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Notations and acronyms

1. Acronyms :
– LTI : Linear Time Invariant .
– LPV : Linear Parameter Varying .
– LMI : Linear Matrix Inequality .
– BMI : Bilinear matrix inequality .
– SLF : Switching Lyapunov Function.
– GAS : Global Asymptotically Stable.
– CQLF : Commun Quadratic Lyapunov Function.

2. Notations :
– R is the set of real numbers ;
– Rn is the vector space of dimension n built on the body of the real ;
– (⋆) is used for blocks induced by symmetry in a matrix or in a matrix inequality ;
– AT represents the transposed matrix of A ;
– A−T represents the inverse of matrix AT ;
– Rn×m is the set of all real matrices of n rows and m columns ;
– I is an identity matrix of appropriate size and Ir represents a matrix of identity

of dimension r
– The value 0 represents a zero matrix of appropriate dimension, and 0(n,m) desi-

gnates null matrix with n rows and m columns ;
– For a square matrix S, S > 0 (S < 0) means that this matrix is positive definite

(defined negative) ;
– A ≤ B means that the matrix B−A is semi-definite positive ;
– He(A) represents the sum A+AT .
– ‖.‖ is the usual Euclidean norm ;
– ls

2 is the space of the summable square sequences, i.e.,

ls
2 = {x = (x(k))k ⊂ Rs,

∞

∑
k=0

‖x(k)‖2 <+∞}

with the norm ‖x‖ls
2
=
(

∑∞
k=0 ‖x(k)‖2) 1

2 ;
– diag(A1, . . . ,Ai) is the block diagonal matrix with A1, . . . ,Ai on its main diagonal ;

– es(i) = (0, . . . ,
ith︷︸︸︷
1 , . . . ,0)︸ ︷︷ ︸

s composantes

∈ Rs, s ≥ 1 is a vector of the canonical basis of Rs.

– C 1(Rn) ) is the set of continuously differentiable functions,
– ImB is the subspace spanned by columns of matrix B,
– rσ is the joint spectral radius.
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General Introduction

Preamble
In this thesis, we are concerned with a linear matrix inequality (LMI)- based approach
studying an observer-based control problem for two classes of systems :

1. nonlinear discrete-time interconnected systems with nonlinear interconnections.
2. discrete-time linear systems in presence of parameter uncertainties and ℓ2-bounded

disturbances.
Due to its importance, the observer-based stabilization problem for systems with para-
meter uncertainties has aroused interest in the automatic control community, both in
continuous and discrete-time cases [48], [7]. Many efforts have been devoted to robust
stability and stabilization of linear and nonlinear systems with uncertain parameters
for the following reason : the presence of uncertainties can lead to instability and poor
performance on a controlled system. For a recent literature, we refer readers to [9]
and [91]. These uncertainties may be due to the following reasons, which constitute
one of the main motivations of this work : (1) variations in parameters with varying
environmental conditions, for example the change in the tire-floor friction coefficient
due to ice or snow on a winter road ; (2) changes in parameters over time (for example,
the slow and constant change in tire stiffness over the life of the tir ; (3) variations in
parameters due to the nonlinear nature of the model (for instance, the model of a qua-
druple tank process provided in Chapter 3 (Example 3). A framework providing partial
solutions to some classes of systems has been established by using LMI approaches. Ho-
wever, due to the complexity of the problem, until now, it is not yet completely solved.
For discrete-time systems, one can mention the work of Daniel and Guoping [10]
dealing with the equality constraint based method. Likewise, Ibrir and his coauthors
have considered the same problem and used different techniques to linearize the bili-
near terms, such as the decoupling technique [28] and the slack variables based me-

1



General Introduction

thod [27, 26]. A recent development related to this topic has been given in [37, 35]
and [17], where the key idea consists in using the Young’s inequality in a convenient
way. Contrarily to the equality constraint based approach, where the equality constraint
turns out to be equivalent to a particular choice of the Lyapunov matrix [10], the
Young’s inequality-based approach avoids this conservative equality constraint [37,35]
and [9]. Although the Young’s relation based technique provides less conservative LMI
conditions, nevertheless it has a drawback due to the a priori choice of some scalar va-
riables coming from the use of the Young’s inequality before solving the LMI conditions.
To cope with this issue, many researchers have addressed the robust stabilization pro-
blem by using constant gain Luenberger observers for linear systems with parametric
uncertainties. For an overview of the literature, we refer the reader to [22], [30], [29],
[69], [76], [16], [26], [81], [50] and [10], [55], [8], [56], [14], and the references the-
rein. Unfortunately the results remain conservative and the problem still remains open
until now. This motivates us to extend the established results from [91], for designing
robust observer-based controllers for linear discrete-time systems with parameter uncer-
tainties. Indeed, the proposed approach is inspired from the classical two-step method
introduced in [70] and the new two-step method given in [91]. The new variant of the
classical two-step LMI approach we propose works as follows. In the first step, we use a
slack variable technique to solve the optimization problem resulting from stabilization
by a static state feedback. In the second step, a part of the slack variable obtained is in-
corporated in the H∞ observer-based stabilization problem, to calculate simultaneously
the Lyapunov matrix and the observer-based controller gains. For interconnected non-
linear systems, many important critical infrastructures such as energy, transport, and
water networks are inherently complex interconnected nonlinear systems. The opera-
tion of these systems requires the ability to stabilize in the face of nonlinearities and
uncertainties. Over the last decades, decentralized control strategies for interconnected
systems have gained significant attention and become the subject of many research ac-
tivities (see, for example, [63], [41], [42], [49], [58], [66], [72], [77], [78], [85] and
the references therein). An important motivation for the design of decentralized control
schemes is that the information exchange between subsystems is not needed ; thus, the
individual subsystem controllers are simple and use only locally available information.
However, in most of the decentralized state feedback control schemes the state variables
are not available or costly to measure. Therefore, it is necessary to design a state ob-
server in order to reconstruct the individual states of each subsystem. In this regard,
considerable attention has been focused on the design of state observers for intercon-
nected systems [1], [15], [53], [67], [68]. Especially, for the case of linear sub-systems
coupled with nonlinear interconnections [31], [32], [53], [68], [71], [74], [84], [87],
[75]. On the other hand, most efforts have been focused on the decentralization by

using the powerful optimization tool of linear matrix inequalities (LMIs) to get suffi-
cient conditions guaranteeing the asymptotic stability of the closed-loop system. Howe-
ver, even for the linear sub-systems case, the stability analysis often leads to bilinear
matrix inequalities (BMIs) which are not solvable numerically. Hence, numerous LMI
methods have been established in the literature. Each method provides a new LMI tech-
nique. For instance, some techniques are based on the use of the classical two-steps
method [68], [93] ; others use Riccati equations [53], and finally some are based on

2



the use of strong equality constraint [32]. It turned out that all these techniques provide
conservative LMI synthesis conditions. In this thesis, we consider the problem of desi-
gning decentralized observer-based controllers in the convex optimization context for
nonlinear interconnected discrete-time systems. The proposed method uses the tools of
previous work in [18], [89] and [90]. We have proved that for discrete-time systems,
the introduction of a slack variable G, in a triangular form, avoids many bilinear terms
and leads to simpler and less conservative LMI conditions. Although this idea seems
simple and inspired by [3], [2], [4], but it leads to better LMIs from feasibility point
of view. This is the first time this idea is used to solve the decentralized observer-based
stabilization problem for interconnected systems. This novel idea may open some new
directions in this area to solve more complicated control design problems. On the other
hand, notice that this idea of using a matrix G of triangular form is one of the main
the contributions of this thesis but it is not the only one. There is a chain of new ma-
thematical developments based on well known tools. This thesis is organized in three
chapters that are structured as follows : Chapter 1 : The first chapter is a literature sur-

vey. The general stability problem is recalled in order to establish fundamental concepts
that are necessary to the comprehension of manuscript. Then, we present the results of
some recent studies tackling the same type of problem which are parts of the compa-
rison in the following chapters. The rest of the chapters constitutes our contributions.

Chapter 2 : This chapter presents a new decentralized observer-based controller design

method for nonlinear discrete-time interconnected systems with nonlinear interconnec-
tions. Thanks to some algebraic transformations and the use of a new variant of Young’s
inequality, an LMI-based approach is provided to compute the observer-based control-
ler gain matrices. Furthermore, the congruence principle is used under a judicious and
new manner leading to include additional slack variables and to cancel some bilinear
matrix coupling. The resulted final LMI conditions are less conservative compared to
the techniques existing in the literature. The effectiveness of proposed methodology
is shown through two illustrative examples. Chapter 3 : This chapter addresses the

problem of observer-based stabilization of discrete-time linear systems in presence of
parameter uncertainties and ℓ2-bounded disturbances. We propose a new variant of the
classical two-step LMI approach. In the first step, we use a slack variable technique to
solve the optimization problem resulting from stabilization by a static state feedback. In
the second step, a part of the slack variable obtained is incorporated in the H∞ observer-
based stabilization problem, to calculate simultaneously the Lyapunov matrix and the
observer-based controller gains. The effectiveness of the proposed design methodology
is demonstrated using the dynamic model of a quadruple-tank flow process system. Ad-
ditional numerical illustrations are presented to show the superiority of the proposed
Modified Two-Step Method (MTSM) from a LMI feasibility point of view.
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CHAPITRE

1
Generalities and brief state of the

art on observer-based control of un-
certain nonlinear systems

1.1 Introduction

This first chapter is devoted to the presentation of both the necessary and crucial re-
minders for the comprehension of this script, and previous literature of the different
LMIs synthesis methods by observer-based controller for some classes of linear and
interconnected nonlinear discrete-time systems with parameters uncertainties. First, a
reminder of the stability (Lyapunov’s direction) is given. We also state briefly the cri-
teria of controllability, observability and stabilizability of systems to explore. We move
to present the LMI approach, depicting the rationale of using it. Finally, we close this
chapter exposing the results of some recent studies tackling the same class of systems
which are parts of the comparison in the following chapters. Given the richness of the
literature, we have contented ourselves with presenting the definitions that will help
the understanding of this work.

1.2 Mathematical Model For Nonlinear Systems

In this section, the stability analysis of a system, the dynamics of which are represented
in time domain by nonlinear time-invariant ordinary differential equations, is conside-
red. A nonlinear system may mathematically be represented in the following form :

ẋ1 = f1(x1,x2, · · · ,xn,u1,u2, · · · ,um, t),
ẋ2 = f2(x1,x2, · · · ,xn,u1,u2, · · · ,um, t),
... =

...
ẋn = fn(x1,x2, · · · ,xn,u1,u2, · · · ,um, t),

(1.1)
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where ẋi, i = 1,2, · · · ,n denotes the derivative of xi (the ith state variable) with respect
to the time variable t and u j, j = 1,2, · · · ,m denote the input variables. Equation (1.1)
could be written in the following state-space form :

ẋ = f (x,u, t), (1.2)

where

x =


x1
x2
...

xn

 u =


u1
u2
...

um

 and f (x,u, t) =


f1(x,u, t)
f2(x,u, t)

...
fn(x,u, t)

 .

The measurable outputs (a p-dimensional vector) are functions of the states, the inputs,
and the time such that :

y1 = h1(x1,x2, · · · ,xn,u1,u2, · · · ,um, t),
y2 = h2(x1,x2, · · · ,xn,u1,u2, · · · ,um, t),
... =

...
yp = hn(x1,x2, · · · ,xn,u1,u2, · · · ,um, t),

(1.3)

or, in the following general form :

y = h(x,u, t). (1.4)

Equations (1.2) and (1.4) together are called the mathematical dynamic equations, or :

ẋ = f (x,u, t).
y = h(x,u, t). (1.5)

These equations could be simulated using for example operational amplifiers (integra-
tors) as shown in Figures 1.1 and 1.2 :
It seems the dynamic systems could be simulated to obtain their responses, having signal
generators fi and hi. However, there is a drawback with this approach, since for each ini-
tial condition the simulation must be repeated. To have the actual response of dynamic
systems, (1.2) and (1.4), the system must be at least locally Lipschitz in x,∀x ∈ D ⊂ Rn

and continuous in t, for every t. Throughout this thesis, wherever this type of dynamic
equation occurs, the satisfaction of these conditions is assumed. Although in theory, the
simulation could be proposed as a solution for the stability analysis, it is impractical or
impossible, since in nonlinear system studies, every initial condition should be used. For
more details, we refer the readers to [52].
Special Cases : If a system is a feedback system, then the system’s inputs would be
functions of the states, thus :

u ≜ g(x, t) (1.6)

Substituting (1.6) into (1.5) yields the following unforced dynamic equations :

ẋ = f (x,u, t) = F(x, t)≜ f (x, t), y = h(x,u, t) = H(x, t)≜ h(x, t), (1.7a)
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FIG. 1.1: System dynamic simulation (a) [52]

∫
f(x, u, t) h(x, u, t)

u

x(0)

y
xẋ

FIG. 1.2: System dynamic simulation (b)

If the dynamic system (1.7a) is time invariant, then the system is called an autonomous
(either forced or unforced) system.

ẋ = f (x,u), or f (x)
y = h(x,u), or h(x). (1.7b)
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1.2.1 Uncertainties, Robusteness

The primary concern in command theory has always been the stability that was intro-
duced by Routh and Hurwitz in the 19th century, then explored in detail by Lyapunov
whose work is still used today. In addition to stability, a controlled system must meet
various performance objectives such as robustness with respect to uncertainties that can
affect the system. Indeed, depending on the type of information available a priori, we
can distinguish two types of uncertainties :
– Parametric uncertainties : coming from modeling or measurement errors, and de-

pendent on a parameter, and for which the mathematical model is well defined. In
addition, depending on the mode of variation of the parameter, we can distinguish

1. Polytopic uncertainties where the variant parameters are assumed to belong to
intervals or convex sets, so that the uncertainty matrices are written as convex
combinations of several matrices.

2. Uncertainties structured in bounded norms where we have no information on
the domain of the variant parameters, but, the matrices containing the uncertain
parameter are subjected to boundedness constraints in norm.

– Unstructured uncertainties : these are the measurable Lebesgue functions, where only
the possible amplitudes of the uncertainties are assumed to be known. Note that the
target objective in the event of the presence of this kind of ℓ2-bounded perturbations
consists in optimizing the response of the system to the effect of a destabilizing in-
put signal. Therefore, we get the robustness criteria H2 and H∞. Indeed, the norm
H∞ or the gain L2 is the maximum amplification that the system can exert on the
energy of the input signal. In other words, this standard favors the pulse for which
the gain is maximum. If we seek to minimize such a standard, it means that we are
interested in the most unfavorable frequency. The minimization effort therefore re-
lates to this "worst" frequency and the resulting level of performance is then a fortiori
guaranteed for other frequencies. It is quite different for the norm H2. It does not
favor any frequency but rather reflects an energy of the outputs distributed over all
the frequencies. To minimize it means to carry the effort of minimization on all the
frequencies.
Indeed, the norm H∞ is none other than the norm ‖.‖∞ of the transfer matrix G. If
we know the expression of the maximum singular value of the transfer matrix, we
therefore have

‖G‖∞ = sup
ω

‖G(iω)‖2 = sup
ω

σ(G(iω)). (1.8)

For the practical cases encountered in automatic, if we assume that the signals are at
finite energies (i.e. are therefore in L2). So, if we suppose that Z is the image of w by
an operator R, then we can define the gain L2 of R by

GL2(R) = sup
w∈L2

‖Z‖2

‖w‖2
(1.9)

or

‖X‖2 =
( 1

2π

∫ ∞

−∞
X(iω)∗X(iω)dω

)1/2
(1.10)
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=
(∫ ∞

0
x(t)∗x(t)dt

)1/2
(1.11)

=
(∫ ∞

0
‖x(t)‖2

2dt
)1/2

(1.12)

(1.13)

The gain GL 2(R) is in fact the greatest gain in energy associated with the operator
R. The norm H∞ of a transfer matrix therefore corresponds to the gain L2 from the
system. The general problem of the command H∞, is then stated as follows :
At a performance level γ guaranteed for the standard H∞, the command problem H∞
corresponds to determining a stabilizing command under the optimality constraint
H∞ of level γ : ‖G‖∞ < γ.

1.2.2 An example of uncertain systems

Consider the mass-spring-damper system shown in Figure 1.3. One end of the spring

FIG. 1.3: Mass-Spring-Damper system [40]

and damper is fixed on the wall. The parameter m is the mass, b the viscous friction
coefficient of the damper, and k the spring constant. y(t) is the displacement of massm
and u(t) the external force. The state equation of this system is shown in Eq. (1.14)
where the performance output is the displacement y :

ẋ =
[

0 1
−k
m − b

m

]
x+
[

0
1
m

]
u, x =

[
y
ẏ

]
. (1.14)

Example 1.2.1 (Norm-Bounded Parametric System, [40]). Recall the Mass-Spring-
Damper system (1.14). Note that a feature of the coefficient matrices is that all uncertain
parameters are in the second row. This makes it possible for us to put the uncertain para-
meters into a matrix and treat them as a matrix uncertainty. Set the nominal parameters
as (m0,k0,b0); the parameters can be written as

k
m

=
k0

m0
(1+ω1δ1),

b
m

=
b0

m0
(1+ω2δ2),

1
m

=
1

m0
(1+ω3δ3), |δi| ≤ 1.

Due to [
0 1

− k
m − b

m

]
=

[
0 1

− k0
m0

− b0
m0

]
+

[
0 0

− k0
m0

ω1δ1 − b0
m0

ω2δ2

]
7
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=

[
0 1

− k0
m0

− b0
m0

]
+

[
0
−1

]
[δ1 δ2 δ3]


k0
m0

ω1 0
0 b0

m0
ω2

0 0


[

0
1
m

]
=

[
0
1

m0

]
+

[
0
1

]
[δ1 δ2 δ3]

 0
0

1
m0

ω3

 ,
the state equation can be rewritten as

ẋ = (A+B1∆C1)x+(B2 +B1∆D12)u

where ∆ = [δ1 δ2 δ3] and

A =

[
0 1

− k0
m0

− b0
m0

]
, B1 =

[
0
1

]
, B2 =

[
0
1

m0

]
, C1 =−


k0
m0

ω1 0
0 b0

m0
ω2

0 0

 , D12 =

 0
0

1
m0

ω3

 .
Naturally, the size of uncertainty vector δ should be measured by vector norm. So, this
system is called a norm-bounded parametric system.

1.3 Lyapunov Theory for Discrete Time Autonomous Sys-
tems

There are different stability analysis methods for both linear and nonlinear systems that
can be found in classical literature of dynamical systems. This section contains a collec-
tion of Lyapunov related theorems for discrete time systems. For the demonstration of
the results presented in this section, we refer to the technical report [5], largely inspired
by [19].

Définition 1.1. A function f (t,x) is said to be Lipschitz in (t,x) if

‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖, (1.15)

∀(t,x),(t,y) in a neighbourhood of (t;x). The constant L is called Lipschitz constant.
Consider f (t,x) = f (x) independent of t.
– f is locally Lipschitz on a domain D ⊂ Rn open and connected if each point in D has

a neighbourhood D0 such that (1.15) is satisfied with Lipschitz constant L0.
– f is Lipschitz on a set W if (1.15) is satisfied for all points in W with the same constant

L. A function f locally Lipschitz on D is Lipschitz on every compact subset of D.
– f is globally Lipschitz if it is Lipschitz on Rn.
If f (t,x) depends on t, the same definitions hold, provided that (1.15) holds uniformly
in t for all t in an interval of time (that is the Lipschitz constant do not vary due to the
time).

A continuously differentiable function on a domain D is also Lipschitz in the same do-
main. Let us Consider a system of difference equations{

x(k+1) = f (x(k)), x ∈ U
f (0) = 0 (1.16)
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where U is a neighbourhood of the origin ∈Rn and f : Rn → Rn is a continuous function.
For each p ∈ U, let us denote by f k(p) the value at time k of the solution of (1.16)
starting at p. We recall that

f k(p) = f ( f k−1(p)), f 0(p) = p.

We recall that Lypschitz condition on f is sufficient to guarantee existence and unique-
ness of solution for each initial state p ∈ U.
In general we are interested in point x0 ∈ U such that f (x0) = x0. They are usually called
equilibrium point of the system. Corresponding to each equilibrium point x0, we have
a constant solution f k(x0) = x0. of (1.16).
In what follows, suppose f (0) = 0, that is x = 0 is an equilibrium point for system (??)
(all this can be extended for an equilibrium point different from 0).

Définition 1.2. The equilibrium point x = 0 of (1.16) is
– stable if, for each ε > 0, there is δ = δ (ε) such that ‖x(0)‖< δ ⇒‖x(t)‖< ε,∀t ≥ 0.
– unstable if it is not stable.
– asymptotically stable if it is stable and δ can be chosen such that ‖x(0)‖ < δ ⇒

limt→∞ x(t) = 0.
– exponentially stable if there exist k > 0, λ > 0 and r0 > 0 such that the solutions of

the system satisfy

‖x(t)‖ ≤ k‖x(0)‖exp−λ t , ∀x(0) ∈ D0, ∀t ≥ 0. (1.17)

where D0 = {x ∈ Rn ‖x‖< r0}.

Theorem 1.3.1 (Existence of a Lyapunov function implies stability, [19]). Let x = 0
be an equilibrium point for the autonomous system

x(t +1) = f (x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Suppose there exists a function
V : D → R which is continuous and such that

V (0) = 0 and V (x)> 0,∀x ∈ D−{0} (1.18)

V ( f (x))−V (x)≤ 0,∀x ∈ D. (1.19)

Then x = 0 is stable. Moreover if

V ( f (x))−V (x)< 0,∀x ∈ D−{0}. (1.20)

then x = 0 is asymptotically stable.

Définition 1.3. A function V : D → R satisfying (1.18) and (1.19) is called a Lyapunov
function.

9
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Theorem 1.3.2 (Global asymptotic stability from Lyapunov). Let x = 0 be an equili-
brium point for the autonomous system

x(t +1) = f (x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : Rn → R be a continuous
function such that

V (0) = 0 and V (x)> 0, ∀x ∈ D−{0} (1.21)

‖x‖→ ∞ ⇒V (x)→ ∞ (1.22)

V ( f (x))−V (x)< 0,∀x ∈ D. (1.23)

then x = 0 is globally asymptotically stable.

If an equilibrium point is globally asymptotically stable, than it is the only possible
equilibrium point of the system (1.16). The following gives a condition for instability

Theorem 1.3.3. (Instability condition from Lyapunov) Let x = 0 be an equilibrium
point for the autonomous system

x(t +1) = f (x(t))

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let V : D → R be a continuous
function such that V (0) = 0 and V (x0)> 0, for some x0 with arbitrary small ‖x0‖. Let r > 0
be such that Br ⊂D and U = {x∈Br|V (x)> 0}, and suppose that V ( f (x))−V (x)> 0,∀x∈U.
then x = 0 is unstable.

Theorem 1.3.4. (Exponential stability implies existence of a Lyapunov function) Let
x = 0 be an equilibrium point for the nonlinear autonomous system

x(t +1) = f (x(t))

where f : D →Rn is continuously differentiable and D ⊂ {x ∈Rn ‖x‖< r}. Assume that the
equilibrium x = 0 is exponentially stable. Then there is a function V : D0 → R that satisfies

c1‖x‖2 ≤V (x)≤ c2‖x‖2

V ( f (x))−V (x)≤−c3‖x‖2

|V (x)−V (y)| ≤ c4‖x− y‖(‖x‖+‖y‖)

for all x,y ∈ D0 and for some positive constants c1,c2,c3 and c4.

10
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1.4 Linear systems and Linearization

Consider the linear time-invariant system

x(t +1) = Ax(t), A ∈ Rn×n. (1.24)

It has an equilibrium point in the origin x = 0. The solution of the linear system starting
from x0 ∈ Rn has the form

x(t) = Atx(0)

We have the following result on the stability of linear systems

Theorem 1.4.1. The equilibrium point x = 0 of the linear time-invariant system

x(t +1) = Ax(t), A ∈ Rn×n (1.25)

is stable if and only if all the eigenvalues of A satisfy |λi| ≤ 1 and the algebraic and geometric
multiplicity of the eigenvalues with absolute value 1 coincide. The equilibrium point x = 0
is globally asymptotically stable if and only if all the eigenvalues of A are such that λi < 1.

A matrix A with all the eigenvalues in absolute value smaller than 1 is called a Schur
matrix, and it holds that the origin is asymptotically stable if and only if matrix A is
Schur.
To use Lyapunov theory for linear system we can introduce the following candidate
V (x) = xT Px with P a symmetric positive definite matrix. It’s total difference is

V ( f (x))−V (x) = xT AT PAx− xT Px = xT (AT PA−P)x :=−xT Qx (1.26)

Using Theorem 1.3.1 we have that if Q is positive-semidefinite the origin is stable, whe-
ther if Q is positive definite the origin is asymptotically stable. Fixing a positive definite
matrix Q, if the solution of the Lyapunov equation

AT PA−P =−Q (1.27)

with respect to P is positive definite, then the trajectories converge to the origin.

Theorem 1.4.2 (Lyapunov for linear time invariant systems). A matrix A is Schur
if and only if, for any positive definite matrix Q there exists a positive definite symmetric
matrix P that satisfies (1.27). Moreover if A is Schur, then P is the unique solution of
(1.27).

Let us consider again the nonlinear model

x(t +1) = f (x(t)) (1.28)

with f : D → Rn a continuously differentiable map from D ⊂ Rn, 0 ∈ D into Rn such that
f (0) = 0. Using the mean value theorem, each component of f can be rewritten in the
following form

fi(x) =
δ fi

δx
(zi)x

11
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for some zi on the segment from the origin to x. It is valid for any x ∈ D, where the line
connecting x to the origin entirely belongs to D. We can also write

fi(x) =
δ fi

δx
(0)x+[

δ fi

δx
(zi)−

δ fi

δx
(0)]x︸ ︷︷ ︸

gi(x)

where each gi(x) satisfies

|gi(x)| ≤ ‖δ fi

δx
(zi)−

δ fi

δx
(0)‖‖x‖.

Function f can be rewritten as
f (x) = Ax+g(x)

where A = δ fi
δx (0). By continuity of δ fi

δx we have that

‖g(x)‖
‖x‖

→ 0 as ‖x‖→ 0.

Therefore, in a small neighbourhood of the origin the nonlinear system can be approxi-
mated by x(t +1) = Ax(t). The following is known as Lyapunov’s indirect method.

Theorem 1.4.3. (Linearised asympt. stable implies nonlinear asympt. stable) Let
x = 0 be an equilibrium point for the nonlinear autonomous system

x(t +1) = f (x(t)) (1.29)

where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Let A = δ fi
δx (x)|x=0. Then the

origin is asymptotically stable if |λi|< 0 for all the eigenvalues of A. Instead, if there exists
at least an eigenvalue such that |λi|< 0, then the origin is unstable.

The proof of the instability part is based on following statement regarding the solvability
of the discrete Lyapunov equation.

Proposition 1.4.4. B The Lyapunov equation (1.27) admits a solution if and only if the
eigenvalues λi of matrix A are such that

λiλ j 6= 1 for all i, j = 1, · · · ,n. (1.30)

Moreover given a positive definite matrix Q, the corresponding solution P is positive definite
if and only if |λi|< 1 for all i = 1, · · · ,n.

Theorem 1.4.3 allows to find a Lyapunov function for the nonlinear system in a neigh-
bourhood of the origin, provided that the linearised system is asymptotically stable.
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1.5 LMI vs BMI

Matrix inequality in the form of

F(x) = F0 +
m

∑
1

xiFi > 0 (1.31)

is called a linear matrix inequality, or LMI for short. Here, x ∈Rm is an unknown vector,
and Fi=FT

i ∈Rn×n, i= 1, · · · ,n is a constant matrix. F(x) is an affine function of variable
x. The inequality means that F(x) is positive definite, that is, uT F(x)u > 0 for all nonzero
vector u. LMI can be solved numerically by methods such as the interior point method
[40]. MATLAB has an LMI toolbox tailored for solving control problems.

1.5.1 Control Problem and LMI

In control problems, it is often the case that the variables are matrices. This is different
from the LMI of (1.31) in form. However, it can always be converted to (1.31) equiva-
lently via the introduction of matrix basis :

Exemple 1 ( [40]). According to the Lyapunov stability theory, the necessary and sufficient
condition for the stability of a two-dimensional linear system

ẋ(t) = Ax(t), x(0) 6= 0

is that there exists a positive definite matrix P = PT ∈ R2×2 satisfying

AP+PAT < 0.

This 2×2 symmetric matrix P has the following symmetric basis

P1 =

[
1 0
0 0

]
, P2 =

[
0 1
1 0

]
, P3 =

[
0 0
0 1

]
.

By using this symmetric basis, P can be expressed as

P =

[
x1 x2
x2 x3

]
= x1P1 + x2P2 + x3P3.

Substituting this equation into the inequality about P, we get an inequality about the vector[
x1 x2 x3

]T in the form of (1.31). Specifically, the result obtained is

x1(AP1 +P1AT )+ x2(AP2 +P2AT )+ x3(AP3 +P3AT )< 0.

In addition, when the dimension of symmetric matrix P is n, the number of its base matrices
is n(n+1)/2. Therefore, linear inequality with matrix variables is also called LMI hereafter.
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1.5.2 Typical LMI Problems

Now, we introduce several types of LMI problems (LMIP) which will be frequently en-
countered later.

1. Feasibility Problem : LMIP Given an LMIP, F(x)< 0. The so-called feasibility pro-
blem is to seek a vector x∗ satisfying F(x∗)< 0, or make the judgment that the LMI
has no solution.

2. Eigenvalue Problem : EVP The following optimization problem with constraints
is called an eigenvalue problem (EVP) :

minimize λ
subject to λ I −A(x)> 0, B(x)> 0.

Here, A(x) and B(x) are symmetric and affine matrix functions of vector x. Minimi-
zing λ subject to λ I−A(x)> 0 can be interpreted as minimizing the largest eigen-
value of matrix A(x). This is because the largest λ that does not meet λ I−A(x)> 0
is the maximal λ satisfying det(λ I −A(x)) = 0. We may also regard λ as a variable
and augment the vector x accordingly. Then, λ can be expressed as cT x, and the
two inequalities can be merged into one. Thus, we arrive at the following equiva-
lent EVP ( [40]) :

minimize cTx
subject to F(x)> 0.

3. Generalized Eigenvalue Problem : GEVP When λ I in the EVP is generalized to
λB(x), this problem becomes a generalized eigenvalue problem (GEVP). The detail
is as follows :

minimize λ
subject to λB(x)−A(x)> 0, B(x)> 0, C(x)> 0.

Définition 1.4 (Bilinear Matrix Inequality). A BMI constraint is a constraint on x ∈Rm

and y ∈ Rr which is of the form

F(x,y) := F0,0 +
m

∑
i=1

r

∑
j=1

xiy jFi, j ≥ 0, (1.32)

with F0,0 ∈ Rn×n and Fi, j ∈ Rn×n.

This is the generalization of the notion of LMI. A wide variety of automatic problems
can be formulated as BMI. However, the BMI are not convex, which causes difficulties
in their resolution.
The interest of LMIs is summarized in the four points described below.

1. Convexity : The LMI (1.31) defines a convex constraint in x. Indeed, ∀x, y inE, E :=
{x|F(x)> 0}, then

F(αx+(1−αy))≤ αF(x)+(1−αF(y)) ∀α ∈]0,1[, (1.33)

where F(x) is given by (1.31).
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2. Concatenation : Multiple LMIs can be combined in one. Indeed, solve the two
LMIs F1(x)> 0 and F2(x)> 0 is equivalent to solving F̄(x)> 0 with F̄ = diag(F1,F2).

3. Algorithms : The algorithms used to solving LMI constraints are efficient : a good
initialization guarantees the convergence of the algorithm, this convergence being
at polynomial time. Currently, the main classes of algorithms are based on interior
point methods [51].

4. Applications : Many conditions classics in automatic mode can be formulated un-
der the form of LMI problem. In addition, it is possible to convert some nonlinear
inequalities (in particular of Riccati) in LMI by the use of Schur’s lemma.

1.5.3 Computer programming aspects

This subsection clarifies certain concepts that will appear in some chapters, especially
when it comes to software aspects. We let’s briefly state the various useful concepts. For
more details, we can refer to [51].

Définition 1.5 (Polynomial time). A problem is said to be solvable in polynomial time
when there is a resolution algorithm for which the required computation time is a poly-
nomial function of the size 1 of the problem.

Définition 1.6 (NP-difficile). A problem is said to be NP-difficile when the computation
time required is a function of the types an with a > 1 and n the size of the problem.

A BMI type problem is an example of an NP-hard problem while an LMI problem is
not because it is solvable in polynomial time. However, a large number of Problems in
automatic are by nature of the BMI type. To solve them, we must therefore reduce to a
formulation of the LMI type, which introduces a conservatism.

Définition 1.7 (Conservatism). A condition (or a constraint) is said to be conservative
when it is too restrictive in relation to the problem considered.

The dilemma between complexity and conservatism constantly arises and influences
choices (both theoretical than practices) performed in solving a problem. Indeed, in
order to obtain a corrector synthesis the least conservative possible, one increases the
number of specifications of the problem. The problem can become NP-difficult. To solve
it, that is to say to reduce the complexity of this problem, one is led either to approxi-
mate or remove some of the specifications. Consequently, we increase the conservatism
of solutions obtained.

1.6 Controllability and Observability of an LTI System

Consider the LTI system :
x(k+1) = Ax(k)+Bu(k), (1.34a)

1The size of a problem is in general defined as the number of variables involved in solving the problem.
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y(k) =Cx(k)+Du(k), (1.34b)

where x(k), u(k), and y(k) are respectively the plant state vector, input vector, and out-
put vector. Their dimensions are assumed to be respectively n, q, and p. Generally spea-
king, controllability is concerned with capabilities of a system in maneuvering its states
through external inputs, whereas observability is concerned with capabilities of estima-
ting its states using measurements of external outputs. Formally, they are defined as
follows.

1.6.1 Controllability

Définition 1.8 ( [92]). The matrix pair (A,B) or, equivalently, the discrete dynamical
system described by Eqs. (1.34a) and (1.34b) is said to be controllable if for an arbitrary
state vector pairs (x0,x1), there exist a positive integer k and an input vector sequence
u(0), u(1), · · · , u(k − 1) such that under the drive of this sequence, the state vector of
the system satisfies x(k) = x1 when starting from x(0) = x0. Otherwise, the system or the
matrix pair is said to be uncontrollable.

In some literature, controllability of a discrete system is also called reachability. To be
consistent with continuous systems and avoid possible confusions, in this thesis, we
use the term controllability. Concerning a discrete LTI system, several criteria are avai-
lable for the verification of its controllability using its system parameters. The following
theorem summarizes some of the most widely used ones.

Theorem 1.6.1 ( [92]). The discrete dynamical system of equations (1.34a) and (1.34b)
is controllable if and only if one of the following conditions is satisfied :
– The controllability matrix C =

[
B AB A2B · · · An−1B

]
is of full row rank.

– The matrix
[
λ I −A B

]
is of full row rank for every complex number λ .

Note that except at an eigenvalue of the matrix A, the matrix [λ I −AB] is always of full
row rank and of full column rank. This implies that verification of the second criterion
is only required at the eigenvalues of the matrix A.

Static output feedback control

The synthesis of static output feedback control is one of the central problems in control
theory see e.g. [61]. The methods of reconstructing the observer-based state introduce
an additional dynamic system. This is why, in the early 1970s, particular attention was
paid to the problem of the design of output feedback regulators where a very limited
number of state measurements are available [39]. The optimal solution to this control
problem is obtained in terms of high order nonlinear matrix algebraic equations. The
convergence complexities of the algorithms suggested for the solution of these equations
have long prevented a wider application of this technique. In the case of an output
return command, the input vector u(t) is written in the following form :

u(t) =−Kyy(t)+ν(t) (1.35)
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1.6.2 Feedback Control

Without control systems there can be no manufacturing, vehicles, computers, etc., in
short, no technology. Control systems are those that make machines work. These sys-
tems are most often based on the feedback principle : the signal to be checked is com-
pared with a desired reference signal. The difference between the signals is used to
calculate the corrective action control. Three types of retroactive control exist :

1. State feedback control (see Figure 1.4),

2. Control by estimated state feedback (also called observer based control) (see Fi-
gure 1.6)

3. Output feedback control (see Figure 1.5).

State feedback control

The state feedback control is a closed loop control. It consists in implementing a control
law u(t) which takes into account the different values of the state at an instant t. Consi-
der the system described by the set of equations (1.34), the control law applied to this
system has the following form :

u(t) =−Kxx(t)+ν(t) (1.36)

where Kx ∈ Rm×n and ν(t) represent respectively the control gain and the set point. On
the other hand with this type of command, one needs to have the measurements of all
the states to be able to apply the control, which is almost impossible from a practical
point of view.

Control by estimated state feedback

The design of the optimal linear regulator requires knowledge of the measurements of
all states of the system. In many practical applications, this is not possible due to the
high cost of state measurements or the inaccessibility of measuring certain system states.
The standard way to overcome these difficulties is to reconstruct the complete state
vector from the measurements available by the design of a state observer (Luenberger
for example, or the Kalman filter if the measurements are noisy).
The observer-based control law is written as follows :

u(t) =−Kx̂x̂(t)+ν(t) (1.37)

where x̂ is the estimated state of x.
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1.6.3 Synthesis the control gain by LMI method

We have seen that LMI method solves a system of matrix inequality. Considering, for
example, the system described by the following equations : ?

xt+1 = Axt , x0 = 0. (1.38)

The system (1.38) is asymptotically stable if ∀x 6= 0, there exists a Lyapunov function
V (xt)> 0 such that V (0) = 0 and V (xt+1)−V (xt)< 0. Using the quadratic function V (x) =
xT Px, we get that P satisfies the two inequalities :

V (xt)> 0 ⇔ P = PT > 0
V (xt+1)−V (xt)< 0 ⇔ AT PA−P < 0. (1.39)

Before the appearance of LMI method, the resolution of this type of problem could be
overcome by keeping equation (1.39) as an inequality. So, it turned out to be necessary
to transform (1.39) into an equality using a matrix Q, assumed to be positive. Thus,
we obtain asymptotic stability of (1.38) if and only if for any Q = QT > 0, there exists
P = PT > 0 solution of

AT PA−P+Q = 0

see [7].

1.6.4 Observability

Another fundamental concept in system analysis and synthesis is observability of a sys-
tem. While controllability and observability of a system are completely different from
an engineering point of view, it is now well known that they are mathematically dual.

Définition 1.9 ( [92]). The discrete dynamical system described by Eqs. (1.34a) and
(1.34b) or, equivalently, the matrix pair (A,C), is said to be observable if there exits a
positive integer k such that each initial system state vector x(0) can be revealed from the
input–output vector pairs (u(s),y(s))k

s=0. Otherwise, this system or matrix pair is said to
be unobservable.

Note that when the input sequence (u(k))k≥0 is assumed to be known, it is clear from
Eq. (1.34a) that all the uncertainties in the plant state vectors are caused by its initial
values. This means that when the initial state vector of a plant is revealed from its output
measurements, all of its state vectors can be revealed also from these measurements.
Similar to Theorem 1.6.1, we also have some algebraic criteria for the verification of
observability of a system.

Theorem 1.6.2 ( [92]). The discrete dynamical system of equations (1.34a) and (1.34b)
is observable if and only if one of the following conditions is satisfied :
– The observability matrix O =

[
C ATCT (A2)TCT · · · (An−1)TCT

]T is of full row rank.

– The matrix
[

λ I −A
C

]
is of full row rank for every complex number λ .
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1.6.5 Standard Types of Observers

The problem of estimating a state of a dynamical system driven by unknown inputs
has been the subject of a large number of studies in the past three decades. A state
observer is typically a computer-implemented mathematical model that provides the
estimation of the internal states of the system. In most practical cases, the physical state
of the system cannot be determined by direct observation. Instead, indirect effects of
the internal state are observed by way of the system outputs.
The various models of state observers are summarized by :

– Luenberger Observer (LO). This observer possesses a relatively simple design that
makes it an attractive genaral design technique.

– Kalman Observer (KO). In one view, KO can be viewed as an extension of LO. It could
be argued that the KO (filter) is one of the good observers against a wide range of
disturbances.

– Unknown input observer (UIO). This is a good candidate for estimating the state of
a linear system with unknown inputs, such as those treated in the problem of ins-
trument fault detection, as well as fault detection and identification subject to plant
parameter uncertainties.

– Sliding Mode Observer (SMO). A key feature of SMO is the introduction of a switching
function in the observer to achieve a sliding mode, and also stable error dynamics.
This sliding mode characteristic, which is a consequence of the switching function,
is claimed to result in system performance that includes insensitivity to parameter
variations, and complete rejection of disturbances.

Consider the linear discrete-time system

xk+1 = Axk +Buk (1.40)

yk =Cxk (1.41)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the local control vector, and y(k) ∈ Rq is
the output observation vector. The matrices A ∈Rn×n, B ∈Rn×m, C ∈Rq×n are constants.
The basic state estimation problem is defined by :

At each time k, construct an estimate x̂(k) of the state x(k) by only measuring the output
y(k) and input u(k).

A preliminary way to realize this construction is through an open-loop observer : Build
an artificial copy of the system, fed in parallel with the same input signal u(k). The result
is depicted in Fig. 1.8. Notice that the "copy" is a numerical simulator
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x̂(k+1) = Ax̂(k)+Bu(k) (1.42)

reproducing the behavior of the real system. The dynamics of the real system and of the
numerical copy given by (1.40),(1.42), respectively, yield the dynamics of the estima-
tion error x̃(k) = x(k)− x̂(k) as

x̃(k+1) = Ax̃ (1.43)

and then
x̃ = Ak (x(0)− x̂(0)) .

This is not ideal, because
– The dynamics of the estimation error are fixed by the eigenvalues of A and cannot be

modified.
– The estimation error vanishes asymptotically if, and only if, A is asymptotically stable.
– We are not exploiting y(k) to compute the state estimate x̂(k) ! See Fig. 1.9.

1.6.6 Luenberger Observer

The LO possesses a relatively simple design that makes it an attractive general design
technique. By correcting the estimation model (1.42) with feedback from the estimation
error yk − ŷk, we obtain

x̂k+1 = Ax̂k +Buk +L[yk −Cx̂k] (1.44)

where the term L[y(k)− ŷ(k)] is often called the residual, and the term L[y(k)− ŷ(k)]
designates a feedback on the estimation error with L ∈ Rn×q is the observer gain. In-
troducing the state estimation error x̃(k) = x(k)− x̂(k), then we derive its dynamics as :

x̃(k+1) = Ax(k)+Bu(k)−Ax̂(k)−Bu(k)−L[y(k)−Cx̂(k)] = [A−LC]x̃(k) (1.45)

which leads to
x̃(k) = [A−LC]k(x(0)− x̂(k)).

It is interesting to record that the same idea applies to the continuous time system,
depicted in Fig. 1.10 :

ẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t)

leading to
d
dt

x̂(t) = Ax̂(t)+Bu(t)+L[y(t)−Cx̂(t)] (1.46)

and the associated state estimation error dynamics as

d
dt

x̂(t) = [A−LC]x̃(t). (1.47)

A fundamental result is gained by the eigenvalue assignment of the state observer, which
is summarized by Theorem 1.6.3.

Theorem 1.6.3. [43] If the pair (A,C) is observable, then the eigenvalues of [A−LC] can
be placed arbitrarily.

20



1.6. Controllability and Observability of an LTI System

Proof : If the pair (A,C) is completely observable, then the dual system (AT ,CT ,BT ,DT )
is completely reachable. Thus we can design a compensator K for the dual system and
place the eigenvalues of [AT +CT K] arbitrarily. From basic matrix algebra, the eigenva-
lues of matrix [AT +CT K] are the eigenvalues of its transpose [A+KTC]. Finally, define
L =−KT concludes the proof of the theorem.

Remark 1.6.4. It follows from Theorem 1.6.3 that the estimation error x̃(t)→ 0 as t → ∞.
This asymptotic behavior represents a basic property of linear Luenberger Observer.

1.6.7 Building Observer-Based Controllers

The previous section showed how to obtain an observer that can make the estimation
error approach zero asymptotically. However, our ultimate goal is to control the system.
A natural ad hoc approach is to apply state feedback control, but use the estimate of
the state rather than the actual state. That is, instead of using the feedback control
u(t) = Kx(t), we use u(t) = Kx̂(t), where x̂ is the estimated state.
To achieve our goal, we recall that the complete system under consideration composed
of the plant, the observer, and the state estimate feedback controller as displayed in
Fig. 1.11.
The combined dynamics can be cast into the form :[ d

dt x(t)
d
dt x̂(t)

]
=

[
A −BK

LC A−BK −LC

][
x(t)
x̂(t)

]
(1.48)

Making use of the fact[
x(t)
x̂(t)

]
=

[
x(t)

x(t)− x̂(t)

]
=

[
I 0
I −I

][
x(t)
x̂(t)

]
(1.49)

Than algebraic manipulations of (1.48) using (1.49), lead to[ d
dt x(t)
d
dt x̂(t)

]
=

[
A−BK BK

0 A−LC

][
x(t)
x̂(t)

]
(1.50)

from which we notice that the combined closed-loop eigenvalues are the union of the ei-
genvalues of A−BK and A−LC. In return, these have negative real parts if the controller
gain K and the observer gain L are both chosen to make A−BK and A−LC asymptoti-
cally stable.
We conclude that the observer-based controller (OBC) is described by

d
dt

x(t) = [A−BK −LC]x̂(t)+Ly(t)

u(t) = −Kx̂(t) (1.51)

The design task of the Observer-Based Controller amounts to determining the gain ma-
trices K and L subject to some prescribed criteria using alternative techniques, such that
(1.51) is asymptotically stable. For more details, see [46].
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1.7 Observers of nonlinear systems

In view of the great variety of nonlinear systems, there are several types of observers.

1.7.1 Thau Observer (Lipschitz Observer)

This type of observer was proposed by Thau in 1973 [73]. This observer is suitable for
nonlinear systems using Lyapunov methods. The work of [59] offers an application to
Thau Observer. Thau approach is proposed for a system composed of two parts : a linear
part which is assumed to be observable and a nonlinear part which often satisfies the
Lipschitz condition. Let be the nonlinear system described by the following equations :{

ẋ(t) = Ax(t)+Bu(t)+ f (x(t))
y(t) = Cx(t) (1.52)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, and y(t) ∈ Rq is the
output observation vector. The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n are constants.
f : Rn → Rn is a known γ f -Lipschitizian function. Thau’s observer has the following
form :

˙̂x(t) = Ax̂(t)+Bu(t)+ f (x(t))+L(y(t)−Cx̂(t)) (1.53)

where L ∈Rn×p is the observer gain to be determined and x̂t ∈Rn is the estimate of xt at
time t. Let e(t) := x(t)− x̂(t) be the estimation error. Then the dynamics of the estimation
error is described by the following equation :

ė(t) = (A−LC)e(t)+ f (x̂(t))− f (x(t)).

If (A−LC) is stable, therefore for any positive definite matrix Q, there exists a unique
matrix P > 0 such that the following Lyapunov equality holds :

(A−LC)T P+P(A−LC) =−2Q. (1.54)

Theorem 1.7.1. [73] If we choose L such that (A−LC) can give a solution of Lyapunov’s
equality (1.54) and satisfying :

λmin(Q)

‖P‖
> γ f (1.55)

where γ f is the Lipschitz constant, then Thau observer (1.53) is asymptotically stable.

1.7.2 High gain observer

The use of high gain observers has evolved as one of the most important techniques for
the design of feedback control of nonlinear systems. This approach, initially mentioned
by [73], was the subject of a great deal of research work. The high gain name is because
the observer gain is chosen large enough to compensate for the nonlinearity of the
system. The high gain observer applies for the following nonlinear systems :{

ẋ(t) = f (x(t))+h(x(t))u(t)
y(t) = g(x(t)) (1.56)
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where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, and y(t) ∈ Rq is the
output observation vector. f : Rn → Rn, h : Rn → Rn ×Rm, g : Rn → Rp are nonlinear
functions.
The previous system can always be reduced by means of a transformation (a C 1-diffeomorphism)
to the following form

ẋ(t) =


ẋ1(t)
ẋ2(t)

...
ẋn−1(t)
ẋn(t)

=


x2(t)
x3(t)

...
xn(t)

ψ(x(t))

+


h1(x1(t))
h2(x1(t),x2(t))

...
hn−1(x1(t),x2(t), · · · ,xn−1(t))

hn (x1(t),x2(t), · · · ,xn−1(t),xn(t))


= F(x(t))+H(x(t))u(t)

y(t) =Cx(t) = x1(t)

(1.57)

Such transformation still exists and is based on the Lie derivative. Here, ψ is a C 1

globally Lipschitz function and xi 7→ hi(x̄i) is globally Lipschitz for each i, with x̄i =[
x1 · · · xi

]T , If the system (1.57) is uniformly observable, then the high gain obser-
ver is written as :

˙̂x(t) = f (x̂(t))+h(x̂(t))+h(x̂(t))u(t)−S−1
∞ CT (Cx̂(t)− y(t)) (1.58)

where S∞ is the solution to the following equation

−ωS∞ −AT S∞ −S∞A+CTC = 0 (1.59)

with

C =
[
1 0 · · · 0

]
∈ Rp (1.60)

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
... . . . . . . ...
... . . . . . . ...
0 · · · · · · · · · 0 1
0 · · · · · · · · · · · · 0


∈ Rn×n. (1.61)

The variable ω is chosen large enough to adjust the speed of convergence and it satisfies
the following inequality :

‖x̂(t)− x(t)‖ ≤ K(ω)e−
ω
3 t ‖x̂(0)− x(0)‖ (1.62)

where K(ω) ≥ 0. By increasing ω, the high gain observer gives a faster exponential
response. This type of observer is often used since it presents sufficient conditions for
convergence of x̂(t) to x(t).
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Unlike the extended Kalman filter, these observers are global with exponential conver-
gence. However, they only apply to a small class of nonlinear systems. Also, despite the
popularity of the high gain observer, the choice of the gain remains a bit difficult. In fact,
by increasing the gain to gain speed, the observer becomes more and more sensitive to
measurement noise.

1.7.3 Two-stage Observer for Descriptor Nonlinear System [20]

The class of systems we consider in this section is the same as in [20]. It is described by
the following set of equations :{ ˙︷ ︸︸ ︷

Eξ ξ (t) = Aξ ξ (t)+B f f
(
ξ (t),u(t)

)
+Dξ ω(t)

y(t) = Cξ ξ (t)+Bhh
(
ξ (t),u(t)

)
+Dyω(t)

(1.63)

where ξ ∈ Rnξ ,u ∈ Rnu, and y ∈ Rny are respectively the state vector of the system, the
known control input vector, and the output measurements vector. The input ω ∈ Rnω

is the vector of unknown disturbances affecting the system (1.63). The matrices Eξ ∈
Rnd×nξ , Aξ ∈Rnd×nξ , B f ∈Rnd×n f , Dξ ∈Rnd×nω , Cξ ∈Rny×nξ , Bh ∈Rny×nh, and Dy ∈Rny×nω

are known and constant. The nonlinear functions

f : Rnξ ×Rnu −→ Rn f

h : Rnξ ×Rnu −→ Rnh

are globally Lipschitz 2 with respect to ξ , uniformly on u, with Lipschitz constants γ f and
γh, respectively. At this stage, we assume that the following rank condition is satisfied :

rank
([

Eξ
Cξ

])
= nξ . (1.64)

The objective is to find an observer which estimates the vector ξ while respecting a given
optimality criterion. In case of systems with Eξ is left-invertible (i.e. rank(Eξ ) = nξ ), a
standard Luenberger observer can be used to solve easily the estimation problem with
any optimality criterion from LMI point of view. However, in the descriptor case, the
problem turns out to be difficult in some situations.

Two-stage observer structure

Inspired from previous results in the literature [21] and [57], the two-stage observer
consider in [20] has the following structure :

ż(t) = Azz(t)+Ayyη1(t)+Bz f
(
ξ̂ (t),u(t)

)
ξ̂ (t) = z(t)+Qzyη2(t)

yηi(t) = y(t)−ηi(t), i = 1,2
(1.65)

2If f , h and g are only locally Lipschitz, we may consider their saturated versions f s, hs, and gs,
respectively, on an invariant compact set X in which f s and hs satisfy the global Lipschitz property [60].
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where ξ̂ (t) is the estimate of ξ (t). The vectors η1(t),η2(t) and the matrices Az,Ay,Bz,
and Qz are the observer parameters to be determined so that the estimation error ξ̃ (t) =
ξ̂ (t)− ξ (t) converges towards zero in H∞ sense. By using (1.63) and (1.65), ξ̃ (t) is
expressed as follows :

ξ̃ (t) = z(t)+
(

QzCξ − Inξ

)
ξ (t) (1.66)

+Qz

[
Bhh
(
ξ (t),u(t)

)
−η2(t)

]
+QzDyω(t).

Remark 1.7.1. In the case y(t) = Cξ ξ (t), the problem becomes easy and the results are
well known in the literature, because with η2(.)≡ 0, equation (1.66) is reduced to

ξ̃ (t) = z(t)+
(

QzCξ − Inξ

)
ξ (t) (1.67)

because Bh = 0 and Dy = 0 in (1.66). Indeed, in such a case, we have yη2 = y in (1.65).
Hence for every t ∈ R,

ξ̂ (t) = z(t)+QzCξ ξ (t)

from which we deduce that

ξ̃ (t) = ξ̂ (t)−ξ (t) = z(t)+QzCξ ξ (t)−ξ (t) = z(t)+
(

QzCξ − Inξ

)
ξ (t).

This means also that the nonlinear term QzBh

[
h
(
ξ (t),u(t)

)]
and the noisy term QzDyω(t)

vanish from (1.66).

From (1.64), there exist two matrices Pz and Qz so that

PzEξ +QzCξ = Inξ . (1.68)

Then, the dynamics of the estimation error can be reformulated as follows :

˙̃ξ (t) = ż(t)−Pz
˙︷ ︸︸ ︷

Eξ ξ (t). (1.69)

Hence by substituting (1.63) and (1.65) in (1.69) we get straightforwardly appropriate
and standard estimation error dynamics after some matrix decompositions. However,
having h

(
ξ (t),u(t)

)
and ω(t) in the system output complicates the task. Some additional

assumptions on the matrices Bh and Dy, related to the disturbance ω(t), are needed to
compute the parameters Az,Ay,Bz,Qz.

Assumption 1. The following condition is fulfilled :

rank
(

Eξ 0
Cξ Bh

)
= nξ +nh. (1.70)
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Condition (1.70) implies
nd +ny ≥ nξ +nh.

This ensures that : 
PzEξ +QzCξ = Inξ

RzEξ +SzCξ = 0nh×nξ

QzBh = 0nξ×nh

SzBh = Inh.

(1.71)

We consider the two-stage observer (1.65) by specifying the variables ηi, i = 1,2. That
is, we consider the following filter :

ż(t) = Azz(t)+Ayyη1(t)+Bz f
(
ξ̂ (t),u(t)

)
ξ̂ (t) = z(t)+Qzyη2(t)

yη1(t) = y(t)−Bhh
(
ξ̂ (t),u(t)

)
yη2(t) = y(t),

(1.72)

which is identical to (1.65) with the following choice of η1 and η2 :{
η1(t) = Bhh

(
ξ̂ (t),u(t)

)
η2(t) = 0Rny .

(1.73)

By considering (1.71), the dynamics (1.66) can be written as :

ξ̃ (t) = z(t)−PzEξ ξ (t)+QzDyω(t). (1.74)

Hence, we can write
˙̃ξ (t) = ż(t)−Pz

˙︷ ︸︸ ︷
Eξ ξ (t)+QzDyω̇(t). (1.75)

From (1.63) and (1.72), we get the following detailed form of (1.75) :

˙̃ξ (t) = Azξ̃ (t)+
(

Az −A+LCξ

)
ξ

+
(

Bz −PzB f

)
f (ξ ,u)

+
(
Eω −LDω

)
ω +Bzδ ft −AyBhδht +QzDyω̇(t)

(1.76a)

δ ft = f (ξ̂ ,u)− f (ξ ,u) = H Φ(t)H̃, (1.76b)

δht = h(ξ̂ ,u)−h(ξ ,u) = FΨ(t)F̃ , (1.76c)

A= PzAξ , L= Ay −AzQz (1.76d)

Eω =−PzDξ , Dω =−Dy. (1.76e)
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where

H =
[[

H11 . . .H1n1
f

][
H21 . . .H2n2

f

]
. . .
[
Hn f 1 . . .Hn f n

n f
f

]]
;

F =
[[

F11 . . .F1n1
h

][
F21 . . .F2n2

h

]
. . .
[
Fnh1 . . .Fnhn

nh
h

]]
;

Φ(t) = diag
{(

ϕ11In1
f
, . . . ,ϕ1n1

f
In1

f

)
, . . . ,

(
ϕn f 1In

n f
f
, . . . ,ϕ

n f n
n f
f
I

n
n f
f

)}
;

Ψ(t) = diag
{(

ψ11In1
h
, . . . ,ψ1n1

h
I

n1
h

)
, . . . ,

(
ψnh1I

n
nh
h
, . . . ,ψnhn

nh
h
I

n
nh
h

)}
;

H̃ =

[HT
1 . . .HT

1
]︸ ︷︷ ︸

n1
f times

. . .
[
HT

i . . .HT
i
]︸ ︷︷ ︸

ni
f times

. . . . . .
[
HT

n f
. . .HT

n f

]
︸ ︷︷ ︸

n
n f
f times

T

;

F̃ =

[[
FT

1 . . .FT
1
]︸ ︷︷ ︸

n1
h times

. . .
[
FT

i . . .FT
i
]︸ ︷︷ ︸

ni
h times

. . . . . .
[
FT

nh
. . .FT

nh

]︸ ︷︷ ︸
n

nh
h times

]T

.

From (??) and the fact that QzBh = 0, the error dynamics (1.76) is reduced to the follo-
wing one :

˙̃ξ (t) =
(
A−LCξ

)
ξ̃ (t)+Bzδ ft −LBhδht

+
(
Eω −LDω

)
ω +QzDyω̇. (1.77)

Therefore, equation (1.77) becomes

˙̃ξ (t) =
((

A−LCξ

)
+
[
BzH Φ(t)H̃ −LBhFΨ(t)F̃

])
ξ̃ (t)+

(
Eω −LDω

)
ω +QzDyω̇.

(1.78)

To study the H∞–criterion

‖ξ̃‖
L

nξ
2

≤
√

µ∞‖ω‖2
L nω

2
+ν∞‖ξ̃0‖2, (1.79)

while avoiding the derivative of the disturbance ω(t), we use the Lyapunov function
candidate

V (ξ ,w) = (ξ −ϒω)T P(ξ −ϒω) ,

where P= PT > 0.
After using the Young’s relation with the same manner and by following by analogy the
same procedure of [90], we obtain the following theorem.

Theorem 1.7.2. [20] Assume that there exist symmetric positive definite matrices P ∈
Rnξ×nξ , S ∈ Rn f×n f , M ∈ Rnh×nh and a matrix R ∈ Rny×nξ such that the following convex
optimization problem is solvable :

min µ∞ subject to (1.81) (1.80)
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

He
[
PA−RCξ

]
+ I PEω −RDω −

(
ATPϒ−Cξ

T RT ϒ
)

PBzH +H̃TS RBhF−F̃TM

(⋆) −He
[
ϒT (PEω −RDω)

]
−µ2

∞I ϒTPBzH ϒT RBhF

(⋆) (⋆) −Λ fS 0

(⋆) (⋆) (⋆) −ΛhM


< 0

(1.81)
where ϒ = QzDy. Then, the H∞ criterion (1.79) is satisfied with

ν∞ = λmax(P) and µ∞ =
µ⋆

∞

min
(

1,λmin
(
P
)) (1.82)

where µ⋆
∞ is the minimum value returned by the convex optimization problem (1.81).

1.7.4 Sliding mode observer

The concept of a sliding mode emerged from the Soviet Union in the late sixties where
the effects of introducing discontinuous control action into dynamical systems were
explored. By the use of a judicious switched control law it was found that the system
states could be forced to reach and subsequently remain on a pre-defined surface in
the state space. Whilst constrained to this surface, the resulting reduced-order motion
– referred to as the sliding motion – was shown to be insensitive to any uncertainty or
external disturbance signals which were implicit in the input channels. This inherent
robustness property has resulted in world wide interest and research in the area of
sliding mode control. These ideas have subsequently been employed in other situations
including the problem of state estimation via an observer. Consider a system of the
following form : {

x(t) = f (x(t);u(t))
y(t) = g(x(t)) (1.83)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote, respectively, the state, the input and
the output. f : Rn ×Rm → Rn and g : Rn → Rp are two nonlinear functions. The sliding
mode observer (see Figure 1.12) associated with the system (1.84) is described by :{ ˙̂x(t) = f (x̂(t),u(t))−Λsign(y(t)− ŷ(t))

ŷ(t) = g(x̂(t))
(1.84)

where x̂ denotes the estimated state. Λ is the correction term proportional to the sign
function applied to the output error ey. The sliding surface is given by S = y(t) = y(t)?−
ŷ(t). The sliding mode observer has several advantages :

1. convergence towards a zero surface S with an evolution according to a dynamic
n ;
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2. guaranteed robustness against external disturbances and modeling errors thanks
to the sign function ;

3. the dimensions of the observation system can be reduced to n−1.

The estimation error is given by εy(t) = x(t)−?x̂(t). This error converges to the equili-
brium value, from the initial value 0, in two steps. The first is called the approach mode,
during which the trajectory of ε(t) evolves towards the sliding surface such that y(t) = 0.
During the second stage, often referred to as the slip mode, the estimation error trajec-
tory slides with imposed dynamics and cancels out all estimation errors. In the presence
of a fault, this observer is best suited to solve this kind of problem [13].

1.8 Observer-based stabilization : state of art on LMI
methods

Here, we recall some LMI methods concerned with Observer-based stabilization. First,
we recall the so-called Young’s inequality-based approach established in [35] for asymp-
totic stability of the system (3.7). After this, we summarize the LMI design established
in [28]. The end of this section will be devoted to a useful linearization Lemma [28]
and [27], which gives a sufficiency condition for linearizing some BMI. We announce it
and give the necessary condition part.

1.8.1 Young’s relation based-approach [35]

Consider the same class of systems investigated in [35] :

xt+1 = (A+∆A(t))xt +But (1.85a)
yt = (C+∆C(t))xt (1.85b)

where t = 0,1, . . ., xt ∈Rn is the state vector, yt ∈Rp is the output measurement, and ut ∈
Rm is the control input vector. The nominal matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n

are known. The pairs (A,B) and (A,C) are assumed to be stabilizable and detectable,
respectively. The uncertain terms ∆A(t) ∈ Rn×n and ∆C(t) ∈ Rp×n are unknown matrices
that account for time-varying parameter uncertainties and are assumed to be of the
form

∆A(t) = MAFA(t)NA, ∆C(t) = MCFC(t)NC (1.86)

where MA, NA, MC, and NC are known real constant matrices ; FA(t) and FC(t) are unk-
nown real time-varying matrices satisfying the inequalities

FT
A (t)FA(t)≤ α2I, FT

C (t)FC(t)≤ β 2I, ∀t ∈ N . (1.87)

For the sake of simplicity, from now on we will denote ∆A(t) and ∆C(t) by ∆A and ∆C,
respectively. Such a notation will be adopted also for all the matrices that depend on
∆A(t) and ∆C(t).
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The asymptotic stabilization of the discrete-time linear system (3.1) is addressed using
the Luenberger observer

x̂t+1 = Ax̂t +But +L(yt −Cx̂t) (1.88)

where L ∈ Rn×p is the observer gain to be determined and x̂t ∈ Rn is the estimate of xt
at time t. Let et := xt − x̂t be the estimation error. Then, under the feedback

ut =−Kx̂t (1.89)

where K ∈ Rm×n is the controller gain, the closed-loop dynamics is described by

zt+1 =

[
A−BK +∆A BK

∆A−L∆C A−LC

]
zt = Πzt (1.90)

where zT
t = (xT

t ,e
T
t ) ∈ R2n is the augmented state vector.

The goal is to find suitable controller and observer gains K and L that guarantee the
asymptotic stability of (3.7). Toward this end, let Vt := V (zt) = zT

t Pzt with P > 0 be a
Lyapunov function. The closed-loop system (3.7) is asymptotically stable if there exists
a matrix P > 0 such that the difference between the Lyapunov functions at two conse-
cutive time instants ∆Vt :=Vt+1 −Vt is negative definite, that is,

∆Vt = zT
t (Π

T PΠ−P)zt < 0, ∀zt 6= 0, ∀t ∈ N. (1.91)

Using Schur Lemma, (3.10) turns out to be equivalent to :[
−P Π
(⋆) −P−1

]
< 0 . (1.92)

Theorem 1.8.1 ( [35]). If there exist ε2 > 0, two symmetric positive definite matrices

P =

[
P11 P12
PT

12 P22

]
∈R2n×2n and G1 ∈Rn×n, G2 ∈Rn×n invertible, K̂ ∈Rm×n, and L̂ ∈Rn×p

such that the LMI 
W11 W12

(⋆) −P

 [
W2 W3 W4 W5

]
(⋆) diag

[
D11, −ε2I, D22, D33

]
< 0 (1.93)

with

W11 =

[
P11 −2G1 + ε2MAMT

A P12
PT

12 P22 − (G2 +GT
2 )

]
W12 = diag

[
AG1 −BK̂, GT

2 A− L̂C
]

W2 =

[
K̂T BT 0 0 0

0 0 0 I

]T

, D11 = diag
[
−ε1 −ε−1

1

]
G1

W3 =
[
0 0 NAG1 0

]T
, D22 = diag

[
−ε3 −ε−1

3

]
I

W4 =

[
0 MT

A G2 0 0
0 0 NAG1 0

]T

, D33 = diag
[
−ε4,

−1
ε4

]
I

W5 =

[
0 MT

C L̂T 0 0
0 0 NCG1 0

]T

is feasible for some positive constants ε1, ε3, and ε4, then (3.7) is asymptotically stable with
K = K̂G−1

1 and L = (GT
2 )

−1L̂.
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The proof of Theorem 1.8.1 is based on the slack variables technique combined with
the judicious handling of the famous Young’s inequality.

1.8.2 Ibrir’s approach based on separation principle

The separation principle for the stabilization of a dynamical system at an equilibrium
point is known in the context of linear systems where the closed-loop eigenvalues un-
der an observer-based controller are the union of the eigenvalues under state feedback
and the observer eigenvalues ; hence, stabilization under output feedback can be achie-
ved by solving separate eigenvalue placement problems for the state feedback and the
observer.

Theorem 1.8.2 ( [28]). Consider system (3.1) and observer (3.5). If there exist two sym-
metric and positive definite matrices P1 ∈Rn×n, P2 ∈Rn×n, two real matrices Y1 ∈Rm×n, Y2 ∈
Rn×p, and five positive constants α, β , ε1, ε2, ε3 such that the following holds :[

P1 I
⋆ (2β −α)I

]
> 0, (1.94)

σ11 AP1 +BY1 BY1 0 0 0
⋆ −P1 0 P1NT

A P1NT
C P1NT

A
⋆ ⋆ −αI 0 0 0
⋆ ⋆ ⋆ −ε1I 0 0
⋆ ⋆ ⋆ ⋆ −ε2I 0
⋆ ⋆ ⋆ ⋆ ⋆ −ε3I

< 0, (1.95)


−P2 Γ12 β I 0 0
⋆ −P2 0 P2MA Y2MC

⋆ ⋆ −P1 0 0
⋆ ⋆ ⋆ −(2− ε2)I 0
⋆ ⋆ ⋆ ⋆ −(2− ε3)I

< 0, (1.96)

where σ11 =−P1+ε3MAMT
A and Γ12 = AT P2+CTY T

2 , then there exist two gains L = P−1
2 Y2

et K = Y1P−1
1 such that systems (3.1) and (3.5) are globally asymptotically stable under

the feedback (3.6).

1.8.3 Ibrir’s Linearization Lemma [27]

Beside some congruence transformation, one of the main ideas adopted in the proof
of the main result in [27] is the following so-called Ibrir’s Linearization Lemma, which
proposes an interesting solution to the problem of coexistence of dependent variables
in LMI framework, such as a variable and its inverse, as in (3.15).

Lemma 1.8.3 ( [27]). Given the matrices X ,Y , and Z of appropriate dimensions where
X = X> > 0 and Z = Z> > 0. Then, the following linear matrix inequality holds :[

−X Y>

Y −Z−1

]
< 0 (1.97)
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if there exists a positive constant α > 0 such that−X αY> 0
αY −2αI Z
0 Z −Z

< 0. (1.98)

This lemma proposed and proved by Ibrir [27] has also exploited in the nonlinear
context. Let us mention that (3.35) and (3.36) are not equivalent, see chapter ? ? for
the proof.

1.8.4 The Two-step approach proposed in [91]

The proposed approach in [91] deals with observer-based controller design method for
Lipschitz nonlinear systems with uncertain parameters and L2 bounded disturbance
inputs, in the continuous case. A new LMI based design technique is developed to solve
the problem for both linear and Lipschitz nonlinear systems.
Hence, consider the system (1.99) under the effect of additive disturbances and Lip-
schitz nonlinearities described by the following equations :

ẋ =
(

A+∆A(t)
)

x+Bu+ϕ(x,u)+Dω (1.99a)

y =
(

C+∆C(t)
)

x+ψ(x,u)+Eω (1.99b)

where ω ∈Rs is the vector of the noises, D, and E, are n×s, and p×s real matrices, res-
pectively. The functions ϕ and ψ in (1.99) are globally Lipschitz uniformly with respect
to the second variable, that is there exist γϕ > 0 and γψ > 0 such that

‖ϕ(x,u)−ϕ(z,u)‖ ≤ γϕ‖x− z‖ , ∀x,z ∈ Rn

‖ψ(x,u)−ψ(z,u)‖ ≤ γψ‖x− z‖ , ∀x,z ∈ Rn .

Moreover, without loss of generality let us assume ϕ(0,u) = 0 for all u ∈ Rm. As in the
linear case, by applying the transformation T
Since B is full column rank, there always exists a non singular matrix T so that T B =[

Im
0

]
. Hence, using the similarity transformation T , system (3.1) can be transformed

under the following equivalent form :

A := TAT−1, C :=CT−1, B := T B =

[
Im
0

]
, (1.100a)

∆A(t) := T ∆A(t)T−1, ∆C(t) := ∆C(t)T−1, (1.100b)

M1 := T M1, N1 := N1T−1, M2 := M2, N2 := N2T−1. (1.100c)

on the system (1.99), the later takes the following equivalent form :

D := T D, E := E, ϕ(x,u) := T ϕ(T−1x,u), ψ(x,u) := ψ(T−1x,u). (1.101)

The rest of the parameters are given by (1.100).
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The observer-based controller we consider in this part is under the form :

˙̂x = Ax̂+Bu+ϕ(x̂,u)+L
(

y−Cx̂−ψ(x̂,u)
)

(1.102a)

u =−Kx̂ (1.102b)

where x̂ ∈ Rn is the estimate of x, K ∈ Rm×n is the control gain, L ∈ Rn×p is the observer
gain.
Our problem is then reduced to find simultaneously the observer gain L and the state
feedback gain K so that the closed loop system is H∞ asymptotically stable with atte-
nuation level µ > 0. Under the feedback u =−Kx̂, the closed-loop system has the form :

[
ẋ
ė

]
=

(A−BK +∆A(t)
)

BK(
∆A(t)−L∆C(t)

) (
A−LC

)[x
e

]
+

[
ϕ(x,u)

∆ϕ −L∆ψ

]
+

[
D

D−LE

]
ω (1.103)

where e = x− x̂ represents the estimation error, and

∆ϕ = ϕ(x,u)−ϕ(x̂,u) (1.104a)
∆ψ = ψ(x,u)−ψ(x̂,u). (1.104b)

The nonlinearities in (1.103) are handled as in [89]. Hence, according to [89, Lemma
6], the Lipschitz property on ϕ and ψ system (1.103) can be rewritten under the form

[
ẋ
ė

]
=

(A (Λ)−BK +∆A(t)
)

BK(
∆A−L∆C(t)

) (
A (ϒ)−LC (Ξ)

)[x
e

]
+

[
D

D−LE

]
ω (1.105)

which takes the compact form

ż = Π1(Λ,ϒ,Ξ)z+Π2ω (1.106)

where zT = [xT eT ] and the detailed expression of the matrices in Π1(Λ,ϒ,Ξ) derived
from the nonlinerities are respectively

A (Λ) := A+Λ = A+
n

∑
i=1

n

∑
j=1

ϕi j(x,0)Hn
i j

A (ϒ) := A+ϒ = A+
n

∑
i=1

n

∑
j=1

ϕi j(x, x̂)Hn
i j

C (Ξ) :=C+Ξ =C+
p

∑
i=1

n

∑
j=1

ψi j(x, x̂)H
p,n
i j .

and the parameters Λ and ϒ (resp. Ξ) belong to bounded convex set Hn (resp. Hp) for
which the set of vertices is defined by :

VH n =
{

Π ∈ Rn×n,Πi j ∈ {γϕi j
, γ̄ϕi j}

}
,
(

resp.VH p =
{

Γ ∈ Rp×n,Γi j ∈ {γψi j
, γ̄ψi j}

})
.
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The objective consists in finding matrices K and L so that the augmented closed-loop
system (1.105) with ω(t) = 0 is asymptotically stable ; and the effect of ω(t) on the
tracking error Z(t) = Hx(t), where H is a known matrix of appropriate dimension, is
attenuated in the H∞ sense. More precisely, it is required that

‖Z‖2 < µ‖ω‖2, ∀ω ∈ L2[0,∞) (1.107)

where µ > 0 is the disturbance attenuation level to be determined. To this end, let’s
consider the following index J

J =
∫ ∞

0
[Z(t)T Z(t)−µ2ω(t)T ω(t)]dt. (1.108)

Under zeros-initial conditions, the Lyapunov function satisfies V (0) = 0 and V (∞) ≥ 0,
which leads to

J =
∫ ∞

0
[ZT (t)Z(t)−µ2ω(t)T ω(t)+V̇ (t)]dt −V (∞)

≤
∫ ∞

0
[ZT (t)Z(t)−µ2ω(t)T ω(t)+V̇ (t)]dt. (1.109)

To satisfy the attenuation level in (1.107), it suffices that inequality (1.110) holds :

ZT (t)Z(t)−µ2ω(t)T ω(t)+V̇ (t)< 0, ∀t ∈ [0,∞). (1.110)

Using Lyapunov function candidate

V (z) = zT diag{P,R}z, (1.111)

inequality (1.110) is then satisfied if the following quadratic form x
e
ω

T Ω11 +HT H PBK PD
(⋆) Ω22 R(D−LE)
(⋆) (⋆) −µ2I

 x
e
ω

< 0 (1.112)

holds for all (Λ,ϒ,Ξ) ∈ Hn ×Hn ×Hp, or equivalently

Ω(Λ,ϒ,Ξ)< 0, ∀(Λ,ϒ,Ξ) ∈ Hn ×Hn ×Hp (1.113)

with

Ω(Λ,ϒ,Ξ) =


Ω̃11 PBK PM1 0 0 PD
(⋆) Ω̃22 0 RM1 L̂M2 RD− L̂E
(⋆) (⋆) −ε1I 0 0 0
(⋆) (⋆) (⋆) −ε2I 0 0
(⋆) (⋆) (⋆) (⋆) −ε3I 0
(⋆) (⋆) (⋆) (⋆) (⋆) −δ I

 , (1.114)

and

Ω̃11 = He
{

PA (Λ)−PBK
}
+HT H +(ε1 + ε2)NT

1 N1 + ε3NT
2 N2 (1.115)
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Ω̃22 = He
{

RA (ϒ)− L̂C (Ξ)
}
, L̂ = RL, δ = µ2. (1.116)

The general two-step algorithm proposed in [91] to linearize the bilinear term PBK in
(1.114) combines the Young’s inequality based approach when it works and the two-
step approach. We begin by recalling the Young’s inequality based approach applied to
(1.114).

Theorem 1.8.1 ( [91]). System (1.99) is asymptotically stabilizable by (1.102) if for
fixed scalars ε2 > 0, ε3 > 0 and ε4 > 0, there exist two positive definite matrices Z ∈ Rn×n,
R ∈ Rn×n, two matrices K̂ ∈ Rm×n, L̂ ∈ Rn×p, and a scalar ε1 > 0 so that the following LMI
optimization problem has a solution

minimize(δ )
subject to the following set of LMIs[

K11(Λ,ϒ,Ξ) K12

(⋆) −diag
{

1
ε4

Z , ε4Z , ε1I, ε2I, 1
ε2
,ε3I, 1

ε3
I, δ I

}]
< 0 (1.117)

for all (Λ,ϒ,Ξ) ∈ Hn ×Hn ×Hp

with

K12 =

BK̂ 0 Z NT
1 0 Z NT

1 0 Z NT
2 D

0 0 0 0 0 0 0 0
0 I 0 RM1 0 L̂M2 0 RD− L̂E



K11(Λ,ϒ,Ξ) =

K 11
11 (Λ) Z HT 0
(⋆) −I 0
(⋆) (⋆) K 33

11 (ϒ,Ξ)


K 11

11 (Λ) = He
(
A (Λ)Z −BK̂

)
+ ε1M1MT

1

K 33
11 (ϒ,Ξ) = He

(
RA (ϒ)− L̂C (Ξ)

)
.

Hence, the H∞ stabilizing observer-based control gains are given by K = K̂Z −1 and L =
R−1L̂, and the optimal disturbance attenuation level is given by µmin =

√
δ .

Remark 1.8.4. Inequality (1.117) is a LMI only when a priori fixes the parameter ε4. For
this approach to work, it is therefore necessary to find such ε4 making (1.117) feasible.

When the Young’s inequality based approach fails, we appeal to the new two-step me-
thod proposed in [91], which consists in solving in a first step the problem of stabili-
zation by static state feedback, which gives as a solution part of the Lyapunov matrix,
which we which we incorporate into the bilinear term PBK in (1.114).
Since the matrix P11 is symmetric positive definite, then invertible, there always exists a
matrix S ∈ Rm×(n−m) so that

P12 = P11S. (1.118)
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Starting from inequality (1.114). Taking into account the detailed structure of the term
PBK, and the structure (3.22), inequalities (1.113) become after using the change of
variables K̂ = P11K, L̂ = RL, δ = µ2 :

Ω̃11

[
K̂

ST K̂

]
PM1 0 0 PD

(⋆) Ω̃22 0 RM1 L̂M2 RD− L̂E
(⋆) (⋆) −ε1I 0 0 0
(⋆) (⋆) (⋆) −ε2I 0 0
(⋆) (⋆) (⋆) (⋆) −ε3I 0
(⋆) (⋆) (⋆) (⋆) (⋆) −δ I


< 0 (1.119)

for all (Λ,ϒ,Ξ) ∈ VH n ×VH n ×VH p, and

Ω̃11 = He
{

PA (Λ)−
[

K̂
ST K̂

]}
+HT H +(ε1 + ε2)NT

1 N1 + ε3NT
2 N2.

The rest of the approach proposed in [91] is reported in the following new two-step
algorithm :

Algorithm NTSA : general algorithm for nonlinear systems [91]

step 1 : Solve the optimization problem : minimize δ subject to LMI (1.117) with the
decision variables Z ,R, K̂, L̂, and ε1 > 0 and go to step 2 ;

step 2 : If LMI (1.117) is found feasible, then compute the observer-based controller
gains as K = K̂T Z −1, L = R−1L̂T and µmin =

√
δ . Otherwise, go to step 3 ;

step 3 : Solve the stabilization problem of (1.99) by a static state feedback u =−K x :

minimize δ̂ subject to : (1.120a)


He
(
A (Λ)Z −B ¯K

)
+ εM1MT

1 Z NT
1 Z HT D

(⋆) −εI 0 0
(⋆) (⋆) −I 0
(⋆) (⋆) (⋆) −δ̂ I

< 0,∀Λ ∈ VH n (1.120b)

where ¯K = K Z , δ̂ = ν2 and Z −1 = P =

[
P11 P12
PT

12 P22

]
and go to step 4 ;

step 4 : Compute S̄ by S̄ = P−1
11 P12, put S = ΘS̄, with Θ = diag(α1,α2, . . . ,αm) and go to

step 5 ;

step 5 : Solve the optimization problem : minimize δ subject to (1.119) with S = ΘS̄ by
using the gridding method on αi, i = 1, ...,m, with the decision variables P11,P22,R,
K̂, L̂ and εi, i = 1,2,3, and go to step 6 ;

step 6 Compute the observer-based controller gains as K = P−1
11 K̂, L = R−1L̂ and the

optimal disturbance attenuation level as µmin =
√

δ .
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1.9 Interconnected systems

The term interconnected model is associated with any model showing a finite number of
weakly coupled or strongly coupled subsystems by interconnections. This model gene-
rally depends on the nature of the physical system itself and the nature of the problem
to be solved. In general, models that are not interconnected in nature may undergo
basic changes in the state space in order to design an interconnected model.
Modeling In the case of an interconnected structure, the system is broken down into
N sub-systems interacting with each other through internal signals. Each subsystem
has its own inputs and outputs, and its dynamics are affected by both local inputs and
interactions with other subsystems.

Structures of interconnected systems

In order to better present the studied model, this section looks at the state representa-
tion of an interconnected large-scale system. Three types of representation are possible.
The first is a so-called compact unstructured representation whose decomposition gives
rise to the other two models : the input / output oriented model and the interconnection
oriented model. The structures of these three models are shown in Figure ? ? ? ? :

1. Unstructured model : Let be the model given by (1.123). This model is qualified
as large dimension if the number of inputs, outputs and states is large, which
makes its study impracticable. Despite the very frequent use of this structure in
the theory of multivariate systems, it is of minor importance for large-dimensional
systems because it does not add anything on subsystems.

2. Input/output oriented structure : In the case of multi-agent systems, the in-
put/output vectors are decomposed down into sub-vectors uT =

[
uT

1 · · · uT
N
]

and
yT =

[
yT

1 · · · yT
N
]

while the system is represented by a compact structure. In this
case, the decentralized control center generates the command ui and access the
output measurements yi. Unlike the model (1.123), the model described below
makes the structural constraints of decentralized control accessible.{

ẋ(t) = Ax(t)+∑N
i=1 Biui(t)

yi(t) = Cix(t)
(1.121)

3. Interaction oriented model : Many large-scale systems result from complex rela-
tionships between agents of the same environment. These relationships are based
on a number of interactions between different agents and can have several dif-
ferent forms, such as an exchange of energy or information flow . This type of
model is used mainly in the modeling of social phenomena and in software pro-
gramming. The interactions are represented by signals through which the subsys-
tems interact with each other. These additional signals are the internal signals hi
and zi represented in the subsystem model as follows :

ẋi(t) = Aixi(t)+Biui(t)+Eihi(t)
yi(t) = Cixi(t)+Fihi(t)
zi(t) = Czixi(t)+Fzihi(t)

(1.122)
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Consider a large-dimensional linear system S whose global state representation is as
follows : {

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t) (1.123)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the input, control and output vectors,
respectively.

1.9.1 Control of large systems

One of the best ways to control a large, interconnected system is to use decentralized
control since it is based only on local information from each subsystem. The command
must be robust to compensate for the imperfections related to the modeling of the
subsystems.

1.10 Some approach dealing with Stabilization problem
for large-scale interconnected non linear systems

1.10.1 Siljak & Stipanovic approach for stabilisation of LSS

The following class of large-scale interconnected non linear systems is considered in
[65,54] :

ẋi(t) = Aixi(t)+Biui(t)+hi(t,x), · · ·xi(t0) = xi0 (1.124a)

yi(t) =Cixi(t) (1.124b)

where xi ∈ Rni, ui ∈ Rmi, yi ∈ Rmi, hi ∈ Rni, t0 and xi0 are the state, input, output, non-
linear interconnection function, initial time and the initial state of the ith subsystem,
System (1.124) consists of N subsystems, that is, i = 1 : N. The interconnections are as-
sumed to be piecewise-continuous functions in both variables, and satisfy the quadratic
constraints [62] :

hT
i (t,x)hi(t,x)≤ α2

i xT HT
i Hix ≤ α2

i νix>x (1.125)

where αi > 0 are interconnection bounds, Hi are bounding matrices, νi = λmax(H>
i Hi)

and xT = [xT
1 ,x

T
2 , · · · ,xT

N ] is the state of the overall system. It is assumed that Ai is Hurwitz.
One specific practical application whose system model conforms to (1.124) with the
quadratic interconnection bounds (1.125) is a multimachine power system consisting
of N interconnected machines with steam valve control ; the dynamic model is discussed
in [62].
The overall system (1.124) can be rewritten as{

ẋ(t) = ADx(t)+BDu(t)+h(t,x), x(t0) = x0
y(t) = CDx(t) (1.126)
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where AD = diag(A1, · · · ,AN), BD = diag(B1, · · · ,BN), CD = diag(C1, · · · ,CN), uT = [uT
1 , · · · ,uT

N ],
yT = [yT

1 , · · · ,yT
N ], and hT = [hT

1 , · · · ,hT
N ]. The nonlinear interconnections h(t,x) are boun-

ded as follows :
hT (t,x)h(t,x)≤ xT ϒx (1.127)

where ϒ = ∑N
i=1 α2

i HT
i Hi. The pair (AD,BD) is controllable and the pair (AD,CD) is obser-

vable.
The following linear decentralized controller and observer are considered :

u(t) = KDx̂(t) (1.128a)

˙̂x(t) = ADx̂(t)+BDu(t)+LD(y(t)−CDx̂(t)) (1.128b)

where KD = diag(K1, · · ·KN) and LD = diag(L1, · · ·LN) are the controller and observer gain
matrices, respectively. Rewriting (1.126) and (1.128) in the coordinates x(t) and x̃(t),
where x̃(t) = x(t)− x̂(t) is the estimation error, the closed-loop dynamics is{

ẋ(t) = (AD +BDKD)x(t)−BDKDx̃(t)+h(t,x)
˙̃x(t) = (AD −LDCD)x̃(t)+h(t,x) (1.129)

Two broad methods are used to design observer-based decentralized output feedback
controllers for large-scale systems :

1. Design local observer and controller for each subsystem independently, and check
the stability of the overall closed-loop system. In this method, the interconnection
in each subsystem is regarded as an unknown input [80], [1].

2. Design the observer and controller by posing the output feedback stabilization
problem as an optimization problem. The optimization approach using LMIs can
be found in [65].

We give a brief overview of this approach. It is assumed that Hi is known. The control-
ler gain KD and the observer gain LD are obtained from the following minimization
problem, provided it is feasible.

Theorem 1.10.1 ( [65]). For the large-scale system given by (1.126), the decentralized
controller and observer as given by (1.128) will result in exponential stabilization of the
overall system, if the optimization problem, (1.146), is feasible,

Minimise
N

∑
i=1

γi subject to

P̃1 > 0, P̃2 > 0;

AT
i P̃1 + P̃1AD +MT

D +MD −MD P̃1 HT
1 · · · HT

N
−MT

D AT
i P̃2 + P̃2AD −CT

DNT
D −NDCD P̃2 0 · · · 0

P̃1 P̃2 −I 0 · · · 0
H1 0 0 −γ1I · · · 0
...

...
...

... . . . ...
HN 0 0 0 · · · −γNI


< 0

(1.130)
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where γi =
1

α2
i

and P̃1BDKD = MD, P̃2LD = ND. The gain matrices KD and LD were extracted

as follows : KD = B−1
D P̃−1

1 MD and LD = P̃−1
2 ND.

The LMI formulation given above requires the invertibility of the input matrix BD ; that
is, it requires as many independent control inputs as the number of state variables in
each subsystem. Although the formulation as an optimization problem using the LMI
framework is quite elegant from a numerical perspective, as it not only computes the
gains but also maximizes the interconnection bounds, it can be applied only to a res-
trictive class of systems in which the input matrix is invertible. Further, obtaining block
diagonal positive definite solutions, P̃1 and P̃2, from the optimization problem (1.146)
in itself is a challenging problem ; the solutions need to be block diagonal for the com-
puted KD and LD to be block diagonal ; otherwise, one does not get a decentralized
solution.
Notice that, because of the nature of the interconnection, hi(t,x), in some cases, system
(1.124) may not be stabilizable even with full-state feedback control. For example :

Example 1.10.2 ( [54]).

ẋ1 =

[
0 1
−2 −3

]
x1 +

[
0
1

]
u1 + γ1

[
x11 − x12

x21

]
,y1 = [1 · · ·0]x1 (1.131)

If γ1 = 1, then the first state of x1,x11, has the dynamics ẋ11 = x11, which is unstable and
we lose controllability of the system. One cannot design a controller to stabilize the system
(1.131) with the given interconnection, although (A1,B1) is controllable.

From the example, it is clear that the structure and bounds of the interconnections will
affect controllability of subsystems. The same holds true for observability of the system.
Further, we develop sufficient conditions for the existence of symmetric positive definite
solutions.

1.10.2 Pagilla and Y. Zhu approach for The decentralized output
feedback controller design

For simplicity define the following : ABi = BiKi and ACi = LiCi, γ2 = ∑N
i=1 2α2

i νi.

Definition 1.10.3 ( [54]). The real number

δ (M,N)≜ min
ω∈R

σmin

[
iωI −M

N

]
(1.132)

where i =
√
−1, M ∈ Rn×n, N ∈ Rp×n.

Theorem 1.10.4 ( [54]). For the large-scale system given by (1.126), the decentralized
controller and observer as given by (1.128) will result in exponential stabilization of the
overall system, if

δ (AT
i ,
√

2(γ2 +ηi)(BT
i Bi)

− 1
2 BT

i )>
√

2(γ2 +ηi) (1.133)
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and √
λmax(Q̃i1)+ η̃i < δ (Ai,Ci). (1.134)

are satisfied for all i = 1 : N. The gains Ki and Li are respectively given by

Ki =−(B>
i Bi)

−1(B>
i Pi), Li =

ε
2

P̃−1
i C>

i . (1.135)

Il should be noticed that (1.133) and (1.134) guarantee, for some ηi > 0 and η̃i > 0
the existence of symmetric positive definite solutions of two algebraic Ricatti equations
(AREs) :

AT
i Pi +PiAi +2Pi(I −Bi(BT

i Bi)
−1BT

i )Pi + γ2I +ηiI = 0 (1.136)

AT
i P̃i + P̃iAi + P̃iP̃i + Q̃i1 + η̃iI − εiCT

i Ci = 0 (1.137)

guaranteeing the negativity of a certain Lyapunov functions, hence ensuring the expo-
nential stabilization of the set closed loop system.

Remark 1.10.5. The control gain matrix Ki given by (1.135) requires that (B>
i Bi) is in-

vertible ; (B>
i Bi) is invertible if Bi has full column rank, which is always possible.

Remark 1.10.6. If Ai is not stable, then we can stabilize Ai by changing Ki and Li given by
(1.135), to the following :

Ki =−(B>
i Bi)

−1B>
i Pi − K̄i, Li =

εi

2
P̃−1

i C>
i + L̄i

where K̄i and L̄i are pre-feedback gains such that Ac
i ≜ Ai −BiK̄i and Ao

i ≜ Ai − L̄iCi are
Hurwitz. In such a case, Ai in (1.136) and (1.137) must be replaced by Ac

i and Ao
i , respec-

tively. Notice that we cannot design the controller and observer independently, that is, the
separation principle does not hold ; the ARE (1.137) depends on the control gain matrix
Ki. It should be noted that the above reduction procedure has yielded the following : One
can design the controller gain independent of the observer and further, only the first ARE,
(1.136), explicitly depends on the interconnection bounds.

1.10.3 Kalsi et al. approach for decentralized dynamic feedback
control for nonlinear interconnected systems [33]

We consider the nonlinear interconnected system consist of N sub-systems modeled by

ẋi = Aixi +Bi1ui1 +Bi2ui2(x) (1.138a)

yi =Cixi, i = 1, · · · ,N (1.138b)

where xi ∈ Rni, ui1 ∈ Rm
i1 and yi ∈ Rpi are the state input, output vectors, respectively,

of the i− th subsystem, x = [xT
1 , · · · ,xT

N ]
T ∈ Rn, with n = ∑N

i=1 ni, ui2 ∈ Rmi2 models the
unknown nonlinear interconnection of the i− th subsystem with others. The nonlinear
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interconnection of each subsystem is globally bounded, that is ‖ui2‖≤ ρi for some ρi > 0,
and satisfies the same quadratic constraint as, for example, [64] and [53] that is

(Bi2ui2(x))T (Bi2ui2(x))≤ ν2
i xΓT

i Γix (1.139)

where νi is a known positive constant and νi ∈Rni×n is a known interconnection matrix.
We assume for the i− th subsystem that the input matrix Bi1 ∈ Rni×mi1(mi1 ≤ ni) has full
rank, the pair (Ai,Bi1) is controllable, and the pair Ai,Ci is observable. We also assume
that

rank(Bi2) = rank(CiBi2) = ri

where ri ≤ mi2 ≤ pi, and the system zeros of the system model given by the triple
(Ai,Bi2,ci) are in the open left-hand complex plane, that is

rank
[

sIni −Ai Bi2
Ci 0

]
= ni + ri (1.140)

for all s such that R(s)≥ 0. In [34], the design of the decentralized observer controller
compensator was subject to the assumption that for the controllable pair (Aci,Bi1)

δ (Aci,
√

2βBi1(BT
i1Bi1)

1
1
)>

√
2β

where

β =
N

∑
i=1

µ2
i λmax(ΓT

i Γ)

with µi and Γi defined in (1.139).
As spiculated in [33], the above condition is quite conservative as can be seen on the
following example.

Remark 1.10.7 ( [33]). The dynamics of the first subsystem are given by

ẋ1 =

[
0 1

−125 −22.5

]
x1 +

[
0
1

]
u11 +

[
1
1

]
u12(x)

where

u12(x) = 0.2cos(x4)
5

∑
i=1

xi√
10

. (1.141)

It satisfies (1.139) with µ1 = 0.2. If we increase µ1 from 0.2 to 0.8 then it is easy to verify
that

δ (Ac1,
√

2βB11(BT
11B11)

−1/2)<
√

2β

which implies that the delta condition is not satisfied. The dynamics of the second subsystem
are given by

ẋ2 =

 0 1 0
0 0 1

−37.5 −50 −13.5

x2 +

0
0
1

u21 +

1
1
1

u22(x)

42



1.10. Some Approach for stabilisation of LSS

where

u22(x) = 0.2cos(x1)
5

∑
i=1

xi√
15

It satisfies (1.139) with µ2 = 0.2. If we increase µ2 from 0.2 to 0.8 then it is easy to verify
that

δ (Ac2,
√

2βB21(BT
21B21)

−1/2)<
√

2β
which implies that the delta condition is once again not satisfied.

Kalsi et al. [33] constructed a decentralized dynamic output feed-back based linear
controller of the form

ui1 = Kix̂i (1.142)

where Ki is the feedback gain matrix for the i− th subsystem and x̂i is the estimate of the
i-th subsystem’s state vector, so that the closed-loop system is robustly stabilized with
as large interconnection bounds as possible. They proposed to employ a Linear Matrix
Inequality (LMI) approach to achieve the above objective using local observers for the
system modeled by (1.138) and (1.138a). If the earlier stated assumptions are satisfied,
then the local sliding mode observer for the i− th subsystem has the form

˙̂xi = (Ai −LiCi)x̂i +Liyi +Bi1ui1 −Bi2Ei(yi, ŷi,ηi) (1.143)

with ŷi =Cix̂i and

Ei(y, ŷi,ηi) =

 ηi
Fi(ŷi − yi)

‖Fi(ŷi − yi)‖
if Fi(ŷi − yi) 6= 0

0 if Fi(ŷi − yi) = 0

where ηi is a positive design parameter, and Li ∈ Rni×pi and Fi ∈ Rmi2×pi are matrices
satisfying

(Ai −LiCi)
T P◦

i +P◦
i (Ai −LiCi) =−Q◦

i (1.144)

and
FiCi = BT

i2P◦
i (1.145)

for some symmetric positive definite P◦
i ∈ Rni×ni and Q◦

i ∈ Rni×ni. It follows from [25]
that the x̂i converges asymptotically to xi for ηi ≥ ρi. The detailed design procedures
for the matrices Li, Fi and P◦

i that satisfy the conditions (1.144) and (1.145) are given
in [34] :

1. Find the non-singular matrices Ti and Si such that the triple Ai, Bi2, Ci can be
transformed into the following form,

Â = TiAiT−1
i =

[
Ai11 Ai12

Ai21 Ai22

]
,

B̂i2 = TiBi2 =

[
Bi21

0

]
,

Ĉi = SiCiT−1
i =

[
In 0
0 Ci22

]
where Ai11 ∈ Rri×ri, Ai22 ∈ R(ni−ri)×(ni−ri), Bi21 ∈ Rri×mi2 and Ci22 ∈ R(pi−ri)×(pi−ri).
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2. Choose Li22 such that Ai22 −Li22Ci22 is Hurwitz.
Solve P◦

i22
for

(Ai22 −Li22Ci22)
T P◦

i22
+P◦

i22
(Ai22 −Li22Ci22) =−Q◦

i22
,

where Q◦
i22

= Q̂◦
i22

+ 2δiIni−ri, Q̂◦
i22

is a symmetric positive definite matrix and δi =

σ2
max(Bi1Ki) with Ki = Ki1 +Ki2.

3. Choose ki such that

ki >
1
2

λmax

(
AT

i11
+Ai11 +(Ai12 +AT

i21
P◦

i22
)× Q̂◦−1

i22
(AT

i12
+P◦

i22
Ai21)

)
;

4. Construct P̂◦
i , F̂i and L̂i as

P̂◦
i =

[
In 0
0 P◦

i22

]
,

F̂i =
[
BT

i21
0
]
,

L̂i =

[
(ki +δi)In 0

0 Li22

]
.

and compute P◦
i = T T

i P̂◦
i Ti, Fi = F̂iSi, Li = T−1

i L̂iSi.

The controller gain that stabilize the nonlinear interconnected system (1.138) is given
in the following theorem :

Theorem 1.10.8 ( [33]). If the optimization given by

minimize
N

∑
i=1

γi

subject to τ > 0, YD > 0, MD, κY > 0, and κM > 0
W̃D I YDΓT

1 · · · YDΓT
N

I −I 0 · · · 0
Γ1YD 0 −γ1I · · · 0

...
...

... . . . ...
ΓNYD 0 0 · · · −γNI

< 0 (1.146)

[
κMI MT

D
MD −I

]
< 0 (1.147)[

YD I
I κY I

]
> 0, (1.148)

with W̃D = YDAT
D +ADYD +B1DMD +(B1DMD)

T + τI (1.149)

is feasible, then the nonlinear interconnected system

ẋ = ADx+B1Du1 +B2Du2(x)
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and
y =CDx

driven by the dynamic output feedback controller u1 = KDx̂ with KD and x̂ given as follows

KD = MDy−1
D (1.150)

and
P◦

D =
1
τ

y−1
D (1.151)

and (1.143), respectively, is robustly stable.

1.10.4 Zemouche and Alessandri approach for Decentralized Observer-
Based Control of Linear Systems with Nonlinear Intercon-
nections [87]

Consider the following class of linear systems under nonlinear interconnections :

ẋi = Aixi +Biui +hi(t,x) (1.152a)

yi =Cixi (1.152b)

where xi ∈ Rni is the state vector, yi ∈ Rpi is the output measurement and ui ∈ Rmi is the
control input vector for i = 1,2, · · · ,N. Moreover, let x = [xT

1 · · ·xT
N ]

TRn, with n = ∑N
i=1 ni,

which is the state of the overall system.
The nominal matrices Ai ∈ Rni×ni, Bi ∈ Rni×mi, and Ci ∈ Rpi×ni are constant. The pairs
(Ai,Bi) and (Ai,Ci) are assumed to be stabilizable and detectable, respectively.
Moreover, the uncertain nonlinear connections hi(x) satisfy the following condition :

hT
i (x)hi(x)≤ α2

i xT HT
i Hix,∀x ∈ Rn (1.153)

where the coefficients αi > 0 are interconnection bounds and Hi ∈ Rvi×n are known
constant matrices. In practice, we assume that the functions hi(x) are unknown but such
that (1.153) is satisfied with αi and Hi known in principle (a problem we will address is
that of finding the maximum value of αi for which closed-loop stability is ensured). The
global system can be represented in the following compact form :

ẋ = Ax+Bu+h(t,x) (1.154a)

y =Cx (1.154b)

where u = [uT
1 · · ·uT

N ]
T ∈ Rm and y = [yT

1 · · ·yT
N ]

T ∈ Rp are the entire input and output
vectors, respectively, with

m =
N

∑
i=1

mi, p =
N

∑
i=1

pi
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The matrices A, B, C and the global nonlinear interconnection h are given by :
AD = diag(A1, · · · ,AN), A = diag(A1, · · · ,AN), B = diag(B1, · · · ,BN), C = diag(C1, · · · ,CN),
h = (hT

1 , · · · ,hT
N)

T .
Let H = [HT

1 , · · · ,HT
N ], Λ = diag(α2

1 Iv1, · · · ,α2
NIvN ), Γ = diag(τ1Iv1 , · · · ,τNIvN ) > 0, where

τ1, · · · ,τN > 0. The inequalities (1.153) can be expressed as follows :

hT (t,x)Γh(t,x)≤ xT H T ΓΛH x, ∀x ∈ Rn. (1.155)

We aim to design a Luenberger observer-based controller described by the following
structure :

ẋ = Ax̂+Bu+L(y−Cx̂) (1.156a)

u =−Kx̂ (1.156b)

where
L = diag(L1, · · · ,LN), K = diag(K1, · · · ,KN) (1.157)

are the global observer and controller parameters and Li ∈ Rni×pi, Ki ∈ Rmi×ni are the
local observer and controller gain matrices. x̂ is the estimate of the entire system state
x. It is worth noting that (1.154), and (1.157) correspond to a complete decentralized
setting, i.e., a set of local controllers fed by local observers.
The difficulty to have an LMI stems from the off-diagonal bilinear term P−1

1 BK.
In line with [37], to avoid the bilinear term in

AT P+PA =

[
AT

KP−1
1 +P−1

1 AK P−1
1 BK

(BK)T P−1
1 AT

L P2 +P2AL

]
where AK = A−BK, AL = A−LC, we use
– a simple congruence transformation
– Schur lemma
– the Young relation in a judicious manner
We obtain a convex optimization problem that consists in maximizing the bounds on
the nonlinear interconnections. Specifically, the introduction of the diagonal matrix Γ
plays a role on the maximization of the bounds αi.

Theorem 1.10.9 ( [87]). The closed-loop system

ζ̇ = A ζ +Bh(t,x) (1.158a)

x = C ζ (1.158b)

where A =

[
A−BK BK

0 A−LC

]
, B =

[
In
In

]
, C =

[
In 0

]
and ζ =

[
xT eT ]T with e = x−

x̂ is asymptotically stabilizable with the decentralized observer-based controller (1.156),
(1.157) if there exist block-diagonal Lyapunov matrices P1 = diag(P11, · · · ,P1N), P2 =
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diag(P21, · · · ,P2N), matrices R1 = diag(R11, · · · ,R1N), R2 = diag(R21, · · · ,R2N) of ap-
propriate dimensions, and positive scalars γi, τi, i = 1, · · · ,N and ε > 0 that result from the
solution of the problem :

min
N

∑
i=1

(γi + τi) (1.159)

subject to 
L(P1,R1) 0 In P1HT BR1 0

0 M(P2,R2) P2 0 0 In
In P2 −Γ 0 0 0

HP1 0 0 −θ 0 0
RT

1 BT 0 0 0 −1
ε P1 0

0 In 0 0 0 −εP1

< 0 (1.160)

where L(P1,R1) =P1AT +AP1−RT
1 BT −BR1 and M(P2,R2) = AT P2+P2A−RT

2 C−
CT R2. Therefore, the local decentralized observer-based controller parameters are given by

Li = P−1
2i RT

2i, Ki = R1iP
−1
1i

and the maximum bounds of the interconnections are

α2
i =

1
τiγi

.
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FIG. 1.4: State feedback control
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FIG. 1.5: Output feedback control
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Dynamical process

yk = Cxk

x̂k+1 = Axk +Buk

xk+1 = Axk +Buk

u(t) x(t), xk

True state

x̂(t), x̂k

Estimate state

FIG. 1.8: Open-loop observer
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C
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Σ
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x
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FIG. 1.9: Luenberger observer : continuous case
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Dynamical process

State observer

ŷ(t) = Cx(t)
ŷk = Cxk

y(t) = Cx(t)
yk = Cxk

ẋ(t) = Ax(t) +Bu(t) + L(y(t)− ŷ(t))
x̂k+1 = Axk +Buk + L(yk − ŷk)

ẋ(t) = Ax(t) +Bu(t)
xk+1 = Axk +Buk

u(t) x(t), xk

True state

y

−

ŷ

x̂(t), x̂k

Estimate state

+

FIG. 1.10: Luenberger Observer

ẋ = Ax+ Bu+ L(y − ŷ) C

K ΣL

R Σ ẋ = Ax+ Bu C
+

−

u x y

x̂ ŷ

−

+

FIG. 1.11: Observer-based feedback : continuous case
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Sliding mode observer

Λ sign(.)

∫
g(x̂)Σ Σf(x̂, u)

System
yu

−

+ ˙̂x x̂

−

+

FIG. 1.12: Structure of a sliding mode observer
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CHAPITRE

2

A Robust Decentralized Observer-
Based Stabilization Method for In-
terconnected Nonlinear Systems. Im-
proved LMI Conditions

2.1 Introduction

The stabilization problem of interconnected nonlinear systems using decentralized observer-
based controllers in the convex optimization context for nonlinear interconnected discrete-
time systems is considered in this chapter. The proposed method uses the tools of pre-
vious work in [18], [89] and [90]. We prove that for discrete-time systems, the intro-
duction of a slack variable G, in a triangular form, avoids many bilinear terms and leads
to simpler and less conservative LMI conditions. Although this idea seems simple but
it leads to better LMIs from feasibility point of view. This is the first time this idea is
used to solve the decentralized observer-based stabilization problem for interconnec-
ted systems.To be more clear, the contributions of this chapter may be summarized as
follows :
• The introduction of the slack variable G in a triangular form to eliminate bilinear

terms which are the source of conservatism of the resulted LMI conditions, and are
generally unavoidable by standard LMI methods. This novel technique is specific for
discrete-time systems for which the literature is limited.

• To get the final LMI condition, there is a chain of new mathematical developments
based on well known tools, but exploited in new ways. Many linearization steps are
needed to get an LMI condition.

• Contrarily to several methods in the literature where the considered models are linear
with nonlinear interconnections, a known nonlinear function is included in the dyna-
mics of the system in the goal to enlarge the applicability of the proposed method for
a wide class of real-world applications. This known nonlinearity has been handled by
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A Decentralized Observer-Based Stabilization Method for Interconnected Systems

using as power tool the well-known differential mean value theorem, which leads to
less conservative LMI conditions.

• The numerical comparisons presented in the chapter are significant and show the
superiority of the proposed methodology and confirm the powerful role played by the
novel structure of the slack variable G.

The rest of this chapter is organized as follows : Section 2.2 provides some notations and
useful lemmas. The problem formulation is introduced in Section 3.2. The main contri-
bution is presented and proved in Section 2.4. Two numerical examples are given in
Section 2.5 to demonstrate the validity and effectiveness of the proposed methodology.
Finally, we end the chapter by a conclusion.

2.2 Preliminary useful lemmas

Before formulation the problem we that we will investigate in this paper, we start by
introducing some preliminaries, which will be used throughout this paper.

2.2.1 Preliminary useful lemmas

The following lemmas play an important role in establishing the main contribution of
this paper.

Lemma 2.2.1 (Young’s inequality). Let X and Y be two given matrices of appropriate
dimensions. Then, for any symmetric positive definite matrix S, the following inequality
holds :

XTY +Y T X ≤ XT S−1X +Y T SY︸ ︷︷ ︸
U1(X ,Y )

. (2.1)

Inequality (2.1) is the classical Young’s inequality. It is often used in many control pro-
blems, especially to handle parametric uncertainties. Nevertheless, what we propose
in this paper is not based only on inequality (2.1) like usually, but it is based on its
reformulation.

Lemma 2.2.2 ( [90]). Let X and Y be two given matrices of appropriate dimensions.
Then, for any symmetric positive definite matrix S of appropriate dimension, the following
inequality holds :

XTY +Y T X ≤ 1
2

[
X +SY

]T
S−1
[
X +SY

]
︸ ︷︷ ︸

U2(X ,Y )

. (2.2)

Remark 2.2.3. This new variant of Young’s relation introduced firstly in [90] is better
than the classical one (2.1). Inequality (2.2) provides smaller upper bound of X>Y +Y>X .
Indeed, it is easy to show that

U2(X ,Y )≤ U1(X ,Y ),∀X ,Y, and S = S> > 0. (2.3)
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From (2.3), it is obvious that the new variant of Young’s inequality will lead to less conser-
vative LMI conditions. In fact, for any matrix Λ of adequate dimensions, we have the follo-
wing implication :

Λ+U1(X ,Y )< 0 =⇒ Λ+U2(X ,Y )< 0 (2.4)

because from (2.3) we have

Λ+U2(X ,Y )≤ Λ+U1(X ,Y )< 0. (2.5)

The following well-known result, introduced in [11], will be very useful.

Lemma 2.2.4 ( [11]). The following conditions are equivalent :

1. There exists a symmetric matrix P > 0 such that

AT PA−P < 0. (2.6)

2. There exist a symmetric matrix P and a matrix G such that[
P AT GT

GA G+GT −P

]
> 0. (2.7)

The next section is devoted to the formulation of the problem of decentralized observer-
based stabilization for a class of nonlinear systems with unknown nonlinear intercon-
nections. For more details about decentralized control design for interconnected non-
linear systems, we refer the reader to the pertinent references [82], [63], [41], [42],
[83] [44], [12], [23], [47], [24]. What we study in this chapter consists in establishing
a new LMI conditions ensuring the asymptotic stabilization of the closed-loop system.
Thanks to the previous lemmas exploited in convenient ways and some new mathema-
tical matrix decompositions and congruence principle, we will provide less conservative
LMI conditions compared to the existing results in the literature.

2.3 Problem Formulation

Consider the following nonlinear interconnected system composed of N subsystems :

xi
t+1 = Aixi

t +Biui
t +Di f i(xi

t)+Eiηi(xt) (2.8a)

yi
t =Cixi

t , (2.8b)

where, xi
t ∈Rni, ui

t ∈Rmi, yi
t ∈Rpi are the state, input, and the output vectors of the ith sub-

system, for i = 1,2, . . . ,N. The nominal matrices Ai ∈ Rni×ni,Bi ∈ Rni×mi,Ci ∈ Rpi×ni,Di ∈
Rni×qi,Ei ∈ Rni×ri are constant known matrices, for each i ∈ {1, . . . ,N}.
Let xt =

[
(x1

t )
T . . . (xN

t )
T
]T ∈ Rn, with n = ∑N

i=1 ni, be the state of the overall system.
The function f i : Rsi → Rqi, are assumed to be continuously differentiable, and satisfy
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f (0) = 0. f i can be rewritten under the detailed form :

f i(xi
t) := f i(Hixi

t) =


fi1(Hi1xi

t)
...

fi j(Hi jxi
t)

...
fiqi(Hiqix

i
t)

 ∈ Rqi

with Hi j ∈ Rsi j×ni, and Hi =
[
HT

i1 . . .H
T
iqi

]T ∈ Rsi×ni for 1 ≤ i ≤ N, 1 ≤ j ≤ qi, and si :=
∑qi

j=1 si j. Moreover, the uncertain nonlinear connections η i : Rni → Rri, depend on the
entire sate vector xt , and satisfy that for i = 1, . . . ,N, ηi(.) is αi-Lipschitz, otherwise, it is
assumed that ηi(.) satisfies the following condition

ηT
i (xt)ηi(xt)≤ α2

i xT
t MT

i Mixt , ∀i = 1, . . . ,N, (2.9)

where αi, i= 1, . . . ,N, are the interconnection bounds and Mi ∈Rri×n are known constant
matrices.

2.3.1 The global system

Let

m :=
N

∑
i=1

mi, p :=
N

∑
i=1

pi, q :=
N

∑
i=1

qi, r :=
N

∑
i=1

ri, s :=
N

∑
i=1

si =
N

∑
i=1

qi

∑
j=1

si j.

The global system is governed by the following equations

xt+1 = Axt +But +D f (Hxt)+Eη(xt) (2.10a)
yt =Cxt , (2.10b)

where

ut =
[
(u1

t )
T . . . (uN

t )
T
]T ∈ Rm,

yt =
[
(y1

t )
T . . . (yN

t )
T
]T ∈ Rp,

f (Hxt) :=



 f11(H11x1
t )

...
f1q1(H1q1x1

t )


... fN1(HN1xN

t )
...

fNqN (HNqN xN
t )




=

N

∑
i=1

qi

∑
j=1

eq( j) fi j(Hi jxi
t) ∈ Rq
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are respectively the entire inputs, the outputs and known nonlinearities of the system
with

H = diag


H11

...
H1q1

 , . . . ,
Hi1

...
Hiqi

 , . . . ,
 HN1

...
HNqN


 ∈ Rs×n. (2.11)

The matrices A,B,C,D,E of the global system (2.10) are given by

A = diag{A1, . . . ,AN} ∈ Rn×n,

B = diag{B1, . . . ,BN} ∈ Rn×m,

C = diag{C1, . . . ,CN} ∈ Rp×n,

D = diag{D1, . . . ,DN} ∈ Rn×q,

E = diag{E1, . . . ,EN} ∈ Rn×r.

2.3.2 The structure of the observer

Among the different structures of the observers existing in the literature, we opted to
the one presented in [18].

x̂t+1 = Ax̂t +But +D f (vt)+L(yt − ŷt) (2.13a)
vt = Hx̂t +K(yt − ŷt) ∈ Rs (2.13b)

ŷt =Cx̂t (2.13c)
ut =−Fx̂t (2.13d)

where x̂t is the observer state. The ith subsystem of (2.13) is given by :

x̂i
t+1 = Aix̂i

t +Biut +Di f i(vi
t)+Li(yi

t − ŷi
t), (2.14a)

vi
t = Hix̂i

t +Ki(yi
t − ŷi

t) ∈ Rsi. (2.14b)

ŷi
t =Cix̂i

t (2.14c)

ui
t =−Fix̂i

t (2.14d)

where Ki ∈ Rsi×pi, Fi ∈ Rmi×ni and Li ∈ Rni×pi for i = 1, . . . ,N. Since si = ∑qi
j=1 si j, we can

express, for each i = 1, . . . ,N, the vector vi
t in its detailed form as follows :

vi j
t = Hi jx̂i

t +Ki j(yi
t − ŷi

t) ∈ Rsi j

where Ki j ∈Rsi j×pi, for i= 1, . . . ,N, j = 1, . . . ,qi. This allows us to put Ki =
[
KT

i1, . . . ,K
T
iqi

]T
.

The choice of such observer is motivated by its efficiency proved in [18]. Indeed, as
reported in [18], the introduction of the additional degree of freedom K plays an im-
portant role in the feasibility of the developed LMI condition. Now, since we deal with
interconnected systems, we have to accommodate the parameters of (2.13) in such a
way to decentralize the global system. Otherwise, it is assumed that each subsystem
is controlled using its own local output. So, our problem is reduced to finding F =
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diag{F1, . . . ,FN} ∈ Rm×n,L = diag{L1, . . . ,LN} ∈ Rn×p, and K = diag{K1, . . . ,KN} ∈ Rs×p

such that the closed loop system is stable. The closed loop system zt composed by the
state xt and the estimation error et = xt − x̂t can be represented as

zt+1 =

[
A−BF BF

0 A−LC

]
zt +

[
D f (Hxt)

D
(

f (Hxt)− f (vt)
)]+[E

E

]
η(xt). (2.15)

2.3.3 Handling the nonlinearity

Under the assumption of the differentiability of the nonlinearity fi j and since fi j(0) =
0, i = 1, . . . ,N, j = 1, . . . ,qi, we obtain, thanks to the classical differential mean value
theorem applied on each fi j, i = 1, . . . ,N, j = 1, . . . ,qi, the following reformulation of the
i jth-component of the nonlinearity :

fi j(Hi jxi
t) = ∇T fi j(ξ i j

t ).(Hi jxi
t −0)

where for each i = 1, . . . ,N and j = 1, . . . ,qi,

∇T =

[ ∂
∂ z1

. . .
∂

∂ zsi j

]
is the transpose of the gradient operator, ξ i j

t ∈ co(Hi jxi
t ,0), and the partial derivatives,

∂ fi j

∂ zk
, satisfy for all k = 1, . . . ,si j, the following boundedness condition :

−∞ < ak
i j ≤

∂ fi j

∂ zk
(ξ i j

t )≤ bk
i j <+∞, (2.16)

where ak
i j and bk

i j are some known scalars. Without loss of generality, we can assume
that ak

i j > 0, for all the indices i, j and k, (see [88, Remark 1]).
Therefore, the expression of f (Hxt) becomes

f (Hxt) =
N

∑
i=1

qi

∑
j=1

eq( j) fi j(Hi jxi
t)

=
N

∑
i=1

qi

∑
j=1

eq( j)∇T fi j(ξ i j
t )Hi jxi

t

=
N

∑
i=1

qi

∑
j=1

si j

∑
k=1

eq( j)eT
si j
(k)

∂ fi j

∂ zk
(ξ i j

t )Hi jxi
t (2.17)

For the sake of brevity, f (Hxt) can be rewritten as the product

f (Hxt) =HF∇
t Hxt

where

H= diag

[1 1 . . . 1
]︸ ︷︷ ︸

si jtimes

, i = 1, . . . ,N, j = 1, . . . ,qi

 ∈ Rq×s, (2.18)
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F∇
t = diag

(
∂ fi j

∂ zk
(ξ i j

t ), i = 1, . . . ,N, j = 1, . . . ,qi,k = 1, . . . ,si j

)
∈ Rs×s, (2.19)

and H ∈ Rs×n is defined in (2.11).
In the same way, we obtain the following reformulation of the difference f (Hxt)− f (vt) :

f (Hxt)− f (vt) =
N

∑
i=1

qi

∑
j=1

eq( j)
(

fi j(Hi jxi
t)− fi j(v

i j
t )
)

=
N

∑
i=1

qi

∑
j=1

eq( j)∇T fi j(ξ̄ i j
t )
(

Hi jxi
t − vi j

t

)
=

N

∑
i=1

qi

∑
j=1

si j

∑
k=1

eq( j)eT
si j
(k)

∂ fi j

∂ zk
(ξ̄ i j

t )
(

Hi j −Ki jCi

)
(xi

t − x̂i
t). (2.20)

where, for each i = 1, . . . ,N and j = 1, . . . ,qi, ξ̄ i j
t ∈ co(Hi jxt ,v

i j
t ), and the partial deriva-

tives,
∂ fi j

∂ zk
(ξ̄ i j

t ), k = 1, . . . ,si j, satisfy

−∞ < āi j ≤
∂ fi j

∂ zk
(ξ̄ i j

t )≤ b̄i j <+∞, (2.21)

where āi j and b̄i j are some known constant scalars. Therefore,

f (Hxt)− f (vt) =HF̄∇
t (H −KC)et

where F̄∇
t is the time-depending matrix containing the partial derivative evaluating at

the uncertain parameters ξ̄ i j
t , that is

F̄∇
t := diag

(
∂ fi j

∂ zk
(ξ̄ i j

t ), i = 1, . . . ,N, j = 1, . . . ,qi,k = 1, . . . ,si j

)
∈ Rs×s. (2.22)

It should be noticed that the differentiability of f is assumed without loss of generality.
Indeed, if f is not differentiable and satisfying the Lipschitz property, we can use the
reformulation technique introduced in [89, Lemma 7] to get the same result.

2.3.4 Stability analysis of the closed-loop system

By substituting the terms f (Hxt), and f (Hxt)− f (vt) by there equivalent matrices form
in (2.15), we get the following equivalent structure of the closed loop system

zt+1 = Π1zt +Π2η(xt) (2.23)

where

Π1 =

[
A−BF +DHF∇

t H BF
0 A−LC+DHF̄∇

t (H −KC)

]
,
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Π2 =
[
ET ET ]T .

Now to deal with the stability analysis, we choose the following Lyapunov function

V (zt) = zT
t Pzt ,

with

P =

[
P11 P12
PT

12 P22

]
> 0.

Thus, the decreasing of the Lyapunov function between two successive instances ∆V (zt)
is expressed as follows

∆V (zt) =V (zt+1)−V (zt) (2.24)

= (Π1zt +Π2η(xt))
T P(Πzt +Π2η(xt))− zT

t Pzt

=
[
zT
t η(xt)

T ][ΠT
1 PΠ1 −P ΠT

1 PΠ2
(⋆) ΠT

2 PΠ2

][
zt

η(xt)

]
. (2.25)

2.3.5 Handing the interconnections

Now, let us introduce a new positive parameters {γi}N
i=1. Inequality (2.9) is equivalent

to the following one :

ηT
i (.)(γiIri)ηi(.)≤ α2

i xtMT
i (γiIri)Mixt (2.26)

Hence

N

∑
i=1

ηT
i (.)(γiIri)ηi(.)≤

N

∑
i=1

α2
i xtMT

i (γiIri)Mixt (2.27)

Put θi = α−2
i . Let

M =
[
MT

1 . . . MT
N
]T ∈ Rr×n,

Γ = diag(γ1Ir1, . . . ,γiIri, . . . ,γNIrN ) ∈ Rr×r,

Θ = diag(θ1Ir1, . . . ,θiIri, . . . ,θNIrN ) ∈ Rr×r.

With these notations, inequality (2.27) becomes

ηT (xt)Γη(xt)≤ xT MT ΓΘ−1Mxt = zT
t Θ̂zt (2.28)

where
Θ̂ = diag

(
MT ΓΘ−1M,0

)
.

Equivalently to the more suitable form[
zt

η(xt)

]T [−Θ̂ 0
0 Γ

][
zt

η(xt)

]
≤ 0. (2.29)
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2.3.6 The BMI problem : Motivation and formulation

By taking into account constraint (2.29), the condition ∆V (zt) < 0 is satisfied if the
following inequality holds :[

ΠT
1 PΠ1 −P ΠT

1 PΠ2
⋆ ΠT

2 PΠ2

]
<

[
−Θ̂ 0

0 Γ

]
. (2.30)

This latter is identical to the following one[
ΠT

1 PΠ1 −P+ Θ̂ ΠT
1 PΠ2

⋆ ΠT
2 PΠ2 −Γ

]
< 0. (2.31)

Clearly, the BMI in its present form is not ready to be exploited, due to bilinear terms
ΠT

1 PΠ1, ΠT
2 PΠ2, and ΠT

1 PΠ2. In what follows, we proposed some rearrangements and
transformations that lead to a more simplified BMI. Inequality (2.31) is equivalent by
Schur lemma to :{

−P+ Θ̂+ΠT
1 PΠ1 −ΠT

1 PΠ2(ΠT
2 PΠ2 −Γ)−1ΠT

2 PΠ1 < 0
ΠT

2 PΠ2 −Γ < 0
(2.32)

that may be rewritten as below{
−P+ Θ̂−ΠT

1 [−P+PΠ2(ΠT
2 PΠ2 −Γ)−1ΠT

2 P]Π1 < 0
ΠT

2 PΠ2 −Γ < 0
(2.33)

and that comes back to the following one[
[−P+PΠ2(ΠT

2 PΠ2 −Γ)−1ΠT
2 P]−1 Π1

⋆ −P+ Θ̂

]
< 0. (2.34)

From the inversion lemma [6], we can write for any invertible matrix A , and matrices
B,C ,D

(A +BC D)−1 = A −1 −A −1B(I +C DA −1B)−1C DA −1.

In particular, for A =−P,B = PΠ2,C = (ΠT
2 PΠ2 −Γ)−1,D = BT , one obtains

[−P+PΠ2(ΠT
2 PΠ2 −Γ)−1ΠT

2 P]−1 =−P−1 +Π2Γ−1ΠT
2 . (2.35)

Consequently, inequality (2.34) is equivalent to the following one[
−P−1 +Π2Γ−1ΠT

2 Π1
ΠT

1 −P+ Θ̂

]
< 0. (2.36)

Thanks again to Schur lemma, one obtains the equivalent formulation of (2.36) :
−P−1 Π2 Π1 0
(⋆) −Γ 0 0

(⋆) (⋆) −P
[

MT

0

]
(⋆) (⋆) (⋆) −Γ−1Θ

< 0. (2.37)

61



A Decentralized Observer-Based Stabilization Method for Interconnected Systems

Even if inequality (2.37) is simpler than (2.36), since it is linear with respect to the
variables K, L, and F , the synthesis of the gain matrices can not be done directly from
inequality (2.37). This is due to the coexistence of the variable P and its inverse in the
same constraint, as to the variable Γ and Γ−1 in the case of known interconnections, Θ.
Adding to all that, the presence of time-varying uncertain matrices F∇

t , and F̄∇
t renders

it more complicated. Indeed, even these latter can be treated using the linear parameter-
varying (LPV) approach as in [38], i.e. by solving the obtained LMI for all the vertices
of the convex sets including the partial derivatives ∂ fi j

∂ zk
(ξ i j

t ), and ∂ fi j
∂ zk

(ξ̄ i j
t ) respectively,

for i = 1, . . . ,N, j = 1, . . . ,qi and k = 1, . . . ,si j, this will lead to solving 4s LMIs that may be
solved in a non-polynomial time. Thus, linearizing such a BMI in such a way to derive
an LMI condition numerically tractable in a polynomial time and ensuring existence
of solutions of a wide class of systems with high values of interconnection bounds is a
challenging task. In the next section, we present a simple and efficient design method for
the decentralization of the system and the maximization of the bounds of the nonlinear
interconnections. Our methodology is inspired from [?] and [3].

2.4 New LMI Synthesis Condition

The following statement provides a sufficient condition for asymptotic stability of sys-
tem (2.10), by the decentralized observer-based controller (2.13).

Theorem 2.4.1. If there exists a positive definite matrix P̂ ∈ R2n×2n, invertible matrices
G1,G2 ∈ Rn×n, bloc-diagonal matrices L̂ ∈ Rn×p, F̂ ∈ Rm×n, a matrix K̂ ∈ Rs×p, and five
diagonal matrices Θ̃, Γ̂, ϒ ∈ Rr×r, Φ, Φ̄ ∈ Rs×s, such that the following optimization pro-
blem holds,

minTrace
(
Θ̃− Γ̂

)
subject to LMI (2.38)

then, system (2.10) is asymptotically stabilizable by the decentralized observer-based control-

ler (2.13), with F = G−1
1 F̂ , L = G−1

2 L̂, K = ϕ̄−1K̂ and interconnection bounds αi =
√

γ̂i/θ̃i.

Proof : To deal with the bilinearity P and P−1 in (2.37), many researchers chose in
their frameworks a particular structure of the variable P (in general a diagonal one)
see [93], [68], [53], [31], [74] to simplify the task and relax the BMI. In line with [36],
we add a slack variable G by applying the congruence technique with diag(I, I,G, I) to
obtain the following equivalent BMI of (2.36) :

Ω :=


−P−1 Π2 Π1G 0
⋆ −Γ 0 0

⋆ ⋆ −GT PG GT
[

MT

0

]
⋆ ⋆ ⋆ −Γ−1Θ

< 0. (2.39)
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

−P̂ 0(2n,r) Ψ 0(2n,r) G̃2

[
E
E

]
0(2n,r)

[
DHΦ
0(n,s)

] [
0(n,s)
G2DH

]
⋆ −Γ̂ 0(r,2n) 0r 0r Γ̂ 0(r,s) 0(r,s)

⋆ ⋆ P̂− G̃3

[
G1MT

0(n,r)

]
0(2n,r) 0(2n,r)

[
G1HT

HT

] [
0(n,s)

(ΦH − K̂C)T

]
⋆ ⋆ ⋆ −Θ̃ 0r 0r 0(r,s) 0(r,s)

⋆ ⋆ ⋆ ⋆ −ϒ 0r 0(r,s) 0(r,s)

⋆ ⋆ ⋆ ⋆ ⋆ −(2Ir −ϒ) 0(r,s) 0(r,s)

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ΛΦ 0s

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −Λ̄Φ̄



< 0 (2.38)

where

Ψ =

[
AG1 −BF̂ A

0 G2A− L̂C

]
, G̃1 =

[
G1 0
I I

]
, G̃2 =

[
I 0
0 G2

]
, G̃3 =

[
2G1 I

I 2G2

]

A sufficient condition in order to get Ω < 0 is that Ω̄ < 0 (provided by bounding −GT PG
by P−1 −G−GT ), that is

Ω̄ :=


−P−1 Π2 Π1G 0
⋆ −Γ 0 0

⋆ ⋆ P−1 −G−GT GT
[

MT

0

]
⋆ ⋆ ⋆ −Γ−1Θ

< 0. (2.40)

Note that (2.36) ⇒ (2.40) with G = P−1. In addition, thanks to Lemma 2.2.4, (2.37)
is equivalent to (2.40). At this stage, the non-convex problem is transferred from the
co-existence of both P and its inverse in (2.37) to the coupling bilinear term Π1G. To
enhance the clarity of the contributions, we shared the rest of the proof into three steps.
We will present the linearization of the BMI (2.40) to get the LMI (2.38) step by step
until a full linearization.

First step : Linearization with respect to F

Let G =

[
G1 G2
G3 G4

]
be the detailed form of G. With this general structure, the detailed

version of Π1G becomes

Π1G =

[
(A−BF)G1 +DHF∇

t HG1 +BFG3 BFG4 +(A−BF)G2 +DHF∇
t HG2

(A−LC)G3 +DHF̄∇
t (H −KC)G3 (A−LC)G4 +DHF̄∇

t (H −KC)G4

]
.
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Observe that the gain matrix F is attached to all components of G. Use of an eventual
change of variables is impossible. Our strategy to overcome this difficulty is inspired
from [3]. It consists in using the “self-elimination of variables ”. That is, we impose that
G2 = G4 in order to eliminate the two terms BFG4 and −BFG2. Obviously, we must not
handle both the terms BFG1 and −BFG3 in the same way. Otherwise, the variable F
will completely vanish from the (2.40). Therefore, it is sufficient to chose G3 = 0. This
leads to the following structure of G :

G =

[
G1 G2
0 G2

]
. (2.41)

Hence the term Π1G becomes :

Π1G =

[
(A−BF)G1 +DHF∇

t HG1 AG2 +DHF∇
t HG2

0 (A−LC)G2 +DHF̄∇
t (H −KC)G2

]
. (2.42)

Second step : Linearization with respect to L

Observe that (2.40)-(2.42) remains a non convex constraint since the presence of cou-
pling terms as LCG2. To overcome this difficulty, we use the congruence technique with

diag
(
G̃2, I, G̃2, I

)
,

where G̃2 := diag
(
I,G−1

2
)
. As a consequence, we obtain the equivalent BMI given in

(2.43).

Ω̄ :=


−G̃2PG̃2 G̃2Π2Γ−1 Ω̄13 0

⋆ −Γ−1 0 0

⋆ ⋆ G̃2PG̃2 −
[

2G1 I
I 2G−1

2

] [
G1MT

0

]
⋆ ⋆ ⋆ −Γ−1Θ

< 0 (2.43)

where

Ω̄13 =

[
(A−BF)G1 +DHF∇

t HG1 A+DHF∇
t H

0 G−1
2 (A−LC)+G−1

2 DHF̄∇
t (H −KC)

]
.

To simplify the notations, we make the change of variables

G2 = G−1
2 , P̂ = G̃2PG̃2, Γ̂ = Γ−1, F̂ = FG1, L̂ = G2L, Θ̃ = Γ̂Θ.

Inequality (2.43), or equivalently the matrix Ω̄, is rewritten under the following form
according to the new variables :

Ω̄ =


−P̂ G̃2Π2Γ̂ Ω̄13 0
⋆ −Γ̂ 0 0

⋆ ⋆ P̂−
[

2G1 I
I 2G2

] [
G1MT

0

]
⋆ ⋆ ⋆ −Γ̂Θ

< 0 (2.44)
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where

Ω̄13 =

[
AG1 −BF̂ +DHF∇

t HG1 A+DHF∇
t H

0 G2A− L̂C+G2DHF̄∇
t (H −KC)

]
. (2.45)

Third step : Linearization with respect to F∇
t , F̄∇

t and Γ̂

This step is dedicated to the linearization of the uncertain terms from the nonlinearity
and the bilinear term G̃2Π2Γ̂ coming from interconnections. To do this, we rewrite Ω̄ as
Ω̄ ≜ Ω̄0 + Ω̄∆, with

Ω̄0 =


−P̂ 0

[
AG1 −BF̂ A

0 G2A− L̂C

]
0

⋆ −Γ̂ 0 0

⋆ ⋆ P̂−
[

2G1 I
I 2G2

] [
G1MT

0

]
⋆ ⋆ ⋆ −Γ̂Θ


and Ω̄∆ is the matrix containing the uncertainties and the bilinear terms underlined
in (2.44) and (2.45). The expression of Ω̄13 can be rewritten under the convenient
form :

Ω̄∆ = XTY +Y T X +UTV +V TU +W T Z +ZTW (2.46)

where

X =
[
(DHF∇

t )T 0 0 0 0
]

Y =
[
0 0 HG1 H 0

]
U =

[
0 (G2DH)T 0 0 0

]
V =

[
0 0 0 F̄∇

t (H −KC) 0
]

W =
[
0 Γ̂ 0 0 0

]
Z =

[
(G̃2Π2)

T 0 0 0 0
]
.

Now, to get less conservative LMI conditions, we use both the reformulated Young’s
inequality and the classical one on (2.46). Indeed, it would be better to use the re-
formulated inequality to handle the ZTW +W T Z, but this will lead to a BMI. Hence,
particularly for this term, we use the classical Young’s inequality. This strategy allows us
to get the following inequality :

Ω̄∆ ≤ 1
2
(Y +SX)TS−1(Y +SX)+

1
2
(U + S̄V )T S̄−1(U + S̄V )+ZT ϒZ +W T ϒ−1W, (2.47)

where
S= (F∇

t )−1Φ, S̄= (F̄∇
t )−1Φ̄ (2.48)

with Φ and Φ̄ are positive diagonal matrices defined by

Φ = diag
(

ϕ k
i j, i, . . . ,N, j = 1, . . . ,qi, k = 1, . . . ,si j

)
∈ Rs×s, (2.49)
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Φ̄ = diag
(

ϕ̄ k
i j, i, . . . ,N, j = 1, . . . ,qi, k = 1, . . . ,si j

)
∈ Rs×s, (2.50)

and, ϒ is the positive and diagonal matrix given by

ϒ = diag{ε1, . . . ,εr},

εl, l = 1, . . . ,r, are scalar positive parameters to be determined. From the boundedness
of Ω̄∆, it follows that a sufficient condition to get Ω̄ < 0 is that the following be feasible

Ω̄0 ZT W T (Y +SX)T (U + S̄V )T

⋆ −ϒ 0 0 0
⋆ ⋆ −ϒ−1 0 0
⋆ ⋆ ⋆ −2(F∇

t )−1Φ 0
⋆ ⋆ ⋆ ⋆ −2(F̄∇

t )−1Φ̄

< 0. (2.51)

The last steps leading to LMI (2.38), consist in :
– Using inequalities (2.16) and (2.21) to bound −2(F∇

t )−1 and −2(F̄∇
t )−1 by Λ and Λ̄,

respectively, where

Λ = diag

(
− 2

bk
i j
, i, . . . ,N, j = 1, . . . ,qi, k = 1, . . . ,si j

)
∈ Rs×s.

Λ̄ = diag

(
− 2

b̄k
i j
, i, . . . ,N, j = 1, . . . ,qi, k = 1, . . . ,si j

)
∈ Rs×s.

– Using the inequality −ϒ−1 by −(2I −ϒ), coming from the fact that −ε−1
l ≤ −(2− εl)

for all l = 1, . . . ,r.
– Make the change of variable K̂ = ϕ̄K.
This ends the proof of Theorem 2.4.1.

Remark 2.4.2. It is worth noting that the reformulations (2.33)-(2.36) obtained by Schur
lemma and the inversion lemma play an important role for the case of known interconnec-
tions. Indeed, unlike some references [87], where the obtained LMI works only for the case
of unknown interconnections (because of the existence of Γ and Γ−1 in the LMI in case of Θ
known), this reformulation allows us to get a matrix inequality that remains LMI even for
the case where Θ is considered as known.

Remark 2.4.3. As to the choice of the triangular structure of G, it should be noted that such
a choice is crucial since it avoids the apparition of additional bilinearities as an isolated
term BF that could be inferred from a diagonal structure choice [36], [38].

Remark 2.4.4. It is very important to mention that in LMI framework, a small but in-
genious and novel idea may have a major consequence and lead to less conservative LMI
conditions, which is very significant for robustness and performances with respect to the
interconnection bounds and disturbances. For this reason, often in the LMI approach, the
contributions seem to be very simple and not significant enough, although the conserva-
tism of the concerned control problem is very significantly overcome from LMI feasibility
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point of view. All the LMI techniques established in the literature are based on a simple
idea followed by a chain of mathematical developments based on matrix decompositions
using congruence principle and the Schur Lemma in various versions. In this paper, the
introduction of the triangular form of the slack variable G avoids many bilinear terms and
leads to simpler and less conservative LMI conditions. Although this idea seems simple but
it leads to better LMIs from feasibility point of view. This is the first time this idea is used
to solve the decentralized observer-based stabilization problem for interconnected systems,
and may help for facing more complicated control design problems.

2.5 Illustrative Examples

In order to show the effectiveness of the proposed design methodology, we validate it on
two real examples of interconnected pendulums. The first one is taken from [86]. It is
dedicated to an application of our derived result for the case of known interconnection
and in the presence of internal non-linear dynamics. Regarding the second example,
we choose one of the most repeated used examples in the literature [31], [32], [53],
[87] that deals with the case of unknown interconnections. The aim is to show the less
conservativeness brought by the convex optimization problem (2.38).

2.5.1 Example 1

The dynamics of pendulums are as given in [86] and described by the following equa-
tions :

ẋi1 = xi2 (2.52a)

ẋi2 = (
migρ

Ji
− κρ2

4Ji
)︸ ︷︷ ︸

∆i

sin(xi1)+
ui + f s

i
Ji

+
3

∑
j=1

δi j(x j) (2.52b)

where xi =
[
xi1 xi2

]T , with xi1 and xi2 being angular displacement of the pendulums
from vertical and angular velocity respectively, m1 = m3 = 5kg,m2 = 6.5kgs are the pen-
dulum end masses, J1 = J3 = 0.4kg,J2 = 0.9kgs are the moments of inertia, κ = 3N/m
is the spring constant, ρ = 0.5m is the pendulum height, g = 9.81 is the gravitational
acceleration, δi j are given by

δ12(x2) =

(
κρ2

4J1

)
sin(x21)

δ21(x1) =

(
κρ2

4J2

)
sin(x11)

δ23(x3) =

(
κρ2

4J2

)
sin(x31)

δ32(x2) =

(
κρ2

4J3

)
sin(x21)
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δ13 = δ31 = 0,

and f s
i = εixi2 with εi ∈ [0,0.14] is a fault which is due to some unexpected friction in the

actuator. Now, prior to formulating equation (2.52) in the form of (2.8), we distinguish
two ways to address the failure of the actuator. The first one consists in adding the
terms f s

i to the interconnections δi j. The second one is to neglect f s
i by considering that

the objective is not the fault diagnosis problem. Note that in both cases our approach
provide feasible LMI solutions. We focus on the first case where system (2.52) can be
represented by equation (2.8), with the following parameters
– Subsystems 1 and 3 :

Ai =

[
0 1
0 0

]
, Bi =

 0
1
Ji

 ,Ci =
[
1 0

]
, for i = 1,3,

Di =

[
0
∆i

]
,Ei =

 0 0
1
Ji

κρ2

4Ji

 , for i = 1,3,

M1 =

[
0 1 0 0 0 0
0 0 1 0 0 0

]
,

M3 =

[
0 0 0 1 0 0
0 0 1 0 0 0

]
.

– Subsystem 2 :

A2 =

[
0 1
0 0

]
, B2 =

 0
1
J2

 ,C2 =
[
1 0

]
,

D2 =

[
0

∆2

]
,E2 =

 0 0 0
1
J2

κρ2

4J2

κρ2

4J2

 ,
M2 =

0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0

 .
The known nonlinearities are given by

f1(x11) = sin
[
1 0

]︸ ︷︷ ︸
H1=H11

x1,

f2(x21) = sin
[
1 0

]︸ ︷︷ ︸
H2=H21

x2,

f3(x31) = sin
[
1 0

]︸ ︷︷ ︸
H3=H31

x3,
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from which we deduce that H = diag
{[

1 0
]
,
[
1 0

]
,
[
1 0

]}
.

The interconnections are represented by the following vectors :

η1(x) =
[
ε1x12 sin(x21)

]T
,

η2(x) =
[
ε2x22 sin(x11) sin(x31)

]T
,

η2(x) =
[
ε3x32 sin(x21)

]T
.

The integer numbers determining the dimensions of the parameters are N = 3, ni = 2, for
all i= 1, . . . ,3, n= 6, qi = 1, for all i= 1, . . . ,3, q= 3, si j = si1 = si = 1, for all i= 1, . . . ,3, (in
this example, the only value of the indices j and k is j = k = 1 since qi = 1 and si j = 1),
s = 3, r1,3 = 2, r2 = 3, r = 7, pi = 1, for all i = 1, . . . ,3 and p = 3. The nonlinearities
fi, i = 1,3 satisfy inequality (2.16), with ak

i j = a =−1,bk
i j = b = 1, for all i = 1, . . . ,3. Now,

since ak
i j =−1 6= 0, we use Remark 2.1 in [18] to obtain (2.16) with

fi(xi1) := fi(xi1)−aHixi

or equivalently
f (Hxt) := f (Hxt)−aHHxt

to obtain (2.16). The state matrix A is then

A := A+aDHH

where here H= I3. In addition, we suppose that system (2.52) is not entirely measurable
contrarily to the measurability condition imposed in [86]. So, we add a linear output
yi (yi = Cixi). Note that the objective here is to decentralize the Euler discretization of
system (2.52) with known interconnection bounds, that are

α1 = α3 = α6 = 1, α2 = α4 = α5 = α7 = 0.14

provided by the Lipschitz property on each component of ηi(x), i = 1, . . . ,3. By solving
LMI (2.38) (with sampling period δ = 0.01), we get the following gain matrices

F1 =
[
411.6333 44.0926

]
,L1 =

[
4.0044

200.3291

]
F2 =

[
889.3523 98.6853

]
,L2 =

[
3.9577

197.3441

]
F3 =

[
411.6333 44.0926

]
,L3 =

[
4.0044

200.3291

]
and

K1 =
[
0.2218 0 0

]
,

K2 =
[
0 −0.1204 0

]
,

and
K3 =

[
0 0 0.2218

]
.

The asymptotic stabilizability of the system is shown through Figures 3.3-3.5.
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FIG. 2.1: Stabilized states of the first pendulum and their estimates

5 10 15 20 25 30 35 40 45 50 55 60
−1

0

1

2

3

 

 

5 10 15 20 25 30 35 40 45 50 55 60
−100

−50

0

50

 

 

x21

x21 estimate

x22

x22 estimate

FIG. 2.2: Stabilized states of the second pendulum and their estimates
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FIG. 2.3: Stabilized states of the third pendulum and their estimates

2.5.2 Example 2

The system has the following parameters
– Subsystem 1 :

A1 =

[
0 1

−125 −22.5

]
, B1 =

[
0
1

]
,C1 =

[
1 0

]
D1 = 0,E1 =

[
1
1

]
,M1 =

1√
10

[
1 1 1 1 1

]
– Subsystem 2 :

A2 =

 0 1 0
0 0 1

−37.5 −50 −13.5

 , B2 =

0
0
1


C2 =

[
1 0 0

]
, D2 = 0,E2 =

1
1
1

 ,
M2 =

1√
15

[
1 1 1 1 1

]
The interconnections η1(x) and η2(x) are given by

η1(x) = α1 cos(x22)M1x,
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and
η2(x) = α2 cos(x11)M2x.

By solving LMI (2.38) for the discretized Euler system :

A := I +δA, B := δB,

E := δE,C :=C

with sampling period δ = 0.01, we obtained the following gain matrices

F1 =

[
−20.0904
83.4096

]T

, L1 =

[
1.1221
−0.3629

]
,

F2 =

 75.9918
64.4918

100.9918

T

, L2 =

1.2036
1.2036
0.1836

 ,
and the interconnection bounds

α1 = 9.2571, α2 = 10.2082.

The less-conservativeness is shown through Table I that includes the different maximum
interconnection bounds provided by other techniques for the same example.

Method [53] [32] [87] LMI (2.38)

α1max 0.2 5 8.6082 9.2571

α2max 0.2 5 2.1669 10.2082

TAB. 2.1: Maximum allowable bounds of the interconnections

2.6 Conclusion

We have proposed in this paper a new decentralized observer-based stabilization design
methodology for a class of nonlinear interconnected systems with nonlinear intercon-
nections. Furthermore, a new and enhanced LMI design condition has been provided
to guarantee asymptotic stability for systems with both known and unknown intercon-
nection bounds. Indeed, in the previous results in the literature, the design conditions
are often LMIs only if we consider the interconnection bounds as unknown. The mathe-
matical developments used in this paper, such as the new variant of Young’s inequality,
the new way to use the congruence principle, particularly the new proposed structure
of the slack matrix G, may be very useful for some control design problems for systems
with uncertainties. Hence as for future work, we will aim to propose some enhanced
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techniques for other classes of systems, such as nonlinear switched systems. The vali-
dity and effectiveness of our design method have been shown through two numerical
examples. The provided numerical comparisons demonstrate the superiority of the pro-
posed methodology compared to some existing results in the literature.
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CHAPITRE

3
Robust H∞ Observer-Based Stabi-

lization of Linear Discrete-Time Sys-
tems with Parameter Uncertainties

3.1 Introduction

This chapter addresses the problem of observer-based stabilization of discrete-time li-
near systems in presence of parameter uncertainties and ℓ2-bounded disturbances. We
propose a new variant of the classical two-step LMI approach. In the first step, we use
a slack variable technique to solve the optimization problem resulting from stabiliza-
tion by a static state feedback. In the second step, a part of the slack variable obtained
is incorporated in the H∞ observer-based stabilization problem, to calculate simulta-
neously the Lyapunov matrix and the observer-based controller gains. The effectiveness
of the proposed design methodology is demonstrated using the dynamic model of a
quadruple-tank flow process system. Additional numerical illustrations are presented to
show the superiority of the proposed Modified Two-Step Method (MTSM) from a LMI
feasibility point of view.
To clarify the contributions of the proposed design methodology, we summarize the
advantages of the paper in the following items :
– We show analytically that Ibrir’s approach [27, Lemma 1] based on linearization

lemma is too restrictive for . Indeed, we propose a counter-example (Theorem 3.6.2)
illustrating the inadequacies of the lemma.

– We reformulate Ibrir Lemma in terms of necessary and sufficient conditions, giving
rise to Theorem 3.6.3, and which contains as a particular case the result by de Oliveira
et al. result [11, Theorem 1].

– Based on Theorem 3.6.3, we propose several new variants of the two-step method,
that can be considered as heuristic methods. The idea is to study the impact of the
first stage decision variable on the feasibility of the proposed LMI conditions. Thus,
instead of calculating the controller gain K as in [70], or part of the Lyapunov matrix
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from the first step as in [91], we propose to introduce an additional slack variable
(thanks to Theorem 3.6.3), that we calculate (a part) from the first step.

– Monte Carlo simulations show that calculating the main decision variables, namely,
the controller and observer gains K and L, and the Lyapunov matrix P simultaneously
remains the best strategy.

– The numerical examples presented reinforce this conclusion, and show the effective-
ness and superiority of the new algorithm with respect to the Young inequality-based
approach [35], and the existing two-step method [91] and [70].

The rest of this paper is organized as follows : Section 3.2 is devoted to the problem
statement and a brief state of the art related to some LMI design methods available
in the literature. The main contributions of this paper are introduced in Section 3.3.
Section 3.4 is dedicated to numerical evaluation and comparisons to show the effecti-
veness and the superiority of the proposed methodology. Finally, we end the chapter by
a conclusion and an appendix.

3.2 Problem statement

Let us consider the class of discrete-time systems described by the following equations :

xt+1 = (A+∆A(t))xt +(B+∆B(t))ut +Eωt (3.1a)

yt = (C+∆C(t))xt +Dωt (3.1b)

zt = Hxt +Sωt (3.1c)

where t ∈ N, xt ∈ Rn is the state vector, yt ∈ Rp is the output measurement, and ut ∈ Rm

is the control input vector, ωt ∈ Rv is an unknown exogenous disturbance, zt ∈ Rq is the
controlled output. The parameters A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, E ∈ Rn×v , D ∈ Rp×v

, H ∈ Rq×n and S ∈ Rq×v are known matrices. We require the following assumptions :

Assumption 1. 1. The pairs (A,B) and (A,C) are stabilizable and detectable, respecti-
vely.

2. The sequence ω := (ωt)t∈N is ℓν
2 -bounded, namely

ω ∈ ℓν
2 :=

(wt)t∈N, ‖w‖ℓν
2
=

(
∞

∑
s=0

‖ωs‖2

) 1
2

<+∞

 ,

‖.‖ being the Euclidean norm.

3. The uncertain terms ∆A := ∆A(t) ∈ Rn×n, ∆C := ∆C(t) ∈ Rp×n and ∆B(t) are unk-
nown matrices and are structured and norm-bounded in the following sense :

∆A(t) = MAFA(t)NA, ∆C(t) = MCFC(t)NC (3.2)
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where MA, NA, MC, and NC are known and constant matrices ; FA(t) and FC(t) are
unknown time-varying matrices satisfying the inequalities :

FT
A(t)FA(t)≤ α2I, FT

C(t)FC(t)≤ β 2I, ∀t ∈ N. (3.3)

4. The matrix B is full column rank and ∆B(t) = 0.

It should be noticed that this last assumption is not restrictive since (3.1) can always be
transformed into a system where ∆B(t) = 0, see for instance [28].

Remark 3.2.1. Since B is full column rank, then there is a non singular matrix T such that

T B =

[
Im
0

]
. Hence, using the similarity transformation T , system (3.1) can be transformed

and rewritten with the following matrices :

A := TAT−1, C :=CT−1, B := T B =

[
Im
0

]
, E := T E,

H := HT−1, S := S, D := D, ∆A(t) := T ∆A(t)T−1,

∆C(t) := ∆C(t)T−1, MA := T MA, NA := NAT−1,

MC := MC, NC := NCT−1.

It should be noted that such coordinate transformation is well known in the literature, see
for instance [7] and [9]. Consequently, without loss of generality we assume that

B =
[
Im 0

]T
. (3.4)

The robust asymptotic stabilization of the discrete-time linear system (3.1) is addressed
using the Luenberger observer

x̂t+1 = Ax̂t +But +L(yt −Cx̂t), (3.5)

where L ∈ Rn×p is the observer gain to be determined and x̂t ∈ Rn is the estimate of xt
at time t. Let et := xt − x̂t be the estimation error. Then, under the feedback

ut =−Kx̂t (3.6)

where K ∈ Rm×n is the controller gain, the dynamics of the augmented state ξ T
t =

(xT
t ,e

T
t ) ∈ R2n is written under the form :

ξt+1 =

[
A−BK +∆A BK

∆A−L∆C A−LC

]
ξt +

[
E

E −LD

]
ωt

= Πξt +ϒωt . (3.7)

In this paper, we aim to design the observer-based controller gains K and L for the
system (3.1), such that, in the presence of disturbance, the closed-loop system (3.7) is
H∞-asymptotically stable. More specifically :
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Definition 3.2.2 ( [17,45]). System (3.7) is said to be H∞-asymptotically stable if there
exist µ > 0 and δ > 0 such that

‖ξ‖ℓ2n
2
≤
√

µ‖w‖2
ℓν

2
+δ‖ξ0‖2. (3.8)

The positive number
√µ is then the disturbance attenuation level, to be minimized, repre-

senting the disturbance gain from w to the performance signal z, defined by (3.1c). We say
that the H∞ performance criterion is achieved if (3.8) holds.

Remark 3.2.3. Notice that to solve the problem of H∞-asymptotic stability it is sufficient
to find a Lyapunov function Vt :=V (ξt) = ξ T

t Pξt , with P= PT > 0, so that

Wt =Vt+1 −Vt + zT
t zt −µωT

t ωt < 0, ∀t ∈ N. (3.9)

Indeed, if (3.9) holds, by summation of (3.9) from 0 to t, we get for all t ∈ N

V (ξt)−V (ξ0)+
t

∑
s=0

‖ξs‖2 −µ
t

∑
s=0

‖ωs‖2 ≤ 0.

From Rayleigh inequality V (ξ0) ≤ λmax(P)‖ξ0‖2 and the fact that V (ξt) ≥ 0 for all t ≥ 0,
then as t →+∞, we have

∞

∑
s=0

‖ξs‖2 ≤ µ
∞

∑
s=0

‖ωs‖2 +λmax(P)‖ξ0‖2.

Thus (3.8) is satisfied with δ = λmax(P).

Now, to investigate the H∞-asymptotic stability of (3.7), in the LMI framework, let Vt
be the candidate Lyapunov function defined in Remark 3.2.3. Then, for any t ∈ N,

Vt+1 −Vt = ξ T
t (ΠTPΠ−P)ξt +ξ T

t ΠTPϒωt

+ωT
t ϒPΠξt +ωT

t ϒTPϒωt . (3.10)

Furthermore,

zT
t zt =

[
xT

t ωT
t
][HT H HTS

(⋆) STS

][
xt
ωt

]
(3.11)

=
[
ξ T

t ωT
t
][HT

0

][
H 0

] [
HT

0

]
S

(⋆) STS

[ξt
ωt

]
. (3.12)

Hence (3.9) can be rewritten under the quadratic form[
ξt
ωt

]T

Σ
[

ξt
ωt

]
< 0 (3.13)

where

Σ =

ΠTPΠ−P+

[
HT

0

][
H 0

]
ΠTPϒ+

[
HT

0

]
S

(⋆) ϒTPϒ−µI

 .
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Therefore, condition (3.9) holds if and only if Σ < 0. Now, using the following decom-
position

Σ =

[
−P 0
(⋆) −µI

]
+

ΠT
[

HT

0

]
ϒT ST

[P 0
0 I

][
Π ϒ[

H 0
]

S

]
(3.14)

of Σ and Schur Lemma, (3.9) turns out to be equivalent to the following BMI :
−P−1 Π ϒ 0

(⋆) −P 0
[

HT

0

]
(⋆) (⋆) −µI ST

(⋆) (⋆) (⋆) −I

< 0. (3.15)

It should be noted that solving (3.15) is a very difficult task. Indeed, to our knowledge,
there are no equivalent LMI conditions to (3.15), even in the uncertainty free case. The
problem arises from the presence of the Lyapunov matrix P and its inverse, and the
presence of unknown matrices in Π. Although many efforts have been dedicated to this
issue [27], [35], [17], [30], the Young’s inequality-based approach remains the more
effective technique [35], however, it is expensive from a numerical point of view. In
the following section, we will propose new and enhanced LMI conditions to handle the
BMI (3.15). We will provide a new variant of the two-step algorithm introduced in [70],
and improved recently in [91].

3.3 New LMI Design Algorithm

In this section, we present a numerically efficient technique to determine the observer-
based controller gains ensuring robust asymptotic stability of (3.7). In order to get suf-
ficient conditions that guarantee the H∞-asymptotic stability of (3.7), we first linearize
the BMI (3.15). Here, instead of using Lemma 3.6.1 [27], we use its relaxed version,
namely Theorem 3.6.3, with :

Z = P; Y =
[
Π ϒ 0

]
; X =

−P 0
[

HT

0

]
(⋆) −µI ST

(⋆) (⋆) −I

 .
The BMI problem (3.15) is thus equivalent to find an invertible matrix G and a symme-
tric positive definite matrix P such that

P−He(G) GΠ Gϒ 0

(⋆) −P 0
[

HT

0

]
(⋆) (⋆) −µI ST

(⋆) (⋆) (⋆) −I

< 0, (3.16)
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where He(G)=G+GT . Hence, after developing GΠ in (3.16) and choosing G= diag(G1,G2),
we get

Ω :=


P−He(G) Φ

[
G1E

G2(E −LD)

]
0

(⋆) −P 0
[

HT

0

]
(⋆) (⋆) −µI ST

(⋆) (⋆) (⋆) −I

< 0, (3.17)

where

Φ :=
[

G1(A−BK +∆A) G1BK
G2(∆A−L∆C) G2(A−LC)

]
.

At first, we need to linearize the uncertainties in (3.17). This step is classical and uses
the standard Young’s relation. The details of this step are omitted since the objective is
not the linearization of the uncertainties but rather how we handle the bilinear term
G1BK in Φ. Therefore, from the change of variables L̂ = G2L, α̂−1 = ε1α2, and β̂−1 =
ε2β 2, we deduce that inequality (3.15) holds if the following bilinear matrix inequalityΩ1

Ω2︷ ︸︸ ︷
G1MA 0 0
G2MA L̂MC 0 0

0 0 NT
A NT

C
0 0 0 0


⋆ diag

[
−ε1I,−ε2I,−α̂I,−β̂ I

]


< 0, (3.18)

where

Ω1 =


P−He(G) Γ

[
G1E

G2E − L̂D

]
0

(⋆) −P 0
[

HT

0

]
(⋆) (⋆) −µI ST

(⋆) (⋆) (⋆) −I

 , (3.19)

Γ =

[
G1A− G1BK G1BK

0 G2A− L̂C

]
. (3.20)

is fulfilled. Now, it remains to linearize the bilinear term G1BK involved in (3.18). For
this purpose, taking into account the structure (3.4) of B, we have

G1B =

[
G1

11 G1
12

G1
21 G1

22

][
Im
0

]
=

[
G1

11
G1

21

]
(3.21)

and therefore

G1BK =

[
G1

11K
G1

21K

]
.
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


P−He(G)

G1A−
[

K̂
SK̂

] [
K̂

SK̂

]
0 G2A− L̂C

 [
G1E

G2E − L̂D

]
0

(⋆) −P 0
[

HT

0

]
(⋆) (⋆) −µI ST

(⋆) (⋆) (⋆) −I





G1MA 0 0

G2MA L̂MC 0 0

0 0 NT
A NT

C

0 0 0 0


(⋆) diag

[
−ε1I,−ε2I,−α̂I,−β̂ I

]


< 0,

(3.23)

By choosing the matrix G1
11 invertible (and symmetric), there always exists a matrix

S ∈ R(n−m)×m such that
G1

21 = SG1
11. (3.22)

By the change of variable K̂ = G1
11K, the matrix Γ in (3.18) becomes :

Γ =

G1A−
[

K̂
SK̂

] [
K̂

SK̂

]
0 G2A− L̂C

 .
By injecting this last expression of Γ into (3.18), we obtain (3.23), as the detailed form
of the final BMI to be solved. Summing up, Inequality (3.23) remains still a BMI because
of the coupling term SK̂. It becomes LMI if we a priori fixe the structure of S. The next
step is to propose an heuristic approach to calculate G1

11 and G1
21, and therefore

S = G1
21(G

1
11)

−1.

To this end, inspired by [91] and [70], we solve the optimization problem resulting
from the stabilization of (3.1a) by a static state feedback u = −K x. We consider the
H∞-stabilization problem of (3.1) by a static state feedback u = −K x. System (3.1a)
can be written in the closed-loop form :

xt+1 =
(

A−BK +MAFA(t)NA

)
xt +Eωt . (3.24)

System (3.24) is H∞ globally asymptotically stable by the Lyapunov function V(x) =
xT Px, with a minimum attenuation level η , if the following inequality holds :

V(xt+1)−V(xt)+ zT
t zt −ηωT

t ωt < 0, ∀t ∈ N. (3.25)

Expoiting Eq. (3.11) and Schur Lemma, we get that (3.25) holds if and only if
−P−1

(
A−BK +∆A

)
E 0

(⋆) −P 0 HT

(⋆) (⋆) −ηI ST

(⋆) (⋆) (⋆) −I

< 0. (3.26)
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Now, applying Theorem 3.6.3 with{
Z = P;

Y =
[(

A−BK +∆A
)

E 0
]

and

X =

−P 0 HT

(⋆) −ηI ST

(⋆) (⋆) −I


there exists a matrix G so that (3.26) is equivalent to

F :=


P −G −G T G

(
A−BK +∆A

)
G E 0

(⋆) −P 0 HT

(⋆) (⋆) −ηI ST

(⋆) (⋆) (⋆) −I

< 0. (3.27)

By choosing G = G T , and using the congruence principal, then (3.27) holds if, and
only if, the following inequality is fulfilled : diag(G−1,G−1, I, I)Fdiag(G−1,G−1, I, I)< 0.
Therefore, after developing the calculation and by making the change of variables Z =
G−1PG−1, G−1 = Ĝ and ¯K = K Ĝ, we get

Z − Ĝ− ĜT AĜ−B ¯K E 0
(⋆) −Z 0 ĜHT

(⋆) (⋆) −ηI ST

(⋆) (⋆) (⋆) −I



+He




MA
0
0
0

FA(t)


0

(NAĜ)T

0
0


T
< 0. (3.28)

Inequalities (3.28) can be easily linearized by Young’s inequality. Now, using the change
of variable α̃ = α−2ε−1, where ε is a positive scalar coming from the use of Young’s
inequality, we deduce that (3.24) is globally H∞ asymptotically stable if the following
LMI condition is fulfilled :

Z − Ĝ− ĜT AĜ−B ¯K E 0 MA 0

(⋆) −Z 0 ĜHT 0 ĜNT
A

(⋆) (⋆) −ηI ST 0 0

(⋆) (⋆) (⋆) −I 0 0

(⋆) (⋆) (⋆) (⋆) −εI 0

(⋆) (⋆) (⋆) (⋆) (⋆) −α̃I


< 0, (3.29)
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Since the objective consists in optimizing the bounds of the uncertainties, α̃ is maximi-
zed if both ε and α are minimized, then we have to solve the following convex optimi-
zation problem :

min
(

η + α̃ + ε
)

subject to (3.29). (3.30)

with respect to the decision variables Z > 0, ¯K , Ĝ > 0.

3.3.1 Computation of the matrix S from (3.30)

Once Ĝ and Z are calculated from (3.30), we compute S using the Lyapunov matrix
P = Ĝ−1Z Ĝ−1, resulting from (3.30), by choosing

G1
11 := P11, G1

21 := P21, S = P21P
−1
11 .

To enhance the feasibility of (3.23), we introduce m additional degrees of freedom, by
putting

S := diag(θ1, . . . ,θm)G1
21(G

1
11)

−1.

The new LMI technique we proposed is summarized in the following algorithm.
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3.3.2 New H∞ Observer-Based Design Algorithm

Algorithm 1: Modified two-step method (MTSM)
if Check if conditions in Assumption 1. hold. If yes, then

a. Solve the optimization problem (3.30) :

minZ >0, ¯K , Ĝ>0,𝟋>0 Trace(𝟋) subject to (3.29)

where 𝟋= diag(η , α̃,ε), and go to b. ;

b. Compute S̄ using the Lyapunov matrix P = Ĝ−1Z Ĝ−1, resulting from (3.30), by

G1
11 := P11, G1

21 := P21, S̄ = P21P
−1
11

and go to c.

c. Put S = diag(θ1, . . . ,θm)S̄ and

G1 =

[
P11 PT

21
P21 G1

22

]
in BMI (3.23),

if LMI (3.23) is feasible for some fixed (θi)
m
i=1, then

d. Solve the optimization problem :

min
P>0,G1

22,G2, K̂, L̂
Trace(Λ) subject to (3.23) (3.31)

with Λ = diag
(

α̂, β̂ ,ε1,ε2,µ
)
> 0 and go to e. ;

e. Compute the observer-based controller gains as

K = (G1
11)

−1K̂, L = G−1
2 L̂

with optimal disturbance attenuation level µmin.

else
Use the gridding methoda with respect to the positive parameters (θi)

m
i=1,

and go to d.

else
The observer and controller gains can not be computed.

aSuch a technique consists in scaling θi > 0 by defining κi ∈]− 1,1[, via the change of variable θi =
κi/1 − κ2

i . Then, we assign a uniform subdivisions of the interval ]− 1,1[, and solve (3.31) for each
subdivision.

Remark 3.3.1. In item b. of Algorithm 1, we can compute the matrix S̄ with three other
possibilities. Each possibility allows linearizing the problem (3.31) :
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1. Since G and Ĝ are congruent matrices, we can use

S̄ := Ĝ21Ĝ−1
11

or
S̄ := G21G

−1
11

2. We can also compute S̄ using Z :

S̄ := Z21Z
−1

11 .

3. In order to broaden the domain of search of the matrix S, we can be satisfied with its
search in the open-loop system stability domain, namely, in the domain of stability
of (3.24), without taking into account the H∞ performance criterion. This amounts
to directly solving the LMI constraint (3.29), with E = 0, S= 0 and H = 0.

Before proceeding with the next section, we briefly comment what has been presented
so far to clarify the contribution given in Algorithm 1 as compared with the results avai-
lable in the literature. In particular, comparison with the approaches in [91] and [70]
are provided. It should be noticed that both approaches are introduced for continuous
nonlinear systems. What we present here (Algorithm 2 and 3) can be seen as an adap-
tation to discrete-time systems case. The existing two-step method are different from
the new design technique, as we benefit from the advantages of the introduced slack
variable G and consequently Theorem 3.6.3. While in in [91] and [70], G is simply the
Lyapunov matrix.
The classical two-step method (CTSM) proceeds as in the following algorithm :

Algorithm 2 : (classical two-step method (CTSM) [70])

(1) Solve the optimization problem (3.30) ;

(2) Compute K by K = ¯K Z −1 ;

(3) Replace K by K in (3.18). Then, solve

min
P>0, L̂,LMI (3.18)

Trace(Λ).

(4) Compute the observer gain as L = P−1
2 L̂.

As it can be seen from Algorithm 2, the gains K and L are computed separately. In
addition, Algorithm 2 consists of fixing n×m variables, while with Algorithm 1, only
(n−m)×m variables are fixed a priori.
The discrete version of the new two-step method (NTSM) introduced in [91] is summa-
rized in the following Algorithm 3 :
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Algorithm 3 (NTSM) [91]

1) Solve the optimization problem (3.30) ;

2) Compute S̄ by S̄ = (P21)P
−1
11 ;

3) Inject S = S̄Θ, with Θ = diag(θ1,θ2, . . . ,θm), and

P1 =

[
P11 PT

21
P21 P1

22

]
in BMI (3.23). Then, solve

min
P2,P1

22 L̂, K̂, LMI (3.18)
Trace(Λ)

using the gridding method on θi.

4) Compute the observer-based controller gains as K = P−1
11 K̂ and L = P−1

2 L̂.

As we have already pointed out, the introduction of the slack variable G (in both first
step and second step) in Algorithm 1 renders it more general than NTSM algorithm.
Indeed, if we take G =Z in item a. and G = P in item d. in Algorithm 1, we get exactly
Algorithm 3 (NTSM). The advantage of the new method lies in the simultaneous search
for the decision variable K, L, and P in the final LMI. Contrarily to Algorithm 3, where
a block of the Lyapunov matrix P is fixed by the first step.

Remark 3.3.2. Other variants of the two-step method can be obtained. Indeed,

1. In the classical two-step method, instead of solving (3.18) for K = K , we can also
consider K = ¯K , or a more general structure by weighting ¯K by a slack variable
Θ = diag(α1,α2, . . . ,αm), namely, K = Θ ¯K , and then solve (3.18) by the gridding
method with respect to αi, i = 1, . . . ,m.

2. In the stability analysis, instead of considering the closed loop system provided by
zt = (xT

t ,e
T
t )

T , we can also consider the augmented vector zt = (eT
t , x̂

T
t )

T . In this case,
the first step is devoted to the search of the gain matrice L, instead of K.

3. In Algorithm 3, we can propose two other possibilities. The first one requires no condi-
tion on the matrix B. It consists in evaluating (entirely) the Lyapunov matrix P from
the first step, by replacing P by Z (or by ΘZ ), and then compute simultaneously
the gains K and L from the second step. The second one consists in replacing P by P,
or by ΘP.

All these scenarios have a common point, namely the linearization of the coupling term
PBK or G1BK. The idea of calculating a part of P or G1 is specific to particular structures
of the matrix B, that must be full column rank. In this case, we need just to calculate a part
of P or G1 from the first step, instead of having them fully from the first step.
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3.4 Numerical Evaluation

In this section, numerical examples are presented to illustrate the effectiveness and
the superiority of the proposed LMI technique compared to some existing results in the
literature. The aim of the first example is to show that the proposed design methodology
tolerates larger uncertainty level. We will also provide a Monte Carlo simulation to
evaluate the superiority of the proposed Algorithm 1 and its different versions (see
Remark 3.3.1), compared to Algo. 2 and Algo. 3. Finally, we end this section by an
application to a quadruple tank process model.

3.4.1 Example 1

We consider the example of [28] and [35], described by the following system matrices :

A =

 1 0.1 0.4
1 1 0.5

−0.3 0 1

 , B =

 0.1 0.3
−0.4 0.5
0.6 0.4

,
C =

[
1 1 1
1 1 1

]
, MA = γ1

 0 0 0
0.1 0.3 0.1
0 0.2 0

 ,
NA =

 0 0 0
0.2 0 0.4
0 0.1 0

 , MC = γ2

[
0 0 0.3
0 0 0.8

]
,

NC = diag
[
0 0 0.2

]
.

In order to transform this system into an equivalent system for which B :=

1 0
0 1
0 0

, we

use the transformation

T =

2.9412 −1.7647 0
2.3529 0.5882 0
1.9327 −0.5882 −0.7143

 ,
as in Remark 1. By choosing γ1 = γ2 = 1, Algorithm 1 (MTSM) is found feasible ; we get
the observer-based controller gains

KT =

 1.0311 0.7324
0.0544 1.5474
−0.5672 −1.8033

 ,L =

−1.7623 0.6609
1.5539 −0.5827
−0.9256 0.3471


Also Algorithms 2 and 3 perform successfully. Now, we searched for the maximum

values of γ1 and γ2 that satisfy the above described LMIs. After solving the optimiza-
tion problem (3.18)-(3.19) with θi = 1.5543, we get γ1max = 5.78, γ2max = 1015. The
superiority of the Algorithm 1 (MTSM) is quite clear from Table 3.4.1. The obtained
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Method [35] Algo. 1 Algo. 2 Algo. 3
[70] [91]

αi = 1.42
γ1max 4.64 5.78 5.08 5.5

γ2max 1013 1015 1015 1015

TAB. 3.1: Comparison between different LMI design methods

observer-based controller gains in this case are given by :

KT =

 0.1491 0.8117
−0.5840 1.6815
−0.1615 −2.3640

 , L =

−1.7788 0.6671
1.9689 −0.7383
−0.9227 0.3460

 .
Despite the fact that the proposed technique requires the gridding method with respect
to θi, (and hence it is expensive from numerical complexity point of view), it remains
better than the other considered algorithms even with the particular choice θi = 1. In-
deed, in this case, we get γ1max = 5.36 with Algorithm 1 and γ1max = 3.5 with Algorithm 3,
while γ2max = 1015 for both Algorithms 1 and 3.

3.4.2 Numerical evaluation by Monte Carlo

Now, to deepen the conservatism evaluation of the proposed design methodology as
compared with Algorithm 2 and Algorithm 3, in the case where B = In,m. We generate
randomly 1000 stabilizable and detectable systems of dimensions n = 3, 1 ≤ m ≤ 3, and
1 ≤ p ≤ 2 via a Monte Carlo simulation, and compute the percentage of feasible LMIs for
each method. The parameters are generated as follows : A = randn(n), C = randn(p,n),
MC = rand(p,n), and NC = rand(n), ∆A= 0.
The results are summarized in Table 3.4.2. It is clear, from Table 3.4.2, that Algorithm 1
with the choice

S̄ = P21 (P11)
−1

is better than the other design methods for all m and p. This is the reason why we opted
for this choice of S̄ in Algorithm 1, Section 3.3.2.

3.4.3 Application to a quadruple tank process

The system we consider herein models a quadruple tank process composed of four water
tanks that are interconnected and the flow through the pipes is controlled by two pumps
as depicted in Figure 3.1 (taken from [45] and [79]). The two upper tanks drain freely
into the two bottom tanks, and the two bottom tanks drain freely into the reservoir
basin. The liquid levels in the bottom two tanks are directly measured with pressure
transducers and constitute the measured outputs of the system. The states of the system
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n 3 3 3 3 3
m 2 2 1 1 3
p 2 1 2 1 2

S̄

G21(G11)
−1 35.1% 15.6% 26% 14.8% 29.7%

Ĝ21(Ĝ11)
−1 20.5% 10.6% 10% 8% 29.7%

Algo. 1 P21 (P11)
−1 100% 100% 100% 100% 73.9%

Z21 (Z11)
−1 24.9% 12.7% 12% 10% 29.7%

Algo. 2 29.9% 13.8% 22% 13.3% 21.2%

Algo. 3 32.1% 14.5% 22.4% 13.7% 28.7%

TAB. 3.2: Superiority of the proposed LMI methodology via Monte Carlo evaluation

consist of the deviations of heights in the 4 tanks from desired values and the system
matrices are given by

FIG. 3.1: Schematic of the four interconnected tank system [79] and [45].

A =


−0.0278 0 0.0206 0

0 −0.0233 0 0.0141
0 0 −0.0206 0
0 0 0 −0.0141

 ,

B =


5 0
0 6.667
0 10

11.667 0

 ,C =

[
1 0 0 0
0 1 0 0

]
,D = 0,
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E =


0.0987 0.0863 0.1091 0.0999
0.1210 0.1000 0.1256 0.1100
0.0898 0.0918 0.1000 0.0888
0.1090 0.1220 0.1235 0.1156

 ,

H =


0.0905 0.0703 0.1064 0.1064
0.1006 0.0108 0.1072 0.0539
0.0141 0.0309 0.0175 0.0889
0.1015 0.0608 0.1078 0.0158

 ,

S=


0.0987 0.0863 0.1091 0.0999
0.1210 0.1000 0.1256 0.1100
0.0898 0.0918 0.1000 0.0888
0.1090 0.1220 0.1235 0.1156

 .
Due to the Lipschitz condition on the unknown nonlinearity considered in [45], this

nonlinearity can be seen as uncertainty represented by the parameters

MA =


2.9875 2.1215 4.7685 3.4080
1.6765 2.1470 2.2895 2.3165
1.4960 0.6245 1.2025 1.0610
2.2630 0.1220 3.8195 0.4925

 , NA = 0.1I.

By using the similarity transformation

T =


0.2 0 0 0
0 0.15 0 0
0 1 −0.6667 0
1 0 0 −0.4285

 ,
Algo. 1 (MTSM) is found feasible. We obtain the optimal disturbance attenuation level√µmin = 1.4983 and the following observer-based controller gains :

KT =


−0.0845 −0.0200
0.0370 −0.0490
−0.0080 0.0019
0.0006 −0.0035

 ,L =


−0.0346 0.0073
−0.0097 −0.0038
−0.0416 −0.0110
−0.1304 0.0263

 (3.33)

We also tested the feasibility of the LMI conditions in Algo. 2, Algo. 3 and [35]. All
these methods perform successfully for αmax = 1. Table 3.4.3 summarizes the results
obtained with different approaches. Table 3.4.3 shows that we obtain a better result
with respect to the index of performance when using Algorithm 1, since

√µmin(Algo.
1) is the smallest one. To show simulations and improve comparisons between different
LMI design methods, assume that the system is disturbed by the noise ωt = χ(t)Nt ,
where χ(.) is defined by

χ(t) =


5 if t ∈ [30,40[;
3 if t ∈ [60,70[;
0 elsewhere,
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Method [35] Algo. 1 Algo. 2 Algo. 3
[70] [91]

ε1 = 0.1 θi = 1.55 θi = 0.93
ε3 = 0.81√µmin 1.5624 1.4983 1.9159 1.5

TAB. 3.3: Comparison of
√µmin between different LMI design methods.

and Nt is a normally distributed random, that is for each t = 1, . . . ,400, Nt = randn(1).
The simulation results corresponding to the observer-based controller gains (3.33), over
an horizon T = 400, are given in Figure 3.2. The initial states used for the simulation
are : x =

[
1 −1 2 −2

]T , x̂ =
[
−1 1 0 2

]T and the uncertain parameter is FA(t) =
cos(t). Note that the condition (3.3) is satisfied, since cos2(t)≤ αmax = 1.
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FIG. 3.2: Behavior of estimation errors for the states of the two first water tanks. Case
when FA(t) = cos(t)
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FIG. 3.3: Stabilized states of the first pendulum and their estimates
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FIG. 3.4: Stabilized states of the second pendulum and their estimates
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FIG. 3.5: Stabilized states of the third pendulum and their estimates

FIG. 3.6: Behavior of estimation errors for the states of the two last water tanks. Case
when FA(t) = cos(t)
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Figures 3.2-3.6 show clearly the H∞–robustness of the observer-based controller for all
LMI design methods in Table 3.4.3. Indeed, the estimation error, in the disturbance-free
case, converges asymptotically towards zero. While, in the presence of disturbances, the
magnitude of the estimation error is bounded for the four methods. Moreover, the ma-
gnitude of the estimation error, obtained via the proposed algorithm (the curves in red
color in Fig. 3.2), is smaller compared to other methods. These figures perfectly reflect
the order on the performance indices presented in Table 3.4.3. Indeed, the magnitude
of the error of each of the methods is proportional to the corresponding performance
index. Small is better. In addition, for Algo. 1, the estimation error reaches zero more
quickly compared to other methods. This shows that Algo. 1 performs better than the
other LMI design methods. To boost comparison with the above-mentioned methods,
we consider the case where the uncertain parameter is

FA(t) = α arctan(t),

instead of FA(t) = cos(t). Condition (3.3) becomes

F2
A(t)≤ (α)2.

π2

4
= α2

max. (3.34)

Although the results obtained by resolution of the LMI conditions of each method give
αmax = 1, these conditions remain however sufficient. The simulation results show that
the value of αmax can be greater than 1. Indeed, we have manually increased the value
of αmax in (3.34) until robust stabilization is lost. The results obtained are illustrated in
Table 3.4.3.

Method [35] Algo. 1 Algo. 2 [70] Algo. 3 [91]

αmax 1.2967 1.3352 1.2608 1.2967

TAB. 3.4: Comparison of αmax in (3.34) between different LMI design methods.

We can observe from Table 3.4.3 that Algo. 1 tolerates a larger value of αmax, which
confirms the superiority of the new proposed Algorithm. The simulations results when

FA(t) = 0.84arctan(t).

are depicted in Figures 3.7 and 3.8.
Figure 3.7 illustrates the unstable behavior of the uncontrolled states, even if the matrix
A is Schur stable. This is due to the presence of a nonlinearity that we handled as
uncertain parameter. Hence the need to implement a robust observer-based controller
to stabilize the system.
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FIG. 3.7: Behavior of the uncontrolled states.
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FIG. 3.8: Behavior of estimation errors for the states of the four water tanks. Case when
FA(t) = 0.85arctan(t)

Figure 3.8 reflects clearly the H∞-stabilizability of the system when using the proposed
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algorithm, namely Algo. 1, while the other three methods failed to stabilize the system.
The robustness of the proposed controller and observer follows then.

3.5 Conclusion

In this paper, a new variant of two-step algorithm to construct observer-based control-
lers for uncertain linear discrete-time systems is proposed. The connection with respect
to the existing two-step algorithms in the literature are analyzed analytically and evalua-
ted through numerical examples. The numerical results have shown a better feasibility
as compared with the alternative design methods. Future work will concern possible
extensions of the proposed approach to the design of observer-based controllers for
nonlinear time-delay systems.

3.6 Appendix

3.6.1 Auxiliaries results

This appendix is devoted to some theoretical results. We will show first that [27, Lemma 1]
is conservative and we will propose a new theorem, which can be viewed as a generali-
zation of the famous linearization theorem in [11] for discrete-time systems.

Lemma 3.6.1 ( [27]). Given three matrices X ,Y,Z of appropriate dimensions where X =
XT > 0 and Z = ZT > 0. Then, the following inequality holds[

−X Y T

Y −Z−1

]
< 0 (3.35)

if there exists a positive constant α > 0 such that−X αY T 0
αY −2αI Z
0 Z −Z

< 0. (3.36)

This lemma proposed and proved by Ibrir [27] has also exploited in the nonlinear sys-
tems context.

Theorem 3.6.2. (3.36) is conservative compared to (3.35).

Proof : Indeed, we propose hereafter a simple example of matrices X , Y and Z satisfying
(3.35), and for which there is no α > 0 such that (3.36) holds. Let us choose

X =

[
4 1
1 6

]
, Y T =

[
1 0
2 0

]
, Z =

[
1 1
1 2

]
. (3.37)
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With these choices it is easy to show that inequality (3.35) is satisfied. Now, if we assume
that (3.36) holds for some α > 0, then using Sylvester’s criterion, we will get that all
principal minors of odd order of (3.36) are negative. In particular, it follows that

∆5(α) = 2α(18α2 −55α +46)< 0.

Clearly, ∆5(α) and P(α) := 18α2 −55α +46 have the same sign. However, we can check
easily that P(α)> 0 because its discriminant is negative. Hence ∆5(α)> 0 for all α > 0,
which is a contradiction. □
In what follows, we introduce a more general result providing an equivalent condition
to (3.35).

Theorem 3.6.3. Given three matrices X ,Y,Z of appropriate dimensions where X = XT > 0
and Z = ZT > 0. Then, the following inequality holds[

−X Y T

Y −Z−1

]
< 0 (3.38)

if and only if there exists an invertible and symmetric matrix G such that−X Y T G 0
GY −2G Z
0 Z −Z

< 0. (3.39)

Proof : The theorem is trivial. The sufficiency follows from well known results based on
the Young’s relation, namely (G−Z)Z−1(G−Z)≥ 0. The necessity follows from the fact
that, with the choice G = Z, (3.39) and (3.38) are equivalent from Schur lemma.

Clearly, (3.39) is more general than (3.36).

Remark 3.6.4. 1. Note that when G = αI in in Theorem 3.6.3, we retrieve Ibrir’s
lemma, namely Lemma 3.6.1.

2. Also note that when Z = X in (3.38), Theorem 3.6.3 coincides with de Oliveira et al.
result [11, Theorem 1].
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General conclusion and some re-
search perspectives

This PHD thesis is dedicated to the robust stability analysis and control design for li-
near systems. The research is principally focused on discrete time linear systems with
parameter uncertainties law. The stability problems are treated in the framework of the
Lyapunov Theory and it is based on the resolution of linear matrix inequalities. In this
context we showed how it is possible to take into account the uncertain parameters
in order to design efficient control synthesis laws : the uses of Parameter Dependent
Lyapunov Functions allowed us to derive less conservative stability and control design
criteria. we revisited and corrected the approach proposed in .............. that combines
Finsler’s lemma and the switched Lyapunov function approach. A general theoretical
method was proposed, which leads to less conservative LMI conditions. This is due to
the use of Finsler’s inequality in a new and convenient way. new LMI conditions have
been developed for the problem of the stabilization of a class of switching discrete-
time linear systems with parameter uncertainties and l2-bounded disturbances. We have
shown that a judicious choice of slack variables coming from Finsler’s lemma leads to
less conservative LMIs. We have presented two new LMI synthesis methods to design
observer-based controllers for a class of LPV systems with inexact but bounded parame-
ters. The first approach is based on the use of Young’s relation, while the second one
uses a new congruence principle by pre- and post-multiplying the basic BMI by new and
ingenious matrices.

In future work, we hope to extend our technique to more general classes of switching
systems, namely nonlinear systems, systems with uncertainties in all the matrices of the
model, linear parameter varying systems with inexact parameters.

99



General conclusion and some research perspectives

Perspectives

Many questions remain in this area. As future research perspectives on the results pre-
sented in this manuscript, we intend to develop and improve the following points

– Extend the applicability of our approach to other types of systems, such as continuous
time switching systems, Lipschitz nonlinear switching systems, switching systems wi-
thout a priori knowledge of mode and switching law , and interconnected systems.

– Search for new Lyapunov functions resulting in less conservative synthesis conditions.

– Study of stochastic systems.

– Study of T-S fuzzy switched system.

Finally, we would like our contribution to be of interest and further study in this field,
where, as we have said, many fundamental questions remain open.
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Résumé

Cette thèse aborde le problème de la stabilisation basée sur l’observateur de Luenberger
pour une classe de systèmes linéaires à temps discret en présence d’incertitudes struc-
turées et de perturbations bornées au sens de ℓ2. Nous proposons une nouvelle variante
de l ?approche LMI classique à deux étapes. Dans la première étape, nous utilisons une
technique de variables artificielles pour résoudre le problème d’optimisation résultant
de la stabilisation par un retour d’état statique. Dans la deuxième étape, une partie de
la variable de artificielle obtenue est incorporée au problème de stabilisation basé sur
l’observateur H∞, afin de calculer simultanément la matrice de Lyapunov et les gains
de contrôleur basés sur l’observateur. L’efficacité de la méthodologie de conception pro-
posée est démontrée à l’aide du modèle dynamique d’un système de traitement de flux
à quadruple cuve. Des illustrations numériques supplémentaires sont présentées pour
montrer la supériorité de la méthode à deux étapes modifiée (MTSM) proposée du point
de vue de la faisabilité des LMI.

Mots-clés: Systèmes à commutations à temps discret ; Fonction de Lyapunov commu-
tée ; Lemme de Finsler ; Observateur de Luenberger ; Stabilisation ; Inégalités Matri-
cielles Linéaires (LMI) ; Incertitudes

Abstract

This thesis addresses the problem of observer-based stabilization of discrete-time linear
systems in presence of parameter uncertainties and ℓ2-bounded disturbances. We pro-
pose a new variant of the classical two-step LMI approach. In the first step, we use a
slack variable technique to solve the optimization problem resulting from stabilization
by a static state feedback. In the second step, a part of the slack variable obtained is
incorporated in the H∞ observer-based stabilization problem, to calculate simultane-
ously the Lyapunov matrix and the observer-based controller gains. The effectiveness
of the proposed design methodology is demonstrated using the dynamic model of a
quadruple-tank flow process system. Additional numerical illustrations are presented to
show the superiority of the proposed Modified Two-Step Method (MTSM) from a LMI
feasibility point of view.




