,[0,1] such that

Kε,[0,1] ⊂
m⋃

i=1

B(yi ,η(ε)).

Let t ∈ R, and let n be an integer such that t ∈ [n,n+1]. We have

E
(
‖h(t,Y(t))‖∧1

)
≤E
(

min
1≤i≤m

(
1lΩε,n ‖h(t,Y(t))−h(t,yi)‖∧1

))
+ max

1≤i≤m
‖h(t,yi)‖

+E
(

1lΩc
ε,n
‖h(t,Y(t))‖∧1

)
≤ε + max

1≤i≤m
‖h(t,yi)‖∧1+P

(
Ωc

ε,n

)
≤ max

1≤i≤m
‖h(t,yi)‖+2ε.
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Since for all i ∈ {1, . . . ,m}, the function t → h(t,yi) satisfies

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖h(t,yi)‖dµ(t) = 0,

we deduce that, for every ε > 0,

limsup
r→∞

1
µ([−r, r])

∫
[−r,r]

E
(
‖h(t,Y(t))‖∧1

)
dµ(t)≤ 2ε.

This shows that t → h(t,Y(t)) is in E (R,L0(Ω,P,Y),µ).
For p> 0, let δ > 0. From the uniform integrability of

(
‖h(t,Y(t))‖p)

t∈R (thanks to (2.2)
and the uniform integrability of (‖Y(t)‖p)t∈R), we can choose ε small enough such that,
for any measurable A⊂Ω such that P(A) < ε,

sup
t∈R

E(1lA‖h(t,Y(t)‖p) < δ .

Note also that, for p < 1, the mapping U 7→ (E‖U‖p)1/p, Lp → R, does not satisfy the
triangular inequality. However, the mapping (U1,U2) 7→ E‖U1−U2‖p is a distance on Lp.
We deduce that, for all U1,U2,U3 ∈ Lp,

(E‖U1 +U2 +U3‖p)1/p ≤ 31/p−1
(E‖U1‖p)1/p +(E‖U2‖p)1/p +(E‖U3‖p)1/p

 .

To cover simultaneously the cases p < 1 and p≥ 1, we set κ = max(1,31/p−1). Using the
same method as in the case when p = 0, we get(

E‖h(t,Y(t))‖p)1/p

≤κ

(
E
(

min
1≤i≤m

1lΩε,n ‖h(t,Y(t))−h(t,yi)‖p))1/p

+κ max
1≤i≤m

‖h(t,yi)‖

+κ

(
E
(

1lΩc
ε,n
‖h(t,Y(t))‖p))1/p

≤κ

(
max

1≤i≤m
‖h(t,yi)‖+ ε +δ

)
.

We conclude, using the ergodicity of h(t,yi) for all i ∈ {1, . . . ,m}, that t → h(t,Y(t)) is in
E (R,Lp(Ω,P,Y),µ).
Secondly, we show that F(.) := f (.,X(.))− f (.,Y(.)) is in E (R,L0(Ω,P,Y),µ). Let

Φ :

{
X → C(R,Y)
x 7→ f (.,x).

Let us endow C(R,Y) with the distance d∞(ϕ,ψ) = supt∈R ‖ϕ(t)−ψ(t)‖. By the uniform
continuity assumption, Φ is continuous. By [16, Lemma 5.6], for each ε > 0, there exists
η > 0 such that, for all t ∈ R, and for all x,y∈ X,x∈ Kε,[0,1] and d(x,y)≤ η

 ⇒ d∞

(
Φ(x),Φ(y)

)
≤ ε. (2.3)
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For each t ∈R, let Ωε,t be the subset of Ω on which Y(t)∈Kε,[0,1]. Since Z(t) = X(t)−Y(t),
we obtain, the following inequalities, with the help of (2.3) and Chebyshev’s inequality :

µ
{

t ∈ [−r, r]; E
(
‖F(t)‖∧1

)
> 3ε

}
µ([−r, r])

≤
µ
{

t ∈ [−r, r]; E
(

1lΩε,t 1l{‖Z(t)‖>η}(‖F(t)‖∧1)
)

> ε
}

µ([−r, r])

+
µ
{

t ∈ [−r, r]; E
(

1lΩε,t 1l{‖Z(t)‖≤η}(‖F(t)‖∧1)
)

> ε
}

µ([−r, r])

+
µ

{
t ∈ [−r, r]; E

(
1lΩc

ε,t
(‖F(t)‖∧1)

)
> ε

}
µ([−r, r])

=
µ
{

t ∈ [−r, r]; E
(

1lΩε,t 1l{‖Z(t)‖>η}(‖F(t)‖∧1)
)

> ε
}

µ([−r, r])

+
µ

{
t ∈ [−r, r]; E

(
1lΩc

ε,t
(‖F(t)‖∧1)

)
> ε

}
µ([−r, r])

≤µ {t ∈ [−r, r]; P{‖Z(t)‖> η}> ε}
µ([−r, r])

+
µ
{

t ∈ [−r, r]; P(Ωc
ε,t) > ε

}
µ([−r, r])

≤
µ

{
t ∈ [−r, r]; 1

η
E
(
‖Z(t)‖

)
> ε

}
µ([−r, r])

.

Since Z is in E (R,L0(Ω,P,X),µ), we have, for the above ε,

lim
r→∞

µ
{

t ∈ [−r, r]; E
(
‖Z(t)‖

)
> εη

}
µ([−r, r])

= 0,

which implies, using [16, Theorem 2.14] (see Remark 1.1.4),

limsup
r→∞

1
µ([−r, r])

∫
[−r,r]

E
(
‖ f (t,X(t))− f (t,Y(t))‖∧1

)
dµ(t) = 0.

Therefore t → f (t,X(t))− f (t,Y(t)) is in E (R,L0(Ω,P,Y),µ).
Assume now that p > 0. If f is Lipschitz with respect to the second variable, uniformly
with respect to the first one, then ‖F(t)‖ ≤ K ‖Z(t)‖ for some constant K, thus, tri-
vially, F ∈ E (R,Lp(Ω,P,Y),µ). If the family (‖Z(t)‖p)t∈R is uniformly integrable, then
(‖F(t)‖p)t∈R is also uniformly integrable. Then, we can use the same reasoning as for
p = 0, replacing ‖F(t)‖∧1 by ‖F(t)‖p, since E

(
1lΩc

ε,t
(‖F(t)‖p)

)
can be made arbitrarily

small for ε sufficiently small. We obtain

µ
{

t ∈ [−r, r]; E
(
‖F(t)‖p)> 3ε

}
µ([−r, r])

≤
µ

{
t ∈ [−r, r]; 1

η p E
(
‖Z(t)‖p)> ε

}
µ([−r, r])

.
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2.2. superposition theorem’s for Stepanov almost periodic type functions and processes

Since Z is in E (R,Lp(Ω,P,X),µ), we have, for the above ε,

lim
r→∞

µ
{

t ∈ [−r, r]; E
(
‖Z(t)‖p)> εη p

}
µ([−r, r])

= 0.

We conclude, using [16, Theorem 2.14] (see Remark 1.1.4), and the boundedness of
F(t) in Lp(Ω,P,Y), that t → f (t,X(t))− f (t,Y(t)) is in E (R,Lp(Ω,P,Y),µ).

2.2 superposition theorem’s for Stepanov almost perio-
dic type functions and processes

In this section, we study some properties of parametric functions, especially Nemytskii’s
operators N ( f )(x) := [t 7→ f (t,x(t))] built on f : R×E → E in the space of Stepanov
(µ-pseudo) almost periodic functions. In the following, we assume that 1

p = 1
q + 1

r with
p, q and r ≥ 1, and we consider the parametric function f : R×E → E, which satisfies
the Lipschitz condition :
(Lip) There exists a nonnegative function L ∈ Sr(R) such that

d( f (t,u), f (t,v))≤ L(t)d(u,v), ∀t ∈ R, u,v∈ E.

Using compactness property of Stepanov almost periodicity given by Danilov (see Theo-
rem 1.2.1 and Corollary 1.2.2), we improve the composition theorem of Stepanov al-
most periodic functions given in [40, Theorem 2.1]. We show in particular that in or-
der to obtain that N ( f ) maps SqAP(R,E) into SpAP(R,E), the following compactness
condition :
(Com) There exists a subset A⊂R with meas(A) = 0 such that K := {x(t) : t ∈ R\A} is a

compact subset of E,
is not necessary. Let us mention that Andres and Pennequin [6, Lemma 3.2] have shown
that if f : E → E is a continuous function satisfying, for some a,b > 0 and p,q≥ 1, the
following growth condition :

∀x∈ E, ‖ f (x)‖E ≤ a‖x‖p/q
E +b,

and g : R→ E is an SpAP-function, then the composition f ◦g is an SqAP-function.
We begin by the following Lemma which identifies the spaces SpAP(R×E,E) and SpAPUc(R×
E,E) under Condition (Lip).

Lemma 2.2.1. Let f : R×E→E be a parametric function satisfying Condition (Lip). Then,
f ∈ SpAP(R×E,E) if, and only if, f ∈ SpAPUc(R×E,E).

The proof of this lemma is very similar to that of Fan et al. [42, Lemma 3.1] which is
the analogous result for almost automorphic case.
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Chapitre 2. Some superposition theorems

Now, before giving the superposition theorem in SpAP(R×E,E), we need some more
notations. Let u : R → E be a mesurable function, let A⊂ R be a measurable set. We
denote by ubA,x0c the "truncated" function from R to E, defined by

ubA,x0c(t) =
{

u(t) if t ∈ A
x0 if t /∈ A.

We are now ready to present the superposition theorem in SpAP(R×E,E) :

Theorem 2.2.2. Let f ∈ SpAP(R×E,E), and assume that f satisfies Condition (Lip).
Then, for every u∈ SqAP(R,E), we have f (.,u(.)) ∈ SpAP(R,E).

Proof : Fix ε > 0 and x0∈E. Let u∈SqAP(R,E). In view of (1.20), we have u∈M′
p(R,E)∩

S0AP(R,E), thus, there exists η > 0 such that Dd
Sq

(
ubA,x0c(.),x0

)
≤ ε for all measurable

set A⊂ R satisfying κ(A) ≤ η . For such η , using Corollary 1.2.2, we deduce that there
exists a compact subset Kη(ε) ⊂ E such that

κ{t ∈ R, x(t) /∈Kη(ε)}< η

and
Dd

Sq

(
ubT

c
ε ,x0c(.),x0

)
≤ ε

6‖L‖Sr
, (2.4)

where Tε := Tη(ε) is the subset of R on which u(t) ∈Kη(ε) (we exclude for simplicity the
trivial case when ‖L‖Sr = 0). The compactness of Kη(ε) implies that there exist a finite
sequence (x1,x2, ...,xn) in Kη(ε) such that

Kη(ε) ⊂
⋃

1≤i≤n

B

(
xi ,

ε

6‖L‖Sr

)
. (2.5)

For i = 1, . . . ,n and t ∈ R, let

τ(t) =

{
0 if t 6∈ Tε

min
{

i ∈ {1, . . . ,n}; d(u(t),xi)≤ ε

6‖L‖Sr

}
if t ∈ Tε ,

and, for i = 0, . . . ,n and ξ ∈ R, let

Ai,ξ = {t ∈ [ξ ,ξ +1]; τ(t) = i}.

By Lemma 2.2.1, we have f ∈ SpAPUc(R×E,E). Since u∈ SqAP(R,E), we can choose a
common relatively dense set T ( f ,u,ε)⊂ R such that, for τ ∈T ( f ,u,ε),

Dd
Sq(u(.+ τ),u(.))≤ ε

3‖L‖Sr
(2.6)

and
n

∑
i=0

Dd
Sp

(
f (.+ τ,xi), f (.,xi)

)
≤ ε

3
(2.7)
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for all τ ∈T ( f ,u,ε). Let τ ∈T ( f ,u,ε). We have

Dd
Sp

(
f (.+ τ,u(.+ τ)) , f (.,u(.))

)
≤Dd

Sp

(
f (.+ τ,u(.+ τ)), f (.+ τ,u(.))

)
+Dd

Sp

(
f (.+ τ,u(.)), f (.,u(.))

)
≤‖L‖Sr Dd

Sq

(
u(.+ τ),u(.)

)
+Dd

Sp

(
f (.+ τ,u(.)), f (.,u(.))

)
≤ε

3
+Dd

Sp

(
f (.+ τ,u(.)), f (.,u(.))

)
.

Now,

Dd
Sp

(
f (.+ τ,u(.)), f (.,u(.))

)
= sup

ξ∈R

(∫
ξ+1

ξ

dp( f (t + τ,u(t)), f (t,u(t)))dt

)1/p

≤ sup
ξ∈R

(∫
ξ+1

ξ

n

∑
i=0

1lAi ,ξ (t)dp( f (t + τ,u(t)), f (t + τ,xi))dt

)1/p

+ sup
ξ∈R

(∫
ξ+1

ξ

n

∑
i=0

1lAi ,ξ (t)dp( f (t + τ,xi), f (t,xi))dt

)1/p

+ sup
ξ∈R

(∫
ξ+1

ξ

n

∑
i=0

1lAi ,ξ (t)dp( f (t,xi), f (t,u(t)))dt

)1/p

≤ sup
ξ∈R

(∫
ξ+1

ξ

L(t + τ)
n

∑
i=0

1lAi ,ξ (t)dp(u(t),xi)dt

)1/p

+
n

∑
i=0

Dd
Sp

(
f (.+ τ,xi), f (.,xi)

)
+ sup

ξ∈R

(∫
ξ+1

ξ

L(t)
n

∑
i=0

1lAi ,ξ (t)dp(u(t),xi)dt

)1/p

≤ sup
ξ∈R

(∫
ξ+1

ξ

Lr(t + τ)dt

)1/r
Dd

Sq

(
ubT

c
ε ,x0c(.),x0

)
+

(∫
ξ+1

ξ

n

∑
i=1

1lAi ,ξ (t)dq(u(t),xi)dt

)1/q
+

ε

3
+ sup

ξ∈R

(∫
ξ+1

ξ

Lr(t)dt

)1/r
Dd

Sq

(
ubT

c
ε ,x0c(.),x0

)
+

(∫
ξ+1

ξ

n

∑
i=1

1lAi,ξ
(t)dq(u(t),xi)dt

)1/q
≤2‖L‖Sr

ε

6‖L‖Sr
+

ε

3
=

2ε

3
.

Combining the preceding inequalities, we deduce that

Dd
Sp

(
f (.+ τ,u(.+ τ)), f (.,u(.))

)
≤ ε

3
+

2ε

3
= ε.
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Theorem 2.2.3. Let µ be a Borel measure on R satisfying (1.6) and Condition (H), and
let p≥ 1. Assume that F ∈ SpPAPUc(R×E,E,µ). Let G be in SpAPUc(R×E,E) such that[

(t,x) 7→ H(t,x) = d
(

F(t,x),G(t,x)
)]

∈ SpE Uc(R×E,R,µ). (2.8)

Assume that Condition (Lip) holds for F and G. If X is Sq-weighted pseudo almost periodic,
then F(.,X(.)) ∈ SpPAP(R,E,µ).

Proof : Since X ∈ SqPAP(R,E,µ), there exists Y ∈ SqAP(R,E) such that

Z(.) = d
(

X(.),Y(.)
)
∈ ESp(R,R,µ). (2.9)

To show that F(.,X(.)) ∈ SpPAP(R,E,µ), it is enough to have

d
(

F(.,X(.)),G(.,Y(.))
)
∈ ESp(R,R,µ),

since by Theorem 2.2.2, the function G(.,Y(.)) ∈ SpAP(R,E). We have

d
(

F(t,X(t)),G(t,Y(t))
)
≤ d
(

F(t,Y(t)),G(t,Y(t))
)

+d
(

F(t,Y(t)),F(t,X(t))
)
.

Clearly, d
(

F(.,Y(.)),F(.,X(.)
)
∈ ESp(R,R,µ). Indeed, for every r > 0,

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,Yb(t)),Fb(t,Xb(t)

)
dµ(t)≤ 1

µ([−r, r])

∫ r

−r
‖L‖Sr Dd

Lq

(
Yb(t),Xb(t)

)
dµ(t)

and hence, using (2.9), it follows that

lim
r→∞

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,Yb(t)),Fb(t,Xb(t)

)
dµ(t) = 0.

Now, we claim that d
(

F(.,Y(.)),G(.,Y(.))
)
∈ ESp(R,R,µ). In fact, let ε > 0 and x0 ∈ E.

Since Y ∈ SpAP(R,E)⊂M′
p(R,E), there exists δ := δ (ε) > 0 such that Dd

Sq(YbA,x0c(.),x0)≤
ε for all measurable set A ⊂ R satisfying κ(A) ≤ δ . Thus, using Corollary 1.2.2, we
deduce that there exists a compact subset Kδ ⊂ E such that

κ{t ∈ R, Y(t) /∈Kδ}< δ

and
Dd

Sq(YbTc
δ
,x0c(.),x0)≤

ε

4‖L‖Sr
(2.10)

where Tδ := Tδ (ε) is the subset of R on which Y(t) ∈ Kδ . The compactness of Kδ (ε)
implies that there exist y1,y2, ...,ym∈Kε such that

Kε ⊂
⋃

1≤i≤m

B

(
yi ,

ε

4‖L‖Sr

)
. (2.11)
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Hence,

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,Yb(t)),Gb(t,Yb(t)

)
dµ(t)

≤ max
1≤i≤m

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,Yb(t)),Fb(t,yi)

)
dµ(t)

+ max
1≤i≤m

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,yi),Gb(t,yi)

)
dµ(t)

+ max
1≤i≤m

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Gb(t,yi),Gb(t,Yb(t))

)
dµ(t)

:=J1(r)+J2(r)+J3(r).

We have from (2.10) and (2.11) :

J1(r)+J3(r)≤2‖L‖Sr max
1≤i≤m

Dd
Sq

(
Y(.),yi

)
≤2‖L‖Sr max

1≤i≤m

{
Dd

Sq

(
YbTδ ,yic(.),yi

)
+Dd

Sq

(
YbTc

δ
,yic(.),yi

)}
≤ ε.

Let us estimate J2(r). Using the fact that the parametric function H is in SpE Uc(R×
E,R,µ), we have

J2(r)≤ sup
y∈Kε

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,y),Gb(t,y)

)
dµ(t),

from which we deduce that limr→∞ J2(r) = 0. Finally, since ε is arbitrary, we obtain that

lim
r→∞

1
µ([−r, r])

∫ r

−r
Dd

Lp

(
Fb(t,Yb(t)),Gb(t,Yb(t)

)
dµ(t) = 0.

This proves that F(.,X(.)) ∈ SpPAP(R,E,µ).

45



Chapitre 2. Some superposition theorems

46



Deuxième partie

Contribution to stochastic differential
equations
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CHAPITRE

3

Almost automorphic type solutions
for a class of stochastic differential
equations with almost automorphic
terms

Explicit counterexample to square-mean pseudo almost automorphy At the time
of the submission of the paper [9], there are at least 24 papers listed in Mathematical
Reviews related to almost automorphy of solutions to stochastic differential equations,
which all have been published in 2010 or later. To our knowledge, except for [45, 46,
57], all other papers claim the existence of square-mean pseudo almost automorphic
solutions to stochastic differential equations with coefficients having similar properties.
We show that a very simple counterexample from [60] contradicts these claims. The
other counterexamples given in [60] also contradict these claims.

Example 3.0.4. (Stationary Ornstein-Uhlenbeck process) Let W = (W(t))t∈R be a
standard Brownian motion on the real line. Let α,σ > 0, and let X be the stationary
Ornstein-Uhlenbeck process (see [56]) defined by

X(t) =
√

2ασ

∫ t

−∞
e−α(t−s)dW(s). (3.1)

Then X is the only L2-bounded solution of the following SDE, which is a particular case
of Equation (3.1) in [12] :

dX(t) =−αX(t)dt+
√

2ασ dW(t).

The process X is Gaussian with mean 0, and we have, for all t ∈ R and τ ≥ 0,

Cov(X(t),X(t + τ)) = σ
2e−ατ .
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Assume that X is square-mean µ-pseudo almost automorphic, for some Borel measure
µ on R satisfying (1.6) and (1.8). Then we can decompose X as

X = Y +Z, Y ∈ AA(R,L2(Ω,R)), Z ∈ E (R,L2(Ω,R),µ).

By Lemma 1.1.2, we can find an increasing sequence (tn) of real numbers which converges
to +∞ such that (Z(tn)) converges to 0 in L2(Ω,R). Then, we can extract a sequence (still
denoted by (tn) for simplicity) such that (Y(tn)) converges in L2 to a random variable Ŷ.
Thus (X(tn)) converges in L2 to Ŷ. Necessarily Ŷ is Gaussian with law N (0,2ασ2), and
Ŷ is G -measurable, where G = σ (Xtn; n≥ 0). Moreover (X(tn),Ŷ) is Gaussian for every
n, and we have, for any integer n,

Cov(X(tn),Ŷ) = lim
m→∞

Cov(X(tn),X(tn+m)) = 0,

because (X2(t))t∈R is uniformly integrable. This proves that Ŷ is independent of X(tn)
for every n, thus Ŷ is independent of G . Thus Ŷ is constant, a contradiction. Thus (3.1)
has no square-mean µ-pseudo almost automorphic solution.
Let us show that X is not Weyl-like nor Besicovitch-like square-mean pseudo almost au-
tomorphic. It is enough to disprove the Besicovitch sense. Assume that X is Besicovitch-
like square-mean pseudo almost automorphic. As before, using Lemma 1.1.2, we can
find a sequence (tn) converging to +∞ and a process Ŷ such that

lim
n→∞

∥∥X(tn)−Ŷ
∥∥

B2 = 0.

In particular, (X(tn)) is Cauchy for ‖.‖B2, thus, for every ε > 0, there exists N(ε) ∈ N,
such that, for all n,m∈ N,

(n≥ N(ε))⇒
∥∥X(tn)−X(tn+m)

∥∥
B2 ≤ ε. (3.2)

But we have∥∥X(tn)−X(tn+m)
∥∥2

B2

= limsup
r→+∞

1
2r

∫ r

−r
E
∣∣X(tn +s)−X(tn+m+s)

∣∣2ds

= limsup
r→+∞

1
2r

∫ r

−r
E
(
X2(tn +s)+X2(tn+m+s)−2X(tn +s)X(tn+m+s)

)
ds

= limsup
r→+∞

1
2r

∫ r

−r

(
σ

2 +σ
2−2σ

2e−α(tn+m−tn)
)
ds

=2σ
2(1−e−α(tn+m−tn)

)
.

For m large, the last term is arbitrarily close to 2σ2, which contradicts (3.2) for ε < 2σ2.
A similar calculation shows that, for any Borel measure µ on R satisfying (1.6) and
(1.8), and for any Borel measure ν on [0,1] satisfying (1.9), the process X is not square-
mean S2

ν -µ-pseudo almost automorphic.
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3.1. Almost automorphic solution of an equation with almost automorphic coefficients

3.1 Almost automorphic solution of an equation with
almost automorphic coefficients

In the sequel, if X and Y are metric spaces, we denote CUB(X,Y) the space of bounded
uniformly continuous functions from X to Y.
We are given two separable Hilbert spaces H1 and H2, and we consider the semilinear
stochastic differential equation,

dXt = AX(t)dt+ f (t,X(t))dt+g(t,X(t))dW(t), t ∈ R (3.3)

where A : Dom(A) ⊂ H2 → H2 is a densely defined closed (possibly unbounded) linear
operator, and f : R×H2 →H2, and g : R×H2 → L(H1,H2) are continuous functions. In
this section, we assume that :

(i) W(t) is an H1-valued Wiener process with nuclear covariance operator Q (we de-
note by trQ the trace of Q), defined on a stochastic basis (Ω,F ,(Ft)t∈R,P).

(ii) A : Dom(A) → H2 is the infinitesimal generator of a C0-semigroup (S(t))t≥0 such
that there exists a constant δ > 0 with

‖S(t)‖L(H2) ≤ e−δ t , t ≥ 0.

(iii) There exists a constant K such that the mappings f : R×H2→H2 and g : R×H2→
L(H1,H2) satisfy

‖ f (t,x)‖H2 +‖g(t,x)‖L(H1,H2) ≤ K(1+‖x‖H2).

(iv) The functions f and g are Lipschitz, more precisely there exists a constant K such
that

‖ f (t,x)− f (t,y)‖H2 +‖g(t,x)−g(t,y)‖L(H1,H2) ≤ K‖x−y‖H2

for all t ∈ R and x,y∈H2.

(v) f ∈ PAAUb(R×H2,H2,µ) and g∈ PAAUb(R×H2,L(H1,H2),µ) for some given Borel
measure µ on R which satisfies (1.6) and Condition (H).

By [16, Theorem 3.5], Condition (H) implies that E (R,X,µ) and PAA(R,X,µ) are trans-
lation invariant.
In order to study the weighted pseudo almost automorphy property of solutions of SDEs,
we need a result on almost automorphy.

Theorem 3.1.1. Let the assumptions (4.1) - (4.1) be fulfilled, and assume furthermore
the following condition, which is stronger than (4.1) :
(4.1’) f ∈ AAUb(R×H2,H2) and g∈ AAUb(R×H2,L(H1,H2)).

Assume further that θ :=
K2

δ

(
1

2δ
+ trQ

)
< 1. Then there exists a unique mild solution X

to (4.1) in the space CUB
(
R,L2(P,H2)

)
of bounded uniformly continuous mappings from
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R to L2(P,H2). Furthermore, X has a.e. continuous trajectories, and X(t) satisfies, for each
t ∈ R :

X(t) =
∫ t

−∞
S(t−s) f

(
s,X(s)

)
ds+

∫ t

−∞
S(t−s)g

(
s,X(s)

)
dW(s). (3.4)

If furthermore θ ′ :=
4K2

δ

(
1
δ

+ trQ

)
< 1, then X is almost automorphic in 2-distribution.

The proof of this theorem is very similar to that of [49, Theorem 3.1], which is the ana-
logous result for SDEs with almost periodic coefficients. Only the almost automorphy
part needs to be adapted. Such an adaptation is provided in [57], for SDEs driven by
Lévy processes, but only for one-dimensional almost automorphy. We give the proof of
this part for the convenience of the reader.
Let us first recall the following result, which is given in a more general form in [28] :

Proposition 3.1.1. ( [28, Proposition 3.1-(c)]) Let τ ∈ R. Let (ξn)0≤n≤∞ be a sequence of
square integrable H2-valued random variables. Let ( fn)0≤n≤∞ and (gn)0≤n≤∞ be sequences
of mappings from R×H2 to H2 and L(H1,H2) respectively, satisfying (4.1) and (4.1)
(replacing f and g by fn and gn respectively, and the constant K being independent of n).
For each n, let Xn denote the solution to

Xn(t) = S(t− τ)ξn

+
∫ t

τ

S(t−s) fn
(
s,Xn(s)

)
ds+

∫ t

τ

S(t−s)gn
(
s,Xn(s)

)
dW(s).

Assume that, for every (t,x) ∈ R×H2,

lim
n→∞

fn(t,x) = f∞(t,x), lim
n→∞

gn(t,x) = g∞(t,x),

lim
n→∞

dBL(law(ξn,W), law(ξ∞,W)) = 0,

(the last equality takes place in M 1,+ (H2×C(R,H1))). Then we have in C([τ,T];H2), for
any T > τ,

lim
n→∞

dBL(law(Xn), law(X∞)) = 0.

We need also a variant of Gronwall’s lemma.

Lemma 3.1.2. ( [49, Lemma 3.3]) Let g : R→ R be a continuous function such that, for
every t ∈ R,

0≤ g(t)≤ α(t)+β1

∫ t

−∞
e−δ1(t−s)g(s)ds+ · · ·+βn

∫ t

−∞
e−δn(t−s)g(s)ds, (3.5)

for some locally integrable function α : R→ R, and for some constants β1, . . . ,βn ≥ 0, and
some constants δ1, . . . ,δn > β , where β := ∑n

i=1βi . We assume that the integrals in the right
hand side of (3.5) are convergent. Let δ = min1≤i≤nδi . Then, for every γ ∈]0,δ −β ] such
that

∫ 0
−∞ eγsα(s)dsconverges, we have, for every t ∈ R,

g(t)≤ α(t)+β

∫ t

−∞
e−γ(t−s)

α(s)ds.
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In particular, if α is constant, we have

g(t)≤ α
δ

δ −β
.

Proof of Theorem 3.1.1 The proof of the existence and uniqueness of a mild solution
to (4.1) in CUB

(
R,L2(P,H2)

)
is the same as that of Theorem 3.1 in [49] or Theorem

3.3.1 in [?].
For the almost automorphy part, let (γ ′n) be a sequence in R. Since f and g are almost
automorphic, there exists a subsequence (γn) and functions f̂ : R×H2 → H2 and ĝ :
R×H2 → L(H1,H2) such that

lim
n→∞

f (t + γn,x) = f̂ (t,x), lim
n→∞

f̂ (t− γn,x) = f (t,x) (3.6)

lim
n→∞

g(t + γn,x) = ĝ(t,x), lim
n→∞

ĝ(t− γn,x) = g(t,x). (3.7)

These limits are taken uniformly with respect to x in bounded subsets of H2.
For each fixed integer n, we consider

Xn(t) =
∫ t

−∞
S(t−s) f (s+ γn,Xn(s))ds+

∫ t

−∞
S(t−s)g(s+ γn,Xn(s))dW(s)

the mild solution to

dXn(t) = AXn(t)dt+ f (t + γn,Xn(t))dt+g(t + γn,Xn(t))dW(t)

and
X̂(t) =

∫ t

−∞
S(t−s) f̂ (s, X̂(s))ds+

∫ t

−∞
S(t−s)ĝ(s, X̂(s))dW(s)

the mild solution to

dX̂(t) = A(t)X̂(t)dt+ f̂ (t, X̂(t))dt+ ĝ(t, X̂(t))dW(t).

Make the change of variable σ + γn = s, the process

X(t + γn) =
∫ t+γn

−∞
S(t + γn−s) f (s,X(s))ds

+
∫ t+γn

−∞
S(t + γn−s)g(s,X(s))dW(s)

satisfies

X(t + γn) =
∫ t

−∞
S(t−s) f (s+ γn,X(s+ γn))ds

+
∫ t

−∞
S(t−s)g(s+ γn,X(s+ γn))dW̃n(s),

where W̃n(s) = W(s+ γn)−W(γn) is a Brownian motion with the same distribution as
W(s). Thus the process X(.+ γn) has the same distribution as Xn.
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Let us show that Xn(t) converges in quadratic mean to X̂(t) for each fixed t ∈R. We have

E‖Xn(t)− X̂(t)‖2

=E
∥∥∥∥∫ t

−∞
S(t−s)

(
f (s+ γn,Xn(s))− f̂ (s, X̂(s))

)
ds

+
∫ t

−∞
S(t−s)

(
g(s+ γn,X

n(s))− ĝ(s, X̂(s))
)

dW(s)
∥∥∥∥2

≤2E
∥∥∥∥∫ t

−∞
S(t−s)

(
f (s+ γn,Xn(s))− f̂ (s, X̂(s))

)
ds

∥∥∥∥2

+2E
∫ t

−∞
S(t−s)

(
g(s+ γn,Xn(s))− ĝ(s, X̂(s))

)
dW(s)

∥∥∥∥2

≤4E
∥∥∥∥∫ t

−∞
S(t−s)

(
f (s+ γn,X

n(s))− f (s+ γn, X̂(s))
)

ds

∥∥∥∥2

+4E‖
∫ t

−∞
S(t−s)

(
f (s+ γn, X̂(s))− f̂ (s, X̂(s))

)
ds

∥∥∥∥2

+4E‖
∫ t

−∞
S(t−s)

(
g(s+ γn,X

n(s))−g(s+ γn, X̂(s))
)

dW(s)
∥∥∥∥2

+4E‖
∫ t

−∞
S(t−s)

(
g(s+ γn, X̂(s))− ĝ(s, X̂(s))

)
dW(s)

∥∥∥∥2

≤I1 + I2 + I3 + I4.

Now, using (4.1), (4.1) and the Cauchy-Schwartz inequality, we obtain

I1 = 4E
∥∥∥∥∫ t

−∞
S(t−s)

(
f (s+ γn,Xn(s))− f (s+ γn, X̂(s))

)
ds

∥∥∥∥2

≤ 4E
(∫ t

−∞
‖S(t−s)‖‖ f (s+ γn,Xn(s))− f (s+ γn, X̂(s))‖ds

)2

≤ 4E
(∫ t

−∞
e−δ (t−s)‖ f (s+ γn,Xn(s))− f (s+ γn, X̂(s))‖ds

)2

≤ 4

(∫ t

−∞
e−δ (t−s) ds

)(∫ t

−∞
e−δ (t−s) E‖ f (s+ γn,Xn(s))− f (s+ γn, X̂(s))‖2ds

)
≤ 4K2

δ

∫ t

−∞
e−δ (t−s) E‖Xn(s)− X̂(s)‖2ds.

Then we have

I2 = 4E
∥∥∥∥∫ t

−∞
S(t−s)[ f (s+ γn, X̂(s))− f̂ (s, X̂(s))]ds

∥∥∥∥2

≤ 4E
(∫ t

−∞
e−δ (t−s)‖ f (s+ γn, X̂(s))− f̂ (s, X̂(s))‖ds

)2

54



3.1. Almost automorphic solution of an equation with almost automorphic coefficients

≤ 4E
(∫ t

−∞
e−δ (t−s)ds

)(∫ t

−∞
e−δ (t−s)‖ f (s+ γn, X̂(s))− f̂ (s, X̂(s))‖2ds

)
≤ 4

(∫ t

−∞
e−δ (t−s)ds

)2

sup
s

E‖ f (s+ γn, X̂(s))− f̂ (s, X̂(s))‖2

≤ 4
δ 2 sup

s
E‖ f (s+ γn, X̂(s))− f̂ (s, X̂(s))‖2,

which converges to 0 as n→∞ because supt∈R E‖X̂(t)‖2 < ∞ which implies that (X̂(t))t is
tight relatively to bounded sets.
Applying Itô’s isometry, we get

I3 = 4E
∥∥∥∥∫ t

−∞
S(t−s)

(
g(s+ γn,Xn(s))−g(s+ γn, X̂(s))

)
dW(s)

∥∥∥∥2

≤ 4trQE
∫ t

−∞
‖S(t−s)‖2‖g(s+ γn,Xn(s))−g(s+ γn, X̂(s))‖2ds

≤ 4trQ
∫ t

−∞
e−2δ (t−s) E‖g(s+ γn,Xn(s))−g(s+ γn, X̂(s))‖2ds

≤ 4K2 trQ
∫ t

−∞
e−2δ (t−s) E‖Xn(s)− X̂(s)‖2ds,

and

I4 = 4E
∥∥∥∥∫ t

−∞
S(t−s)

(
g(s+ γn, X̂(s))− ĝ(s, X̂(s))

)
dW(s)

∥∥∥∥2

≤ 4trQE
(∫ t

−∞
‖S(t−s)‖2‖g(s+ γn, X̂(s))− ĝ(s, X̂(s))‖2ds

)
≤ 4trQ

(∫ t

−∞
e−2δ (t−s)ds

)
sup
s∈R

E‖g(s+ γn, X̂(s))− ĝ(s, X̂(s))‖2

≤ 2trQ
δ

sup
s∈R

E‖g(s+ γn, X̂(s))− ĝ(s, X̂(s))‖2.

For the same reason as for I2, the right hand term goes to 0 as n→ ∞.
We thus have

E‖Xn(t)− X̂(t)‖2 ≤ αn +
4K2

δ

∫ t

−∞
e−δ (t−s) E‖Xn(s)− X̂(s)‖2ds

+4K2 trQ
∫ t

−∞
e−2δ (t−s) E‖Xn(s)− X̂(s)‖2ds

for a sequence (αn) such that limn→∞ αn = 0. Furthermore, β := 4K2

δ
+ 4K2 trQ < δ . We

conclude by Lemma 3.1.2 that

lim
n→∞

E‖Xn(t)− X̂(t)‖2 = 0,

hence Xn(t) converges in distribution to X̂(t). But, since the distribution of Xn(t) is the
same as that of X(t + γn), we deduce that X(t + γn) converges in distribution to X̂(t).
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By analogy and using (4.12), (4.13) we can easily prove that X̂(t − γn) converges in
distribution to X(t).
Note that the sequence (‖Xn(t)‖2) is uniformly integrable, thus (‖X(t + γn)‖2) is uni-
formly integrable too. As (γ ′n) is arbitrary, this implies that the family (‖X(t)‖2)t∈R is
uniformly integrable, because, if not, there would exist a sequence (γ ′n) and t ∈ R such
that no subsequence of (‖X(t + γ ′n)‖

2) is uniformly integrable.
We have thus proved that X has almost automorphic one-dimensional 2-distributions.
To prove that X is almost automorphic in 2-distribution, we apply Proposition 3.1.1 :
for fixed τ ∈ R, let ξn = X(τ + γn), fn(t,x) = f (t + γn,x), gn(t,x) = g(t + γn,x). By the fore-
going, (ξn) converges in distribution to some variable Y(τ). We deduce that (ξn) is tight,
and thus (ξn,W) is tight also. We can thus choose a subsequence (still noted (γn) for
simplicity) such that (ξn,W) converges in distribution to (Y(τ),W). Then, by Proposition
3.1.1, for every T ≥ τ, X(.+ γn) converges in distribution on C([τ,T];H2) to the (unique
in distribution) solution to

Y(t) = S(t− τ)Y(τ)+
∫ t

τ

S(t−s) f
(
s,Y(s)

)
ds+

∫ t

τ

S(t−s)g
(
s,Y(s)

)
dW(s).

Note that Y does not depend on the chosen interval [τ,T], thus the convergence takes
place on C(R;H2). Similarly, Yn := Y(.− γn) converges in distribution on C(R;H2) to X.
Thus X is almost automorphic in 2-distribution.

3.2 Weighted pseudo almost automorphic solution of
an equation with weighted pseudo almost automor-
phic coefficients

We are now ready to prove our main result.

Theorem 3.2.1. Let the assumptions (4.1) - (4.1) be fulfilled. Let ( f1,g1) and ( f2,g2) be
respectively the decompositions of f and g, namely,

f = f1 + f2, g = g1 +g2,

f1 ∈ AAUb(R×H2,H2), f2 ∈ E Ub(R×H2,H2,µ),
g1 ∈ AAUb(R×H2,L(H1,H2)), g2 ∈ E Ub(R×H2,L(H1,H2),µ).

Assume that f1 and g1 satisfy the same growth and Lipschitz conditions (4.1) - (4.1) as f
and g respectively, with same coefficient K. Assume furthermore that

θ
′ :=

4K2

δ

(
1
δ

+ trQ

)
< 1.

Then there exists a unique mild solution X to (4.1) in the space CUB
(
R,L2(P,H2)

)
of boun-

ded uniformly continuous mappings from R to L2(P,H2), X has a.e. continuous trajectories,
and X satisfies (4.2) for every t ∈ R. Furthermore, X is µ-pseudo almost automorphic in

56



3.2. Weighted pseudo almost automorphic solution to SDE

2-distribution. More precisely, let Y ∈CUB
(
R,L2(P,H2)

)
be the unique almost automorphic

in distribution mild solution to

dY(t) = AY(t)dt+ f1(t,Y(t))dt+g1(t,Y(t))dW(t), t ∈ R. (3.8)

Then X has the decomposition

X = Y +Z, Z ∈ E
(
R,L2(P,H2),µ

)
.

The following technical lemma will be used several times.

Lemma 3.2.1. Let h ∈ E (R,R,µ). Then the function

t 7→
(∫ t

−∞
e−2δ (t−s)h2(s)ds

)1/2

is also in E (R,R,µ).

Proof : by Condition (H) and [16, Theorem 3.9], we have, for every u∈ R,

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

|h(t−u)| dµ(t) = 0.

We deduce, by Lebesgue’s dominated convergence theorem,

1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)h2(s)ds

)1/2

dµ(t)

≤ 1(
µ([−r, r])

)1/2

(∫
[−r,r]

∫ t

−∞
e−2δ (t−s)h2(s)dsdµ(t)

)1/2

=
1(

µ([−r, r])
)1/2

(∫
[−r,r]

∫ +∞

0
e−2δuh2(t−u)dudµ(t)

)1/2

=
1(

µ([−r, r])
)1/2

(∫ +∞

0
e−2δu

∫
[−r,r]

h2(t−u)dµ(t)du

)1/2

≤
(∫ +∞

0
e−2δu‖h‖∞

∫
[−r,r] |h(t−u)|dµ(t)

µ([−r, r])
du

)1/2

→ 0 when r →+∞.

Proof of Theorem 4.1.1 The existence and the properties of Y are guaranteed by
Theorem 3.1.1.
As in Theorem 3.1.1, the existence and uniqueness of the mild solution X to (4.1) are
proved as in [49, Theorem 3.1], using the classical method of the fixed point theorem
for the contractive operator L on CUB

(
R,L2(P,H2)

)
defined by

LX(t) =
∫ t

−∞
S(t−s) f

(
s,X(s)

)
ds+

∫ t

−∞
S(t−s)g

(
s,X(s)

)
dW(s).
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The solution X defined by (4.2) is thus the limit in CUB
(
R,L2(P,H2)

)
of a sequence (Xn)

with arbitrary X0 and, for every n, Xn+1 = L(Xn). To prove that X is µ-pseudo almost
automorphic in 2-distribution we choose a special sequence. Set

X0 = Y, Xn+1 = L(Xn), Zn = Xn−Y, n∈ N.

Let us prove that each Zn is in E
(
R,L2(P,H2),µ

)
. We use some arguments of the proof

of [16, Theorem 5.7]. We have, for every n∈ N and every t ∈ R,

Zn+1(t) = LXn(t)−Y(t)

=
∫ t

−∞
S(t−s)

(
f (s,Xn(s))− f (s,Y(s))

)
ds

+
∫ t

−∞
S(t−s)

(
g(s,Xn(s))−g(s,Y(s))

)
dW(s)

+
∫ t

−∞
S(t−s)

(
f (s,Y(s))− f1(s,Y(s))

)
ds

+
∫ t

−∞
S(t−s)

(
g(s,Y(s))−g1(s,Y(s))

)
dW(s)

=
∫ t

−∞
S(t−s)

(
f (s,Xn(s))− f (s,Y(s))

)
ds

+
∫ t

−∞
S(t−s)

(
g(s,Xn(s))−g(s,Y(s))

)
dW(s)

+
∫ t

−∞
S(t−s) f2(s,Y(s))ds+

∫ t

−∞
S(t−s)g2(s,Y(s))dW(s).

Assume that Zn ∈ E
(
R,L2(P,H2),µ

)
. By the Lipschitz condition (4.1),(

E‖ f (t,Xn(t))− f (t,Y(t)‖2)1/2 ≤ K
(
E‖Zn(t)‖2)1/2

thus the mapping
f : t 7→

(
E‖ f (t,Xn(t))− f (t,Y(t)‖2)1/2

is in E (R,R,µ). The same conclusion holds for

g : t 7→
(
E‖g(t,Xn(t))−g(t,Y(t)‖2)1/2

.

We get, using Lemma 4.1.5,

1
µ([−r, r])

∫
[−r,r]

(
E
∥∥∥∥∫ t

−∞
S(t−s)

(
f (s,Xn(s))− f (s,Y(s))

)
ds

∥∥∥∥2)1/2

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)f2(s)ds

)1/2

dµ(t)

→ 0 when r →+∞,

and

58



3.2. Weighted pseudo almost automorphic solution to SDE

1
µ([−r, r])

∫
[−r,r]

(
E
∥∥∥∥∫ t

−∞
S(t−s)

(
g(s,Xn(s))−g(s,Y(s))

)
dW(s)

∥∥∥∥2)1/2

dµ(t)

≤ (trQ)1/2 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)g2(s)ds

)1/2

dµ(t)

→ 0 when r →+∞.

To prove that Zn+1 is in E
(
R,L2(P,H2),µ

)
, there only remains to show that the process∫ t

−∞ S(t−s) f2(s,Y(s))ds+
∫ t
−∞ S(t−s)g2(s,Y(s))dW(s) belongs to E

(
R,L2(P,H2),µ

)
. As Y

is almost automorphic in distribution, the family (Ỹ(t)) = (Y(t + .))t∈R is uniformly tight
in Ck(R,H2). In particular, for each ε > 0 there exists a compact subset Kε of Ck(R,H2)
such that, for every t ∈ R,

P
{

Ỹ(t) ∈Kε

}
≥ 1− ε.

By the Arzelà-Ascoli Theorem (e.g. [41, Theorems 8.2.10 and 8.2.11]), this implies that,
for every ε > 0, and for every compact interval I of R, there exists a compact subset Kε,I

of H2 such that, for every t ∈ R,

P{(∀s∈ I) Y(t +s) ∈ Kε,I} ≥ 1− ε.

In particular, for every integer n, we have

P
{
(∀t ∈ [n,n+1]) Y(t) ∈ Kε,[0,1]

}
≥ 1− ε.

By the uniform continuity property of f2 and g2 on Kε,[0,1], there exists η(ε) > 0 such
that, for all x,y∈ Kε,[0,1],

‖x−y‖ ≤ η(ε)⇒ sup
t∈R

max
(
‖ f2(t,x)− f2(t,y)‖ ,‖g2(t,x)−g2(t,y)‖

)
≤ ε.

We can find a finite sequence y1, . . . ,ym such that

Kε,[0,1] ⊂
m⋃

i=1

B(yi ,η(ε)).

By [49, Remark 3.6]), the condition θ ′ < 1 ensures that Y is bounded in Lp(P,H2) for
some p > 2 (the same result holds for X, but we do not need it). Note that f2 = f − f1
and g2 = g− g1 satisfy a condition similar to (4.1), which implies that f2(.,Y(.)) and
g2(.,Y(.)) are bounded in Lp(P,H2) and Lp

(
P,L(H1,H2)

)
respectively. Let

Mp = sup
t∈R

max
(
E‖ f2(.,Y(.))‖p ,E‖g2(.,Y(.))‖p)2/p

.

Let q = p/(p−2). For each integer n, let Ωε,n be the measurable subset of Ω on which
Y(t) ∈ Kε,[0,1] for all t ∈ [n,n+1]. Let t ∈ R, and let n be an integer such that t ∈ [n,n+1].
We have
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(
E‖ f2(t,Y(t))‖2

)1/2

≤ min
1≤i≤m

(
E
(

1lΩε,n ‖ f2(t,Y(t))− f (t,yi)‖2))1/2

+ max
1≤i≤m

‖ f2(t,yi)‖

+
(

E
(

1lΩc
ε,n
‖ f2(t,Y(t))‖2))1/2

≤ε + max
1≤i≤m

‖ f2(t,yi)‖+
(
P
(
Ωc

ε,n

))1/q
(

E‖ f2(t,Y(t))‖p
)2/p

≤ε + max
1≤i≤m

‖ f2(t,yi)‖+ ε
1/qMp.

A similar result holds for E‖g2(t,Y(t))‖2. Let us denote

E(ε) = ε + ε
1/qMp,

fε(t) = max
1≤i≤m

‖ f2(s,yi)‖ ,

gε(t) = max
1≤i≤m

‖g2(s,yi)‖ .

Thanks to the ergodicity of f2 and g2, the functions fε and gε are in E (R,R,µ). We have

1
µ([−r, r])

∫
[−r,r]

(
E
∥∥∥∥∫ t

−∞
S(t−s) f2(s,Y(s))ds

+
∫ t

−∞
S(t−s)g2(s,Y(s))dW(s)

∥∥∥∥2)1/2

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

((∫ t

−∞
e−2δ (t−s) E‖ f2(s,Y(s))‖2ds

)1/2

+(trQ)1/2
(∫ t

−∞
e−2δ (t−s) E‖g2(s,Y(s))‖2 ds

)1/2)
dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s) (fε(s)+E(ε))2 ds

)1/2

dµ(t)

+(trQ)1/2 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s) (gε(s)+E(ε))2 ds

)1/2

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)f2ε(s)ds

)1/2

dµ(t)

+(trQ)1/2 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)g2

ε(s)ds

)1/2

dµ(t)

+
1+(trQ)1/2

µ([−r, r])
E(ε)

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s) ds

)1/2

dµ(t).

In the right hand side of the last inequality, the last term is arbitrarily small and both
other terms converge to 0 when r goes to +∞, thanks to Lemma 4.1.5. We have thus
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proved that Zn+1 is in E
(
R,L2(P,H2),µ

)
. We deduce by induction that the sequence (Zn)

lies in E
(
R,L2(P,H2),µ

)
.

Now, the sequence (Xn) converges to X in CUB
(
R,L2(P,H2)

)
, thus (Zn) converges to

Z := X−Y in CUB
(
R,L2(P,H2)

)
. Let ε > 0, and let n such that

sup
t∈R

(
E‖Z(t)−Zn(t)‖2)1/2 ≤ ε.

We have

1
µ([−r, r])

∫
[−r,r]

(
E‖Z(t)‖2)1/2

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(
E‖Z(t)−Zn(t)‖2)1/2

dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

(
E‖Zn(t)‖2)1/2

dµ(t)

≤ε +
1

µ([−r, r])

∫
[−r,r]

(
E‖Zn(t)‖2)1/2

dµ(t).

As ε is arbitrary, this proves that Z ∈ E
(
R,L2(P,H2),µ

)
.

Remark 3.2.2. We did not use in the proof of Theorem 4.1.1 the hypothesis that f2 ∈
E Ub(R×H2,H2,µ) and g2 ∈ E Ub(R×H2,L(H1,H2),µ). Actually, we needed only to as-
sume that, for each x∈ H2, f2(.,x) ∈ E (R,H2,µ) and g2(.,x) ∈ E (R,L(H1,H2),µ). By Re-
mark 1.1.3 and the Lipschitz condition, this is equivalent to assume that f2 ∈ E Uc(R×
H2,H2,µ) and g2 ∈ E Uc(R×H2,L(H1,H2),µ).

Theorem 3.2.2. (Weighted pseudo almost periodic solution of an equation with
weighted pseudo almost periodic coefficients) Assume the same hypothesis as in Theo-
rem 4.1.1, and that f1 and g1 are almost periodic with respect to the first variable, uni-
formly with respect to the second variable in bounded sets. Then (with obvious definitions)
the process Y of Theorem 4.1.1 is almost periodic in 2-distribution, thus the process X is
µ-pseudo almost periodic in 2-distribution.

Proof : The proof is exactly the same as that of Theorem 4.1.1, replacing Theorem 3.1.1
by [49, Theorem 3.1].
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CHAPITRE

4

Almost periodic type solution for
stochastic differential equations with
Stepanov almost periodic type co-
efficients

4.1 Stepanov almost periodic solutions to stochastic dif-
ferential equations

Let (H1,‖.‖H1) and (H2,‖.‖H2) be separable Hilbert spaces, and let us denote by L(H1,H2)
(or L(H1) if H1 = H2) the space of all bounded linear operators from H1 to H2, and by
L2(H1,H2) the space of Hilbert-Schmidt operators from H1 to H2.
Recall that CUB

(
R,L2(P,H2)

)
, the Banach space of square-mean continuous and L2-

bounded stochastic processes, is endowed with the norm

‖X‖2
∞ = sup

t
E‖X(t)‖2

H2
.

We consider the semilinear stochastic differential equation

dXt = AX(t)dt+F(t,X(t))dt+G(t,X(t))dW(t), t ∈ R (4.1)

where A : Dom(A) ⊂ H2 → H2 is a densely defined closed (possibly unbounded) linear
operator, and F : R×H2 → H2, and G : R×H2 → L2(H1,H2) are measurable functions
(not necessarily continuous). To discuss the existence and uniqueness of almost periodic
in 2−distribution solutions to equation (4.1), we consider the following hypotheses :
(H1) W(t), t ∈ R, is an H1-valued Wiener process with nuclear covariance operator Q

(we denote by trQ the trace of Q), defined on a stochastic basis (Ω,F ,(Ft)t∈R,P).
(H2) A : Dom(A) → H2 is the infinitesimal generator of a C0-semigroup (S(t))t≥0 such

that there exists a constant δ > 0 with

‖S(t)‖L(H2) ≤ e−δ t , t ≥ 0.
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Chapitre 4. Almost periodic solution in 2-distribution

(H3) There exists a positive constant M such that the mappings F : R×H2 → H2 and
G : R×H2 → L2(H1,H2) satisfy

‖F(t,x)‖H2 +‖G(t,x)‖L2(H1,H2) ≤M(1+‖x‖H2)

for all t ∈ R.

(H4) The functions F and G are Lipschitz, more precisely there exists a positive function
K(.) ∈ Sp(R), p > 2, such that

‖F(t,x)−F(t,y)‖H2 +‖G(t,x)−G(t,y)‖L2(H1,H2) ≤ K(t)‖x−y‖H2

for all t ∈ R and x,y∈H2.

(H5) F ∈ S2AP(R×H2,H2) and G∈ S2AP(R×H2,L2(H1,H2)).

4.1.1 Almost periodic solutions in 2-distribution

In order to study the weighted pseudo almost periodicity of solutions to (4.1), we need
a result on almost periodicity. In what follows, let q > 0 with 1

2 = 1
q + 1

p.

Theorem 4.1.1. Assume the conditions (H1)− (H5) are fulfilled and the constant

θS :=

(
2‖K‖2

S2

δ (1−e−δ )
+

2‖K‖2
S2 trQ

1−e−2δ

)
< 1.

Then there exists a unique mild solution X to (4.1) in CUB
(
R,L2(P,H2)

)
. Furthermore, X

has a.e. continuous trajectories, and X(t) can be explicitly expressed as follows, for each
t ∈ R :

X(t) =
∫ t

−∞
S(t−s)F

(
s,X(s)

)
ds+

∫ t

−∞
S(t−s)G

(
s,X(s)

)
dW(s). (4.2)

If furthermore

θ
′
S :=

4
3qδ

((
3β1
) q

2 +
(
3β2
) q

2
)

< 1,

with

β1 :=
4
δ

(
‖K‖p

Sp

1−e−
pδ

4

) 2
p

, β2 := 4trQ

(
‖K‖p

Sp

1−e−
pδ

2

) 2
p

then X is almost periodic in 2-distribution.

Before giving the proof of Theorem 4.1.1, we need the following lemma and proposi-
tion :

Lemma 4.1.2. Let K : R→ R be a nonnegative Sp-bounded (resp. Stepanov almost perio-
dic) function, then the function

κ(t) =
∫ t

−∞
e−δ (t−s)Kp(s)ds
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4.1. Stepanov almost periodic solutions to stochastic differential equations

is uniformly bounded (resp. Bohr almost periodic), and we have

sup
t∈R

κ(t)≤
‖K‖p

Sp

1−e−δ
.

Proof : The proof is very simple, see for instance [69,70].

The following proposition is based on the application of Komlós’s theorem [50].

Proposition 4.1.3. 1. Let (U,Σ,λ ) be a σ -finite measure space, and let B be a separable
Banach space. Let (F ′

n) be a sequence of mappings from U×B to B satisfying

(i) each F ′
n is measurable,

(ii) for every u∈ U, the sequence (F ′
n(u, .)) is equicontinuous,

(iii) there exists a measurable mapping F : U×B→ B, such that

(∀x∈ B) lim
n→∞

∫
U

∥∥F ′
n(u,x)−F(u,x)

∥∥ dλ (u) = 0.

Then there exists a subsequence (Fn) of (F ′
n), a modification F̃ of F , and a λ -negligible

subset N of U such that

(∀x∈ B) (∀u∈ U\N ) lim
n→∞

Fn(u,x) = F̃(u,x),

and such that, for every u∈ U\N , the mapping F(u, .) is continuous.
2. With the same hypothesis as in 1., assume now that U = R is the set of real numbers,
Σ its Borel σ -algebra, and λ the Lebesgue-measure. Assume furthermore that there exists a
sequence (K′

n) of measurable mappings from R to R+, and a number p≥ 1, satisfying

(iv)
(∀n≥ 1) (∀x,y∈ B) (∀u∈ R)

∥∥F ′
n(u,x)−F ′

n(u,y)
∥∥≤ K′

n(u)‖x−y‖ ,

(v)

A := sup
n≥1

sup
u∈R

∫ u+1

u
(K′

n)
p(v)dv< ∞.

Then we can extract the subsequence (Fn) in such a way that there exists a measurable
mapping K : R→ R+ and a λ -negligible subset N of R such that

(∀x,y∈ B) (∀u∈ U\N ) ‖F(u,x)−F(u,y)‖ ≤ K(u)‖x−y‖ , (4.3)

with

sup
u∈R

∫ u+1

u
Kp(v)dv≤ A.

Proof : 1. For every x∈ B, we can find a subsequence (F(x)
n ) of (F ′

n) and a λ -negligible
set Nx such that

(∀u∈ U\Nx) lim
n→∞

F(x)
n (u,x) = F(u,x).
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Let D be a dense countable subset of B. Using a diagonal procedure, we can find a
subsequence (Fn) of (F ′

n) and a λ -negligible subset N of U such that

(∀y∈D) (∀u∈ U\N ) lim
n→∞

Fn(u,y) = F(u,y).

On the other hand, for every u∈U and every x∈B, we have, by equicontinuity of Fn(u, .),

lim
y→x

sup
n
‖Fn(u,y)−Fn(u,x)‖= 0. (4.4)

Let u ∈ U \N , and let x ∈ B. Using the uniformity in (4.4), we deduce, by a classical
result on interchange of limits, that, for any x∈ B,

lim
n→∞

Fn(u,x) = lim
n→∞

lim
y→x
y∈D

Fn(u,y) = lim
y→x
y∈D

lim
n→∞

Fn(u,y) = lim
y→x
y∈D

F(u,y). (4.5)

Note that, for u∈U\N , the calculation (4.5) shows that f (u, .) is continuous on D . Let
us define F̃ : U×B→ B by

F̃(u,x) =

 lim
n→∞

Fn(u,x) = lim
y→x
y∈D

F(u,y) for u∈ U\N and x∈ B,

0 for u∈N and x∈ B.

This definition is consistent, thanks to (4.5). Furthermore, F̃(u, .) is continuous on B for
every u∈ U. Finally, since F̃(u,y) = F(u,y) for all (u,y) ∈ (U\N )×D , we have, for any
x∈ B,∫

U

∥∥F̃(u,x)−F(u,x)
∥∥ dλ (u)

≤ lim
y→x
y∈D

∫
U

∥∥Fn(u,y)− F̃(u,x)
∥∥ dλ (u)+

∫
U
‖Fn(u,y)−F(u,x)‖ dλ (u)

= 0,

which proves that F̃(u,x) = F(u,x) for λ -almost every u∈ U.

2. By an application of Komlós’s theorem [50] on each interval [k,k+1], where k is an
integer, and using a diagonal procedure, we can extract a subsequence (Kn) of (K′

n) and
a mapping K : R→ R+ such that

lim
n→∞

1
n

n

∑
j=1

Kp
j (u) = Kp(u) for λ -a.e. u∈ R,

and such that this almost sure Cesàro convergence holds true for any further subse-
quence of (Kn) (the negligible set on which the convergence does not hold depends on
the subsequence). We can thus ask for the sequences (Fn) and (Kn) to have the same
indices. Denote, for n≥ 1,

gn =
1
n

n

∑
j=1

Fj , Ln =

(
1
n

n

∑
j=1

Kp
j

)1/p

.
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There exists a λ -negligible subset N of R such that

(∀x∈ B) (∀u∈ R\N ) lim
n→∞

gn(u,x) = F(u,x) and lim
n→∞

Ln(u) = K(u). (4.6)

On the other hand, by the triangular inequality, we have also :

(∀n≥ 1) (∀x,y∈ B) (∀u∈ R) ‖gn(u,x)−gn(u,y)‖ ≤ Ln(u)‖x−y‖ . (4.7)

We deduce (4.3) from (4.6) and (4.7). Furthermore, by Fatou’s lemma, we have

sup
u∈R

∫ u+1

u
Kp(v)dv≤ sup

u∈R
liminf

n→∞

∫ u+1

u
Lp

n(v)dv≤ A.

We are now ready to prove Theorem 4.1.1.
Proof of Theorem 4.1.1 Clearly, the process

X(t) =
∫ t

−∞
T(t−s)F

(
s,X(s)

)
ds+

∫ t

−∞
T(t−s)G

(
s,X(s)

)
dW(s)

satisfies

X(t) = T(t−a)X(a)+
∫ t

a
T(t−s)F

(
s,X(s)

)
ds+

∫ t

a
T(t−s)G

(
s,X(s)

)
dW(s)

for all t ≥ a for each a∈ R , and hence X is a mild solution to (4.1).
We introduce an operator Γ by

ΓX(t) =
∫ t

−∞
T(t−s)F

(
s,X(s)

)
ds+

∫ t

−∞
T(t−s)G

(
s,X(s)

)
dW(s).

First step. Let us show that Γ has a unique fixed point. For this purpose we need to

show that Γ maps S2
(
R,L2(P,H2)

)
into CUB

(
R,L2(P,H2)

)
. Let X ∈ S2

(
R,L2(P,H2)

)
. Put

Γ = Γ1 +Γ2, where

(Γ1X)(t) =
∫ t

−∞
T(t−s)F

(
s,X(s)

)
ds

and
(Γ2X)(t) =

∫ t

−∞
T(t−s)G

(
s,X(s)

)
dW(s).

Using conditions (H2) and (H4), the functions F and G satisfy the properties f (.) :=
F(.,X(.)) ∈ S2

(
R,L2(P,H2)

)
and g(.) := G(.,X(.)) ∈ S2

(
R,L2(P,L2(H1,H2)

)
. Let us intro-

duce the following processes, for each n≥ 1,

(Γ1,nX)(t) =
∫ t−n+1

t−n
T(t−s) f (s)ds

and

(Γ2,nX)(t) =
∫ t−n+1

t−n
T(t−s)g(s)dW(s).
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Clearly, for each n, Γ1,nX ∈ C(R,L2(P,H2)). Likewise for Γ2,nX, for which the continuity
is a property of the stochastic integral. To show the boundedness of Γ1,nX and Γ2,nX for
each fixed n≥ 1, we use standard arguments. By Hölder’s inequality, we have, for any
t ∈ R, and n≥ 1

E
∥∥(Γ1,nX)(t)

∥∥2
H2
≤ E

(∫ t−n+1

t−n
‖T(t−s)‖‖ f (s)‖H2

ds

)2

≤ δ
−1
∫ t−n+1

t−n
e−δ (t−s) E‖ f (s)‖2

H2
ds

≤ δ
−1e−δ (n−1)

∫ t−n+1

t−n
E‖ f (s)‖2

H2
ds,

which leads to ∥∥Γ1,nX
∥∥2

∞ ≤ δ
−1e−δ (n−1) ‖ f‖2

S2 .

Since the series ∑∞
n=1e−2δ (n−1) ‖ f‖2

S2 is convergent, it follows that

Γ1X :=
∞

∑
n=1

Γ1,nX ∈ CUB
(
R,L2(P,H2)

)
. (4.8)

By Itô’s isometry, we have for every t ∈ R and n≥ 1,

E
∥∥(Γ2,nX)(t)

∥∥2
H2

= trQ
∫ t−n+1

t−n
E‖T(t−s)‖2‖g(s)‖2

L2(H1,H2) ds

≤ trQ
∫ t−n+1

t−n
e−2δ (t−s) E‖g(s)‖2

L2(H1,H2) ds

≤ trQe−2δ (n−1) ‖g‖2
S2 .

This shows that Γ2,nX ∈CUB
(
R,L2(P,H2)

)
for each n≥ 1. Since ∑∞

n=1e−2δ (n−1) < +∞, the
series ∑∞

n=1(Γ2,nX)(t) is uniformly convergent on R. Thus

Γ2X :=
∞

∑
n=1

Γ2,nX ∈ CUB
(
R,L2(P,H2)

)
. (4.9)

From (4.8) and (4.9), we deduce that Γ maps S2
(
R,L2(P,H2)

)
into CUB

(
R,L2(P,H2)

)
.

Let us show that Γ is a contraction operator. We have, for any t ∈R and X,Y∈CUB
(
R,L2(P,H2)

)
,

E‖(ΓX)(t)− (ΓY)(t)‖2
H2
≤2E

(∫ t

−∞
e−δ (t−s)‖F(s,X(s))−F(s,Y(s))‖H2ds

)2

+2E
∥∥∥∥∫ t

−∞
T(t−s)[G(s,X(s))−G(s,Y(s))]dW(s)

∥∥∥∥2

H2

=I1(t)+ I2(t).

Let us estimate I1(t). Using (H4), Cauchy-Schwartz inequality, and Lemma 4.1.2, we
obtain :

I1(t)≤ 2

(∫ t

−∞
e−δ (t−s)ds

)(∫ t

−∞
e−δ (t−s) E‖F(s,X(s))−F(s,Y(s))‖2

H2
ds

)
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≤ 2
δ

(∫ t

−∞
e−δ (t−s)K2(s)E‖X(s)−Y(s)‖2

H2
ds

)
≤ 2

δ

(
sup
s∈R

E‖X(s)−Y(s)‖2
H2

)(∫ t

−∞
e−δ (t−s)K2(s)ds

)
≤

2‖K‖2
S2

δ (1−exp(−δ ))
sup
s∈R

E‖X(s))−Y(s))‖2
H2

.

For I2(t), using again (H4), Lemma 4.1.2, and Itô’s isometry we get :

I2(t)≤ 2trQ
∫ t

−∞
e−2δ (t−s) E‖G(s,X(s))−G(s,Y(s))‖2

L2(H1,H2)ds

≤ 2trQ
∫ t

−∞
e−2δ (t−s)K2(s)E‖X(s)−Y(s)‖2

H2
ds

≤ 2trQ

(
sup
s∈R

E‖X(s)−Y(s)‖2
H2

)(∫ t

−∞
e−2δ (t−s)K2(s)ds

)
≤

2‖K‖2
S2 trQ

1−exp(−2δ )

(
sup
s∈R

E‖X(s)−Y(s)‖2
H2

)
.

We thus have

‖ΓX−ΓY‖2
∞ ≤

(
2‖K‖2

S2

δ (1−exp(−δ ))
+

2‖K‖2
S2 trQ

1−exp(−2δ )

)
‖X−Y‖2

∞ = θS‖X−Y‖2
∞.

Consequently, as θS < 1, we deduce that Γ is a contraction operator, hence there exists
a unique mild solution to (4.1) in CUB

(
R,L2(P,H2)

)
. By [29, Theorem 7.2]), almost all

trajectories of this solution are continuous.

Second step. Let us show that X is almost periodic in distribution. For this purpose,
we prove first that X is almost periodic in one distribution. We use Bochner’s double
sequences criterion. Since F ∈ S2AP(R×H2,H2) and G∈ S2AP(R×H2,L2(H1,H2)), we
deduce, by Proposition 1.2.4, that there exist subsequences (α

′
n)⊂ (α

′′
n) and (β

′
n)⊂ (β

′′
n)

with same indexes (and independent of x), and functions F∞ ∈ S2AP(R×H2,H2) and
G∞ ∈ S2AP(R×H2,L2(H1,H2)) such that for every t ∈ R and x∈H2

lim
n→∞

∫ t+1

t

∥∥∥F(s+α
′
n +β

′
n,x)−F∞(s,x)

∥∥∥2

H2

ds

= lim
n→∞

lim
m→∞

∫ t+1

t

∥∥∥F(s+α
′
n +β

′
m,x)−F∞(s,x)

∥∥∥2

H2

ds= 0, (4.10)

lim
n→∞

∫ t+1

t

∥∥∥G(s+α
′
n +β

′
n,x)−G∞(s,x)

∥∥∥2

L2(H1,H2)
ds

= lim
n→∞

lim
m→∞

∫ t+1

t

∥∥∥G(s+α
′
n +β

′
n,x)−G∞(s,x)

∥∥∥2

L2(H1,H2)
ds= 0. (4.11)

These limits exist also uniformly with respect to t ∈ R.
Thanks to Proposition 4.1.3, we obtain the following interesting properties :
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– The functions F∞ and G∞ satisfy similar conditions as (H3) and (H4).
– there are subsequences of (αn) (resp. (βn)), still noted (for simplicity) by (αn) (resp.

(βn)) and Lebesgue-negligible subset N of R such that for all s∈ R \N and every
x∈H2

lim
n→∞

F(s+αn +βn,x) = lim
n→∞

lim
m→∞

F(s+αn +βm,x) = F∞(s,x), (4.12)

lim
n→∞

G(s+αn +βn,x) = lim
n→∞

lim
m→∞

G(s+αn +βm,x) = G∞(s,x). (4.13)

We now set γn = αn+βn and consider the sequence of operators, defined, for each n≥ 1,
by

(ΓnX)(t) =
∫ t

−∞
T(t−s)F(s+ γn,X(s))ds+

∫ t

−∞
T(t−s)G(s+ γn,X(s))dW(s).

Let Γ∞ be the operator defined by

(Γ∞X)(t) =
∫ t

−∞
T(t−s)F∞(s,X(s))ds+

∫ t

−∞
T(t−s)G∞(s,X(s))dW(s).

Using the same reasoning as in the first step, we deduce that, for each n≥ 1, Γn maps
S2
(
R,L2(P,H2)

)
into CUB

(
R,L2(P,H2)

)
and it is a contraction operator, with contraction

constant equal to θS. It follows, by an application of the fixed point theorem, that there
exists a process

Xn(t) =
∫ t

−∞
T(t−s)F(s+ γn,X

n(s))ds+
∫ t

−∞
T(t−s)G(s+ γn,X

n(s))dW(s)

which is the fixed point of Γn and also the mild solution to

dX(t) = AX(t)dt+F(t + γn,X(t))dt+G(t + γn,X(t))dW(t).

Moreover, thanks to Proposition 4.1.3, the mappings F∞ and G∞ satisfy similar condi-
tions as (H3) and (H4). Hence, the fixed point theorem applied on Γ∞ ensures the
existence of a process X∞, satisfying the integral equation

X∞(t) =
∫ t

−∞
T(t−s)F∞(s,X∞(s))ds+

∫ t

−∞
T(t−s)G∞(s,X∞(s))dW(s),

that is, X∞ is a mild solution to

dX(t) = AX(t)dt+F∞(t,X(t))dt+G∞(t,X(t))dW(t).

Make the change of variable σ + γn = s, the process

X(t + γn) =
∫ t+γn

−∞
T(t + γn−σ)F(σ ,X(σ))dσ +

∫ t+γn

−∞
T(t + γn−σ)G(σ ,X(σ))dW(σ)

becomes

X(t + γn) =
∫ t

−∞
T(t−s)F(s+ γn,X(s+ γn))ds+

∫ t

−∞
T(t−s)G(s+ γn,X(s+ γn))dW̃n(s),
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where W̃n(s) = W(s+ γn)−W(γn) is a Brownian motion with the same distribution as
W(s). We deduce that the process X(t + γn) has the same distribution as Xn(t).
Let us show that Xn(t) converges in quadratic mean to X∞(t) for each fixed t ∈ R. We
have, by the triangular inequality,

E‖Xn(t)−X∞(t)‖2 =E‖
∫ t

−∞
T(t−s)[F(s+ γn,X

n(s))−F∞(s,X∞(s))]ds

+
∫ t

−∞
T(t−s)[G(s+ γn,X

n(s))−G∞(s,X∞(s))]dW(s)‖2

≤4E‖
∫ t

−∞
T(t−s)[F(s+ γn,X

n(s))−F(s+ γn,X
∞(s))]ds‖2

+4E‖
∫ t

−∞
T(t−s)[G(s+ γn,X

n(s))−G(s+ γn,X
∞(s))]dW(s)‖2

+4E‖
∫ t

−∞
T(t−s)[F(s+ γn,X

∞(s))−F∞(s,X∞(s))]ds‖2

+4E‖
∫ t

−∞
T(t−s)[G(s+ γn,X

∞(s))−G∞(s,X∞(s))]dW(s)‖2

≤In
1(t)+ In

2(t)+ In
3(t)+ In

4(t).

Now, using (H2), (H4), Hölder’s inequality, and Lemma 4.1.2, we obtain

In
1(t) = 4E‖

∫ t

−∞
T(t−s)[F(s+ γn,X

n(s))−F(s+ γn,X
∞(s))]ds‖2

≤ 4E
(∫ t

−∞
e−δ (t−s)‖F(s+ γn,X

n(s))−F(s+ γn,X
∞(s))‖ds

)2

≤ 4
δ

∫ t

−∞
e−δ (t−s)K2(s+ γn)E‖Xn(s)−X∞(s)‖2ds

≤ 4
δ

(∫ t

−∞
e−

pδ

4 (t−s)Kp(s+ γn)ds
) 2

p
(∫ t

−∞
e−

qδ

4 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds
) 2

q

≤ 4
δ

(
‖K‖p

Sp

1−e−
pδ

2

) 2
p
(∫ t

−∞
e−

qδ

2 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

) 2
q

.

For In
2(t), using Itô’s isometry, Hölder’s inequality, and Lemma 4.1.2, we get

In
2(t) = 4E‖

∫ t

−∞
T(t−s)[G(s+ γn,X

n(s))−G(s+ γn,X
∞(s))]dW(s)‖2

≤ 4trQE
∫ t

−∞
‖T(t−s)‖2‖G(s+ γn,X

n(s))−G(s+ γn,X
∞(s))‖2ds

≤ 4trQ
∫ t

−∞
e−2δ (t−s)K2(s+ γn)E‖Xn(s)−X∞(s)‖2ds

≤ 4trQ

(∫ t

−∞
e−

pδ

2 (t−s)Kp(s+ γn)ds

) 2
p
(∫ t

−∞
e−

qδ

2 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

) 2
q

≤ 4trQ

(
‖K‖p

Sp

1−e−
pδ

2

) 2
p
(∫ t

−∞
e−

qδ

2 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

) 2
q

.
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Let us show that In
3(t) and In

4(t) go to 0 as n goes to infinity.

For any r ∈ R, since X∞ ∈ CUB
(
R,L2(P,H2)

)
, the family(

‖X∞(s)‖2
)

r≤s≤r+1

is uniformly integrable, by the converse to Vitali’s theorem. By the growth condition
satisfied by F and F∞, this shows that the family

(Us,n) :=
(
‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖2
)

r≤s≤r+1,n≥1

is uniformly integrable. By La Vallée Poussin’s criterion, there exists a non-negative in-
creasing convex function Φ : R → R such that limt→∞

Φ(t)
t = +∞ and sups,nE(Φ(Us,n)) <

+∞. We thus have

sup
n

E
∫ r+1

r
Φ
(
Us,n

)
ds< +∞,

which prove that the family (U.,n)n≥1 is uniformly integrable with respect to the proba-
bility measure P⊗λ on Ω× [r, r +1], where λ denotes Lebesgue’s measure. This proves
that, for any r ∈ R,

lim
n→+∞

E
(∫ r+1

r
‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖2ds

)1/2

= 0. (4.14)

Let t ≥ 0. Since X∞ ∈ CUB
(
R,L2(P,H2)

)
, and thanks to the growth condition satisfied by

F , the sequence (
E
∫ t−k+1

t−k
‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖2ds
)

k≥1,n≥0

is bounded. We can thus find an integer N(t,η) such that, for any n≥ 0, ∑
k>N(t,η)

e−δ (k−1) E
∫ t−k+1

t−k
‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖2ds

1/2

≤ η . (4.15)

Using (4.15), we get

√
In
3(t)≤2

E
(∫ t

−∞
‖T(t−s)‖‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖ds

)21/2

≤2
N(t,η)

∑
k=1

E
(∫ t−k+1

t−k
e−δ (t−s)‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖ds

)2
1/2

+2
∞

∑
N(t,η)+1

E
(∫ t−k+1

t−k
e−δ (t−s)‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖ds

)2
1/2
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≤2
N(t,η)

∑
k=1

e−δ (k−1)

E
(∫ t−k+1

t−k
‖F(s+ γn,X

∞(s))−F∞(s,X∞(s))‖ds

)2
1/2

+2η .

(4.16)

Since the sum in (4.16) is finite and η is arbitrary, we deduce from (4.14) that

lim
n→+∞

In
3(t) = 0.

For In
4(t), applying Itô’s isometry, we obtain

In
4(t) = 4E‖

∫ t

−∞
T(t−s)[G(s+ γn,X

∞(s))−G∞(s,X∞(s))]dW(s)‖2

≤ 4trQE
(∫ t

−∞
e−2δ (t−s)‖G(s+ γn,X

∞(s))−G∞(s,X∞(s))‖2ds

)
.

For the same reason as for In
3(t) and by (4.13), In

4(t) goes to 0 as n→ ∞. Now, let us
define the following quantities :

αn(t) := In
3(t)+ In

4(t), β1 :=
4
δ

(
‖K‖p

Sp

1−e−
pδ

4

) 2
p

, β2 := 4trQ

(
‖K‖p

Sp

1−e−
pδ

2

) 2
p

.

From the above, we have

E‖Xn(t)−X∞(t)‖2 ≤ αn(t)+β1

(∫ t

−∞
e−

qδ

4 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

) 2
q

+β2

(∫ t

−∞
e−

qδ

2 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

) 2
q

.

By convexity of the mapping u 7→ u
q
2 defined on R+, we get

(
E‖Xn(t)−X∞(t)‖2) q

2 ≤ 1
3

(
3αn(t)

) q
2 +

1
3

(
3β1
) q

2

(∫ t

−∞
e−

qδ

4 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

)

+
1
3

(
3β2
) q

2

(∫ t

−∞
e−

qδ

2 (t−s)(E‖Xn(s)−X∞(s)‖2) q
2ds

)
.

Since θ ′S = 4
3qδ

((
3β1
) q

2 +
(
3β2
) q

2
)

< 1, we obtain, by Gronwall’s Lemma as in [49, Lemma 3.3],

(
E‖Xn(t)−X∞(t)‖2) q

2 ≤ 1
3

(3αn(t))
q
2 +

1
3

∫ t

−∞
e−γ(t−s)(3αn(s)

) q
2ds.

Using the dominated convergence theorem and the convergence of αn(t) to 0 as n→ ∞,
we obtain the convergence of Xn(t) to X∞(t) in quadratic mean. Hence Xn(t) converges
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in distribution to X∞(t). But, since the distribution of Xn(t) is the same as that of X(t +
γn), we deduce that, for every t ∈ R

lim
n→∞

law(X(t +αn +βn)) = law(X∞(t)).

By analogy and using (4.12) and (4.13), we can easily deduce that

lim
m→∞

lim
n→∞

law(X(t +αm+βn)) = law(X∞(t)).

Thus the solution X is almost periodic in one dimensional distributions.
Let us show that (‖X(t)‖2)t∈R is uniformly integrable. Using the converse part of Vi-
tali’s convergence Theorem, we have that (‖Xn(t)‖2)n∈N is uniformly integrable, thus
(‖X(t + γn)‖2) is uniformly integrable too. As (γ ′′n ) is arbitrary, this implies that the fa-
mily (‖X(t)‖2)t∈R is uniformly integrable, because, if not, there would exist a sequence
(γ ′′n ) and t0 ∈ R such that no subsequence of (‖X(t0 + γ ′′n )‖2) is uniformly integrable. We
have thus proved that X has almost periodic one-dimensional 2-distribution.
To prove almost periodicity in 2-distribution of the solution to (4.1), we need a gene-
ralization of [28, Proposition 3.1] to the Stepanov context. This allows us to obtain
the convergence of the solutions by assuming only the convergence in mean (in Ste-
panov sense) of the coefficients. Let us mention that a similar result is obtained by Ivo
Vrkoč [80], but in another context.

Proposition 4.1.4. Let τ ∈ R. Let (ξn)0≤n≤∞ be a sequence of square integrable H2-valued
random variables. Let (Fn)0≤n≤∞ and (Gn)0≤n≤∞ be sequences of mappings from R×H2 to
H2 and L2(H1,H2) respectively, which are S2-bounded and satisfy (H3) and (H4), such that
the constant M is independent of n and the set of mappings {Kn,n∈N} is S2-bounded, that
is, supn∈N ‖Kn‖S2 < +∞. Let Xn denote the solution to

Xn(t) = T(t− τ)ξn +
∫ t

τ

T(t−s)Fn
(
s,Xn(s)

)
ds+

∫ t

τ

T(t−s)Gn
(
s,Xn(s)

)
dW(s), t ≥ τ.

Assume that

lim
n→∞

‖Fn(.,x)−F∞(.,x)‖S2 = 0, lim
n→∞

‖Gn(.,x)−G∞(.,x)‖S2 = 0,

for each x in H2. It follows that
a) There exists a unique mild solution X∞ to

X∞(t) = T(t− τ)ξ∞ +
∫ t

τ

T(t−s)F∞
(
s,X∞(s)

)
ds+

∫ t

τ

T(t−s)G∞
(
s,X∞(s)

)
dW(s), t ≥ τ.

(4.17)
b) If limn→∞ E‖ξn−ξ∞‖2 = 0, then, for all σ ≥ τ,

lim
n→∞

E
(

sup
τ≤t≤σ

‖Xn(t)−X∞(t)‖2
)

= 0. (4.18)
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c) If

lim
n→∞

dBL(law(ξn), law(ξ∞)) = 0,

then we have in C([τ,σ ];H2), for all σ ≥ τ,

lim
n→∞

dBL(law(Xn), law(X∞)) = 0. (4.19)

Proof : a) By Proposition 4.1.3, F∞ and G∞ satisfy Conditions (H3), (H4), and (H5). We
deduce a) as in the first step of the proof of Theorem 4.1.1.

b) For any subsequence (X′
n) of (Xn), we can find by, Proposition 4.1.3, a subsequence

(X′′
n ) of (X′

n) and versions F ′′
∞ and G′′

∞ of F∞ and G∞ respectively (i.e., F ′′
∞(t, .) = F∞(t, .) and

G′′
∞(t, .) = G∞(t, .) for almost every t), such that the corresponding subsequences (F ′′

n ) and
(G′′

n) converge pointwise to F ′′
∞ and G′′

∞ respectively. Since the integrals in (4.17) remain
unchanged if we replace F∞ by F ′′

∞ and G∞ by G′′
∞, we deduce by [28, Proposition 3.1]

that

lim
n→∞

E
(

sup
τ≤t≤σ

‖X′′
n (t)−X∞(t)‖2

)
= 0. (4.20)

Thus, for any subsequence (X′
n) of (Xn) we can find a subsequence (X′′

n ) of (X′
n) such that

(4.20) holds, which proves (4.18).

c) Similarly, using [28, Proposition 3.1], we obtain that, for any subsequence (X′
n) of

(Xn) we can find a subsequence (X′′
n ) of (X′

n) such that

lim
n→∞

dBL(law(X′′
n ), law(X∞)) = 0,

thus (4.19) holds.

Proof of Theorem 4.1.1 (continued) To prove that X is almost periodic in distribution,
we use the same arguments as in [49], using Proposition 4.1.4.

4.1.2 µ-Pseudo almost periodicity of the solution in 2-distribution

Let µ be a Borel measure on R satisfying (1.6) and Condition (H). Let us start with a
useful Lemma :

Lemma 4.1.5. Let h∈ ESq(R,R,µ), and let K(.) be an Sp-bounded function from R to R+.
The function

t 7→
(∫ t

−∞
e−2δ (t−s)K2(s)h2(s)ds

)1/2

is in E (R,R,µ).
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Proof : Our proof uses the following result of [16, Theorem 3.5], that ensures that
ESq(R,R,µ) is translation invariant. We have, for every u∈ R,

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
|h(t +u+s)|q ds

) 1
q

dµ(t) = 0. (4.21)

By Lebesgue’s dominated convergence theorem, Hölder’s inequality and thanks to Re-
mark 1.2.7, we get

1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)K2(s)h2(s)ds

)1/2

dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

(+∞

∑
k=1

∫ 1

0
e−2δ (k−u)K2(t +u−k)h2(t +u−k)du

)1/2

dµ(t)

≤ lim
n→+∞

n

∑
k=1

e−(k−1)pδ ‖K‖p
Sp

1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
hq(t +u−k)du

) 1
q

dµ(t)

≤ lim
n→+∞

n

∑
k=1

e−(k−1)pδ ‖K‖p
Sp

1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
hq(t +u−k)du

) 1
q

dµ(t).

Since the series

∑
k≥1

e−(k−1)pδ ‖K‖p
Sp

1
µ([−r, r])

∫
[−r,r]

(∫ 1

0
hq(t +u−k)du

) 1
q

dµ(t)

is uniformly convergent with respect to r, the claimed result is a consequence of (4.21).

Before presenting the main result of this subsection, namely, the existence of µ-pseudo
almost periodic solution to (4.1), let us introduce the following condition :

(H5)′ F ∈ S2PAP(R×H2,H2,µ) and G∈ S2PAP(R×H2,L2(H1,H2),µ).

Now, we are able to state the main result of the subsection.

Theorem 4.1.6. Let the assumptions (H1)− (H4),(H5)′ be fulfilled. Let (F1,G1) and (F2,G2)
be respectively the decompositions of F and G, namely,

F = F1 +F2, G = G1 +G2,

F1 ∈ S2AP(R×H2,H2), F2 ∈ ES2(R×H2,H2,µ),

G1 ∈ S2AP(R×H2,L2(H1,H2)), G2 ∈ ES2(R×H2,L2(H1,H2),µ).
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Assume that F1 and G1 satisfy the same growth and Lipschitz conditions4 (H3) and (H4)′ as
F and G respectively, with same coefficient M and mapping K(.). Assume furthermore that
θS < 1. Then there exists a unique mild solution X to (4.1) in the space CUB

(
R,L2(P,H2)

)
and X has a.e. continuous trajectories. Moreover, if θ ′S < 1, then X is µ-pseudo almost
periodic in 2-distribution. More precisely, let Y ∈ CUB

(
R,L2(P,H2)

)
be the unique almost

periodic in 2-distribution mild solution to

dY(t) = AY(t)dt+F1(t,Y(t))dt+G1(t,Y(t))dW(t), t ∈ R. (4.22)

Then X has the decomposition

X = Y +Z, Z ∈ E
(
R,L2(P,H2),µ

)
.

The proof of this theorem is inspired from [9, Theorem 4.4], which is the analogous
result for SDEs with µ-pseudo almost periodic coefficients.
Proof of Theorem 4.1.6 The existence and properties of Y are guaranteed by Theorem
4.1.1.
As in Theorem 4.1.1, the existence and uniqueness of the mild solution X to (4.1) are
proved using the classical method of the fixed point theorem for the contractive operator
Γ on CUB

(
R,L2(P,H2)

)
defined by

ΓX(t) =
∫ t

−∞
T(t−s)F

(
s,X(s)

)
ds+

∫ t

−∞
T(t−s)G

(
s,X(s)

)
dW(s).

The solution X defined by (4.2) is thus the limit in CUB
(
R,L2(P,H2)

)
of a sequence (Xn)

with arbitrary X0 and, for every n, Xn+1 = Γ(Xn). To prove that X is µ-pseudo almost
periodic in 2-distribution, we choose a special sequence. Set

X0 = Y, Xn+1 = Γ(Xn), Zn = Xn−Y, n∈ N.

Let us prove by induction that each Zn is in E
(
R,L2(P,H2),µ

)
. We use some arguments

of the proof of [16, Theorem 5.7].
We have, for every n∈ N and every t ∈ R,

Zn+1(t) =ΓXn(t)−Y(t)

4Let us mention here that in the context of µ-pseudo almost periodicity (resp. µ-pseudo almost
automorphy), assuming that F1 and G1 satisfy the same growth and Lipschitz conditions as F is not
necessary, as already done in [9]. Indeed, assume that F is L-Lipchitz. Set, for each fixed x,y ∈ H1,
and t ∈ R, F̂(t,x,y) := ‖F(t,x)−F(t,y)‖. From the following rewrite of F̂(t,x,y) : F̂(t,x,y) = F̂1(t,x,y) +(
F̂(t,x,y)− F̂1(t,x,y)

)
, and the µ-ergodicity of the mapping[

t 7→ H(t,x,y) := F̂(t,x,y)− F̂1(t,x,y)
]
,

we have F̂(.,x,y) ∈ PAP(R,H2,µ). In view of the uniqueness of the previous decomposition (under Condi-
tion (H)), we deduce that

{
F̂1(t,x,y), t ∈ R

}
⊂
{

F̂(t,x,y), t ∈ R
}

(the closure of the range of F̂). Conse-
quently, for all t ∈ R,

F̂1(t,x,y)≤ sup
t∈R

F̂(t,x,y)≤ L‖x−y‖

from which we conclude that F1 is L-Lipschitz.
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=
∫ t

−∞
T(t−s)

(
F(s,Xn(s))−F(s,Y(s))

)
ds

+
∫ t

−∞
T(t−s)

(
G(s,Xn(s))−G(s,Y(s))

)
dW(s)

+
∫ t

−∞
T(t−s)

(
F(s,Y(s))−F1(s,Y(s))

)
ds

+
∫ t

−∞
T(t−s)

(
G(s,Y(s))−G1(s,Y(s))

)
dW(s)

=
∫ t

−∞
T(t−s)

(
F(s,Xn(s))−F(s,Y(s))

)
ds

+
∫ t

−∞
T(t−s)

(
G(s,Xn(s))−G(s,Y(s))

)
dW(s)

+
∫ t

−∞
T(t−s)F2(s,Y(s))ds+

∫ t

−∞
T(t−s)G2(s,Y(s))dW(s)

=J1(t)+J2(t)+J3(t).

Assume that Zn ∈ E
(
R,L2(P,H2),µ

)
. Since E

(
R,L2(P,H2),µ

)
⊂ ESq

(
R,L2(P,H2),µ

)
, we

have by the Lipschitz condition (H4),(
E‖F(s,Xn(s))−F(s,Y(s)‖2)1/2 ≤ K(s)

(
E‖Zn(s)‖2)1/2

, ∀s∈ R.

The same inequality holds for G. Thus, using Hölder’s inequality and Lemma 4.1.5, we
get

1
µ([−r, r])

∫
[−r,r]

(
E‖J1(s)‖2

)1/2

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(
E
∥∥∥∥∫ t

−∞
T(t−s)

(
F(s,Xn(s))−F(s,Y(s))

)
ds

∥∥∥∥2)1/2

dµ(t)

≤ 1

(δ )1/2

1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−δ (t−s)K2(s)E‖Zn(s)‖2 ds

)1/2

dµ(t)

→ 0 when r →+∞,

and

1
µ([−r, r])

∫
[−r,r]

(
E‖J2(s)‖2

)1/2

dµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

(
E
∥∥∥∥∫ t

−∞
T(t−s)

(
G(s,Xn(s))−G(s,Y(s))

)
dW(s)

∥∥∥∥2)1/2

dµ(t)

≤ (trQ)1/2 1
µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−2δ (t−s)K2(s)E‖Zn(s)‖2 ds

)1/2

dµ(t)

→ 0 when r →+∞.
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Hence, J1(.) and J2(.) are in E
(
R,L2(P,H2),µ

)
. To prove that Zn+1 is in E

(
R,L2(P,H2),µ

)
,

there only remains to show that the process J3(.) belongs to E
(
R,L2(P,H2),µ

)
. As Y is

almost periodic in distribution, the family (Y(u+ .))u∈R is uniformly tight in Ck(R,H2).
In particular, for each ε > 0 there exists a compact subset Kε of Ck(R,H2) such that, for
every u∈ R,

P{Y(u+ .) ∈Kε} ≥ 1− ε,

which implies that, for every ε > 0, there exists a compact subset Kε of H2 such that, for
every u, t ∈ R,

P{(∀s∈ [t, t +1]); Y(u+s) ∈ Kε} ≥ 1− ε.

In particular, for u = 0, we obtain, for every t ∈ R,

P{(∀s∈ [t, t +1]); Y(s) ∈ Kε} ≥ 1− ε. (4.23)

Let Ωε,t be the measurable subset of Ω on which (4.23) holds. By compactness of Kε ,
we can find a finite sequence y1, . . . ,yn(ε) such that

Kε ⊂ ∪n(ε)
i=1 B(yi ,ε),

and we get, using (4.23), for every t ∈ R,

sup
s∈[t,t+1]

E
(

min
1≤i≤n(ε)

(
1Ωε,t ‖Y(s)−yi‖2))< ε. (4.24)

Note that F2 = F−F1 and G2 = G−G1 satisfy similar conditions as (H4) and (H3).
We have then by Itô’s isometry

1
µ([−r, r])

∫
[−r,r]

E
∥∥∥∥∫ t

−∞
T(t−s)F2(s,Y(s))ds+

∫ t

−∞
T(t−s)G2(s,Y(s))dW(s)

∥∥∥∥2

dµ(t)

≤ 2δ−1

µ([−r, r])

∫
[−r,r]

∫ t

−∞
e−δ (t−s) E‖F2(s,Y(s))‖2dsdµ(t)

+
2trQ

µ([−r, r])

∫
[−r,r]

∫ t

−∞
e−2δ (t−s) E‖G2(s,Y(s))‖2 dsdµ(t)

=J1
3(r)+J2

3(r).

Let us deal with the term J1
3(r). We have

J1
3(r)≤ 2δ−1

µ([−r, r])

∫
[−r,r]

(
+∞

∑
k=1

∫ t−k+1

t−k
e−δ (t−s) E‖F2(s,Y(s))‖2ds

)
dµ(t)

≤ 4δ−1

µ([−r, r])

∫
[−r,r]

+∞

∑
k=1

e−δ (k−1)
∫ t−k+1

t−k
E
(

min
1≤i≤n

(
1lΩε,t ‖F2(s,Y(s))−F2(s,yi)‖2))dsdµ(t)

+ max
1≤i≤n

4δ−1

µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−δ (t−s) E

(
‖F2(s,yi)‖2)ds

)
dµ(t)

+
4δ−1

µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−δ (t−s) E

(
1lΩc

ε,t
‖F2(s,Y(s))‖2)ds

)
dµ(t)

=I1(r)+ I2(r)+ I3(r).
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Using the Lipschitz condition (H4) and the estimation (4.24), we obtain

I1(r)≤
4δ−1

µ([−r, r])

∫
[−r,r]

(
+∞

∑
k=1

e−δ (k−1) sup
t∈R

∫ t+1

t
K2(s)E

(
min

1≤i≤n

(
1lΩε,t ‖Y(s))−yi‖2))ds

)
dµ(t)

≤
4δ−1‖K‖2

S2

1−e−δ
ε.

Thanks to the ergodicity of F2 and Lebesgue’s dominated convergence theorem, one
obtains, for any r > 0,

I2(r) = max
1≤i≤n

4δ−1

µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−δ (t−s) E

(
‖F2(s,yi)‖2)ds

)
dµ(t)

≤ max
1≤i≤n

4δ−1

µ([−r, r])

∫
[−r,r]

(
+∞

∑
k=1

e−δ (k−1)
∫ t−k+1

t−k
E
(
‖F2(s,yi)‖2)ds

)
dµ(t)

= max
1≤i≤n

4δ−1

µ([−r, r])

∫
[−r,r]

(
+∞

∑
k=1

e−δ (k−1)
∫ t−k+1

t−k
E
(
‖F2(s,yi)‖2)ds

)
dµ(t)

=
+∞

∑
k=1

e−δ (k−1) max
1≤i≤n

4δ−1

µ([−r, r])

∫
[−r,r]

(∫ 1

0
E
(
‖F2(t−k+s,yi)‖2)ds

)
dµ(t).

Arguing as in the proof of Lemma 4.1.5, we deduce that limr→∞ I2(r) = 0. On the other
hand, by Condition (H3) and the uniform integrability of the family (‖Y(t)‖2)t∈R, we get

I3(r) =
4δ−1

µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−δ (t−s) E

(
1lΩc

ε,t
‖F2(s,Y(s))‖2)ds

)
dµ(t)

≤ 4Mδ−1

µ([−r, r])

∫
[−r,r]

(∫ t

−∞
e−δ (t−s) E

(
1lΩc

(ε,t)
(1+‖Y(s))‖)2)ds

)
dµ(t)

≤ 8Mδ−1

µ([−r, r])

∫
[−r,r]

(
+∞

∑
k=1

e−δ (k−1)
(

P
(
Ωc

ε,t

)
+
∫ t−k+1

t−k
E
(

1lΩc
ε,t
‖Y(s))‖2)ds

))
dµ(t)

≤ 8Mδ−1ε

1−e−δ
.

As ε is arbitrary, we deduce from the previous estimations on I1(r), I2(r) and I3(r), that
limr→∞ J1

3(r) = 0. In the same way, we can estimate the term J2
3(r). We then easily see

that limr→∞ J2
3(r) = 0. Consequently, Zn+1 ∈ E

(
R,L2(P,H2),µ

)
.

So we have shown that the sequence (Zn) lies in E
(
R,L2(P,H2),µ

)
.

Now, the sequence (Xn) converges to X in CUB
(
R,L2(P,H2)

)
, thus (Zn) converges to

Z := X−Y in CUB
(
R,L2(P,H2)

)
. Let ε > 0, and let n∈ N be such that

sup
t∈R

(
E‖Z(t)−Zn(t)‖2)1/2 ≤ ε.

We have
1

µ([−r, r])

∫
[−r,r]

(
E‖Z(t)‖2)1/2

dµ(t)≤ 1
µ([−r, r])

∫
[−r,r]

(
E‖Z(t)−Zn(t)‖2)1/2

dµ(t)
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+
1

µ([−r, r])

∫
[−r,r]

(
E‖Zn(t)‖2)1/2

dµ(t)

≤ε +
1

µ([−r, r])

∫
[−r,r]

(
E‖Zn(t)‖2)1/2

dµ(t).

which proves that Z ∈ E
(
R,L2(P,H2),µ

)
, since ε > 0 is arbitrary.

4.2 Comments and concluding remarks

When the function g in (4.1) is equal to zero, we retrieve a semilinear (deterministic)
differential equation in the Banach space L2(P,H2) :

u′(t) = Au(t)+ f (t,u(t)), t ∈ R. (4.25)

An extensive literature (see for e.g. [39,38,40,59,53,89]), is devoted to the problem of
the existence and uniqueness of a bounded (µ-pseudo) almost periodic mild solution to
(4.25) in a Banach space X. The adopted approach is based on superposition theorems
in the Banach space SpAP(R,X) (or SpPAP(R,X,µ)) combined with the Banach’s fixed-
point principle, applied to the nonlinear operator

(Γu)(t) =
∫ t

−∞
T(t−s) f (s,u(s))ds.

To our knowledge, all existing results use the fact that Γ maps AP(R,X) into itself, but
Γ does not map SpAP(R,X) into AP(R,X) nor into SpAP(R,X) (see in particular [40,59,
53, 89]). The proposed proofs may be summarized as follows : if u∈ AP(R,X), then u
satisfies the compactness condition (Com) of Subsection ??, and u∈ SpAP(R,X). From
the existing superposition theorems (see e.g. [40, Theorem 2.1]) combined with Condi-
tion (Lip), it follows that F(.) := f (.,u(.)) ∈ SpAP(R,X), and then (Γu)(.) =

∫ .
−∞ T(.−

s)F(s)ds∈ AP(R,X). This obviously shows the existence (and uniqueness) of an almost
periodic mild solution to (4.25), but it does not exclude the possibility of existence
of a purely Stepanov almost periodic solution. The main difficulty in showing the no-
nexistence of a purely Stepanov almost periodic bounded solution with the tools used
in the literature (see for example [40]), arises from the imposed compactness condi-
tion (Com) in the superposition theorem of Stepanov almost periodic functions, which
seems strong enough in SpAP(R,X). Thanks to Theorem 2.2.2, it is easy to see that un-
der Condition (Lip), the operator Γ maps SpAP(R,X) into AP(R,X). This shows that the
obtained bounded solution cannot be purely Stepanov almost periodic.
Now, we focus on the following problem : can we expect to have a similar conclusion
if we replace the assumption that f is Stepanov almost periodic by the assumption that
f is almost periodic in Lebesgue measure ? Obviously, the answer depends on the Bohl-
Bohr-Amerio Theorem, see e.g. [52, p. 80], for functions which are almost periodic
in Lebesgue measure. What we need is to solve first another problem, namely, does the
boundedness of the indefinite integral of a function which is almost periodic in Lebesgue
measure imply its Bohr almost-periodicity ? The answer to this question is negative as
shown by the following example :
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Example 4.2.1. It is well-known that the Levitan function H : R→ R, defined by

H(t) = sin

(
1

g(t)

)
,

where
g(t) = 2+cos(t)+cos(

√
2t)

is a bounded Sp-almost periodic function but not Bohr-almost periodic (see e.g. [52]).
Let’s denote by h its derivative. We have

h(t) = cos

(
1

g(t)

)(
sin(t)+

√
2sin(

√
2t)

g2(t)

)
. (4.26)

By the Bohl-Bohr Theorem, the derivative function h cannot be Stepanov almost periodic
(see [5]), and consequently, the function 1/g cannot be Stepanov almost periodic. But
one can easily observe by taking into account 2. in Remark 1.2.3, that h is in Sκ(R) as
a product of Sκ(R)-functions.

In order to answer the first problem, we give, in the following, a simple affine scalar
equation with purely almost periodic in Lebesque measure coefficient. We see that the
unique bounded solution is not Bohr-almost periodic (but it is purely Stepanov almost
periodic).

Example 4.2.2. Consider the affine differential equation

x′(t) =−x(t)+h(t), t ∈ R, (4.27)

where h is given by (4.26). The unique bounded solution to (4.27) is given by :

x(t) =
∫ t

−∞
e(s−t)h(s)ds= sin

(
1

g(t)

)
+
∫ t

−∞
e(s−t) sin

(
1

g(s)

)
ds.

The boundedness of x follows from

|x(t)| ≤
∣∣∣∣sin

(
1

g(t)

)∣∣∣∣+∫ t

−∞
e(s−t)

∣∣∣∣sin

(
1

g(s)

)∣∣∣∣ds≤ 2, ∀t ∈ R.

But x is not Bohr-almost periodic, as it is the sum of the purely Stepanov almost periodic
function H(t) = sin

(
1

g(t)

)
and a Bohr almost periodic function.

To move towards the consequences obtained by Andres and Pennequin [5, Consequence 1,
p. 1667 and Consequence 4, p. 1679], this example shows (in addition) that one can
obtain the existence and the uniqueness of a bounded purely Stepanov almost periodic
solution when the coefficients are purely almost periodic in Lebesgue measure.
This simple result can open new directions about the problem of existence of purely Ste-
panov almost periodic solutions, in both stochastic and deterministic cases.
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Résumé

Dans le cadre de cette these, nous avons comparé différents concepts et de pseudo
presque automorphie (et ses variantes) pour les processus stochastiques : en probabi-
lité, en moyenne quadratique et en distribution dans divers sens. Nous avons montré
par un contre-exemple que la ( pseudo ) presque automorphie en moyenne quadratique
est une propriété qui est trop forte pour les équations différentielles stochastiques. En-
fin, nous avons considéré deux EDS semi linéaires, une avec des coefficients presque
automorphes et la seconde avec des coefficients pseudo presque automorphes , et nous
avons montré l’ existence et l’unicité d’une solution mild qui est presque automorphe en
distribution dans le premier cas, et pseudo presque automorphe en distribution dans le
second cas.
En ce qui concerne la classe des fonctions Stepanov presque périodiques, nous avons
déjà énoncé et démontré un nouveau théorème de superposition de fonctions Stepanov
presque périodiques. En suite, on s’est attelé à démontrer que les EDS considérées dans
notre première étude mais avec des coefficients Stepanov (pseudo) presque périodiques
admettent des solutions mild bornées en moyenne quadratique et sont Bohr (pseudo)
presque périodiques en distribution.

Abstract

In this thesis, we compared different concepts and pseudo almost automorphy (and its
variants) for stochastic processes : probability, quadratic mean and distribution in vari-
ous directions. We have shown by a counterexample that the (pseudo) almost automor-
phic in quadratic mean is a property which is too strong for the stochastic differential
equations. Finally, we considered two semi - linear EDSs, the first equation with almost
automorphic coefficients and the second one with pseudo - almost automorphic coef-
ficients, and we have shown the existence and uniqueness of a mild solution which is
almost automorphic in distribution In the first case, and pseudo almost automorphic in
distribution in the second case.
As for the class of almost periodic Stepanov functions, we have already stated and
demonstrated a new theorem of superposition of almost periodic Stepanov functions.
We then proceeded to demonstrate that the EDS considered in our first study but
with almost periodic Stepanov (pseudo) coefficients admit solutions mild bounded on
quadratic mean and are Bohr (pseudo) almost periodic in distribution.
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