MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITÉ MOULOUD MAMMERI DE TIZI-OUZOU

FACULTÉ DES SCIENCES DÉPARTEMENT DE PHYSIQUE

THÈSE DE DOCTORAT-LMD

Spécialité PHYSIQUE

Option PHYSIQUE DES MATÉRIAUX ET DES COMPOSANTS

AIT MAMMAR Sofiane

Sujet

Étude expérimentale et théorique des spectres d'émission VUV des ions trivalents Er^{+3} et Eu^{+3}

soutenue le jeudi 08 juin 2017 devant le jury d'examen composé de :

M. Mourad	ZEMIRLI	Professeur	U.M.M.T.O	Président
M. Ali	MEFTAH	Maitre de conf. A	U.M.M.T.O	Rapporteur
M. Messaoud	NEMOUCHI	Professeur	U.S.T.H.B	Examinateur
M. Hocine	AOUCHICHE	Professeur	U.M.M.T.O	Examinateur
M. Omar	ZIANE	Professeur	U.S.T.H.B	Examinateur
M. Omar	LAMROUS	Professeur	U.M.M.T.O	Invité

Table des matières

	0.1 Remerciements	5
Ι	INTRODUCTION	9
1	Introduction	11

II MÉTHODES EXPÉRIMENTALES ET MÉTHODES THÉO-RIQUES 17

2	Mét	thodes expérimentales	19
	2.1	Introduction	19
	2.2	Spectroscopie VUV en émission à haute résolution	20
	2.3	Source lumineuse	21
	2.4	Systèmes de détection	22
		2.4.1 Plaques Photographiques	22
		2.4.2 Écrans phosphore photostimulables (<i>Image Plates</i>)	23
	2.5	Digitalisation des enregistrements	23
		2.5.1 Scanner optique $iQsmart^1$	24
		2.5.2 Nouveau Scanner d'images polyvalent de nouvelle génération de Fujifilm	25
	2.6	Mesure de longueurs d'onde et dépouillement des spectres	27
	2.7	Utilisation du programme GFit.10	27
	2.8	Conclusion	30
3	Mét	thodes théoriques	31
	3.1	Théorie des atomes complexes	31
	3.2	Approximation du champ central	32
	3.3	Méthode Hartree-Fock avec des corrections Relativistes HFR	33
		3.3.1 Notions de physique atomique	34
	3.4	Théorème de Wigner-Eckart	34
	3.5	Interaction électrostatique	35
	3.6	Interaction spin-orbite	36

	3.7	Théorie de perturbation au premier ordre	36
	3.8	Interaction de configurations proches	37
	3.9	Interactions avec les configurations lointaines	38
	3.10	Chaine des programmes de Robert D. Cowan	40
	3.11	Méthode paramétrique	41
	3.12	Énergie moyenne d'une configuration	42
	3.13	Probabilités de transition	42
	3.14	Calcul de facteur de Landé	43
	3.15	Durées de vie radiatives	43
	3.16	Influence du champ cristallin	44
	3.17	Méthodes ab-initio de type MCDHF	44
	3.18	Conclusion	45
4	Ana	lyse des spectres d'émission dans l'ultraviolet du vide	47
	4.1	Introduction	47
	4.2	Étude en émission	47
	4.3	Programmes RECHER et IDEN pour la recherche des nouveaux niveaux d'énergie	4 8
		4.3.1 Programme RECHER	48
		4.3.2 Programme IDEN	49
		4.3.3 Utilisation du programme IDEN	50
		4.3.4 Optimisation des niveaux d'énergie	52
	4.4	Interprétation des spectres	54
		4.4.1 Approche paramétrique	54
	4.5	Conclusion	57
тт	т	ANALVEE DES DÉSULTATS ET DISCUSSIONS	50
11		ANALISE DES RESULTATS ET DISCUSSIONS	99
5	Étu	de de l'ion libre Er^{+3}	61
	5.1	Production de spectres et mesure des longueurs d'onde	62
	5.2	Analyse des résultats et discussion	64
	5.3	Interaction de configurations	70
	5.4	Étude de la configuration $4f^{11}$	80
	5.5	Comparaison avec Er^{+3} dans les matrices cristallines $\ldots \ldots \ldots \ldots \ldots$	81
	5.6	Approche Multi-Configuration Dirac Hartree Fock	83
	5.7	Conclusion	85
6	Étu	de des ions libres Eu^{+3} et Er^{+2}	87
	6.1	Étude de Eu^{+3}	87
	6.2	Étude de Er^{+2}	89

7	Conclusion et perspectives				
	7.1 Conclusion	95			
	7.2 Perspectives	98			
A	Méthode Hartree-Fock	105			
В	Raies classées de l'Er ⁺³	115			

0.1 Remerciements

Par ces quelques lignes, je tiens à remercier toutes les personnes qui ont participé de près ou de loin au bon déroulement de ma thèse, en espérant n'avoir oublié personne....

Je remercie vivement Monsieur Ali MEFTAH et je lui suis très reconnaissant de la confiance qui m'a témoigné, et qui m'a fait bénéficier de ses compétences et son expérience dans le domaine tout au long de cette thèse. Ce travail a été réalisé au Laboratoire de Physique et Chimie Quantique (LPCQ) de Tizi-Ouzou, c'est tout naturellement que je remercie Monsieur Hamid BOUZAR qui m'a accueilli et qui m'a fait bénéficier des conditions propices à la recherche.

Un merci special pour Madame W.-Ü L. TCHANG-BRILLET qui m'a accueilli et m'a encadré durant les deux stages que j'ai effectué au sein du Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA) à l'Observatoire de Paris-Meudon, pour la pertinence de ses remarques et la justesse de ses corrections qui sont pour moi un exemple de rigueur. Je lui exprime mon profond sentiment de reconnaissance pour tout le temps qu'elle a consacré pour apporter des corrections et des améliorations à ce manuscrit de thèse.

De la même manière que je remercie Monsieur Jean-François WYART pour l'intérêt qu'il porte à ce travail. Je suis persuadé que les discussions qu'on a mené ensemble, ses conseils et ses orientations dans le domaine de la spectroscopie qui me seront très utiles dans ma carrière de chercheur.

Je remercie Norbert CHAMPION pour sa contribution efficace à la production des spectres expérimentaux, pour toutes les explications et discussions lors de ma visite au spectrographe UV sous vide de 10.7 m et Christophe BLAESS pour son aide dans la digitalisation des spectres.

Mes sincères remerciements et ma gratitude vont à Pr Mourad ZEMIRLI pour avoir accepté de juger ce travail et d'en présider le jury de soutenance.

Un grand merci également à messieurs les professeurs Messaoud NEMOUCHI, Hocine AOU-CHICHE et Omar ZIANE d'avoir accepté de juger ce travail en tant qu'examinateurs, et pour tout le temps consacré à la lecture approfondie du manuscrit.

Mes remerciements vont aussi à messieurs O. LAMROUS, D. DEGHICHE, M. SABRI et madame Z. HASSANI qui ont toujours répondu présents tout au long de mon travail de thèse.

Avec une tendresse infinie que je remercie ma famille, de mes parents à mes neveux et particulièrement mon grand-père qui, d'une manière ou d'une autre, m'ont encouragé et soutenu depuis ma scolarisation.

A mon cher grand-père (1928 - 2006)

A ma chère grand-mère (1940 - 2015)

Première partie INTRODUCTION

Chapitre 1

Introduction

L'interprétation des spectres de lanthanides riches de milliers de raies quand ils sont émis par des ions libres dans un milieu dilué dépend de plusieurs conditions :

Une haute résolution des spectrographes utilisés, une mesure précise de longueurs d'onde, un calcul fiable des niveaux d'énergie et autres observables au moyen de calculateurs performants. Une étape avait été franchie en 1978 avec la compilation (Martin, Zalubas et Hagan)[1] qui pointait clairement les spectres à étudier.

Certains étaient totalement inconnus comme Dy^{+2} (Dy III), d'autres avaient été mesurés mais leur interprétation était contestée comme pour Nd^{+3} (Nd IV) et Er^{+3} (Er IV), ou améliorable comme pour Pr^{+2} (Pr III) et Yb^{+3} (Yb IV)[2].

Dans une collaboration entre plusieurs laboratoires (Aimé Cotton à Orsay, LERMA à l'Observatoire de Paris-Meudon, NIST à USA et ISAN à Troitsk), et en liaison avec des astronomes, les configurations électroniques et leurs transitions ont été recalculées.

Pour Pr III, Eu III [3] et Er III [4] les listes de raies publiées dans la littérature ont suffi pour améliorer la connaissance des niveaux d'énergie.

Dans d'autres cas (d'abord Yb, puis Nd), les plaques photographiques anciennes (NBS, 1980, Sugar et Spector) ont dû être remesurées pour compléter la liste émise par une étincelle glissante.

En 2004, les premiers travaux dans la thèse de A. Meftah sur les spectres relativement moins complexes aux extrémités de la séquence $4f^N$ ont montré que de nouvelles observations sur le spectrographe VUV de Meudon étaient nécessaires, ce qui a été fait pour Nd et Tm, puis pour Yb. Parmi les articles qui en ont résulté, la description de (Yb V) publié en 2013 par A. Meftah et al. a été sélectionnée dans la collection Highlights 2013 des 47 articles par l'Institut of Physics, provenant d'un large éventail de recherche en physique [5].

Dans un ordre de complexité croissant, en progressant vers le milieu de la couche $4f^N$, le cas de l'erbium devait être étudié, en commençant par un nouvel enregistrement du spectre dans l'ultraviolet.

Enfin, le spectre de (Eu IV) qui avait fait l'objet des recherches préliminaires (N. Spector) sur les mêmes plages spectrales du NBS que pour (Eu III) a été réétudié expérimentalement et

FIGURE 1.1 – Abondances des éléments à capture de neutrons dans l'étoile HE1523 - 0901 comparées à celles du processus R solaire mis à l'échelle[7].

théoriquement.

Les motivations de ces travaux sont :

- l'identification des raies de lanthanides dans les plasmas astrophysiques, spécialement pour les étoiles chimiquement particulières.

- la détermination de niveaux de $4f^N$ pour des ions utilisés comme dopants dans des verres ou des cristaux conduisant à des effets laser.

- un teste pour la description des interactions électroniques dans $4f^N$ au moyen d'opérateurs orthogonaux, combinaisons linéaires des opérateurs normalement dérivés du hamiltonien de Schrödinger étudié formellement par B. R. Judd [6] et collaborateurs, et jamais appliqués à $4f^2$ et $4f^3$ avant 1989.

Par définition, la spectroscopie atomique est une discipline qui a pour objet d'interpréter les raies spectrales des atomes ou des ions multi-chargés dans le but de remonter à la détermination des niveaux d'énergie des différentes configurations atomiques, connaitre certaines données de base et d'autres observables physiques comme les probabilités de transition, le facteur de Landé, les potentiels d'ionisation,...etc, pouvant répondre aux besoins scientifiques de plusieurs domaines de la physique moderne en son large sens.

Les spectres des ions de lanthanides neutres, simplement et doublement chargés (II et III) sont très utilisés en astrophysique vu que la grande majorité d'entre eux sont assez présents dans les plasmas solaire et interstellaires, aussi, pour la modélisation des atmosphères stellaires, et la détermination des étoiles chimiquement particulières (CP) [Figure 1.1]. Tout comme pour le Néodyme et le Thulium, l'Erbium et l'Europium sont parmi les constituants les plus abondants respectivement dans les étoiles HR465 et des atmosphères des étoiles (CP2) [Figures 1.2, 1.3].

FIGURE 1.2 – Spectre d'erbium ErIII dans l'étoile chimiquement particulière HR465[8].

Le Tb^{+2} et l' Eu^{+2} ont des propriétés de luminescence prometteuses (durée de vie importante) pour s'affranchir de l'autofluorescence du milieu considéré, ainsi, ils possèdent un déplacement de stockes (différence entre longueur d'onde d'excitation et d'émission) très important lié au processus photophysique.

En photonique, les spectres IV (spectres d'ions triplement chargés) sont très utilisés en Optique pour le dopage des fibres optiques nécessaires à la conception et la réalisation des lasers notamment à l'erbium (Lasers chirurgicaux utilisés particulièrement en dentisterie), l'Ytterbium et l'Europium (fabriquer les verres de certains lasers). Ces fibres optiques sont actuellement et couramment utilisées dans les télécommunications, plus particulièrement dans les liaisons transocéaniques.

Les lampes fluorescentes aussi appelées lampes fluorescentes compactes (LFC) contiennent des quantités de mercure polluant pour l'environnement en cas de bris. Les études ont montré que ces quantités sont en dessous des valeurs légales de concentration autorisée dans les lieux de travail. Ces lampes émettent à basse pression des rayons (UV) néfastes responsables de plusieurs maladies comme les cancers de la peau, kératites,...etc. L'intensité de la lumière réémise par la couche phosphorescente peut créer des endommagements de la rétine. A cet effet, les lanthanides peuvent remplacer efficacement le mercure (néfaste) dans la composition de ces lampes, ainsi, la connaissance de leurs spectres de forte intensité permet l'amélioration de la lumière réémise.

Les zones d'émission des atomes neutres et faiblement chargés (spectres I, II et III) se situent

FIGURE 1.3 – Nombre d'étoiles pour lesquelles le silicium, le chrome, le manganèse, le strontium et l'europium sont indiqués comme surabondants dans les catalogues de *Bertau* (rectangle blanc) et nombre d'étoiles de la première table de *Babcock* où cet auteur avait trouvé une surabondance des mêmes éléments (rectangle noir)[9].

généralement au proche du domaine du visible, alors que pour les spectres IV et plus, elle couvre une gamme de longueurs d'onde de l'ultraviolet (UV) allant de 400 à 2800Å. La technique spectroscopique utilisée dans le laboratoire (l'Observatoire de Paris) pour la production des spectres d'émission dans l'ultraviolet du vide est parfaitement adaptée que ce soit pour la haute résolution obtenue grâce au réseau holographique (de 3600 traits par millimètre), une dispersion linéaire de 0.25 Å/mm, les différentes sources de décharges, (étincelle glissante et initiée) utilisées pour obtenir les différents états d'ionisation, ainsi que les deux systèmes de détections à savoir les plaques photographiques (*PP*) et les écrans phosphore photostimulables (*IP*) (Image Plate). La mesure des positions des raies expérimentales est effectuée à l'aide des logiciels SPECTRA et Gfit.10 à 4μ prés, où l'intensité correspondant à une raie quelconque est représentée par la surface de la géométrie délimitant son profil dans le cas de SPECTRA. Pour une meilleure estimation des intensités, un autre logiciel dit Gfit 10 est utilisé, avec lequel

Pour une meilleure estimation des intensités, un autre logiciel dit Gfit.10 est utilisé, avec lequel les effet physiques tels que l'effet Doppler (influence de la température) et les effets collisionnels (dans le plasma) sont pris en considération grâce aux trois fonctions respectivement de Gauss, Lorentz et le produit de convolution de Voigt.

Des raies de référence d'éléments connus comme le (C, O, N et Si) sont utilisées pour calibrer ces spectres et calculer les longueurs d'onde d'élément à étudier à l'aide du programme TECH, puis remonter à la détermination des niveaux d'énergie, à $1cm^{-1}$ près à l'aide du programme RECHER et IDEN par l'application du principe de combinaison de Ritz. La reconnaissance d'un vrai niveau parmi de nombreuses coïncidences fortuites exige la comparaison des intensités expérimentales aux probabilités de transition prédites par la théorie. Finalement, le programme LOPT (Level Optimization) est utilisé pour optimiser ces niveaux expérimentaux confirmés dans la dernière étape.

Le support de nos calculs théoriques permettant de décrire un système atomique à plusieurs électrons est la chaine des programmes de R. D Cowan (Los Alamos, 1980)[10] (option HFRHartree-Fock Relativiste), où les interactions électrostatiques et celle dépendant du spin sont prises en considération. Les interactions de configurations lointaines sont aussi prises en compte en faisant appel à des paramètres effectifs aux ordres supérieurs (2 ou 3) de la théorie des perturbations.

Pour chacun des ions Er^{+3} et Eu^{+3} , un calcul préliminaire HFR a été effectué en introduisant quatre configurations de base des deux parités impaire et paire $(4f^N, 4f^N 6p, 4f^N 5d \text{ et } 4f^N 6s)$ permettant de prédire les niveaux d'énergie, les probabilités de transition et autres observables physiques (g, J, ...). Les paramètres HFR sont initialement corrigés avec des facteurs d'échelle (SF) estimés à partir des éléments de la séquence isoéléctronique ou isoionique. En suite, les niveaux d'énergie expérimentaux confirmés sont introduits dans le code à l'étape RCE pour minimiser par moindres-carrés avec une méthode itérative les écarts $(E_{exp} - E_{cal})$ et amélioration des fonctions d'onde.

Pour une présentation plus détaillée, ce manuscrit de thèse est structuré en trois parties principales scindées en sept chapitres où :

La première partie est une introduction générale dans laquelle on donne un aspect global et un petit historique sur la discipline de la spectroscopie (VUV) à partir de 1978, les travaux ultérieurs réalisés dans le domaine, ainsi que les motivations et les objectifs souhaités de l'étude de ces spectres. La technique de la spectroscopie à réseau, les méthodes théoriques et les deux démarches expérimentale et théorique suivies dans l'analyse, ainsi que les différents logiciels, codes et programmes adoptés pour l'interprétation de nos spectres sont décrits dans les chapitres 2, 3 et 4. La dernière partie est consacrée à l'analyse et aux discussions des résultats obtenus dans l'étude de l'ion Er^{+3} qui a fait l'objet des publications scientifiques[11, 12].

Concernant l'europium trivalent Eu^{+3} , l'exploitation des spectres produits à l'Observatoire de Paris-Meudon ont permis de déterminer expérimentalement les premiers niveaux des configurations $4f^6$ et $4f^55d$.

Deuxième partie

MÉTHODES EXPÉRIMENTALES ET MÉTHODES THÉORIQUES

Chapitre 2

Méthodes expérimentales

2.1 Introduction

La spectroscopie atomique dans l'ultraviolet traite souvent les spectres atomiques présents dans les plasmas solaire et stellaires, ainsi que les transitions dipolaires électriques des petites molécules interstellaires, planétaires prébiotiques et biotiques d'intérêt pour l'exobiologie. Dans le domaine de l'ultraviolet de vide (VUV), elle couvre la gamme de longueurs d'onde de 400 - 2800Å. La spectroscopie VUV est un bon outil de diagnostique pour l'astrophysique

et la physique des plasmas. À titre d'exemple, les paramètres d'un plasma (la température, la densité de particules (neutre ou ion), l'opacité, l'abondance des espèces et même les constantes de physique), sont couramment déterminées par des mesures spectroscopiques.

La spectroscopie à réseau est très utilisée pour l'étude des spectres des atomes et des ions multichargés. Pour obtenir ces spectres, il faut exciter les atomes initialement dans leur état électronique fondamental, vers ses états électroniques excités, par l'absorption d'un rayonnement électromagnétique (*visible ou UV*), ou par des collisions avec d'autres particules (*des électrons par exemple*). Lorsque l'ion est dans son état excité, il se déexcite en cascades vers les niveaux d'énergie inférieurs en émettant de la lumière. Ce spectre de lumière est constitué d'un grand nombre de raies qui seront enregistrées par des détecteurs. L'analyse de ces spectres permet l'identification des raies émises, et la détermination des niveaux d'énergie des états excités et de l'état fondamental de l'ion.

Ce chapitre sera consacré à la présentation de la technique spectroscopique adoptée dans notre travail pour l'étude des spectres d'émission VUV des ions Lanthanides Er^{+3} et Eu^{+3} dans les régions spectrales situées entre 400 et 2800Å. Nous commençons par la description du spectrographe à haute résolution de 10.7*m* de Meudon et ses principaux modes de fonctionnement, la source d'émission qui est de type *etincelle glissante*, puis nous enchaînons par la description et la comparaison des deux systèmes de détection : Les Plaques Photographiques (de type SWR) et les Écrans Phosphore Photostimulables (*Image Plate*). Les logiciels SPECTRA et Gfit.10 ont été utilisés pour mesurer les abscisses des raies spectrales.

FIGURE 2.1 – Spectrographe UV sous vide de 10.7 m - Observatoire de Meudon

2.2 Spectroscopie VUV en émission à haute résolution

Nous avons enregistré à haute résolution ($\sim 150\ 000$) les spectres de l'erbium et de l'europium en utilisant le spectrographe de 10.7m de l'Observatoire de Meudon [Fig 2.1]. Malgré les grands progrès technologiques enregistrés dans le domaine de la spectroscopie à haute résolution VUV, à savoir, la technique par "la Transformée de Fourier" dans l'ultraviolet (~ 70 000), la spectroscopie Laser XUV au centre Européen de Laser d'Amsterdam (LCVU)qui est d'une précision de $(\frac{\Delta \lambda}{\lambda} \sim 10^{-8})$. Cet instrument reste incontournable et incomparable, car il permet l'étude en émission dans l'ultraviolet sous vide jusqu'à 200Å avec des sources pulsées, et il permet d'enregistrer à haute résolution en une seule exposition d'un intervalle spectral de 240Å contenant un grand nombre de raies. Les techniques d'enregistrement de spectres dans l'ultraviolet lointain sont limitées essentiellement par l'opacité des matériaux solides et de l'air. En effet, en dessous de 2000Å, le coefficient d'absorption de l'air composé essentiellement de O_2 et N_2 , impose l'utilisation de spectrographe fonctionnant sous vide. Le spectrographe est équipé d'un réseau de diffraction holographique concave qui constitue à la fois l'élément dispersif et l'élément focalisateur, ce qui fait éviter de multiplier les surfaces de réflexion. Dans la théorie des réseaux concaves, on montre que la fente, le réseau et le récepteur doivent être situés sur le même cercle appelé cercle de Rowland [Fig 2.2]. Ce cercle est tangent au réseau et a un diamètre égal au rayon de courbure du réseau. Le spectrographe de l'Observatoire de Meudon est équipé d'un réseau holographique concave ayant 3600 traits par millimètre (Haute résolution), de rayon de courbure de 10.7m. Il fonctionne en incidence normale avec un montage (*Eagle in plane*) dans lequel le faisceau incident et le faisceau diffracté ont des directions voisines. Le spectrographe de 10.7m de Meudon fonctionne depuis 1972. Deux fentes

FIGURE 2.2 – Production de spectres d'émission VUV, Cercle de Rowland.

de largeurs fixes, 30 et $100\mu m$, interchangeables qui permettent de trouver un compromis entre résolution et luminosité recherchées. La fente de $30\mu m$ est souvent utilisée, ce qui correspond à un pouvoir de résolution égal à ~ 150000. La dispersion linéaire dans le plan focal du réseau est de $0.25\text{\AA}/mm$ dans le premier ordre. Cet instrument est actuellement unique en Europe, est équipé de deux pompes turbo-moléculaires qui permettent d'atteindre un vide de 10^{-6} torr (mmHg). Un spectrographe semblable existe au NIST (National Institut of Standard and Technology), mais avec une dispersion trois fois moins grande.

2.3 Source lumineuse

Les spectres en émission VUV d'éléments ionisés sont produits par une source de décharge de type *etincelle glissante*. Ce type d'étincelles électriques produites entre deux électrodes placées sous vide en contact avec un matériau isolant ou semi-conducteur, présente de nombreux avantages en tant que source de lumière dans l'analyse de spectroscopie d'émission. En effet, la production d'étincelles sous vide nécessite généralement une tension élevée pour atteindre 10KV/mm [Figure 2.3 (a)] et une distance inter-électrodes faible. Ces deux facteurs entrainent un équipement peu maniable et une mauvaise reproductibilité. Cela est dû à une grande sensibilité vis-à-vis de toute variation de distance inter-électrodes.À l'inverse, la source à étincelle glissante permet de réduire la tension électrique utilisée. Dans cette source, l'anode et la cathode sont séparées par une pièce en isolant (aluminium par exemple) [Figure 2.3 (b)]. Les particules métalliques déposées à la surface de celle-ci servent de relais pour les décharges. L'intensité de courant est relativement plus faible que dans une étincelle sous vide simple, et

FIGURE 2.3 – Schéma illustrant le principe de la source à étincelle glissante : (a) le circuit électrique correspondant, (b) "spacer" en aluminium séparant l'anode et la cathode.

l'élargissement Stark des raies dû aux ions environnants est fortement diminué.

2.4 Systèmes de détection

2.4.1 Plaques Photographiques

Elles sont de type Short-Wave-Radiation (SWR - Kodak) de dimension $45 \times 5cm$. Ces spectres peuvent être enregistrés simultanément sur deux plaques en une seule exposition, soit un intervalle de 240Å. Ces plaques photographiques sont choisies pour leur bon contraste. Elles sont recouvertes d'une couche de gélatine particulièrement mince, de façon à diminuer l'absorption des rayonnements ultraviolets. La durée d'exposition des plaques diffère d'une région spectrale à une autre. En effet, pour les grandes longueurs d'onde au-dessus de 800Å, la durée d'exposition est d'environ 30 minutes. En revanche, la sensibilité est moins grande pour les courtes longueurs d'onde.

Depuis de longues années, les plaques photographiques (PP) ont pris le rôle de l'unique détecteur dans la spectroscopie à réseau VUV, et cela pour leur bon contraste et leur sensibilité aux rayonnements VUV et XUV. Ces plaques photographiques sont utilisées pour la mesure des longueurs d'onde dans l'ultraviolet du vide avec une précision de $\frac{\delta\lambda}{\lambda} \sim 3.10^{-6}$. Les intensités des raies sont estimées visuellement à partir du noircissement de la plaque. Ces intensités peuvent aussi être caractérisées par la densité optique de la plaque $D = log(\frac{I_0}{I_{transmise}})$ à l'emplacement d'une raie spectrale. En revanche, ces plaques en verre appropriées à l'enregistrement des spectres dans l'ultraviolet du vide, ne possèdent de réponse linéaire en intensité que dans

FIGURE 2.4 – Comparaison entre la réponse en intensité du détecteur photostimulable et de la plaque photographique. En abscisse la dose de radiation issue de l'atome ${}^{32}P$ (rayonnement (3 de 1.7 MeV). L'ordonnée à gauche représente la luminescence du détecteur photostomulable, et l'ordonnée à droite représente la densité du noircissement de la plaque photographique.

un domaine restreint^[13] [Figure 2.4]. Actuellement, elles sont peu disponibles dans le commerce.

2.4.2 Écrans phosphore photostimulables (*Image Plates*)

au court de l'année 2007, l'observatoire est équipé d'un nouveau système de détection, les *Ecrans Phosphore photostimulables (IP)* (Image Plates) capables de mesurer les intensités relatives des raies et des rapports de branchement.

Depuis lors, les écrans phosphore photostimulables, sont devenus l'éventuel remplaçant des anciens détecteurs. Ils sont caractérisés par leur souplesse à épouser le cercle de Rowland, par leur sensibilité aux rayonnements XUV et VUV, aussi, ils présentent une réponse linéaire en intensité avec une dynamique de 10^5 [Figure 2.4]. Néanmoins, leur résolution dépend de la résolution du système de lecture.

Le détecteur photostimulable permet de convertir le spectre de rayonnements incidents en un motif optique visible via un processus purement électronique [figure 2.5].

La lecture et la numérisation de l'information stockée sur l'écran phosphore s'effectuent par balayage à l'aide d'un Laser induisant une luminescence. Le tube photomultiplicateur sert à convertir la luminescence émise par chaque élément en un signal électrique, qui sera par la suite amplifié, numérisé et stocké en mémoire d'ordinateur en fonction de la position du Laser sur le détecteur.

Enfin, lorsque la totalité du détecteur est balayée, l'image finale numérisée est sauvegardée et peut être affichée sur un moniteur.

2.5 Digitalisation des enregistrements

Nous avons indiqué ci-haut que les spectres ont été enregistrés sur deux types de détecteurs à savoir les Plaques Photographiques (PP) et les Écrans Phosphore Photostimulables (IP). La question est comment procéder dans l'étape suivante à la mesure des positions des raies spec-

FIGURE 2.5 – Principe général de fonctionnement et de lecture des écrans Photostimulables

trales à partir de ces (PP) et ces (IP)?

La mesure des positions des raies a été faite grâce à deux logiciels SPECTRA et Gfit.10 conçu respectivement par *C. Blaess* de l'observatoire de Paris-Meudon et *Lars Engström* du "*Department of Atomic Physics University of Lund, Sweden*".

* Dans le cas de logiciel SPECTRA, il est impératif de convertir le spectre que ce soit les (PP) ou les (IP) en image sous un format spécifique de type dit (*spe*). Par la suite, cette image peut être lue par le logiciel SPECTRA. Ce dernier est équipé d'une règle très précise pouvant déterminer la position d'une raie à 4μ près. Les intensités sont estimées en mesurant la surface de la géométrie délimitant son profile.

* Pour utiliser le logiciel Gfit.10, les (IP) scannées cette fois-ci par un autre scanner "STARION $FLA-9000 \ FUJIFILM$ " [figure 2.7], seront converties en données numériques d'une manière à sortir à la fin un fichier de profils spectraux de type Prof.text contenant deux colonnes pour la position (en pixel) et l'amplitude (en unité arbitraire). Cette conversion est faite à l'aide d'un logiciel spécifique MultiGauge dont son principe de fonctionnement est le suivant :

Une plaque de 100Å sera divisée en 40 000 unités Pixels (1 Pixel = une surface de 10μ) suivant l'axe des X. En faisant un balayage automatique tout au long de la plaque, le logiciel *MultiGauge* peut enregistrer pour chaque x fixe la sommes de toutes les intégrales linéaires correspondant aux surfaces des pixels verticaux d'abscisse x ayant pour chacun un niveau de gris homogène, ce qui permet de déterminer l'amplitude en chaque x. A la fin, le fichier *Prof.text* sera prêt pour être utilisé par Gfit.10 pour chercher les pics (raies) et déterminer de toutes les longueurs d'onde avec une méthode itérative (moindres-carrés) en introduisant des raies de références d'éléments connus.

2.5.1 Scanner optique $iQsmart^1$

Nous avons utilisé pour la numérisation des spectres sur (PP) un scanner optique à haute résolution $iQsmart^1$ [Figure 2.6]. Ce scanner optique fonctionne sous Windows et est conçu pour permettre aux professionnels de capturer des images de haute qualité et aussi de produire

FIGURE 2.6 – Le Scanner iQsmart¹ 7500 dpi.

des numérisations à grande vitesse quel que soit le format de l'original. Il apporte une netteté sur l'ensemble de la surface d'analyse (technologie XY) grâce à sa haute résolution de 7500 *dpi* ou *ppp* (dots per inch ou points par pouce). Pour apporter une correction sur une éventuelle non-linéarité dans le déplacement de la tête optique, les spectrogrammes sont scannés simultanément avec une règle optique de grande précision graduée en millimètres.

2.5.2 Nouveau Scanner d'images polyvalent de nouvelle génération de Fujifilm

Le STARION FLA – 9000 est le scanner d'image phare de Fujifilm utilisé pour des applications d'imagerie radio-isotopique, fluorescente, chimiluminescente et numérisée [Figure 2.7]. STARION possède des caractéristiques inégalées permettant de soutenir les recherches scientifiques en imagerie, dont le Modèle (IP) est l'idéal pour l'imagerie au phosphore, ce qui est le cas dans notre travail.

En plus des tâches relatives à la lecture et numérisation des données, le STARION offre des solutions d'imagerie dans un seul système [Figure 2.8]. Le système excelle également à la capture d'image radio-isotopique en utilisant la méthode de Plaques d'Image (IP). D'autres méthodes d'imagerie incluent la numérisation à l'aide de la Chimioluminescence par la méthode de détection directe.

Le scanner STARION est accompagné du nouveau logiciel standard *MultiGauge* d'analyse et de traitement d'images. MultiGauge comprend la possibilité de capturer des images à multicanaux qui peuvent être pseudo-colorées pour la différenciation et le chevauchement, ou vu en parallèle, pour une analyse détaillée. Les modes disponibles contiennent : La mesure de la densité, le profil (électrophorèse 1D), la plaque (96 puits, 384 puits et sur mesure) et la distance (distance et angle). Les fonctions de traitement d'image incluent le filtrage, la composition, des calculs et autres.

FIGURE 2.7 – Le Scanner STARION FLA-9000 d'images polyvalent de FUJIFILM.

FIGURE 2.8 – Principe de fonctionnement de STARION FLA-9000 de Fujifilm.

2.6 Mesure de longueurs d'onde et dépouillement des spectres

Les spectres d'émission VUV des ions Lanthanides trivalents Er^{+3} et Eu^{+3} , qui fond l'objet de cette thèse, sont produits à l'aide du spectrographe de 10.7m sous incidence normale à l'Observatoire de Meudon. Les enregistrements ont été effectués respectivement dans les régions spectrales (705-2460Å) et (700-2700Å) sur des Plaques Photographiques (PP) et sur des écrans phosphore photostimulables (IP). Dans le but de mesurer les longueurs d'onde et les intensités des raies correspondantes, la démarche expérimentale ci-après a été adoptée :

Initialement, à l'aide du logiciel SPECTRA (ou bien Gfit.10), on mesure les abscisses des raies spectrales à 4μ près et leurs intensités attribuées (superposition des deux profiles d'une raie) [Figure 2.9]. Par la suite, on utilise des raies de référence (longueurs d'onde d'éléments connus : C, N, O, Si) déterminées avec une incertitude inférieure à 0.005Å pour calibrer nos spectres en longueurs d'onde. Ces raies de référence sont distribuées tout au long du spectre pour tenir compte des écarts à la dispersion linéaire.

Une liste de raies de référence a été établie par Kaufman et Edlén[14] comportant plus de 5000 raies allant de 15 à 2500Å. L'incertitude sur les longueurs d'onde varie de 0.0001 à 0.002Å. Au dessus de 2000Å, la plupart de ces longueurs d'onde sont des mesures interférométriques. En dessous de 2000Å, elles résultent essentiellement de l'application du principe de combinaisons de Ritz.

Des raies de référence supplémentaires peuvent être sélectionnées de la compilation de Raymond L. Kelly[15] dans (*Atomic and Ionic Spectrum Lines Below* 2000 *Angstroms*), et dont les longueurs d'onde sont déterminées avec une incertitude inférieure à 0.005Å. Pour une meilleure cohérence des longueurs d'onde mesurées et celles des références, il est préférable de s'appuyer sur des raies émises par la source elle-même, qui proviennent généralement des éléments neutres et peu ionisés qui peuvent être présents comme impuretés dans la source à savoir, OI, OII, CII, SiI, SiII, AlII et AlIII.

Nous calculons ensuite les longueurs d'onde de toutes les raies mesurées avec une précision meilleure que 0.005Åà l'aide d'un programme écrit par *J. Tech* du NBS (USA). Le programme en effet, ajuste par moindres-carrés le polynôme de dispersion qui est généralement de degré un ou deux en utilisant la liste des positions des raies et des longueurs d'onde de raies de référence. Ce qui permet d'établir une liste finale de longueurs d'onde nécessaire pour entamer la recherche des niveaux d'énergie à l'étape RECHER et IDEN.

2.7 Utilisation du programme GFit.10

Depuis longues années, les chercheurs de l'Observatoire de Paris-Meudon utilisaient le logiciel (*SPECTRA*) pour la mesure des positions des raies et leurs intensités attribuées dans les spectres d'atomes neutres et peu ionisés.

FIGURE 2.9 - Logiciel(SPECTRA): Les intensités expérimentales sont assimilées à la surface de la géométrie délimitant le profile de la raie considérée.

La fiabilités des longueurs d'onde est assurée grâce à la bonne précision sur les positions des raies mesurées à moins de 4μ près.

Parfois, la recherches des niveaux d'énergie est entravée par certaines raies mal résolues (*Larges, très faibles, asymétriques*). La reconnaissance du vrai niveau parmi de nombreuses coïncidences fortuites exige la comparaison des probabilités de transition calculées aux intensités expérimentales assimilées dans ce cas à la surface de géométrie délimitant le profil de la raie considérée [Figure 2.9].

Lars Engström du Department of Atomic Physics University of Lund, Sweden était conscient de l'importance des intensités expérimentales des raies dans les études spectroscopiques. Il conçoit un logiciel de mesure qui apporte des améliorations par rapport au logiciel SPECTRA. Le logiciel GFit v 10.0 (Spectrum analyzer) [16] utilise comme données d'entrée :

Un fichier (*Profil. texte*) à deux colonnes, contenant les abscisses des raies spectrales et leurs amplitudes correspondantes. Ces dernières sont estimées à partir du noircissement de la plaque. Ce fichier traduit numériquement les différentes plages de mesure couvrant 100Å des spectres enregistrés sur des Écrans Phosphore Photostimulables (*IP*).

GFit permet de mesurer manuellement les intensités des raies individuelles, et grâce au mode Auto, il permet aussi de mesurer une série de 100 pics à la fois en une seule plage de mesure. Ce qui donne lieu à un fichier (*.Peak*) qui contient à la fois les positions et les intensités des pics considérés. Ce programme peut supporter 13 fonctions mathématiques qui représentent les dérivées des trois profils distincts (le profil Gaussien, le profil Lorentzien et le produit de convolution de Voigt) [Figure 2.10].

En spectroscopie atomique ou moléculaire, du fait de l'agitation thermique, les formes des raies gaussiennes proviennent d'une source où l'élargissement dominant du milieu émetteur est dû à

 ${\rm FIGURE}$ 2.10 – Logiciel GFit.10 : Mesure des intensités des raies spectrales en utilisant les différents profils, Gaussien, Lorentzien, et le produit de convolution de Voigt.

FIGURE 2.11 – Superposition des profils de raies : La largeur naturelle est très fine devant les élargissements possibles dus à la température (agitation thermique, élargissement Doppler) ou aux chocs (élargissement par pression).

l'effet Doppler. En utilisant la distribution des vitesses de Maxwell dans un gaz, il est possible de dériver le profil Doppler associé à une température donnée.

La durée de vie radiative d'un niveau excité peut être diminuée par desexcitation collisionnelle car les électrons du plasma peuvent entrer en collisions avec l'ion émetteur. Cette interaction provoque un élargissement et un déplacement des raies, qui prennent dans ce cas, une forme lorentzienne. Cet effet est généralement appelé *élargissement collisionnel ou élargissement par Pression*.

Comme nous venons de voir, chaque type d'élargissement donne lieu à un profil particulier, la convolution des élargissements dûs aux effets de pression donnés par une fonction lorentzienne, et de l'élargissement Doppler décrit par une fonction Gaussienne, conduit à un profil de type Voigt [figure 2.11].

Par la suite, le fichier (.Peak) est utilisé pour la détermination des longueurs d'onde à l'aide d'un polynôme du premier ou du deuxième degré après avoir introduire dans le même fichier (.Peak) des raies de référence des éléments connus dans la littérature.

2.8 Conclusion

Dans ce chapitre, nous avons présenté le spectrographe VUV de 10.7m à haute résolution, ses différentes composantes ainsi que les différents scanners et logiciels permettant d'établir une liste finale de longueurs d'onde nécessaires pour entamer la recherche des nouveaux niveaux d'énergie. Dans le chapitre suivant, nous allons présenter les méthodes théoriques basées sur l'équation de Schrôdinger, l'approximation du champ moyen au premier ordre de la théorie des perturbations, et les différentes interactions introduites dans le Hamiltonien total du système. Et ce dans le but d'effectuer un calcul HFR pouvant prédire les zones spectrales des différents faisceaux de transition, les niveaux d'énergie et les probabilités de transition. La méthode paramétrique de Slater-Racah permet d'ajuster par moindres carrés les paramètres d'énergie.

Chapitre 3

Méthodes théoriques

3.1 Théorie des atomes complexes

Dans la théorie, les niveaux d'énergie d'un atome peuvent être calculés en résolvant l'équation de Schrödinger indépendante du temps. Cependant, sauf pour un cas simple, comme l'atome d'hydrogène, aucune solution analytique est envisageable pour un système à plusieurs électrons. Cela nécessite des techniques qui reposent sur des approximations bien adaptées aux calculs des systèmes complexes, et ce sans connaitre la forme exacte du potentiel intervenant dans l'équation de Schrödinger. La méthode de Racah-Slater est bien adaptée pour la détermination des niveaux d'énergie des ions faiblement chargés à couche ouverte $4f^N$.

À la fin de ce chapitre on présentera aussi une autre méthode basée sur des calculs ab-initio de la structure atomique de type Multi-Configuration Dirac–Hartree–Fock (MCDHF).

Les calculs théoriques des niveaux d'énergie et leurs propriétés radiatives reste au cœur de l'interprétation des spectres des atomes ou des ions peu chargés. Les fonctions d'onde et les probabilités de transition sont respectivement calculées à partir des codes RCN et RCG de la chaine des programmes de R.D Cowan (Los Alamos).

Le Hamiltonien total d'un système à N éléctrons s'écrit comme suit :

$$H = \sum_{i=1}^{N} \left[\frac{P_i^2}{2m_i} - \frac{Ze^2}{r_i}\right] + \sum_{i \prec j}^{N} \left[\frac{e^2}{r_{ij}}\right] + \sum_{i}^{N} \xi(r_i) l_i s_i$$
(3.1)

On note que $\sum_{i=1}^{N} \frac{P_i^2}{2m_i}$, $\sum_{i=1}^{N} -\frac{Ze^2}{r_i}$, $\sum_{i\prec j}^{N} \left[\frac{e^2}{r_{ij}}\right]$ et $\sum_i^{N} \xi(r_i) l_i s_i$ représentent respectivement les termes énergie cinétique, l'interaction électron-noyau, l'interaction électron-électron et l'interaction spin-orbite, $r_{ij} = |\vec{r_j} - \vec{r_i}|$ étant la distance qui sépare deux électrons i et j. La méthode habituelle pour obtenir la solution de l'équation de Schrödinger d'un système à plusieurs électrons dépend d'une séparation des variables. Ici, le terme $\frac{1}{r_{ij}}$ associé à la somme $\sum_{i\prec j}^{N} \frac{e^2}{r_{ij}}$ dans l'équation de Schrödinger empêche cette séparation, car elle est trop grande pour être traitée

comme une perturbation, il faut, par conséquent, utiliser des méthodes d'approximation plus fines.

3.2 Approximation du champ central

Dans le cadre de cette approximation, l'électron n'est plus soumis à un potentiel total,

$$V(r) = \sum_{i=1}^{N} -\frac{Ze^2}{r_i} + \sum_{i \prec j}^{N} [\frac{e^2}{r_{ij}}]$$
(3.2)

mais à un potentiel effectif à symétrie sphérique $U(r_i)$ créé par le noyau et les N-1 autres éléctrons, ce qui nous amène à écrire le Hamiltonien(3.1)sous la forme :

$$H = H_0 + W \tag{3.3}$$

où

$$H_0 = \sum_{i=1}^{N} \left[\frac{P_i^2}{2m_i} + U(r_i) \right]$$
(3.4)

 et

$$W = \sum_{i=1}^{N} \left[-U(r_i) - \frac{Ze^2}{r_i} \right] + \sum_{i \prec j}^{N} \frac{e^2}{r_{ij}} + \sum_{i}^{N} \xi(r_i) \overrightarrow{l_i} \overrightarrow{s_i} = H_1 + H_{so}$$
(3.5)

Si $U(r_i)$ est bien choisi, W sera petit devant H_0 et pourra être traité comme une perturbation de H_0 dans la théorie des perturbations stationnaires.

Le calcul à l'ordre zéro consiste à résoudre l'équation aux valeurs propres de H_0 par une méthode variationnelle (HF) (voir paragraphe 3.3 et Annexe A pour plus de détails), On peut écrire :

$$H_o = \sum_{i=1}^N h_i \tag{3.6}$$

et où h_i est l'hamiltonien individuel de l'électron i, la fonction d'onde ϕ_i est solution de l'équation aux valeurs propres

$$h_i \phi_i = \varepsilon_i \phi_i \tag{3.7}$$

est séparable en parties radiale et angulaire. Elles s'écrivent sous la forme :

$$\phi_i = \frac{1}{r} P_{n_i l_i}(r_i) Y_{l_i}^{m_i}(\theta_i, \varphi_i)$$
(3.8)

ou $\frac{1}{r}P_{n_i l_i}(r_i)$ est la partie radiale, et $Y_{l_i}^{m_i}(\theta_i, \varphi_i)$ une harmonique sphérique. On obtient alors les fonctions propres de H_o sous forme d'un déterminant de Slater, soit :

$$\psi_0 = A \prod_{i=1}^N u_i \tag{3.9}$$

Où A est un opérateur antisymétriseur et $u_i = \phi_i \chi_i$ une spin-orbitale pour l'électron i (χ_i est l'un des deux états d'un spin 1/2). Les valeurs propres de H_o sont sous la forme

$$E_{moy} = \sum_{i} \varepsilon_{n_i, li} \tag{3.10}$$

et ne dépendent que des nombres quantiques n_i et l_i caractérisant les différents électrons. L'ensemble n_i et l_i définit une configuration.

3.3 Méthode Hartree-Fock avec des corrections Relativistes HFR

La méthode de Hartree-Fock (HF) repose sur le principe variationnel, elle est considérée parmi les méthodes les plus adaptées pour la résolution de l'équation de Schrödinger d'un système à plusieurs électrons. La fonction d'onde totale ψ_0^{HF} peut être écrite comme un seul déterminant de Slater. L'avantage est de tenir compte des conditions d'antisymétrie.

$$\psi_{0}^{HF} = \frac{1}{\sqrt{N!}} \begin{bmatrix} u_{\alpha}(q_{1}) & u_{\beta}(q_{1}) & \dots & u_{\nu}(q_{1}) \\ u_{\alpha}(q_{2}) & u_{\beta}(q_{2}) & \dots & u_{\nu}(q_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ u_{\alpha}(q_{N}) & u_{\beta}(q_{N}) & \dots & u_{\nu}(q_{N}) \end{bmatrix}$$
(3.11)

Où $\frac{1}{\sqrt{N!}}$ un coefficient de normalisation, $u_i = \phi_i \chi_i$ les spin-orbitales.

Ici, les potentiels utilisés sont auto-consistants (moyennés). Les interactions électrostatiques ne sont donc pas prises en compte d'une manière appréciable. D'où la nécessité d'introduire des termes d'interaction de configurations (CI). Dans ce cas, les effets de corrélation sont mis en évidence.

Des corrections relativistes sont aussi introduites dans l'hamiltonien via la théorie des perturbations. Elles concernent particulièrement le terme d'énergie cinétique (variation de la masse avec la vitesse et l'interaction spin-orbite).

3.3.1 Notions de physique atomique

Soient \overrightarrow{L} et \overrightarrow{S} les moments orbital et de spin qui caractérisent une configuration atomique d'un atome à N électrons,

$$\overrightarrow{L} = \sum_{i=1}^{N} \overrightarrow{l_i}$$
(3.12)

 et

$$\overrightarrow{S} = \sum_{i=1}^{N} \overrightarrow{s_i} \tag{3.13}$$

On note que $\overrightarrow{l_i}$ et $\overrightarrow{s_i}$ sont respectivement les moments orbitaux et de spin des électrons individuels qui la constituent. Lorsque l'hypothèse de couplage LS est satisfaite, du couplage \overrightarrow{L} et \overrightarrow{S} résultera le moment cinétique total est défini par $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}$. Le nombre quantique Jassocié à ce moment cinétique total pourra prendre toutes les valeurs comprises entre |L-S|et L+S incrémentées d'unité. La valeur de J est indiquée pour une configuration déterminée, par un indice inférieur droit dans le symbole du terme spectral, par exemple ${}^{3}P_{2}$ pour le terme S = 1, L = 1 et J = 2. Un état électronique est caractérisé par une valeur déterminée de M (projection de J sur l'axe de quantification). Un niveau est un ensemble d'états quantiques dégénérés par rapport à M, c'est-à-dire les 2J + 1 états caractérisés par les mêmes valeurs de S, L et J.

Selon le principe de Pauli, deux électrons ne peuvent prendre les même nombres quantiques n, l, m_l et m_s .

Il est aussi important de définir l'opérateur parité P qui correspond à une inversion des coordonnées par rapport au centre de référence telle que : $P(\psi(\vec{r})) = (-\psi(\vec{r}))$, d'où :

$$P^{2}(\psi(\overrightarrow{r})) = (\psi(\overrightarrow{r})) \tag{3.14}$$

Et selon les propriétés des harmoniques sphériques :

$$P\psi = (-1)^{\sum l_i}\psi \tag{3.15}$$

Si $\sum l_i$ est paire, on dit que la configuration est paire, si non, elle est impaire.

3.4 Théorème de Wigner-Eckart

Ce théorème est de grand intérêt pour exprimer les éléments de matrice d'un opérateur tensoriel (sur une base d'états propres d'harmoniques sphériques) en terme de produit de deux termes : un coefficient de Clebsch-Gordan et un autre terme indépendant de l'orientation du
moment angulaire. Le calcul des éléments matriciels des opérateurs tensoriels entre deux états différents est souvent fastidieux. Dans une telle situation, le théorème de Wigner-Eckart permet de séparer les facteurs dépendant de l'axe de quantification (géométrie du système) des autres facteurs représentant le contenu physique conformément à :

$$\langle \gamma J M_J \mid T_q^{(k)} \mid \gamma' J' M'_J \rangle = (-1)^{J - M_s} \begin{pmatrix} J & K & J' \\ -M_J & q & -M'_J \end{pmatrix} \langle \gamma J \mid T_q^{(k)} \mid \gamma' J' \rangle$$
(3.16)

 γ Où γ' sont des ensembles de nombres quantiques pour définir totalement l'état initial et l'état final du système respectivement. Il peut aussi s'écrire :

$$\langle \gamma jm \mid T_q^{(k)} \mid \gamma' j'm' \rangle = \frac{1}{\sqrt{2j+1}} C_{m'qm}^{j'kj} \langle \gamma j \mid \mid T^{(k)} \mid \mid \gamma' j' \rangle = (-1)^{j-m} {j \atop -m \ q \ -m'} \langle \gamma j \mid \mid T_q^{(k)} \mid \mid \gamma' j' \rangle$$
(3.17)

 $C_{m'qm}^{j'kj}$ sont les coefficients de Clebsch Gordan.

On définit également **les symboles 3j de Wigner**, qui sont reliés aux coefficients de Clebsch-Gordan par la relation :

$$|j_1 j_2 j m\rangle = (-1)^{j_1 - j_2 - m} \sum_{m_1, m_2} \sqrt{2j + 1} \begin{pmatrix} j_1 & j_2 & j \\ m_1 & m_2 & -m \end{pmatrix} |j_1 j_2 m_1 m_2\rangle$$
(3.18)

 $m = m_1 + m_2, j = j_1 + j_2, j_1 + j_2 - 1, ..., |j_1 - j_2|$

$$\begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & -m \end{pmatrix} = \frac{-(1)^{j_1 - j_2 - m}}{\sqrt{2j + 1}} C^{j_1, j_2, j}_{m_1, m_2, -m}$$
(3.19)

On signale que ces symboles ont été tabulés pour deux moments j_1 et j_2 . On peut également écrire :

$$|j_1 j_2 m_1 m_2\rangle = \sum_{j,m} (-1)^{j_2 - j_1 - m} \sqrt{2j + 1} \begin{pmatrix} j_1 & j_2 & j \\ m_1 & m_2 & -m \end{pmatrix} |j_1 j_2 j m\rangle$$
(3.20)

3.5 Interaction électrostatique

Dans la théorie des spectres atomiques, la répulsion électrostatique

$$\sum_{i < j} \frac{e^2}{r_{ij}} \tag{3.21}$$

représente un terme très important dans l'Hamiltonien du système. Si le potentiel central effectif U(r) est correctement choisi, elle peut être traitée au moyen de la théorie des perturbations indépendante du temps. À cet effet, la dégénérescence est partiellement levée.

3.6 Interaction spin-orbite

Dans la représentation de Schrödinger, l'interaction spin-orbite est une correction faible par rapport à l'interaction électrostatique ci-dessus. Elle représente le second terme perturbateur dans l'hamiltonien total du système, dont les effets relativistes sont pris en compte. Un niveau d'énergie de l'atome ou de l'ion considéré est éclaté en plusieurs niveaux (*splitting*). Cela a pour effet de lever encore partiellement la dégénérescence d'une configuration. Notons que cette interaction ne déplace pas le centre de gravité d'un terme spectral ${}^{2s+1}L_J$.

$$H_{SO} = \sum_{i} \xi(r_i) \overrightarrow{l_i} \cdot \overrightarrow{s_i}$$
(3.22)

$$\xi(r_i) = \frac{1}{2m^2c^2} \frac{1}{r_i} \frac{dV(r_i)}{dr_i}$$
(3.23)

Dans l'espace des états associé à $|\gamma JM_J\rangle$ les opérateurs \overrightarrow{L} et \overrightarrow{S} sont considérés comme étant des opérateurs tensoriels, et l'expression générale des éléments de matrice associés au couplage spin-orbite est telle que :

$$\langle \gamma SLJM_J \mid \sum_{i} \xi(r_i) \overrightarrow{s_i} \overrightarrow{l_i} \mid \gamma' S'L'J'M'_J \rangle = (-1)^{S'+L+J} \delta(J,J') \delta(M_J,M'_J) \left\{ \begin{smallmatrix} S' & L' & J \\ L & S \end{smallmatrix} \right\}$$
$$\times \sum_{i,\gamma''} \langle \gamma S \mid \mid s_i \mid \mid \gamma''S' \rangle \langle \gamma''L \mid \mid \xi(r_i)l_i \mid \mid \gamma'L' \rangle$$
(3.24)

L'hamiltonien associé à cette interaction est appelée aussi Hamiltonien de structure fine.

3.7 Théorie de perturbation au premier ordre

Pour le terme électrostatique :

$$H_1 = \sum_{i=1}^{N} \left[-U(r_i) - \frac{Ze^2}{r_i}\right] + \sum_{i \succ j}^{N} \frac{e^2}{r_{ij}}$$
(3.25)

Il est possible de montrer que la première somme possède les mêmes valeurs propres pour tous les états d'une même configuration [10]. Donc, la première somme déplace les niveaux d'énergie de la même quantité. Par conséquent, c'est l'interaction coulombienne entre les électrons qui sépare les termes LS des configurations. Les éléments de matrice de l'interaction de Coulomb, pour une configuration à deux électrons non équivalents [17].

$$<\psi_b \mid \frac{2}{r_{ij}} \mid \psi_{b'}> = \delta_{LSJM,L'S'J'M} \sum_k f_k F^k(l_i; l_j) + g_k G^k(l_i; l_j)$$
(3.26)

Ou d'une part :

$$F^{k}(l_{i};l_{j}) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{\prec}^{k}}{r_{\succ}^{k+1}} |P_{l_{i}}(r_{1})|^{2} |P_{l_{i}}(r_{2})|^{2} dr_{1} dr_{2}$$
(3.27)

 et

$$f_k = (-1)^L [l_i, l_j] \begin{pmatrix} l_i & k & l_i \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_j & k & l_j \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l_i & l_j & L \\ l_j & l_i & k \end{cases}$$
(3.28)

Avec : $k = 0, 2 \min(2l_i, 2l_j)$. Et d'autre par :

$$G^{k}(l_{i}, l_{j}) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{\prec}^{k}}{r_{\succ}^{k+1}} P_{l_{i}}^{*}(r_{1}) P_{l_{j}}^{*}(r_{2}) P_{l_{j}}(r_{1}) P_{l_{i}}(r_{2}) dr_{1} dr_{2}$$
(3.29)

 et

$$g_k = (-1)^S [l_i, l_j] {l_i \ k \ l_i \ 0 \ 0 \ 0} {l_i \ l_j \ l_i \ k}$$
(3.30)

avec $k = |l_i - l_j|, |l_i - l_j| + 2, |l_i - l_j| + 4, ..., |l_i + l_j|.$

Pour le terme de spin-orbite :

$$\langle n_i l_i j_i m_i \mid \xi_{l_i}(l_i, s_i) \mid n_i l_i j_i m_i \rangle = d_i \zeta_{l_i} \tag{3.31}$$

Ou

$$\zeta_{l_i} = \int_{0}^{\infty} \xi(r_i) \mid P_{l_i}(r) \mid^2 dr$$
(3.32)

 $\xi(r_i)$ est défini dans (3.22), f_k, g_k et d_i sont des matrices dont les éléments sont des coefficients angulaires qui peuvent être calculés soit par la méthode classique de Slater, soit par l'algèbre de Racah. F^k, G^k et ζ_{l_i} sont des intégrales radiales d'interactions électrostatiques et de spin-orbite. La nature du couplage dans un système donné dépend essentiellement de l'importance relative des intégrales F^k, G^k et ζ_{l_i} selon les relations suivantes :

Si $F^k, G^k >> \zeta_1, \zeta_2$, le couplage LS est approprié,

Si $F^k, G^k \ll \zeta_1, \zeta_2$, c'est le couplage jj qui est approprié, sinon c'est le couplage intermédiaire qui approprie.

3.8 Interaction de configurations proches

La théorie des calculs de structure atomique est basée entre autre sur le développement de la fonction d'onde ψ^k d'un état k sur la base des fonctions ψ_i . La fonction d'onde ψ^k décrivant un état quantique donné k, est souvent exprimée par une combinaison linéaire de fonctions de base à savoir :

$$\psi^k = \sum_i a_i^k \psi_i \tag{3.33}$$

Le modèle multiconfigurationnel (*plusieurs configurations qui interagissent*) est caractérisé par une combinaison linéaire de plusieurs termes contenant des coefficients traduisant l'interaction de configurations. Il est possible de traiter explicitement les interactions de configurations en introduisant dans le calcul plusieurs configurations proches, de même parité. On élargit alors la base de calcul, et on augmente le nombre d'intégrales ; nous aurons par conséquent en plus des intégrales radiales précédentes, à calculer des intégrales de type :

$$R^{k}(l_{i}, l_{j}, l_{i'}, l_{j'}) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{>}^{k+1}} P_{i}^{*}(r_{1}) P_{j}^{*}(r_{2}) P_{i'}(r_{1}) P_{j'}(r_{2}) dr_{1} dr_{2}$$
(3.34)

 R^k est appelé l'intégrale radiale d'interaction de configurations. Le coefficient angulaire de cette intégrale radiale est noté r^k par analogie avec les coefficients angulaires f_k , g_k rencontrés dans les configurations individuelles.

3.9 Interactions avec les configurations lointaines

Dans l'étude paramétrique des spectres complexes des atomes ou des ions multi-chargés, on introduit des termes effectifs dans l'expression de l'hamiltonien de notre système considéré, pour prendre en considération les effets d'ordre supérieur.

Il est possible de tenir compte, en plus des interactions avec des configurations proches, des interactions avec des configurations lointaines, *i.e.*, les interactions électrostatiques $(2^{\grave{e}me} \text{ et } 3^{\grave{e}me} ordre)$ et les interactions magnétiques au $(1^{er} \text{ et } 2^{\grave{e}me} ordre)$ de la théorie des perturbations. Deux méthodes sont possibles :

La première consiste à élargir la base de calcul en introduisant plusieurs configurations électroniques dans les deux types de parités (simple excitation dans notre cas).

Dans la deuxième stratégie, on définit la base de configurations et on fait intervenir des nouveaux opérateurs effectifs ($\alpha, \beta, \gamma, ...$), ces opérateurs sont déterminés par Rajnak et Wybourne, [18] de façon précise dans le cas des configurations d'électrons équivalents $(nl)^N$.

Grâce à la méthode paramétrique de Racah-Slater implantée dans le code Cowan, nous avons pu tenir compte des interactions de configurations proches, et déterminé les paramètres d'interactions électrostatiques F^k et G^k et d'interaction spin-orbite ζ . Le calcul perturbatif au premier ordre dans l'approximation du champ central peut mener à des données expérimentales et théoriques assez comparables, même si les interactions réelles dues au couplage spin orbite (SO) et spin autre orbite (SOO) ne sont pas introduites dans l'hamiltonien du système. Les différences entre énergies expérimentales et théoriques pouvant atteindre des valeurs assez acceptables. Elles sont habituellement attribuées aux interactions de configurations. L'hamiltonien total de l'ion libre peut être construit comme suit :

$$H = E_{av} + \sum_{k} F^{k} f_{k} + \zeta_{f} A_{so} + \alpha L(L+1) + \beta G(G_{2}) + \gamma G(R_{7}) + \sum_{i} T^{i} t_{i} + \sum_{h} M^{h} m_{h}.$$
 (3.35)

 E_{av} représente le terme d'énergie moyenne, F^k les paramètres radiaux d'interactions électrostatiques, tandis que f_k désigne la partie angulaire qui peut être calculée par l'algèbre de Racah. Cette interaction résultant de la répulsion coulombienne entre deux électrons s'écrit sous la forme matricielle suivante :

$$\langle l^{n}\psi'L'S \mid f_{k} \mid l^{n}\psi LS \rangle = \frac{1}{2} \langle l \mid C^{(k)} \mid l \rangle^{2} [\frac{1}{2L+1} \sum_{\psi,L} \langle l^{n}\bar{\psi}\bar{L}S \mid U^{(k)} \mid l^{n}\psi'L'S \rangle$$
$$\times \langle l^{n}\bar{\psi}\bar{L}S \mid U^{(k)} \mid l^{n}\psi LS \rangle - \delta_{\psi\bar{\psi}} \frac{n(4l+2-n)}{(2l+1)(4l+1)}].$$
(3.36)

 $C^{(k)}$ est le tenseur irréductible défini par Racah [19], et $U^{(k)}$ est le tenseur irréductible tabulé par Nielson et Koster [20].

L'interaction de spin-orbite est prise en compte par le terme $\zeta_f A_{so}$. Cette interaction est absente si l = 0, l'hamiltonien total ne commute pas avec \overrightarrow{L} et \overrightarrow{S} mais avec le moment cinétique total \overrightarrow{J} . Autrement dit, cette interaction est diagonale en J, mais pas en L ou S. Son expression tensorielle s'écrit comme suit :

$$\langle f^n \psi' L'S' \mid A_{so} \mid f^n \psi LS \rangle = (-1)^{J-L+S'} \begin{pmatrix} L & L' & l \\ S' & S & J \end{pmatrix} \times \langle f^n \psi' L'S' \mid V^{(ll)} \mid f^n \psi LS \rangle.$$
(3.37)

Où $V^{(ll)}$ est le tenseur irréductible tabulé par Nielson et Koster. Les paramètres α , β , γ ainsi que leurs parties angulaires respectives L(L + 1), $G(G_2)$ et $G(R_7)$, représentent les termes d'interaction à deux corps dans les configurations possédant plus de deux électrons dans la couche périphérique de f^2 à f^{14} . Les valeurs propres des opérateurs de *Casimir* dans les groupes $G(R_7)$ et $G(G_2)$ peuvent être trouvés dans[21]. T^i et t_i est le terme d'interaction à trois corps tel que.

$$\langle f^{n}\psi \mid t_{i} \mid f^{n}\psi' \rangle = \frac{n}{n-3} \sum_{\bar{\psi},\psi'} (\psi\{\mid \bar{\psi})(\psi'\{\mid \bar{\psi}')(f^{n-1}\bar{\psi} \mid t_{i} \mid f^{n-1}\bar{\psi}').$$
(3.38)

Les termes M^h et m_h englobent en même temps les deux interactions spin-spin, et spinautre-orbite à savoir (H_{ss} et H_{soo}).

Notons que, l'on ne prend en considération que les électrons périphériques, les interactions de corrélations sont négligées.

L'introduction de ces interactions, dans certains cas simples, peut mener à celle de l'hamiltonien H_{so} c'est le cas des atomes ou ions à faible Z. Cependant, cette dernière sera prépondérante pour les autres cas.

Pour toutes les configurations f^n où $n \ge 2$, l'interaction H_{ss} peut être définie via l'opérateur T^{22} défini pour f^2 suivant l'équation suivante[6] :

$$\langle f^{n}\psi \mid T^{22} \mid f^{n}\psi' \rangle = \delta_{J,J'}(-1)^{S'+L+J} \sum_{\psi,\psi'} (\psi\{\mid\psi\}) \times \begin{pmatrix} S' & L' & J\\ L & S & l \end{pmatrix} (f^{n-1}\bar{\psi} \mid T^{22} \mid f^{n-1}\bar{\psi}').$$
(3.39)

L'interaction du spin d'un électron avec une autre orbite dans la base des configurations de la même parité traduit ce qu'on appelle l'interaction H_{soo} citée ci-dessus. L'expression analytique utilisée par X. Chen. et al [22] s'écrit de la façon suivante :

$$\langle f^{n}\psi \mid T^{11} + t^{11} - az_{13} \mid f^{n}\psi' \rangle = \delta_{J,J'}(-1)^{S'+L+J} \sum_{\bar{\psi},\bar{\psi}'} (\psi\{\mid\psi) \begin{pmatrix} S' & L' & J\\ L & S & l \end{pmatrix}$$
$$\times (f^{n-1}\bar{\psi} \mid T^{11} + t^{11} - az_{13} \mid f^{n-1}\bar{\psi}').$$
(3.40)

Notons que, dans cette équation, les interactions de corrélation spin-orbite sont prises en compte, et les opérateurs T^{11} , t^{11} , a et z_{13} sont définis dans [6] et [22] par Judd, Crosswhite et Crosswhite pour la configuration f^2 .

3.10 Chaine des programmes de Robert D. Cowan

Le code Cowan permet de résoudre l'équation de Schrödinger pour un atome à plusieurs électrons [Figure 3.1]. Les solutions propres sont utilisées pour évaluer les probabilités de transition radiatives dipolaires électriques, quadripolaires électriques et magnétiques.

Dans la version standard de Cowan, les programmes sont appelés RCN, RCN2, RCG, et RCE. Cette suite de quatre programmes calcule les structures et les spectres atomiques via la méthode de superposition de configurations :

1) Code RCN : Il calcule les fonctions d'onde radiales d'un électron pour chacune des configuration électroniques spécifiées, en utilisant la méthode Hartree-Fock, les intégrales radiales d'interactions électrostatiques (F^k et G^k) et de spin-orbite (Zeta). En d'autres termes, le code RCN calcule toutes intégrales nécessaires pour calculer les niveaux d'énergie.

2) Code RCN2 : c'est un programme d'interface qui utilise les résultats de la sortie de RCN pour calculer les intégrales de Coulomb (R^k) d'interaction de configurations. Le code RCN2 prépare un fichier de sortie appelé out2ing, qui après avoir été renommé ING11, sert d'entrée à RCG.

3) Code RCG : Il met en place les matrices d'énergie pour chaque valeur possible du moment angulaire J total. Il calcule les coefficients angulaires des différentes termes de l'hamiltonien, et diagonalise les matrices successivement pour chaque valeur de J de chaque parité. A la fin du processus de diagonalisation, on obtient les valeurs propres des niveaux d'énergie et les vecteurs propres. Ces derniers sont utilisés au calcul des probabilités de transition radiatives.

4) Code RCE : Lorsque les données expérimentales sont disponibles, le programme RCE per-

FIGURE 3.1 - La chaine des programmes de R. D. Cowan pour les calculs des structures et les spectres atomiques par la méthode de superposition-de-configuration.

met de modifier les différents paramètres de l'énergie Eav, et les paramètres radiaux F^k , G^K , Zeta, et R^K . Il minimise par moindres-carrés les écarts entre les énergies expérimentales et celles calculées à l'étape RCG par une procédure itérative. Les nouveaux paramètres obtenus peuvent ensuite être utilisés pour exécuter le code RCG pour améliorer les fonctions d'onde.

3.11 Méthode paramétrique

Cette méthode consiste en un calcul semi-empirique utilisé d'abord par Racah[23] dans les configurations à deux électrons de Th^{+2} (Th III). Ici, les intégrales radiales de Slater calculées précédemment sont considérées comme étant des paramètres ajustables.

Les valeurs initiales (HFR) sont corrigées avec des facteurs d'échelle estimés à partir des résultats expérimentaux des ions étudiés auparavant. Et l'énergie totale du système s'écrit comme une somme de l'énergie moyenne et les autres paramètres relatifs aux interactions électrostatiques et celle dépendant du spin.

Initialement, on choisit un ensemble de paramètres $K_a^{(0)}$ (séquence isoélectronique, ou isoionique). La diagonalisation de la matrice H conduit à des fonctions propres et à des vecteurs propres en fonction de $K_a^{(0)}$. Si l'on dispose de niveaux expérimentaux E_{exp} , on pourra donc comparer E_a et E_{exp} et chercher les valeurs K_a des paramètres qui rendent minimum l'écart quadratique moyen :

$$\overline{\Delta E} = \left[\frac{\sum_{i=1}^{N} (E_{exp}^{i} - E_{th}^{i})^{2}}{N_{niv} - N_{param}}\right]^{1/2}$$
(3.41)

ou N est le nombre de niveaux expérimentaux, et N_{param} le nombre de paramètres. Avec ces nouvelles valeurs $K_a^{(1)}$ des K_a , on recommence le cycle de diagonalisation par moindres carrés jusqu'à la convergence, c'est-à-dire, jusqu'à ce que tous les paramètres $K_a^{(N)}$ et $K_a^{(N+1)}$ se confondent. Afin de s'assurer de la signification physique des calculs paramétriques, il est nécessaire de vérifier que les paramètres sont d'un ordre de grandeur comparable avec les valeurs théoriques.

3.12 Énergie moyenne d'une configuration

Dans l'espace des états associé à une configuration électronique d'un atome ou d'un ion à Z électrons, le calcul des fonctions d'onde propres et les énergies propres repose essentiellement sur la diagonalisation de l'Hamiltonien total du système.

On peut obtenir de bonnes approximations des énergies et des fonctions d'onde propres avec un Hamiltonien comportant uniquement l'énergie cinétique et potentielle, même si cela ne permet pas de lever complètement la dégénérescence. L'énergie moyenne introduite par Slater [24] est définie par :

$$E_{av} = \sum_{a} \frac{\langle a \mid H \mid a \rangle}{A} \tag{3.42}$$

Où A représente le nombre de fonctions de base.

Il est aussi possible de calculer l'énergie moyenne avec les deux manières suivantes :

- Dans le cas d'une configuration à deux électrons équivalents [10]

$$E_{av} = F^{0}(l,l) - \frac{2l+1}{4l+1} \sum_{k>0} \left(\begin{array}{cc} l & k & l \\ 0 & 0 & 0 \end{array} \right)^{2} F^{k}(l,l)$$
(3.43)

- Et dans le cas d'une configuration à deux électrons non-équivalents :

$$E_{av} = F^{0}(l_{1}, l_{2}) - \frac{l}{2} \sum_{k} \left(\begin{array}{cc} l_{1} & k & l_{2} \\ 0 & 0 & 0 \end{array} \right)^{2} G^{k}(l_{1}, l_{1})$$
(3.44)

3.13 Probabilités de transition

Un niveau excité a toujours tendance à se désexciter vers plusieurs niveaux inférieurs par émission spontanée tout en respectant les règles de sélection ($\Delta J = 0, \pm 1, 0 - 0$ est intérdite). Cette désexcitation radiative est caractérisée par une probabilité de transition par unité de temps exprimée en s^{-1} . Ces probabilités de transition dépendent du type de transitions, à savoir, les transitions dipolaires et quadrupolaires électriques (E1, E2) et les transitions dipolaires et quadrupolaires magnétiques (M1, M2). Les transitions radiatives les plus probables dans les spectres d'ions lanthanides faiblement chargés sont de type dipolaires électriques. Il est montré que la probabilité d'une transition de nombre d'onde σ partant d'un niveau $|\gamma SLJ\rangle$ de poids statistique g = 2J + 1 vaut :

$$gA = (\frac{64\pi^4 e^2 a_0}{3h})S\sigma^3 \tag{3.45}$$

Où A est le coéfficent d'einstein d'émission spontannée, et S la force de raie d'une transition entre deux niveaux ψ et ψ' définie par $S^{1/2} = \langle \psi \mid \mid \sum_i r_i \mid \mid \psi' \rangle$. Les intensités des raies sont proportionnelles à gA et à un facteur de population des niveaux qui dépendent de nombreux processus élémentaires. D'autres grandeurs sont également importantes, comme *la force d'oscillateur f* pour la mesure et la détermination des abondances des éléments dans les étoiles.

$$f = (mc/8\pi^2 e^2 \sigma^2)A$$
(3.46)

3.14 Calcul de facteur de Landé

En 1921, Alfred Landé a introduit le facteur qui porte son nom noté g_L . C'est une grandeur physique sans dimension qui relie le moment magnétique au moment cinétique d'un état quantique donné. Sous l'effet d'un champ magnétique B, un niveau d'énergie s'éclate en plusieurs sous-niveaux (effet Zeeman). La structure Zeeman d'un niveau donc conduit au même écart entre les 2J + 1 sous-niveaux M_J . Ces écarts entre deux sous-niveaux consécutifs est $g_L \mu_B B$ ou μ_B est le magnéton de Bohr et B le champ magnétique.

$$g_L = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
(3.47)

Dans le cas où le champ magnétique est appliqué à un isotope avec structure hyperfine, le nombre quantique F $(\overrightarrow{F} = \overrightarrow{I} + \overrightarrow{J})$ se substitue à J et les hamiltoniens de l'effet Zeeman et de la structure hyperfine doivent être calculés simultanément.

En astrophysique, ils ont déjà servi à déterminer le champ magnétique de certaines étoiles.

3.15 Durées de vie radiatives

La variation de la population d'un niveau d'énergie k à un instant t donné est décrite par une équation différentielle qui inclut tous les effets de peuplement et de dépeuplement radiatifs et collisionnels. Si l'on néglige les collisions, cette équation peut être simplifiée [17], et prend la forme :

$$\frac{dN_k(t)}{dt} = -\sum A_{ki}N_k(t) \tag{3.48}$$

Si l'on note la population initiale du niveau k par $N_k(0)$, la solution de l'équation différentielle simplifiée est :

$$N_k(t) = N_k(0)e^{-\sum A_{ki}t} = N_k(0)e^{-t/\tau_k}$$
(3.49)

La durée de vie radiative du niveau k (exprimée souvent en ns) est définie par :

$$\tau_k = \frac{1}{\sum_i A_{ki}} \tag{3.50}$$

$$A_{ki} = \sum_{M_i} a_{ki} \tag{3.51}$$

Où a_{ki} représente la probabilité, par unité de temps, qu'un atome dans l'état k se désexcite vers le niveau i, caractérisé par M_i .

On peut déterminer les probabilités de transition à partir des mesures des durées de vie en connaissant les rapports de branchement R_{ki} reliés directement aux intensités I_{ki} et I_{km} des raies spectrales, tel que $R_{ki} = A_{ki} / \sum_m A_{km} = I_{ki} / \sum_m I_{km}$.

3.16 Influence du champ cristallin

Notre interprétation des niveaux d'énergie se rapporte à des ions pris dans un vide très poussé. Il y a des situations où, ces ions sont disposés dans une matrice cristalline qui engendre un champ cristallin sous l'effet des interactions avec les ions aux quels on s'intéresse. Cet environnement qui n'est pas isotrope et qui diffère de celui du vide, apporte des modifications sur la structure des niveaux. Or, sous l'effet du potentiel coulombien, les niveaux de la configuration f^n sont dégénérés. Mais l'interaction entre les électrons et celle de spin-orbite lèvent partiellement la dégénérescence des multiplets ${}^{2s+1}L_J$; où chaque multiplet est (2J + 1) fois dégénéré. Ici, le champ cristallin intervient pour lever la dégénérescence des multiplets. Les transitions optiques peuvent avoir lieu dans niveaux d'énergie de la même parité.

3.17 Méthodes ab-initio de type MCDHF

L'interprétation des spectres VUV des ions Lanthanides faiblement ionisés par la méthode paramétrique de Slater-Racah implémentée dans les codes Cowan conduit souvent à de bons accords entre l'expérience et la théorie. Ce qui donne lieu à des fonctions d'onde et probabilités de transition fiables en couplage intermédiaire.

Dans le but de comparer les résultats de ce calcul semi-empirique avec ceux des calculs ab-initio, la méthode Multiconfiguration Dirac-Hartree-Fock (MCDHF) décrite en détail par Grant[25] a été adoptée pour calculer les niveaux d'énergie de la configuration fondamentale à couche ouverte $4f^{11}$ de l'ion libre Er^{+3} [26] via le programme GRASP2K (*General-Purpose Relativistic* Atomic Structure Program) dans sa version améliorée[16]. Les effets de l'électrodynamique quantique (QED) et de l'interaction transversale de Breit sont inclus comme des termes perturbatifs dans les calculs d'interaction de configurations relativistes.

La fonction d'onde d'un état atomique particulier $\Psi(K\gamma JM_J)$ est obtenue par une combinaison linéaire des configurations atomiques (CSF_s) .

$$\Psi(K\gamma JM_J) = \sum_{K'\gamma'}^{N_{CSF_s}} C_{K'\gamma'} \Phi(K'\gamma' JM_J)$$
(3.52)

 $C_{K'\gamma'}$ sont les coefficients mixtes d'une configuration (coefficients de dilatation), où, J et M_J sont respectivement, le moment cinétique total et ses projections dans l'espace des états. γ et γ' représentent respectivement l'état de la configuration de base K et celui de la configuration K'. La méthode MCDHF est adoptée pour obtenir les orbitales radiales. Les coefficients mixtes sont obtenus par diagonalisation de l'Hamiltonien de Dirac-Coulomb :

$$H_{DC} = \sum_{i=1}^{N} (c\alpha_i p_i + (\beta_i - 1)c^2 + V_i^N) + \sum_{i>j}^{N} \frac{1}{r_{ij}}$$
(3.53)

où, $c\alpha_i p_i + (\beta_i - 1)c^2 + V_i^N$ représente le terme d'énergie cinétique d'un seul électron, α et β les matrices 4×4 de Dirac, p l'impulsion, c la célérité de la lumière dans le vide, V_i^N représente l'interaction avec le noyau, et finalement $\frac{1}{r_{ij}}$ dénote le terme d'interaction Coulombienne entre les électrons i et j.

Au premier ordre de la théorie des perturbations, et comme indiqué ci-dessus, l'équation relativiste de Breit basée sur l'équation de Dirac, décrit d'une manière formelle l'interaction électromagnétique entre deux électrons.

$$H_{Breit} = -\sum_{i(3.54)$$

3.18 Conclusion

Maintenant qu'on a présenté l'outil théorique basé sur l'approche paramétrique de Slater-Racah pour décrire un système atomique, la chaine des programmes de R. D. Cowan utilisés pour déterminer les zones spectrales où se produisent les différentes transitions, et la prédiction des niveaux d'énergie et les probabilités de transition, nous allons dans le prochain chapitre décrire les deux démarches expérimentale et théorique servant à l'analyse de ces spectres, en commençant par la détermination des niveaux d'énergies à l'aide du programme RECHER ou IDEN, leur optimisation à l'aide du programme LOPT ou ELCALC. Les niveaux d'énergie confirmés seront introduits dans le code Cowan à l'étape RCE (minimisation par moindres carrés) pour calibrer le spectre théorique et améliorer les calculs, afin d'obtenir une meilleure déviation sur les niveaux d'énergie et de meilleures fonctions d'onde.

Chapitre 4

Analyse des spectres d'émission dans l'ultraviolet du vide

4.1 Introduction

Après avoir présenté dans le chapitre 2 le dispositif expérimental et les différentes techniques spectroscopiques qui nous ont mené à l'établissement d'une liste finale de longueurs d'onde, nécessaire pour entamer la recherche des nouveaux niveaux d'énergie, nous avons présenté dans le chapitre 3 l'approximation du champ central, et les différentes interactions prises en compte dans l'hamiltonien du système pour décrire un atome ou un ion poly-électronique via la méthode de Racah-Slater implémentée dans le code Cowan. Dans ce chapitre, nous allons présenter les deux démarches parallèles expérimentale et théorique adoptées dans notre travail. Nous commençons par présenter les deux codes (RECHER et IDEN) utilisés pour la recherche des nouveaux niveaux d'énergie et le programme LOPT que nous avons utilisé pour l'optimisation des niveaux confirmés.

Ensuite, nous allons présenter l'approche paramétrique adoptée pour décrire notre système par un premier calcul HFR, la manière de corriger les paramètres, et enfin, utiliser les nouveaux niveaux d'énergie à l'étape RCE pour améliorer les calculs.

4.2 Étude en émission

L'atome ou l'ion émetteur est porté dans un état d'énergie supérieur par excitation collisionnelle avec les électrons dans la décharge, et se déséxcite par émission spontanée d'un photon. Le nombre d'onde σ traduit l'écart énergétique entre deux niveaux selon le principe de combinaison de Ritz.

$$h\frac{c}{\lambda_i} = hc\sigma_i = E_i^{sup} - E_i^{inf}$$
(4.1)

FIGURE 4.1 – Désexcitation spontanée radiative dans un système à deux niveaux : émission spontanée.

La constante de Planck h lie l'énergie E du photon à sa longueur d'onde λ ou (sa fréquence) [Figure 4.1].

Un atome se trouvant dans son état excité cherche naturellement à revenir spontanément vers le niveau de plus basse énergie (niveau fondamental *i* caractérisé par M_i) en émettant un ou plusieurs photons. La probabilité de transition gA_{ij} est définie comme la probabilité totale, par unité de temps, qu'un atome dans un état *j* effectue une transition vers n'importe lequel des g_i états inférieurs caractérisé par M_i .

4.3 Programmes RECHER et IDEN pour la recherche des nouveaux niveaux d'énergie

4.3.1 Programme RECHER

L'objectif de son utilisation est la détermination des niveaux d'énergie pour l'ensemble des différentes configurations qui constituent la base des calculs après avoir :

* Utilisé le logiciel SPECTRA, conçu par Christophe Blaess de l'Observatoire de Paris-Meudon, pour mesurer les abscisses des raies spectrales et leurs intensités attribuées.

Les longueurs d'onde sont mesurées avec une précision de ± 0.005 Å. Elle est obtenue en utilisant un polynôme de second degré à laide de programme TECH.

Dans le but de rechercher les niveaux d'énergie des configurations dans une parité, le programme RECHER utilise :

* La liste des longueurs d'onde mesurées et leurs intensités attribuées obtenues soit par SPEC-TRA, soit par Gfit.10;

* La liste des niveaux d'énergie déjà connus d'une ou plusieurs configurations de la parité opposée et leurs nombre quantiques J correspondants;

Le principe de combinaison de Ritz stipule que chaque nombre d'onde σ_i connecte deux niveaux d'énergie $\sigma_i = \frac{E_i^{sup} - E_i^{inf}}{hc}$. La tolérance sur un niveau ne doit pas dépasser $1cm^{-1}$.

FIGURE 4.2 – Schéma explicatif du principe de combinaison de Ritz pour la recherche des nouveaux niveaux d'énergie. Les niveaux en rouge appartiennent à une parité, tandis que les niveaux en bleu appartiennent à la parité opposée.

La recherche d'un niveau d'énergie connecté à au moins deux autres niveaux par deux voies différentes nécessite de définir une gamme d'énergie dans laquelle s'applique le principe de combinaison de Ritz [Figure 4.2]. La gamme d'énergie est prédite par des calculs théoriques (Cowan), et à cause des raies mal résolues (mélangées (blend), asymétriques (As)) indiquées dans la liste (au cours du pointage), certains nombres d'onde seront erronés et peuvent s'écarter de leurs valeurs souhaitées. Ce qui engendre des coïncidences fortuites qui par conséquent entravent l'identification d'un niveau parmi les nombreuses propositions du programme RECHER. Et afin d'identifier chaque niveau, il est indispensable de comparer les intensités mesurées aux probabilités de transitions gA calculées à l'aide du programme RCG.

Selon la loi statistique de Maxwell-Boltzmann $N_i = \frac{N}{Z(T)}g_i \exp^{-\beta E_i}$ ($\beta = \frac{1}{k_B T}$, N_i est le nombre de particules *i* dans le niveau d'énergie E_i , N est le nombre de particules n'interagissant pas entre elles, g_i est la dégénérescence de l'état d'énergie E_i , Z est la fonction de partition du système, K_B la constante de Boltzmann et T la température du système).

Les plus bas niveaux d'énergie sont les plus peuplés, et classent les raies les plus fortes, et étape par étape, on remonte à la détermination des niveaux plus élevés en énergie et moins peuplés, qui peuvent être observés dans un rapport limité de raies intenses.

4.3.2 Programme IDEN

Vu le nombre très important de raies qui peuvent être mesurées dans la première étape de l'analyse des spectres d'atomes ou d'ions complexes, l'identification des raies spectrales et leurs intensités correspondantes est un travail fastidieux. Par conséquent, plusieurs difficultés peuvent être rencontrées et entravent la recherche des nouveaux niveaux d'énergie.

Pour notre travail qui porte sur l'analyse des spectres d'émission des ions lourds Er^{+3} et

 Eu^{+3} , nous avons utilisé le programme IDEN [27, 28] construit et développé spécialement pour l'analyse des spectres complexes des atomes et des ions fortement chargés, notamment pour l'identification des raies, et la recherche de nouveaux niveaux d'énergie.

A l'aide du programme IDEN, nous pouvons au cours de l'analyse voir, manipuler un grand nombre de données spectroscopiques, expérimentales et théoriques, identifier les raies spectrales de l'ion considéré, et de déterminer de nouveaux niveaux d'énergie avec la meilleure précision possible. Ce programme nous permet aussi de gagner énormément en temps d'analyse.

4.3.3 Utilisation du programme IDEN

Nous avons indiqué dans le premier paragraphe que IDEN utilise en même temps des fichiers de données expérimentales et théoriques. Et pour commencer l'analyse, ces fichiers d'entrée contiennent :

1) la liste "*DLV.dat*" contenant les longueurs d'onde des raies expérimentales mesurées et les intensités "visuelles" correspondantes;

2) la liste "*ENLEV.dat*" contenant les niveaux d'énergie calculés par ordre croissant, où les nombres quantiques ainsi que l'état électronique sont indiqués

3) la liste "*TRANS.dat*" contenant les nombres d'onde calculés et les probabilités de transition de chaque niveau d'énergie de l'état électronique excité vers tous les niveaux d'énergie de l'état fondamental.

Aussi, il faut définir les incertitudes sur les longueurs d'onde expérimentales et les énergies théoriques des niveaux. Pour ces dernières, l'erreur peut être estimée en comparant l'ensemble des données théoriques avec les résultats expérimentaux existants.

Sur l'interface du programme IDEN [Figure 4.3], certaines caractéristiques relatives au niveau recherché peuvent être affichées respectivement sur le coté gauche de la fenêtre, en haut et en bas; à savoir, son identité représentée par le moment cinétique total J et le numéro d'ordre dans la liste ENLEV.dat. En haut de la fenêtre à droite, on peut lire, sur la première ligne, le numéro de toutes les transitions possibles à partir de ce niveau vers des niveaux inférieurs. Sur la deuxième ligne, le numéro du niveau d'énergie inférieur concerné par la transition. Sur la troisième ligne on trouve la probabilité de transition correspondante. Chaque colonne représente l'image du spectrogramme sur une échelle en nombre d'onde ayant pour origine un niveau inférieur d'énergie fixée.

Une raie non-classée représentée sur l'écran de l'ordinateur par une boite de couleur verte de hauteur donnée par l'incertitude expérimentale.

L'objectif de l'analyse effectuée à l'aide du programme IDEN, est la recherche des nouveaux niveaux d'énergie : (alternativement supérieurs et inférieurs, et l'optimisation de leurs valeurs). La première étape est de fixer tous les niveaux de la configuration connue, ensuite et dans la liste "*ENLEV.dat*", on clique sur la valeur théorique du niveaux recherché, et via le principe de combinaison de Ritz, le programme donnera systématiquement toutes les transitions possibles

FIGURE 4.3 – IDEN1, Programme de recherche et d'optimisation des niveaux d'énergie.

FIGURE 4.4 – La recherche du niveau supérieur à partir de l'image du spectrogramme.

du niveau inconnu vers les niveaux de la configuration connue fixés préalablement en déplaçant les images du spectrogramme. Ainsi, toutes les raies issues du même niveau inconnu seront positionnées sur une même ligne représentée par un curseur donnant la valeur expérimentale du niveau d'énergie recherché [Figure 4.4].

Les probabilités de transition jouent un rôle important dans la prédiction et l'identification des raies, elles sont directement comparées aux intensités visuelles. La vraie valeur du niveau d'énergie observé sera fixée par l'utilisateur, en cliquant sur une case prévue à cet effet, et la différence entre cette valeur et la valeur théorique est affichée sur l'écran. On répète ainsi les mêmes étapes pour la détermination de l'ensemble des niveaux d'énergie susceptibles d'exister dans l'analyse.

Pour une nouvelle recherche d'un autre niveau d'énergie, les raies déjà attribuées à l'atome ou l'ion considéré seront peintes en couleur rose.

L'optimisation de la valeur de l'énergie expérimentale est obtenue en faisant passer le curseur par un nombre maximum de raies. Lorsqu'une raie expérimentale est attribuée à une transition donnée, elle est colorée en rouge pour la distinguer des autres raies non identifiées.

4.3.4 Optimisation des niveaux d'énergie

Dans la démarche expérimentale qu'on a exposé précédemment, les niveaux d'énergie sont déterminés à l'aide du programme IDEN et RECHER s'articulant sur le principe de combinaison de Ritz et les meilleures prédictions des niveaux théoriques et probabilités de transition.

Un niveau d'énergie d'une parité est connecté à plusieurs d'autres niveaux de l'autre parité avec des longueurs d'onde et probabilités de transition différentes. Pour effectuer donc le choix d'un niveau parmi plusieurs propositions (*coincidences fortuites*), il a fallu comparer les probabilités de transition théoriques aux intensités expérimentales mesurées. Par conséquent, les valeurs des énergies de ces niveaux ne sont pas tout à fait exactes et ne mènent pas parfois à une meilleure déviation moyenne entre les énergies expérimentales et théoriques, ainsi que les fonctions d'onde. D'où la nécessité de leur faire une optimisation.

Le problème de l'optimisation d'un niveau d'énergie consiste à trouver un ensemble de valeurs pour un tel niveau qui correspond le mieux possible à l'ensemble de nombres d'onde observés des transitions entre ces niveaux.

Depuis 1970, la communauté scientifique utilisaient des méthodes et techniques s'articulant sur des outils mathématiques bien adaptés pour l'optimisation des niveaux d'énergie. Néanmoins, certaines de ces dernières n'ont pas une large utilisation à cause des erreurs de programmation ou dans les expressions généralement relatives aux incertitudes sur les transitions entre les niveaux des parités opposées [29, 30, 31].

Malgré sa large utilisation dans la spectroscopie atomique, le programme ELCALC, basé sur

des méthodes itératives, exige une division de tous les niveaux d'énergie en deux ensembles de différentes parités et permet seulement l'inclusion des transitions permises entre les niveaux de ces parités, notons ainsi que, le programme ELCALC est incapable de calculer les incertitudes sur les nombres d'onde des transitions de Ritz entre les niveaux d'énergie optimisés. Malgré les limitations qu'on vient de citer, ce code a été un support pour l'optimisation des niveaux d'énergie des ions ErII et NdIV, et ceci n'a pas entravé la progression des recherches relatives aux développements des programmes d'optimisation pouvant aboutir à des résultats encore plus intéressants.

Kramida et al.[32] étaient conscients de la nécessité d'améliorer la première version du programme LOPT (*level optimisation*) créé en 1995 au National Institute of standards and technology (NIST). Le programme LOPT dans sa dernière version 2011 [33] est écrit dans le langage *Perl*, qui peut être installé sur n'importe quel ordinateur, et est librement disponible pour tout système d'exploitation.

L'optimisation d'un niveau d'énergie revient à minimiser la fonction F définit comme :

$$F = \sum_{i,j} (\Delta E_{i,j} - s_{i,j})^2 w_{i,j}$$
(4.2)

où $s_{i,j}$ est le nombre d'onde mesuré entre les niveaux inconnus E_i et E_j ($s_{i,j}$ est positif si $E_i < E_j$).

 $w_{i,j} = d_{i,j}^{-2}$ est égal au carré réciproque de la mesure d'incertitude (dispersion).

Si E_i représente le niveau inférieur, E_j le niveau excité et $E_0 = 0$ le premier niveau de la configuration fondamentale, la différence énergétique traduisant les transitions observées entre E_i et E_j conduit à un ensemble de N équations linéaires :

$$E_j W_{i,j} = S_i \tag{4.3}$$

(i, j = 1...N)

où N est le nombre de niveaux excités, et $W_{i,j}$ est une matrice de coefficients,

$$W_{i,j} = \delta_{ij} \sum_{k} w_{kj} - w_{ij} \tag{4.4}$$

(i, j = 1...N; k = 0...N), où δ_{ij} est la fonction kronecker delta, et S_i sont les combinaisons linéaires de $s_{i,j}$ et $w_{i,j}$:

$$S_i = \sum_j w_{ij} s_{ij} (i = 1...N; j = 0...N).$$
(4.5)

Parmi les poids w_{ij} , les seuls qui correspondent aux transitions observées $E_i \to E_j$ sont positifs, tous les autres sont nuls, cela implique que $w_{ii} = 0$. Notant que les termes dans l'équation (4.3) ont des signes différents en fonction de l'ordre des niveaux d'énergie correspondant aux transitions $E_i \to E_j$. Ces termes sont positifs si $E_i < E_j$ et négatifs autrement. En fait, l'ordre du niveau exact n'a pas besoin d'être connu à l'avance. Cependant, une hypothèse à propos

FIGURE 4.5 – Les intégrales radiales de Slater et leurs rapports P_{exp}/P_{HFR} présentant une évolution assez régulière dans les spectres de lanthanides trois fois chargés.

des commandes du niveau doit être systématiquement suivie dans toutes les identifications de transition. Si après la procédure d'optimisation du niveau, le signe de certains des intervalles d'énergie résultant ΔE_{ij} se révèle être différent de celui initialement supposé, c'est à dire que la commande initiale était incorrecte; il n'a aucun effet sur la solution.

Le travail fastidieux qui reste à faire est comment calculer la matrice W_{ij} ?

En plus de l'approche utilisée par Radziemski et al. [29], une méthode numérique plus rapide et plus stable a été décrite par [34].

Ajoutant à son rôle important dans l'optimisation des niveaux d'énergie, le code LOPT permet aussi de calculer les incertitudes sur les nombres d'onde de Ritz. Dans le cas où les nombres d'onde s_{ij} ne sont pas corrélés, alors les dispersions des différences d'énergie $E_i - E_j$ peuvent être déterminées comme une simple combinaison des éléments de matrice W^{-1} .

4.4 Interprétation des spectres

4.4.1 Approche paramétrique

En théorie, les niveaux d'énergie des atomes ou des ions multi-chargés, peuvent être calculés en utilisant l'équation de Schrödinger indépendante du temps. Les termes de l'Hamiltonien sont introduits du plus grand au plus petit pour pouvoir traiter chacun comme une perturbation. Dans la méthode paramétrique, les intégrales radiales de *Slater* sont considérées comme des paramètres ajustables. L'énergie totale du système s'écrit de la manière suivante :

FIGURE 4.6 – Écarts entre premiers niveaux des configurations $4f^{N-1}5d$, $4f^{N-1}6s$, $4f^{N-1}6p$: (A) $E_{inf}(6p) - E_{inf}(5d)$ et (B) $E_{inf}(6p) - E_{inf}(6s)$, dans les spectres IV de lanthanides, (thèse A.Meftah).

$$E = E_{av} + \sum_{j>i=1}^{N} \sum_{k} (f_k F^k(i,j) + g_k G^k(i,j)) + \sum_{i=1}^{N} d_i \zeta_i + \sum_{k} \theta_k P^k$$
(4.6)

où, les coefficients angulaires f_k, g_k et d_i peuvent être calculés exactement par l'algèbre de Racah [19, 35], et sont disponibles dans la littérature.

Initialement, les intégrales radiales HFR F^k , G^k et ζ_i sont corrigées avec des facteurs d'échelle SF estimés à partir des éléments de la séquence isoélectronique (même nombre d'électrons dans une sous-couche), ou isoionique (même degré d'ionisation) [figure 4.5]. $\theta_k P^k$ sont respectivement la partie angulaire et radiale tenant compte des interactions de configurations lointaines à un ordre supérieur de la théorie des perturbations stationnaires, et sont de détermination expérimentale.

Notre interprétation théorique des ions Er^{+3} et Eu^{+3} à l'aide de la chaine des programmes de R.D Cowan a été effectuée en introduisant quatre configurations de base avec simple excitation, $(4f^{11}, 4f^{10}6p)$ de la parité impaire, $(4f^{10}5d, 4f^{10}6s)$ de la parité paire dans le cas de Er^{+3} et $(4f^6, 4f^56p)$ de la parité paire, $(4f^55d, 4f^56s)$ de la parité impaire dans le cas de Eu^{+3} .

Afin de tenir compte des interactions de configurations, il convient d'élargir la base de calcul (introduire plusieurs configurations dans de code) avec simple excitation dans notre cas et augmenter le nombre de paramètres.

La question essentielle est, **comment situer l'énergie moyenne d'une configuration ?.** Pour cela, on se propose quelques méthodes :

- On calcule l'écart énergétique, puis observer l'évolution de $(E_{av}^{HFR} - E_{av}^{Ajust})$ pour chacune des configurations de base f^N , $f^{N-1}p$, $f^{N-1}d$ et $f^{N-1}s$ appartenant aux éléments de la séquence (dans notre cas on parle des spectres IV), ou bien on calcule les écarts entre les premiers niveaux des différentes configurations à savoir $E_{inf}(6p) - E_{inf}(5d)$, $E_{inf}(6p) - E_{inf}(6s)$ qui présente une évolution régulière en Z (figure 4.6) permettant après avoir effectué un calcul HFR, de situer les énergies moyennes (ajustées) des configurations de notre élément par rapport à celles issues du calcul HFR.

Au milieu de la séquence f^N des spectres IV, l'évolution des différences énergétiques $f^N - f^{N-1}d$ est liée à l'évolution de la différence entre terme fondamental et centre de gravité de $4f^N$ dans la zone $4f^6 - 4f^7 - 4f^8$.

- Une autre méthode consiste après avoir corriger les paramètres HFR avec un SF, à jouer sur les énergies moyennes des configurations de notre base dans le but de situer la valeur énergétique du premier niveau de chacune des configurations introduites dans le code à des considérations semi-empiriques sur les propriétés thermodynamiques des lanthanides proposées par Brewer[36], ce qui permet à l'aide du programme RCG d'améliorer le calcul des niveaux d'énergie et des probabilités de transition.

Le calcul paramétrique commence par introduire un par un dans le fichier RCEinp les nouveaux niveaux d'énergie confirmés, tout en choisissant judicieusement un jeu de paramètres initial P_k^0 capable de minimiser les écarts énergétiques entre les énergies expérimentales et théoriques avec un processus itératif par mondres-carés

$$\Delta E = \left[\sum_{i=1}^{N} (E_{exp}^{i} - E_{th}^{i})^{2} / (N_{niv} - N_{param})\right]^{1/2}$$
(4.7)

. Certains de ces paramètres sont laissés évolués dans le même rapport, d'autres peuvent aussi être relâchés, tandis que le reste est sont contraints de rester fixes à leurs valeurs HFR quand le nombre de niveaux N le permet.

Les paramètres d'interaction avec les configurations lointaines $(\alpha, \beta, \text{ et } \gamma)$ sont d'une détermination expérimentale, généralement sont fixés dans un rapport constant dans le fit. La diagonalisation de la matrice de l'Hamiltonien total conduit à des fonctions propres ψ_k et des valeurs propres E_{th} comparables aux valeurs expérimentales E_{exp} , À la fin du processus, les nouveaux paramètres P_k^x doivent rendre minimal, l'écart quadratique moyen équation (4.7). Cette équation impose mathématiquement que le nombre de niveaux doit être supérieur au nombre de paramètres, notant que la fiabilité des calculs augmente avec le nombre de niveaux expérimentaux introduits à l'étape RCE.

Afin de s'assurer de la signification physique des calculs paramétriques on procède comme suit :

- Dans les spectres de lanthanides relativement simples, la déviation moyenne doit se situer aux alentours 50 cm^{-1} à proximité du début et à la fin de la séquence $4f^N$ [37]

- Les nouveaux paramètres sont d'un ordre de grandeur compatible avec la théorie, en les comparant aux intégrales radiales de Slater considérées à l'étape (HFR corrigé), soit le rapport $\frac{P_{ajust}}{P_{HFR}}$ [38].

Grâce au programme RCE, le résultat final des calculs, donne les valeurs de tous les niveaux, les

pourcentages des principales composantes qui leurs sont attribuées dans les deux systèmes de couplage L.S et JJ, ainsi que toutes autres observables physiques à savoir, le moment cinétique total, facteur de Landé, les longueurs d'onde, leurs nombres d'onde,... etc.

4.5 Conclusion

Nous avons présenté dans ce chapitre, la démarche expérimentale suivie et les différents programmes utilisés pour la recherche des niveaux d'énergie et leurs optimisation, ainsi que l'approche paramétrique de Slater-Racah adoptées dans cette étude dans le but d'interpréter les spectres obtenus.

Dans le prochain chapitre, on procédera à l'interprétation et discution des résultats obtenus pour l'ion libre Er^{+3} . Il est impératif de commencer par les résultats obtenus dans le cas de l'ion libre qui fait l'objet de cette thèse, puis, de discuter les différents phénomènes intervenants *(interaction de configurations)*, et leurs applications dans les matrices cristallines par exemple, et les comparer à d'autres travaux effectués dans le domaine avec d'autres méthodes de calcul, à savoir avec celle du calcul self-consistant de type Multi-configuration Dirac Hartree-Fock (MCDHF) et ses différentes stratégies adoptées.

Troisième partie ANALYSE DES RÉSULTATS ET DISCUSSIONS

Chapitre 5

Étude de l'ion libre Er^{+3}

Dans le projet d'étude des spectres complexes des ions lanthanides triplement ionisés Ln^{+3} . L'ion de l'erbium trois fois chargé Er^{+3} comme tous les autres ions de terres rares, porte un grand intérêt, notamment dans les matrices cristallines, pour la fusion, étant donné que l'oxyde de l'erbium a été testé en tant qu'un bon candidat pour le système de couverture dans le réacteur de fusion [39], ainsi que pour d'éventuelles applications de l'information quantique lorsqu'il est incorporé dans le silicium [40].

La première étude de spectre de Er^{+3} a été entreprise en 1966 par W. J. Carter[41]. Dans son travail, Carter est arrivé à la détermination des huit premiers niveaux de la configuration fondamentale $4f^{11}$ au dessus du fondamental, mais ceci n'a pas fait l'objet d'une publication dans la littérature pour des raisons probablement liées à la non fiabilité des résultats obtenus sur les mesures de longueurs d'onde. Ces valeurs sont récemment affichées dans Atomic Spectra Database du NIST.

Au début de 2015, L. Radžiute et al avaient effectué des calculs ab-initio de type Multi-Configuration Dirac Hartree Fock (MCDHF) (différentes approches) sur la configuration fondamentale $4f^{11}$. Les résultats obtenus ont été comparés aux valeurs de NIST qui sont déjà incertaines. Par conséquent, la considération d'une telle stratégie par rapport à une autre ne donne pas forcément les bonnes informations sur les niveaux d'énergie, les fonctions d'onde et autres observables physiques.

Afin de présenter les résultats obtenus dans notre analyse du spectre de l'ion libre Er^{+3} , on procédera comme suit,

Premièrement, on présentera la démarche, les conditions, et les données expérimentales nécessaires, qui nous ont permis d'obtenir les spectres d'émission VUV, et quelques résultats obtenus.

Deuxièmement, on procédera à l'interprétation théorique de ces résultats en utilisant la méthode paramétrique de Racah-Slater, à une comparaison entre les études avec et sans interaction de configurations, et on terminera par une comparaison des résultats expérimentaux obtenus, avec ceux obtenus pour le même ion Er^{+3} incorporé dans une matrice cristalline, puis avec les calculs semi-empiriques ajustés (code Cowan), et avec les calculs self-consistants obtenus par ailleurs par la méthode multi-configuration Dirac Hartree Fock.

5.1 Production de spectres et mesure des longueurs d'onde

Pour le présent travail, les spectres d'émission VUV en incidence normale à haute résolution, sont produits à l'aide du spectrographe de 10.7 m à l'Observatoire de Paris-Meudon, avec deux types d'étincelles (glissante et initiée). Notons que, dans ces deux types d'étincelles, l'anode est de l'erbium pur à 99% et la cathode en aluminium.

Pour produire la décharge électrique, nous avons utilisé un condensateur à faible capacité $4.82\mu F$ chargé avec une tension d'environ 7KV. Une inductance supplémentaire entre $11\mu H$ et $64\mu H$ peut être introduite dans le circuit électrique pour pouvoir manipuler les conditions de décharge, et faire l'identification des différentes raies spectrales à différents degrés d'ionisation. Le spectrographe est équipé d'un réseau holographique concave de 3600 traits par millimètre, ce qui conduit à une dispersion linéaire de $0.26\text{\AA}/mm$ sur les plaques.

La résolution résultante est de 150 000 avec une largeur de fente de 30μ . Le montage expérimental est similaire à des travaux antérieurs sur les ions de terres rares, et plus de détails peuvent être trouvés dans [3, 42]. La région de longueurs d'onde 705 - 2460Å a été enregistrée en utilisant des Plaques Photographiques ILFord Q2 ou des Plaques Kodak 103AO et les écrans phosphore photostimulables (*IP*) [figure 5.1].

Ces derniers étant préférés dans les mesures d'intensités pour leur réponse linéaire sur cinq ordres de grandeur.

De même que pour les travaux antérieurs sur Nd et Tm, des longueurs d'onde d'impuretés à faible Z (C, N, O, Si) et quelques longueurs d'onde d'erbium mesurées par Carter dans ErIV [41] et Becher ErIII [43] ont été utilisées comme références de longueurs d'onde pour l'étalonnage des plaques en utilisant un polynôme de second degré. Les erreurs estimées sur les longueurs d'onde sont autour de ± 0.002 Å pour les différentes plaques.

L'intensité expérimentale avec unité arbitraire a été estimée à partir de la surface approximée par un triangle, les intensités relatives ne sont pas corrigées pour tenir compte de la dépendance à la longueur d'onde de la réponse instrumentale. Elles sont donc compatibles uniquement sur une gamme limitée de longueurs d'onde.

La figure 5.2 montre une section du spectre obtenu à l'erbium IIFord Q2 avec la source d'étincelle glissante. Les expositions supérieures et inférieures correspondent à deux valeurs d'inductance, respectivement $11\mu H$ et $64\mu H$ introduites dans le circuit de décharge. L'excitation est légèrement plus faible dans le spectre inférieur.

Dans cette section, 24 raies d'erbium identifiées et mesurées peuvent être observées. Elles sont

FIGURE 5.1 – Zone spectrale couvrant les régions de longueurs d'onde des trois faisceaux de transitions $4f^{11} - 4f^{10}5d$, $4f^{10}5d - 4f^{10}6p$ et $4f^{10}6p - 4f^{10}6s$ de l'ion Er^{+3} , avec interaction de configurations. Les paramètres P_{HFR} ont été corrigés avec un facteur d'échelle SF.

FIGURE 5.2 – Section de deux expositions de l'erbium sous vide sur des plaques photographiques dans la région spectrale de (1218 - 1235)Å : Trace supérieure : $11\mu H$; Trace inférieure $64\mu H$. Les raies identifiées de ErIV sont rapportées dans le (tableau 3) sauf quelques-unes lorsque l'espace est manquant. Les deux lignes marquées avec * ont été signalées par Carter avec des identifications erronées.

représentées dans la liste de la Table 5.1. Notant que deux parmi elles ont été signalées par Carter [41].

5.2 Analyse des résultats et discussion

Comme pour les travaux antérieurs sur TmIV[44], NdIV[45] et NdV[42], nous avons appliqué la méthode de Racah-Slater[10] pour l'étude théorique des configurations atomiques en utilisant le code Cowan dans la version de Kramida sur PC[46]. Dans les premiers codes des packages RCN et RCN2, les intégrales radiales nécessaires pour construire l'opérateur Hamiltonien sont déterminées dans l'option Hartree-Fock avec des corrections relativistes (HFR), séparément pour les configurations de la parité impaire $4f^{11}$ et $4f^{10}6p$ et les configurations de la parité paire $4f^{10}5d + 4f^{10}6s$. Les intégrales radiales HFR (Paramètres P_{HFR}) sont multipliées par un facteur d'échelle $SF(P) = P_{fit}/P_{HFR}$, où P_{fit} est la valeur du paramètre calculé à l'étape RCE à partir des propriétés des spectres étudiés précédemment qui ont été cités au début du paragraphe.

Ainsi, des corrections sont apportées pour l'énergie moyenne E_{HFR}^{av} dans le but de situer le plus bas niveau pour chacune des quatre configurations calculées dans les gammes d'énergie prévues par Brewer[36].

Les probabilités de transition dipolaires sont calculées en utilisant le code RCG, et les raies les plus fortes ont été comparées au spectre expérimental.

Les niveaux d'énergie expérimentaux trouvés dans l'analyse ont été utilisés comme données d'entrée du code Cowan RCE. Pour améliorer itérativement les valeurs des intégrales radiales. Ces dernières sont traitées comme des paramètres d'énergie ajustables, minimisant par moindres-carrés la quantité $\overline{\Delta E} = [\sum_{i=1}^{N} (E_{exp}^{i} - E_{th}^{i})^{2} / (N_{niv} - N_{param})]^{1/2}$, où N_{niv} et N_{param} sont respectivement le nombre de niveaux expérimentaux et le nombre de paramètres.

Comme dans les études précédentes, les paramètres effectifs pour les interactions de configurations lointaines au second ordre de la théorie des perturbations ont été introduits avec des valeurs initiales choisies à partir des spectres voisins. Les contraintes sur certains paramètres ont été appliquées dans les ajustements (valeurs fixes pour β et γ dans f^{11} et f^{10} , des valeurs égales pour $G^2(4f; 5d)$ et $G^4(4f; 5d)$) pour maintenir les prévisions d'énergie fiables et réduire le nombre de paramètres libres.

La recherche de nouveaux niveaux a été effectuée en utilisant le code IDEN [27, 28], qui permet la visualisation de grand nombre de quantités expérimentales et calculées impliquées. La recherche a été poursuivie jusqu'à ce que la chaine des transitions localisant un nouveau niveau ne pouvait plus être validée sans ambiguïté.

La présente analyse fondée sur la classification de 591 raies spectrales dans la région (851-2276Å) a conduit à la détermination de 37 niveaux impairs au dessus de l'état fondamental : 8 dans la configuration fondamentale $4f^{11}$ et 29 dans la configuration excitée $4f^{10}6p$; et 82

TABLE 5.1 – Les raies classées de l'ion Er^{+3} dans la région de (1218-1234 Å). Les longueurs d'onde mesurées (λ_{exp} in Å) sont suivies $\Delta \lambda = \lambda_{exp} - \lambda_{Ritz}$ à partir des longueurs d'onde de Ritz (en Å), les intensités Int des plaques photographiques ou des plaques d'image sont en unités arbitraires, Les probabilités gA (10⁶ s⁻¹), g étant le poids statistique du niveau supérieur, Aétant le coefficient d'émission spontanée d'Einstein. CF est le facteur d'annulation défini par l'équation (14.107), p432 dans [10]. λ_{Ritz} est dérivée des énergies des niveaux optimisées comme $\lambda_{Ritz} = (E_{upper} - E_{lower})^{-1}$. Toutes les énergies et les nombres d'onde sont en cm^{-1} .

λ_{exp}	σ_{exp}	λ_{Ritz}	$\Delta\lambda$	Int_{PP}	Int_{IP}	gA	CF	Lower level ^d	Upper level ^d	E_{lower}	E_{upper}	Comm.
1218.095	82095.40	1218.099	-0.004	132	54	528.9	0.16	$4f^{10}_{10}5d(^{5}I)^{6}Kb$ 6.5	$4f^{10}_{10}6p(^{5}I)^{4}K$ 6.5	86744.73	168839.9	
1218.291	82082.20	1218.286	0.004	25	3	202.2	-0.02	$4f^{10}5d(^5I)^6L$ 7.5	$4f^{10}6p(^{5}I)^{4}K$ 6.5	86757.34	168839.9	
1218.825	82046.20	1218.820	0.006	114	49	524	0.29	$4f^{10}_{10}5d(^{5}I)^{6}G$ 6.5	$4f^{10}_{10}6p({}^{5}I)^{4}H$ 6.5	74536.27	156582.9	
1219.083	82028.90	1219.084	-0.001	63	15	376.6	-0.10	$4f^{10}5d(^5I)^6I$ 3.5	$4f^{10}6p(^{5}I)^{6}I$ 3.5	88834.27	170863.1	
1219.281	82015.50	1219.277	0.005	140	15	63.85	0.11	$4f^{11}(^{4}I)^{4}I$ 5.5	$4f^{10}5d(^{5}I^{4}G 4.5$	10171.79	92187.63	
1219.395	82007.89	1219.391	0.004	167	75	81.45	0.14	$4f^{11}(^{4}I)^{4}I$ 4.5	$4f^{10}5d(^{5}I^{4}I 5.5$	12468.66	94476.78	D
1219.395	82007.89	1219.405	-0.010	167	75	114	-0.04	$4f^{10}5d(^{5}I)^{6}H$ 5.5	$4f^{10}6p({}^{5}F){}^{6}G$ 4.5	86559.40	168566.6	D
1219.857	81976.80	1219.845	0.013	40		100.3	0.11	$4f^{10}5d(^{5}I)^{6}K$ 6.5	$4f^{10}6p({}^{5}F)^{4}K$ 5.5	82921.55	164899.2	
1219.922	81972.50	1219.920	0.002	218	119	1059	0.55	$4f^{10}5d(^{5}I)^{6}Hb$ 7.5	$4f^{10}6p(^{5}I)^{6}K$ 8.5	79362.02	161334.6	
1220.125	81958.82	1220.127	-0.002	114	17	229.6	0.02	$4f^{10}5d(^{5}I)^{4}K$ 8.5	$4f^{10}6p(^{5}I)^{6}I$ 7.5	79154.18	161112.8	D
1220.125	81958.82	1220.111	0.013	114	17	162.8	0.02	$4f^{10}5d(^5I)^4$ 7.5	$4f^{10}6p(^{5}I)^{6}I$ 6.5	83376.71	165336.4	D
1220.275	81948.70	1220.270	0.006	138	53	54.45	-0.07	$4f^{11}(^{4}I)^{4}I$ 6.5	$4f^{10}5d(^{5}I)^{6}K$ 5.5	6507.750	88456.86	
1220.931	81904.70	1220.932	-0.001	90		355.1	0.08	$4f^{10}5d(^{5}I)^{6}H$ 5.5	$4f^{10}6p(^{5}I)^{4}I$ 5.5	86559.40	168464.1	
1221.482	81867.80	1221.479	0.003	129	39	586.2	0.09	$4f^{10}5d(^{5}I)^{6}G$ 5.5	$4f^{10}6p(^{5}I)^{4}I$ 6.5	79743.13	161611.1	
1221.926	81838.00	1221.935	-0.009	86		138.7	-0.03	$4f^{10}5d(^{5}I)^{6}H$ 4.5	$4f^{10}6p(^{5}I)^{6}H$ 5.5	83708.79	165546.2	
1222.311	81812.20	1222.310	0.001	83	12	322.7	0.03	$4f^{10}5d(^{5}I)^{4}L$ 9.5	$4f^{10}6p(^{5}I)^{6}K$ 8.5	79522.29	161334.6	
1222.819	81778.30	1222.820	-0.002	115	68	77.56	0.05	$4f^{11}({}^4F){}^4F$ 4.5	$4f^{10}5d(^5I)^4I$ 4.5	15404.86	97183.02	
1223.229	81750.80	1223.230	0.000	204	104	1459	-0.16	$4f^{10}5d(^{5}I)^{6}Hb$ 7.5	$4f^{10}6p(^{5}I)^{6}I$ 7.5	79362.02	161112.8	
1224.067	81694.90	1224.065	0.001	95	22	59.65	0.07	$4f^{11}({}^4G){}^4G$ 5.5	$4f^{10}5d(^{3}H)^{4}H4$ 6.5	26707.79	108402.8	
1224.134	81690.40	1224.144	-0.010	5		13.82	-0.01	$4f^{10}5d(^{5}I)^{6}I$ 6.5	$4f^{10}6p(^{5}I)^{6}K$ 5.5	78916.79	160606.5	
1225.794	81579.80	1225.789	0.004	256	104	1836	0.38	$4f^{10}5d(^{5}I)^{6}H$ 7.5	$4f^{10}6p(^{5}I)^{6}I$ 8.5	73426.17	155006.2	
1228.649	81390.20	1228.650	-0.001	263	138	2170	0.99	$4f^{10}5d(^{5}I)^{6}I$ 8.5	$4f^{10}6p(^{5}I)^{6}K$ 9.5	73708.00	155098.1	
1229.414	81339.60	1229.416	-0.002	245	87	150.6	0.14	$4f^{11}(^{4}I)^{4}I$ 5.5	$4f^{10}5d(^{5}I)^{4}Hb$ 5.5	10171.79	91511.24	
1230.037	81298.40	1230.039	-0.002	322	219	3045	-0.29	$4f^{10}5d(^{5}I)^{6}I$ 8.5	$4f^{10}6p(^{5}I)^{6}I$ 8.5	73708.00	155006.2	
1230.536	81265.40	1230.535	0.000	246	136	1402	0.22	$4f^{10}5d(^5I)^6G$ 6.5	$4f^{10}6p(^{5}I)^{4}I$ 7.5	74536.27	155801.7	
1234.479	81005.80	1234.473	0.006	112	12	14.2	-0.01	$4f^{11}(^{2}H)^{2}H^{2}5.5$	$4f^{10}5d(^5F)^6H$ 6.5	19331.69	100337.9	

niveaux pairs dans les configurations excitées $4f^{10}5d$ et $4f^{10}6s$ [Figure 5.3].

Les résultats obtenus sur les niveaux d'énergie sont représentés dans les tableaux 5.2 et 5.3 respectivement pour les parités impaire et paire. La plupart des niveaux sont déterminés avec plus de deux transitions, seulement trois niveaux de la configuration $4f^{10}5d$ dans le tableau 5.3 sont déterminés avec une seule transition.

Les valeurs des énergies expérimentales ont été optimisées en utilisant le code LOPT[33] qui minimise les différences entre l'ensemble des nombres d'onde à partir des mesures de longueurs d'onde et de celles calculées à partir des énergies expérimentales par le principe de Ritz. Les raies spectrales perturbées ou les raies avec doubles identification ont été exclues de la procédure d'optimisation.

Les valeurs des niveaux d'énergie calculés, leurs compositions en pourcentage dans les systèmes de couplage LS et JJ et leurs facteurs de Landé sont dérivés à partir du dernier ajustement correspondant aux valeurs des paramètres d'énergie données dans les tableaux 5.4 et 5.5.

Le [tableau 5.1] est la section qui correspond à la région spectrale représentée sur la figure 5.2 de la liste complète des raies identifiées, qui présente pour chaque raie : Les longueurs d'onde mesurées, les nombres d'onde, longueurs d'onde de Ritz, intensités expérimentales à partir des Plaques Photographiques (PP) et des Écrans Phosphore (IP), gA calculés, facteur d'annulation (comme définit dans l'équation (14.107), p423 dans[10]), les noms et les valeurs de J du niveau inférieur et le niveau supérieur de la transition, leurs énergies optimisées.

FIGURE 5.3 – Niveaux impairs et pairs des configurations de base de l'ion Er^{+3} . Les niveaux théoriques sont représentés en noir.

Une comparaison des énergies des niveaux les plus bas de $4f^{10}5d$, $4f^{10}6s$ et $4f^{10}6p$ montre que certains niveaux construits sur le niveau fondamental ${}^{5}I_{8}$ de l'ion parent Er^{+4} situés par Carter[41] sont 20945.25 cm^{-1} plus petits que nos valeurs actuelles.

La sélection de Carter des raies fortes comme les transitions 5d - 6p et 6s - 6p construites sur le niveau fondamental $4f^{10} {}^{5}I_{8}$ était correcte, mais l'attribution erronée des valeurs de J dans le doublet $4f^{10} ({}^{5}I_{8}) 6p ({}^{2}P_{1/2})$ a entravé l'extension de son analyse, ce qui a probablement fini par des chaines de coïncidences fortuites pour le système de transitions $4f^{11} - 4f^{10}5d$.

La [figure 5.4] montre les séparations d'énergie entre les plus bas niveaux d'énergie des configurations $4f^{n+1}$, $4f^n6p$, $4f^n5d$, $4f^n6s$ dans les lanthanides triplement ionisés du Cérium au Lutécium. Dans la [Figure 5.4] (a), les énergies expérimentales sont complétées par les prédictions de Brewer[36] dans le cas échéant (Pm, Sm, Eu, Dy, Ho), la distance $4f^n - 4f^{n-1}$ montre un accident bien connu dû à la rupture de la couche à moitié remplie avec un changement dramatique de l'énergie pour le terme de base relatif au centre de gravité de la configuration. Le second accident à l' Er^{+3} est maintenant supprimé. La valeur erronée 52480 cm^{-1} de $4f^{10}5d$ [41] étant corrigée à 73426 cm^{-1} . Les comparaisons avec les spectres III et les valeurs interpolées sont utilisées pour tracer les figures 5.4 (b) et 5.4 (c) et se rapportent aux sauts électroniques $4f^n5d - 4f^n6p$ et $4f^n6s - 4f^n6p$ respectivement.

Le tableau 5.2 présente les résultats de la boucle finale RCE/RCG pour les configurations impaires, à savoir les paramètres d'énergie HFR et ajustés et leurs erreurs standard dans l'ajustement effectué avec 38 niveaux expérimentaux de $4f^{11}$ et $4f^{10}6p$. L'erreur moyenne de l'ajustement avec 11 paramètres libres est de 41 cm^{-1} . Le [tableau 5.3] représente les résultats similaires pour les configurations paires. L'ajustement effectué avec 82 niveaux expérimentaux et les 16 paramètres libres conduit à une erreur moyenne de 49 cm^{-1} .

FIGURE 5.4 – Séparations d'énergie entre les plus bas niveaux d'énergie des principales configurations des lanthanides triplement ionisés (a) $4f^{n+1} - 4f^n5d$, (b) $4f^n5d - 4f^n6p$ et (c) $4f^n6s - 4f^n6p$

(Longues barres : niveaux connus expérimentalement ; barres courtes : niveaux interpolés)

TABLE 5.2 – Niveaux d'énergie des deux configurations de la parité impaire $4f^{11}$ et $4f^{10}6p$ de l'ion Er^{+3} . Les énergies sont données en cm⁻¹. Pour chaque niveau donné : la valeur expérimentale, lorsqu'elle est disponible, les incertitudes correspondantes entre parenthèses, la valeur calculée E_{calc} résulte des codes de Cowan correspondant aux paramètres donnés dans le tableau 5.4; le nombre total de transitions impliquant la détermination expérimentale du niveau; le facteur de Landé calculé et le facteur de croissance principal Composant de la fonction propre et leurs pourcentages correspondants dans les schémas de couplage LS et JJ. Le nombre qui suit la désignation du terme est le terme parent. Une lettre minuscule est ajoutée pour distinguer deux niveaux avec la même composante principale.

Conf	Conf $J = E_{exp}$ (unc.)		$_p$ (unc.) E_{cal}		N_{cl}	$g_{Land\acute{e}}$	Comp1~%	LS percentage c Comp2 %		composition Comp3 %		Comp1 $%$		JJ percentage composition Comp2 % Comp3			ion p3 %
4f ¹¹	7.5	0.00	-32.0	32	28	1.197	^{4}I	97	² K	3							
$4f^{11}$	6.5	6507.75(11)	6533.4	-26	34	1.107	^{4}I	99	² K	1							
$4f^{11}$	5.5	10171.79(12)	10184.6	-13	27	0.989	^{4}I	82	2 H2	15	^{4}G	1					
$4f^{11}$	4.5	12468.66(12)	12399.5	69	24	0.902	^{4}I	51	2 H2	17	^{4}F	14					
$4f^{11}$	4.5	15404.86(12)	15295.1	110	25	1.134	4 F	58	^{4}I	27	$^{2}G1$	8					
$4f^{11}$	1.5	-	18470.4	-		1.705	^{4}S	69	^{2}P	18	$^{2}D1$	8					
$4f^{11}$	5.5	19331.69(11)	19385.4	-54	25	1.134	2 H2	48	^{4}G	35	^{4}I	15					
$4f^{11}$	3.5	-	20527.2	-		1.214	4 F	92	$^{2}G1$	4	$^{2}G2$	2					
$4f^{11}$	2.5	-	22159.1	-		1.053	4 F	84	$^{2}D1$	13	$^{2}D2$	2					
$4f^{11}$	1.5	-	22533.3	-		0.744	^{4}F	63	$^{2}\mathrm{D1}$	20	^{4}S	16					
$4f^{11}$	4.5	24736.00(12)	24723.5	13	14	1.073	4 Fb	24	2 G1	19	2 H2	16					
$4f^{11}$	5.5	26707.79(10)	26807.1	-99	19	1.200	4 G	61	2 H2	26	2 H1	10					
$4f^{11}$	4.5	27766.82(11)	27798.8	-32	15	1.110	^{4}G	79	2 H2	15	^{4}I	5					
$4f^{11}$	7.5	-	28232.5	· -		1.063	2 K	91	^{2}L	6	^{4}I	3					
$4f^{11}$	3.5	-	28265.1	-		0.954	^{4}G	41	$^{2}G1$	27	$^{2}G2$	24					
$4f^{11}$	1.5	-	31890.1	-		1.056	^{2}P	37	^{4}F	24	$^{2}D1$	21					
$4f^{11}$	6.5	-	33577.5	-		0.948	² K	90	² I	10	4 I						
$4f^{11}$	0.5	-	33598.6	-		0.613	^{2}P	92	^{4}D	8	-	-					
$4f^{11}$	2.5	-	33755.8	-		0.602	^{4}G	92	2 F2	4	2 F1	3					
$4f^{11}$	3.5	_	34405.9	-		0.952	^{4}G	55	$^{2}G1$	27	$^{2}G2$	15					
$4f^{11}$	2.5	-	34889.8	-		1.197	$^{2}D1$	57	$^{2}D^{2}$	16	^{4}F	14					
$4f^{11}$	4.5	-	36928.1	-		1.031	² H2	32	${}^{2}G1$	24	$^{2}G2$	15					
$4f^{11}$	2.5	_	39201 1	-		1 261	⁴ D	45	$^{2}D1$	27	$^{2}D^{2}$	24					
$4f^{11}$	3.5	_	39716.6	-		1 412	^{4}D	95	2 F1	3	${}^{4}G$	1					
$4f^{11}$	5.5	_	41549.4	-		0.983	² 1	65	2 H1	31	$^{2}H^{2}$	2					
$4f^{11}$	8.5	_	42355 7	-		1.059	2 L	100		01		-					
4f ¹¹	1.5	_	42697.5	_		1.000	^{4}D	51	$^{2}D1$	30	^{2}P	9					
4f ¹¹	1.5	_	43469 1	_		1 091	^{2}P	33	$^{2}D^{2}$	26	4 D	23					
4f ¹¹	6.5	_	44336.2	_		1.064	2 ₁	90	${}^{2}K$	10	2	20					
4f ¹¹	0.5	_	47718.1	_		0.050	4 D	92	^{2}P	8							
4f ¹¹	4.5	_	48271.0	_		0.917	² H1	78	² H2	18	$^{2}G^{2}$	3					
4f ¹¹	7.5	_	48648 2	_		0.948	² L	94	${}^{2}K$	6	02	0					
4f ¹¹	2.5	_	49517.1	_		1 208	$^{2}D^{2}$	45	4 D	30	${}^{2}F^{2}$	8					
4f ¹¹	5.5		51567.5	_		1.037	² H1	55	2 T	34	² H2	10					
41 4f11	3.5	-	54000.8	-		1.037	$^{2}F^{2}$	53	$^{2}F_{1}$	36	4D	10					
41 4f ¹¹	1.5		55587.6			0.807	² D2	68	4 D	22	² D1	5					
41 4f11	2.5	-	62502.4	-		0.007	² E2	61	2 F1	10	² D2	12					
4f11	2.5	-	66429.6	-		0.897	² G2	58	$^{2}G1$	30	$^{2}F^{2}$	10					
4f11	1.5	-	70623.2	-		1 106	$^{2}G^{2}$	57	² C1	40	2 _{H1}						
4f11	4.0 9.5	-	02269 7	-		0.857	2 _{E1}	74	2 E 2	40	111	2					
4f11	2.5	-	95508.7	-		1 1 4 0	2 _{F1}	74 59	2 F 2	20 40	$^{2}C_{2}$	1					
-11	0.0	-	31500.1	-		1.140	1, 1	50	1' 4	40	32	1					

TABLE 5.2 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$g_{Land\acute{e}}$	Com 🎜	LS percentage Comp2%	$composition \\ Comp3\%$	J Comp1 %	J percentage composition Comp2 % Comp%	
$4f^{10}6p$	7.5	147031.30(22)	147062.3	-31	9	1.278	$({}^{5}I){}^{6}H$	57 $({}^{5}I)^{4}I$	$18 (^{5}I)^{6}I$	$15 ({}^{5}I_{8})1/2$	$89 ({}^{3}K_{8})1/2 2 ({}^{3}K_{8})3/2 1$	
$4f^{10}6p$	8.5	147458.05(22)	147473.8	-16	10	1.218	$({}^{5}I)^{4}K$	$40 ({}^{5}I){}^{6}I$	$35 (^{5}I)^{6}K$	$17 ({}^{5}I_{8})1/2$	92 $({}^{3}K_{8})1/2$ 3 $({}^{5}I_{8})3/2$ 1	
$4f^{10}6p$	6.5	153114.10(22)	153155.5	-41	16	1.208	$({}^{5}I){}^{6}H$	$49 ({}^{5}I){}^{6}I$	$29 ({}^{5}I)^{4}I$	$12 ({}^{5}I_{7})1/2$	90 $({}^{5}I_{8})3/2$ 4 $({}^{5}I_{6})3/2$ 1	
$4f^{10}6p$	7.5	153525.32(22)	153547.7	-22	16	1.152	$({}^{5}I){}^{6}K$	$34 ({}^{5}I)^{4}K$	$30 (^{5}I)^{6}I$	$22 ({}^{5}I_{7})1/2$	94 $({}^{5}I_{8})3/2$ 2 $({}^{5}I_{7})3/2$ 1	
$4f^{10}6p$	8.5	155006.25(22)	155021.3	-15	13	1.240	$({}^{5}I){}^{6}I$	$56 (^{5}I)^{4}K$	$34 ({}^{3}K){}^{4}K2$	$3 ({}^{5}I_{8})3/2$	91 $({}^{3}K_{8})3/2$ 5 $({}^{5}I_{8})1/2$ 1	
$4f^{10}6p$	9.5	155098.13(24)	155105.1	-7	5	1.256	$({}^{5}I){}^{6}K$	$93 (^{3}K)^{4}L2$	$6 ({}^{3}K){}^{4}L1$	$2 ({}^{5}I_{8})3/2$	93 $({}^{3}K_{8})3/2$ 6 $({}^{3}K_{8})3/2$ 2	
$4f^{10}6p$	7.5	155801.71(22)	155799.8	2	18	1.234	$({}^{5}I){}^{4}I$	$60 ({}^{5}I){}^{6}H$	$29 ({}^{5}I){}^{6}I$	$3 ({}^{5}I_{8})3/2$	90 $({}^{3}K_{8})3/2$ 4 $({}^{5}I_{7})1/2$ 2	
$4f^{10}6p$	6.5	156582.86(22)	156560.9	22	16	1.212	$({}^{5}I){}^{4}H$	$77 (5I)^6 H$	$8 ({}^{3}K)^{2}I2$	$4 ({}^{5}I_{8})3/2$	$85 ({}^{3}K_{8})3/2 3 ({}^{5}I_{6})1/2 2$	
$4f^{10}6p$	5.5	157327.77(22)	157354.0	-26	18	1.099	$({}^{5}I){}^{6}I$	$38 (^{5}I)^{6}H$	$32 ({}^{5}I)^{4}H$	$14 ({}^{5}I_{6})1/2$	$89 ({}^{5}I_{7})3/2 3 ({}^{5}I_{5})3/2 1$	
$4f^{10}6p$	6.5	157754.93(22)	157751.7	3	13	1.061	$({}^{5}I){}^{6}K$	$44 ({}^{5}I)^{4}K$	$17 (^{5}I)^{4}I$	$14 ({}^{5}I_{6})1/2$	$85 ({}^{5}I_{8})3/2 7$	
$4f^{10}6p$	4.5	160371.83(22)	160367.0	5	12	0.931	$({}^{5}I){}^{6}I$	$41 ({}^{5}I)^{4}H$	$22 ({}^{5}I){}^{6}H$	$19 \ ({}^{5}I_{5})1/2$	81 $({}^{5}I_{4})1/2$ 2 $({}^{5}I_{6})3/2$ 2	
$4f^{10}6p$	5.5	160606.53(22)	160588.3	18	14	0.908	$({}^{5}I){}^{6}K$	$52 ({}^{5}I)^{4}I$	$21 ({}^{5}I)^{4}K$	$7 ({}^{5}I_{5})1/2$	$80 ({}^{5}I_{7})3/2 3 ({}^{3}H_{5})1/2 1$	
$4f^{10}6p$	7.5	161112.82(22)	161137.4	-25	17	1.183	$({}^{5}I){}^{6}I$	$53 (^{5}I)^{4}K$	$28 (^{5}I)^{4}I$	$7 ({}^{5}I_{7})3/2$	$95 ({}^{5}I_{6})3/2 1$	
$4f^{10}6p$	8.5	161334.60(23)	161352.3	-18	10	1.200	$({}^{5}I){}^{6}K$	$76 (^{5}I)^{4}K$	$18 ({}^{5}I){}^{6}I$	$2 ({}^{5}I_{7})3/2$	96 (³ K ₇)3/2 2	
$4f^{10}6p$	6.5	161611.07(22)	161620.8	-10	17	1.174	$({}^{5}I){}^{4}I$	$47 (^{5}I)^{6}H$	35 (⁵ I) ⁶ I	$13 ({}^{5}I_{7})3/2$	92 $({}^{5}I_{6})3/2$ 3 $({}^{5}I_{6})1/2$ 2	
$4f^{10}6p$	5.5	162312.00(22)	162301.3	11	17	1.143	$({}^{5}I){}^{4}H$	$70 ({}^{5}I){}^{6}H$	$23 (^{3}K)^{4}I2$	$1 ({}^{5}I_{7})3/2$	$86 ({}^{5}I_{6})1/2 4 ({}^{5}I_{6})3/2 3$	
$4f^{10}6p$	3.5	-	162947.6	-		0.596	$({}^{5}I){}^{6}I$	$47 (^{5}I)^{4}H$	31 (⁵ I) ⁶ H	$9 ({}^{5}I_{4})1/2$	$84 ({}^{3}H_{4})3/2 2 ({}^{5}I_{5})3/2 2$	
$4f^{10}6p$	4.5	162983.48(24)	162957.0	27	7	0.635	$({}^{5}I){}^{6}K$	$62 ({}^{5}I)^{4}I$	22 (³ H) ⁴ I4	$4 ({}^{5}I_{4})1/2$	$84 ({}^{3}H_{4})1/2 3 ({}^{5}I_{6})3/2 2$	
$4f^{10}6p$	4.5	164407.85(24)	164391.7	16	6	1.419	$({}^{5}F){}^{6}D$	$48 ({}^{5}F){}^{6}F$	$14 ({}^{5}F){}^{4}F$	$11 \ ({}^{5}_{-}F_{5})1/2$	$69 ({}^{3}G_{5})1/2 4 ({}^{3}G_{5})3/2 2$	
$4f^{10}6p$	5.5	164899.21(22)	164854.4	45	13	1.281	$({}^{5}F){}^{4}G$	$33 ({}^{5}F){}^{6}F$	$20 ({}^{5}F){}^{6}G$	$19 ({}^{5}_{-}F_{5})1/2$	72 $({}^{3}G_{5})1/2$ 5 $({}^{3}G_{4})3/2$ 2	
$4f^{10}6p$	6.5	165336.40(22)	165358.5	-22	19	1.098	$({}^{5}I){}^{6}I$	$42 ({}^{5}I)^{4}K$	$19 ({}^{5}I)^{4}I$	$19 ({}^{5}_{-}I_{6})3/2$	89 $({}^{5}I_{7})3/2$ 2 $({}^{5}I_{5})3/2$ 2	
$4f^{10}6p$	5.5	165546.19(22)	165551.1	-5	19	1.087	$({}^{5}I){}^{6}H$	$32 ({}^{5}I){}^{4}I$	$31 ({}^{5}I){}^{6}I$	$21 ({}^{5}I_{6})3/2$	$85 ({}^{5}I_{5})3/2 4 ({}^{5}I_{5})1/2 1$	
$4f^{10}6p$	7.5	165670.33(23)	165675.4	-5	12	1.120	$({}^{5}I){}^{6}K$	$54 ({}^{5}I)^{4}K$	$37 (^{3}H)^{4}I4$	$2 ({}^{5}_{-}I_{6})3/2$	91 $({}^{3}H_{6})3/2$ 2 $({}^{5}I_{7})3/2$ 1	
$4f^{10}6p$	4.5	166070.33(22)	166059.5	11	14	1.022	$({}^{5}I){}^{6}H$	$46 ({}^{5}I)^{4}H$	$46 (^{3}H)^{2}G4$	$2 ({}^{5}_{-}I_{6})3/2$	$84 ({}^{5}I_{5})3/2 5 ({}^{5}I_{5})1/2 2$	
$4f^{10}_{10}6p$	1.5	-	167639.5	-		2.014	$({}^{5}S){}^{6}P$	$57 ({}^{5}S){}^{4}P$	$10 (^{3}P)^{4}P2$	$7 (^{5}S_{2})1/2$	$67 ({}^{3}P_{2})1/2 9 ({}^{3}P_{2})3/2 3$	
$4f^{10}_{10}6p$	2.5	-	167936.7	-		1.536	$(^{5}S)^{6}P$	$35 (^{5}S)^{4}P$	$28 ({}^{3}P){}^{4}D2$	$7 (^{5}S_{2})1/2$	$62 ({}^{3}P_{2})1/2 11 ({}^{5}F_{2})1/2 3$	
$4f^{10}_{10}6p$	3.5	-	168188.0	-		1.422	(⁵ F) ⁶ D	35 (⁵ F) ⁶ F	$30 ({}^{5}F){}^{4}D$	$12 ({}^{5}_{2}F_{4})1/2$	84 $({}^{5}F_{4})3/2$ 1 $({}^{5}F_{2})3/2$ 1	
$4f^{10}_{10}6p$	4.5	-	168291.7	-		1.080	(⁵ F) ⁶ G	$18 ({}^{5}I){}^{6}I$	$16 ({}^{5}F){}^{4}G$	$13 ({}_{2}^{5}I_{5})3/2$	24 $({}^{5}_{F}F_{4})1/2$ 22 $({}^{5}_{I}I_{4})3/2$ 10	
$4f^{10}_{10}6p$	5.5	168464.07(22)	168464.5	-0.	17	0.969	$({}^{5}I){}^{4}I$	32 (⁵ I) ⁶ I	28 (⁵ I) ⁶ K	$15 (^{5}_{2}I_{5})3/2$	76 $({}^{5}I_{6})3/2$ 7 $({}^{5}I_{4})3/2$ 1	
$4f^{10}_{10}6p$	4.5	168566.60(23)	168536.1	31	9	1.108	$({}_{\underline{e}}^{o}F){}_{e}^{o}G$	21 (⁵ I) ⁶ I	14 (⁵ F) ⁴ G	$13 ({}_{E}^{3}F_{4})1/2$	$24 \left({}_{5}^{9}I_{5} \right) 3/2 22 \left({}_{2}^{9}I_{4} \right) 3/2 9$	
$4f_{10}^{10}6p$	3.5	-	168552.6	-		0.813	(⁵ I) ⁰ H	67 (⁵ I) ⁴ H	$20 (^{3}H)^{4}G4$	$3 ({}_{E}^{3}I_{5})3/2$	$80 \left({}_{5}^{3}I_{4} \right) 3/2 = 5 \left({}_{3}^{3}H_{5} \right) 3/2 = 4$	
$4f^{10}_{10}6p$	6.5	168839.85(22)	168818.9	21	18	1.011	$({}^{5}I){}^{4}K$	52 (⁵ I) ⁶ K	$32 ({}^{3}H){}^{4}I4$	$3 (_{2}^{5}I_{5})3/2$	77 $({}^{5}I_{6})3/2$ 6 $({}^{3}H_{5})3/2$ 5	
$4f^{10}_{10}6p$	2.5	-	170411.9	-		0.327	(⁵ I) ⁶ H	$86 ({}^{3}H){}^{4}G4$	$6 ({}^{3}H){}^{4}G3$	$3 ({}_{E}^{5}I_{4})3/2$	86 $\binom{3}{4}$ H ₄)3/2 6 $\binom{3}{4}$ H ₄)3/2 3	
$4f_{10}^{10}6p$	2.5	-	170700.2	-		1.251	$({}^{0}F){}^{0}F$	$31 ({}^{3}F){}^{6}G$	$22 ({}^{3}F){}^{0}D$	$15 ({}^{3}F_{3})1/2$	79 $({}^{3}F_{2})1/2$ 6	
4f ¹⁰ 6p	7.5	170771.46(30)	170774.8	-3	3	1.135	$({}^{3}K){}^{4}I2$	$34 ({}^{3}K){}^{4}I1$	$11 ({}^{3}K)^{2}K2$	$9 ({}^{3}K_{8})1/2$	52 $({}^{3}K_{8})1/2$ 7 $({}^{3}K_{8})3/2$ 4	
4f ¹⁰ 6p	3.5	170863.07(30)	170834.3	29	5	0.749	(⁵ I) ⁶ I	31 (³ I) ⁴ H	27 (⁵ F) ⁶ G	$12 ({}^{5}I_{4})3/2$	$61 ({}^{5}F_{3})1/2 11 ({}^{5}I_{5})3/2 4$	
4f ¹⁰ 6p	3.5	-	170913.0	-		1.040	(°F)°G	38 (°F) [∓] F	11 (01)01	$10 ({}^{6}F_{3})1/2$	$54 ({}^{0}I_{4})3/2 13 ({}^{0}I_{5})3/2 6$	
4f ¹⁰ 6p	4.5	170987.58(30)	170980.5	7	5	0.736	(°1)*1 (5 p) 6 p	46 (°I)°K	22 (°1)°1	$17 ({}^{6}I_{4})3/2$	$82 ({}^{6}\mathrm{I}_{5})3/2 3 ({}^{6}\mathrm{H}_{4})3/2 1$	
4f ¹⁰ 6p	1.5	-	171107.6	-		1.247	(³ F) ⁰ F	$22 ({}^{3}F)^{4}D$	$18 (^{3}S)^{6}P$	$14 ({}^{3}F_{2})1/2$	55 $({}^{3}S_{2})1/2$ 11 $({}^{3}S_{2})3/2$ 3	
4f ¹⁰ 6p	8.5	-	171110.0	-		1.080	(⁵ K) ² L2	2 22 (³ K) [∓] K2	$16 ({}^{6}K)^{4}L2$	$15 ({}^{5}K_{8})1/2$	53 $({}^{1}L_{8})1/2$ 4 $({}^{3}K_{8})1/2$ 3	
4f ¹⁰ 6p	5.5	-	171182.4	-		1.357	(°G)°F	39 (°F)°F	15 (°G) ⁴ G	9 $({}^{6}G_{6})1/2$	$53 ({}^{\circ}F_5)3/2 22 ({}^{\circ}G_5)1/2 1$	
4f ¹⁰ 6p	2.5	-	171326.1	-		1.209	(⁵ F) ⁶ G	23 (⁶ S) ⁶ P	$12 (^{0}F)^{2}F$	$12 ({}^{6}F_{2})1/2$	44 $({}^{\circ}S_2)3/2$ 6 $({}^{\circ}S_2)1/2$ 6	
4f ¹⁰ 6p	5.5	-	171538.3	-		0.809	(°I) K	70 (°I)°K	$16 (^{\circ}H)^{-14}$	$4 (^{\circ}I_4)3/2$	$80 ({}^{\circ}H_4)3/2 = 6 ({}^{\circ}I_5)3/2 = 5$	
4f ¹⁰ 6p	6.5	-	171729.1	-		1.315	(⁶ F) ⁶ G	$49 ({}^{6}G){}^{6}G$	12 (³ G) ⁴ H	$9 ({}^{6}F_{5})3/2$	49 $({}^{6}G_{6})1/2$ 28 $({}^{6}G_{5})3/2$ 6	
4f ¹⁰ 6p	1.5	-	172632.9	-		0.362	(°F)°G	$52 (^{\circ}F)^{+}F$	13 (°D) FI	$12 ({}^{\circ}F_1)1/2$	$68 (^{\circ}D_1)1/2 = 8 (^{\circ}D_1)1/2 = 2$	
4f ¹⁰ 6p	6.5	-	172890.8	-		1.278	(°F)°G (5D)4D	29 (°G) ⁺ H	27 (°G)°G	$13 (^{\circ}G_6)1/2$	$47 ({}^{\circ}F_{5})3/2 29 ({}^{\circ}G_{5})3/2 4$	
41 ^{-~} 6p	4.5	-	173011.3	-		1.314	(~F) ⁻ F (5E)6E	34 (°F)°D	$27 (^{\circ}G)^{2}G2$	$10 (^{\circ}F_5)3/2$	$\frac{30}{7}$ (°G ₅)3/2 8 (°G ₅)1/2 5	
4f [*] 6p	0.5	-	173128.8	-		-0.002	(°F)°F (5D)45	37 (°F)*D	$36 (^{\circ}D)^{*}D1$	9 (${}^{\circ}F_1$)1/2	$76 (^{\circ}D_1)1/2 14 (^{\circ}D_1)3/2 1$	
4f ¹ 6p	3.5	-	173299.3	-		1.370	(°F)*D (5F)4C	59 (°F)°D	$12 (^{\circ}G)^{2}F^{2}$	$6 (^{\circ}F_5)3/2$	70 (${}^{\circ}G_{5}$)3/2 9 (${}^{\circ}F_{4}$)3/2 2 50 (${}^{5}G_{-}$)1/2 12 (${}^{3}G_{-}$)2/2 5	
41 ¹ °6p	5.5	-	173635.5	-		1.319	(°F)*G	29 (°F)°F	23 (°G)°G	$13 (^{\circ}F_5)3/2$	$50 (^{\circ}G_6)1/2 = 13 (^{\circ}G_5)3/2 = 5$	
41 6p	4.5	-	173867.1	-		1.340	$(^{\circ}G)^{\circ}F$	$21 (^{\circ}F)^{\circ}F$	$1 ((F)^{-}F)$	$10 (^{\circ}G_5)1/2$	19 $(F_5)1/2$ 14 $(F_5)3/2$ 11 oc $(5E)2/2$ $F(3C)1/2$	
41 6p	5.5	-	174723.1	-		1.187	(°G)°H (50)65	13 (°G) ⁻ H	$11 (~G)^{-}H2$ 14 (3D)4D7	$10 (~G_5)1/2$	$20 (^{-1}F_5)3/2 = 5 (^{-1}G_5)1/2 = 4$	
41-00p	3.0 2 E	-	175409.1	-		1.082	(50) ⁶ 0	$16 (^{5}F)^{4}F$	$14 (^{-}D)^{-}F^{1}$ 19 (^{5}C) ^{4}F	$3(^{\circ}S_2)3/2$	$00 (-r_2)3/2 = 14 (-D_2)3/2 = 2$	
чі ор	3.5	-	1/09/1.9	-		1.221	(G) G	10 (F) F	12 (G) F	$11(G_4)1/2$	35 (F4)3/2 0 (F3)1/2 3	

FIGURE 5.5 – Prédictions théoriques des niveaux d'énergie des configurations de la parité impaire et la gamme énergétique de la configuration à cœur excité $5p^54f^{11}5d$.

5.3 Interaction de configurations

Nous tenons à rappeler ici que les interactions électrostatiques se produisent dans les configurations de la même parité. Ces dernières peuvent avoir lieu entre configurations proches ou lointaines selon la base des configurations introduites dans le code, le genre et le nombre de paramètres qui interviennent dans le calcul. Et pour tenir compte des effets de l'interaction de configurations d'une manière complète, on procède comme suit :

On élargit initialement la base des calculs (introduire plusieurs configurations) pour tenir compte de l'interaction de configurations proches, par la suite, on fait intervenir certains paramètres effectifs à savoir les paramètres α , β et γ nécessaires pour la prise en compte de l'interaction avec des configurations lointaines.

Le premier calcul HFR que nous avons effectué sur le Er^{+3} à l'aide de code Cowan a conduit à la prédiction des trois faisceaux de transition $4f^{11} - 4f^{10}5d$, $4f^{10}6p - 4f^{10}5d$ et $4f^{10}6p - 4f^{10}6s$, leurs domaines spectraux et leurs probabilités de transitions [figure 5.1]. Les paramètres d'interaction pour les quatre configurations de base ont été corrigés en utilisant les facteurs d'échelle des ions Tm^{+3} et Yb^{+4} voisins de l'ion Er^{+3} dans la classifications des
TABLE 5.3 – Niveaux d'énergie des deux configurations de la parité paire $4f^{10}5d$ et $4f^{10}6s$ de l'ion Er ⁺³. Les énergies sont données en cm ⁻¹. Pour chaque niveau donné : la valeur expérimentale, lorsqu'elle est disponible, les incertitudes correspondantes entre parenthèses, la valeur calculée, E _{calc} résulte des codes de Cowan correspondant aux paramètres donnés dans le tableau 5.5; le nombre total de transitions impliquant la détermination expérimentale du niveau; le facteur de Landé calculé et les composantes de la fonction propre et leurs pourcentages correspondants dans les schémas de couplage LS et JJ. Le nombre qui suit la désignation de terme est le terme parent tel que donné par le code de Cowan; Une lettre minuscule est ajoutée pour distinguer deux niveaux avec la même composante principale.

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$g_{Land\acute{e}} Com p {\it X}_{0}$	LS percentage o Comp2 %	composition Comp3%	JJ percentage composition Comp1% Comp2 % Comp3%
$4f^{10}5d$	7.5	73426.17(16)	73458.4	-32	10	1.275 d(⁵ I) ⁶ H	49 d(⁵ I) ⁶ I	$29 d(^{5}I)^{4}I$	$7 d(^{5}I_{8})3/2 80 d(^{5}I_{8})5/2 5 d(^{5}I_{7})5/2 3$
$4f^{10}5d$	8.5	73708.00(20)	73707.4	1	4	$1.259 \text{ d}(^{5}\text{I})^{6}\text{I}$	$67 \text{ d}(^{5}\text{I})^{6}\text{K}$	$17 \text{ d}(^{5}\text{I})^{4}\text{K}$	$8 d({}^{5}I_{8})3/2 = 69 d({}^{5}I_{8})5/2 = 22 d({}^{3}K_{8})5/2 = 2$
$4f^{10}5d$	6.5	74536.27(19)	74506.5	30	6	$1.327 \ d(^{5}I)^{6}G$	$59 d(^{5}I)^{6}H$	$22 d(^{3}K)^{4}H2$	$5 d(^{5}I_{8})3/2 84 d(^{3}K_{8})3/2 3 d(^{5}I_{8})5/2 2$
$4f^{10}5d$	9.5	75982.90(22)	75983.7	-1	3	$1.217 \ d(^{5}I)^{6}K$	$54 d(^{5}I)^{4}L$	$20 \ d(^{5}I)^{6}L$	$19 d(^{5}I_{8})3/2 70 d(^{5}I_{8})5/2 22 d(^{3}K_{8})5/2 2$
$4f^{10}5d$	6.5	78916.79(16)	78921.8	-5	10	$1.230 \ d(^{5}I)^{6}I$	$37 \ d(^{5}I)^{6}G$	$25 \ d(^{5}I)^{6}H$	$19 d(^{5}I_{7})3/2 \ 63 d(^{5}I_{8})5/2 \ 22 d(^{5}I_{6})5/2 \ 3$
$4f^{10}5d$	8.5	79154.18(16)	79114.8	39	8	$1.198 \ d(^{5}I)^{4}K$	$36 d(^{5}I)^{6}I$	$24 \ d(^{5}I)^{6}K$	22 d(${}^{5}I_{8}$)5/2 61 d(${}^{5}I_{8}$)3/2 17 d(${}^{5}I_{7}$)5/2 8
$4f^{10}5d$	10.5	79275.6(30)	79252.3	23	1	$1.231 \ d({}^{5}I){}^{6}L$	$92 \ d(^{3}K)^{4}M2$	$6 d(^{3}K)^{4}M1$	$2 d({}^{5}I_{8})5/2 92 d({}^{3}K_{8})5/2 6 d({}^{3}K_{8})5/2 2$
$4f^{10}5d$	7.5	79362.02(16)	79353.4	9	9	$1.227 \text{ d}({}^{5}\text{I}){}^{6}\text{Hb}$	$32 d(^{5}I)^{6}I$	29 $d({}^{5}I){}^{6}K$	23 d(${}^{5}I_{7}$)3/2 50 d(${}^{5}I_{8}$)5/2 24 d(${}^{5}I_{7}$)5/2 14
$4f^{10}5d$	9.5	79522.29(19)	79486.4	36	4	$1.194 \ d({}^{5}I){}^{4}L$	$45 d({}^{5}I){}^{6}K$	$37 d({}^{5}I){}^{6}L$	11 d(${}^{5}I_{8}$)5/2 69 d(${}^{5}I_{8}$)3/2 20 d(${}^{3}K_{8}$)5/2 4
$4f^{10}_{10}5d$	5.5	79743.13(17)	79765.8	-23	8	$1.232 \ d({}^{5}I){}^{6}G$	$42 d(^{5}I)^{6}H$	35 d(⁵ I) ⁶ I	11 $d({}^{5}I_{7})3/2$ 67 $d({}^{5}I_{8})5/2$ 11 $d({}^{5}I_{6})3/2$ 6
$4f^{10}_{10}5d$	8.5	82610.32(16)	82625.0	-15	7	$1.133 \ d({}^{5}I){}^{6}L$	$38 d(^{5}I)^{4}K$	$35 d({}^{5}I){}^{4}L$	$15 d({}^{5}I_{7})3/2 \ 81 d({}^{5}I_{8})5/2 \ 8 d({}^{5}I_{7})5/2 \ 4$
$4f^{10}5d$	6.5	82921.55(14)	82911.5	10	16	$1.171 \ d({}^{5}I){}^{6}K$	$21 d({}^{5}I){}^{6}I$	$20 \ d({}^{5}I){}^{4}H$	18 d(${}_{2}^{5}I_{8}$)5/2 21 d(${}_{2}^{5}I_{7}$)5/2 18 d(${}_{2}^{5}I_{6}$)3/2 17
$4f^{10}5d$	5.5	83109.96(16)	83105.7	4	12	$1.131 \ d(^{5}I)^{6}I$	45 d(⁵ I) ⁶ G	$28 d({}^{5}I){}^{6}K$	7 d(${}^{5}_{2}I_{6}$)3/2 43 d(${}^{5}_{2}I_{7}$)5/2 26 d(${}^{5}_{2}I_{8}$)5/2 7
4f ¹⁰ 5d	7.5	83376.71(15)	83329.8	47	10	$1.157 \text{ d}(^{5}\text{I})^{4}\text{I}$	33 d(⁵ I) ⁶ K	31 d(⁵ I) ⁶ L	9 d(${}^{5}I_{8}$)5/2 31 d(${}^{5}I_{7}$)3/2 27 d(${}^{5}I_{6}$)5/2 17
4f ¹⁰ 5d	4.5	83708.79(17)	83762.8	-55	8	$1.057 \text{ d}({}^{5}\text{I}){}^{6}\text{H}$	41 $d(^{5}I)^{6}G$	$23 d(^{5}I)^{6}I$	23 d(${}^{5}I_{6}$)3/2 54 d(${}^{5}I_{7}$)5/2 20 d(${}^{5}I_{5}$)3/2 12
4f ¹⁰ 5d	7.5	84992.54(15)	84968.8	24	11	$1.171 \ d({}^{5}I)^{4}Ib$	$35 d(^{5}I)^{6}I$	$30 d(^{5}I)^{4}K$	$18 d({}^{5}I_{7})5/2 52 d({}^{5}I_{8})5/2 27 d({}^{5}I_{6})5/2 7$
4f ¹⁰ 5d	8.5	85345.53(16)	85357.2	-12	8	$1.157 \text{ d}(^{5}\text{I})^{6}\text{K}$	$47 \text{ d}(^{3}\text{I})^{4}\text{L}$	$24 d(^{5}I)^{6}L$	11 $d({}^{5}I_{7})5/2$ 80 $d({}^{5}I_{6})5/2$ 6 $d({}^{5}I_{7})3/2$ 5
4f ¹⁰ 5d	6.5	85740.41(14)	85785.4	-45	19	1.166 d(⁶ I) ⁴ H	$50 d(^{6}I)^{6}K$	18 d(⁶ I) ⁶ H	$12 d({}^{\circ}I_{8})5/2 28 d({}^{\circ}I_{6})3/2 26 d({}^{\circ}I_{7})3/2 14$
4f ¹⁰ 5d	9.5	85914.80(23)	85944.7	-30	2	1.174 d(°I)°L	66 d(°I) [*] L	27 d(⁵ I) ⁶ K	$3 d({}^{\circ}1_{7})5/2 93 d({}^{\circ}K_{7})5/2 2 d({}^{\circ}1_{8})5/2 2$
4f ¹⁰ 5d	4.5	86401.13(17)	86364.6	37	7	$1.005 \text{ d}(^{6}\text{I})^{6}\text{I}$	41 d(⁶ 1) ⁶ G	$35 d(^{6}I)^{6}K$	$6 d({}^{\circ}1_{5})3/2 53 d({}^{\circ}1_{6})5/2 18 d({}^{\circ}1_{7})5/2 9$
4f ¹⁰ 5d	5.5	86559.40(15)	86546.4	13	18	1.109 d(°1)°H	26 d(°1)°K	22 d(°1) G	$13 \text{ d}({}^{\circ}1_{6})5/2 \ 30 \text{ d}({}^{\circ}1_{5})3/2 \ 19 \text{ d}({}^{\circ}1_{8})5/2 \ 13$
4f ¹⁰ 5d	3.5	-	86684.3	-		0.780 d(°I)°H	$38 d(^{\circ}1)^{\circ}1$	29 d(°1)°G	$12 \text{ d}({}^{\circ}1_{5})3/2 37 \text{ d}({}^{\circ}1_{6})5/2 23 \text{ d}({}^{\circ}1_{4})3/2 13$
41-050	0.5	80744.73(10)	86680.2	65	11	1.100 d(°1)°Kc	$26 d(^{-1})^{-1}$	18 d(~1)~H	$1/ d(^{-1}7)5/2 \ 24 \ d(^{-1}6)3/2 \ 24 \ d(^{-1}6)5/2 \ 17$
41 50	7.5	80757.34(10)	86748.0	9	10	$1.034 \text{ d}(^{-1})^{+}\text{L}$	23 d(1) K	$25 \text{ d}(^{-1}) \text{ L}$	$11 \text{ d}(^{-1}6)3/2 \text{ 85 d}(^{-1}7)5/2 \text{ 3 d}(^{-1}5)5/2 2$
41 50	0.0 E E	80872.06(15)	80883.3	-11	14	$1.245 \text{ d}(^{-1}) \text{ G}$	62 d(1) G	$11 d(^{-1}) H$ 10 $J(51)4T$	$10 \text{ d}(^{-1}8)5/2 47 \text{ d}(^{-1}7)3/2 19 \text{ d}(^{-1}7)5/2 15$
41 50 410 m J	0.0 9 E	88824 97(20)	00410.0	42	10	$0.951 \ d(^{-1})^{-1}$	$42 d(^{-1})^{-1}$	$12 d(^{-1}) 1$ $01 d(^{5}) 6_{11}$	7 + (51) + (2) +
41 50 4f10 g J	3.0 6 E	80157 21(10)	00013.4	21	4	$0.704 \ d(1) \ 1$	40 d(1) G	21 d(1) H 12 J(51)4T	(14)3/2 41 0 (16)3/2 13 0 (14)3/2 13
41 50 4f105d	4.5	89157.51(19)	80216 7	21	5	0.908 d(1) L	$27 d(51)^{6}C$	13 d(1) L 24 d(51)6H	3 d(15)3/2 /4 $d(15)3/2$ $3 d(14)3/2$ 2 20 d(51)5/2 $20 d(51)2/2$ $20 d(51)5/2$ 10
41 50	4.J 2.5	-	80517 5	-		$1550 d(5F)^{6}P$	27 d(1) G 50 d(⁵ E) ⁶ D	$\frac{24}{14} \frac{d(^{3}C)^{4}}{d(^{3}C)^{4}}$	$5 d({}^{5}E_{-})2/2 = 55 d({}^{5}E_{-})5/2 = 14 d({}^{5}E_{-})2/2 = 4$
41 50	0.0	-	80752.0	-		1.559 d(F) F	59 d(1) D	$14 d(G) D_2$ 12 $d(^5C)^6 u$	$5 \text{ d}(\mathbf{F}_5)5/2 \ 55 \text{ d}(\mathbf{F}_5)5/2 \ 14 \text{ d}(\mathbf{F}_5)5/2 \ 4$
$4f^{10}5d$	2.5	89949 21(16	89990 8	-42	9	$1.096 d(^{5}I)^{4}K$	$38 d(^{5}I)^{6}K$	$^{13} d(^{5}I)^{4}I$	$11 d({}^{5}I_{c})5/2 = 65 d({}^{5}I_{\pi})5/2 = 18 d({}^{5}I_{\pi})5/2 = 4$
$4f^{10}5d$	4.5	00040.21(10	90252.3	-12	5	$0.812 d(^{5}I)^{6}K$	$43 d(^{5}I)^{6}I$	$13 d(^{5}I)^{4}I$	$6 d({}^{5}I_{4})3/2 = 41 d({}^{5}I_{4})5/2 = 21 d({}^{5}I_{5})5/2 = 4$
$4f^{10}5d$	6.5	90598, 50(14)	90599.3	-1	16	$1.097 d(^{5}I)^{4}I$	$40 d(^{5}I)^{4}K$	$21 d(^{5}I)^{6}I$	$13 d({}^{5}I_{e})5/2$ $43 d({}^{5}I_{z})5/2$ $27 d({}^{5}I_{e})3/2$ 9
$4f^{10}5d$	8.5	90703.64(21)	90756.8	-53	3	$1.007 d(^{5}I)^{4}I$	$51 d(^{5}I)^{6}L$	$^{21} d(^{3}H)^{4}K4$	$2 d({}^{5}I_{e})5/2 = 87 d({}^{5}I_{z})5/2 = 5 d({}^{5}I_{z})3/2 = 2$
$4f^{10}5d$	5.5	$90711\ 70(14)$	90729.0	-17	19	$1.000 d(^{5}I)^{4}H$	$20 d(^{5}F)^{6}F$	$19 d(^{5}I)^{4}I$	$12 d({}^{5}I_{7})5/2 = 18 d({}^{5}F_{5})5/2 = 10 d({}^{5}I_{6})5/2 = 6$
$4f^{10}5d$	4.5	-	90803.4	-	10	$1.353 \text{ d}(^{5}\text{F})^{6}\text{D}$	$30 d(^{5}F)^{6}F$	$17 d(^{5}I)^{6}H$	$7 d({}^{5}F_{5})3/2 = 30 d({}^{5}F_{5})5/2 = 15 d({}^{5}I_{5})5/2 = 6$
$4f^{10}5d$	5.5	91169.27(21)	91148.2	21	4	$0.687 d(^{5}I)^{6}L$	$71 d(^{5}I)^{4}K$	$9 d(^{3}H)^{4}K4$	$5 d({}^{5}I_{4})3/2$ 79 $d({}^{3}H_{4})3/2$ 4 $d({}^{5}I_{4})5/2$ 3
$4f^{10}5d$	3.5		91498.2			$1.012 \text{ d}(^{5}\text{I})^{6}\text{G}$	$49 d(^{5}I)^{6}H$	$19 d(^{5}F)^{6}H$	$5 d(^{5}I_{4})5/2$ 33 $d(^{5}I_{5})5/2$ 30 $d(^{5}I_{6})5/2$ 8
$4f^{10}5d$	5.5	91511.24(15)	91538.8	-28	17	1.239 d(⁵ I) ⁴ Hb	$21 d(^{5}F)^{6}F$	$21 \ d(^{5}I)^{6}H$	$13 d({}^{5}I_{6})5/2 = 18 d({}^{5}I_{7})5/2 = 11 d({}^{5}F_{5})5/2 = 10$
$4f^{10}5d$	6.5	92064.49(15)	92108.4	-44	10	$1.214 \ d(^{5}F)^{6}H$	$32 d(^{5}F)^{4}H$	$20 \ d(^{5}F)^{6}G$	$9 d({}^{5}F_{5})3/2 55 d({}^{5}F_{4})5/2 4 d({}^{5}I_{5})3/2 4$
$4f^{10}5d$	4.5	92187.63(16)	92199.9	-12	10	$1.149 \text{ d}(^{5}\text{I})^{4}\text{G}$	70 $d(^{5}I)^{4}H$	$10 \ d(^{3}K)^{4}H2$	$2 d(^{5}I_{7})5/2 55 d(^{5}I_{6})3/2 22 d(^{5}I_{6})5/2 3$
$4f^{10}5d$	2.5	-	92927.4	-		$1.060 \text{ d}(^{5}\text{I})^{6}\text{G}$	49 $d({}^{5}F)^{6}P$	$8 \text{ d}({}^{5}\text{F})^{6}\text{D}$	7 d $({}^{5}I_{4})5/2$ 32 d $({}^{5}I_{5})5/2$ 20 d $({}^{5}F_{4})3/2$ 9
$4f^{10}5d$	2.5	-	93184.9	-		$1.412 \ d({}^{5}F){}^{6}P$	$28 \ d(^{5}I)^{6}G$	$21 \ d({}^{5}F){}^{6}D$	20 d(${}^{5}F_{4}$)3/2 37 d(${}^{5}I_{5}$)5/2 12 d(${}^{5}F_{4}$)5/2 8
$4f^{10}5d$	0.5	-	93501.9	-		$2.874 \text{ d}(^{5}\text{S})^{6}\text{D}$	$54 \text{ d}(^{3}\text{P})^{4}\text{P2}$	$13 \ d({}^{5}F){}^{6}D$	$8 d({}^{5}S_{2})3/2 51 d({}^{3}P_{2})3/2 11 d({}^{5}F_{2})5/2 3$

TABLE 5.3 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$g_{Land\acute{e}} Comp1\%$	LS percentage co Comp2 %	omposition CompX	JJ percentage composition Comp1% Comp2 % Comp3%
$4f^{10}5d$	7.5	93641.97(18)	93695.0	-53	4	$1.206 \ d(^{5}F)^{6}H$	$50 d(^{5}I)^{4}L$	$21 \ d(^{3}G)^{4}I2$	$6 d({}^{5}F_{5})5/2 \ 50 d({}^{5}I_{5})5/2 \ 22 d({}^{3}G_{5})5/2 \ 6$
$4f^{10}5d$	6.5	93697.73(15)	93724.5	-27	13	$1.017 \text{ d}(^{5}\text{I})^{4}\text{K}$	$44 \ d(^{5}I)^{6}K$	$17 \text{ d}({}^{5}\text{I}){}^{4}\text{I}$	$8 d({}^{5}I_{5})5/2 = 57 d({}^{5}I_{6})5/2 = 12 d({}^{5}I_{4})5/2 = 3$
$4f^{10}5d$	5.5	93829.40(17)	93885.3	-56	7	$1.184 \ d({}^{5}F){}^{6}H$	$25 \text{ d}({}^{5}\text{F})^{4}\text{H}$	$11 \ d(^{5}G)^{6}F$	$9 d({}^{5}F_{4})3/2 32 d({}^{5}F_{5})5/2 9 d({}^{5}G_{6})5/2 3$
$4f^{10}5d$	3.5	-	94082.3	-		$1.430 \ d({}^{5}F){}^{6}F$	$40 \ d(^{5}F)^{6}D$	$17 \text{ d}({}^{5}\text{G}){}^{6}\text{F}$	$12 d({}^{5}F_{4})3/2 29 d({}^{5}F_{4})5/2 19 d({}^{5}G_{5})3/2 9$
$4f^{10}5d$	1.5	-	94152.7	-		$0.545 \text{ d}(^{5}\text{I})^{6}\text{G}$	$57 d(^{5}S)^{6}D$	$18 \ d(^{5}F)^{6}G$	$4 d({}^{5}I_{4})5/2 57 d({}^{5}S_{2})3/2 15 d({}^{3}H_{4})5/2 4$
$4f^{10}5d$	1.5	-	94394.9	-		$1.226 \ d(^{5}S)^{6}D$	$46 \ d(^{5}I)^{6}G$	$27 \text{ d}(^{3}\text{P})^{4}\text{P}2$	$5 d(^{5}S_{2})3/2 = 39 d(^{5}I_{4})5/2 = 27 d(^{5}S_{2})5/2 = 7$
$4f^{10}5d$	5.5	94476.78(15)	94497.7	-21	13	$1.009 \text{ d}(^{5}\text{I})^{4}\text{I}$	$32 d(^{5}I)^{4}K$	$16 d(^{5}I)^{4}H$	$15 d(^{5}I_{5})5/2 = 19 d(^{5}I_{6})5/2 = 17 d(^{5}I_{6})3/2 = 12$
$4f^{10}5d$	7.5	94777.64(20)	94741.3	36	3	$1.095 \ d(^{5}I)^{4}L$	$44 \ d(^{5}F)^{6}H$	$26 \ d(^{5}I)^{6}L$	$15 d(^{5}I_{5})5/2 = 54 d(^{5}F_{5})5/2 = 26 d(^{5}I_{6})5/2 = 6$
$4f^{10}5d$	2.5	-	94852.3	-		$1.416 \ d(^{5}S)^{6}D$	$42 \ d(^{5}F)^{6}F$	$12 \ d(^{5}S)^{4}D$	$7 d({}^{5}S_{2})3/2 46 d({}^{3}P_{2})3/2 6 d({}^{5}S_{2})5/2 3$
$4f^{10}5d$	4.5	94874.22(16)	94883.0	-9	10	$1.069 \text{ d}(^{5}\text{I})^{4}\text{H}$	$28 \ d(^{5}I)^{4}I$	$16 d(^{5}F)^{6}F$	$9 d({}^{5}I_{6})5/2 = 20 d({}^{5}I_{5})3/2 = 13 d({}^{5}I_{5})5/2 = 11$
$4f^{10}5d$	3.5	-	94991.5	-		$1.394 \ d(^{5}S)^{6}D$	$39 d(^{5}S)^{4}D$	$7 d(^{3}P)^{4}F2$	$7 d({}^{5}S_{2})3/2 \ 35 d({}^{5}S_{2})5/2 \ 11 d({}^{3}P_{2})5/2 \ 6$
$4f^{10}5d$	4.5	95252.35(16)	95239.4	13	9	$1.223 \ d(^{5}F)^{6}D$	$17 \ d(^{5}F)^{6}H$	$15 \text{ d}(^{5}\text{I})^{4}\text{H}$	$12 d({}^{5}F_{4})3/2 24 d({}^{5}F_{4})5/2 15 d({}^{5}F_{5})5/2 5$
$4f^{10}5d$	3.5	95872.96(17)	95874.7	-2	7	$0.947 \ d(^{5}I)^{4}G$	$58 d(^{5}I)^{4}H$	$16 \ d(^{3}H)^{2}F4$	$2 d({}^{5}I_{6})5/2 = 38 d({}^{5}I_{5})3/2 = 25 d({}^{5}I_{5})5/2 = 11$
$4f^{10}5d$	5.5	96154.60(17)	96174.1	-19	7	$0.836 \ d(^{5}I)^{4}K$	$52 d(^{5}I)^{6}K$	$11 \ d(^{5}I)^{6}L$	$7 d(^{5}I_{4})5/2 = 66 d(^{5}I_{5})5/2 = 7 d(^{3}H_{4})5/2 = 2$
$4f^{10}5d$	2.5	-	96172.0	-		$1.528 \ d(^{5}F)^{6}P$	$32 d({}^{5}F){}^{6}F$	$27 \ d(^{5}S)^{6}D$	$11 d({}^{5}F_{3})3/2 26 d({}^{5}F_{3})5/2 15 d({}^{5}F_{4})5/2 8$
$4f^{10}5d$	4.5	96309.02(18)	96387.6	-79	6	$1.181 \ d(^{5}F)^{6}H$	$36 d(^{5}G)^{6}F$	$11 \ d(^{5}F)^{6}F$	$9 d({}^{5}F_{3})3/2 \ 30 d({}^{5}F_{4})5/2 \ 7 d({}^{5}F_{4})3/2 \ 6$
$4f^{10}5d$	1.5	-	96329.6	-		$1.785 \ d(^{5}F)^{6}D$	$29 \ d(^{5}F)^{6}P$	$25 d(^{5}F)^{6}F$	$16 d({}^{5}F_{3})3/2 42 d({}^{5}F_{4})5/2 16 d({}^{5}F_{3})5/2 8$
$4f^{10}5d$	6.5	-	96980.0	-		$1.181 \ d(^{3}K)^{4}H2$	$23 d({}^{5}F){}^{4}H$	$12 \ d({}^{5}F){}^{6}H$	$8 d({}^{5}_{5}F_{5})5/2 19 d({}^{3}_{K}K_{8})3/2 17 d({}^{5}_{F}F_{4})5/2 7$
$4f^{10}5d$	3.5	-	97058.0	-		$1.005 \text{ d}({}^{5}\text{F}){}^{6}\text{H}$	$43 \text{ d}({}^{5}\text{F}){}^{4}\text{D}$	$7 d(^{3}D)^{4}G1$	$5 d({}^{5}F_{2})3/2 24 d({}^{5}F_{1})5/2 10 d({}^{5}F_{3})3/2 7$
$4f^{10}5d$	4.5	97183.02(16)	97128.9	54	12	$0.835 \ d({}^{5}I)^{4}I$	$42 \ d(^{5}I)^{4}H$	$15 d(^{5}I)^{6}I$	$8 d({}^{5}I_{4})5/2 51 d({}^{5}I_{5})5/2 8 d({}^{5}I_{4})3/2 7$
$4f^{10}5d$	6.5	-	97380.4	-		$0.857 \ d(^{5}I)^{4}L$	$70 \ d(^{5}I)^{6}L$	$8 d(^{3}H)^{2}K4$	$4 d({}^{5}_{4}I_{4})5/2 = 68 d({}^{5}_{15}I_{5})5/2 = 9 d({}^{3}_{4}H_{4})5/2 = 2$
$4f^{10}5d$	1.5	-	97408.3	-		$1.437 \ d({}^{5}F){}^{6}F$	$33 d({}^{5}F){}^{6}P$	$21 \ d({}^{5}G){}^{6}F$	$7 d({}^{5}F_{2})5/2 \ 20 d({}^{5}F_{3})5/2 \ 12 d({}^{5}F_{2})3/2 \ 11$
$4f^{10}5d$	0.5	-	97614.2	-		$0.857 \ d({}^{5}F){}^{6}F$	$39 d(^{5}S)^{6}D$	$20 \ d({}^{5}F){}^{6}D$	$8 d({}^{5}F_{2})3/2 27 d({}^{5}S_{2})3/2 20 d({}^{5}F_{3})5/2 15$
$4f^{10}5d$	3.5	-	97841.7	-		$1.302 \ d({}^{5}F){}^{4}D$	$18 d(^{5}S)^{6}D$	$15 d({}^{5}S){}^{4}D$	$9 d({}^{5}S_{2})3/2 22 d({}^{5}F_{5})5/2 18 d({}^{5}F_{3})3/2 4$
$4f^{10}5d$	2.5	-	98018.7	-		$0.517 \ d({}^{5}F){}^{6}H$	$50 d(^{3}D)^{4}G1$	9 d(⁵ I) ⁶ H	$8 d({}^{5}F_{1})3/2 \ 32 d({}^{5}F_{2})3/2 \ 11 d({}^{5}I_{4})3/2 \ 11$
$4f_{10}^{10}5d$	3.5	98252.07(16)	98267.1	-15	8	$0.785 \text{ d}({}^{5}\text{I}){}^{4}\text{H}$	47 d(⁵ I) ⁴ G	18 d(⁵ I) ⁶ H	$6 d({}_{2}^{5}I_{4})5/2 41 d({}_{2}^{5}I_{4})3/2 19 d({}_{2}^{5}I_{5})5/2 10$
$4f^{10}5d$	4.5	-	98315.9	-		$1.447 \ d(^{\circ}S)^{\circ}D$	49 $d(^{3}P)^{4}F2$	$9 d(^{\circ}G)^{\circ}F$	$8 d({}_{2}^{\circ}S_{2})5/2 49 d({}_{2}^{\circ}G_{6})3/2 10 d({}_{2}^{\circ}P_{2})5/2 9$
$4f^{10}5d$	6.5	-	98407.5	-		$1.321 \ d({}^{5}F){}^{6}G$	$56 d({}^{5}F){}^{6}H$	$7 d({}^{5}_{G}G){}^{6}_{O}G$	$5 d({}^{5}F_{5})5/2 \ 34 d({}^{5}F_{4})5/2 \ 27 d({}^{5}G_{6})3/2 \ 4$
$4f^{10}5d$	5.5	98664.60(16)	98630.5	34	8	$1.245 \ d({}^{5}F){}^{4}G$	36 d(⁵ F) ⁶ H	19 d(⁵ F) ⁶ G	14 d(${}^{5}F_{4}$)3/2 25 d(${}^{5}F_{5}$)3/2 22 d(${}^{5}F_{3}$)5/2 14
$4f^{10}5d$	9.5	-	99061.8	-		$1.058 \text{ d}({}^{3}\text{K}){}^{4}\text{M2}$	$21 \ d(^{3}K)^{2}M2$	$19 \ d(_{2}^{3}K)^{4}L2$	10 d(${}^{3}_{}$ K ₈)3/2 49 d(${}^{1}_{}$ L ₈)3/2 6 d(${}^{3}_{}$ L ₈)3/2 5
$4f^{10}5d$	0.5	-	99234.2	-		$1.815 \ d(^{5}F)^{6}D$	32 d(⁵ F) ⁶ F	$20 d(^{\circ}S)^{\circ}D$	9 d(${}^{9}F_{1}$)3/2 33 d(${}^{9}F_{2}$)5/2 22 d(${}^{9}S_{2}$)3/2 9
$4f^{10}5d$	2.5	-	99248.4	-		$0.752 \ d(^{5}I)^{4}G$	58 d(⁵ I) ⁶ H	$6 d({}^{3}F){}^{4}P$	$5 d({}^{\circ}I_5)5/2 = 25 d({}^{\circ}I_4)3/2 = 23 d({}^{\circ}I_4)5/2 = 15$
$4f^{10}5d$	8.5	-	99288.2	-		$1.087 \ d({}^{3}K){}^{4}K2$	$22 d({}^{3}K){}^{4}L2$	$18 d({^{9}K})^{2}L2$	11 d(${}_{2}^{\circ}K_{8}$)3/2 48 d(${}_{2}^{\circ}K_{8}$)3/2 7 d(${}_{2}^{\circ}K_{8}$)5/2 2
$4f^{10}5d$	2.5	-	99426.3	-		$1.396 \ d({}^{5}F){}^{6}D$	$25 d(^{3}F)^{4}P$	$15 d(^{5}I)^{4}G$	$8 d({}^{5}F_{2})5/2 14 d({}^{5}F_{5})5/2 14 d({}^{5}F_{3})5/2 7$
$4f^{10}5d$	4.5	-	99435.3	-		$1.283 \text{ d}({}^{3}\text{F}){}^{4}\text{F}$	$12 d({}^{5}G){}^{6}D$	$9 d({}^{3}F){}^{6}D$	9 d(${}_{5}^{3}F_{5}$)5/2 17 d(${}_{5}^{3}G_{6}$)3/2 13 d(${}_{5}^{3}S_{2}$)5/2 7
4f ¹⁰ 5d	3.5	-	99639.0	-		$1.205 \text{ d}({}^{3}\text{F}){}^{6}\text{G}$	$42 d(^{3}S)^{6}D$	$9 d({}^{3}F){}^{6}D$	$6 d({}_{5}^{3}F_{3})3/2 20 d({}_{5}^{3}F_{4})3/2 9 d({}_{5}^{3}F_{4})5/2 9$
$4f^{10}5d$	1.5	-	99944.5	-		$1.446 \ d({}^{5}F){}^{6}P$	$23 d({}^{5}F){}^{6}D$	$17 \ d({}^{5}F){}^{6}G$	11 $d({}^{5}F_{2})5/2$ 22 $d({}^{5}F_{1})5/2$ 19 $d({}^{5}F_{1})3/2$ 6
$4f^{10}5d$	5.5	99987.95(30)	99987.0	1	3	$1.223 \text{ d}({}^{3}\text{F}){}^{4}\text{H}$	$23 d({}^{5}F){}^{6}G$	$20 d({}^{3}G){}^{6}F$	11 $d({}^{5}F_{4})5/2$ 36 $d({}^{5}G_{6})3/2$ 10 $d({}^{5}G_{6})5/2$ 5
4f ¹⁰ 5d	4.5	-	99987.1	-		$1.279 \ d({}^{3}F){}^{6}G$	$36 d(^{3}S)^{6}D$	$12 d({}^{3}F)^{4}F$	9 d(${}^{3}F_{4}$)3/2 34 d(${}^{3}S_{2}$)5/2 12 d(${}^{3}F_{3}$)5/2 6
$4f^{10}5d$	7.5	100035.15(30)	100055.2	-20	2	$1.109 \ d({}^{3}K)^{4}K2$	$19 d({}^{3}K){}^{4}I2$	$19 d({}^{3}I){}^{4}I$	$8 d({}_{5}^{3}K_{8})3/2 41 d({}_{5}^{3}I_{8})5/2 4 d({}_{5}^{3}K_{8})3/2 3$
4f ¹⁰ 5d	2.5		100189.9	-		1.172 d(^o F) [*] P	$22 d({}^{\circ}F){}^{\circ}G$	$20 \text{ d}(^{\circ}1)^{4}\text{G}$	7 d(${}^{6}F_{3}$)3/2 13 d(${}^{6}F_{5}$)5/2 11 d(${}^{6}F_{1}$)3/2 9
$4f^{10}5d$	6.5	100337.92(30)	100342.4	-4	3	$1.197 \text{ d}({}^{3}\text{F}){}^{6}\text{Hb}$	$27 \text{ d}(^{3}\text{F})^{4}\text{H}$	$19 d(^{3}K)^{4}H2$	$6 d({}^{3}F_{4})5/2 \ 35 d({}^{3}F_{5})5/2$
4f ¹⁰ 5d	3.5	-	100963.3	-		1.323 d(⁵ F) ⁶ D	$31 d(^{\circ}F)^{\circ}F$	11 d(°F)*F	7 d(${}^{\circ}F_3$)5/2 23 d(${}^{\circ}F_2$)5/2 10 d(${}^{\circ}F_4$)5/2 9
$4f^{10}5d$	2.5	-	100989.6	-		$1.165 \text{ d}({}^{3}\text{F}){}^{4}\text{P}$	$17 d({}^{3}F){}^{6}G$	$13 d({}^{3}F){}^{6}H$	$8 d({}^{5}F_{4})3/2 13 d({}^{5}F_{1})3/2 11 d({}^{5}F_{1})5/2 9$
4f ¹⁰ 5d	5.5	-	101068.1	-		1.315 d(°G)°G	$22 d({}^{\circ}F){}^{\circ}F$	$18 d(^{\circ}G)^{\circ}F$	9 d(${}^{\circ}G_{6}$)3/2 19 d(${}^{\circ}F_{4}$)5/2 14 d(${}^{\circ}F_{5}$)5/2 6
4t ⁻⁰ 5d	6.5	-	101395.6	-		1.263 d(°G)°G	29 d(°G)°H	$11 d(^{\circ}G)^{*}H$	9 d(${}^{\circ}G_{6}$)3/2 40 d(${}^{\circ}G_{6}$)5/2 6 d(${}^{\circ}F_{5}$)5/2 6
4f ⁺⁰ 5d	4.5	-	101422.6	-		$1.362 \text{ d}(^{6}\text{G})^{6}\text{D}$	$28 d(^{\circ}F)^{\circ}F$	18 d(°H) ⁻ F4	$5 d({}^{\circ}G_{6})3/2 16 d({}^{\circ}F_{3})5/2 9 d({}^{\circ}F_{4})5/2 8$
4f ⁺⁰ 5d	7.5	101556.6(5)	101566.5	-10	1	1.210 d(°G) ⁴ I	33 d(°G)°f	$23 \text{ d}(^{\circ}\text{G})^{\circ}\text{H}$	$12 \text{ d}({}^{\circ}\text{G}_{6})3/2 66 \text{ d}({}^{\circ}\text{F}_{5})5/2 4 \text{ d}({}^{\circ}\text{H}_{5})5/2 3$
4f ¹⁰ 5d	1.5	-	101630.4	-	_	0.637 d(°F) ⁶ G	$41 d(^{\circ}F)^{\circ}D$	12 d(°D)*F1	$12 \text{ d}({}^{\circ}\text{F}_{1})3/2 34 \text{ d}({}^{\circ}\text{F}_{1})5/2 13 \text{ d}({}^{\circ}\text{F}_{2})3/2 6$
$4f^{10}6s$	8.5	101709.83(14)	101671.5	38	7	$1.286 \text{ s}(^{\circ}\text{I})^{\circ}\text{I}$	92 s(°K)*K2	5 s(°K) [*] K1	$2 s({}^{\circ}I_8)1/2 92 s({}^{\circ}K_8)1/2 5 s({}^{\circ}K_8)1/2 2$

TABLE 5.3 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$ \begin{array}{cccc} g_{Land\acute{e}} & {\rm LS} \mbox{ percentage composition} & {\rm JJ} \mbox{ percentage composition} \\ Comp1\% & Comp2\% & Comp3\% & Comp1\% & Comp2\% & Comp3\% \end{array} $
$4f^{10}5d$	2.5	_	101810.1	-		$1.345 \text{ d}(^5\text{S})^4\text{D}$ 35 $\text{d}(^5\text{F})^4\text{D}$ 33 $\text{d}(^5\text{G})^4\text{D}$ 5 $\text{d}(^5\text{S}_2)5/2$ 22 $\text{d}(^5\text{F}_4)5/2$ 14 $\text{d}(^5\text{S}_2)3/2$ 13
$4f^{10}5d$	5.5	-	101959.5	-		1.210 $d({}^{5}F){}^{6}G$ 27 $d({}^{5}F){}^{4}H$ 7 $d({}^{5}F){}^{4}G$ 6 $d({}^{5}F_{3})5/2$ 17 $d({}^{5}F_{4})3/2$ 11 $d({}^{5}F_{4})5/2$ 5
$4f^{10}5d$	10.5	-	102163.2	-		$1.125 \text{ d}(^{3}\text{K})^{4}\text{M}2 \ 50 \text{ d}(^{3}\text{K})^{4}\text{M}1 \ 16 \text{ d}(^{3}\text{L})^{4}\text{N} \ 12 \text{ d}(^{3}\text{K}_{8})5/2 \ 50 \text{ d}(^{3}\text{K}_{8})5/2 \ 16 \text{ d}(^{1}\text{L}_{8})5/2 \ 9$
$4f^{10}5d$	4.5	-	102589.1	-		$1.130 \ d^{(5}F)^{4}H \ 26 \ d^{(5}F)^{4}G \ 15 \ d^{(5}F)^{4}F \ 12 \ d^{(5}F_{5})5/2 \ 17 \ d^{(5}F_{4})5/2 \ 16 \ d^{(5}F_{3})5/2 \ 15 \ d^{(5)}F^{(5)}$
$4f^{10}5d$	0.5	-	102601.7	-		$1.532 \ d^{(5}F)^{6}D 20 \ d^{(5}F)^{4}D 12 \ d^{(5}G)^{6}F 7 \ d^{(5}F_3)5/2 31 \ d^{(5}F_2)5/2 4 \ d^{(5}F_1)3/2 32 \ d^{(5}F_2)5/2 4 \ d^{(5}F_1)3/2 33 $
$4f^{10}5d$	1.5	-	102675.2	-		$1.353 \text{ d}({}^{5}\text{F}){}^{4}\text{D} 26 \text{ d}({}^{5}\text{S}){}^{4}\text{D} \qquad 24 \text{ d}({}^{5}\text{F}){}^{4}\text{P} \qquad 12 \text{ d}({}^{5}\text{F}_{4})5/2 24 \text{ d}({}^{5}\text{S}_{2})5/2 20 \text{ d}({}^{5}\text{F}_{3})3/2 10 = 10000000000000000000000000000000$
$4f^{10}5d$	5.5	-	102785.7	-		$1.171 \ d({}^{3}K){}^{4}H2 \ 14 \ d({}^{3}G){}^{4}G2 \ 10 \ d({}^{5}F){}^{4}G \ 7 \ d({}^{3}G_{5})5/2 \ 6 \ d({}^{3}K_{7})3/2 \ 6 \ d({}^{3}K_{7})5/2 \ 4$
$4f^{10}6s$	7.5	103116.18(14)	103107.2	9	6	$1.194 \ s({}^{5}I)^{4}I \qquad 65 \ s({}^{5}I)^{6}I \qquad 22 \ s({}^{3}K)^{2}K2 \qquad 3 \ s({}^{5}I_{8})1/2 \qquad 86 \ s({}^{3}K_{8})1/2 \qquad 5 \ s({}^{5}I_{7})1/2 \qquad 2 \ s({}^{3}K_{8})^{2}K2 \qquad 3 \ s({}^{5}I_{8})1/2 \qquad 86 \ s({}^{3}K_{8})1/2 \qquad 5 \ s({}^{5}I_{7})1/2 \qquad 2 \ s({}^{3}K_{8})^{2}K2 \qquad 3 \ s({}^{5}I_{8})1/2 \qquad 86 \ s({}^{3}K_{8})1/2 \qquad 5 \ s({}^{5}I_{7})1/2 \qquad 2 \ s({}^{3}K_{8})^{2}K2 \qquad 3 \ s({}^{5}I_{8})1/2 \qquad 86 \ s({}^{3}K_{8})1/2 \qquad 5 \ s({}^{5}I_{7})1/2 \qquad 2 \ s({}^{3}K_{8})^{2}K2 \qquad 3 \ s({}^{5}I_{8})1/2 \qquad 86 \ s({}^{3}K_{8})1/2 \qquad 5 \ s({}^{5}I_{7})1/2 \qquad 2 \ s({}^{3}K_{8})1/2 \qquad s($
$4f^{10}5d$	9.5	-	103150.5	-		$1.116 \ d({}^{3}_{3}K){}^{4}_{4}L2 \ 42 \ d({}^{3}_{3}K){}^{4}_{L1} \ 14 \ d({}^{3}_{3}K){}^{2}_{2}M2 \ 11 \ d({}^{3}_{4}K_{8})5/2 \ 53 \ d({}^{3}_{3}K_{8})5/2 \ 11 \ d({}^{1}_{4}L_{8})5/2 \ 53 \ d({}^{3}_{4}K_{8})5/2 \ d({}$
$4f^{10}5d$	2.5	-	103166.9	-		$1.229 \text{ d}({}^{5}_{5}\text{G}){}^{6}\text{F} 18 \text{ d}({}^{5}_{5}\text{F}){}^{4}\text{D} 16 \text{ d}({}^{5}_{5}\text{F}){}^{6}\text{G} 14 \text{ d}({}^{5}_{5}\text{F}_{3})3/2 15 \text{ d}({}^{5}_{5}\text{S}_{2})5/2 8 \text{ d}({}^{5}_{6}\text{G}_{4})3/2 6 \text{ d}({}^{5}_{6}\text{G}_{4})3/2 10 \text{ d}({}^{5}_{6}\text{G}_{6})3/2 10 \text{ d}({}^{5}_{6}\text{G}_{6})3/2 \ 10 \text{ d}({}^{5}_{6}\text{G}_{6})$
$4f^{10}5d$	6.5	103183.27(24)	103074.1	109	4	$1.125 \text{ d}({}^{\circ}_{0}\text{G}){}^{\circ}_{0}\text{I} 16 \text{ d}({}^{\circ}_{0}\text{F}){}^{4}_{1}\text{H} 15 \text{ d}({}^{\circ}_{0}\text{G}){}^{4}_{1}\text{I} 8 \text{ d}({}^{\circ}_{0}\text{G}_{5})3/2 18 \text{ d}({}^{\circ}_{0}\text{F}_{5})3/2 9 \text{ d}({}^{3}_{0}\text{K}_{8})5/2 4 \text{ d}({}^{\circ}_{0}\text{F}_{5})3/2 18 \text{ d}({}^{\circ}_{0}\text{F}_{5})3/2 18 \text{ d}({}^{\circ}_{0}\text{F}_{5})3/2 9 \text{ d}({}^{3}_{0}\text{K}_{8})5/2 4 \text{ d}({}^{\circ}_{0}\text{F}_{5})3/2 18 \text{ d}({}^{\circ}_{0}\text{F}_{5})3/2 \ 18 \text{ d}({}^{\circ}_{0}$
$4f_{10}^{10}5d$	1.5	-	103360.2	-		$1.340 \text{ d}({}^{3}\text{S}){}^{4}\text{D} 29 \text{ d}({}^{3}\text{F}){}^{4}\text{P} 15 \text{ d}({}^{3}\text{F}){}^{4}\text{D} 10 \text{ d}({}^{3}\text{S}_{2})5/2 24 \text{ d}({}^{3}\text{F}_{4})5/2 17 \text{ d}({}^{3}\text{F}_{3})3/2 6$
$4f^{10}5d$	8.5	-	103423.2	-		$1.093 \text{ d}({}^{\circ}_{\mathrm{C}}\mathrm{K}){}^{4}_{\mathrm{C}}\mathrm{K2} \ 33 \text{ d}({}^{\circ}_{\mathrm{C}}\mathrm{K}){}^{4}_{\mathrm{M}}\mathrm{M2} \ 10 \text{ d}({}^{\circ}_{\mathrm{C}}\mathrm{K}){}^{4}_{\mathrm{M}}\mathrm{K1} \ 9 \text{ d}({}^{\circ}_{\mathrm{C}}\mathrm{K}_{8})5/2 \ 40 \text{ d}({}^{\circ}_{\mathrm{C}}\mathrm{K}_{7})3/2 \ 7 \text{ d}({}^{\circ}_{\mathrm{C}}\mathrm{K}_{8})5/2 \ 6$
$4f^{10}5d$	3.5	-	103472.8	-		$1.352 \ d(^{\circ}S)^{4}D \ 14 \ d(^{\circ}G)^{\circ}D \ 12 \ d(^{\circ}F)^{\circ}G \ 9 \ d(^{\circ}S_{2})^{5}/2 \ 21 \ d(^{\circ}G_{5})^{3}/2 \ 4 \ d(^{\circ}G_{5})^{5}/2 \ 3 \ d(^{\circ}G_{5})^{5}/2 \ 3 \ d(^{\circ}G_{5})^{5}/2 \ d(^{$
4f ¹⁰ 5d	0.5	-	103825.3	-	_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4f ¹⁰ 5d	3.5	103899.38(30)	103864.4	35	3	$1.214 \ d({}^{\circ}G){}^{\circ}G \ 10 \ d({}^{\circ}S){}^{\circ}D \ 10 \ d({}^{\circ}S){}^{\circ}D \ 9 \ d({}^{\circ}S_{2})5/2 \ 18 \ d({}^{\circ}G_{4})3/2 \ 4 \ d({}^{\circ}F_{4})3/2 \ 3 \ ({}^{\circ}G_{4})3/2 \ 4 \ d({}^{\circ}G_{4})3/2 \ 4 \ d({}^{\circ}G_{4})3/2 \ 3 \ d({}^{\circ}G_{4})3/2 \ d({$
4f ¹⁰ 5d	4.5	103907.95(21)	103963.0	-55	5	$1.157 \text{ d}(^{\circ}\text{F})^{\circ}\text{H} = 21 \text{ d}(^{\circ}\text{F})^{\circ}\text{G} = 14 \text{ d}(^{\circ}\text{F})^{\circ}\text{F} = 6 \text{ d}(^{\circ}\text{F}_3)5/2 \text{ 18 d}(^{\circ}\text{F}_2)5/2 \text{ 18 d}(^{\circ}\text{F}_4)5/2 \text{ 10}$
41 ¹⁰ 5d	8.5	-	103943.4	-		$1.267 \text{ d}(^{\circ}\text{G})^{\circ}1 = 78 \text{ d}(^{\circ}\text{H})^{\circ}\text{K4} = 9 \text{ d}(^{\circ}\text{H})^{\circ}\text{K1} = 5 \text{ d}(^{\circ}\text{G}_{6})^{\circ}/2 = 78 \text{ d}(^{\circ}\text{H}_{6})^{\circ}/2 = 9 \text{ d}(^{\circ}\text{H}_{6})^{\circ}/2 = 5$
41 ⁻ 5d	2.5	-	104005.5	-		$1.267 \text{ d}(^{-}\text{F})^{-}\text{F} = 13 \text{ d}(^{-}\text{F})^{-}\text{F} = 11 \text{ d}(^{-}\text{F})^{-}\text{P} = 10 \text{ d}(^{-}\text{F}_{4})5/2 = 12 \text{ d}(^{-}\text{F}_{4})3/2 = 11 \text{ d}(^{-}\text{S}_{2})5/2 = 5$
41 50 410 m J	1.5	104157 05(10)	104097.9	- 21	C	1.421 d('F) F 29 d('F)'G 7 d('F)'D 0 d('F4)5/2 21 d('F3)5/2 19 d('F1)5/2 0 1.107 $4(5F)(4CF) = 3(3K)410 15 4(5F)(5F) 14 4(5F)(5F) 14 0(3K) 2)2 6$
41 50 4f ¹⁰ 5d	5.5 7.5	104157.95(19)	104127.0 104167.2	31	0	1.107 d(r) GD 25 d(r) n 2 15 d(r) n 7 d(r) 35/2 14 d(r) 5/2 12 d(r) 5/2 0 1.127 d($3\mathbf{k}$) 4/3 (3
41 50 4f ¹⁰ 5d	6.5	-	104107.2	-		1.137 d(K) 12 23 d(G) 11 10 d(K) 11 8 d($R_3/2$ 13 d($R_7/3/2$ 11 d($G_6/3/2$ 6 1.029 d($R_7/3/2$ 14 d($R_7/3/2$ 15 d($R_7/3/2$ 11 d($G_6/3/2$ 6
$_{41}^{41}$ 5d	7.5	-	104440.2 104495.3	-		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$4f^{10}5d$	3.5	_	104540.4	_		(114) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3
$4f^{10}5d$	6.5	104900 68(22)	104829.5	71	5	$\begin{array}{c} 0.514 \ d(^{7}) (^{1}) \ b \ d(^{3}) (^{2}) (^{2}) \\ 1 \ 125 \ d(^{5}) (^{5}) (^{1}) \ b \ d(^{3}) (^{2}) (^{2}) (^{2}) (^{3}) (^{3}) (^{5}) (^{5}) (^{1}) (^{3}) (^{5}) (^{1}) (^{3}) (^{5}) (^{1}) (^{3}) (^{5}) (^{1}) (^{3}) ($
$4f^{10}5d$	7.5		104930.6	-	0	1.098 $d({}^{3}K)^{4}L_{2}$ 18 $d({}^{5}C)^{6}H$ 17 $d({}^{3}C)^{4}L_{2}$ 6 $d({}^{3}K-3)^{2}/2$ 16 $d({}^{5}C_{2})^{5}/2$ 13 $d({}^{3}G_{2})^{5}/2$ 6
$4f^{10}5d$	5.5	-	104948.8	-		$1039 d^{5}G^{6}I = 36 d^{3}G^{4}I = 9 d^{5}G^{4}I = 8 d^{5}G_{4}J^{3}/2 = 31 d^{5}G_{5}J^{3}/2 = 6 d^{3}G^{4}J^{3}/2 = 5$
$4f^{10}5d$	4.5	-	104965.7	_		1.258 $d^{(5}G)^{(6}D$ 17 $d^{(5}F)^{(4}F$ 16 $d^{(5}F)^{(4}G$ 8 $d^{(5}G_{6})^{(3)}/2$ 8 $d^{(5}F_{4})^{(5)}/2$ 7 $d^{(5}G_{5})^{(3)}/2$ 5
$4f^{10}5d$	8.5	-	105119.5	-		$1.003 \text{ d}({}^{3}\text{K}){}^{4}\text{M}2 \ 28 \text{ d}({}^{3}\text{K}){}^{2}\text{L}2 \ 22 \text{ d}({}^{3}\text{K}){}^{4}\text{M}1 \ 9 \text{ d}({}^{3}\text{K}_{7})3/2 \ 31 \text{ d}({}^{3}\text{K}_{7})3/2 \ 10 \text{ d}({}^{3}\text{K}_{6})5/2 \ 7$
$4f^{10}5d$	3.5	-	105231.0	-		1.191 $d({}^{5}F){}^{4}F$ 16 $d({}^{5}G){}^{6}D$ 12 $d({}^{5}F){}^{4}H$ 9 $d({}^{5}G_{5})3/2$ 12 $d({}^{5}F_{3})3/2$ 7 $d({}^{5}F_{2})5/2$ 7
$4f^{10}5d$	2.5	-	105415.5	-		1.021 $d({}^{5}F){}^{4}F$ 15 $d({}^{5}F){}^{6}G$ 12 $d({}^{5}F){}^{4}G$ 8 $d({}^{5}F_{4}){}^{5}/2$ 19 $d({}^{5}F_{3}){}^{5}/2$ 11 $d({}^{5}F_{5}){}^{5}/2$ 4
$4f^{10}5d$	4.5	105422.46(22)	105367.8	55	5	$1.221 \ d^{5}G^{6}G \ 20 \ d^{5}F^{4}G \ 9 \ d^{5}G^{6}H \ 9 \ d^{5}G_{5}^{3}/2 \ 21 \ d^{5}F_{4}^{3}/3/2 \ 6 \ d^{5}G_{4}^{3}/5/2 \ 6$
$4f^{10}5d$	5.5	-	105599.3	-		$1.252 \ d^{(5}G)^{4}G \ 20 \ d^{(5}G)^{6}G \ 11 \ d^{(5}G)^{6}F \ 9 \ d^{(5}G_{6})5/2 \ 23 \ d^{(5}G_{5})5/2 \ 10 \ d^{(5}G_{6})3/2 \ 4$
$4f^{10}5d$	7.5	-	105792.6	-		$1.169 \ d(^{3}L)^{4}I 25 \ d(^{5}G)^{6}I 12 \ d(^{3}G)^{4}I2 10 \ d(^{3}L_{9})^{3}/2 \ 18 \ d(^{5}G_{5})^{5}/2 \ 15 \ d(^{3}G_{5})^{5}/2 \ 10 \ d(^{3}G_{5})^{5}/2 \ d(^{3}G_{5})^{5$
$4f^{10}5d$	6.5	-	105841.2	-		$1.221 \ d^{5}G^{6}G^{6}G^{27} \ d^{5}G^{6}H^{4}H^{-11} \ d^{5}G^{6}H^{-9} \ d^{5}G^{6}S^{5}/2^{-2} \ 31 \ d^{5}G^{5}S^{5}/2^{-13} \ d^{3}G^{5}S^{5}/2^{-4} \ d^{3}G^{5}/2^{-4} \ d^{3}/2^{-4} \ d^{3}/2$
$4f^{10}5d$	3.5	-	105919.2	-		$1.100 \ d({}^{5}F){}^{4}G \ 18 \ d({}^{5}S){}^{4}D \ 7 \ d({}^{5}F){}^{6}H \ 7 \ d({}^{5}F_{1})5/2 \ 12 \ d({}^{5}F_{3})5/2 \ 12 \ d({}^{5}S_{2})3/2 \ 5$
$4f^{10}5d$	4.5	-	106039.1	-		$1.101 \ d({}^{5}_{5}G){}^{6}H \ 14 \ d({}^{5}_{5}G){}^{6}I \ 11 \ d({}^{5}_{5}F){}^{4}G \ 10 \ d({}^{5}_{5}G_{4})3/2 \ 24 \ d({}^{5}_{5}F_{4})5/2 \ 3 \ d({}^{3}_{4}H_{6})3/2 \ 3$
$4f^{10}_{10}5d$	0.5	-	106052.4	-		$0.663 \ d({}^{5}_{P}){}^{4}_{D} \ 43 \ d({}^{5}_{P}){}^{4}_{P} \ 11 \ d({}^{5}_{O}){}^{4}_{D} \ 7 \ d({}^{5}_{P}_{1})3/2 \ 27 \ d({}^{5}_{P}_{2})5/2 \ 21 \ d({}^{5}_{P}_{3})5/2 \ 5$
$4f_{10}^{10}5d$	6.5	-	106195.3	-		$1.178 \ d({}_{3}^{4}H){}_{4}^{4}I4 \ 13 \ d({}_{3}^{2}H){}_{4}^{4}I3 \ 10 \ d({}_{3}^{6}G){}_{9}^{6}H \ 8 \ d({}_{5}^{5}G_{6})3/2 \ 8 \ d({}_{4}^{2}H_{5})5/2 \ 7 \ d({}_{3}^{3}G_{5})5/2 \ 6$
$4f^{10}5d$	5.5	106391.16(23)	106354.3	37	4	$1.235 \text{ d}({}^{\circ}_{\mathcal{G}}\text{G}){}^{4}_{\mathcal{G}}\text{G} 23 \text{ d}({}^{\circ}_{\mathcal{H}}\text{H}){}^{4}_{\mathcal{G}}\text{G}4 13 \text{ d}({}^{\circ}_{\mathcal{H}}\text{H}){}^{4}_{\mathcal{G}}\text{G}3 8 \text{ d}({}^{\circ}_{\mathcal{G}}\text{G}_{5})3/2 21 \text{ d}({}^{\circ}_{\mathcal{G}}\text{G}_{6})3/2 11 \text{ d}({}^{\circ}_{\mathcal{H}}\text{H}_{6})3/2 6$
$4f^{10}5d$	1.5	-	106663.7	-		$0.536 \text{ d}({}^{3}\text{F}){}^{4}\text{F} 31 \text{ d}({}^{3}\text{F}){}^{4}\text{F4} 10 \text{ d}({}^{3}\text{G}){}^{6}\text{G} 10 \text{ d}({}^{3}\text{F}_{2})5/2 10 \text{ d}({}^{3}\text{F}_{3})5/2 9 \text{ d}({}^{3}\text{F}_{1})3/2 7$
4f ¹⁰ 5d	2.5	-	106681.7	-		$0.796 \ d({}^{\circ}F){}^{*}G \ 39 \ d({}^{\circ}D){}^{2}F1 \ 11 \ d({}^{\circ}S){}^{4}D \ 8 \ d({}^{\circ}F_{2}){}^{5}/2 \ 15 \ d({}^{\circ}F_{3}){}^{5}/2 \ 8 \ d({}^{\circ}F_{1}){}^{5}/2 \ 8 \ d({}^{\circ}F_{1}){}^$
4f ¹⁰ 5d	10.5	-	106680.9	-		$1.050 \ \text{d}(^{\circ}\text{L})^{\circ}\text{N} \ 46 \ \text{d}(^{\circ}\text{L})^{\circ}\text{N} \ 28 \ \text{d}(^{\circ}\text{M})^{\circ}\text{O} \ 9 \ \text{d}(^{\circ}\text{L})_{9}3/2 \ 79 \ \text{d}(^{\circ}\text{M}_{9})3/2 \ 11 \ \text{d}(^{\circ}\text{M}_{9})5/2 \ 2$
4f ¹⁰ 5d	3.5	-	106743.7	-		$1.058 \text{ d}(^{\circ}\text{F})^{3}\text{G} 13 \text{ d}(^{\circ}\text{G})^{\circ}\text{G} 9 \text{ d}(^{\circ}\text{F})^{3}\text{F4} 7 \text{ d}(^{\circ}\text{G}_{4})3/2 9 \text{ d}(^{\circ}\text{F}_{3})5/2 8 \text{ d}(^{\circ}\text{F}_{4})5/2 4 \text{ d}(^{$
4f ¹⁰ 5d	1.5	-	106991.1	-		1.102 d(${}^{\circ}F$) ${}^{\circ}F$ 18 d(${}^{\circ}G$) ${}^{\circ}F$ 13 d(${}^{\circ}G$) ${}^{\circ}D$ 10 d(${}^{\circ}G_{4}$)5/2 9 d(${}^{\circ}G_{3}$)3/2 8 d(${}^{\circ}F_{3}$)3/2 5
4f ⁺⁰ 5d	7.5	-	107173.9	-		1.144 $d(^{\circ}H)^{-\kappa}K4$ 13 $d(^{\circ}G)^{\circ}H$ 13 $d(^{\circ}H)^{-\kappa}K4$ 11 $d(^{\circ}H_{6})3/2$ 20 $d(^{\circ}G_{6})5/2$ 11 $d(^{\circ}G_{6})3/2$ 8
4f ⁺⁰ 5d	4.5	-	107207.4	-		$1.096 \ d({}^{\circ}G){}^{\circ}G \ 7 \ d({}^{\circ}F){}^{3}G4 \ 7 \ d({}^{\circ}F){}^{3}F4 \ 7 \ d({}^{\circ}F_{4})3/2 \ 8 \ d({}^{\circ}F_{4})5/2 \ 5 \ d({}^{\circ}G_{4})5/2 \ 4 \ d({}^{\circ}F_{4})5/2 \ d({}^{\circ}G_{4})5/2 \ d({}^{\circ}F_{4})5/2 \ d({}^{\circ}G_{4})5/2 $
4f ⁺⁰ 5d	0.5	-	107353.6	-		$0.923 \text{ d}(^{\circ}\text{F})^{\circ}\text{F}^{\circ}$ 31 $d(^{\circ}\text{G})^{\circ}\text{F}^{\circ}$ 19 $d(^{\circ}\text{D})^{\circ}\text{D1}$ 7 $d(^{\circ}\text{G}_2)^3/2$ 18 $d(^{\circ}\text{F}_1)^3/2$ 11 $d(^{\circ}\text{F}_3)^5/2$ 7
4f*~5d	3.5	107500.00(23)	107523.7	-24	4	1.140 $d({}^{\circ}F){}^{\circ}F$ 12 $d({}^{\circ}F){}^{\circ}D$ 10 $d({}^{\circ}G){}^{\circ}H$ 9 $d({}^{\circ}G_4)3/2$ 8 $d({}^{\circ}F_3)3/2$ 7 $d({}^{\circ}F_4)5/2$ 7

TABLE 5.3 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$g_{Land\acute{e}} Comp1\%$	LS percentage c Comp2 %	composition Comp3%	JJ percentage composition Comp1% Comp2 % Comp3%
$4f^{10}5d$	2.5	-	107541.2	-		$1.109 \ d(^{5}G)^{6}D$	$18 d(^{5}F)^{4}F$	$9 d(^{5}G)^{6}G$	$8 d(^{5}G_{4})5/2 12 d(^{5}G_{3})3/2 7 d(^{5}F_{2})3/2 5$
$4f^{10}5d$	6.5	-	107544.2	-		$1.096 \ d(^{5}G)^{6}I$	23 $d({}^{5}F)^{4}H$	$8 d({}^{5}G)^{4}I$	$6 d({}^{5}G_{5})3/2 21 d({}^{5}G_{4})5/2 5 d({}^{5}F_{5})3/2 5$
$4f^{10}5d$	5.5	107671.45(21)	107618.0	53	5	$1.133 \text{ d}^{(3}\text{K})^{2}\text{H2}$	$11 \ d({}^{5}F)^{4}H$	$11 d({}^{5}G){}^{6}G$	$7 d({}^{3}K_{8})5/2 = 8 d({}^{5}F_{4})3/2 = 6 d({}^{5}F_{5})5/2 = 6$
$4f^{10}5d$	1.5	-	107709.9	-		$0.987 \ d(^{5}F)^{4}P$	$12 d(^{3}P)^{4}D2$	$10 \ d(^{5}F)^{4}D$	$10 d({}^{5}F_{2})3/2 \ 20 d({}^{5}F_{2})5/2 \ 4 d({}^{3}P_{2})3/2 \ 4$
$4f^{10}5d$	4.5	107754.8(3)	107804.5	-50	3	$1.257 \text{ d}(^{3}\text{H})^{4}\text{F4}$	$22 d(^{3}H)^{4}F3$	$16 \ d(^{5}F)^{4}F$	$9 d(^{3}H_{6})3/2 14 d(^{3}H_{6})3/2 10 d(^{3}H_{6})5/2 6$
$4f^{10}5d$	5.5	107867.73(18)	107911.9	-44	6	$0.963 \text{ d}({}^{3}\text{K}){}^{4}\text{K}2$	$21 \text{ d}(^{3}\text{K})^{4}\text{I}2$	$14 \ d(^{3}K)^{2}H2$	$10 d(^{3}K_{7})3/2 17 d(^{3}K_{6})3/2 15 d(^{3}K_{7})5/2 7$
$4f^{10}6s$	7.5	108064.95(14)	108092.2	-27	6	$1.222 \text{ s}({}^{5}\text{I}){}^{6}\text{I}$	$68 \text{ s}({}^{5}\text{I})^{4}\text{I}$	$22 \ d(^{3}L)^{4}I$	$2 s({}^{5}I_{7})1/2 = 88 s({}^{3}K_{7})1/2 = 2 d({}^{3}L_{9})3/2 = 1$
$4f^{10}5d$	3.5	-	108122.6	-		$0.875 \ d(^{5}G)^{6}I$	$24 \ d(^{5}F)^{4}G$	$9 d(^{3}F)^{4}H4$	$7 d({}^{5}G_{2})3/2 17 d({}^{5}F_{2})3/2 10 d({}^{3}F_{2})3/2 5$
$4f^{10}5d$	4.5	-	108184.9	-		$1.095 \ d(^{5}G)^{6}I$	$28 \ d(^{5}G)^{6}G$	$8 d(^{5}G)^{6}F$	$7 d({}^{5}G_{3})3/2 20 d({}^{5}G_{4})5/2 13 d({}^{5}G_{2})5/2 4$
$4f^{10}5d$	2.5	-	108265.3	-		$0.962 \ d(^{5}G)^{6}G$	$26 d(^{3}F)^{4}F4$	$12 \ d(^{5}G)^{6}H$	$7 d({}^{5}G_{3})3/2 28 d({}^{5}G_{4})3/2 6 d({}^{3}F_{3})3/2 5$
$4f^{10}5d$	3.5	-	108290.7	-		$1.084 \ d(^{3}G)^{2}F2$	$6 d({}^{5}F)^{4}F$	$6 d(^{1}G)^{2}G4$	$6 d({}^{5}G_{4})5/2 = 5 d({}^{3}G_{5})5/2 = 4 d({}^{1}G_{4})3/2 = 3$
$4f^{10}5d$	5.5	-	108366.8	-		$1.135 \ d(^{5}G)^{6}H$	$22 \ d(^{5}G)^{4}H$	$7 d(^{3}G)^{4}G2$	$6 d({}^{5}G_{5})3/2 15 d({}^{5}G_{4})5/2 6 d({}^{3}K_{8})5/2 4$
$4f^{10}5d$	7.5	-	108388.4	-		$1.018 \ d(^{3}K)^{4}M2$	$25 \text{ d}(^{3}\text{K})^{4}\text{K}2$	$19 \text{ d}(^{3}\text{K})^{4}\text{M1}$	$5 d(^{3}K_{6})3/2 23 d(^{3}K_{7})5/2 13 d(^{3}K_{6})3/2 5$
$4f^{10}5d$	6.5	108402.77(18)	108385.1	18	5	$1.142 \ d(^{3}H)^{4}H4$	$15 \ d(^{3}H)^{4}H3$	$11 \ d(^{5}G)^{4}I$	$11 d(^{3}H_{6})5/2 10 d(^{3}H_{6})5/2 7 d(^{3}H_{6})3/2 4$
$4f^{10}5d$	9.5	-	108420.4	-		$1.079 \ d(^{3}L)^{4}L$	$20 \ d(^{3}K)^{2}M2$	$14 \ d(^{3}L)^{4}M$	$13 d(^{3}L_{9})3/2 41 d(^{3}K_{7})5/2 23 d(^{3}K_{8})5/2 2$
$4f^{10}6s$	6.5	108590.81(14)	108691.8	-101	8	$1.066 \ s(^{5}I)^{6}I$	$29 \ s(^{5}I)^{4}I$	$28 \ d(^{3}K)^{4}L2$	$11 \text{ s}(^5 \text{I}_7)1/2 55 \text{ d}(^3 \text{K}_6)3/2 9 \text{ d}(^3 \text{K}_7)5/2 4$
$4f^{10}5d$	4.5	-	108718.1	-		$1.093 \ d(^{3}K)^{4}H2$	$18 \ d(^{3}G)^{4}F2$	$7 d(^{5}G)^{6}I$	$6 d(^{3}K_{7})5/2 10 d(^{5}G_{3})3/2 5 d(^{5}G_{5})3/2 4$
$4f^{10}5d$	8.5	-	108726.5	-		$1.138 \ d(^{3}L)^{4}K$	$64 \ d(^{3}L)^{4}L$	$9 d(^{3}M)^{4}L$	$8 d(^{3}L_{9})3/2 69 d(^{3}L_{9})5/2 9 d(^{3}M_{9})5/2 3$
$4f^{10}5d$	7.5	-	109000.7	-		1.161 d(³ H) ⁴ I4	$18 d(^{3}L)^{4}I$	$17 \ d(^{5}G)^{6}I$	$11 d(^{3}H_{6})5/2 15 d(^{3}L_{9})3/2 12 d(^{3}H_{6})5/2 9$
$4f^{10}5d$	6.5	-	109050.1	-		$1.014 \ d(^{3}K)^{4}L2$	$23 \ s(^{5}I)^{6}I$	$21 \ s(^{5}I)^{4}I$	$15 \text{ s}(^5 \text{I}_7)1/2$ 33 d $(^3 \text{K}_6)3/2$ 17 d $(^3 \text{K}_6)5/2$ 5
$4f^{10}5d$	8.5	-	109067.1	-		$1.055 \text{ d}(^{3}\text{K})^{4}\text{L}2$	$33 d(^{3}K)^{4}L1$	$11 \ d(^{3}K)^{2}L2$	11 d(${}^{3}K_{7}$)5/2 48 d(${}^{3}K_{7}$)5/2 7 d(${}^{3}K_{8}$)3/2 3
$4f^{10}5d$	3.5	-	109103.7	-		$1.151 \ d({}^{5}F){}^{4}G$	$12 d({}^{5}F){}^{4}F$	$10 \ d({}^{5}G){}^{6}D$	$10 d({}^{5}G_{4})5/2 12 d({}^{5}G_{3})3/2 8 d({}^{5}F_{2})3/2 7$
$4f^{10}5d$	5.5	-	109291.1	-		$1.067 \ d(^{3}K)^{4}K2$	$9 d(^{3}F)^{4}G4$	$9 d({}^{5}F)^{4}H$	$6 d({}^{3}K_{6})3/2 12 d({}^{3}F_{4})5/2 7 d({}^{5}F_{4})3/2 2$
$4f^{10}5d$	2.5	-	109321.5	-		$0.883 \ d({}^{5}F){}^{4}F$	$13 d(^{3}F)^{4}G4$	$10 \ d({}^{5}G){}^{4}G$	$9 d({}^{5}G_{2})3/2 12 d({}^{5}F_{2})3/2 7 d({}^{3}F_{2})3/2 6$
$4f^{10}5d$	9.5	-	109312.2	-		$1.064 \ d(^{3}K)^{4}M2$	$27 \ d(^{3}L)^{2}M$	$16 d(^{3}L)^{4}M$	$15 d(^{3}L_{9})3/2 42 d(^{3}K_{7})5/2 18 d(^{3}K_{8})3/2 8$
$4f^{10}_{10}5d$	11.5	-	109322.5	-		$1.117 \ d(^{3}L)^{4}N$	$78 d(^{3}M)^{4}O$	$18 d(^{3}M)^{4}N$	$4 d(^{3}_{2}L_{9})5/2 78 d(^{3}_{2}M_{9})5/2 10 d(^{3}_{2}M_{10})3/210$
$4f^{10}5d$	4.5	-	109588.0	-		$1.121 \ d({}^{5}G){}^{6}F$	$8 d(^{3}G)^{2}G2$	$6 d(^{5}G)^{6}G$	$6 d({}^{5}G_{4})5/2 7 d({}^{3}F_{4})5/2 3 d({}^{3}G_{5})5/2 3$
$4f^{10}5d$	0.5	-	109690.5	-		$1.476 \ d({}^{5}F){}^{4}P$	$18 d(^{5}G)^{6}F$	$18 d(^{3}D)^{4}P1$	$12 d({}^{3}P_{2})3/2 9 d({}^{5}G_{3})5/2 8 d({}^{5}F_{1})3/2 7$
$4f^{10}5d$	7.5	-	109676.1	-		$0.944 \ d(^{3}K)^{4}M2$	$28 d({}^{3}K){}^{2}L2$	$19 d({}^{3}K){}^{4}K2$	10 d(${}^{3}_{F}K_{6}$)3/2 36 d(${}^{3}_{F}K_{7}$)5/2 23 d(${}^{3}_{F}K_{7}$)3/2 3
$4f^{10}5d$	4.5	-	109768.6	-		$1.082 \ d(^{5}G)^{4}G$	$14 d({}^{3}K){}^{4}H2$	9 d(⁵ G) ⁶ F	$7 d({}^{5}_{5}G_{5})5/2 14 d({}^{5}_{3}G_{3})3/2 8 d({}^{3}_{7}K_{7})5/2 5$
$4f^{10}5d$	3.5	-	109780.9	-		$0.916 \ d({}^{5}G){}^{6}I$	$25 d(^{3}G)^{2}F2$	$6 d(^{3}D)^{4}G1$	$6 d({}^{5}G_{2})3/2 19 d({}^{3}G_{5})5/2 4 d({}^{3}F_{2})3/2 3$
$4f^{10}5d$	5.5	-	109867.9	-		$1.059 \text{ d}({}^{5}\text{G}){}^{6}\text{H}$	$8 d({}^{3}K){}^{4}K2$	$7 d({}^{3}G)^{2}H2$	$6 d({}^{5}G_{4})5/2 9 d({}^{3}K_{8})5/2 4 d({}^{3}K_{6})3/2 4$
$4f^{10}5d$	1.5	-	109891.9	-		$0.969 \ d(^{3}F)^{4}F$	$17 d(^{3}D)^{4}S1$	$10 \ d(^{3}P)^{4}F2$	$7 d({}^{3}D_{3})3/2 11 d({}^{3}F_{2})5/2 = 6 d({}^{5}F_{3})5/2 = 5$
$4f^{10}5d$	6.5	-	109919.4	-		$1.052 \ d({}^{3}K){}^{2}K2$	$13 d(^{3}K)^{4}L2$	$8 d(^{2}G)^{4}I$	$8 d({}_{2}^{3}K_{6})3/2 \ 16 d({}_{2}^{3}K_{7})5/2 \ 9 d({}_{2}^{5}G_{5})3/2 \ 3$
$4f^{10}5d$	2.5	-	110045.4	-		$1.159 \ d({}^{5}G){}^{6}F$	20 d(⁵ D) ⁶ F	$9 d({}^{3}G){}^{4}D2$	$8 d({}^{\circ}_{2}G_{4})3/2 7 d({}^{\circ}_{2}G_{3})5/2 6 d({}^{\circ}_{2}G_{2})5/2 5$
$4f^{10}5d$	3.5	-	110051.7	-		$1.089 \ d({}^{5}F){}^{6}F$	$8 d(^{3}F)^{4}G4$	$8 d({}^{3}G){}^{4}F2$	$4 d({}_{2}^{\circ}F_{3})3/2 4 d({}_{2}^{\circ}F_{2})5/2 3 d({}_{2}^{\circ}F_{4})3/2 3$
$4f^{10}5d$	4.5	-	110574.8	-		$1.162 \ d({}^{3}G){}^{4}F$	$32 d(^{3}H)^{2}G4$	$8 d({}^{3}G){}^{4}G$	$4 d({}^{3}G_{6})5/2 28 d({}^{3}G_{6})3/2 5 d({}^{3}H_{6})5/2 5$
$4f^{10}5d$	5.5	110614.87(23)	110586.8	28	5	$1.080 \ d({}^{5}G){}^{6}G$	$15 d(^{3}H)^{2}H4$	$7 d({}^{3}K){}^{2}H2$	$7 d({}^{\circ}_{2}G_{5})5/2 = 6 d({}^{\circ}_{2}K_{8})5/2 = 5 d({}^{\circ}_{2}G_{6})3/2 = 4$
$4f^{10}5d$	7.5	-	110706.6	-		$1.157 \ d({}^{3}G){}^{4}I$	$38 d(^{3}G)^{0}I$	$9 d({}^{3}L){}^{4}I$	$8 d({}^{3}_{9}G_{5})5/2 23 d({}^{3}_{9}G_{6})3/2 12 d({}^{3}_{2}G_{6})5/2 11$
$4f^{10}5d$	8.5	-	110742.0	-		$1.181 \ d(^{3}H)^{4}K4$	$34 d(^{3}H)^{4}K3$	$26 d({}^{3}G){}^{6}I$	$12 d({}^{3}H_{6})5/2 \ 34 d({}^{3}H_{6})5/2 \ 26 d({}^{3}G_{6})5/2 \ 12$
$4f^{10}5d$	2.5	-	110743.4	-		$1.218 \ d({}^{3}_{E}G)^{4}D$	$10 d({}^{3}F)^{4}D4$	$8 d(^{3}D)^{4}G1$	$4 d({}_{2}^{\circ}G_{5})5/2 5 d({}_{2}^{\circ}D_{1})3/2 4 d({}_{2}^{\circ}G_{4})3/2 3$
$4f^{10}5d$	6.5	-	110820.8	-		$1.181 \ d(^{5}G)^{6}H$	$26 d(^{3}G)^{4}H$	$16 d({}^{3}L){}^{4}I$	$9 d({}^{3}G_{5})5/2 \ 34 d({}^{3}G_{6})5/2 \ 14 d({}^{3}L_{8})3/2 \ 4$
4f ¹⁰ 5d	1.5	-	110965.2	-		$0.881 \text{ d}(^{3}\text{S})^{4}\text{D}$	$10 d(^{3}G)^{6}G$	$10 d(^{3}G)^{6}F$	$8 d({}^{3}G_{2})5/2 10 d({}^{3}S_{2})5/2 8 d({}^{3}G_{2})3/2 5$
$4f^{10}5d$	5.5	110962.71(18)	110943.2	20	6	$0.999 \text{ d}({}^{3}\text{K}){}^{2}\text{I2}$	$18 d({}^{3}K){}^{4}I2$	$10 d({}^{3}K){}^{4}H2$	$8 d({}^{3}K_{7})5/2 \ 34 d({}^{3}K_{6})3/2 \ 2 d({}^{3}K_{6})3/2 \ 2$
4f ¹⁰ 5d	4.5	-	111023.8	-		$1.123 \ d(^{3}D)^{4}G1$	$12 d(^{3}G)^{4}H$	$10 d(^{3}P)^{4}F2$	$9 d(^{\circ}P_2)5/2 = 9 d(^{\circ}D_2)5/2 = 8 d(^{\circ}D_2)5/2 = 5$
4f ¹⁰ 5d	6.5	-	111163.8	-		$1.089 \ d({}^{3}K){}^{4}I2$	14 d(⁵ G) ⁶ H	$10 d({}^{3}K){}^{4}K2$	$8 d({}^{\circ}K_{6})5/2 12 d({}^{\circ}K_{7})5/2 11 d({}^{\circ}G_{5})5/2 5$
4f ¹⁰ 5d	1.5	-	111351.5	-		$1.116 \ d({}^{9}_{E}G){}^{6}_{A}G$	$22 d(^{5}G)^{0}D$	$12 d(^{3}D)^{4}P1$	11 d(${}^{\circ}G_3$)5/2 21 d(${}^{\circ}D_3$)3/2 13 d(${}^{\circ}G_2$)3/2 10
$4f^{10}5d$	5.5	-	111463.8	-		$1.072 \ d(^{3}G)^{4}G$	$13 d(^{3}G)^{4}I$	11 d(³ G) ⁴ H	$7 d({}^{\circ}G_4)5/2 9 d({}^{\circ}G_3)5/2 7 d({}^{\circ}G_5)3/2 7$
$4f^{10}5d$	3.5	-	111490.1	-		$1.153 \ d({}^{5}_{E}G){}^{4}_{2}D$	$20 \ d(^{\circ}G)^{6}G$	11 d(^o G) ⁶ F	$7 d({}_{2}^{\circ}G_{6})5/2 14 d({}_{2}^{\circ}G_{4})3/2 8 d({}_{2}^{\circ}G_{3})5/2 7$
$4f^{10}5d$	2.5	-	111572.9	-		0.920 d(⁵ G) ⁶ H	19 d([°] G) [°] D	11 d(³ F) ⁴ G	$7 d({}^{\circ}G_2)5/2 12 d({}^{\circ}G_2)3/2 7 d({}^{\circ}G_4)5/2 7$

TABLE 5.3 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	g_{Land}	$e^{\acute{e}}Comp1\%$	LS percentage of Comp2 %	composition Comp3%	J. Comp1 %	J percentage con Comp2	nposition % Comp3%
$4f^{10}5d$	7.5	_	111712.2	-		1.146	d(⁵ G) ⁶ H	$12 \ d(^{5}G)^{6}I$	$12 \ d(^{3}H)^{2}K4$	$10 \ d(^{5}G_{5})5/2$	$18 \ d(^{5}G_{6})5/2$	7 d(³ G ₅)5/2 5
$4f^{10}5d$	4.5	-	111749.1	-		1.095	$d(^{5}G)^{4}G$	$8 d({}^{5}G)^{4}F$	$7 d(^{3}K)^{4}I2$	$6 d(^{5}G_{5})5/2$	$11 \ d(^{5}G_{5})3/2$	$10 d(^{3}K_{6})5/2 4$
$4f^{10}5d$	11.5	-	111729.4	-		1.053	$d(^{3}M)^{2}O$	$62 d(^{3}M)^{4}O$	$26 \ d(^{3}L)^{4}N$	$8 d(^{3}M_{10})3/2$	$83 d(^{3}L_{9})5/2$	$8 d(^{3}M_{10})5/26$
$4f^{10}5d$	6.5	111812.5(4)	111827.7	-15	2	1.159	$d(^{5}G)^{4}H$	$37 \ d(^{3}G)^{4}H2$	$7 d({}^{5}G){}^{4}I$	$5 d(^{5}G_{5})3/2$	$15 \ d(^{5}G_{6})3/2$	$12 d({}^{5}G_{6})5/2 11$
$4f^{10}5d$	0.5	-	111837.4	-		1.757	$d(^{5}G)^{6}D$	$34 d({}^{5}F){}^{6}F$	$9 d(^{3}D)^{4}P1$	$5 d(^{5}G_{3})5/2$	$18 \ d(^{5}G_{2})5/2$	$16 d(^{5}G_{2})3/2 5$
$4f^{10}5d$	3.5	-	111854.2	-		1.097	$d({}^{5}G){}^{6}G$	$9 d(^{5}G)^{6}I$	$8 d({}^{5}G){}^{6}H$	$6 d(^{5}G_{2})3/2$	$8 d(^{5}G_{4})3/2$	$7 d(^{5}G_{5})5/2 7$
$4f^{10}5d$	1.5	-	111953.7	-		1.411	$d({}^{5}G){}^{6}D$	$26 d(^{3}D)^{4}S1$	$10 \ d(^{3}P)^{4}F2$	$8 d({}^{5}G_{3})5/2$	$11 \ d({}^{5}G_{2})5/2$	$8 d({}^{5}G_{4})5/2 4$
$4f^{10}5d$	10.5	-	112079.1	-		1.123	$d(^{3}L)^{4}M$	$79 \ d(^{3}L)^{2}N$	$9 d(^{3}M)^{4}N$	$5 d(^{3}L_{9})5/2$	$85 d(^{3}M_{9})5/2$	$7 d(^{3}L_{9})3/2 2$
$4f^{10}5d$	4.5	-	112108.4	-		1.098	$d(^{5}G)^{4}F$	$7 d(^{3}H)^{2}G3$	$7 d(^{3}H)^{2}G4$	$6 d(^{3}H_{6})5/2$	$6 d({}^{5}G_{6})5/2$	$4 d(^{3}K_{6})5/2 4$
$4f^{10}5d$	1.5	-	112232.2	-		1.122	$d(^{3}D)^{4}P1$	$9 d({}^{5}G){}^{6}F$	$8 d(^{3}P)^{4}P2$	$8 d(^{3}D_{3})3/2$	$4 d(^{3}D_{1})5/2$	$3 d({}^{5}G_{2})5/2 3$
$4f^{10}5d$	3.5	-	112281.9	-		0.893	$d(^{3}K)^{4}H2$	$31 d(^{3}K)^{4}H1$	$6 d(^{3}G)^{4}H2$	$5 d(^{3}K_{6})5/2$	$31 \ d(^{3}K_{6})5/2$	$6 d(^{3}G_{3})3/2 3$
$4f^{10}_{10}5d$	2.5	-	112289.6	-		1.151	$d({}^{5}G){}^{6}D$	$17 \ d({}^{5}G){}^{6}G$	$7 d({}^{5}F){}^{4}G$	$6 d(^{5}_{2}G_{3})5/2$	$9 d({}^{5}_{2}G_{4})3/2$	$8 d(^{5}_{2}G_{5})5/2 4$
$4f^{10}5d$	4.5	-	112415.4	-		1.036	$d(^{3}K)^{4}I2$	$13 d(^{3}G)^{4}G$	$7 d(^{3}H)^{2}G4$	$5 d(^{3}K_{6})3/2$	$12 d({}^{3}K_{6})5/2$	$5 d(^{3}H_{6})5/2 3$
$4f^{10}_{10}5d$	8.5	112331.4(6)	112422.4	-91	1	1.154	$d(^{3}M)^{4}K$	$69 d(^{3}M)^{4}L$	$4 d(^{3}L)^{4}L$	$4 d(^{3}M_{10})3/2$	$63 d(^{3}M_{10})5/2$	$10 d(^{3}H_{6})5/2 = 3$
$4f^{10}5d$	2.5	-	112517.0	-		1.068	$d({}^{3}F){}^{4}F4$	$6 d({}^{3}G)^{2}D2$	$6 d({}^{3}G){}^{4}G2$	$5 d({}^{3}F_{3})3/2$	$5 d(^{3}G_{5})5/2$	$3 d(^{3}G_{4})3/2 3$
$4f^{10}5d$	9.5	-	112538.5	-		1.017	$d({}^{3}L)^{4}N$	$34 d({}^{3}L){}^{4}L$	$23 d(^{3}M)^{4}O$	$12 d(^{3}L_{8})3/2$	$39 d(^{3}L_{9})5/2$	$19 d(^{3}M_{8})3/2 10$
$4f^{10}6s$	5.5	-	112563.6	-		1.022	s(^o I) ^o I	$67 \text{ s}({}^{5}\text{I}){}^{4}\text{I}$	$21 \text{ s}(^{3}\text{H})^{4}\text{H}4$	$1 s({}^{\circ}I_{6})1/2$	$81 \ s(^{5}I_{5})1/2$	$7 s(^{3}H_{6})1/2 2$
$4f^{10}5d$	5.5	112645.46(14)	112581.5	64	6	1.075	$d({}^{3}F){}^{4}G4$	$12 \ d(^{5}D)^{6}F$	$11 d({}^{2}G){}^{4}I$	$7 d({}^{3}F_{4})5/2$	$9 d({}_{E}^{3}D_{4})5/2$	$7 d(^{3}H_{4})3/2 4$
$4f^{10}_{10}6s$	6.5	112700.02(14)	112672.3	28	8	1.131	$s({}^{3}I){}^{4}I$	$49 s({}^{5}I){}^{6}I$	41 s(³ H) ⁴ H4	$2 s({}^{3}I_{6})1/2$	$84 s(^{3}I_{7})1/2$	$5 s(^{3}H_{6})1/2 2$
4f ¹⁰ 5d	7.5	112845.3(4)	112982.8	-137	2	1.057	$d(^{3}L)^{4}I$	$8 d(^{3}K)^{2}L2$	$8 d({}^{3}K)^{4}L2$	$7 d({}^{3}L_{9})5/2$	$20 d({}^{3}K_{6})5/2$	$12 d(^{3}L_{8})5/2 2$
4f ¹⁰ 5d	3.5	-	112919.1	-		1.111	$d(^{3}G)^{4}D$	$10 d(^{3}D)^{4}F1$	7 d(³ G) ⁶ F	$7 d({}^{3}G_{6})5/2$	$9 d({}^{3}G_{3})5/2$	$7 d({}^{3}F_{1})5/2 3$
4f ¹⁰ 5d	0.5	-	112981.7	-		0.567	$d(^{3}P)^{4}D2$	$30 d(^{3}D)^{4}D1$	$13 d(^{3}F)^{6}F$	$7 d(^{3}P_{1})3/2$	$22 d(^{3}P_{2})3/2$	$4 d(^{3}D_{1})3/2 4$
$4f^{10}5d$	2.5	-	113000.1	-		1.315	d(³ D) ⁴ P1	$21 d(^{3}F)^{4}P4$	$9 d(^{3}D)^{4}P2$	$7 d(^{3}D_{3})3/2$	$14 d(^{3}D_{3})5/2$	$9 d({}^{3}F_{4})3/2 4$
4f ¹⁰ 5d	6.5	-	113334.3	-		1.002	$d(^{3}K)^{2}K2$	$14 d(^{3}K)^{4}K2$	$10 d({}^{3}K){}^{4}L2$	$9 d({}^{3}K_{6})5/2$	$31 d(^{3}L_{9})5/2$	$3 d(^{3}M_{8})3/2 3$
4f ¹⁰ 5d	9.5	-	113339.6	-	_	1.123	d(³ M) ⁴ L	$53 d(^{3}M)^{4}M$	$12 d(^{5}L)^{2}M$	$11 d(^{3}M_{10})3/2$	$62 d(^{3}L_{9})5/2$	$19 d(^{3}M_{10})5/26$
4f ¹⁰ 5d	3.5	113372.2(4)	113455.5	-83	2	1.218	$d(^{3}D)^{4}D1$	$13 d(^{6}G)^{4}G$	$6 d(^{6}G)^{4}D$	$4 d(^{3}D_{3})5/2$	$7 d(^{6}G_{6})5/2$	$4 d(^{3}D_{2})5/2 3$
4f ¹⁰ 5d	6.5	-	113513.2	-		1.072	$d(^{\circ}L)^{-1}$	$29 d(^{\circ}G)^{4}$	$10 d(^{\circ}M)^{-1}K$	$10 \ d(^{\circ}L_{9})5/2$	$25 d(^{\circ}M_9)5/2$	$6 d(^{\circ}L_8)5/2 = 5$
4f ¹⁰ 5d	5.5	-	113548.3	-		1.116	$d(^{\circ}G)^{\circ}I$	$15 d(^{\circ}G)^{-1}$	$13 d(^{\circ}G)^{+}G$	$11 \text{ d}(^{\circ}\text{G}_3)5/2$	$31 d(^{\circ}G_6)5/2$	$7 d(^{\circ}G_{6})3/2 4$
4f ¹⁰ 5d	9.5	-	113603.6	-		1.053	$d(^{\circ}L)^{+}L$	$22 d(^{\circ}M)^{4}L$	$19 d(^{\circ}M)^{2}D$	$16 d(^{\circ}L_{9})5/2$	$35 d(^{\circ}M_8)3/2$	$13 d(^{\circ}M_{10})3/210$
41 ⁻ 5d	2.5	-	113690.4	-		0.920	$d(^{\circ}P)^{-}F2$	$15 d(^{\circ}H)^{\circ}G4$ 10 $1(^{3}K)^{2}10$	$5 d(^{\circ}G)^{-}F^{2}$	$5 d(^{\circ}P_1)3/2$	$7 d(^{\circ}P_2)3/2$	$3 d(^{\circ}P0)5/2 3$
41 50	0.0 0 E	-	113759.4	-		1.063	$d(^{-}K) 12$ J(3T)4T	$12 d(^{-}K) 12$ 20 $J(^{3}I)^{4}M$	$12 d(^{\circ}D)^{\circ}F$ 10 $d(^{3}T)^{2}T$	$10 d(^{-}K_{6})5/2$	$31 d(^{1}D_{4})5/2$	$(d(^{2}D_{3}))/2 = 0$
41 50	0.0 0 E	-	113732.0	-		0.079	$(^{-}L)^{-}L$	$30 d(^{-}L) M$	$12 d(^{-}L) L$ $17 d(^{3}V)^{2}M1$	$11 d(^{-}L_{9})5/2$	$40 \text{ d}(^{-}\text{L}_8)3/2$	$12 d(^{-}L_{9})3/2 = 3$
41 50 410 E J	0.0	-	113977.4	-		1.009	d(K) M2	$10 J(5C)^{6}D$	1/ d(K) M1 $10 d(^{3}D)^{2}D2$	$\frac{10 \text{ d}}{7 \text{ d}} \frac{(3 \text{ R}_6) 3/2}{3 \text{ c}}$	17 + (5C) + (2)	$13 \text{ u}(\text{ K}_8)3/2 2$
41 50 4f105d	1.5	-	114011.1	-		1.008	d(F) F2	18 d(G) D 12 d(3E) 4E4	$10 d(F) F_2$ $0 d(5D)^{6}F$	$7 d(F_1)3/2$ $7 d(^{3}K_{-})2/2$	7 d(3E) 5/2	$4 d(\pi_4) 5/2 4$ $5 d(^3K_{-}) 5/2 5$
41 50	4.5	-	114010.1	-		1.000	$d(3I)^{4}K$	13 d(1) 14 $32 d(^{3}K)^{2}$	$\frac{3}{16} \frac{3}{4} \frac{3}{1} \frac{4}{1}$	$^{7} d(K_{6})^{5/2}$	$25 d(^{3}I_{-})^{2}/2$	$18 d(^{3}I_{-})5/2 = 5$
41 50	1.5	-	114040.0	-		0.062	d(L) R	$18 d(^{5}C)^{4}I$	$16 d(^{1}C)^{2}H_{4}$	$6 d(^{5}C_{0})5/2$	23 d(18)3/2	18 d(19)3/2 3
41 50 4f ¹⁰ 5d	4.5	-	114005.9	-		1 117	$d(^{5}C)^{6}H$	$^{18} d(^{3}E)^{4}D4$	$7 d(^{3}K)^{4}H_{2}$	$6 d(^{3}K_{a})5/2$	$6 d(^{5}G_{2})^{3/2}$	$3 d(^{3}E_{4})5/2 = 3$
41 5d	2.5	-	114305.0	-		1 100	$d(^{3}D)^{4}F1$	$11 d(^{3}D)^{2}D1$	$7 d(^{3}D)^{4}D1$	$7 d(^{3}D_{0})^{3/2}$	$17 d(^{3}D_{2})5/2$	$4 d(^{3}D_{2})5/2 = 3$
41 50 4f10 5d	12.5	-	114395.0	-		1.109	$d(^{3}M)^{4}O$	$\frac{11 \text{ d}(D) \text{ D1}}{07 \text{ d}(^1 \text{N})^2 \text{ O}}$	2	$d(^{3}M_{10})5/2$	$17 d(D_3)5/2$ $07 d(^1N_{10})5/2$	4 u(D2)5/2 - 5
41 50 4f ¹⁰ 5d	12.5	-	114304.4	-		1.110	$d(^{5}C)^{6}D$	$\frac{97 \text{ d}(^{3}\text{F})^{2}\text{P2}}{10 \text{ d}(^{3}\text{F})^{2}\text{P2}}$	14 d(³ P) ⁴ P9	$0 d({}^{5}C_{2})5/2$	$\frac{37}{4} \frac{d(^{3}P_{2})3/2}{d(^{3}P_{2})3/2}$	$7 d(^{3}F_{2})3/2 7$
41 5d	4.5	-	114442.0	-		0.008	$d(^{3}K)^{4}12$	$18 d(^{3}K)^{4}H^{2}$	$12 d(^{3}K)^{2}H^{2}$	$7 d(^{3}K_{a})5/2$	$^{14} d(^{1}2)5/2$ $^{35} d(^{3}L_{-})5/2$	$6 d({}^{5}C_{2})5/2 = 3$
$_{4f^{10}5d}$	5.5		114494.2 114644.7			1 102	$d(^{5}G)^{4}H$	$15 d(^{5}G)^{6}I$	$6 d(^{3}K)^{4}I^{2}$	$5 d({}^{5}G_{r})5/2$	$7 d({}^{5}G_{a})5/2$	$6 d(^{5}G_{r})^{3/2} = 5$
$4f^{10}5d$	3.5	_	114681.0	_		1.079	$d(^{5}G)^{4}F$	$7 d(^{3}P)^{4}F2$	$6 d(^{3}H)^{4}F3$	$6 d(^{3}P_{1})5/2$	$3 d(^{3}F_{4})5/2$	$3 d({}^{5}G_{5})5/2 = 3$
4f ¹⁰ 5d	2.5	-	114792.2	-		1 090	$d(^{5}F)^{4}F$	$7 d(^{3}P)^{2}D^{2}$	$6 d({}^{5}G)^{4}D$	$5 d(^{5}G_{r})5/2$	$7 d({}^{5}S_{2})5/2$	$3 d(^{3}P_{2})5/2 = 3$
$4f^{10}5d$	6.5	-	114801.3	_		1.066	$d(^{3}F)^{4}H4$	$12 d(^{5}G)^{4}I$	$7 d(^{3}K)^{2}K^{2}$	$7 d({}^{3}F_{4})5/2$	$12 d({}^{1}G_{4})5/2$	$5 d(^{3}H_{4})5/2 = 3$
$4f^{10}5d$	3.5	-	114838.0	-		0.978	d(³ K) ⁴ H2	$12 d(^{5}D)^{6}F$	$8 d(^{5}G)^{4}H$	$6 d(^{3}K_{e})5/2$	$12 d(^{3}K_{e})5/2$	$4 d({}^{5}G_{2})5/2 2$
$4f^{10}5d$	9.5	_	114996.0	_		0.979	$d(^{1}L)^{2}N^{2}$	$34 d(^{3}M)^{4}O$	$16 d(^{3}L)^{4}N$	$14 d(^{1}L_{e})3/2$	$29 d(^{3}L_{2})3/2$	$15 d(^{3}M_{\odot})3/2 13$
$4f^{10}5d$	4.5	_	115117.8	-		1.036	s(⁵ I) ⁶ I	$26 d(^{3}D)^{2}G1$	$9 d(^{5}G)^{4}F$	$7 s(^{5}I_{5})1/2$	$19 d(^{3}D_{3})3/2$	$13 \text{ s}(^{5}\text{I}_{4})1/2$ 7
$4f^{10}5d$	1.5	-	115206.2	-		0.749	$\dot{d(^3P)^4F2}$	$11 \ d(^{5}G)^{6}G$	$10 \ d(^{3}P)^{4}P2$	$7 d(^{3}P_{1})3/2$	$11 \ d(^{5}G_{3})5/2$	$9 d(^{5}G_{2})5/2 4$

TABLE 5.3 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$g_{Land\acute{e}} \qquad {f LS \ percentage} \ Comp {\it K} \qquad Comp 2 \ {\it K}$	composition CompX	JJ percentage c Comp1 % Comp2	omposition % Comp3%
4f ¹⁰ 6s	4.5	_	115247.7	-		$0.944 \text{ s}(^{5}\text{I})^{6}\text{I}$ 53 s $(^{5}\text{I})^{4}\text{I}$	$5 d(^{3}D)^{2}G1$	$5 s(^{5}I_{5})1/2 = 55 s(^{5}I_{4})1/2$	$3 d(^{3}D_{2})3/2 = 2$
$4f^{10}5d$	7.5	-	115288.0	-		$1.027 \text{ d}(^{3}\text{M})^{2}\text{K}$ 17 $\text{d}(^{1}\text{L})^{2}\text{K}2$	$12 d(^{3}K)^{2}L2$	$11 d(^{1}L_{8})3/2 = 18 d(^{3}M_{10})5$	$(2 \ 11 \ d(^{3}K_{6}))5/2 \ 5$
$4f^{10}5d$	8.5	-	115420.4	-		$0.954 \text{ d}(^{3}\text{L})^{4}\text{N} = 26 \text{ d}(^{3}\text{L})^{2}\text{L}$	$13 d(^{3}M)^{4}N$	$13 d(^{3}L_{7})3/2 = 24 d(^{3}L_{8})3/2$	$21 \text{ d}(^3 \text{M}_8)3/2 8$
$4f^{10}5d$	4.5	-	115507.9	-		$0.956 \text{ d}({}^{3}\text{G}){}^{4}\text{I2}$ 15 $\text{d}({}^{3}\text{F}){}^{4}\text{H2}$	$12 \ d(^{3}F)^{4}H4$	$10 d({}^{3}G_{3})3/2 = 19 d({}^{3}F_{3})3/2$	$7 d(^{3}F_{3})3/2 = 6$
$4f^{10}5d$	5.5	-	115678.4	-		$1.047 \text{ d}(^{3}\text{L})^{4}\text{I}$ 12 d $(^{5}\text{G})^{4}\text{H}$	$9 d(^{5}G)^{6}I$	$7 d({}^{5}G_{4})3/2 = 10 d({}^{3}L_{8})5/2$	$7 d(^{1}G_{4})3/2 5$
$4f^{10}5d$	4.5	-	115850.9	-		$1.082 \text{ d}({}^{5}\text{G})^{4}\text{I}$ $7 \text{ d}({}^{5}\text{D})^{6}\text{F}$	$7 d(^{5}G)^{4}G$	$6 d(^{5}G_{2})5/2 = 5 d(^{1}G_{4})5/2$	$3 d(^{5}G_{5})5/2 = 3$
$4f^{10}5d$	2.5	-	115988.2	-		$0.992 \text{ d}({}^{5}\text{G}){}^{6}\text{H} 14 \text{ d}({}^{3}\text{P}){}^{4}\text{P}2$	$14 \ d(^{5}G)^{4}G$	$9 d(^{5}G_{3})5/2 = 10 d(^{5}G_{2})5/2$	$2 7 d(^{3}P_{1})5/2 6$
$4f^{10}6s$	5.5	115983.15(15)	115960.9	22	4	$1.015 \text{ s}(^{5}\text{I})^{4}\text{I}$ $61 \text{ s}(^{5}\text{I})^{6}\text{I}$	$18 \text{ s}(^{3}\text{H})^{4}\text{H4}$	$2 s({}^{5}I_{5})1/2 = 73 s({}^{5}I_{6})1/2$	$6 s(^{3}H_{5})1/2 4$
$4f^{10}5d$	6.5	-	116071.4	-		$1.031 \ d(^{3}L)^{2}I = 14 \ d(^{3}M)^{2}K$	$14 \ d(^{3}K)^{2}I2$	$12 d(^{3}L_{9})5/2 = 10 d(^{3}M_{8})3/2$	$2 7 d(^{3}K_{8})5/2 7$
$4f^{10}5d$	3.5	-	116091.5	-		$1.067 \text{ d}({}^{5}\text{G})^{4}\text{G}$ $13 \text{ d}({}^{3}\text{P})^{4}\text{F2}$	$10 \ d(^{3}G)^{2}G2$	$5 d(^{3}P_{1})5/2 = 5 d(^{5}G_{4})5/2$	$5 d(^{3}P_{2})3/2 4$
$4f^{10}5d$	1.5	-	116121.9	-		$1.173 \ d(^{3}P)^{4}P2 \ 12 \ d(^{3}P)^{4}D2$	$12 d(^{3}P)^{2}P2$	$11 d(^{3}P0)3/2 = 31 d(^{3}P_{1})5/2$	$6 d(^{3}P_{1})3/2 5$
$4f^{10}5d$	3.5	-	116199.2	-		$1.114 \ d({}^{5}G){}^{4}F \ 12 \ d({}^{3}D){}^{4}D1$	$8 d(^{3}G)^{4}G2$	$8 d({}^{5}_{-}G_{5})5/2 = 7 d({}^{5}_{-}G_{4})3/2$	$6 d(^{3}F_{2})3/2 4$
$4f^{10}5d$	2.5	-	116256.5	-		$1.090 \ d({}^{3}G){}^{4}G2 \ 13 \ d({}^{3}P){}^{4}P2$	$6 d({}^{3}F){}^{4}P3$	$5 d(^{3}G_{3})3/2 = 7 d(^{3}G_{3})5/2$	$4 d(^{3}P_{1})5/2 = 3$
$4f^{10}5d$	10.5	-	116343.9	-		$1.051 \text{ d}({}^{3}\text{L}){}^{2}\text{N} = 28 \text{ d}({}^{3}\text{M}){}^{4}\text{O}$	$20 \ d(^{3}L)^{4}N$	$19 d(^{3}L_{8})5/2 = 42 d(^{3}M_{8})5/2$	2 19 $d(^{3}K_{8})5/2$ 12
$4f^{10}5d$	1.5	-	116374.9	-		$1.082 \text{ d}({}^{5}\text{D}){}^{6}\text{F} = 13 \text{ d}({}^{5}\text{G}){}^{4}\text{F}$	$9 d({}^{5}G){}^{4}D$	$8 d({}^{5}G_{2})3/2 = 9 d({}^{5}D_{2})3/2$	$5 d({}^{5}G_{3})5/2 4$
$4f^{10}5d$	3.5	-	116554.2	-		$1.110 \text{ d}(^{5}\text{D})^{6}\text{F} = 14 \text{ d}(^{3}\text{D})^{2}\text{F1}$	$6 d(^{5}G)^{4}H$	$6 d({}^{5}G_{4})5/2 = 4 d({}^{5}D_{3})3/2$	$4 d(^{5}D_{1})5/2 4$
$4f^{10}5d$	8.5	-	116613.9	-		$0.966 \text{ d}({}^{3}\text{L}){}^{4}\text{N} = 18 \text{ d}({}^{3}\text{L}){}^{4}\text{M}$	$17 \ d(^{3}L)^{2}M$	$10 d(^{3}L_{7})3/2 = 21 d(^{3}L_{8})3/2$	$13 d(^{1}K_{7})3/2 8$
$4f^{10}5d$	5.5	-	116642.9	-		$1.083 \text{ d}({}^{3}\text{D}){}^{4}\text{G1} 17 \text{ d}({}^{3}\text{L}){}^{4}\text{I}$	$10 d(^{3}G)^{4}I$	$8 d(^{3}D_{3})5/2 = 17 d(^{3}L_{8})5/2$	$6 d(^{3}D_{3})5/2 5$
$4f^{10}5d$	2.5	-	116648.2	-		$1.281 \text{ d}({}^{3}\text{G}){}^{4}\text{D} 14 \text{ d}({}^{3}\text{F}){}^{4}\text{P3}$	$9 d({}^{3}F){}^{4}D3$	$7 d({}^{3}F_{4})3/2 = 13 d({}^{3}G_{3})3/2$	$7 d({}^{3}_{E}G_{4})5/2 5$
$4f^{10}5d$	0.5	-	116874.1	-		$1.679 \text{ d}(^{3}\text{P})^{4}\text{P2} 19 \text{ d}(^{1}\text{D})^{2}\text{S3}$	$15 d(^{3}D)^{4}P1$	$6 d(^{1}D_{2})3/2 = 18 d(^{3}P_{2})3/2$	$16 d({}^{3}G_{2})5/2 4$
4f ¹⁰ 5d	4.5	-	116884.8	-		$1.040 \text{ d}({}^{3}\text{G}){}^{2}\text{H2} = 8 \text{ d}({}^{3}\text{K}){}^{2}\text{H2}$	$7 d(^{3}D)^{2}G1$	$7 d({}^{3}K_{6})3/2 = 4 d({}^{3}D_{3})3/2$	$4 d({}^{3}G_{3})5/2 3$
4f ¹⁰ 5d	1.5	-	116918.7	-		$0.971 \text{ d}({}^{6}\text{G})^{4}\text{D} 16 \text{ d}({}^{6}\text{D})^{6}\text{F}$	$10 \ d(^{\circ}G)^{-1}F$	$7 d({}^{6}G_{4})5/2 = 13 d({}^{6}G_{3})3/2$	$9 d(^{\circ}D_2)3/2 4$
4f ¹⁰ 5d	3.5	-	116947.1	-		$0.950 \text{ d}({}^{3}\text{F})^{4}\text{H2} 12 \text{ d}({}^{3}\text{G})^{6}\text{I}$	$6 d(^{3}P)^{4}D2$	$5 d({}^{3}F_{2})3/2 \qquad 9 d({}^{3}G_{2})3/2$	$4 d({}^{3}P_{2})5/2 3$
4f ¹⁰ 5d	6.5	117050.7(3)	116991.1	60	4	$1.029 \text{ d}(^{3}\text{L})^{2}\text{I}$ $17 \text{ d}(^{3}\text{M})^{4}\text{L}$	$12 \text{ d}(^{3}\text{L})^{4}\text{I}$	$9 d({}^{3}L_{8})3/2 = 15 d({}^{3}L_{8})5/2$	$12 d(^{9}M_{8})5/2 9$
4f ¹⁰ 5d	2.5	-	117139.8	-		$1.145 \text{ d}(^{\circ}\text{G})^{4}\text{F} = 14 \text{ d}(^{\circ}\text{D})^{4}\text{PI}$	$12 d(^{\circ}D)^{2}F1$	$8 d(^{\circ}D_3)5/2 9 d(^{\circ}D_1)5/2$	$5 d(^{\circ}G_4)5/2 5$
4f ¹⁰ 5d	10.5	-	117124.9	-		$1.089 \text{ d}(^{\circ}\text{M})^{1}\text{M} 40 \text{ d}(^{\circ}\text{M})^{1}\text{N}$	$27 \text{ d}(^{\circ}\text{M})^{2}\text{N}$	$19 \text{ d}(^{\circ}\text{M}_{10})3/2 84 \text{ d}(^{\circ}\text{L}_8)5/2$	$3 d(^{\circ}M_8)5/2 2$
4f ⁻ 5d	0.5	-	117183.6	-		$0.544 \text{ d}(^{\circ}\text{D})^{\circ}\text{F} = 14 \text{ d}(^{\circ}\text{F})^{\circ}\text{D}4$	$9 d(^{3}G)^{2}D2$	$8 d(^{\circ}G_3)5/2 = 8 d(^{\circ}D_1)3/2$	$8 d(^{\circ}G_2)3/2 5$
4f ⁻ 5d	3.5	-	117197.3	-		$0.973 \text{ d}(^{\circ}\text{G})^{-}\text{H} = 16 \text{ s}(^{\circ}1)^{\circ}1$	$10 d(^{\circ}F)^{-}H2$	$5 s(^{\circ}I_4)1/2 = 10 d(^{\circ}G_3)5/2$	$d(^{\circ}G_2)5/2 = 5$
41 50 410c	4.0	-	117207.3	-		$1.110 \ d(^{-}G) \ G2 \ 14 \ d(^{-}D) \ F1$	$= -(^{3}\pi)^{4}\pi^{2}$	2 = (51) 1/2 = 77 = (311) 1/2	$= 5 - (3\pi)^{1/2} = 3$
41 0S	3.0 E E	-	117330.1	-		$1.007 + (5D)^{6}E = 20 + (3D)^{4}C1$	3 s(H) H3	5 s(14)1/2 // $5 m(14)1/2$	$3 S(\Pi_4) 1/2 = 3$
41 5d	7.5	$\frac{-}{1173843(5)}$	117441 3	57	2	1.207 d(D) F 20 d(D) G 1.082 $\text{d}(^{3}\text{M})^{4}\text{K}$ 33 $\text{d}(^{3}\text{I})^{4}\text{K}$	$13 d(31)^{4}11$	$8 d(^{3}M_{o})^{3/2}$ 15 $d(^{3}I_{o})^{3/2}$	$12 d(^{3}M_{10})5/20$
41 5d	6.5	117304.3(3) 117420.1(4)	117441.5	50	2	$1.052 \text{ d}(31)^4 \text{K}$ 8 $d(31)^4 \text{H}$	$7 d(^{1}L)^{2}I2$	$6 d({}^{1}L_{0})^{3/2} = 5 d({}^{3}L_{0})^{3/2}$	$3 d(^{3}I_{-})5/2$ 3
41 5d	1.5	11/423.1(4)	117407.0	-00	5	1.050 d(1) K = 3 d(1) H	$^{7} d(^{3}E)^{2}P^{2}$	$6 d(^{3}E_{4})5/2 = 5 d(^{5}D_{2})3/2$	3 d(17) 3/2 = 3
$4f^{10}5d$	3.5	-	117568.0	-		1.000 d(D) P = 10 d(P) P = 110 d(P) P = 100 d(P) = 100 d(P) = 100	$5 d(^{3}P)^{2}F^{2}$	$5 d(^{3}P_{1})5/2 = 7 d(^{3}P_{2})3/2$	$6 d(^{3}D_{2})3/2 = 3$
$4f^{10}5d$	10.5	_	117592.0	-		$0.997 d(^{3}M)^{4}O 49 d(^{3}L)^{4}N$	$23 d(^{3}M)^{2}O$	$20 d(^{3}M_{0})3/2 = 58 d(^{3}L_{0})5/2$	$16 d(^{3}M_{0})5/2 9$
$4f^{10}5d$	2.5	-	117649.3	-		$1.117 d^{(5D)}F = 19 d^{(3G)}F$	$9 d(^{3}P)^{4}F2$	$6 d({}^{5}D_{3})3/2 = 9 d({}^{5}D_{1})3/2$	$7 d(^{3}G_{3})5/2 4$
$4f^{10}5d$	6.5	-	117721.6	-		$0.965 d(^{3}L)^{4}K = 18 d(^{3}I)^{4}L1$	$13 d(^{3}L)^{4}L$	$9 d(^{3}L_{7})3/2 = 12 d(^{3}L_{5})3/2$	$10 d(^{3}L_{e})5/2 10$
$4f^{10}5d$	5.5	-	117797.0	-		$0.970 \text{ d}(^{3}\text{I})^{4}\text{K1} = 20 \text{ d}(^{3}\text{I})^{4}\text{K2}$	$4 d(^{1}H)^{2}I1$	$4 d(^{3}I_{5})3/2 = 13 d(^{3}I_{5})5/2$	$6 d(^{1}H_{5})3/2 = 3$
$4f^{10}5d$	8.5	-	117818.7	-		$1.048 \text{ d}(^{3}\text{M})^{4}\text{L}$ 32 $\text{d}(^{1}\text{L})^{2}\text{L}2$	$8 d(^{3}L)^{4}N$	$7 d(^{3}M_{10})5/2 18 d(^{1}L_{8})3/2$	$13 d(^{3}M_{10})3/29$
$4f^{10}5d$	2.5	-	117879.4	-		$1.124 \text{ d}({}^{5}\text{G})^{4}\text{D} 23 \text{ d}({}^{3}\text{P})^{4}\text{F2}$	$8 d(^{5}G)^{6}G$	$5 d({}^{5}G_{4})3/2 = 12 d({}^{5}G_{5})5/2$	$2 10 d(^{3}P_{1})3/2 4$
$4f^{10}5d$	5.5	-	118056.3	-		$1.047 \text{ d}(^{3}\text{I})^{4}\text{H1} = 7 \text{ d}(^{3}\text{I})^{4}\text{I1}$	$6 d(^{3}I)^{4}K1$	$5 d(^{3}I_{6})3/2 = 10 d(^{3}I_{5})3/2$	$3 d(^{3}G_{5})5/2 = 3$
$4f^{10}5d$	3.5	-	118118.2	-		$1.082 \text{ d}(^{3}\text{P})^{4}\text{F2} 14 \text{ d}(^{3}\text{D})^{2}\text{G1}$	$6 d(^{3}F)^{4}D3$	$6 d(^{3}P_{1})5/2 = 7 d(^{3}P_{2})3/2$	$6 d(^{1}D_{2})3/2 4$
$4f^{10}5d$	7.5	-	118103.2	-		$0.973 \text{ d}(^{3}\text{L})^{4}\text{L} = 30 \text{ d}(^{3}\text{L})^{4}\text{M}$	$15 \text{ d}(^{3}\text{L})^{4}\text{K}$	$8 d(^{3}L_{8})5/2 = 24 d(^{3}L_{7})3/2$	$21 \text{ d}(^{3}\text{L}_{8})3/2 = 6$
$4f^{10}5d$	4.5	-	118155.0	-		$0.963 \text{ s}({}^{5}\text{I}){}^{4}\text{I} = 11 \text{ d}({}^{5}\text{G}){}^{4}\text{H}$	$7 d(^{5}G)^{4}G$	$6 \text{ s}(^{5}\text{I}_{4})1/2 = 8 \text{ d}(^{5}\text{G}_{3})5/2$	$6 d({}^{5}G_{4})3/2 5$
$4f^{10}5d$	1.5	-	118281.1	-		$1.130 \text{ d}(^{3}\text{D})^{2}\text{P1} 15 \text{ d}(^{1}\text{D})^{2}\text{P3}$	$9 d(^{3}G)^{4}D2$	$9 d(^{3}D_{3})5/2 = 14 d(^{1}D_{2})5/2$	$7 d(^{3}D_{2})3/2 4$
$4f^{10}5d$	1.5	-	118297.0	-		$0.974 \text{ d}({}^{3}\text{P})^{2}\text{D2} 20 \text{ d}({}^{5}\text{G})^{4}\text{D}$	$11 \ d(^{5}D)^{6}F$	$7 d(^{3}P_{1})5/2 = 13 d(^{3}P_{2})5/2$	$5 d(^{3}P0)3/2 5$
$4f^{10}5d$	7.5	-	118356.0	-		$1.078 \text{ d}(^{3}\text{M})^{4}\text{K}$ 18 $\text{d}(^{3}\text{I})^{4}\text{I1}$	$14 \ d(^{3}M)^{4}L$	$12 d(^{3}M_{9})3/2 = 20 d(^{3}I_{7})3/2$	$14 \ d(^{3}M_{10})5/27$
$4f^{10}5d$	3.5	-	118443.0	-		$1.124 \text{ d}({}^{3}\text{I}){}^{2}\text{G1} 10 \text{ d}({}^{3}\text{D}){}^{4}\text{D1}$	$7 d(^{3}D)^{2}F1$	$6 d(^{3}D_{3})5/2 = 12 d(^{3}I_{5})3/2$	$5 d(^{3}I_{6})5/2 4$
$4f^{10}5d$	0.5	-	118562.4	-		$1.069 \ d(^{5}D)^{6}F \ 20 \ d(^{3}D)^{4}P1$	$11 d(^{3}G)^{4}D2$	$7 d(^{5}D_{1})3/2 = 11 d(^{3}D_{3})5/2$	$7 d(^{3}G_{3})5/2 7$

TABLE 5.3 – suite

Conf	J	E_{exp} (unc.)	E_{cal}	ΔE	N_{cl}	$g_{Land\acute{e}} Comp \%$	LS percentage of Comp2 %	composition Comp%	J Comp1 %	J percentage con Comp2	nposition % Comp¥%
$4f^{10}5d$	1.5	-	118586.1	-		$1.168 \ d(^{5}D)^{6}F$	$12 \ d(^{3}P)^{4}D2$	$8 d(^{3}G)^{4}D2$	$8 d({}^{5}G_{4})5/2$	$5 d(^{5}_{-}D_{2})3/2$	$5 d(^{5}G_{3})3/2 5$
$4f^{10}_{10}6s$	4.5	-	118697.3	-		$0.867 \text{ s}({}^{5}\text{I}){}^{4}\text{I}$	$47 \text{ s}({}^{5}\text{I}){}^{6}\text{I}$	$6 s(^{3}H)^{2}H4$	$3 s({}^{5}I_{4})1/2$	$51 \ d(^{3}_{2}L_{7})5/2$	$3 s({}^{5}I_{5})1/2 2$
$4f^{10}5d$	2.5	-	118715.9	-		$1.157 \text{ d}({}^{3}\text{P}){}^{4}\text{P2}$	$18 \text{ d}(^{3}\text{D})^{2}\text{D1}$	$6 d(^{3}P)^{2}F2$	$6 d(^{3}P_{1})5/2$	$19 d({}^{5}G_{4})5/2$	$4 d(^{5}G_{2})5/2 4$
$4f^{10}5d$	9.5	-	118707.5	-		$1.061 \ d(^{3}L)^{4}M$	$37 \text{ d}(^{3}\text{L})^{2}\text{M}$	$20 d(^{3}L)^{2}N$	$8 d(^{3}L_{8})5/2$	$59 d(^{3}I_{7})5/2$	$7 d(^{3}K_{8})5/2 6$
$4f^{10}5d$	8.5	-	118762.3	-		$1.001 \ d(^{3}L)^{4}N$	$19 d(^{3}I)^{4}L1$	$13 d(^{1}L)^{2}M2$	$10 d({}^{3}I_{7})3/2$	$17 d(^{3}L_{7})3/2$	$17 d(^{1}L_{8})3/2 = 7$
4f ¹⁰ 5d	5.5	-	118805.2	-		$1.081 \ d(^{3}G)^{4}H_{2}$	$6 d(^{3}L)^{2}I$	$6 d(^{3}G)^{2}I2$	$6 d({}^{3}G_{4})5/2$	$9 d(^{3}L_{7})3/2$	$3 d({}^{3}F_{4})3/2 3$
4f ¹⁰ 5d	6.5	-	118997.0	-		1.084 d(³ I) ⁴ H1	$11 d(^{3}L)^{2}I$	$8 d(^{3}G)^{4}I2$	$7 d(^{3}I_{7})3/2$	$13 d(^{3}L_{9})5/2$	$5 d(^{3}I_{5})3/2 5$
4f ¹⁰ 5d	10.5	-	118997.7	-		1.030 d(¹ L) ² N2	$44 d(^{3}M)^{2}O$	$27 \text{ d}(^{3}\text{L})^{2}\text{N}$	$8 d(^{1}L_{8})5/2$	44 d(${}^{3}M_{8}$)5/2	$18 d(^{3}L_{8})5/2 14$
4f ¹⁰ 5d	2.5	-	119144.2	-	_	1.080 d(°D)°F	$13 d(^{\circ}G)^{-1}F$	$6 d(^{\circ}D)^{\circ}D$	$6 d(^{\circ}D_3)3/2$	$10 d(^{\circ}G_5)5/2$	$3 d(^{\circ}D_4)3/2 = 3$
$4f^{10}6s$	5.5	119203.1(4)	119229.1	-26	3	$1.188 \text{ s}(^{6}\text{F})^{6}\text{F}$	32 d(⁵ L) ⁴ l	$8 d({}^{5}F)^{4}H4$	$4 s({}^{6}F_{5})1/2$	$32 d(^{5}L_{8})5/2$	$5 s(^{5}G_{5})1/2 4$
41 ⁻⁰ 5d	4.5	-	119225.6	-		$1.160 \ d(^{\circ}D)^{-}F1$	$15 d(^{\circ}D)^{\circ}D$	$12 d(^{\circ}G)^{-1}$	$10 d(^{\circ}D_3)5/2$	$11 d(^{\circ}G_2)5/2$	$6 d(^{\circ}D_4)5/2 5$
4f ¹⁰ 5d	6.5	-	119232.2	-		1.040 d(°I) ⁺ KI	$16 d(^{-}L)^{-12}$	$8 d(^{\circ}1)^{-11}$	$8 d(^{\circ}I_{6})3/2$	$17 \text{ d}(^{+}\text{L}_{8})3/2$	$6 d(^{\circ}1_7)3/2 4$
41-050	3.5	-	119235.7	-		$1.093 \text{ d}(^{\circ}\text{D})^{\circ}\text{F}$	$7 d(^{\circ}G)^{-}H2$	$5 d(^{\circ}D)^{2}D1$	$4 d(^{\circ}G_3)3/2$	$3 d(^{-}H_5) 5/2$	$2 d(^{\circ}D_3)5/2 2$
41 50	11 5	-	119288.7	-		$0.944 \text{ d}(^{-}\text{L}) \text{ M}$	$28 d(^{-1}) L1$	$16 d(^{-}L) L$	$10 \ d(^{-}L_{7})3/2$	$35 d(^{-1}6)3/2$	$20 \text{ d}(^{-1}6)5/2 = 3$
41 5d	11.5	-	119280.7	-		1.126 d('M) N	$92 a(^{-}M) 0$	$2 d(^{-}L) N$ c J(3E)4II4	$2 d(M_{10}) 5/2$ 5 r(5E) 1/2	$42 = (^{3}C) \cdot 1/2$	$4 d(^{-}M_{9})5/2 3$
41 0s	0.0 4 5	-	119324.7	-		1.239 S('F)'FD 1.050 d(⁵ D) ⁶ E	$43 s(^{3}G) G_{2}$	$7 (3 \pi)^4 \pi$	$3 s(^{7}F_{5})1/2$	$43 \text{ s}(^{-}\text{G5})1/2$	$2 d({}^{5}T) 2/2 2$
41 50 4f ¹⁰ 5d	4.5	-	110255.2	-		1.050 d(D) F	3 d(1) 11 16 d(5D)6E	$11 d(^{3}E)^{4}D^{2}$	4 d(15)3/2 6 $d(^{3}C_{-})5/2$	4 d(15)5/2 16 $d(^{3}C_{-})5/2$	$6 d(^{5}D_{4})^{3/2}$
41 5d	5.5	-	119355.5	-		$1.042 d(^{5}C)^{4}H$	$0 d(^{3}C)^{4}12$	$6 d(^{5}C)^{4}I$	$6 d(^{5}G_{4})^{3/2}$	$6 d(^{5}C_{2})5/2$	$5 d(^{3}I_{r})^{3/2} = 3$
$4f^{10}5d$	4.5		119419.0	_		$0.992 s(^{5}I)^{4}I$	$14 d(^{3}K)^{2}H^{2}$	$6 d(^{3}D)^{4}F1$	$5 s(^{5}L)1/2$	$10 d(^{3}L_{\pi})5/2$	$4 d(^{3}D_{0})5/2 4$
$4f^{10}5d$	2.5		119505.1 119572.4	_		$1149 d(^{3}P)^{4}F^{2}$	$9 d(^{3}G)^{4}D2$	$^{0} d(^{3}P)^{4}D^{2}$	$\frac{3}{3} \frac{3}{14} \frac{1}{2}$	$8 d(^{3}P_{1})3/2$	$7 d(^{3}G_{4})5/2 = 3$
$4f^{10}5d$	6.5	-	119639.0	-		1.149 d(1) 12 $1.031 \text{ d}(^{3}\text{M})^{4}\text{K}$	$17 d(^{3}L)^{4}I$	$6 d(^{3}L)^{4}L$	$6 d(^{3}M_{0})5/2$	$10 d(^{1}L_{e})3/2$	$4 d(^{3}M_{e})^{3/2} 4$
$4f^{10}5d$	2.5	-	119666 1	-		$1.071 d(^{5}G)^{4}G$	$19 d(^{5}D)^{6}P$	$10 d(^{3}G)^{2}F2$	$5 d(^{5}G_{2})5/2$	$7 d({}^{5}G_{2})3/2$	$6 d(^{5}D_{4})3/2 4$
$4f^{10}5d$	8.5	-	119712.3	-		$1.034 \text{ d}(^{3}\text{M})^{4}\text{L}$	$^{10} d(^{3}M)^{4}M$	$12 d(^{1}L)^{2}M2$	$11 d(^{3}M_{0})3/2$	$21 d(^{1}L_{8})3/2$	$7 d(^{3}M_{10})5/25$
$4f^{10}5d$	3.5	-	119739.1	-		$1.218 \text{ d}(^{3}\text{G})^{4}\text{F2}$	$10 \text{ d}(^{3}\text{F})^{4}\text{D3}$	$8 d({}^{3}F){}^{4}D4$	$6 d({}^{3}F_{4})3/2$	$9 d({}^{3}G_{4})5/2$	$4 d({}^{3}F_{4})5/2 = 3$
$4f^{10}5d$	5.5	-	119903.8	-		$1.059 \text{ d}(^{3}\text{I})^{4}\text{I}1$	$10 \ d(^{5}D)^{4}G$	$7 d(^{3}L)^{4}K$	$7 d(^{3}L_{7})5/2$	$5 d(^{5}D_{4})3/2$	$4 d(^{3}I_{6})3/2 4$
$4f^{10}5d$	4.5	-	120004.5	-		$1.080 \ d(^{3}I)^{4}I1$	$12 \ d(^{5}D)^{6}F$	$9 d(^{3}P)^{4}F2$	$6 d(^{3}I_{5})3/2$	$6 d(^{3}P_{2})5/2$	$6 d(^{3}I_{5})5/2 5$
$4f^{10}5d$	5.5	-	120009.5	-		$1.125 \ d(^{3}I)^{4}G1$	$24 \ d(^{3}I)^{4}G2$	$7 d(^{3}I)^{4}H1$	$6 d(^{3}I_{7})3/2$	$26 d(^{3}M_{8})5/2$	$6 d(^{3}I_{7})3/2 5$
$4f^{10}5d$	1.5	-	120018.7	-		$1.095 \ d(^{3}P)^{2}D2$	$9 d(^{3}F)^{2}D2$	$7 d({}^{3}F){}^{4}D2$	$7 d(^{3}F_{2})5/2$	$7 d(^{3}P_{2})3/2$	$5 d(^{3}P0)3/2 5$
$4f^{10}5d$	6.5	-	120110.6	-		$0.969 \text{ d}(^{3}\text{I})^{4}\text{L1}$	$20 \ d(^{3}L)^{4}K$	$12 \ d(^{1}L)^{2}I2$	$5 d(^{3}I_{5})3/2$	$16 d(^{1}L_{8})5/2$	$9 d(^{3}L_{8})5/2 4$
$4f^{10}5d$	4.5	-	120277.4	-		$1.117 \ d(^{5}D)^{4}F$	$10 \ s({}^{5}F)^{4}F$	$6 d(^{3}F)^{4}F3$	$5 \text{ s}(^{5}\text{F}_{5})1/2$	$5 d(^{5}D_{4})5/2$	$4 d(^{3}I_{7})5/2 = 3$
$4f^{10}5d$	9.5	-	120284.8	-		$1.015 \ d(^{1}L)^{2}M_{2}^{2}$	$2 \ 21 \ d(^{3}L)^{2}N$	$19 \ d(^{3}L)^{4}N$	$10 \ d(^{3}L_{7})5/2$	$28 \ d(^{1}L_{8})5/2$	$18 d(^{1}K_{7})5/2 9$
$4f^{10}5d$	7.5	-	120291.1	-		$0.958 \ d(^{1}L)^{2}L2$	$25 \ d(^{3}L)^{4}M$	$14 \ d(^{3}M)^{4}M$	$12 d(^{3}M_{8})3/2$	$19 \ d(^{1}L_{8})5/2$	13 d(¹ L ₈)3/2 12
$4f^{10}5d$	5.5	-	120348.2	-		$1.027 \ d(^{3}I)^{4}I1$	$9 d(^{1}L)^{2}I2$	$7 d(^{3}L)^{2}I$	$7 d(^{1}L_{8})5/2$	$7 d(^{3}I_{6})3/2$	$4 d(^{3}L_{7})3/2 4$
$4f^{10}5d$	8.5	-	120400.8	-		$1.044 \ d(^{3}L)^{4}L$	$26 \ d(^{3}L)^{2}L$	$24 \ d(^{3}L)^{4}M$	$9 d(^{3}L_{8})5/2$	$55 d(^{3}L_{9})5/2$	$6 d(^{3}K_{8})5/2 4$
$4f^{10}5d$	0.5	-	120434.3	-		$0.646 \ d({}^{5}D){}^{6}F$	$16 d({}^{3}G){}^{4}D$	$14 \ d(^{3}D)^{2}S1$	$10 \ d(^{5}D_{1})3/2$	$9 d({}^{5}G_{2})3/2$	$9 d({}^{3}F_{2})3/2 5$
$4f^{10}_{10}6s$	4.5	-	120660.8	-		$1.275 \ s({}^{5}F){}^{4}F$	$45 \ s({}^{5}F){}^{6}F$	$22 \text{ s}({}^{3}\text{G}){}^{2}\text{G}2$	$6 s({}^{5}F_{5})1/2$	$62 \text{ s}({}^{3}\text{G}_{5})1/2$	$10 \ s({}^{5}F_{4})1/2 \ 4$
$4f^{10}_{10}5d$	2.5	-	120737.9	-		$1.086 \ d(^{3}P)^{2}F2$	$12 d(^{3}P)^{4}P2$	$9 d(^{3}P)^{4}D2$	$5 d(^{3}_{2}P0)5/2$	$18 d(^{3}_{2}P_{2})5/2$	$3 d(^{3}_{2}P_{2})3/2 2$
$4f^{10}5d$	1.5	-	120799.7	-		$1.163 \ d(^{2}G)^{4}F$	$16 d(^{\circ}D)^{\circ}P$	$12 d(^{5}G)^{4}D$	$7 d(^{\circ}_{2}G_{2})3/2$	$13 d(^{\circ}_{3}G_{3})5/2$	$7 d(^{\circ}_{2}D_{3})3/2 4$
$4f^{10}5d$	3.5	-	120832.8	-		$1.136 \ d(^{\circ}G)^{4}G$	8 d(^o D) ⁶ P	$6 d(^{3}P)^{2}F2$	$5 d(^{\circ}_{a}G_{4})5/2$	$3 d(^{3}P_{2})3/2$	$3 d(^{\circ}_{a}G_{6})5/2 = 3$
$4f^{10}5d$	9.5	-	120815.4	-		$1.050 \ d(^{3}M)^{4}M$	$39 d(^{3}M)^{2}M$	$17 d(^{3}M)^{4}N$	$16 d(^{3}M_{10})5/2$	$47 \ d(^{3}_{2}M_{9})3/2$	$14 d(^{3}M_{10})3/211$
4f ¹⁰ 5d	3.5	-	120852.5	-		$1.146 \ d(^{3}D)^{6}P$	$6 d(^{\circ}D)^{\circ}F$	6 d(°D) ² F1	$5 d(^{3}D_{3})5/2$	$5 d(^{3}D_{3})3/2$	$4 d(^{3}P_{2})5/2 = 3$
4f ¹⁰ 5d	2.5		120896.8	-		$1.107 \text{ d}(^{3}\text{D})^{6}\text{P}$	$11 \text{ d}(^{\circ}\text{P})^{2}\text{F2}$	10 d(°D) ² D1	$7 d(^{\circ}P_1)5/2$	$6 d(^{\circ}P0)5/2$	$6 d(^{3}D_{4})3/2 4$
4f ¹⁰ 5d	5.5	120929.5(3)	120888.10	41	5	$0.995 \text{ d}(^{3}\text{L})^{4}\text{K}$	10 d(°F) ² H3	$10 d(^{3}I)^{4}I1$	$6 d(^{3}L_{7})5/2$	$7 d({}^{3}F_{4})3/2$	$5 d(^{1}L_{8})5/2 5$
4f ¹⁰ 5d	6.5	-	120986.1	-		$1.132 \text{ d}(^{3}\text{G})^{4}\text{I}$	$13 d(^{\circ}D)^{\circ}G$	11 d(°F) [*] H4	$11 d(^{3}D_{4})5/2$	$11 d({}^{\circ}F_4)5/2$	$11 d(^{3}G_{5})3/2 5$
4f**5d	5.5	121140.31(23)	121029.70	111	8	1.036 d(°M) ⁴ K	13 d(°1) [∗] G1	8 d(°I)*I1	$7 \text{ d}(^{\circ}\text{M}_8)5/2$	13 d(${}^{+}L_{8}$)5/2	$7 d(^{9}I_{7})3/2 = 7$

TABLE 5.4 – Paramètres ajustés et HFR de l'ion Er^{+3} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{11}$ et $4f^{10}6p$ de la parité impaire. Les paramètres évoluant dans le même rapport sont indiqués par 'r', et par 'f' les valeurs fixées.

Param.P	$\begin{array}{c} P_{ajust}.\\ 4f^{11} \end{array}$	dev.st.	P_{HFR}	SF	$\begin{array}{c} P_{ajust}.\\ 4f^{10}6p \end{array}$	dev.st.	P_{HFR}	SF
${f E}$	25007	1.1	0		207022	76	159997	54195
E_{av} $E^2(ff)$	55997 00750	44	U 190709	0.760	207022	70 450	192007	0.760
$\Gamma^{-}(JJ)$	99700	428	129798	0.709	104985	430	120000	0.709
$F^4(ff)$	72727	768	81425	0.893	76857	811	86049	0.893
$F^6(ff)$	50541	516	58575	0.863	53498	546	62003	0.863
α	24.5	3			17.3	f		
β	-500	f			-500	f		
γ	1480	f			1480	f		
ζ_f	2407	4	2438	0.987	2552	4	2586	0.987
ζ_p					5310	12	4525	1.173
$F^1(fp)$					292	51		
$F^2(fp)$					7543	451	9398	0.803
$G^2(fp)$					2264	f	2405	0.941
$G^4(fp)$					2053	f	2181	0.941

éléments de terres rares selon leurs dépendance en Z.

L'introduction des configurations à cœur excité $5p^54f^{11}5d$ et $5p^54f^{12}$ dans le code Cowan, en plus des quatre autres configurations des deux parités, prévoit, via le premier calcul HFR, 978 niveaux d'énergie de la configuration $4f^{10}5d$, 207 niveaux d'énergie de la configuration $4f^{10}6s$, 63 niveaux d'énergie de la configuration à cœur excité $5p^54f^{12}$ dans la gamme d'énergie (200 000 à 340 000) cm^{-1} et 2318 niveaux d'énergie de $5p^54f^{11}5d$ dans la gamme énergétique de (200 000 à 450 000) cm^{-1} [figure 5.5].

A titre de comparaison, les probabilités de transition du faisceau $5p^{6}4f^{11} - 5p^{5}4f^{11}5d$ couvrant la gamme de longueurs d'onde de 250 à 500 Å prennent un facteurs de puissance trois fois plus grand que celui du faisceau $5p^{6}4f^{11} - 5p^{6}4f^{10}5d$. On remarque que les probabilités de transition du faisceau $5p^{6}4f^{11} - 5p^{5}4f^{11}5d$ sont beaucoup plus importantes que celles du faisceau fondamental $5p^{6}4f^{11} - 5p^{6}4f^{10}5d$, ce qui montre l'effet de l'interaction de configurations dans la réduction des intensités des faisceaux de transitions d'un ordre de grandeur assez remarquable [figure 5.6].

Param.P	$P_{ajust}.$ $4f^{10}5d$	dev.st.	P_{HFR}	SF	$P_{ajust}.$ $4f^{10}6s$	dev.st.	P_{HFR}	SF
E_{av}	133502	67	78792	54710	156929	68	104113	52816
$F^2(ff)$	106024	601	136066	0.779	106402	r	136550	0.779
$F^4(ff)$	75440	1152	85682	0.880	75730	r	86011	0.880
$F^6(ff)$	54152	879	61731	0.877	54365	r	61975	0.877
α	17.6	1			17.6	r		
β	-500	f			-500	f		
γ	1480	f			1400	f		
ζ_f	2555	5	2579	0.991	2562	r	2585	0.991
$\tilde{\zeta}_d$	1635	11	1755	0.932				
$F^1(fd)$	1066	109						
$F^2(fd)$	24370	218	30311	0.804				
$F^4(fd)$	16574	423	14390	1.152				
$G^1(fd)$	8597	88	12410	0.693				
$G^2(fd)$	1939	232						
$G^3(fd)$	10139	291	10500	0.966				
$G^4(fd)$	1939	232						
$G^5(fd)$	6661	224	8108	0.822				
$G^3(fs)$					2734	112	3286	0.832
interaction $f^{10}d - f^{10}s$	de confi	guration	S					
$R^2(fd, fs)$	965	f 1379	0.7					
$R^3(fd, fs)$	2164	f 3091	0.7					

TABLE 5.5 – Paramètres ajustés et HFR de l'ion Er^{+3} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{10}5d$ et $4f^{10}6s$ de la parité paire. Les paramètres évoluant dans le même rapport sont indiqués par 'r', et par 'f' les valeurs fixées.

FIGURE 5.6 – Introduction de la configuration à cœur excité $5p^54f^{11}5d$ et réduction de l'intensité des faisceaux de transitions sous l'effet de l'interaction de configurations.

5.4 Étude de la configuration $4f^{11}$

Après avoir mesuré les positions des raies d'émission appartenant au spectre VUV de Er^{+3} , nous avons pu établir une liste finale de longueurs d'onde, dont 591 raies classées dans la région spectrale de (850 - 2576)Å. Ce qui a donné lieu à la détermination de 120 niveaux d'énergie pour les quatre configurations de base, dont 9 niveaux de la configuration fondamentale $4f^{11}$ parmi 41 niveaux prédits par la théorie [table 5.2], (les pourcentages ne sont donnés qu'en couplage LS). Ces niveaux sont connectés aux autres niveaux des configurations de la parité opposée $4f^{10}5d$ et $4f^{10}6s$, ce qui donne lieu à un nombre très important de transitions gouvernées par les règles de sélection de la mécanique quantique.

Pour étendre la recherche des autres niveaux, il est impératif de disposer d'une liste de longueurs d'onde étalées tout au long du spectre appartenant à l'ion trois fois chargé (dans notre cas). L'identification des raies est un travail fastidieux, vu que dans la liste, plusieurs raies spectrales appartiennent à un ion de charge différente et cela est relatif au potentiel d'ionisation.

Nous avons pu améliorer notre calcul à l'aide du programmes RCE (minimisation par moindres carrés) en faisant varier un jeu de paramètres capable, d'améliorer la déviation moyenne $E_{calc} - E_{exp}$ à moins de 50 cm^{-1} pour les deux parités [Figure 5.7]. Certains de ces paramètres sont contraints d'évoluer dans un rapport constant, certains d'autres varient librement, tandis qu'on fixe les derniers à leurs valeurs initiales. À la fin du processus itératif, cela nous permis la détermination des nouveaux paramètres et facteurs d'échelle.

FIGURE 5.7 – Comparaison des niveaux d'énergie expérimentaux : a) Avec les niveaux HFR,
b) Avec ceux corrigés après ajustement par moindres-carrés à l'étape RCE.

5.5 Comparaison avec Er^{+3} dans les matrices cristallines

Les configurations électroniques des ions de terres rares sont comme suit :

 $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^1 \ 4s^2 \ 4p^6 \ 4d^1 \ 4f^N \ 5s^2 \ 5p^6.$

Lorsqu'un ion de terre rare trivalent Ln^{+3} est incorporé dans un solide (matrice cristalline), il est soumis à un champ électrostatique inhomogène produit par les distributions de charges environnantes. Les paramètres d'interactions électrostatiques F^k prennent alors des valeurs amoindries et les niveaux d'énergie sont légèrement modifiés [Figure 5.8] du fait que les couches pleines $5s^2$ et $5p^6$ forment un écran entre l'environnement cristallin et les électrons 4f, ce qui affaiblit l'effet du champ cristallin (Dans le cas général on tient compte à ce que l'élément est léger ou lourd). Par conséquent, les distances entre les niveaux d'énergie sont réduites et les paquets de niveaux d'énergie sont d'autant plus resserrés que les interactions avec le champ cristallin sont moins importantes (une correction minime) que les interactions internes à l'ion (l'atome).

Dans le [tableau 5.6], les niveaux d'énergie expérimentaux déterminés expérimentalement dans notre travail (ion libre) sont comparés aux 21 niveaux expérimentaux déterminés par W. T. Carnall, et al.[47] pour le même ion plongé dans $LaF_3[48, 49]$. À cause de ce nombre limité de niveaux déterminés, la comparaison ne peut pas mener aux conclusions souhaitées, sauf que les valeurs des niveaux de la troisième colonne sont entièrement plus grandes que celles de la deuxième colonne avec des quantités irrégulières, ce qui fait que tous les niveaux de l'ion dans la matrice LaF_3 sont décalés vers le haut par rapport à ceux de l'ion libre. Cela signifie que les électrons sont moins liés dans cet environnement.

LSJ	$Niv_{(EXP)}$.	$Niv_{(EXP)}$.	$Niv_{(EXP)} (Dans \ LaF_3)$	$\Delta E.$
	(Notre travail)	$(Dans \ LaF_3)$	$(décalés de 217 \text{ cm}^{-1})$	
${}^{4}I_{15/2}$	0.00	217	0.00	0.00
${}^{4}I_{13/2}$	$6\ 507.75$	6697	$6\ 480$	27,75
${}^{4}I_{11/2}$	$10\ 171.79$	$10 \ 340$	$10\ 123$	48,79
${}^{4}I_{9/2}$	$12 \ 468.66$	12 567	12 350	$118,\!66$
${}^{4}F_{9/2}$	$15 \ 404.86$	$15 \ 452$	$15 \ 235$	169,86
${}^{4}S_{3/2}$		18 570	18 353	
${}^{2}H_{11/2}$	$19 \ 331.69$	19 334	19117	214,69
${}^{4}F_{7/2}$		20 709	20 492	
${}^{4}F_{5/2}$		$22 \ 378$	22 161	
${}^{4}F_{3/2}$		22 711	22 494	
${}^{2}G_{9/2}$	$24 \ 736.00$	24 744	24 527	209
${}^{4}G_{11/2}$	26 707.79	26 585	$26 \ 368$	339,79
${}^{4}G_{9/2}$	27 766.82	27 629	$27 \ 412$	$354,\!82$
${}^{2}K_{15/2}$				
${}^{2}G_{7/2}$		$28 \ 298$	28 081	
${}^{2}P_{3/2}$		$31 \ 718$	31 501	
${}^{2}K_{13/2}$		$33 \ 139$	$32 \ 922$	
${}^{4}G_{5/2}$				
${}^{2}P_{1/2}$				
${}^{4}G_{7/2}$		$34 \ 211$	$33 \ 994$	
${}^{2}D_{5/2}$		35 055	34 838	
${}^{2}H_{9/2}$		36 641	36 424	
${}^{2}D_{5/2}$		38 827	$38 \ 610$	
${}^{4}D_{7/2}$		39 530	39 313	
- / -				

TABLE 5.6 – Comparaison (en cm⁻¹) des niveaux d'énergie expérimentaux de la configuration fondamentale $4f^{11}$ de l'ion libre Er^{+3} aux niveaux d'énergie du même ion incorporé dans LaF_3 .

FIGURE 5.8 – Diagramme énergétique illustrant un léger déplacement des niveaux d'énergie de la configuration $4f^{11}$ de l'ion Er^{+3} dans la matrice LaF_3 (en noire) par rapport à ceux de l'ion libre (en bleu).

5.6 Approche Multi-Configuration Dirac Hartree Fock

À la fin de l'année 2014 et début de 2015, L Radžiute et al, avaient mené des calculs ab initio de type Dirac-Hartree-Fock multi-configuration (MCDHF) sur la configuration fondamentale $4f^{11}$ de l'ion Er^{+3} en se servant de plusieurs stratégies de calcul[26, 50]. Leur objectif était de simuler tous les 41 niveaux de cette configuration en les comparant aux valeurs du INST, et aussi aux valeurs semi-empiriques existant dans la littérature.

Ces calculs ab initio (MCDHF) ont été effectués à l'aide du programme GRASP2K [51]. À souligner la contribution à l'énergie des interactions de Dirac–Coulomb (DC) et Breit (B) ainsi que les effets de l'électrodynamique quantique (Q). Le soucis était de sélectionner les configurations les plus importantes qui correspondent le mieux possible aux configurations de base, et qui seront introduites dans les calculs.

L Radžiute et al, ont conclu que parmi les différents calculs ab initio effectués, deux stratégies avaient aboutis à des résultats assez comparables aux valeurs du NIST et certaines données semi-empiriques à des pourcentages de 9.8% et 6.9% pour les deux stratégies (SDC + V + CV) et (CIS) [26, 50] respectivement.

Dans le tableau 5.7, nous avons comparé les niveaux d'énergie calculés par la méthode paramétrique de Slater - Racah (calcul semi-empirique) et les niveaux expérimentaux déterminés dans notre analyse, aux niveaux d'énergie calculés par les méthodes ab initio de type (MCDHF) qui sont à leur tour comparées aux valeurs expérimentales du NIST[52] [Figure 5.9]. Le constat est que les quantités [(2)-(5)] et [(3)-(5)] prennent des valeurs assez grandes, pouvant dépassent 1500 cm^{-1} dans certains cas comme les niveaux ${}^{4}S_{3/2}$ et ${}^{4}F_{7/2}$, ce qui induit une grande incer-

FIGURE 5.9 – Comparaison des niveaux d'énergie calculés : par la méthode paramétrique de Slater - Racah (calcul semi-empirique), les niveaux expérimentaux déterminés dans notre analyse; niveaux d'énergie calculés par les méthodes ab initio de type (MCDHF); valeurs expérimentales du NIST.

titude sur la déviation moyenne (Th - Exp), et cela nous incite à tirer les conclusions suivants : 1- Les valeurs du NIST qui n'ont pas fait déjà objet d'une publication dans la littérature, sont erronées.

2- Les stratégies de calcul adoptées dans les calculs ab initio (MCDHF) doivent être améliorées. Pour les quatre premiers niveaux expérimentaux et ceux du NIST, les écarts énergétiques $E_{exp} - E_{exp}^{NIST}$ varient de 27 à 225 cm^{-1} ce qui est énorme du fait que les niveaux expérimentaux ont été déterminés à 1 cm^{-1} près dans notre l'analyse.

Une comparaison similaire entre les deux stratégies de calcul a conduit à des séparations assez importantes qui dépassent 500 cm^{-1} pour 21 niveaux dont elle peut atteindre 2085 et 1634 cm^{-1} pour les niveaux ${}^{2}D_{3/2}$ et ${}^{4}D_{5/2}$ respectivement. Il est par conséquent, difficile de choisir d'une stratégie par rapport l'autre.

Dans la gamme énergétique de 0 à 30 000 cm^{-1} où les quinze premiers niveaux ont été déterminés, la [Figure 5.10] montre en toute rigueur que les niveaux issus de calcul (MCDHF) s'éloignent spectaculairement des valeurs expérimentales en allant progressivement du plus bas niveau au plus haut, d'où les conclusions suivantes :

* les valeurs de la *database* du NIST, entachées considérablement d'erreurs n'ont pas finalement conduit à la fiabilité des calculs effectués avec les méthodes ab initio (MCDHF).

* l'étude théorique basée sur la méthode paramétrique de Slater-Racah au moyen de la chaine des programmes de Cowan qui tient compte des interactions de configurations (où les valeurs des intégrales radiales sont ainsi ajustées par minimisation des écarts $(E_{calc} - E_{exp})$), a conduit à des fonctions d'onde en couplage intermédiaire et des probabilités de transition meilleures que celles données par des calculs ab initio de type Dirac-Hartree-Fock multi-configuration

FIGURE 5.10 – Comparaison des dix premiers niveaux d'énergie calculés avec les méthodes ab-initio de type (MCDHF) aux valeurs expérimentales déterminés par A Meftah et al[11].

(MCDHF).

5.7 Conclusion

Dans ce chapitre, nous avons présenté les résultats obtenus lors de cette étude sur l'ion Er^{+3} . Une liste de 591 raies classées a été identifiée. Ce qui a abouti à la détermination de 120 nouveaux niveaux d'énergie, par conséquent le nouveau calcul RCE (optimisation par moindres carrés) a permis d'obtenir de nouveaux paramètres.

Les niveaux d'énergie obtenus pour la configuration fondamentale $4f^{11}$ ont été comparés aux niveaux d'énergie du même ion incorporé dans LaF_3 , où nous avons constaté un léger déplacement des niveaux d'énergie. Aussi, une autre comparaison avec les résultats des calculs ab initio de type (MCDHF) sur la configuration $4f^{11}$, publiés en 2015.

TABLE 5.7 – Termes spectraux et niveaux d'énergie de la configuration fondamentale $4f^{11}$. Le calcul (HFR) ajusté et les valeurs expérimentales de notre travail sont comparés aux calculs Multi-configurations Dirac-Hartree-Fock (MCDHF) avec deux approches : 1) simple et double excitation, 2) simple et double excitation avec interaction de configurations, et les valeurs expérimentales de NIST [26, 50].

	(1)			(4)	(٣)
. ~ .	(1)	(2)	(3)	(4)	(5)
LSJ	$Niv(HFR_{Ajust}).$	Niv(MCDHF).	Niv(MCDHF).	Niv(Exp).	Niv(Exp).
		(SDC + V + CV)	(CIS)		NIST
${}^{4}I_{15/2}$	-32.0	0.00	0.00	0.00	0.00
${}^{4}I_{13/2}$	6533.4	6311	6369	6507.75	6480
${}^{4}I_{11/2}$	10184.6	10165	10067	10171.79	10110
${}^{4}I_{9/2}$	12399.5	12841	12534	12468.66	12350
${}^{4}F_{9/2}$	15295.1	16425	16209	15404.86	15180
${}^{4}S_{3/2}$	18470.4	20089	19423		18290
${}^{2}H_{11/2}$	19385.4	20748	20075	19331.69	
${}^{4}F_{7/2}$	20527.2	21835	21803		20400
${}^{4}F_{5/2}$	22159.1	23647	23591		22070
${}^{4}F_{2/2}$	22533.3	24074	23780		22410
${}^{2}G_{0/2}$	24723.5	25987	25174	24736.00	
${}^{4}G_{11/2}$	26807.1	28291	28252	26707 79	
${}^{4}G_{0/2}$	27798.8	29369	29493	27766 82	
${}^{2}K_{15/2}$	28232.5	29713	29501		
${}^{2}G_{7/2}$	28265.1	30255	30085		
${}^{2}P_{2/2}$	31890.1	33797	32836		
${}^{2}K_{12/2}$	33598.6	34993	34611		
${}^{4}G_{5/2}$	33577.5	35584	35366		
${}^{2}P_{1/2}$	33755.8	35829	35796		
${}^{4}G_{7/2}$	34405.9	35959	35849		
${}^{2}D_{5/2}$	34889.8	37550	36775		
$^{2}H_{0/2}$	36928.1	37974	37105		
${}^{4}D_{5/2}$	39201.1	42247	41997		
${}^{4}D_{7/2}$	39716.6	43125	43551		
${}^{2}I_{11/2}$	41549.4	44363	43799		
${}^{2}L_{17/2}$	42355.7	44686	45307		
${}^{2}D_{3/2}$	42697.5	44985	46619		
${}^{4}D_{3/2}$	43469.1	46361	46961		
${}^{2}I_{13/2}$	44336.2	46509	47404		
${}^{4}D_{1/2}$	47718.1	50552	51204		
${}^{2}L_{15/2}$	48271.0	50695	52780		
${}^{2}H_{9/2}$	48648.2	51680	52807		
${}^{2}D_{5/2}$	49517.1	52987	52892		
${}^{2}H_{11/2}$	51567.5	54438	55521		
${}^{2}D_{3/2}$	54909.8	58851	58252		
${}^{2}F_{7/2}$	55587.6	60100	58854		
${}^{2}F_{5/2}$	63502.4	68234	67218		
${}^{2}G_{7/2}$	66429.6	72071	73679		
${}^{2}G_{9/2}$	70623.3	75942	77566		
${}^{2}F_{5/2}$	93368.7	103064	101789		
${}^{2}F_{7/2}$	97568.7	107321	106819		

Chapitre 6

Étude des ions libres Eu^{+3} et Er^{+2}

6.1 Étude de Eu^{+3}

Jusqu'à présent, le spectre d'émission de l'ion libre Eu^{+3} (EuIV) est totalement inconnu. L'étude préliminaire tentée par Nissan Spector du NIST n'a pas été fructueuse, et ce probablement par manque de spectres enregistrés à haute résolution.

Dans le but d'entamer cette étude, les spectres d'émission VUV de l'ion Eu^{+3} sont produits récemment à l'aide du spectrographe de 10.7m à haute résolution sous incidence normale à l'Observatoire de Meudon dans la zone spectrale de 700 - 2700Å [Figure 6.1]. La source de décharge est de type étincelle glissante sous vide. Les enregistrements sont effectués sur des écrans phosphore photostimulables (IP) pour avoir une meilleure estimation des intensités expérimentales des raies spectrales, puis scannés à l'aide du scanner *STARION* de *FUJIFILM* (*FLA* – 9000).

Pour de meilleures prédictions théoriques des niveaux d'énergie et des probabilités de transition, nous avons effectué des calculs HFR en utilisant la chaine des programmes de R. D. Cowan[10] avec une base de quatre configurations $4f^6$, $4f^55p$ de la parité paire et $4f^55d$, $4f^56s$ de la parité opposée et avec la prise en compte des interactions de configurations. Ces prédictions théoriques montrent que le spectre de l'ion Eu^{+3} se situant au milieu du tableau de la séquence des spectres (IV) est très complexe en le comparant à celui de l'ion Er^{+3} présenté dans le chapitre précédent. 295 niveaux d'énergie sont prévus pour la configuration fondamentale $4f^6$, 1168 niveaux d'énergie pour la configuration $4f^55p$, 1849 niveaux pour $4f^55d$ et 425 niveaux pour $4f^56s$. Cela confirme que la complexité des spectres de lanthanides trivalents évolue dans un ordre croissant en allant progressivement vers le milieu de la couche $4f^N$ [Figure 6.2].

Les paramètres initiaux calculés à l'étape HFR sont corrigés avec des facteurs d'échelle de l'ion Nd^{+3} (Nd IV)[45], et l'énergie moyenne de chacune des quatre configurations a été située selon les prédictions de Leo Brewer[36]. Ce qui a mené à l'amélioration des calculs pour la prédiction des niveaux d'énergie, et les fonctions d'onde sont devenues plus significatives.

FIGURE 6.1 – La zone spectrale couvrant les régions de longueurs d'onde des trois faisceaux de transitions $4f^6 - 4f^55d$, $4f^55d - 4f^56p$ et $4f^56p - 4f^56s$ de l'ion Eu^{+3} , avec interaction de configurations. Les paramètres P_{HFR} ont été corrigés avec des facteurs d'échelle SF.

FIGURE 6.2 – Nombre de niveaux prévus pour les configurations fondamentales $4f^{11}$ et $4f^6$, et le nombre de transitions dans les premiers faisceaux $4f^{11} - 4f^{10}5d$ et $4f^6 - 4f^55d$ respectivement des ions libres Er^{+3} et Eu^{+3} .

Dans les étapes suivantes, nous allons procéder comme suit :

- Mesurer les abscisses des raies spectrales et leurs intensités attribuées à l'aide du logiciel Gfit.10, à moins de 4μ près. Introduire dans le même logiciel des raies de référence des éléments connus comme (C, O, N et Si) pour calibrer les spectres et déterminer les longueurs d'onde de l'europium avec un polynôme de degré 2, à moins de 0.005Å près.

- Les prédictions théoriques des niveaux d'énergie et des probabilités de transition seront utilisées parallèlement avec la liste de longueurs d'onde déterminées à l'étape Gfit.10 pour remonter à la détermination des plus bas niveaux d'énergie par le principe de combinaisons de Ritz à l'aide des programmes RECHER et IDEN dont la précision est inférieure à $\pm 1cm^{-1}$, puis, optimiser les valeurs d'énergie des niveaux confirmés en utilisant le programme LOPT ou ELCALC.

- Les niveaux identifiés et optimisés seront introduits dans le code Cowan dans le but de minimiser par moindres-carrés (processus itératif) les écarts $(E_{exp} - E_{cal})$, à moins de 50 cm^{-1} près, et déterminer les autres observables physiques comme les (gA, g_L , J,..,etc).

- En plus des calculs semi-empiriques effectués par la méthode paramétrique de Slater-Racah nous allons aussi effectuer un autre calcul ab-initio par la méthode multi-configuration Dirac Hartree-Fock sur la configuration fondamentale $4f^6$ dans le but de choisir la meilleure approche décrivant au mieux possible les 295 niveaux d'énergie prévus par la théorie.

6.2 Étude de Er^{+2}

L'analyse du spectre de Er^{+2} est passée par plusieurs étapes. Initialement, une liste de longueurs d'onde a été établie dans la thèse de Becher (1966), mais sans publication scientifique dans la littérature. En 1976, Nissan Spector a pu classé 137 raies spectrales connectant 45 niveaux d'énergie des configurations de base $4f^{12}$, $4f^{11}6p$ de la parité paire et $4f^{11}5d$ et $4f^{11}6s$ de la parité impaire[53] dans son étude effectuée au NIST. Cette étude a été reprise par Jean-François Wyart et al, où ils ont pu identifié 170 raies spectrales donnant lieu à la détermination de 115 niveaux d'énergie, dont 4 nouveaux niveaux d'énergie ont été déterminés pour la configuration fondamentale $4f^{12}$ en utilisant la liste de longueurs d'onde de Becher entre 2120 et $6825\text{\AA}[4]$.

La figure 6.3 montre que la région spectrale de 700 - 2500Å est aussi très importante, et donne plus d'informations sur le premier faisceau de transitions fondamental $4f^{12} - 4f^{11}5d$.

Afin de compléter la liste des longueurs d'onde de Becher, une autre liste de longueurs d'onde de l'ion Er^{+2} peut être sélectionnée de celle établie dans le cas de Er^{+3} dans notre travail. Ce qui fait augmenter les chances de classer un certain nombre de nouvelles raies spectrales et remonter à la détermination d'autres nouveaux niveaux d'énergie.

Pour cela, nous avons effectué un calcul HFR en utilisant les quatre configurations de base

FIGURE 6.3 – La zone spectrale couvrant les régions de longueurs d'onde des trois faisceaux de transitions $4f^{12} - 4f^{11}5d$, $4f^{11}5d - 4f^{11}6p$ et $4f^{11}6p - 4f^{11}6s$ de l'ion Er^{+2} , avec interaction de configurations.

citées ci-dessus à l'aide du code Cowan. Ensuite, nous avons introduit 38 niveaux d'énergie expérimentaux de la parité paire et 60 niveaux d'énergie de celle de la parité opposée (déterminés par Nissan Spector puis J. F. Wyart et al.) pour effectuer un calcul paramétrique par moindrescarrés (étape RCE). Ce qui a conduit à une déviation moyenne de 16 cm^{-1} pour la parité paire en faisant varier 16 paramètres et 35 cm^{-1} pour la parité impaire avec 22 paramètres.

Dans les tables 6.1 et 6.2, les nouveaux facteurs d'échelle $SF = P_{ajust}/P_{HFR}$ des paramètres d'interactions électrostatiques F^2 , F^4 et F^6 et de spin orbite ζ des quatre configurations de base de l'ion Er^{+2} obtenus à l'étape RCE sont comparés aux facteurs d'échelle des ions connus Tm^{+3} et Yb^{+4} .

À titre d'exemple, les facteurs d'échelle des paramètres électrostatiques et de spin orbite de la configuration fondamentale $4f^{12}$ des mêmes éléments évoluent dans un rapport constant [Figure 6.4]. Ce qui donne de bonnes informations sur les nouveaux paramètres issus du dernier calcul RCE en présentant une évolution régulière.

La disposition de la nouvelle liste de longueurs d'onde en parallèle avec ce dernier calcul peuvent servir pour entamer la prochaine étape RECHER ou IDEN pour la recherche de nouveaux niveaux d'énergie et classer le maximum possible de raies spectrales.

TABLE 6.1 – Paramètres ajustés et HFR de l'ion Er^{+2} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{12}$ et $4f^{11}6p$ de la parité paire comparés aux facteurs d'échelle des mêmes configurations dans les ions de la même séquence isoélectronique Tm^{+3} et Yb^{+4} .

Param.P	P_{ajust} .	P_{HFR}	$SF(Er^{+2})$	$SF~(Tm^{+3})$	$SF~(Yb^{+4})$	
$4f^{12}$						
\check{E}_{av}	16188					
$F^2(ff)$	96741	122070	0.793	0.785	0.800	
$F^4(ff)$	67299	76216	0.883	0.868	0.898	
$F^6(ff)$	47040	54729	0.860	0.855	0.864	
α						
eta						
γ	22.40	2200	0.000	0.000	0.000	
ζ_f	2248	2289	0.982	0.982	0.982	
$Af^{11}6n$						
$F = \frac{4}{E}$	961903					
$F^2(ff)$	102777	129605	0 793	0.786	0.800	
$F^4(ff)$	72311	81294	0.889	0.881	0.898	
$F^6(ff)$	50935	58479	0.871	0.878	0.864	
α						
eta						
γ						
ζ_f	2393	2435	0.983	0.983	0.982	
ζ_p	3496	3023	1.156	1.170	1.143	
$F^{1}(fp)$						
$F^2(fp)$	6141	7179	0.855	0.867	0.844	
$G^2(fp)$	1830	1822	1.000	1.002	1.007	
$G^{*}(fp)$	1517	1626	0.933	0.910	0.956	
$B^2(ff,f_n)$	-2350	-2350	(1,000)			
$R^4(ff fn)$	-1334	-1334	(1.000)			
(JJ, JP)	1001	1001	(1.000)			

TABLE 6.2 – Paramètres ajustés et HFR de l'ion Er^{+2} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{11}5d$ et $4f^{11}6s$ de la parité paire comparés aux facteurs d'échelle des mêmes configurations dans les ions de la même séquence isoélectronique Tm^{+3} et Yb^{+4} .

Param.P	P_{ajust} .	P_{HFR}	$SF \ (Er^{+2})$	$SF \ (Tm^{+3})$	$SF(Yb^{+4})$
$4f^{11}5d$					
E_{av}	58439				
$F^2(ff)$	102746	129078	0.796	0.789	0.803
$F^4(ff)$	72199	80940	0.892	0.882	0.902
$F^6(ff)$	51989	58219	0.893	0.891	0.895
α					
eta					
γ					
ζ_f	2387	2430	0.982	0.981	0.984
ζ_d	1163	1237	0.940	0.928	0.953
$F^{1}(fd)$	800	04047	0.000	0.000	0.007
$F^{2}(fd)$ $\Gamma^{4}(fd)$	20039	24847	0.806	0.806	0.807
$F^{1}(fd)$ $C^{1}(fd)$	13080	11575	1.130	1.132	1.129
$G^{2}(fd)$ $C^{2}(fd)$	8329	10923	0.762	0.731	0.774
G(fd) $C^{3}(fd)$	2000	8740	0.067	0.074	0.060
$G^{4}(fd)$	2000	0149	0.907	0.974	0.900
$G^{5}(fd)$	2000 5548	6632	0.836	0.830	0.843
G(fu)	00-10	0002	0.000	0.000	0.010
$4f^{11}6s$					
E_{av}	56741				
$F^2(ff)$	103115	129541	0.796	0.789	0.803
$F^4(ff)$	72476	81251	0.892	0.882	0.902
$F^6(ff)$	52194	58448	0.893	0.891	0.895
α					
eta					
γ					
ζ_f	2410	2434	0.990	0.996	0.984
$G^3(fs)$	2351	2702	0.870	0.872	0.868

•

FIGURE 6.4 – Évolution des facteurs d'échelle SF des paramètres électrostatiques et de spin orbite de la configuration fondamentale $4f^{12}$ des éléments de la même séquence isoélectronique Er^{+2} , Tm^{+3} et Yb^{+4} issus du calcul paramétrique par moindres-carrés (étape RCE).

Chapitre 7

Conclusion et perspectives

7.1 Conclusion

L'analyse des spectres d'émission des ions trivalents Er^{+3} et Eu^{+3} inconnus jusqu'à présent entre dans le cadre du projet d'étude des spectres de lanthanides triplement chargés (spectres IV) dans l'ultraviolet du vide. Après avoir étudié les spectres de Nd^{+3} et Tm^{+3} , 1426 raies spectrales avaient été identifiées pour Nd IV dans le domaine spectral de 1163 - 2798Å, ce qui a donné lieu à la détermination de 121 nouveaux niveaux d'énergie et 760 raies spectrales de Tm IV dans la région spectrale 748 - 2230Å permettant de déterminer 209 nouveaux niveaux d'énergie. L'objectif de notre étude sur les ions Er^{+3} et Eu^{+3} est l'identification de maximum de raies spectrales dans l'UV permettant de remonter à la détermination des plus bas niveaux d'énergie des configurations de base $4f^{11}$, $4f^{10}6p$, $4f^{10}5d$ et $4f^{10}6s$ appartenant au spectre de l'ion Er IV et $4f^6$, $4f^56p$, $4f^55d$ et $4f^56s$ appartenant à Eu IV. Leurs spectres d'émission dans l'ultraviolet du vide sont produits respectivement dans les zones 705 - 2460Å pour l'erbium et 700 - 2700Å pour l'europium à l'aide du spectrographe VUV de 10.7m de l'Observatoire de Meudon. La source d'émission est de type étincelle glissante. Le spectrographe est équipé d'un réseau holographique concave de 3600 traits par millimètre (haute résolution). Les enregistrements sont effectués sur des plaques photographiques (PP) et aussi sur des écrans phosphore photostimulables (IP). Ces derniers ont pour avantage d'avoir une réponse linéaire en intensité.

Afin de mesurer les abscisses des raies et leurs intensités attribuées, il est nécessaire de digitaliser les enregistrements obtenus à l'étape précédente. Le scanner optique $iQsmart^1$ (7500 dpi, haute résolution) et *STARION* de *FUJIFILM* (FLA-900) ont été utilisés. Ensuite, nous avons utilisé les logiciels SPECTRA et Gfit.10 pour mesurer les abscisses des raies spectrales avec une précision de 4μ .

La détermination des longueurs d'onde nécessite d'abord la calibration des spectres expérimentaux en utilisant des longueurs d'onde de référence d'éléments légers comme (C, O, N, Si) disponibles dans la littérature. Ces raies de référence qui doivent être suffisamment nombreuses sont distribuées tout au long du spectre afin de tenir compte correctement des écarts à la dispersion linéaire.

plus de 50% dans certains cas [Figure 5.6].

Après cela, on remonte à la détermination des longueurs d'onde à 0.005Å près en utilisant le programme TECH avec un processus itératif par moindres carrés (un polynôme généralement de degré deux). On obtient ainsi une liste finale de longueurs d'onde qui sera nécessaire pour la prochaine étape, où on procédera à la détermination des nouveaux niveaux d'énergie.

Dans cette étape, deux programmes ont été utilisés, il s'agit de *RECHER* et *IDEN*. La recherche des nouveaux niveaux d'énergie (à 1cm^{-1} près) repose sur le principe de combinaisons de Ritz, et à cause de nombreuses transitions entre les niveaux de différentes configurations de parités opposées, plusieurs coïncidences fortuites peuvent avoir lieu. Pour cela, et pour confirmer un tel niveau, il a fallu comparer les intensités expérimentales aux probabilités de transition prédites par les calculs théoriques. Finalement, et dans la dernière étape de la démarche expérimentale, les valeurs des niveaux d'énergie confirmés ont été optimisées à l'aide du programme *LOPT*.

Les prédictions théoriques des niveaux d'énergie et des probabilités de transition ont été effectuées en utilisant un outil théorique se basant sur la méthode paramétrique de Slater-Racah implémentée dans la chaine des programmes de R. D. Cowan. Nous avons introduit quatre configurations dans le code dont deux de la parité paire et deux de la parité impaire. Ce qu'on a remarqué c'est que l'interaction de configurations peut avoir une grande influence sur les intensités des raies allant jusqu'à réduire les intensités des faisceaux de transitions à

L'étude du spectre de l'ion trivalent Er^{+3} a permis l'identification de 591 raies spectrales dans la région de (851 - 2276Å) [Figure 5.1], ce qui a conduit à la détermination de 120 nouveaux niveaux d'énergie dont 37 niveaux impairs (8 pour la configuration fondamentale $4f^{11}$) [Figure 7.1], et 82 niveaux pairs. Ce qui a permis de corriger certaines anomalies signalées auparavant. Initialement, les paramètres HFR ont été corrigés avec des facteurs d'échelle des éléments de la même séquence isoionique, ensuite, les niveaux expérimentaux confirmés sont introduits un par un dans le code comme données d'entrée pour le programme RCE qui minimise itérativement par moindres carrés les écarts ($E_{exp} - E_{th}$). Par conséquent, nous avons pu améliorer nos calculs, avec une erreur moyenne après l'ajustement paramétrique de 41 cm⁻¹ pour les configurations impaires et 49 cm⁻¹ pour les configurations paires.

Nous avons aussi comparé les résultats obtenus dans notre étude sur les niveaux d'énergie de l'ion libre (configuration fondamentale $4f^{11}$) à ceux obtenus pour le même ion incorporé dans une matrice cristalline (LaF_3), puis évalué les déplacements énergétiques causés par les effets du champ cristallin. D'autre part, nous avons comparé nos résultats obtenus avec la méthode paramétrique de Slater-Racah à des travaux récents effectués sur le même ion avec des calculs ab-initio de type Multi-Configuration Dirac Hartree Fock (MCDHF) et montré les avantages de l'approche semi-empirique adoptée dans cette thèse.

FIGURE 7.1 – Niveaux d'énergie des configurations $4f^{11}$ de l'ion libre Er^{+3} rajoutés aux niveaux d'énergie des configurations $4f^N$ des lanthanides trivalents (1936 - 2017).

Pour l'ion Eu^{+3} , les spectres d'émission VUV à haute résolution sont produits à l'Observatoire de Meudon dans le but d'identifier le maximum de raies spectrales et de déterminer les premiers niveaux d'énergie des configurations $4f^6$, $4f^55p$, $4f^55d$ et $4f^56s$, où 3737 niveaux d'énergie théoriques sont prévus par le premier calcul HFR effectué avec le code Cowan.

Dans le cas de l'ion Er^{+2} , la disposition d'une nouvelle liste de longueurs d'onde contenant celles de Becher et celles qui seront sélectionnées dans la liste de longueurs d'onde de établie dans le cas de l'ion Er^{+3} (au dessous de 2000Å) en parallèle avec le nouveau calcul paramétrique effectué en introduisant les niveaux connus dans[4], peuvent bien évidemment servir améliorer notre connaissance du spectre de Er^{+2} , à savoir de nouveaux niveaux d'énergie, fonctions d'onde et autres observables physiques.

FIGURE 7.2 – Effet de la configuration $5p^54f^{11}5d$ sur le faisce au de transitions $5p^64f^{10}5d - 5p^64f^{11}$.

7.2 Perspectives

L'étude effectuée dans ce travail sur l'ion Er^{+3} , a mené à l'identification de 591 raies spectrales, et la détermination de 120 niveaux d'énergie dans une base de quatre configurations. La détermination de la configuration à cœur excité $5p^54f^{11}5d$ sera importante du fait que le premier calcul HFR montre qu'il y a un effet physique de cette configuration dans la réduction des intensités du faisceau de transitions fondamental $5p^64f^{10}5d - 5p^64f^{11}$ [Figure 7.2].

Après la connaissance des premiers niveaux des configurations $4f^N$ des ions de Ce (IV), Pr (IV) et Nd (IV) du début de la séquence, et des ions de Er (IV), Tm (IV) et Yb (IV) de la fin de la séquence, la figure 7.1 montre que sauf pour la configuration fondamentale de Tb (IV), aucun autre ion du milieu de la séquence des spectres (IV) n'est connu jusqu'à présent à cause de leur complexité. Le spectre de l'ion Eu^{+3} résidant au milieu de la séquence $4f^N$ des spectres (IV) a été produit dans la région spectrale allant de 700 - 2700Å à l'Observatoire de Meudon, dans le but de déterminer les premiers niveaux d'énergie des configurations de base $4f^6$, $4f^56p$, $4f^55d$ et $4f^56s$. Cette étude permettra d'étendre l'analyse, pour connaitre d'autres spectres du milieu de la séquence des spectres (IV).

Bibliographie

- William Clyde Martin, Romuald Zalubas, and Lucy Hagan. Atomic energy levels-the rareearth elements. NSRDS-NBS, Washington : National Bureau of Standards, US Department of Commerce, / c1978, 1978.
- [2] Jean-François Wyart, Wan-Ü Lydia Tchang-Brillet, Nissan Spector, Patrick Palmeri, Pascal Quinet, and Emile Biémont. Extended analysis of the spectrum of triply-ionized ytterbium (yb iv) and transition probabilities. *Physica Scripta*, 63(2) :113, 2001.
- [3] J-F Wyart, W-Ü L Tchang-Brillet, SS Churilov, and AN Ryabtsev. Extended analysis of the Eu III spectrum. Astronomy & Astrophysics, 483(1):339–359, 2008.
- [4] Jean-François Wyart, Jean Blaise, William P Bidelman, and Charles R Cowley. Energy levels and transition probabilities in doubly-ionized erbium (Er III). *Physica Scripta*, 56(5):446, 1997.
- [5] Ali Meftah, Jean-François Wyart, Wan-Ü Lydia Tchang-Brillet, Christophe Blaess, and Norbert Champion. Spectrum and energy levels of the Yb4+ free ion (Yb V). *Physica Scripta*, 88(4) :045305, 2013.
- [6] BR Judd, HM Crosswhite, and Hannah Crosswhite. Intra-atomic magnetic interactions for f electrons. *Physical Review*, 169(1) :130, 1968.
- [7] Debra L Burris, Catherine A Pilachowski, Taft E Armandroff, Christopher Sneden, John J Cowan, and Henry Roe. Neutron-capture elements in the early galaxy : Insights from a large sample of metal-poor giants. *The Astrophysical Journal*, 544(1) :302, 2000.
- [8] Charles R Cowley and Marcella Greenberg. The third spectrum of erbium in hr 465. Publications of the Astronomical Society of the Pacific, 99(621) :1201, 1987.
- [9] Pierre Renson. Abondances anormales d'éléments dans les étoiles ap. In Annales d'Astrophysique, volume 30, page 697, 1967.
- [10] Robert D Cowan. The theory of atomic structure and spectra, volume 3. Univ of California Press, 1981.
- [11] A Meftah, S Ait Mammar, JF Wyart, W-Ü L Tchang-Brillet, N Champion, C Blaess, D Deghiche, and O Lamrous. Analysis of the free ion spectrum of Er3+ (Er IV). Journal of Physics B : Atomic, Molecular and Optical Physics, 49(16) :165002, 2016.

- [12] A Meftah, S Ait Mammar, J-F Wyart, W-ÜL Tchang-Brillet, C Blaess, N Champion, D Deghiche, and O Lamrous. Analysis of the VUV emission spectrum of the Er3+ ion (Er IV). In AIP Conference Proceedings, volume 1811, page 040003. AIP Publishing, 2017.
- [13] A Ben-Kish, A Fisher, E Cheifetz, and JL Schwob. Extreme ultraviolet-vacuum ultraviolet spectrum detection using image plates. *Review of Scientific Instruments*, 71(7):2651–2654, 2000.
- [14] B.Edlen V.Kaufman. J.Phys.Chem.Ref.Data, 3, Num 4:825, 1974.
- [15] Raymond L Kelly. Atomic and ionic spectrum lines below 2000 angstroms-hydrogen through krypton. 1.(h-cr). Journal of Physical and Chemical Reference Data, 16:1, 1987.
- [16] L Engström and L Carlén. Lund reports on atomic physics. LRAP-232, 1, 1998.
- [17] Emile Biémont. Spectroscopie atomique : Instrumentation et structures atomiques. De Boeck Supérieur, 2006.
- [18] K Rajnak and BG Wybourne. Electrostatically correlated spin-orbit interactions in l n-type configurations. *Physical Review*, 134(3A) :A596, 1964.
- [19] Giulio Racah. Theory of complex spectra.I,II. *Physical Review*, 61,62(3-4,9-10) :186,438, 1942.
- [20] CW Nielson and George F Koster. Spectroscopic Coefficients for the pn, dn, and fn Configurations. MIT press, 1963.
- [21] Brian G Wybourne. Spectroscopic properties of rare earths. Interscience New York, 1965.
- [22] Xueyuan Chen, Guokui Liu, Jean Margerie, and Michael F Reid. A few mistakes in widely used data files for fn configurations calculations. *Journal of Luminescence*, 128(3):421–427, 2008.
- [23] Giulio Racah. On the spectrum of th iii. *Physica*, 16(7-8):651–666, 1950.
- [24] John Clarke Slater. Quantum theory of atomic structure, volume 1. McGraw-Hill, 1960.
- [25] Ian P Grant. Relativistic quantum theory of atoms and molecules : theory and computation, volume 40. Springer Science & Business Media, 2007.
- [26] L Radžiūtė, Daiji Kato, Gediminas Gaigalas, Per Jönsson, Pavel Rynkun, Valdas Jonauskas, and S Kučas. Energy level structure of the ground configuration in the Er3+ free ion. *Physica Scripta*, 90(5) :054001, 2015.
- [27] VI Azarov. Formal approach to the solution of the complex-spectra identification problem.I. theory. *Physica Scripta*, 44(6) :528, 1991.
- [28] VI Azarov. Formal approach to the solution of the complex-spectra identification problem.2. implementation. *Physica Scripta*, 48(6) :656, 1993.
- [29] Leon J Radziemski, Kay J Fisher, David W Steinhaus, and Aaron S Goldman. Calculation of atomic energy level values. *Computer Physics Communications*, 3(1) :9–18, 1972.

- [30] AE Kramida, Thierry Bastin, Emile Biémont, P-D Dumont, and H-P Garnir. A critical compilation and extended analysis of the Ne IV spectrum. *The European Physical Journal* D-Atomic, Molecular, Optical and Plasma Physics, 7(4):525–546, 1999.
- [31] KJ Öberg. Isotope shifts and accurate wavelengths in Ne II and Ne III. *The European Physical Journal D*, 41(1) :25–47, 2007.
- [32] AE Kramida and G Nave. New fts measurements, optimized energy levels and refined VUV standards in the Ne III spectrum. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 37(1):1–21, 2006.
- [33] AE Kramida. The program lopt for least-squares optimization of energy levels. *Computer Physics Communications*, 182(2) :419–434, 2011.
- [34] James W Demmel. Applied numerical linear algebra. Siam, 1997.
- [35] Giulio Racah. Theory of complex spectra.III. Physical Review, 63(9-10):367, 1943.
- [36] Leo Brewer. Systematics of the properties of the lanthanides. In Systematics and the Properties of the Lanthanides, pages 17–69. Springer, 1983.
- [37] Nicolas Grevesse, Martin Asplund, AJ Sauval, and Patrick Scott. The chemical composition of the sun 1 1 this review is part of a special issue on the 10th international colloquium on atomic spectra and oscillator strengths for astrophysical and laboratory plasmas. *Canadian Journal of Physics*, 89(4) :327–331, 2011.
- [38] Charlotte Froese Fischer. A multi-configuration hartree-fock program. Computer Physics Communications, 1(3):151–166, 1970.
- [39] D Levchuk, S Levchuk, H Maier, H Bolt, and A Suzuki. Erbium oxide as a new promising tritium permeation barrier. *Journal of Nuclear Materials*, 367 :1033–1037, 2007.
- [40] Chunming Yin, Milos Rancic, Gabriele G de Boo, Nikolas Stavrias, Jeffrey C McCallum, Matthew J Sellars, and Sven Rogge. Optical addressing of an individual erbium ion in silicon. *Nature*, 497(7447) :91–94, 2013.
- [41] Carter W J 1966. Thesis, Johns Hopkins Univ., Baltimore (US), 65pp, 1966.
- [42] Ali Meftah, Jean-François Wyart, Jocelyne Sinzelle, Wan-Ü Lydia Tchang-Brillet, Norbert Champion, Nissan Spector, and Jack Sugar. Spectrum and energy levels of the Nd4+ free ion (Nd V). *Physica Scripta*, 77(5):055302, 2008.
- [43] Becher J 1966. Thesis, Johns Hopkins Univ., Baltimore (US), 134pp, 1966.
- [44] A Meftah, J-F Wyart, N Champion, and L Tchang-Brillet. Observation and interpretation of the Tm 3+ free ion spectrum. The European Physical Journal D, 44(1):35–45, 2007.
- [45] Ali Meftah, Norbert Champion, Omar Lamrous, Nissan Spector, Jack Sugar, et al. Analysis of the free ion Nd3+ spectrum (Nd IV). Journal of Physics B : Atomic, Molecular and Optical Physics, 40(19) :3957, 2007.

- [46] Kramida A E MS. Windows version of the cowan code available on line at http: //das101.isan.troitsk.ru/cowan.
- [47] WT Carnall, PR Fields, and K Rajnak. Electronic energy levels in the trivalent lanthanide aquo ions. i. pr3+, nd3+, pm3+, sm3+, dy3+, ho3+, er3+, and tm3+. The Journal of Chemical Physics, 49(10) :4424–4442, 1968.
- [48] K Rajnak and BG Wybourne. Configuration interaction effects in 1 N configurations. *Physical Review*, 132(1):280, 1963.
- [49] Go Ho Dieke and HM Crosswhite. The spectra of the doubly and triply ionized rare earths. Applied optics, 2(7):675–686, 1963.
- [50] L Radžiūtė, Gediminas Gaigalas, Daiji Kato, Per Jönsson, Pavel Rynkun, S Kučas, Valdas Jonauskas, and Rasa Matulianec. Energy level structure of Er 3+. Journal of Quantitative Spectroscopy and Radiative Transfer, 152 :94–106, 2015.
- [51] Gediminas Gaigalas, Zenonas Rudzikas, and Charlotte Froese Fischer. An efficient approach for spin-angular integrations in atomic structure calculations. *Journal of Physics B : Atomic, Molecular and Optical Physics*, 30(17):3747, 1997.
- [52] Nist database http://aeldata.nist.gov.
- [53] N Spector. J. Opt. Soc. Am, volume 63. 358, (1960).
- [54] BR Judd. Complex atomic spectra. Reports on Progress in Physics, 48(7):907, 1985.
- [55] JF Wyart and JE Lawler. Theoretical interpretation and new energy levels in Er II. *Physica Scripta*, 79(4) :045301, 2009.
- [56] file deposited on iop site.
- [57] Molat database at url : http://molat.obspm.fr/.
- [58] Christopher M Dodson and Rashid Zia. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series : Calculated emission rates and oscillator strengths. *Physical Review B*, 86(12) :125102, 2012.
- [59] S Feneuille. Application de la théorie des groupes de lie aux configurations mélangées. Journal de Physique, 28(1):61–66, 1967.
- [60] Mourad Roudjane. Etude expérimentale et théorique des spectres d'émission et d'absorption VUV des molécules H2, D2 et HD. PhD thesis, Université Pierre et Marie Curie-Paris VI, 2007.
- [61] William Clyde Martin, Romuald Zalubas, and Lucy Hagan. Atomic energy levels-the rareearth elements. NSRDS-NBS, Washington : National Bureau of Standards, US Department of Commerce, / c1978, 1, 1978.
- [62] T Ryabchikova, A Ryabtsev, Oleg Kochukhov, and S Bagnulo. Rare-earth elements in the atmosphere of the magnetic chemically peculiar star hd 144897-new classification of the nd iii spectrum. Astronomy & Astrophysics, 456(1):329–338, 2006.

- [63] Daniel Kasen, NR Badnell, and Jennifer Barnes. Opacities and spectra of the r-process ejecta from neutron star mergers. *The Astrophysical Journal*, 774(1):25, 2013.
- [64] Christopher John Fontes, Christopher Lee Fryer, Aimee L Hungerford, Peter Hakel, J Colgan, David Parker Kilcrease, and Manalo Edgar Sherrill. Relativistic opacities for astrophysical applications. *High Energy Density Physics*, 16:53–59, 2015.
- [65] Antoine Godard. Infrared (2–12 μ m) solid-state laser sources : a review. Comptes Rendus Physique, 8(10) :1100–1128, 2007.
- [66] Nissan Spector. Level structure of doubly ionized erbium (er iii). JOSA, 63(3) :358–361, 1973.
- [67] Chunming Yin, Milos Rancic, Gabriele G de Boo, Nikolas Stavrias, Jeffrey C McCallum, Matthew J Sellars, and Sven Rogge. Optical addressing of an individual erbium ion in silicon. *Nature*, 497(7447) :91–94, 2013.
- [68] D Levchuk, S Levchuk, H Maier, H Bolt, and A Suzuki. Erbium oxide as a new promising tritium permeation barrier. *Journal of Nuclear Materials*, 367 :1033–1037, 2007.
- [69] JF Wyart, J Blaise, and P Camus. Progrès récents dans l'interprétation des configurations 4fn (5d+ 6s) des lanthanides ii. etude paramétrique des configurations. *Physica Scripta*, 9(6) :325, 1974.
- [70] Gerhard Heinrich Dieke, Henry Milton Crosswhite, Hannah Crosswhite, et al. Spectra and energy levels of rare earth ions in crystals, volume 5. Interscience Publishers New York, 1968.

Annexe A

Méthode Hartree-Fock
Dans l'approche Hartree-Fock, conformément à l'approximation des électrons indépendants et le principe d'exclusion de Pauli, la fonction d'onde de N électrons est représentée par le déterminant de Slater ϕ . Autrement dit, le déterminant de Slater est le produit des spinorbitales des électrons individuels. Le déterminant de Slater optimal est obtenu par la méthode variationnelle pour déterminer les meilleures spin-orbitales. Il convient de noter que la fonction d'onde atomique ψ (q_1 , q_2 ,..., q_3) à N électrons, solution de l'équation de schrodinger, ne peut être représentée que par une somme infinie de déterminants de Slater, de sorte que la méthode de Hartree-Fock peut être considérée comme une première étape dans la détermination des fonctions d'onde atomiques et des énergies.

L'hamiltonien d'un système de N électrons s'écrit :

$$H = \hat{H}_1 + \hat{H}_2 \tag{A.1}$$

où,

$$\hat{H}_1 = \sum_{i=1}^N \hat{h}_i \tag{A.2}$$

$$\hat{h}_{i} = -\frac{1}{2}\nabla_{r_{i}}^{2} - \frac{Z}{r_{i}}$$
(A.3)

 et

$$\hat{H}_2 = \sum_{i < j=1}^{N} \frac{1}{r_{ij}},\tag{A.4}$$

Avec $r_{ij} = |r_i - r_j|$

Dans l'équation (A.1), \hat{H}_1 est la somme des Hamiltoniens hydrogènoides \hat{h}_1 à N corps identiques. Chaque hamiltonien individuel \hat{h}_1 contient l'opérateur énergie cinétique d'un électron et son énergie potentielle dû à l'interaction avec le noyau.

Le deuxième terme \hat{H}_2 est la somme de N(N-1)/2 termes $\frac{1}{r_{ij}}$ qui représentent les interactions à deux-corps entre chaque paire d'électrons.

On désigne par E_0 l'énergie de l'état fondamental du système.

$$E_0 \preceq E[\phi] = \langle \phi \mid H \mid \phi \rangle \tag{A.5}$$

où ϕ est la fonction d'essai supposons pour être normalisée à l'unité :

$$\langle \phi \mid \phi \rangle = 1$$
 (A.6)

Dans la méthode Hartree-Fock, la fonction d'essai ϕ est le déterminant de Slater,

$$\phi(q_1, q_2, \dots q_N) = \frac{1}{\sqrt{N!}} \begin{bmatrix} u_{\alpha}(q_1) & u_{\beta}(q_1) & \dots & u_{\nu}(q_1) \\ u_{\alpha}(q_2) & u_{\beta}(q_2) & \dots & u_{\nu}(q_2) \\ \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ u_{\alpha}(q_N) & u_{\beta}(q_N) & \dots & u_{\nu}(q_N) \end{bmatrix}$$
(A.7)

où nous rappelons que chacun des symboles α , β ,..., ν représente un état de quatre nombres quantiques (n, l, m_l, m_s) . Notons que toutes les spin-orbitales doivent être orthogonales à savoir

$$\langle u_{\mu} | u_{\lambda} \rangle = \int u_{\mu}^{*}(q)u_{\lambda}(q)dq = \delta_{\lambda\mu}$$
 (A.8)

où le symbole $\int dq$ implique une intégration sur les coordonnées spatiales et une sommation sur la coordonnée de spin. Puisque les orbitales de spin correspondant à spin up $(m_s = +1/2)$ sont de fait orthogonales à celles correspondant à spin down $(m_s = -1/2)$, l'exigence (A.8) se réduit à la condition que les orbitales spatiales correspondant à la même fonction de spin soient orthogonales. Notons que selon (A.8), le déterminant de Slater (A.7) satisfait la condition de normalisation (A.6).

Il convient de réécrire le déterminant de Slater (A.7) sous une forme plus compacte comme suit,

$$\phi(q_1, q_2, ..., q_N) = \frac{1}{\sqrt{N!}} \sum_P (-1)^P P u_\alpha(q_1) u_\beta(q_2) ... u_\nu(q_N) = \sqrt{N!} A \phi_H$$
(A.9)

où ϕ_H c'est un produit simple des spin-orbitales :

$$\phi(q_1, q_2, ..., q_N) = u_\alpha(q_1)u_\beta(q_2)...u_\nu(q_N)$$
(A.10)

Elle est appelée fonction d'onde Hartree. L'opérateur qui apparaît dans (A.9) est l'opérateur d'antisymétrisation :

$$A = \frac{1}{\sqrt{N!}} \sum (-1)^P P \tag{A.11}$$

Il est simple de montrer que l'opérateur A est hermitien et qu'il est aussi un opérateur de projection, à savoir,

$$A^2 = A \tag{A.12}$$

Une autre remarque utile, est que les deux opérateurs \hat{H}_1 et \hat{H}_2 sont invariants par permutations des coordonnées des électrons. Par conséquent ils commutent avec A.

$$[\hat{H}_1, A] = [\hat{H}_2, A] = 0 \tag{A.13}$$

Calculons maintenant la fonctionnelle $E[\phi]$ de (A.5). En utilisant (A.1), nous avons :

$$E[\phi] = \langle \phi \mid \hat{H}_1 \mid \phi \rangle + \langle \phi \mid \hat{H}_2 \mid \phi \rangle \tag{A.14}$$

La première valeur d'espérance m est facilement évaluée comme suit. Nous avons d'abord

$$\langle \phi_H \mid \hat{H}_1 \mid \phi_H \rangle = N! \langle \phi_H \mid A \hat{H}_1 A \mid \phi_H \rangle$$

$$= N! \langle \phi_H \mid \hat{H}_1 A^2 \mid \phi_H \rangle$$

$$= N! \langle \phi_H \mid \hat{H}_1 A \mid \phi_H \rangle$$
(A.15)

Où nous avons utilisé (A.9), (A.11) et (A.13). En tenant compte du fait que H_1 est la somme des opérateurs d'un seul corps avec (A.8), (A.10) et (A.11), nous trouvons alors que

$$\langle \phi \mid \hat{H}_{1} \mid \phi \rangle = \sum_{i=1}^{N} \sum_{P} (-1)^{P} \langle \phi_{H} \mid \hat{h}_{i}P \mid \phi_{H} \rangle$$
$$= \sum_{i=1}^{N} \langle \phi_{H} \mid \hat{h}_{i} \mid \phi_{H} \rangle$$
$$= \sum_{\lambda} \langle u_{\lambda}(q_{i}) \mid \hat{h}_{i} \mid u_{\lambda}(q_{i}) \rangle, \qquad (A.16)$$

Où $\lambda =, \alpha, \beta, ..., \nu$ et la somme sur ν est faite sur N états quantiques individuels (c'est-à-dire les N orbitales de spin) occupés par les électrons.

Définition

$$I_{\lambda} = \langle u_{\lambda}(q_i) \mid \hat{h}_i \mid u_{\lambda}(q_i) \rangle \tag{A.17}$$

Pour être la valeur moyenne de l'hamiltonien individuel h_i par rapport au spin-orbital u_{λ} , nous avons

$$\langle \phi \mid \hat{H}_1 \mid \phi \rangle = \sum_{\lambda} I_{\lambda} \tag{A.18}$$

La deuxième valeur d'attente $\langle \phi \mid \hat{H}_2 \mid \phi \rangle$ peut être calculée de manière similaire.

$$\langle \phi \mid \hat{H}_2 \mid \phi \rangle = N! \langle \phi_H \mid A \hat{H}_2 A \mid \phi_H \rangle$$

$$= N! \langle \phi_H \mid \hat{H}_2 A^2 \mid \phi_H \rangle$$

$$= N! \langle \phi_H \mid \hat{H}_2 A \mid \phi_H \rangle$$
(A.19)

En utilisant (A.11) et le fait que \hat{H}_2 est la somme (A.4) des opérateurs bi-corps, on obtient

$$\langle \phi \mid \hat{H}_2 \mid \phi \rangle = \sum_{i < j} \sum_{P} (-1)^P \langle \phi_H \mid \frac{1}{r_{ij}} P \mid \phi_H \rangle$$

$$=\sum_{i$$

où P_{ij} est un opérateur qui échange les coordonnées (spatiales et spin) des électrons i et j. Par conséquent, compte tenu de (A.8) et (a.10), nous trouvons que

$$\langle \phi \mid \hat{H}_2 \mid \phi \rangle = \sum_{\lambda,\mu} [\langle u_\lambda(q_i) u_\mu(q_j) \mid \frac{1}{r_{ij}} \mid u_\lambda(q_i) u_\mu(q_j) \rangle - \langle u_\lambda(q_i) u_\mu(q_j) \mid \frac{1}{r_{ij}} \mid u_\mu(q_i) u_\lambda(q_j) \rangle]$$
(A.21)

La somme sur u et μ parcourt les N(N-1)/2 paires d'orbitales. Nous pouvons également écrire (A.21) comme

$$\langle \phi \mid \hat{H}_2 \mid \phi \rangle = \frac{1}{2} \sum_{\lambda} \sum_{\mu} [\langle u_\lambda(q_i) u_\mu(q_j) \mid \frac{1}{r_{ij}} \mid u_\lambda(q_i) u_\mu(q_j) \rangle - \langle u_\lambda(q_i) u_\mu(q_j) \mid \frac{1}{r_{ij}} \mid u_\mu(q_i) u_\lambda(q_j) \rangle]$$
(A.22)

 $\lambda, \mu, = \alpha, \beta, \dots, \nu$

On définit le terme direct :

$$J_{\lambda\mu} = \langle u_{\lambda}(q_i)u_{\mu}(q_j) \mid \frac{1}{r_{ij}} \mid u_{\lambda}(q_i)u_{\mu}(q_j) \rangle$$
(A.23)

qui est la valeur moyenne de l'interaction $\frac{1}{r_{ij}}$ par rapport à l'état $u_{\lambda}(q_i) u_{\mu}(q_j)$ tel que l'électron *i* est dans le spin-orbitale u_{λ} et l'électron *j* dans le spin-orbitale $u_{\mu}(q_j)$. Nous introduisons également le terme d'échange

$$K_{\lambda\mu} = \langle u_{\lambda}(q_i)u_{\mu}(q_j) \mid \frac{1}{r_{ij}} \mid u_{\mu}(q_i)u_{\lambda}(q_j) \rangle$$
(A.24)

qui est l'élément matriciel de l'interaction $\frac{1}{r_{ij}}$ relatif entre les deux états $u_{\lambda}(q_i)u_{\mu}(q_j)$ et $u_{\mu}(q_i)u_{\lambda}(q_j)$ obtenu par échange des électrons i et j. On note que $J_{\lambda\mu}$ et $K_{\lambda\mu}$ sont réels; ils sont également symétriques en λ et μ ,

$$J_{\lambda\mu} = J_{\mu\lambda}, K_{\lambda\mu} = K_{\mu\lambda} \tag{A.25}$$

En termes de $J_{\lambda\mu}$ et $K_{\lambda\mu}$ (A.22) s'écrit :

$$\langle \phi \mid \hat{H}_2 \mid \phi \rangle = \frac{1}{2} \sum_{\lambda} \sum_{\mu} [J_{\lambda\mu} - K_{\lambda\mu}]$$
(A.26)

En utilisant (A.14), (A.18) et (A.26) l'énergie totale $E[\phi]$ s'écrit :

$$E[\phi] = \sum_{\lambda} I_{\lambda} + \frac{1}{2} \sum_{\lambda} \sum_{\mu} [J_{\lambda\mu} - K_{\lambda\mu}]$$
(A.27)

Ayant obtenu la fonctionnelle $E[\phi]$, nous passons à la deuxième étape du calcul, qui consiste à exprimer que $E[\phi]$ est stationnaire par rapport aux variations des orbitales de spin u_{λ} ($\lambda = , \alpha, \beta, ..., \nu$), soumises aux conditions N^2 (A.8) imposée par l'exigence d'orthogonalité sur les u_{λ} . Pour satisfaire ces conditions nous introduisons N^2 multiplicateurs de Lagrange que nous désignons par $\epsilon_{\lambda\mu}$ ($\lambda, \mu = \alpha, \beta, ..., \nu$). L'équation variationnelle s'écrit :

$$\delta E - \sum_{\lambda} \sum_{\mu} \epsilon_{\lambda\mu} \delta < u_{\mu} \mid u_{\lambda} \rangle = 0 \tag{A.28}$$

On voit facilement que $\epsilon_{\lambda\mu} = \epsilon^*_{\mu\lambda}$, de sorte que les N^2 multiplicateurs de Lagrange $\epsilon_{\lambda\mu}$ peuvent être considérés comme les éléments d'une matrice hamiltonienne.

Il est intéressant à ce stade de réaliser une transformation unitaire sur les orbites de spin u_{λ} , à savoir

$$u_{\lambda}' = \sum_{\mu} U_{\mu\lambda} u_{\mu} \tag{A.29}$$

où $U_{\mu\lambda}$ sont les éléments d'une matrice unitaire $N \times N$. Le nouveau déterminant de Slater ϕ' formé avec les spin-orbitales u'_{λ} ne diffère du précédent que par un facteur de phase, puisque

$$\phi' = (detU)\phi \tag{A.30}$$

Et [det U] = 1 parce que U est unitaire. De plus, la fonction $E[\phi]$ n'est pas affectée par cette transformation. Comme toute matrice hermitienne peut être diagonalisée par une transformation unitaire, on peut aussi choisir U de telle sorte que la matrice $\epsilon_{\lambda\mu}$ des multiplicateurs de Lagrange soit une matrice diagonale ayant des éléments $E_{\lambda} \delta_{\lambda\mu}$. Dans ce qui suit, on suppose que cette diagonalisation a déjà été faite de l'extérieur, de sorte que l'équation variationnelle (A.28) s'écrit :

$$\delta E - \sum_{\lambda} E_{\lambda} \delta \langle u_{\lambda} \mid u_{\lambda} \rangle = 0 \tag{A.31}$$

Nous faisant varier maintenant, les spin-orbitales u_{λ} . En utilisant l'expression (A.28) de $E[\phi]$ avec les relations (A.3), (A.17), (A.23) et (A.24), on trouve pour les N spin-orbitales u_{α} , $u_{\beta},...,u_{\nu}$, le système d'équations integro-différentielles

$$\left[-\frac{1}{2}\nabla_{r_{i}}^{2}-\frac{Z}{r_{i}}\right]u_{\lambda}(q_{i})+\left[\sum_{\mu}\int u_{\mu}^{*}(q_{j})\frac{1}{r_{ij}}u_{\mu}(q_{j})dq_{j}\right]u_{\lambda}(q_{i})$$

$$-\sum_{\mu} \left[\int u_{\mu}^*(q_j) \frac{1}{r_{ij}} u_{\lambda}(q_j) dq_j\right] u_{\mu}(q_i) = E_{\lambda} u_{\lambda}(q_i) \tag{A.32}$$

 $\lambda, \mu, = \alpha, \beta, \dots, \nu$

Où la sommation sur μ s'étend sur les N spin-orbitales occupées. On rappelle que le symbole $\int dq_i$ implique une intégration sur les coordonnées spatiales r_{ij} et une sommation sur la coordonnée spin de l'électron j. Les équations (A.32) sont connues sous le nom d'équations de Hartree-Fock. Écrivons les spin-orbitales $u_{\lambda}(q_i)$ comme :

$$u_{\lambda}(q_i) = u_{\lambda}(r_i)\chi_{\frac{1}{2},m_s^{\lambda}} \tag{A.33}$$

et en utilisant les propriétés d'orthogonalité des fonctions de spin, à savoir :

$$\langle \chi_{\frac{1}{2},m_s^{\lambda}} \mid \chi_{\frac{1}{2},m_s^{\mu}} \rangle = \delta_{m_s^{\lambda},m_s^{\mu}} \tag{A.34}$$

on peut écrire les équations de Hartree-Fock sous une forme qui ne concerne que la partie spatiale des orbitales de spin. C'est,

$$[-\frac{1}{2}\nabla_{r_{i}}^{2} - \frac{Z}{r_{i}}]u_{\lambda}(r_{i}) + [\sum_{\mu} \int u_{\mu}^{*}(r_{j})\frac{1}{r_{ij}}u_{\mu}(r_{j})dr_{j}]u_{\lambda}(r_{i})$$
$$-\sum_{\mu} \delta_{m_{s}^{\lambda},m_{s}^{\mu}}[\int u_{\mu}^{*}(r_{j})\frac{1}{r_{ij}}u_{\lambda}(r_{j})dr_{j}]u_{\mu}(r_{i}) = E_{\lambda}u_{\lambda}(r_{i})$$
(A.35)

 $\lambda, \mu, = \alpha, \beta, ..., \nu$

Une forme plus compacte des équations de Hartree-Fock peut être écrite de la façon suivante : On définit l'opérateur direct

$$V_{\mu}^{d}(q_{i}) = \int u_{\mu}^{*}(q_{j}) \frac{1}{r_{ij}} u_{\mu}(q_{j}) dq_{j}$$
$$= \int u_{\mu}^{*}(r_{j}) \frac{1}{r_{ij}} u_{\mu}(r_{j}) dr_{j} \equiv V_{\mu}^{d}(r_{i})$$
(A.36)

Qui est juste le potentiel de répulsion électrique dû à l'électron j, lorsque la position de cet électron est moyennée sur l'orbital u_{μ} . Nous définissons également l'opérateur d'échange $V_{\mu}^{ex}(q_i)$ tel que

$$V_{\mu}^{ex}(q_i)f(q_i) = \left[\int u_{\mu}^*(q_j)\frac{1}{r_{ij}}f(q_j)dq_j\right]u_{\mu}(q_i)$$
(A.37)

où $f(q_j)$ est une fonction arbitraire bien tenue. En particulier, en agissant sur une spinorbitale $u_{\lambda}(q_i)$, on voit que l'opérateur d'échange V_{μ}^{ex} donne :

$$V_{\mu}^{ex}(q_i)u_{\mu}(q_i) = \left[\int u_{\mu}^*(q_j)\frac{1}{r_{ij}}u_{\lambda}(q_j)dq_j\right]u_{\mu}(q_i)$$

$$= \delta_{m_s^{\lambda}, m_s^{\mu}} \left[\int u_{\mu}^*(r_j) \frac{1}{r_{ij}} u_{\lambda}(r_j) dr_j \right] u_{\mu}(r_i) \chi_{1/2, m_s^{\mu}}$$
$$= \delta_{m_s^{\lambda}, m_s^{\mu}} V_{\mu}^{ex}(r_i) u_{\lambda}(r_i) \chi_{1/2, m_s^{\mu}}$$
(A.38)

où l'opérateur d'échange V qui agit uniquement sur les coordonnées spatiales, est défini par :

$$V_{\mu}^{ex}(r_i)f(r_i) = \left[\int u_{\mu}^*(r_j)\frac{1}{r_{ij}}f(r_j)dr_j\right]u_{\mu}(r_i)$$
(A.39)

 $f(r_j)$ étant une fonction arbitraire bien tenue. En utilisant (A.36) et (A.37) les équations de Hartree-Fock deviennent :

$$\left[-\frac{1}{2}\nabla_{r_i}^2 - \frac{Z}{r_i} + \sum_{\mu} V_{\mu}^d(r_i) - \sum_{\mu} V_{\mu}^{ex}(q_i)\right] u_{\lambda}(q_i) = E_{\lambda} u_{\lambda}(q_i)$$
(A.40)

où

$$\left[-\frac{1}{2}\nabla_{r_i}^2 - \frac{Z}{r_i} + W^d(r_i) - W^{ex}(q_i)\right]u_{\lambda}(q_i) = E_{\lambda}u_{\lambda}(q_i)$$
(A.41)

où nous avons introduit les potentiels direct et d'échange :

$$W^{d}(r_{i}) = \sum_{\mu} V^{d}_{\mu}(r_{i})$$
 (A.42)

$$W^{ex}(q_i) = \sum_{\mu} V^{ex}_{\mu}(q_i)$$
 (A.43)

Il est également intéressant d'écrire les équations de Hartree-Fock en termes de matrice de densité (voir Bransden et Joachain, 2000) :

$$\rho(q_i, q_j) = \sum_{\mu} u_{\mu}(q_i) u_{\mu}^*(q_j)$$
(A.44)

où la matrice de densité sans spin correspondante est :

$$\rho(r_i, r_j) = \sum_{\mu} u_{\mu}(r_i) u_{\mu}^*(r_j)$$
(A.45)

Les éléments diagonaux $\rho(q_i, q_j)$ et $\rho(r_i, r_j)$ de ces matrices de densité seront désignés par $\rho(q_i)$ et $\rho(r_i)$ respectivement. On note que

$$\rho(r) = \sum_{\mu} |u_{\mu}(r)|^2$$
 (A.46)

donne la densité de probabilité de trouver un électron au point r dans l'un des N spinorbitales occupés. En termes de matrices de densité, nous avons :

$$W^{d}(r_{i}) = \int \rho(r_{j}) \frac{1}{r_{ij}} dr_{j}$$
(A.47)

 et

$$W^{ex}(q_i)u_{\lambda}(q_i) = \int \rho(q_i, q_j) \frac{1}{r_{ij}} u_{\lambda}(q_j) dq_j$$
$$= \delta_{m_s^{\lambda}, m_s^{\mu}} [\int \rho(r_i, r_j) \frac{1}{r_{ij}} u_{\lambda}(r_j) dr_j] \chi_{1/2, m_s^{\mu}}$$
(A.48)

Si nous définissons le potentiel Hartree-Fock comme :

$$W(q_i) = -\frac{Z}{r_i} + \sum_{\mu} V^d_{\mu}(r_i) - \sum_{\mu} V^{ex}_{\mu}(q_i)$$

= $-\frac{Z}{r_i} + W^d(r_i) - W^{ex}(q_i)$ (A.49)

les équations Hartree-Fock prennent la forme simple :

$$\left[-\frac{1}{2}\nabla_{r_i}^2 + W(q_i)\right]u_\lambda(q_i) = E_\lambda u_\lambda(q_i) \tag{A.50}$$

Le déterminant de Slater construit à partir des spin-orbitales optimisées $u_{\lambda}(q_i)$ satisfaisant les équations de Hartree-Fock (A.50) est appelé la fonction d'onde Hartree-Fock ψ_{HF} . L'énergie Hartree-Fock correspondante est :

$$E_{HF} = \langle \psi_{HF} \mid H \mid \psi_{HF} \rangle \tag{A.51}$$

Annexe B

Raies classées de l' Er^{+3}

Table 1. Les raies dans Er IV. $\Delta \lambda = \lambda_{exp} - \lambda_{Ritz}$; intensités en unité arbitraire (PP : Plaques Photographiques, IP : Image Plates); gA probabilités de transition calculées, g le poids statistique du niveau supérieur, A coefficient d'Einstein de l'émission spontanée. CF cancellation factor (effets interférométriques de destruction) défini par l'équation (14.107), p432 in [6]. λ_{Ritz} est dérivé des niveaux d'énergie optimisés comme $\lambda_{Ritz} = (E_{sup} - E_{inf})^{-1}$. Toutes les énergies et les nombres d'onde sont en cm⁻¹.

$\lambda_{_{\mathrm{exp}}}(\mathrm{\AA})$ *	$\sigma_{_{exp}}(cm^{-1})$	$\lambda_{_{ ext{Ritz}}}$ (Å) *	Δλ (Å)	Int(PP)	Int(IP)	gA(10° s ⁻¹)	CF	Niveau Sup**	J_{sup}	Niveau Inf**	J_{inf}	E _{sup} (cm ⁻¹)	E _{inf} (cm ⁻¹)	Commentaire***
851.578	117429.0	851.578	0.000	30	11	100.6	-0.04	4f11(4I)4I	7.5	4f105d(3L)4K	6.5	0.00	117429.1	
851.906	117383.8	851.903	0.003	77	32	288	-0.10	4f11(4I)4I	7.5	4f105d(3M)4K	7.5	0.00	117384.3	
854.337	117049.9	854.331	0.006	53	26	317.5	-0.14	4f11(4I)4I	7.5	4f105d(3L)2I	6.5	0.00	117050.7	
872.351	114632.7	872.353	-0.001	149	34	807.9	-0.36	4f11(4I)4I	6.5	4f105d(3M)4K	5.5	6507.750	121140.3	
873.959	114421.8	873,960	-0.001	124	138	708.2	-0.24	4f11(4T)4T	6.5	4f105d(3L)4K	5.5	6507.750	120929.5	
886.165	112845.8	886.169	-0.004	51	50	253	-0.06	4f11(4T)4T	7.5	4f105d (3L) 4T	7.5	0.00	112845.3	
890.223	112331.4	890.223	0.000	289	296	9292	0.86	4f11(4T)4T	7.5	4f105d (3M) 4K	8.5	0.00	112331.4	
894.355	111812.4	894.354	0.001	292	306	7144	-0.76	4f11(4T)4T	7.5	4f105d(5G)4H	6.5	0.00	111812.5	
901 154	110968 8	901 157	-0.003	64	18	97 47	0 03	4f11(4T)4T	55	4f105d (3M) 4K	5 5	10171 79	121140 3	
901 532	110922 3	901 540	-0.008	176	136	1331	0 35	4f11(4T)4T	6 5	4f105d (3L) 4K	6 5	6507 750	117429 1	
JOI.002	110022.0	501.510	0.000	110	100	1001	0.00	1111(11)11	0.0	111000(01) 110	0.0	0007.700	11/12/11	
901 901	110876 9	901 904	-0 003	275	243	6712	0 95	4f11(4T)4T	65	4f105d(3M)4K	75	6507 750	117384 3	
902 876	110757 2	902 872	0.004	73	125	944 4	0.17	$4 \pm 11 (4 \pm) 4 \pm $	5 5	4f105d (3L) 4K	5 5	10171 79	120929 5	
904 625	110543 0	904 626	-0.001	174	135	1314	0.58	4f11(4T)4T	6 5	4f105d(3L)2T	6 5	6507 750	117050 7	
917 163	100031 8	917 168	-0.005	167	100	105 5	0.30	A = 1 + 1 + (A = 1) + 1 + (A = 1)	5 5	4f106g(5E)6E	5 5	10171 79	110203 1	
920 206	108671 3	920 203	0.003	177	53	810 3	0.23	A = 1 + 1 + (A = 1) + 1 + (A = 1)	1 5	4f105d (3M) /K	5.5	12468 66	121140 3	
920.200	108591 0	920.203	-0.001	50	2	3 61	0.13	4±±±(4±)4± Λ£11(Λτ)Λτ	7.5	4f106g(5T)6T	65	12400.00	108590 8	
920.007	108460 5	921 992	0.001	253	116	2628	0.00	4±±±(4±)4± Λ£11(Λτ)Λτ	1 5	4f105d(3t)/K	55	12468 66	120020.0	
022 102	100400.0	022 196	0.005	200	151	2340	0.33		7.5	4f105d(3H)4R	65	12400.00	109402 9	
922.492	100402.0	922.400	0.000	210	101	553 /	0.45	$4 \pm 1 \pm (4 \pm) 4 \pm $ $A = 1 \pm (A \pm) A \pm $	7.5	411050 (5n) 4n4	7 5	0.00	100402.0	
923.374	107056 5	923.309	0.003	210	0J 144	2102	0.95	$4 \pm \pm \pm (4 \pm) 4 \pm $	7.J	41100S(J1)01	7.5	10171 70	117420 1	
932.344	10/230.3	932.331	0.007	101	144	3402	-0.71	4111(41)41	5.5	4110Ja(JL)4K	0.5	101/1./9	11/429.1	
936 907	10673/ 1	936 905	0 002	60	17	140 4	-0 18	Λ Γ 11 (ΛΤ) ΛΤ	15	4f106e(5F)6F	55	12468 66	119203 1	
940 405	106337 2	940 402	0.002	111	/	1-0 01-2	-0.45	1 I I (1 I) 1 I 1 I (1 I) 1 I	5	4f105d(3t) 4t	7 5	6507 750	112045 3	
945 770	105734 0	045 757	0.005	1/1	95	1001	-0.49	1 ± ± ± (± ±) ± ± 4 £ 1 1 (4 ₽) 4 ₽	1 5	4f105d(3M) 4K	55	15404 96	121140 3	
943.770	105304.0	943.737	-0.001	20	95	104	-0.49	4111 (4r) 4r Af11 (AT) AT	4.5	41105d (5M) 4K	5.5	6507 750	111012 5	
949.024	104000 7	052 202	-0.001	29	0	270 2	0.05	$4 \pm \pm \pm (4 \pm) 4 \pm 4 $	7.5	41105d (5G) 4H	6.5	0.007.750	104000 7	
955.202	102700.7	955.205	-0.001	1 6	09	270.2	-0.09	4111 (41) 41 4f11 (4E) 4E	/.J	411050 (5G) 61D	0.5	15404 96	110202 1	
903.400	102102 0	963.407	0.001	10	10	222 6	0.13	4111 (41) 41 411 (41) 41	4.5	41100S(JF)0F	5.5	13404.00	102102.2	
909.144	103103.9	909.149	-0.003	40	10	121 2	-0.08	$4 \pm \pm \pm (4 \pm) 4 \pm 4 \pm 4 \pm 1 \pm (4 \pm) 4 \pm 4 \pm 1 \pm$	7.J	411050 (5G) 81	0.5	CE07 7E0	100500.0	
9/9.604	102082.1	9/9.595	0.010	96	95	131.2	0.10	$4 \perp \perp \perp (4 \perp) 4 \perp$	0.5	411065(51)61	0.5	6507.750	108590.8	
981.404	101894.8	981.402	0.002	93	39	81.51	-0.03	4111(41)41	0.0	411050 (3H) 4H4	0.0	0507.750	101140 2	
982.240	101808.1	982.235	0.005	122	99	20.54	-0.04	4111(ZH)ZHZ	5.5	411050 (SM) 4K	5.5	19331.09	121140.3	
001 275	101507 6	001 273	0 002	133	05	546 0	-0 15	/f11/0u\0u0	5 5	1 f 1 0 5 d (3 T) 1 K	5 5	10331 60	120020 5	
904.273	101556 6	904.273	0.002	133	26	14 56	-0.13	4111 (ZH) ZHZ	75	41105d (5L) 4R	75	19331.09	101556 6	
904.075	101162 6	000 107	0.000	140	109	760 0	0.02	$4 \pm \pm \pm (4 \pm) 4 \pm 4 $	6.5	411050(30)41	7.J	6507 750	107671 5	
900.490	100003 5	900.497	0.001	107	53	249.5	0.40	$4 \pm 1 \pm (4 \pm) 4 \pm $ $A = 1 \pm (A \pm) A \pm $	1 5	41105d (3R) 2H2	3.5	12469 66	113372 2	
991.040	100903.3	991.040	-0.000	161	97	563 7	0.10	$4 \pm 1 \pm (4 \pm) 4 \pm $ $A = 1 \pm (A \pm) A \pm $	4.J 5.5	41105d (3D4D1 4f105d (3K) 2T2	5.5	10171 70	110062 7	
992.149	100/91.3	992.100	-0.004	127	62	165.0	0.14	$4 \pm \pm \pm (4 \pm) 4 \pm 4 $	J.J 5 5	41105d (SR) 212	J.J 5 5	10171.79	110502.7	
995.500	100444.0	995.509	-0.009	137	150	403.9	-0.17	$4 \pm \pm \pm (4 \pm) 4 \pm $	5.5	41105d (5G) 6G	5.5	101/1./9	100227 0	
990.034	100337.7	990.032	0.002	252	100	2010	-0.21	$4 \pm \pm \pm (4 \pm) 4 \pm $	7.5	41105d (JF) 0H	0.5	0.00	100337.9	
999.047 1001 1E1	100033.3	1001 107	-0.002	231	110	2010	-0.41	$4 \pm \pm \pm (4 \pm) 4 \pm 4 \pm 4 \pm 1 \pm (4 \pm) 4 \pm 4 \pm 1 \pm$	7.J	411050 (SK) 4K2	7.5	CE07 7E0	100033.2	
1016 226	99885.10	1016 222	-0.020	107	20	333.1 07 77	0.31	4111(41)41 4f11(4T)4T	0.5	411050(5G)4G	5.5	6507.750	106391.2	
1010.320	90393.10	1010.333	-0.007	107	59	91.11	-0.07	4111(41)41	0.5	41103d(3G)01D	0.5	0307.730	104900.7	
1018 891	98116 90	1018 889	-0 007	0.1	13	3/1 0	-0 13	Л Г 1 1 (Л Т) Л Т	1 5	4 f 1 0 5 d (5 G) 6 C	55	12468 66	110614 9	
1020 7/7	97967 10	1020 7/0	-0.001	150	43	741.9	0.13	ユエエエ (ユエ) ユエ ハチ11 (ハデ) ハデ	4.5	1f105d(30/0G	3.5	15/0/ 96	113372 2	
1023 330	97719 /0	1023 3/2	-0.001	120	113	140.0	-0.22	ユエエエ (ヨロノヨロ オモ11 (クロ) クロク	4.J 5.5	1f105d(3t)2t	5.5	19331 69	117050 7	
1023.539	97696 20	1023.542	-0.003	150	121	030	-0.21	ч⊥⊥⊥ (∠п) ∠п∠ Л£11 (Лт) Лт	5.5	1f105d(3E)/21	5.5	10171 70	107967 7	
1023.301	97650 00	1022.004	-0.003	3 E T 2 O	22	27 01	-0.24	₩⊥⊥⊥(₩⊥)₩⊥ Λ£11(Λ⊤)Λ⊤	5.5	41105d (5R) 4KZ	5.5	6507 750	10/157 0	
1034 300	9/000.00	1034 300	0.002	30	23	21.91	0.02	₩⊥⊥⊥(₩⊥)₩⊥ Λ£11(Λ⊤)Λ⊤	0.0	4f105d(5c) ft	5.5	6507 750	103103 3	
1027 201	900/3.30	1027 200	0.002	03	00	500.0	0.10	4±±±(4±)4± 4£11(4±)4±0	0.5	4 f 1 0 F d (3 M) 4 M	5.5	24726 00	101140 2	
1016 100	904UJ.UU	1046 400	-0.007	± /		09.07	-0.02	4111(41)412 4511(41)412	4.0	411050(3M)4K	5.5	15404 00	110000 7	
1040.400	, vocie	1040.400	0.000	3		10.00	-0.02	4111(42)42	4.0	411U30(3K)212	5.5	10404.86	TT0307.1	

1048.230 1049.472	95398.90 95286.00	1048.228 1049.471	0.002	23 26	12 22	73.44 100.6	-0.02	4f11(4I)4I 4f11(4I)4I	4.5 4.5	4f105d(3K)4K2 4f105d(3H)4F4	5.5	12468.66 12468.66	107867.7 107754.8	
1049.859	95250.90	1049.861	-0.002	49	30	93.79	-0.07	4f11(4I)4I	5.5	4f105d(5G)6G	4.5	10171.79	105422.5	
1050.387	95203.00 95031.40	1050.389	-0.002	51 81	38 50	236.4	-0.13	4III(4I)4I 4f11(4T)4T	4.5	41105d(3K)2H2 4f105d(5F)4F	5.5	12468.66	107500.0	
1055.643	94728.90	1055.644	-0.001	60	39	178.4	-0.14	4f11(4I)4I	5.5	4f105d(5G)6Ib	6.5	10171.79	104900.7	
1058.950	94433.20	1058.957	-0.007	14	8	29.95	0.01	4f11(4G)4G	5.5	4f105d(3M)4K	5.5	26707.79	121140.3	
1063.985	94222.20	1063.986	-0.000	20 34	14	37.3	-0.02	4f11(4G)4G 4f11(4I)4I	5.5	4f105d(5E)4Gb	5.5	10171.79	104157.9	
1066.823	93736.30	1066.824	-0.001	90	46	179.7	0.08	4f11(4I)4I	5.5	4f105d(5F)4H	4.5	10171.79	103908.0	
1067.263	93697.60	1067.262	0.001	103	41	186.5	-0.26	4f11(4I)4I	7.5	4f105d(5I)4K	6.5	0.00	93697.73	
1007.094	93042.20	100/.09/	-0.003	1		11.30	0.07	4111(41)41	1.5	41103d(3r)0n	1.5	0.00	93041.97	
1069.743	93480.40	1069.745	-0.002	105	54	169.7	0.08	4f11(4I)4I	6.5	4f105d(5F)4H	5.5	6507.750	99987.95	
1075.135	93373.50	1075.136	-0.001	10 41	21	28.56	0.01	4III (4G) 4G 4f11 (4T) 4T	4.5	41105d(3M)4K 4f105d(5G)6T	5.5	27766.82	103183.3	
1075.799	92954.20	1075.803	-0.004	19	21	61.89	0.06	4f11(4I)4I	4.5	4f105d(5G)6G	4.5	12468.66	105422.5	
1081.516	92462.80	1081.515	0.001	3		15.01	-0.01	4f11(4F)4F	4.5	4f105d(3K)4K2	5.5	15404.86	107867.7	
1082.835	92350.10	1082.838	-0.003	64	26	228	-0.12	4f11(4F)4F	4.5	4f105d(3H)4F4	4.5	15404.86	107754.8	
1085.111	92156.40	1085.107	0.004	22	E 1	62.32	0.12	4f11(4I)4I	6.5	4f105d(5F)4G	5.5	6507.750	98664.60	
1086 193	92095.20	1086 195	-0.001	20	JI	4/4	0.10	4111(4E)4E 4f11(4T)4T	4.5	41105d(5r)4r 4f105d(5r)6H	5.5	13404.80	92064 49	
1088.006	91911.20	1088.018	-0.010	1		11.7	0.00	4f105d(5I)6H	7.5	4f106p(5I)6I	6.5	73426.17	165336.4	
1091 328	91631 50	1091 334	-0 006	75	20	181 7	-0.08	4f11(2H)2H2	55	4f105d(3K)2T2	55	19331 69	110962 7	
1093.621	91439.30	1093.622	-0.001	, 9	20	10.61	-0.01	4f11(4I)4I	4.5	4f105d(5F)4H	4.5	12468.66	103908.0	
1093.723	91430.80	1093.724	-0.001	69		96.69	-0.05	4f11(4I)4I	4.5	4f105d(5G)6G	3.5	12468.66	103899.4	
1095.492	91283.20	1095.492	0.000	101	21	278.6	-0.09	4f11(2H)2H2	5.5	4f105d(5G)6G	5.5	19331.69	110614.9	
1099.068	90986.10	1099.067	0.001	13		52.28	-0.07	4fll(4F)4F	4.5	4f105d(5G)4G	5.5	15404.86	106391.2	
1102.409	90703.90	1102.492	-0.003	∠⊥ 159	77	23.33	-0.43	4111(41)41 4f11(4T)4T	7.5	41105d(51)4L 4f105d(5T)4T	6.5	0.00	90703.04	
1106.893	90343.00	1106.894	-0.001	20		148.9	0.07	4f11(4G)4G	5.5	4f105d(3L)2I	6.5	26707.79	117050.7	
1110.891	90017.90	1110.894	-0.003	46	24	138.5	0.12	4f11(4F)4F	4.5	4f105d(5G)6G	4.5	15404.86	105422.5	
1111.735	89949.50	1111.739	-0.004	125	49	298.3	-0.28	4f11(4I)4I	7.5	4f105d(5I)4K	7.5	0.00	89949.21	
1113.384	89816.30	1113.385	-0.001	15		69.45	-0.09	4f11(4I)4I	5.5	4f105d(5F)4H	5.5	10171.79	99987.95	
1115.489	89646.80	1115.488	0.001	29	1 7	66.26	-0.17	4f11(4I)4I	6.5	4f105d(5I)4K	5.5	6507.750	96154.60	
1122.691	890/1./0 88753 50	1122.699	-0.008	24 18	1 / 1 8	106.1	-0.16	4III(ZH)ZHZ Af11(AF)AF	5.5 4 5	4I105d(3H)4H4 4f105d(5F)4Cb	0.0 5.5	19331.69	108402.8	
1129.478	88536.50	1129.484	-0.006	4	10	37.02	-0.01	4f11(2H)2H2	5.5	4f105d(3K)4K2	5.5	19331.69	107867.7	
1129.900	88503.40	1129.904	-0.004	47	26	62.88	0.06	4f11(4F)4F	4.5	4f105d(5F)4H	4.5	15404.86	103908.0	
1130.009	88494.90	1130.013	-0.004	140	90	386.8	-0.16	4f11(4F)4F	4.5	4f105d(5G)6G	3.5	15404.86	103899.4	
1130.927	88423.00	1130.926	0.001	3	114	20	0.01	4f11(2H)2H2	5.5	4f105d(3H)4F4	4.5	19331.69	107754.8	
1140 419	87687 10	1140 425	-0.004	101	114	321.1 107 7	-0.15	4111(41)41 4f105d(5T)6H	0.5 7 5	411050(51)41 4f106p(51)6T	5.5	73426 17	94476.78	
1145.190	87321.80	1145.191	-0.001	72	28	80.28	0.06	4f11(4I)4I	6.5	4f105d(5F)6H	5.5	6507.750	93829.40	
1146 922	87189 90	1146 921	0.001	205	1 3 1	297 2	-0.18	4f11(4T)4T	65	4f105d(5t)4k	65	6507 750	93697 73	
1148.638	87059.60	1148.640	-0.002	109	43	124.9	0.06	4f11(2H)2H2	5.5	4f105d(5G)4G	5.5	19331.69	106391.2	
1149.274	87011.50	1149.277	-0.003	205	173	361.4	-0.20	4f11(4I)4I	5.5	4f105d(5I)4I	4.5	10171.79	97183.02	
1152.639	86757.50	1152.640	-0.001	166	125	126.2	-0.29	4f11(4I)4I	7.5	4f105d(5I)6L	7.5	0.00	86757.34	
1157.041	86577.00	1157 145	-0.006	54	13	68.89	-0.02	4I105d(51)6G	6.5	41106p(51)6I	1.5	79016 70	165326 4	
1159.730	86227.00	1159.734	-0.009	70 67	т9	44.26	-0.02	4f11(4F)4F2	0.5 4.5	4f105d(3K)2T2	5.5	24736.00	110962.7	
1160.939	86137.20	1160.938	0.001	70	12	33.68	0.05	4f11(4I)4I	5.5	4f105d(5F)6H	4.5	10171.79	96309.02	
1161.568	86090.60	1161.565	0.003	79	38	64.46	-0.06	4f11(2H)2H2	5.5	4f105d(5G)6G	4.5	19331.69	105422.5	
1163.024	85982.78	1163.023	0.001	170	113	167.6	-0.13	4f11(4I)4I	5.5	4f105d(5I)4K	5.5	10171.79	96154.60	D
1163.024	85982.78	1163.028	-0.004	170	113	47.74	0.09	4f105d(5I)6I	6.5	4f106p(5F)4G	5.5	78916.79	164899.2	D

1164.437	85878.40	1164.431	0.006	71	34	109	0.05	4f11(4F)4F2	4.5	4f105d(5G)6G	5.5	24736.00	110614.9	
1166.312	85740.40	1166.311	0.001	332	367	679.3	-0.23	4f11(4I)4I	7.5	4f105d(5I)4H	6.5	0.00	85740.41	
1166.449	85730.30 85593 50	1166.454	-0.005	36	33	123.3 112 3	-0.11	4f105d(5I)6I 4f105d(5I)6G	5.5	4f106p(5I)4K	6.5	83109.96	168839.9	
1168.648	85569.00	1168.648	0.000	87	34	59.75	-0.03	4f11(2H)2H2	5.5	4f105d(5G)6Ib	6.5	19331.69	104900.7	
1169.007	85542.70	1169.009	-0.002	42	34	10.56	0.00	4f105d(5I)6K	6.5	4f106p(5I)4I	5.5	82921.55	168464.1	
1171.706	85355.00 85345.60	1171.590	-0.010	67 148	114	1/4.4 79.02	0.03	41105d(51)61 4f11(4I)4I	5.5 7.5	4f106p(51)41 4f105d(5I)6K	5.5 8.5	0.00	85345.53	
1175 0.00	05000 00	1175 057	0 000		-	44 70	0.04	4 511 (4 7) 4 7				10151 50	05050 05	
1175.360	85080.30 85003.60	1176.422	-0.003	/5 188	/ 136	44./8 228.1	-0.04	4111(41)41 4f11(4I)4I	5.5	4f105d(5F)6D 4f105d(5I)4Hb	4.5	6507.750	95252.35	
1176.569	84992.90	1176.574	-0.005	364	335	998.6	-0.32	4f11(4I)4I	7.5	4f105d(5I)4Ib	7.5	0.00	84992.54	
1178.880	84826.30 84755 30	1178.880	0.000	91 30	20.4	81.74 153 4	0.04	4f11(2H)2H2 4f105d(5T)6H	5.5	4f105d(5F)4Gb 4f106p(5T)4T	5.5	19331.69	104157.9	
1180.430	84714.90	1180.437	-0.007	264	177	518.6	-0.16	4f11(4I)4I	4.5	4f105d(5I)4I	4.5	12468.66	97183.02	
1180.599	84702.80	1180.604	-0.005	228	136	217.4	-0.12	4f11(4I)4I	5.5	4f105d(5I)4H	4.5	10171.79	94874.22	
1181.173	84661.60 84586.40	1181.174	0.001	61 7	/	28.44 127.5	-0.17	4111(41)41 4f105d(5I)6I	6.5 4.5	41105d(51)6L 4f106p(51)4I	5.5 4.5	86401.13	170987.6	
1182.367	84576.10	1182.365	0.002	19	14	19.89	-0.01	4f11(2H)2H2	5.5	4f105d(5F)4H	4.5	19331.69	103908.0	
1186.164	84305.40	1186.169	-0.005	279	221	495.8	-0.16	4f11(4I)4I	5.5	4f105d(5I)4I	5.5	10171.79	94476.78	
1187.594	84203.90	1187.593	0.001	187	107	144.5	-0.09	4f11(4I)4I	6.5	4f105d(5I)4H	5.5	6507.750	90711.70	
1191.800	84090.80 83906.70	1189.191	0.000	355 126	275	105.3	-0.18	4±11(41)41 4f11(4G)4G	6.5	4f105d(51)41 4f105d(5G)6G	6.5 5.5	6507.750 26707.79	90598.50	
1192.743	83840.40	1192.743	0.000	63	7	19.27	-0.06	4f11(4I)4I	4.5	4f105d(5F)6H	4.5	12468.66	96309.02	
1194.948	83685.60	1194.944	0.004	127	63	59.37	-0.05	4f11(4I)4I	4.5	4f105d(5I)4K	5.5	12468.66	96154.60	
1195.332	83525.40	1197.233	0.003	130	32 77	868.9	-0.08	4f11(4I)4I 4f11(4I)4I	5.5	4f105d(5F)8H 4f105d(5I)4K	6.5	10171.79	93697.73	
1198.450	83441.10	1198.445	0.005	188	126	132.3	-0.16	4f11(4I)4I	6.5	4f105d(5I)4K	7.5	6507.750	89949.21	
1198.979	83404.30	1198.979	0.000	155	56	108.6	0.14	4±11(41)41	4.5	41105d(51)4G	3.5	12468.66	95872.96	
1199.375	83376.80	1199.376	-0.001	398	439	961.4	-0.34	4f11(4I)4I	7.5	4f105d(5I)4I	7.5	0.00	83376.71	
1201.062	83259.60 83195.70	1201.061	0.001	// 89	24 39	29.38	-0.10	4111(4F)4F 4f11(4G)4G	4.5	4f105d(5F)4G 4f105d(3K)2T2	5.5	27766.82	98664.60	
1202.558	83156.10	1202.549	0.009	83	31	514.3	-0.34	4f105d(5I)6H	7.5	4f106p(5I)4H	6.5	73426.17	156582.9	
1202.916	83131.30	1202.910	0.006	124	77	173.5	0.07	4f11(4F)4F2 4f105d(5T)4H	4.5	4f105d(3K)4K2	5.5	24736.00	107867.7	
1203.959	83059.30	1203.949	0.010	41	14	113.2	0.01	4f105d(51)6L	8.5	4f106p(51)4K	7.5	82610.32	165670.3	
1205.401	82959.90	1205.395	0.006	100	54	621.1	0.34	4f105d(5I)6I	5.5	4f106p(5I)6H	4.5	83109.96	166070.3	
1205.765	82934.90 82921.40	1205.959	0.008	247	15	203.2	-0.02	4111(4F)4F2 4f11(4I)4I	4.5	41105d(3K)2H2 4f105d(5I)6K	5.5	24/36.00	82921.55	
1207 042	02017 10	1207 041	0 002	120	70	05 22	0 1 0	4 f 1 1 (4 m) 4 m	4 5	4 f 1 0 F d (F T) 4 H	2 5	15404 96	00252 07	
1207.043	82783.40	1207.967	0.002	48	22	34.66	0.10	4f11(4F)4F 4f11(4I)4I	4.5	4f105d(5f)6D	4.5	12468.66	95252.07	
1208.257	82763.80	1208.255	0.002	77	53	48.99	-0.02	4f11(4F)4F2	4.5	4f105d(5F)4F	3.5	24736.00	107500.0	
1208.480	82748.50 82724 60	1208.477	0.003	59	43 22	628.5 109.6	-0.41	4f105d(51)6K 4f105d(5T)4H	6.5	4f106p(51)6K 4f106p(51)4T	7.5	82921.55	165670.3	
1209.921	82650.02	1209.927	-0.006	173	99	51.69	-0.13	4f11(4I)4I	6.5	4f105d(5I)6L	6.5	6507.750	89157.31	Asym
1210.506	82610.10	1210.503	0.003	243	194	204.5	-0.38	4f11(4I)4I	7.5	4f105d(5I)6L	8.5	0.00	82610.32	
1213.380	82414.40	1213.374	0.005	106	58	850.3	0.12	4f105d(51)6G 4f105d(51)6K	6.5	4f106p(51)4H	6.5	82921.55	165336.4	
1213.512	82405.40	1213.510	0.002	222	165	235	0.16	4f11(4I)4I	4.5	4f105d(5I)4H	4.5	12468.66	94874.22	
1213.952	82375.60	1213.953	-0.001	44		125.6	-0.02	4f105d(5I)6H	7.5	4f106p(5I)4I	7.5	73426.17	155801.7	
1214.160	82361.40	1214.159	0.001	97 176	49	800.3	-0.24	4f105d(5I)6H	4.5	4f106p(5I)6H	4.5	83708.79	166070.3	
1215.362	82280.00	1215.355	0.007	52	55	244.7	-0.32	4f105d(5I)6H	5.5	4f106p(5I)4K	6.5	86559.40	168839.9	
1216.147	82226.90	1216.154	-0.007	130	51	408.7	-0.13	4f105d(5I)6I	5.5	4f106p(5I)6I	6.5	83109.96	165336.4	
1216.606	82195.90	1216.604	0.002	128	46	886.2	-0.21	41105d(5I)6I	6.5	41106p(5I)6I	7.5	/8916.79	161112.8	

1216.837 1217.041 1218.095 1218.291	82180.30 82166.52 82095.40 82082.20	1216.835 1217.056 1218.099 1218.286	0.002 -0.020 -0.004 0.005	144 103 132 25	58 37 54 3	826.5 73.61 528.9 202.2	-0.12 -0.03 0.16 -0.02	4f105d(5I)4K 4f105d(5I)6I 4f105d(5I)6Kb 4f105d(5I)6L	8.5 4.5 6.5 7.5	4f106p(5I)6K 4f106p(5F)6G 4f106p(5I)4K 4f106p(5I)4K	8.5 4.5 6.5 6.5	79154.18 86401.13 86744.73 86757.34	161334.6 168566.6 168839.9 168839.9	Asym
1218.825 1219.083 1219.281 1219.395 1219.395 1219.857 1219.922 1220.125 1220.125 1220.275	82046.20 82028.90 82015.50 82007.89 81976.80 81972.50 81958.82 81958.82 81948.70	1218.820 1219.084 1219.277 1219.391 1219.405 1219.845 1219.920 1220.127 1220.111 1220.270	$\begin{array}{c} 0.005 \\ -0.001 \\ 0.004 \\ -0.010 \\ 0.010 \\ 0.002 \\ -0.002 \\ 0.010 \\ 0.005 \end{array}$	114 63 140 167 167 40 218 114 114 138	49 15 65 75 75 119 17 17 53	524 376.6 63.85 81.45 114 100.3 1059 229.6 162.8 54.45	0.29 -0.10 0.11 0.14 -0.04 0.11 0.55 0.02 0.02 -0.07	4f105d(5I)6G 4f105d(5I)6I 4f11(4I)4I 4f11(4I)4I 4f105d(5I)6H 4f105d(5I)6K 4f105d(5I)6K 4f105d(5I)4K 4f105d(5I)4I 4f105d(5I)4I	6.5 3.5 5.5 4.5 6.5 7.5 8.5 7.5 6.5	4f106p(51)4H 4f106p(51)6I 4f105d(51)4G 4f105d(51)4I 4f106p(5F)6G 4f106p(5F)4G 4f106p(51)6K 4f106p(51)6I 4f106p(51)6I 4f105d(51)6K	6.5 4.55 4.555 4.5555 8.5555 7655 5.5555	74536.27 88834.27 10171.79 12468.66 86559.40 82921.55 79362.02 79154.18 83376.71 6507.750	156582.9 170863.1 92187.63 94476.78 168566.6 164899.2 161334.6 161112.8 165336.4 88456.86	ם ס ס
1220.931 1221.482 1221.926 1222.311 1222.819 1223.229 1224.067 1224.134 1225.794 1228.649	81904.70 81867.80 81838.00 81812.20 81778.30 81750.80 81694.90 81690.40 81579.80 81390.20	1220.932 1221.479 1221.935 1222.310 1222.820 1223.230 1224.065 1224.144 1225.789 1228.650	$\begin{array}{c} -0.001\\ 0.003\\ -0.009\\ 0.001\\ -0.001\\ -0.001\\ 0.002\\ -0.010\\ 0.005\\ -0.001\end{array}$	90 129 86 83 115 204 95 5 256 263	39 12 68 104 22 104 138	355.1 586.2 138.7 322.7 77.56 1459 59.65 13.82 1836 2170	0.08 0.09 -0.03 0.03 0.05 -0.16 0.07 -0.01 0.38 0.99	4f105d(5I)6H 4f105d(5I)6G 4f105d(5I)4L 4f105d(5I)4L 4f11(4F)4F 4f105d(5I)6Hb 4f11(4G)4G 4f105d(5I)6I 4f105d(5I)6H 4f105d(5I)6H	5.5 5.5 4.5 9.5 4.5 7.5 5.5 6.5 7.5 8.5	4f106p(5I)4I 4f106p(5I)4I 4f106p(5I)6H 4f105p(5I)6K 4f105d(5I)4I 4f106p(5I)6I 4f105d(3H)4H4 4f106p(5I)6K 4f106p(5I)6I 4f106p(5I)6K	5.5 6.5 8.5 4.5 7.5 5.5	86559.40 79743.13 83708.79 79522.29 15404.86 79362.02 26707.79 78916.79 73426.17 73708.00	168464.1 161611.1 165546.2 161334.6 97183.02 161112.8 108402.8 160606.5 155006.2 155098.1	
$1229.414 \\ 1230.037 \\ 1230.536 \\ 1234.479 \\ 1235.118 \\ 1236.034 \\ 1236.651 \\ 1237.276 \\ 1239.496 \\ 1239.833 $	81339.60 81298.40 81265.40 81005.80 80964.00 80964.00 80863.60 80822.70 80678.00 80656.00	$\begin{array}{c} 1229.416\\ 1230.039\\ 1230.535\\ 1234.473\\ 1235.122\\ 1236.030\\ 1236.653\\ 1237.283\\ 1239.499\\ 1239.829 \end{array}$	$\begin{array}{c} -0.002\\ -0.002\\ 0.001\\ 0.006\\ -0.004\\ -0.002\\ -0.007\\ -0.003\\ 0.004 \end{array}$	245 322 246 112 60 131 4 35 90 27	87 219 136 12 3 51	150.6 3045 1402 20.45 23.17 24.01 62.87 198.8 11.17	0.14 -0.29 0.22 -0.01 -0.01 0.09 -0.02 -0.13 0.05 -0.01	4f11(4I)4I 4f105d(5I)6I 4f105d(5I)6G 4f11(2H)2H2 4f11(4G)4G 4f11(4F)4F 4f105d(5I)6G 4f105d(5I)4K 4f105d(5I)4Ib 4f11(2H)2H2	5.5 8.5 5.5 5.5 4.5 7.5 7.5 5.5	4f105d(5I)4Hb 4f106p(5I)6I 4f105p(5I)4I 4f105d(5F)6H 4f105d(5F)6H 4f105d(5F)6H 4f106p(5I)6K 4f106p(5I)6K 4f106p(5I)6K 4f106p(5I)6K 4f105d(5F)4H	5.5 8.5 7.5 5.5 4.5 5.5 7.5 7.5 5.5	$\begin{array}{c} 10171.79\\73708.00\\74536.27\\19331.69\\26707.79\\15404.86\\79743.13\\89949.21\\84992.54\\19331.69\end{array}$	91511.24 155006.2 155801.7 100337.9 107671.5 96309.02 160606.5 170771.5 165670.3 99987.95	
$1241.618\\1242.727\\1243.367\\1244.049\\1244.334\\1244.657\\1244.946\\1246.113\\1246.303\\1248.289$	80540.10 80468.20 80426.80 80382.70 80364.20 80343.40 80324.70 80249.50 80237.30 80109.60	$1241.621\\1242.728\\1243.368\\1244.044\\1244.334\\1244.650\\1244.946\\1246.112\\1246.308\\1248.288$	$\begin{array}{c} -0.003\\ -0.001\\ -0.001\\ 0.005\\ 0.000\\ 0.007\\ 0.000\\ 0.001\\ -0.005\\ 0.001 \end{array}$	248 107 210 70 219 44 103 176 309 110	107 9 7 109 66 70 303	201.4 27.76 142.5 94.7 92.42 71.88 421.5 62.81 327.9 602.1	0.14 -0.05 0.19 0.08 0.15 -0.01 0.04 -0.14 -0.23 0.14	4f11(4I)4I 4f11(4F)4F 4f11(4I)4I 4f105d(5I)6K 4f11(4I)4I 4f105d(5I)6K 4f105d(5I)6K 4f11(4I)4I 4f11(4I)4I 4f105d(5I)6K	5.5 4.5 5.5 5.5 7.5 8.55 6.55 5.55 5.55 5.55	4f105d(51)4H 4f105d(51)4G 4f105d(51)4I 4f106p(51)4K 4f105d(51)4G 4f106p(51)6I 4f106p(51)6K 4f105d(51)6K 4f105d(51)6Kb 4f106p(5F)6G	5.5 6.5 6.55 7.55 7.55 4.55	$\begin{array}{c} 10171.79\\ 15404.86\\ 10171.79\\ 88456.86\\ 6507.750\\ 84992.54\\ 85345.53\\ 6507.750\\ 6507.750\\ 88456.86\end{array}$	90711.70 95872.96 90598.50 168839.9 86872.06 165336.4 165670.3 86757.34 86744.73 168566.6	
$1248.436 \\ 1249.194 \\ 1249.883 \\ 1251.088 \\ 1251.490 \\ 1252.379 \\ 1252.844 \\ 1253.045 \\ 1254.182 \\ 1254.402 $	80100.20 80051.60 80007.50 79930.40 79904.80 79848.00 79818.40 79805.60 79733.20 79719.20	$1248.453 \\ 1249.194 \\ 1249.887 \\ 1251.096 \\ 1251.492 \\ 1252.388 \\ 1252.845 \\ 1253.042 \\ 1254.183 \\ 1254.407 $	-0.020 0.000 -0.004 -0.008 -0.002 -0.009 -0.001 -0.001 -0.005	73 71 93 58 129 86 176 117 219 165	27 48 65 19 24 107 39	14.48 16.36 338 73.07 106.2 40.72 1168 344.6 36.95 47.45	0.00 -0.03 0.05 -0.12 -0.09 -0.21 0.17 0.04 -0.12	4f105d(5I)6H 4f11(4I)4I 4f105d(5I)6K 4f105d(5I)4H 4f11(4G)4G 4f11(4F)4F 4f105d(5I)6L 4f105d(5I)4H 4f11(4G)4G 4f11(4I)4I	7.5 6.55 6.55 4.55 4.55 6.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 5.55 4.55 5.55 4.55 5.55 4.55 5.55 4.55 5.55 4.55 5.55 4.55 5.55 4.55 5.55 4.55 5	4f106p(5I)6K 4f105d(5I)6H 4f106p(5I)4I 4f105d(5I)6K 4f105d(3K)2H2 4f105d(5F)6D 4f106p(5I)4I 4f106p(5I)6H 4f105d(5F)4F 4f105d(5I)4G	7.5 5.55 7.55 4.55 4.55 3.5 4.5 3.5 4.5	73426.17 6507.750 88456.86 85740.41 27766.82 15404.86 91169.27 85740.41 27766.82 12468.66	153525.3 86559.40 168464.1 165670.3 107671.5 95252.35 170987.6 165546.2 107500.0 92187.63	

1254 000	79697 60	125/ 00F	0 005	60	1	100 0	-0 03	1f105d/5t) (tt	7 5	4 f 1 0 6 m / 5 T) 6 T	6 5	73126 17	15311/ 1	
1254.900	79007.00	1254.093	0.005	20	4.1	100.9	-0.03	4£1054(51)0H	1.5	4 £10 Cm (5 T) 0H	0.5	/ J420.1/	10020 0	
1254.980	79682.50	1254.980	0.000	154	41	/91.6	-0.28	4I105d(51)6L	6.5	4I106p(51)4K	6.5	89157.31	168839.9	
1255.189	/9669.30	1255.190	-0.001	48		139.3	0.07	41105d(51)61	4.5	41106p(51)6H	4.5	86401.13	1660/0.3	
1257.686	79511.10	1257.689	-0.003	132		547.7	0.48	4f105d(5I)6H	5.5	4f106p(5I)6H	4.5	86559.40	166070.3	
1258.346	79469.40	1258.347	-0.001	169	68	73.01	-0.07	4f11(4F)4F	4.5	4f105d(5I)4H	4.5	15404.86	94874.22	
1259.099	79421.90	1259.098	0.001	57		10.23	-0.01	4f11(4F)4F2	4.5	4f105d(5F)4Gb	5.5	24736.00	104157.9	
1260.053	79361.70	1260.049	0.004	239	22	69.01	-0.37	4f11(4I)4I	7.5	4f105d(5I)6Hb	7.5	0.00	79362.02	
1260.511	79332.90	1260.511	0.000	167	46	82.26	0.14	4f11(2H)2H2	5.5	4f105d(5F)4G	5.5	19331.69	98664.60	
1260 932	79306 40	1260 927	0 005	197	58	1468	-0 21	4f105d(5T)6L	6 5	4f106p(5T)4T	5 5	89157 31	168464 1	
1261 /36	79274 70	1261 437	-0.001	112	26	20 35	0 03	1f105d(5T)6H	1 5	4f106p(5T)6K	1 5	83708 79	162983 5	
1201.130	19214.10	1201.107	0.001	112	20	20.00	0.05	411050(51)011	1.5	411000 (01) 010	1.5	03700.75	102903.5	
1262 100	70222 10	1262 106	0 002	201	2.4.1	116 0	0.26	4 5 1 1 (4 T) 4 T	6 5	4 f 1 0 F d (F T) 4 H	6 F	6507 750	05740 41	
1202.109	79232.40	1202.100	0.003	301	241	140.2	0.20	4111(41)41	0.5	41105d(51)4H	0.5	00100 00	03740.41	
1262.592	79202.10	1262.594	-0.002	66	14	436.6	0.22	4I105d(51)61	5.5	4I106p(51)4H	5.5	83109.96	162312.0	
1262.653	79198.30	1262.654	-0.001	91	/	33.61	-0.13	4I105d(51)4G	5.5	4I106p(51)6H	4.5	86872.06	166070.3	
1263.215	/9163.10	1263.210	0.005	65		16.68	-0.01	4111 (4F) 4F2	4.5	41105d(5G)6G	3.5	24/36.00	103899.4	
1263.289	79158.40	1263.283	0.006	97		124.8	0.17	4f105d(5I)4H	6.5	4f106p(5F)4G	5.5	85740.41	164899.2	
1263.360	79154.00	1263.357	0.003	346	296	239.2	-0.40	4f11(4I)4I	7.5	4f105d(5I)4K	8.5	0.00	79154.18	
1263.504	79145.00	1263.503	0.001	148	48	933.9	-0.27	4f105d(5I)6I	4.5	4f106p(5I)6H	5.5	86401.13	165546.2	
1263.981	79115.10	1263.979	0.002	412	379	6133	-1.00	4f105d(5I)6K	9.5	4f106p(5I)6K	9.5	75982.90	155098.1	
1264.673	79071.80	1264.672	0.001	118	37	37.76	-0.10	4f11(4F)4F	4.5	4f105d(5I)4I	5.5	15404.86	94476.78	
1265.144	79042.40	1265.141	0.003	86	32	21.63	-0.09	4f11(4T)4T	4.5	4f105d(5T)4Hb	5.5	12468.66	91511.24	
1265 449	79023 40	1265 449	0 000	127	12	203 2	0 02	4f105d(5T)6K	95	4f106p(5T)6T	8 5	75982 90	155006 2	
1266 037	79025.40	1266 035	0.000	261	130	1516	-0.30	4f105d(5t)6H	5.5	4f106p(5t)64	5 5	96559 10	165546 2	
1267 222	70010.70	1267 210	0.002	100	100	1000	-0.30	41105d (51) 0H	7.5	41100p(J1)0H	75	000000.40	165670 2	
1267.223	78912.70	1207.218	0.005	188	82	1080	0.31	41105d(51)6L	7.5	41106p(51)6K	1.5	86/3/.34	163670.3	
1267.580	78890.50	1267.578	0.002	61	14	253.4	0.05	4I105d(51)4K	1.5	41106p(51)4K	6.5	89949.21	168839.9	
1269.018	78801.10	1269.012	0.006	285	219	2874	0.65	4±105d(51)6Kb	6.5	4±106p(51)6H	5.5	86744.73	165546.2	
1269.405	78777.10	1269.406	-0.001	53	9	235.3	0.08	4f105d(5I)6H	5.5	4f106p(5I)6I	6.5	86559.40	165336.4	
1270.258	78724.10	1270.256	0.002	316	235	3109	0.76	4f105d(5I)6L	8.5	4f106p(5I)6K	8.5	82610.32	161334.6	
1270.417	78714.30	1270.411	0.006	55		25.7	-0.03	4f11(4G)4G	5.5	4f105d(5G)6G	4.5	26707.79	105422.5	
1270.640	78700.50	1270.638	0.002	61		15.64	-0.10	4f11(4I)4I	4.5	4f105d(5I)6L	5.5	12468.66	91169.27	
1270.822	78689.20	1270.817	0.005	240	105	1358	0.28	4f105d(5I)6K	6.5	4f106p(5I)4I	6.5	82921.55	161611.1	
										- · · ·				
1271.064	78674.30	1271.066	-0.002	105	5	138	0.11	4f105d(5T)4G	5.5	4f106p(5T)6H	5.5	86872.06	165546.2	
1271.881	78623.70	1271.871	0.010	121	44	66.21	0.06	4f11(4G)4G	4.5	4f105d(5G)4G	5.5	27766.82	106391.2	
1272 218	78602 90	1272 213	0 005	200	60	977 7	-0.58	4f105d(5T)6H	4 5	4f106p(5T)4H	5 5	83708 79	162312 0	
1272 /08	78591 20	1272 300	0.000	301	206	1006	-0.13	41105d(51)011	65	$4 \pm 100 \text{ p}(51) + 11$	6 5	86744 73	165336 /	
1272 604	70574 00	1272 604	0.000	232	200	1452	0.13	4f105d(5t)6t	7 5	4f106p(51)61	6 5	06757 34	165336 /	
1272.004	70579.00	1272.004	0.000	100	30	240 1	0.21	411050 (51) 6L	7.J	41100p(J1)01	0.5	74526 27	150114 1	
1272.022	78577.90	1272.024	-0.002	123	29	340.1	0.07	41105d(51)6G	0.5	41106p(51)6H	0.5	74530.27	103114.1	
12/3.8/1	78500.90	12/3.80/	0.004	294	112	1004	-0.29	411050(51)61	5.5	41106p(51)41	0.5	83109.96	101011.1	
12/4.132	78484.80	12/4.132	0.000	344	214	193.8	0.42	4111(41)41	6.5	411050(51)410	1.5	6507.750	84992.54	
1274.470	78464.00	1274.464	0.006	48		34.02	-0.03	4±105d(51)4G	5.5	4±106p(51)61	6.5	86872.06	165336.4	
1275.110	78424.60	1275.111	-0.001	83	143	23.9	0.14	4±⊥⊥(4ŀ)4ŀ	4.5	4±105d(5E)6H	5.5	15404.86	93829.40	
1275.330	78411.10	1275.332	-0.002	46		44.77	-0.01	4f105d(5I)6I	6.5	4f106p(5I)6I	5.5	78916.79	157327.8	
1276.491	78339.80	1276.490	0.001	74	41	338.7	-0.36	4f105d(5I)6H	5.5	4f106p(5F)4G	5.5	86559.40	164899.2	
1277.382	78285.10	1277.383	-0.001	112	37	46.2	-0.05	4f11(4I)4I	5.5	4f105d(5I)6K	5.5	10171.79	88456.86	
1278.066	78243.20	1278.069	-0.003	129	61	47.36	-0.17	4f11(4I)4I	4.5	4f105d(5I)4H	5.5	12468.66	90711.70	
1278.214	78234.10	1278.211	0.003	252	138	2173	0.69	4f105d(5I)4I	7.5	4f106p(5I)4I	6.5	83376.71	161611.1	
1278.894	78192.60	1278.889	0.005	92	9	40.75	0.03	4f11(4G)4G	5.5	4f105d(5G)6Tb	6.5	26707.79	104900.7	
1278 913	78191 40	1278 915	-0 002	37	-	113 3	-0 04	4f105d(5T)6K	6 5	4f106p(5T)6T	7 5	82921 55	161112 8	
1279 938	78128 80	1279 948	-0 010	46		41 7	-0.07	4f105d(5T)4H	55	4f106p(5T)4K	6 5	90711 70	168839 9	
1281 854	78012 00	1281 857	-0 003	73	24	125 /	0.07	4f105d(5t)6G	5.5	41100p(51)4R	6 5	797/3 13	15775/ 9	
1201.004	77050 10	1201.001	_0 003	10	24	12J.4 02 01	_0 07	1f105d(51)0G	7 5	1f106p(51)00	0.5	12123.13 02276 71	161224 /	
1202./40	11900.10	1202./44	-0.004	40		92.01	-0.07	4110JU(31)41	1.5	ALTOOD(DT) QV	0.5	11.01660	101034.0	
1004 405	77055 00	1004 441	0.000	4 5		24.00	0 00					00711 70	100500 0	
1284.435	//855.20	1284.441	-0.006	45		34.08	0.02	4I1U5d(51)4H	5.5	4I106p(5F)6G	4.5	90/II./0	108500.0	
1284.503	//851.10	1284.500	0.003	64		22.14	0.03	4I11(2H)2H2	5.5	4I1050(51)41	4.5	TA33T.08	9/183.02	
1284.553	//848.10	1284.547	0.006	52		200.2	-0.45	41105d(51)6H	5.5	41106p(5E)6D	4.5	86559.40	164407.8	
1286.132	77752.50	1286.134	-0.002	35		171.6	0.06	4f105d(5I)4H	5.5	4f106p(5I)4I	5.5	90711.70	168464.1	
1287.250	77685.00	1287.250	0.000	36	20	134.3	0.07	4f105d(5I)6K	6.5	4f106p(5I)6K	5.5	82921.55	160606.5	

1287.566	77665.90	1287.563	0.003	100	20	470	0.34	4f105d(5I)6I	6.5	4f106p(5I)4H	6.5	78916.79	156582.9	
1288.431 1288 915	77584 60	1288.436 1288 915	-0.005	149 114	124	416 2	0.63	41105d(51)6K 41105d(51)6G	5.5	4f106p(51)6H 4f106p(51)6T	4.5	88456.86 79743 13	166070.3 157327 8	
1293.175	77329.10	1293.182	-0.007	41	12	22.32	0.04	4f105d(5I)4Hb	5.5	4f106p(51)4K	6.5	91511.24	168839.9	
1294.299	77261.90	1294.300	-0.001	30	1.05	78.56	-0.03	4f105d(5I)6I	5.5	4f106p(5I)6I	4.5	83109.96	160371.8	
1294.733	77236.00	1294.732	0.001	113	107	849.2	-0.52	4f105d(5I)6I	3.5	4f106p(5I)6H	4.5	88834.27	166070.3	
1294.987	77220.90	1294.987	0.000	67	12	321.3	0.31	4f105d(5I)6Hb	7.5	4f106p(5I)4H	6.5	79362.02	156582.9	
1296.033	77158.50	1296.039	-0.006	47	3	81.25	-0.10	4f105d(5F)6H	5.5	4f106p(5I)4I	4.5	93829.40	170987.6	
1299.489	76953.30	1297.196	-0.001	ют 51	3 80	297.6	-0.08	41105d(51)6K 4f105d(51)4Hb	5.5	41106p(51)6H 4f106p(51)4T	5.5	91511.24	168464.1	
1300.425	76898.00	1300.428	-0.003	154	70	40.11	-0.03	4f105d(5I)6H	4.5	4f106p(5I)6K	5.5	83708.79	160606.5	
1300.641	76885.20	1300.645	-0.004	233	172	1501	-0.55	4f105d(5I)6I	6.5	4f106p(5I)4I	7.5	78916.79	155801.7	
1301.409	76839.80	1301.410	-0.001	127	48	723.3	0.46	41105d(51)6G	5.5	4f106p(51)4H	6.5	92064 49	156582.9	
1303.788	76699.60	1303.776	0.010	227	130	57.18	-0.14	4f11(4I)4I	5.5	4f105d(5I)4G	5.5	10171.79	86872.06	
1304.411	76662.90	1304.410	0.001	134	63	818.8	0.18	4f105d(5I)6H	4.5	4f106p(5I)6I	4.5	83708.79	160371.8	
1304.673	76647.60	1304.673	0.000	351	216	5608	0.95	4f105d(5I)4K	8.5	4f106p(5I)4I	7.5	79154.18	155801.7	
1305.170	76618.40	1305.167	0.003	225	147	2919	-0.62	4f105d(5I)4Ib	7.5	4f106p(5I)4I	6.5	84992.54	161611.1	
1307.611	76475.40	1307.609	0.002	149	103	37	-0.04	4f11(4G)4G	5.5	4f105d(5G)6I	6.5	26707.79	103183.3	
1308.658	76414.10	1308.221	-0.006	∠/8 53	1/1	2335 15.62	-0.09	41105d(51)6HD 4f11(4T)4T	6.5	41106p(51)41 4f105d(5T)6K	6.5	6507.750	82921.55	
1308.909	76399.50	1308.908	0.001	82	22	501.9	0.27	4f105d(5F)6H	6.5	4f106p(5I)4I	5.5	92064.49	168464.1	
1309.090	76388.90	1309.091	-0.001	35		475.2	0.30	4f105d(5I)6L	6.5	4f106p(5I)6H	5.5	89157.31	165546.2	
1309.896	76342.00	1309.894	0.002	137	51	684.6	-0.45	4f105d(5I)4Ib	7.5	4f106p(5I)6K	8.5	84992.54	161334.6	
1313.716	76119.90	1313.710	0.002	312	218	5048	0.69	4f105d(5I)4Ib	7.5	4f106p(5I)6I	7.5	84992.54	161112.8	
1315 979	75989 10	1315 979	0 000	336	162	3039	-0 51	4f105d(5T)6K	85	4f106p(5T)6K	8 5	85345 53	161334 6	
1316.753	75944.40	1316.761	-0.008	232	123	183.6	0.21	4f105d(5I)4K	8.5	4f106p(5I)6K	9.5	79154.18	155098.1	
1317.332	75911.00	1317.334	-0.002	180	50	886.3	-0.58	4f105d(5I)6I	4.5	4f106p(5I)4H	5.5	86401.13	162312.0	
1318.031	75870.70	1318.033	-0.002	172	63	1213	0.46	4f105d(5I)4H	6.5	4f106p(5I)4I	6.5	85740.41	161611.1	
1318.357	75852.00	1318.356	0.001	467	∠55 472	4985 18140	-0.67	4I105d(51)4K 4f105d(5T)6L	8.5	4I106p(51)61 4f106p(51)6K	8.5	79154.18	155006.2	
1319.833	75767.20	1319.831	0.002	490	321	10590	0.92	4f105d(5I)6K	8.5	4f106p(5I)6I	7.5	85345.53	161112.8	
1320.089	75752.50	1320.087	0.002	142	83	1295	-0.51	4f105d(5I)6H	5.5	4f106p(5I)4H	5.5	86559.40	162312.0	
1320.633	75721.30	1320.636	-0.003	341	185	3730	0.61	4f105d(5I)4K	7.5	4f106p(5I)6K	7.5	89949.21	165670.3	
1321.973	/3044.40	1321.970	-0.003	245	100	1041	0.39	411030(31)000	1.5	41100b(21)01	0.5	/9302.02	133000.2	
1323.175	75575.80	1323.174	0.001	313	162	1918	-0.54	4f105d(5I)4L	9.5	4f106p(5I)6K	9.5	79522.29	155098.1	
1323.302	75567.40	1323.301	-0.001	196 26	86	76.05	-0.28	4III(4I)4I 4f105d(5I)6Kb	5.5	4I1050(51)4H 4f106p(5T)4H	6.5	86744.73	162312.0	
1324.784	75484.00	1324.785	-0.001	844	397	12130	1.00	4f105d(5I)4L	9.5	4f106p(5I)6I	8.5	79522.29	155006.2	
1325.560	75439.80	1325.558	0.002	96	30	320.9	0.14	4f105d(5I)4G	5.5	4f106p(5I)4H	5.5	86872.06	162312.0	
1325.908	75420.00	1325.912	-0.004	456	421	15930	1.00	4f105d(5I)6L	9.5	4f106p(5I)6K	8.5	85914.80	161334.6	
1326.748	75372.30	1326.745	0.001	314	235	1303	-0.72	4f105d(5T)4H	6.5	4f106p(5T)6T	7.5	85740.41	161112.8	
1329.825	75197.90	1329.825	0.000	176	42	6018	-0.99	4f105d(5F)6H	7.5	4f106p(5I)4K	6.5	93641.97	168839.9	
1330.806	75142.40	1330.812	-0.006	335	139	2952	-0.61	4f105d(5I)4K	6.5	4f106p(5I)4K	6.5	93697.73	168839.9	
1332.050	75072.20	1332.058	-0.008	261	106	689	-0.53	4f105d(5I)4I	6.5	4f106p(5I)6K	7.5	90598.50	165670.3	
1332.416	/5051.60	1332.415	0.001	234	72 17	522.2	0.17	41105d(5I)6H	5.5	41106p(51)41	6.5	86559.40	170863 1	
1333.929	74966.50	1333.926	0.003	o∠ 714	376	13830	-1.00	4f105d(5T)4G	8.5	4f106p(5T)6K	7.5	90703.64	165670.3	
1334.262	74947.80	1334.264	-0.002	254	109	1938	-0.52	4f105d(5I)4I	6.5	4f106p(5I)6H	5.5	90598.50	165546.2	
1335.711	74866.50	1335.714	-0.003	395	152	2375	-0.44	4f105d(5I)6Kb	6.5	4f106p(5I)4I	6.5	86744.73	161611.1	
1335.938 1336 300	/4853.80 74833 50	1335.939 1336 308	-0.001	278	226	1167 5503	0.59	41105d(51)6L 4f105d(51)4K	/.5	41106p(51)4I	6.5	86/57.34	170987 6	л
1336.300	74833.50	1336.302	-0.002	538	226	<u>12</u> 58	0.98	4f105d(5I)6K	6.5	4f106p(5I)6K	6.5	82921.55	157754.9	D

	ם		ם ס		
168464.1	165336.4 168566.6 157754.9 168464.1 165336.4 153525.3 166070.3 170863.1 157327.8 86872.06	157754.9 153525.3 161112.8 168839.9 161112.8 157327.8 160606.5 153114.1 164899.2 153525.3	162983.5 86559.40 168566.6 168839.9 160606.5 165546.2 147458.0 168464.1 160371.8 160606.5	165336.4 160371.8 170987.6 153114.1 147458.0 164407.8 168566.6 170863.1 156582.9 157327.8	147031.3 168464.1 98252.07 156582.9 73426.17 164899.2 153114.1 165546.2
93697.73	90598.50 93829.40 83109.96 93829.40 90711.70 78916.79 91511.24 96309.02 82921.55 12468.66	83376.71 79154.18 86744.73 94476.78 86757.34 83109.96 86401.13 78916.79 90711.70 79362.02	88834.27 12468.66 94476.78 94777.64 86559.40 91511.24 73426.17 94476.78 86401.13 86744.73	91511.24 86559.40 97183.02 73708.00 90711.70 94874.22 97183.02 82921.55 83708.79	73426.17 94874.22 24736.00 83109.96 0.00 91511.24 79743.13 92187.63
5.5	6.5 4.5 5.5 6.5 7.5 4.5 3.5 5.5 5.5 5.5	6.5 7.5 7.5 6.5 7.5 5.5 5.5 5.5 7.5	$\begin{array}{c} 4 & . 5 \\ 5 & . 5 \\ 4 & . 5 \\ 6 & . 5 \\ 5 & . 5 \\ 5 & . 5 \\ 5 & . 5 \\ 5 & . 5 \\ 4 & . 5 \\ 5 & . 5 \end{array}$	$\begin{array}{c} 6.5\\ 4.5\\ 4.5\\ 6.5\\ 8.5\\ 4.5\\ 4.5\\ 3.5\\ 6.5\\ 5.5\\ 5.5 \end{array}$	7.5 5.5 3.5 6.5 7.5 5.5 6.5 5.5
4f106p(5I)4I	4f106p(5I)6I 4f106p(5F)6G 4f106p(5I)6K 4f106p(5I)4I 4f106p(5I)6I 4f106p(5I)6K 4f106p(5I)6K 4f106p(5I)6I 4f106p(5I)6I 4f106p(5I)6I 4f105d(5I)4G	4f106p(51)6K 4f106p(51)6K 4f106p(51)6I 4f106p(51)4K 4f106p(51)6I 4f106p(51)6I 4f106p(51)6K 4f106p(51)6K 4f106p(5F)4G 4f106p(51)6K	4f106p(5I)6K 4f105d(5I)6H 4f106p(5F)6G 4f106p(5I)4K 4f106p(5I)6K 4f106p(5I)6H 4f106p(5I)4K 4f106p(5I)4K 4f106p(5I)4I 4f106p(5I)6I 4f106p(5I)6K	4f106p(5I)6I 4f106p(5I)6I 4f106p(5I)4I 4f106p(5I)4H 4f106p(5I)4K 4f106p(5F)6D 4f106p(5F)6G 4f106p(5I)6I 4f106p(5I)4H 4f106p(5I)6I	4f106p(5I)6H 4f106p(5I)4I 4f105d(5I)4H 4f106p(5I)4H 4f105d(5I)6H 4f106p(5I)6H 4f106p(5I)6H 4f106p(5I)6H
6.5	6.5 5.5 5.5 5.5 5.5 5.5 5.5 4.5 4.5 4.5	$\begin{array}{c} 7.5\\ 8.5\\ 5.5\\ 5.5\\ 7.5\\ 5.5\\ 4.5\\ 5.5\\ 5.5\\ 7.5\\ 7.5\\ 7.5\end{array}$	3.5 4.55 5.55 5.55 5.55 5.55 4.55 6.55	5.5 5.5 4.55 7.55 4.55 4.55 4.55 4.55 4.55 4.55	7.5 4.5 5.5 7.5 5.5 5.5 4.5
4f105d(5I)4K	4f105d(5I)4I 4f105d(5F)6H 4f105d(5I)6I 4f105d(5I)4H 4f105d(5I)4H 4f105d(5I)4Hb 4f105d(5I)4Hb 4f105d(5F)6H 4f105d(5I)6K 4f11(4I)4I	4f105d(5I)4I 4f105d(5I)4K 4f105d(5I)6Kb 4f105d(5I)6I 4f105d(5I)6I 4f105d(5I)6I 4f105d(5I)6I 4f105d(5I)6I 4f105d(5I)4H 4f105d(5I)6Hb	4f105d(5I)6I 4f11(4I)4I 4f105d(5I)4I 4f105d(5I)4L 4f105d(5I)6H 4f105d(5I)6H 4f105d(5I)6H 4f105d(5I)6H 4f105d(5I)6I 4f105d(5I)6I 4f105d(5I)6Kb	4f105d(5I)4Hb 4f105d(5I)6H 4f105d(5I)6H 4f105d(5I)6Hb 4f105d(5I)6Hb 4f105d(5I)4H 4f105d(5I)4H 4f105d(5I)4H 4f105d(5I)4H 4f105d(5I)6K 4f105d(5I)6H	4f105d(5I)6H 4f105d(5I)4H 4f11(4F)4F2 4f105d(5I)6I 4f11(4I)4I 4f105d(5I)4Hb 4f105d(5I)6G 4f105d(5I)4G
0.85	$\begin{array}{c} 0.71\\ 0.63\\ 0.48\\ 0.35\\ -0.59\\ 0.75\\ -0.25\\ -0.38\\ 0.35\\ -0.23\end{array}$	$\begin{array}{c} -0.08\\ -0.20\\ 0.25\\ 0.49\\ -0.09\\ -0.71\\ 0.82\\ 0.69\\ 0.75\\ 0.63\end{array}$	-0.03 -0.12 0.00 0.62 0.51 0.56 -1.00 -0.71 -0.73 -0.17	-0.53 -0.34 -0.78 0.46 0.87 0.37 0.11 -0.84 0.75 0.98	-0.78 0.60 -0.02 -0.78 0.04 -0.26 0.93 -0.86
5876	4137 3268 1149 707.6 772.9 249 225.9 546.8 1433 124.4	481.6 1454 648.7 459 195.1 4143 1440 5077 1921 4392	49.82 24.58 1.34 6053 1498 2098 3215 3018 3097 597.5	1032 943.1 3331 2347 6337 688 349.9 1389 2817 482.2	6577 1224 22.51 1426 28.73 756.6 6648 1306
178	123 123 152 71 66 194 29 20 153 135	92 211 106 23 13 248 103 299 141 262	78 18 92 135 100 245 153 190 59	81 88 131 121 353 48 7 78 175 270	401 74 75 129 58 83 386 201
545	550 550 273 185 198 360 135 121 184 210	210 290 383 127 82 533 248 551 354 394	246 142 142 260 304 294 435 299 416 180	247 226 285 264 219 140 57 178 327 412	479 238 106 324 209 125 234 112
0.008	$\begin{array}{c} 0.004 \\ -0.008 \\ 0.005 \\ 0.003 \\ 0.001 \\ -0.001 \\ 0.004 \\ 0.002 \\ 0.008 \\ 0.005 \end{array}$	0.010 0.008 -0.010 0.002 0.006 0.003 0.006 0.009 0.010 0.003	$\begin{array}{c} 0.000\\ 0.006\\ -0.010\\ 0.000\\ 0.005\\ 0.008\\ 0.007\\ 0.007\\ 0.003\\ 0.005 \end{array}$	0.008 0.003 0.007 0.008 0.003 0.001 0.006 0.001 0.006 0.005	0.004 0.002 0.001 0.000 -0.002 0.001 0.002 0.003
1337.500	$\begin{array}{c} 1338.009\\ 1338.021\\ 1339.675\\ 1339.860\\ 1340.039\\ 1340.329\\ 1341.218\\ 1341.309\\ 1343.974\\ 1344.025 \end{array}$	$1344.480\\1344.608\\1344.663\\1344.754\\1344.891\\1347.386\\1347.611\\1347.758\\1347.936\\1348.376$	$\begin{array}{c} 1348.632\\ 1349.696\\ 1349.713\\ 1350.216\\ 1350.713\\ 1350.713\\ 1350.769\\ 1351.583\\ 1351.887\\ 1353.880 \end{array}$	$\begin{array}{c} 1354.552\\ 1354.785\\ 1354.930\\ 1355.894\\ 1355.931\\ 1356.923\\ 1356.992\\ 1357.219\\ 1357.565\\ 1358.345 \end{array}$	1358.601 1358.883 1360.247 1361.046 1361.912 1362.621 1362.937 1363.167
74765.90	74737.68 74737.68 74644.70 74634.50 74624.70 74608.60 74558.90 74553.90 74553.90 74405.80 74403.10	74377.70 74370.70 74368.80 74362.90 74355.10 74217.60 74205.10 74196.80 74186.90 74163.10	74149.20 74090.41 74090.41 74062.20 74046.90 74031.50 73987.00 73970.50 73861.50	73824.70 73812.30 73804.20 73751.70 73749.90 73696.10 73692.10 73680.00 73661.00 73618.70	73604.90 73589.70 73516.00 73472.90 73426.30 73387.90 73370.80 73358.40
1337.508	$\begin{array}{c} 1338.013\\ 1338.013\\ 1339.680\\ 1339.863\\ 1340.040\\ 1340.328\\ 1341.222\\ 1341.311\\ 1343.982\\ 1344.030\\ \end{array}$	$1344.490\\1344.616\\1344.650\\1344.756\\1344.897\\1347.389\\1347.617\\1347.767\\1347.946\\1348.379$	$\begin{array}{c} 1348.632\\ 1349.702\\ 1349.702\\ 1350.216\\ 1350.721\\ 1350.776\\ 1351.590\\ 1351.890\\ 1353.885\end{array}$	$\begin{array}{c} 1354.560\\ 1354.788\\ 1354.937\\ 1355.902\\ 1355.934\\ 1356.924\\ 1356.998\\ 1357.220\\ 1357.571\\ 1358.350\end{array}$	1358.605 1358.885 1360.248 1361.046 1361.910 1362.622 1362.939 1363.170

1366.958	73155.10	1366.966	-0.008	71	26	298.7	0.60	4f105d(5I)6L	6.5	4f106p(5I)4H	5.5	89157.31	162312.0	
1371.800	72896.90	1371.806	-0.002	94	66	833	-0.39	4f105d(5I)4Hb	5.5	4f106p(5F)6D	4.5	91511.24	164407.8	
1372.109	72880.50	1372.116	-0.007	183	129	1409	-0.53	4f105d(5I)6K	6.5	4f106p(5I)4I	7.5	82921.55	155801.7	
1372.575	72855.80	1372.572	0.003	160	96	22.42	-0.07	4f11(2H)2H2	5.5	4f105d(5I)4G	4.5	19331.69	92187.63	
1372.971	72834.70	1372.972	-0.001	358	283	6281	0.80	4f105d(5F)6H	6.5	4f106p(5F)4G	5.5	92064.49	164899.2	
1374.330	72762.70	1374.336	-0.006	197	160	635	0.16	41105d(51)41b	7.5	41106p(51)6K	6.5	84992.54	157754.9	
1374.843	72735.60	1374.844	-0.001	134	98	1301	0.63	4f105d(5I)4H	3.5	4f106p(5I)4I	4.5	98252.07	170987.6	
1375.291	72711.90	1375.297	-0.006	145	90	37.56	-0.07	4f105d(5I)4G	4.5	4f106p(5F)4G	5.5	92187.63	164899.2	
1375.641	72693.40	1375.636	0.005	131	55	963.7	-0.73	4f105d(5I)4G	3.5	4f106p(5F)6G	4.5	95872.96	168566.6	
1377.197	72611.20	1377.202	-0.005	211	124	1946	0.77	4f105d(5I)4H	3.5	4f106p(5I)6I	3.5	98252.07	170863.1	
1380 315	72495.00	1380 319	-0.001	472	498	8242 23 91	-0 02	411050(51)6G Af11(AF)AF2	0.5	41106p(51)6H 4f105d(51)4T	1.5	24736 00	147031.3 97183 02	
1380.737	72425.10	1380.739	-0.002	293	240	2828	-0.63	4f105d(5T)4T	7.5	4f106p(5T)4T	7.5	83376.71	155801.7	
1380.982	72412.20	1380.987	-0.005	41	24	159.9	0.07	4f105d(5I)4K	5.5	4f106p(5F)6G	4.5	96154.60	168566.6	
1381.049	72408.70	1381.043	0.006	105	66	27.18	-0.07	4f11(4I)4I	6.5	4f105d(5I)6I	6.5	6507.750	78916.79	
1381.298	72395.70	1381.293	0.005	120	69	359.8	0.19	4f105d(5I)6L	8.5	4f106p(5I)6I	8.5	82610.32	155006.2	
1383.665	72271.80	1383.666	-0.001	72	21	331.1	-0.39	4f105d(5I)4H	5.5	4f106p(5I)6K	4.5	90711.70	162983.5	
1384.650	72220.40	1384.654	-0.004	47	13	151.9	0.31	4f105d(5I)4G	4.5	4f106p(5F)6D	4.5	92187.63	164407.8	
1385.430	72179.70	1385.434	-0.004	142	98	70.18	-0.1	4f11(2H)2H2	5.5	4f105d(5I)4Hb	5.5	19331.69	91511.24	
1385.907	72154.90	1385.904	0.003	52	9	214.6	-0.46	4f105d(5F)6H	4.5	4f106p(5I)4I	5.5	96309.02	168464.1	
1386.010	72149.50	1386.008	0.002	243	160 171	2401	-0.54	41105d(51)6K	5.5	41106p(51)6K	5.5	88456.86	160606.5	
1389 723	72014.10	1389 723	0.008	231 89	1/1	22.08	-0.57	41105d(51)4H 4f11(4G)4G	6.0 5.5	41106p(51)6K 4f105d(5F)4G	0.J 5.5	26707 79	98664 60	
1390.532	71914.90	1390.531	0.001	207	130	1743	0.41	4f105d(5T)6K	5.5	4f106p(5T)6T	4.5	88456.86	160371.8	
1391.800	71849.40	1391.818	-0.020	21	2	113.7	0.03	4f105d(5I)4K	6.5	4f106p(5I)6H	5.5	93697.73	165546.2	
1392.484	71814.10	1392.482	0.002	378	278	6499	0.95	4f105d(5I)6L	5.5	4f106p(5I)6K	4.5	91169.27	162983.5	
1394.439	71713.40	1394.438	0.001	114	74	651.3	0.31	4f105d(5I)4I	6.5	4f106p(5I)4H	5.5	90598.50	162312.0	
1395.442	71661.90	1395.442	0.000	85	65	233.1	0.06	4f105d(5I)4K	7.5	4f106p(5I)4I	6.5	89949.21	161611.1	
1395.893	71638.70	1395.894	-0.001	21	16	28.13	-0.01	4f105d(5I)4K	6.5	4f106p(5I)6I	6.5	93697.73	165336.4	
1396.075	71629.40	1396.072	0.003	111	26	500.7	0.36	4f105d(5I)4I	7.5	4f106p(5I)6I	8.5	83376.71	155006.2	
1396.644	71503.40	1396.642	0.002	136	94 52	921.0	-0.43	4I105d(51)4H	5.5	4I106p(51)4H	2.5	90/11.70	162312.0	
1396.896	71587.30	1396.895	0.002	140	91	793.9	0.42	4f105d(5T)4H	6.5	4f106p(5I)6I	5.5	85740.41	157327.8	
1397.867	71537.60	1397.867	0.000	67	41	324.6	0.14	4f105d(5I)6I	3.5	4f106p(5I)6I	4.5	88834.27	160371.8	
1399.086	71475.20	1399.088	-0.002	744	447	9120	-0.83	4f105d(5I)6K	9.5	4f106p(5I)4K	8.5	75982.90	147458.0	
1399.246	71467.00	1399.243	0.003	440	247	392.9	-0.34	4f11(4F)4F	4.5	4f105d(5I)4G	5.5	15404.86	86872.06	
1399.599	71449.00	1399.595	0.004	428	306	7036	0.85	4f105d(5I)6L	6.5	4f106p(5I)6K	5.5	89157.31	160606.5	
1400.196	71418.60	1400.195	0.001	83	35	23.28	-0.05	4f11(4F)4F2	4.5	4f105d(5I)4K	5.5	24736.00	96154.60	
1400.873	71384.10	1400.882	-0.009	169	73	34.06	-0.02	4f105d(5I)4I	4.5	4f106p(5F)6G	4.5	97183.02	168566.6	
1400.954	71379.90	1400.952	0.002	196	12	59.76	-0.07	4111(2H)2H2	5.5	41105d(51)4H	5.5	19331.69	90711.70	
1403.100	71200.70	1403.170	-0.002	200	46	259 6	-0.23	4111 (2n) 2n2 4f105d (5t) 4k	5.5	411050(51)41 4f106p(5F)4G	55	93697 73	164899 2	
1404.576	71195.86	1404.571	0.005	169	-10	552.4	0.13	4f105d(5T)4H	4.5	4f106p(5T)6H	4.5	94874.22	166070.3	D
1404.576	71195.86	1404.583	-0.007	169		285.4	-0.27	4f105d(5I)6H	5.5	4f106p(5I)6K	6.5	86559.40	157754.9	D
1405.207	71163.90	1405.213	-0.006	98	55	258	-0.06	4f105d(5I)4K	7.5	4f106p(5I)6I	7.5	89949.21	161112.8	
1405.401	71154.10	1405.392	0.009	345	252	69.05	-0.22	4f11(4F)4F	4.5	4f105d(5I)6H	5.5	15404.86	86559.40	
1407.068	71069.78	1407.074	-0.006	228	101	696.8	0.14	4f105d(5I)4I	5.5	4f106p(5I)6H	5.5	94476.78	165546.2	D
1407.068	71069.78	1407.067	0.001	228	101	323.4	-0.21	4f105d(5F)6H	5.5	4f106p(5F)4G	5.5	93829.40	164899.2	D
1408.196	71012.80	1408.201	-0.005	234	111	1353	-0.33	4f105d(5I)4I	6.5	4f106p(5I)4I	6.5	90598.50	161611.1	
1408.249	/1U1U.10 70997 70	1408.248	_0.001	249	96 212	958.8	-0.19	41105d(51)6Kb	6.5 7 5	4I1U6p(51)6K	6.5	86757 34	157754.9	
1409.900	70927.00	1409.907	-0.007	120	20	239 5	0.08	4f105d(5t)6t	4.5	4f106p(51)6T	5.5	86401.13	157327.8	
1410.135	70915.20	1410.139	-0.004	493	428	7790	0.88	4f105d(5I)6L	8.5	4f106p(5I)6K	7.5	82610.32	153525.3	
1410.446	70899.60	1410.450	-0.004	136	77	609.5	0.50	4f105d(5I)4H	5.5	4f106p(5I)4I	6.5	90711.70	161611.1	

1410 581	70892 80	1410 583	-0 002	100	30	30 5	-0.03	4f105d(5T)4L	75	4f106p(5T)6K	75	94777 64	165670 3	
1410 779	70882 80	1410 778	0.001	154	186	488 1	0.29	4f105d(5T)4G	5 5	4f106p(51)6K	6 5	86872 06	157754 9	
1110.115	/0002.00	1410.770	0.001	104	100	100.1	0.25	411030(31)40	5.5	411000 (01) 010	0.0	00072.00	101104.0	
1411 005	70050 00	1 4 1 1 0 4 1	0 000	0		C4 00	0.05	4-5105-2 (5-7) 4-7	E E	4.51.0.Cm (E.T.) (T	C E	01176 70	1 (5 2 2 (4	
1411.233	70039.90	1411.241	-0.008	9	170	04.09	0.05	411050(51)41	5.5	411060(51)61	0.5	944/0./0	156500.4	
1411.383	70842.50	1411.585	0.000	250	1/0	14/1	-0.30	41105d(51)4H	6.5	41106p(51)4H	0.5	85740.41	100082.9	
1412.065	/0818.20	1412.0/1	-0.006	103	51	584.6	-0.73	41105d(5F)6D	4.5	41106p(51)6H	4.5	95252.35	166070.3	
1412.244	70809.30	1412.246	-0.002	293	200	1675	-0.44	4f105d(5I)4Ib	7.5	4f106p(5I)4I	7.5	84992.54	155801.7	
1412.411	70800.90	1412.414	-0.003	167	86	644.1	-0.24	4f105d(5I)4Hb	5.5	4f106p(5I)4H	5.5	91511.24	162312.0	
1413.055	70768.70	1413.061	-0.006	93	45	264.9	-0.05	4f105d(5I)6H	5.5	4f106p(5I)6I	5.5	86559.40	157327.8	
1413.701	70736.30	1413.701	0.000	412	258	5561	0.76	4f105d(3K)4K2	7.5	4f106p(3K)4I2	7.5	100035.2	170771.5	
1414.980	70672.40	1414.988	-0.008	62	10	248.3	0.13	4f105d(5I)4H	4.5	4f106p(5I)6H	5.5	94874.22	165546.2	
1416.352	70603.93	1416.355	-0.003	76	53	111.6	-0.05	4f105d(5I)6K	6.5	4f106p(5I)6K	7.5	82921.55	153525.3	
1416.769	70583.13	1416.771	-0.002	179	128	812.8	0.18	4f105d(5I)6Kb	6.5	4f106p(5I)6I	5.5	86744.73	157327.8	
										1 . ,				
1416.863	70578.44	1416.863	0.000	99	70	187.5	0.11	4f105d(5F)6H	5.5	4f106p(5F)6D	4.5	93829.40	164407.8	
1417 261	70558 66	1417 258	0 003	30	8	61 37	0 02	4f105d(5T)4T	75	4f106p(5T)6T	6 5	94777 64	165336 4	
1418 159	70513 93	1418 152	0.007	74	39	196.8	0 16	4f105d(5T)4T	6 5	4f106p(51)61	7 5	90598 50	161112 8	
1/10.100	70456 43	1/10 322	-0.005	102	Ğ	51 85	-0.03	4f105d(5t)6K	8 5	4f106p(5T)4T	7 5	853/5 53	155801 7	
1/10 70/	70433 25	1/10 770	0.005	102	140	1633	-0.03	4f105d(5r)6H	6 5	41100p(31)41	7 5	100337 0	170771 5	
1419.704	70433.23	1419.770	0.000	104	140	126 6	-0.94	41105d (5F) 0H	0.J	41100p (SR) 412	7.J	100337.9	164900 2	
1420.004	70422.34	1420.002	0.002	12	1.0	174.0	0.17	411050(51)41	5.5	41106p(JF)4G	5.5	94470.70	104099.2	
1420.205	70409.40	1420.269	-0.004	03	10	1/4.0	0.03	41105d(51)4L	8.5	41106p(51)61	7.5	90703.04	101112.8	
1422.602	70293.72	1422.600	0.002	217	101	282.6	0.31	41105d (5F) 6D	4.5	41106p(51)6H	5.5	95252.35	165546.2	
1423.534	/024/.69	1423.538	-0.004	15		//.43	0.21	41105d(5F)6H	6.5	41106p(51)4H	5.5	92064.49	162312.0	
1424.547	70197.76	1424.555	-0.008	211	129	2055	0.85	4f105d(5I)4G	3.5	4f106p(5I)6H	4.5	95872.96	166070.3	
1424.647	70192.81	1424.653	-0.006	116	79	333.7	-0.06	4f105d(5I)6K	6.5	4f106p(5I)6H	6.5	82921.55	153114.1	
1425.540	70148.87	1425.545	-0.005	263	182	1607	-0.31	4f105d(5I)4I	7.5	4f106p(5I)6K	7.5	83376.71	153525.3	
1426.032	70124.63	1426.038	-0.006	346	231	3976	0.88	4f105d(5I)4G	4.5	4f106p(5I)4H	5.5	92187.63	162312.0	
1426.533	70100.04	1426.537	-0.004	107	43	233.1	0.12	4f105d(5I)4Hb	5.5	4f106p(5I)4I	6.5	91511.24	161611.1	
1427.316	70061.58	1427.322	-0.006	255	157	1440	0.63	4f105d(5I)4H	6.5	4f106p(5I)4I	7.5	85740.41	155801.7	
1428.087	70023.76	1428.093	-0.006	216	150	837.6	0.32	4f105d(5I)6H	5.5	4f106p(5I)4H	6.5	86559.40	156582.9	
1428.289	70013.82	1428.292	-0.003	136	28	330.9	0.37	4f105d(5I)4Ib	7.5	4f106p(5I)6I	8.5	84992.54	155006.2	
1428,489	70004.04	1428.487	0.002	125	81	50.53	-0.01	4f105d(5T)6T	5.5	4f106p(5T)6H	6.5	83109.96	153114.1	
1430.577	69901.86	1430.574	0.003	170	129	1087	0.39	4f105d(5F)4G	5.5	4f106p (5F) 6G	4.5	98664.60	168566.6	
1431 883	69838 11	1431 883	0 000	97	44	224	0 15	4f105d(5T)6Kb	65	4f106p(5T)4H	6 5	86744 73	156582 9	
1101.000	00000.11	1101.000	0.000	51		221	0.10	111000(01)010	0.0	11100p(01) III	0.0	00/11./0	100002.9	
1/132 130	69826 08	1/132 1/11	-0.010	82	25	165 9	-0.16	4 f 1 0 5 d (5 T) 6 T	75	4f106p(5T)4H	6 5	86757 34	156582 9	
1432 672	69799 64	1432 676	-0.010	02	2.5	10J.J	0.10	4f105d(5r)0D	55	41100p(51)411	5 5	00757.54	169464 1	
1432.072	60727 22	1432.070	-0.004	210	127	JI.JZ	0.21	41105d (5F) 4G	7.5	41100p(J1)41	5.5	90004.00	152114 1	
1433.932	09/3/.33	1433.931	0.001	219	137	203.3	-0.29	411050 (S1) 41	7.5	41100p(J1)0H	0.5	0.0070.01	156500 0	
1434.493	69/11.04	1434.498	-0.005	407	309	42/4	0.03	41105d (51) 4G	5.5 0 E	41106p(51)4H	0.5	86872.06	156382.9	
1435.535	69660.43	1435.529	0.006	88	38	139.1	0.06	41105d(51)6K	8.5	41106p(51)61	8.5	85345.53	155006.2	
1435.811	69647.04	1435.815	-0.004	9	0.5	34.19	0.04	41105d (5F) 6D	4.5	41106p (5F) 4G	5.5	95252.35	164899.2	
1437.884	69546.62	1437.885	-0.001	65	85	4/.13	-0.14	41105d(5F)6H	6.5	41106p(51)41	6.5	92064.49	161611.1	
1440.588	69416.12	1440.586	0.002	50		15.71	-0.02	4±11(4G)4G	4.5	4±105d(51)41	4.5	27766.82	97183.02	
1441.100	69391.46	1441.097	0.003	10		27.13	-0.02	4f105d(5I)4K	5.5	4f106p(5I)6H	5.5	96154.60	165546.2	
1447.360	69091.31	1447.357	0.003	27		111.1	-0.03	4f105d(5I)6L	9.5	4f106p(5I)6I	8.5	85914.80	155006.2	
1448.267	69048.06	1448.261	0.006	39		31.82	0.15	4f105d(5F)6H	6.5	4f106p(5I)6I	7.5	92064.49	161112.8	
1448.346	69044.26	1448.344	0.002	17		48.27	-0.10	4f105d(5I)6L	7.5	4f106p(5I)4I	7.5	86757.34	155801.7	
1451.649	68887.16	1451.646	0.003	129	32	146.3	-0.12	4f105d(5I)4I	4.5	4f106p(5I)6H	4.5	97183.02	166070.3	
1464.044	68303.94	1464.046	-0.002	169	166	778.3	-0.13	4f105d(5I)4K	8.5	4f106p(5I)4K	8.5	79154.18	147458.0	
1466.710	68179.79	1466.710	0.000	167	162	350.5	0.04	4f105d(5I)6K	8.5	4f106p(5I)6K	7.5	85345.53	153525.3	
1468.129	68113.92	1468.116	0.010	248	156	59.83	-0.01	4f105d(5I)6I	6.5	4f106p(5I)6H	7.5	78916.79	147031.3	
1468.287	68106.55	1468.296	-0.009	90	12	16.87	-0.05	4f11(4G)4G	4.5	4f105d(5T)4G	3.5	27766.82	95872.96	
1471.978	67935.82	1471.979	-0.001	2.9.3	193	1438	0.14	4f105d(5T)4T	9.5	4f106p(5T)4K	8.5	79522.29	147458.0	
1473.251	67877.11	1473.250	0.001	148	103	526 8	-0.12	4f105d(5T)4K	8.5	4f106p(5T)6H	7.5	79154.18	147031.3	
1474.531	67818.16	1474.529	0.002	34	15	214 4	0.17	4f105d(5T)4H	3.5	4f106p(5T)6H	4.5	98252.07	166070.3	
11/1.001	0,010.10		0.002	51	10	CT 1 • 7	0.1/	111000(01)11	5.5	11100P(01)011	1.5	50202.07	1000/010	
1475.253	67785.00	1475.255	-0.002	31	12	122.4	0.11	4f105d(5T)4H	6.5	4f106p(5T)6K	7.5	85740.41	153525.3	
1475.327	67781.56	1475.325	0.002	67	49	48.97	0.15	4f105d(5F)6H	5.5	4f106p(5I)4T	6.5	93829.40	161611.1	
					÷					<u>-</u>				

1470:2164 277.275 747.2754 -0.003 10 11.2124 -0.014 11.01445 10.21 24.212644 10.0176 147.0156<	1 475 661	67766	1475 661	0 000	1-		1.0.00	0 0 1	4511 (46) 46		4 C1 O E 1 (E T) 1 =		0.0707 50	04476 70	
1777-03 1777-03 1777-04 18777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 187777-04 1877	14/5.601	67768.98	14/5.601	0.000	15		16.39	-0.04	4±11(4G)4G	5.5	4±105d(51)41	5.5	26/07.79	94476.78	
	1476.992	67705.16	1476.994	-0.002	67	41	14.24	0.15	4f11(4F)4F	4.5	4f105d(5I)6I	5.5	15404.86	83109.96	
1480.38 67540.39 1480.39 67540.39 1480.39 67540.39 1480.39 67540.39 1480.39 67540.39 1333 91.75 -0.10 4111 (27).47 1.5 4111 (27).47 1.5 4111 (27).47 1.5 4111 (27).47 1.5 1.5 1.5331.40 1.687.30 1.55 1.5331.40 1.687.30 1.55 1.5331.40 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55	1477.775	67669.31	1477.775	0.000	29		15.79	0.00	4f105d(5I)6Hb	7.5	4f106p(5I)6H	7.5	79362.02	147031.3	
$ \begin{array}{c} 148 39 \\ 148 39 \\ 148 30 $	1480.593	67540.49	1480.596	-0.003	159	133	91.75	-0.10	4f11(2H)2H2	5.5	4f105d(5I)4G	5.5	19331.69	86872.06	
$ \begin{array}{c} 1482.33 \\ 1484.233 \\ 1737.35 \\ 1484.236 \\ 1487.482 \\ 1487.$	1481.799	67485.55	1481.799	0.000	48	42	22.04	-0.06	4f11(4G)4G	4.5	4f105d(5F)6D	4.5	27766.82	95252.35	
1482.299 6.7373.49 1487.48 6.7373.49 1537.44 1537.44 1537.44 1487.48 6.7186.57 1489.446 6.7186.67 4116.610.47 41.65 4139.416 6.5 4139.416 6.5 4139.126 6555.40 1489.486 6.7186.57 1489.61 0.002 72 33 222.3 10.86 4109.1161.14 6.5 4109.1161.14 4.5 4109.1167.14 4.5 <td< td=""><td>1482.539</td><td>67451.85</td><td>1482.544</td><td>-0.005</td><td>65</td><td>36</td><td>35.11</td><td>-0.07</td><td>4f11(4F)4F2</td><td>4.5</td><td>4f105d(5T)4G</td><td>4.5</td><td>24736.00</td><td>92187.63</td><td></td></td<>	1482.539	67451.85	1482.544	-0.005	65	36	35.11	-0.07	4f11(4F)4F2	4.5	4f105d(5T)4G	4.5	24736.00	92187.63	
1447.480 67227.79 1487.482 -0.002 128 100 128.160 65.5 10221.66 8555.40 1489.080 0718.53 1489.064 -0.003 72 13 322.9 -0.66 4109401314 6.5 4109401	1484 259	67373 69	1484 259	0 000	38	29	147 6	0 06	4f105d(5T)4H	6 5	4f106p(5T)6H	6 5	85740 41	153114 1	
140.000 0715 141 0.00 141 <th0.00< th=""> <th0.00< th=""> 141<</th0.00<></th0.00<>	1/87 /80	67227 79	1/87 /82	-0.002	124	89	39 17	-0 13	Af11 (24) 242	5 5	4f105d(5t)6H	5 5	19331 69	86559 10	
1489.069 6716.553 1489.061 -0.000 72 31 289.3 -0.88 471064(19147) 6.5 47106(151) eff 6.5 92766.23 94874.22 162732.01 <t< td=""><td>1407.400</td><td>01221.15</td><td>1407.402</td><td>0.002</td><td>127</td><td>0.5</td><td>57.14</td><td>0.15</td><td>4111 (211) 2112</td><td>5.5</td><td>411050(51)011</td><td>5.5</td><td>19991.09</td><td>00000.40</td><td></td></t<>	1407.400	01221.15	1407.402	0.002	127	0.5	57.14	0.15	4111 (211) 2112	5.5	411050(51)011	5.5	19991.09	00000.40	
1440.142 0705.05 1440.142 0705.05 1440.142 0705 1440.142 0705 1440.15 0705.02 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.422 0705.05 1440.425 0705.05 1400.455 0705	1400 050	C71EC E2	1400 001	0 000	70	21	202.2	0 00		C E	4.51.0 Cm (ET) (K	C E	00500 50	157754 0	
1401.000 0.100.100 1401.140 -0.100 1401.140 -0.100 1401.140 -0.100 1401.140 -0.100 1401.140 -0.100 1401.140 -0.100	1489.059	67136.53	1489.061	-0.002	12	31	282.3	-0.08	411050(51)41	6.5	4I106p(51)6K	6.5	90598.50	15//54.9	
$ \begin{array}{c} 149. 209 \\ 149. 209 \\ 149. 209 \\ 149. 200 \\ 150. 200 \\ 150$	1490.146	6/10/.50	1490.149	-0.003	128	65	55.89	-0.08	4111(4G)4G	4.5	41105d(51)4H	4.5	27766.82	94874.22	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1491.209	67059.68	1491.210	-0.001	16		27.12	0.06	41105d(5F)6D	4.5	4±106p(51)4H	5.5	95252.35	162312.0	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1492.763	66989.86	1492.761	0.002	93	37	13.4	-0.07	4f11(4G)4G	5.5	4f105d(5I)4K	6.5	26707.79	93697.73	
$ \begin{array}{c} 1496.399 \\ 1497.553 \\ 6672.56 \\ 1497.756 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1497.750 \\ 6773.56 \\ 1502.750 \\ 1502$	1494.566	66909.05	1494.572	-0.006	22		63.42	0.02	4f105d(5I)4K	6.5	4f106p(5I)6K	5.5	93697.73	160606.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1496.359	66828.90	1496.359	0.000	29	8	65.32	0.02	4f105d(5I)4K	5.5	4f106p(5I)6K	4.5	96154.60	162983.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1497.553	66775.58	1497.561	-0.008	52	29	16.82	-0.06	4f11(4F)4F2	4.5	4f105d(5I)4Hb	5.5	24736.00	91511.24	
	1497.709	66768.64	1497.724	-0.010	17	16	52.1	-0.02	4f105d(5I)6L	7.5	4f106p(5I)6K	7.5	86757.34	153525.3	Asvm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1498 586	66729 58	1498 593	-0 007	17		51 89	0 03	4f105d(5T)4T	6 5	4f106p(5T)6T	5 5	90598 50	157327 8	
1501.180 6615.68 1501.180 0.000 42 5.6 0.004 41105.101 150 1100.1011 0.00 1501.184 0.003 1100.1011 0.003 1100.1011 0.003 1100.1011 0.003 1100.1011 0.004 1100.1011 0.003 1100.1011 0.003 1100.1011 0.004 271.001 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.184 0.004 1501.104 0.005 1661.141 0.004 4100.401914 5.5 41006910164 5.5 90711.70 166382.9 90711.70 166382.9 90711.70 166582.9 90711.70 1668	1499 026	66710 00	1499 027	-0.001	155	89	71 45	-0.20	4f11(4G)4G	4 5	4f105d(5T)4T	5 5	27766 82	94476 78	
	1400.020	00/10.00	1100.027	0.001	100	0,5	/1.10	0.20	4111(40)40	1.5	411050(51)41	5.5	21100.02	54470.70	
1505.151 00655.06 1505.152 0.003 45 14 33.62 0.014 411041(2)142 5.6 41009(2)(5) 5.6 5.6 5025.25 6603.01 1505.822 0.004 274 158 120.9 7.6 6624.24 1509.786 6624.24 1509.786 6623.54 1509.786 6.5 1933.16.0 153114.1 1509.786 6623.54 1515.713 0.001 127 7 70.7 -0.30 4f105d(5)146 5.5 4f105p(5)24 5.5 94476.78 166050.5 1515.716 6623.54 1515.713 0.001 53 6 140.01 -0.55 4f105g(5)44 6.5 90598.50 15682.9 1515.711 60.001 27 6 140.01 -0.05 4f105g(5)44 6.5 90711.70 15682.9 1515.711 6.0001 21 33.77 0.04 4f105d(5)14H 5.5 4f105g(5)146 5.9 90711.70 15682.9 1519.317 65816.66 1519.317 <td< td=""><td>1 5 0 1 1 4 0</td><td>CCC1E C0</td><td>1501 120</td><td>0 000</td><td>10</td><td></td><td></td><td>0 04</td><td></td><td></td><td>4.51.0 Cm (ET) (T</td><td></td><td>00711 70</td><td>157207 0</td><td></td></td<>	1 5 0 1 1 4 0	CCC1E C0	1501 120	0 000	10			0 04			4.51.0 Cm (ET) (T		00711 70	157207 0	
$ \begin{array}{c} 1202.234 \\ 1205.822 \\ 66048.9.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1505.826 \\ 66248.0.01 \\ 1515.101 \\ -0.001 \\ 64 \\ 11 \\ 100 \\ 100 \\ 101 \\ 11 \\ 11 \\ 11 $	1500 514	00013.00 CCEEE 10	1501.139	0.009	42	1 /	39.08	-0.04	4£1054(51)4H	5.5	4 £10 Cm (51) 01	5.5	JUILL. 10	152114 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1502.514	66555.10	1502.523	-0.009	43	14	33.42	-0.01	4I105d(51)6H	5.5	4I106p(51)6H	6.5	86559.40	153114.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1505.822	66408.91	1505.826	-0.004	274	158	123.9	-0.21	4±11(2H)2H2	5.5	4±105d(51)4H	6.5	19331.69	85/40.41	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1509.615	66242.07	1509.615	0.000	100	19	367.9	-0.17	4f105d(5I)4G	5.5	4f106p(5I)6H	6.5	86872.06	153114.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1509.786	66234.54	1509.785	0.001	127	74	707.7	-0.30	4f105d(5F)4G	5.5	4f106p(5F)4G	5.5	98664.60	164899.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1512.179	66129.75	1512.179	0.000	54	11	148.8	-0.08	4f105d(5I)4I	5.5	4f106p(5I)6K	5.5	94476.78	160606.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1515.082	66003.02	1515.083	-0.001	16		42.46	-0.11	4f105d(5F)6H	4.5	4f106p(5I)4H	5.5	96309.02	162312.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1515.506	65984.56	1515.511	-0.005	27		59.35	-0.03	4f105d(5I)4I	6.5	4f106p(5I)4H	6.5	90598.50	156582.9	
1517.562 65895.14 1517.565 -0.003 *4 *45.74 0.04 4f105d(51)4T 5.5 4f106p(51)6T 4.5 94476.78 160371.8 1518.127 65870.64 1518.115 0.010 21 33.77 0.04 4f105d(51)4H 5.5 4f106p(51)6T 5.5 90711.70 15682.9 1519.746 65800.64 1519.776 0.003 101 42 226.7 -0.15 4f105d(51)4H 5.5 4f106p(51)6T 5.5 90711.70 15682.9 1521.252 65732.16 1521.322 0.003 101 42 226.7 -0.21 4f105d(51)4H 4.5 4f106p(51)6T 4.5 98664.60 164407.8 1533.671 65233.04 1533.671 0.004 81.3 80.36 0.10 4f105d(51)4H 4.5 4f106p(51)6T 4.5 94874.22 160060.5 1542.080 0.044 153.8671 0.004 81.3 480.36 0.10 4f105d(51)4H 4.5 4f106p(51)6T 4.5 94874.22 16006.5 1542.080 0.4847.47 154.273 0.004 152	1515.711	65975.66	1515.710	0.001	53	6	14.01	-0.05	4f11(4F)4F2	4.5	4f105d(5T)4H	5.5	24736.00	90711.70	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1517 562	65895 14	1517 565	-0 003	4		45 74	0 04	4f105d(5T)4T	55	4f106p(5T)6T	4 5	94476 78	160371 8	
	101/.002	00000.11	101/.000	0.000	-		10.71	0.01	111000(01)11	0.0	1110000 (01) 01	1.0	511/0./0	1000/11.0	
1510.374 65816.60 1510.375 -0.001 112 55 176.3 -0.008 44105d(51)4Hbb 5.5 44106p(51)6I 15.5 91511.24 15227.8 1519.374 65800.45 1519.746 0.000 79 29 244.2 -0.15 44105d(51)4Hbb 5.5 44106p(51)6I 5.5 91511.24 15220.8 1521.325 65732.16 1521.322 0.003 30 114 0.13 44105d(51)4H 4.5 44106p(51)6I 5.5 94874.22 160606.5 1533.56 6533.04 1533.667 0.004 81 23 548.8 0.42 44105d(51)4H 4.5 44106p(51)6I 5 94874.22 160606.5 1533.166 65139.97 1532.070 0.004 81 23 548.8 0.42 44105d(51)4H 4.5 44106p(51)4I 7.5 9589.50 155301.7 1548.46 64373.139 1544.845 0.001 47 19 201.8 0.28 44105d(51)4H 3.5 44106p(51)6I 4.5 9252.07 162983.5 1550.46 64499.24	1518 127	65870 64	1518 115	0 010	21		33 77	0 04	4f105d(5T)4H	55	4f106p(5T)4H	65	90711 70	156582 9	
1518.746 65800.45 1519.746 0.001 110 35 244.2 -0.15 41103d(ST)41 3.5 41105p(ST)6t 4.5 93664.60 164907.8 1521.325 65732.16 1521.022 60.003 101 42 326.7 -0.12 41003d(ST)41 4.5 41105p(ST)6t 4.5 93664.60 164407.8 1522.325 65732.16 1522.773 0.002 64 15 180.9 -0.10 4105d(ST)4H 4.5 4f106p(ST)6t 4.5 94874.22 160371.8 1533.676 65203.04 1533.5152 0.004 152 83 548.8 0.42 4f105d(ST)4H 4.5 4f106p(ST)6t 5.5 94874.22 163371.8 1542.080 6484.74 1542.074 0.006 54 22 47.36 -0.02 4f105d(ST)4H 4.5 4f106p(ST)6t 5.5 92187.63 15322.8 1543.126 64803.52 1543.128 -0.002 40 10.82 -0.02 4f105d(ST)4H 3.5 4f106p(ST)6t 4.5 98252.07 162983.5 1552.286 64421.01	1510.374	65916 60	1510.375	-0.001	116	55	176 3	_0.09	11105d(51)111	5.5	$4 \pm 106 p (51) 111$	5 5	01511 24	157327 0	
1521.073 6573.10 1521.074 0.000 179 29 244.2 11000(1)14 4.1 41106p(51)6K 4.5 9783.02 164407.8 1521.072 65732.16 1521.322 0.003 30 114 0.13 4f105d(51)4H 4.5 4f106p(55)6K 5.5 94874.22 160407.8 1532.071 65203.04 1533.677 0.002 64 15 180.9 -0.10 4f105d(51)4H 4.5 4f106p(51)6K 4.5 94874.22 160371.8 1533.156 65139.97 1535.152 0.004 152 83 548.8 0.42 4f105d(51)4H 6.5 4f106p(51)6K 8.5 82610.32 147458.0 1542.080 64847.47 1542.074 0.006 54 22 47.36 -0.02 4f105d(51)4H 3.5 4f106p(51)6K 8.5 82610.32 147458.0 1554.486 64731.39 1544.845 0.001 47 19 201.8 0.28 4f105d(51)4H 3.5 4f106p(51)6K 4.5 98252.07 162983.5 1552.286 64421.01 1552.298 <	1510 746	65000 45	1510 746	0.001	110	20	244.2	0.00	4f105d(51)4nb	1 5	4f106p(51)01	1 5	07102 02	162002 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1501 070	65600.45	1521 000	0.000	19	29	244.2	-0.13	41105d (51) 41	4.5	41100p(J1)0K	4.5	9/103.02	102903.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1521.072	05745.10	1521.009	0.003	101	42	520.7	-0.21	41103d(JF)4G	5.5	41106p(JF)6D	4.5	90004.00	104407.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1521.325	65/32.16	1521.322	0.003	30		114	0.13	41105d(51)4H	4.5	41106p(51)6K	5.5	94874.22	160606.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1526.775	65497.53	1526.773	0.002	64	15	180.9	-0.10	4±105d(51)4H	4.5	4±106p(51)61	4.5	94874.22	160371.8	
	1533.671	65203.04	1533.667	0.004	81	23	69.36	0.10	4f105d(5I)4I	6.5	4f106p(5I)4I	7.5	90598.50	155801.7	
1542.080 64847.47 1542.074 0.006 54 22 47.36 -0.02 4f105d(51)6L 8.5 4f106p(51)4K 8.5 26707.79 91511.24 1543.126 64803.52 1543.128 -0.002 40 10.82 -0.02 4f11(4G)4G 5.5 4f106p(51)4K 8.5 26707.79 91511.24 1544.846 64731.39 1544.845 0.001 47 19 201.8 0.28 4f105d(51)4H 3.5 4f106p(51)6K 4.5 98252.07 162983.5 1552.289 64421.01 1552.293 -0.004 183 115 109.4 -0.11 4f11(4G)4G 4.5 4f105d(51)4G 4.5 27766.82 92187.63 1552.586 -0.002 44 66.37 0.04 4f105d(5F)4Gb 5.5 4f106p(5F)6G 4.5 96162.60 160371.8 1552.586 -0.002 44 66.37 0.04 4f105d(5F)4Gb 5.5 4f106p(5I)6K 6.5 93641.97 157754.9 1552.586 -0.002 44 10.34 -0.02 4f11(4G)4G 5.5 4f105d(5I)4H	1535.156	65139.97	1535.152	0.004	152	83	548.8	0.42	4f105d(5I)4G	4.5	4f106p(5I)6I	5.5	92187.63	157327.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1542.080	64847.47	1542.074	0.006	54	22	47.36	-0.02	4f105d(5I)6L	8.5	4f106p(5I)4K	8.5	82610.32	147458.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1543.126	64803.52	1543.128	-0.002	40		10.82	-0.02	4f11(4G)4G	5.5	4f105d(5I)4Hb	5.5	26707.79	91511.24	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1544.846	64731.39	1544.845	0.001	47	19	201.8	0.28	4f105d(5I)4H	3.5	4f106p(5I)6K	4.5	98252.07	162983.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1550.406	64499.24	1550.415	-0.009	84	27	515.7	0.35	4f105d(5I)4G	3.5	4f106p(5I)6I	4.5	95872.96	160371.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1552.289	64421.01	1552.293	-0.004	183	115	109.4	-0.11	4f11(4G)4G	4.5	4f105d(5I)4G	4.5	27766.82	92187.63	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1552.584	64408.75	1552.586	-0.002	44		66.37	0.04	4f105d(5F)4Gb	5.5	4f106p(5F)6G	4.5	104157.9	168566.6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1557.219	64217.04	1557.214	0.005	122	42	15.2	0.01	4f105d(5T)4K	5.5	4f106p(5T)6T	4.5	96154.60	160371.8	
1562.414 64102.53 1562.405 0.007 81 12 10.34 -0.02 4f105d(51)4H 5.5 4f105d(51)4H 5.5 26707.79 90711.70 1565.177 63890.53 1565.173 0.004 157 115 28.51 -0.13 4f11(4G)4G 5.5 4f105d(51)4H 5.5 26707.79 90798.50 1568.768 63744.27 1568.765 0.003 97 40 52.56 -0.14 4f11(4G)4G 4.5 4f105d(51)4H 5.5 26707.79 90598.50 1568.768 63736.73 1568.942 0.010 31 14 15.8 0.21 4f105d(51)4K 6.5 4f106p(51)4I 7.5 92064.49 155801.7 1571.585 63630.01 1571.585 0.000 132 50 41 0.02 4f105d(51)4K 6.5 4f106p(51)6I 5.5 93697.73 157327.8 1572.581 63589.73 1572.578 0.003 129 47 47.97 0.17 4f105d(51)4K 6.5 4f106p(51)6K 6.5 19331.69 82921.55 1572.928 63575.	1559 748	64112 93	1559 747	0 001	50	21	36 36	-0.03	4f105d (5F) 6H	7 5	4f106p(5T)6K	6 5	93641 97	157754 9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1562 /1/	64003 53	1562 105	0.001	91	12	10.34	-0.02	4f11(AC)AC	55	4f105d(5T)/H	5 5	26707 70	90711 70	
1363.177 63890.33 1363.173 0.004 137 113 28.31 -0.13 4111(4G)4G 3.5 41103d(31)41 6.5 26707.79 90350.30 1568.768 63744.27 1568.765 0.003 97 40 52.56 -0.14 4f11(4G)4G 4.5 4f105d(51)4Hb 5.5 27766.82 91511.24 1568.954 63736.73 1568.942 0.010 31 14 15.8 0.21 4f105d(5F)6H 6.5 4f106p(5I)4I 7.5 92064.49 155801.7 1571.585 63630.01 1571.585 0.000 132 50 41 0.02 4f105d(5I)4K 6.5 4f106p(5I)6I 5.5 93697.73 157327.8 1572.581 63589.73 1572.578 0.003 129 47 47.97 0.17 4f105d(5I)4K 6.5 4f105d(5I)6K 6.5 19331.69 82921.55 1572.928 63575.72 1572.918 0.010 51 93.73 -0.02 4f105d(5I)4K 7.5 4f106p(5I)6K 7.5 89949.21 153525.3 1576.695 63423.80 <td< td=""><td>1565 177</td><td>62000 52</td><td>1565 172</td><td>0.000</td><td>157</td><td>115</td><td>20.51</td><td>0.02</td><td>4111 (40) 40</td><td>5.5</td><td>411050(51)411</td><td>5.5</td><td>26707.70</td><td>00500 50</td><td></td></td<>	1565 177	62000 52	1565 172	0.000	157	115	20.51	0.02	4111 (40) 40	5.5	411050(51)411	5.5	26707.70	00500 50	
1508.708 63736.73 1508.705 0.003 97 40 52.56 -0.14 411(4G)4G 4.5 41103a(51)4Hb 5.5 27766.82 91511.24 1568.954 63736.73 1568.942 0.010 31 14 15.8 0.21 4f105d(5F)6H 6.5 4f106p(5I)4I 7.5 92064.49 155801.7 1571.585 63630.01 1571.585 0.000 132 50 41 0.02 4f105d(5I)4K 6.5 4f106p(5I)6I 5.5 93697.73 157327.8 1572.581 63589.73 1572.578 0.003 129 47 47.97 0.17 4f105d(5I)4K 6.5 4f106p(5I)6I 5.5 93697.73 157327.8 1572.581 63575.72 1572.918 0.010 51 93.73 -0.02 4f105d(5I)4K 7.5 4f106p(5I)6K 7.5 89949.21 153525.3 1576.695 63423.80 1576.702 -0.007 55 62.83 0.07 4f105d(5I)4K 4.5 4f106p(5I)6K 5.5 97183.02 160606.5 1588 604 604 604	1500.1//	00000.03	1500.1/3	0.004	1.07	10	20.31	-0.13	1 5 1 1 (A G) 4 G	J.J 4 F		0.0	20101.19	90J90.JU	
1508.934 05/30.75 1508.942 0.010 31 14 15.8 0.21 4f105d(5f)6H 6.5 4f106p(51)41 7.5 92064.49 155801.7 1571.585 63630.01 1571.585 0.000 132 50 41 0.02 4f105d(5f)4K 6.5 4f106p(51)6I 5.5 93697.73 157327.8 1572.581 63589.73 1572.578 0.003 129 47 47.97 0.17 4f11(2H)2H2 5.5 4f105d(5I)6K 6.5 19331.69 82921.55 1572.928 63575.72 1572.918 0.010 51 93.73 -0.02 4f105d(5I)4K 7.5 4f106p(5I)6K 7.5 89949.21 153525.3 1576.695 63423.80 1576.702 -0.007 55 62.83 0.07 4f105d(5I)4K 4.5 4f106p(5I)6K 5.5 97183.02 160606.5 1580.04 604.670 1586.602 0.002 76 61 42.46 0.04.671/40.06 4.5 4f106p(5I)6K 5.5 97183.02 160606.5	1500./08	03/44.2/	1500./03	0.003	9/	40	32.36	-0.14	4111 (4G) 4G	4.0	411030(31)4HD	2.5	21100.02	91311.24	
1571.585 63630.01 1571.585 0.000 132 50 41 0.02 4f105d(5I)4K 6.5 4f106p(5I)6I 5.5 93697.73 157327.8 1572.581 63589.73 1572.578 0.003 129 47 47.97 0.17 4f11(2H)2H2 5.5 4f105d(5I)6K 6.5 19331.69 82921.55 1572.928 63575.72 1572.918 0.010 51 93.73 -0.02 4f105d(5I)4K 7.5 4f106p(5I)6K 7.5 89949.21 153525.3 1576.695 63423.80 1576.702 -0.007 55 62.83 0.07 4f105d(5I)4K 4.5 4f106p(5I)6K 5.5 97183.02 160606.5 1588 604 604 7.5 4f106p(5I)6K 5.5 97183.02 160606.5	1008.954	03/30./3	1368.942	0.010	31	⊥4	15.8	0.21	4I1U3a(5F)6H	6.5	4I106p(51)41	1.5	92064.49	100001./	
1571.585 63650.01 1571.585 0.000 132 50 41 0.02 4f105d(51)4K 6.5 4f106p(51)61 5.5 93697.73 157327.8 1572.581 63589.73 1572.578 0.003 129 47 47.97 0.17 4f11(2H)2H2 5.5 4f105d(51)6K 6.5 19331.69 82921.55 1572.928 63575.72 1572.918 0.010 51 93.73 -0.02 4f105d(51)4K 7.5 4f106p(51)6K 7.5 89949.21 153525.3 1576.695 63423.80 1576.702 -0.007 55 62.83 0.07 4f105d(51)4I 4.5 4f106p(51)6K 5.5 97183.02 160606.5 1588 604 604 70 1588 604 61064(51)4I 4.5 4f106p(51)6K 5.5 97183.02 160606.5	1591 505	C2C20 01	1591 505	0 000	100	5.0		0 00		<i>c</i> -	45100-15700-		00007 70	157007 0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15/1.585	03030.01	12/1.282	0.000	132	50	41	0.02	41105a(51)4K	6.5	41106p(51)6I	5.5	93691.13	15/327.8	
1572.928 63575.72 1572.918 0.010 51 93.73 -0.02 4f105d(51)4K 7.5 4f106p(51)6K 7.5 89949.21 153525.3 1576.695 63423.80 1576.702 -0.007 55 62.83 0.07 4f105d(51)4I 4.5 4f106p(51)6K 5.5 97183.02 160606.5 1589 604 63404.70 1582 62.83 0.07 4f105d(51)4I 4.5 4f106p(51)6K 5.5 97183.02 160606.5	15/2.581	63589.73	15/2.5/8	0.003	129	4.7	47.97	0.17	4±11(2H)2H2	5.5	41105d(5I)6K	6.5	19331.69	82921.55	
1576.695 63423.80 1576.702 -0.007 55 62.83 0.07 4f105d(51)4I 4.5 4f106p(51)6K 5.5 97183.02 160606.5	1572.928	63575.72	1572.918	0.010	51		93.73	-0.02	4f105d(5I)4K	7.5	4f106p(5I)6K	7.5	89949.21	153525.3	
	1576.695	63423.80	1576.702	-0.007	55		62.83	0.07	4f105d(5I)4I	4.5	4f106p(5I)6K	5.5	97183.02	160606.5	
1300.094 02944.79 1300.092 0.002 70 01 42.40 -0.10 4111(46)46 4.5 411030(31)4h 3.5 27700.02 90711.70	1588.694	62944.79	1588.692	0.002	76	61	42.46	-0.10	4f11(4G)4G	4.5	4f105d(5I)4H	5.5	27766.82	90711.70	
1589.166 62926.09 1589.148 0.020 65 25 55.93 0.06 4f105d(5I)4I 6.5 4f106p(5I)6K 7.5 90598.50 153525.3	1589.166	62926.09	1589.148	0.020	65	25	55.93	0.06	4f105d(5I)4I	6.5	4f106p(5I)6K	7.5	90598.50	153525.3	
1599.599 62515.68 1599.601 -0.002 54 14 134.9 0.07 4f105d(5I)4I 6.5 4f106p(5I)6H 6.5 90598.50 153114.1	1599.599	6251 <u>5.6</u> 8	1599.601	-0.002	54	14	134.9	0.07	4f105d(5I)4I	6.5	4f106p(5I)6H	6.5	90598.50	153114.1	

1600.880 1601.181	62465.65 62453.90	1600.883	-0.003	21 32	6 5	39.28 46.43	0.04	4f105d(5I)4Ib 4f105d(5I)4H	7.5	4f106p(5I)4K 4f106p(5I)6I	8.5	84992.54 94874.22	147458.0 157327.8	
1602.500	62402.50	1602.502	-0.002	31	63	37.45	-0.06	4f105d(5I)4H	5.5	4f106p(5I)6H	6.5	90711.70	153114.1	
1608.757	62159.81 62119 62	1608.758 1609 794	-0.001	11 51	7	25.6 69.13	-0.40	4f105d(5F)6H 4f105d(5T)4H	7.5	4f106p(5I)4I 4f106p(5I)6I	7.5	93641.97 98252 07	155801.7	
1609.978	62112.65	1609.981	-0.003	107	,	24.03	0.01	4f105d(51)6K	8.5	4f106p(5I)4K	8.5	85345.53	147458.0	
1610.214	62103.53	1610.203	0.010	101	92 34	11.03	0.05	4f105d(5I)4K	6.5	4f106p(5I)4I	7.5	93697.73	155801.7	
1631.559	61291.09	1631.564	-0.005	31	9	72.45	-0.07	4f105d(5F)6H	6.5	4f106p(5I)6H	7.5	85740.41	147031.3	
1662.105	60164.67	1662.116	-0.010	269	145	74.27	-0.10	4f11(4G)4G	5.5	4f105d(5I)4G	5.5	26707.79	86872.06	
1677.154	59624.83	1677.155	-0.001	47		31.04	-0.01	4f105d(51)4K 4f106s(5I)6I	8.5	4f106p(51)6K	8.5	101709.8	161334.6	
1691.898	59105.23	1691.897	0.001	186	149	49.01	0.15	4f11(4G)4G	4.5	4f105d(5I)4G	5.5	27766.82	86872.06	
1693.972	59032.84 58637 52	1693.979	-0.007	292	229	85.24	-0.17	4f11(4G)4G 4f105d(5T)4T	5.5	4f105d(5I)4H 4f106p(5T)6H	6.5	26707.79	85740.41	
1733.750	57678.44	1733.749	0.001	4	5	39.36	-0.14	4f105d(3K)4K2	5.5	4f106p(5I)6H	5.5	107867.7	165546.2	
1778.933	56213.47 56194 08	1778.924	0.009	83	112	23.67 389 4	0.11	4f11(4G)4G 4f106s(3E)4G4	5.5	4f105d(5I)6K 4f106p(5I)4K	6.5	26707.79	82921.55	
1781.271	56139.68	1781.267	0.004	29		115.4	-0.05	4f106s(5I)4I	6.5	4f106p(5I)4K	6.5	112700.0	168839.9	
1830.210	54638.54 54583 57	1830.203	0.007	99 19	89 21	502.5 84 86	0.17	4f106s(5I)4I 4f105d(3K)2T2	7.5	4f106p(5I)6K 4f106p(5I)6H	6.5	103116.2	157754.9	
1848.707	54091.85	1848.706	0.001	467	269	3857	0.71	4f106s(5I)6I	8.5	4f106p(5I)4I	7.5	101709.8	155801.7	
1861.469	53721.02	1861.463	0.006	376	333	5724	0.82	4f106s(5I)6I	6.5	4f106p(5I)4H	5.5	108590.8	162312.0	
1867.555	53545.93	1867.549	0.006	402	253	3299	0.51	4f106s(5I)6I	7.5	4f106p(5I)4I	6.5	108065.0	161611.1	
1871.789	53424.82	1871.787	0.005	428	306	7450	0.88	4f106s(3F)4G4	5.5	4f106p(51)4H 4f106p(51)6H	6.5 4.5	112645.5	166070.3	
1873.072	53388.23	1873.069	0.003	902	679	18850	1.00	4f106s(5I)6I	8.5	4f106p(5I)6K	9.5	101709.8	155098.1	
1876.294	53296.56	1876.299	-0.005	674 361	487 494	15700	0.82	41106s(51)61 4f106s(51)61	8.5 7.5	4f106p(51)61 4f106p(51)6K	8.5	101709.8	161334.6	
1885.086	53047.99	1885.090	-0.004	523	246	7493	0.69	4f106s(5I)6I	7.5	4f106p(5I)6I	7.5	108065.0	161112.8	
1886.066 1887.849	53020.41 52970.35	1886.071	-0.005	372 628	236 451	5519 13840	0.80	4f106s(51)61 4f106s(5T)4T	6.5 6.5	4f106p(51)41 4f106p(51)6K	6.5 7.5	112700.0	161611.1	
1890.337	52900.63	1890.333	0.004	330	238	6441	0.81	4f106s(3F)4G4	5.5	4f106p(5I)6H	5.5	112645.5	165546.2	
1891.904	52856.80	1891.908	-0.004	508	360	11450	0.97	4f106s(5I)4I	5.5	4f106p(5I)4K	6.5	115983.1	168839.9	
1892.290	52846.04 52710.05	1892.285	0.005	223 15	142 11	3099 76.42	-0.49	4f106s(5I)4I 4f105d(3H)4H4	6.5 6.5	4f106p(5I)6H 4f106p(5I)6T	5.5	112700.0	165546.2	
1897.861	52690.90	1897.859	0.002	234	176	4931	0.74	4f106s(3F)4G4	5.5	4f106p(5I)6I	6.5	112645.5	165336.4	
1898.059	52685.42 52636 33	1898.054	0.005	541 349	534 337	9654 6949	0.90	4f106s(5I)4I 4f106s(5T)4T	7.5	4f106p(5I)4I 4f106p(5I)6I	7.5	103116.2	155801.7	
1903.969	52521.86	1903.964	0.002	204	237	3663	0.69	4f106s(5I)6I	6.5	4f106p(5I)6I	7.5	108590.8	161112.8	
1905.460	52480.77	1905.454	0.006	230	298	5977	0.67	4f106s(5I)4I	5.5	4f106p(5I)4I	5.5	115983.1	168464.1	
1927.147	51890.17	1927.151	-0.009	449	509	7047	0.93	4f106s(51)41 4f106s(51)4I	7.5	4f106p(5I)6I	8.5	103116.2	155006.2	
1929.923	51815.55	1929.925	-0.002	77	147	122.5	-0.08	4f106s(5I)6I	8.5	4f106p(5I)6K	7.5	101709.8	153525.3	
2014.993	49611.94 48736 76	2014.992	0.001	23		848.1	0.11	4f106s(5I)4I	6.5	4f106p(5I)4H	5.5	112700.0	162312.0	
2185.193	45748.23	2185.194	-0.001	463		5027	-0.98	4f106s(5I)6I	8.5	4f106p(5I)4K	8.5	101709.8	147458.0	
2199.029	45460.42	2199.031	-0.002	330		3545	-0.70	4f106s(5I)6I	7.5	4f106p(5I)6K	7.5	108065.0	153525.3	
2216.133	45109.60	2216.139	-0.004	72		3851	0.62	4f106s(3F)4G4	5.5	4f106p(5I)6K	6.5	112645.5	157754.9	
2218.821	45054.96	2218.823	-0.002	131		2716	0.64	4f106s(5I)4I	6.5	4f106p(5I)6K	6.5	112700.0	157754.9	
2224.758	44934.73	2224.769	-0.010	∠08 86		2740	0.83	4f106s(5I)6I	6.5	4f106p(5I)6K	7.5	108590.8	153525.3	
2237.323	44682.40	2237.327	-0.004	28		1807	0.36	4f106s(3F)4G4	5.5	4f106p(5I)6I	5.5	112645.5	157327.8	
2240.063	44627.75	2240.063	0.000	86		3/49	10.8T	4I1U6S(51)41	6.5	4IIU0p(51)61	5.5	112/00.0	13/32/.8	

2240.284	44623.34	2240.282	0.002	13	2126	0.66	4f106s(5I)4I	5.5	4f106p(5I)6K	5.5	115983.1	160606.5	
2245.321	44523.26	2245.319	0.002	77	1212	-0.33	4f106s(5I)6I	6.5	4f106p(5I)6H	6.5	108590.8	153114.1	1
2252.125	44388.75	2252.129	-0.004	137	2768	0.80	4f106s(5I)4I	5.5	4f106p(5I)6I	4.5	115983.1	160371.8	1
2254.506	44341.89	2254.506	0.000	404	4737	0.67	4f106s(5I)4I	7.5	4f106p(5I)4K	8.5	103116.2	147458.0	1
2276.409	43915.27	2276.417	-0.008	205	2082	-0.50	4f106s(5I)4I	7.5	4f106p(5I)6H	7.5	103116.2	147031.3	1

Les longueurs d'onde en dessous de 2000Å sont dans le vide, et les longueurs d'onde en dessus de 2000Å sont dans l'air.

D: double identification.

asym: raies asymétriques.

Table des figures

1.1	Abondances des éléments à capture de neutrons dans l'étoile $HE1523 - 0901$	
	comparées à celles du processus R solaire mis à l'échelle[7]	12
$1.2 \\ 1.3$	Spectre d'erbium $ErIII$ dans l'étoile chimiquement particulière $HR465[8]$ Nombre d'étoiles pour lesquelles le silicium, le chrome, le manganèse, le strontium	13
	et l'europium sont indiqués comme surabondants dans les catalogues de <i>Bertau</i>	
	(rectangle blanc) et nombre d'étoiles de la première table de <i>Babcock</i> ou cet auteur avait trouvé une surabondance des mêmes éléments (rectangle noir)[9].	14
2.1	Spectrographe UV sous vide de 10.7 m - Observatoire de Meudon	20
2.2	Production de spectres d'émission VUV, Cercle de Rowland.	21
2.3	Schéma illustrant le principe de la source à étincelle glissante : (a) le circuit	
	électrique correspondant, (b) "spacer" en aluminium séparant l'anode et la cathode.	22
2.4	Comparaison entre la réponse en intensité du détecteur photostimulable et de	
	la plaque photographique. En abscisse la dose de radiation issue de l'atome ^{32}P	
	(rayonnement (3 de 1.7 MeV). L'ordonnée à gauche représente la luminescence	
	du détecteur photostomulable, et l'ordonnée à droite représente la densité du	
	noircissement de la plaque photographique	23
2.5	Principe général de fonctionnement et de lecture des écrans Photostimulables	24
2.6	Le Scanner i Q smart ¹ 7500 dpi	25
2.7	Le Scanner STARION FLA-9000 d'images polyvalent de FUJIFILM	26
2.8	Principe de fonctionnement de $STARION$ FLA-9000 de Fujifilm	26
2.9	Logiciel $(SPECTRA)$: Les intensités expérimentales sont assimilées à la surface	
	de la géométrie délimitant le profile de la raie considérée	28
2.10	Logiciel GFit.10 : Mesure des intensités des raies spectrales en utilisant les dif-	
	férents profils, Gaussien, Lorentzien, et le produit de convolution de Voigt	29
2.11	Superposition des profils de raies : La largeur naturelle est très fine devant les	
	élargissements possibles dus à la température (agitation thermique, élargissement	
	Doppler) ou aux chocs (élargissement par pression)	29
3.1	La chaine des programmes de R. D. Cowan pour les calculs des structures et les	
	spectres atomiques par la méthode de superposition-de-configuration.	41

4.1	Désexcitation spontanée radiative dans un système à deux niveaux : émission	18
4.2	Schéma explicatif du principe de combinaison de Ritz pour la recherche des	40
	nouveaux niveaux d'énergie. Les niveaux en rouge appartiennent à une parité,	
	tandis que les niveaux en bleu appartiennent à la parité opposée	49
4.3	IDEN1, Programme de recherche et d'optimisation des niveaux d'énergie	51
4.4	La recherche du niveau supérieur à partir de l'image du spectrogramme	51
4.5	Les intégrales radiales de Slater et leurs rapports P_{exp}/P_{HFR} présentant une	
	évolution assez régulière dans les spectres de lanthanides trois fois chargés	54
4.6	Écarts entre premiers niveaux des configurations $4f^{N-1}5d$, $4f^{N-1}6s$, $4f^{N-1}6p$:	
	(A) $E_{inf}(6p) - E_{inf}(5d)$ et (B) $E_{inf}(6p) - E_{inf}(6s)$, dans les spectres IV de	
	lanthanides, (thèse A.Meftah).	55
5.1	Zone spectrale couvrant les régions de longueurs d'onde des trois faisceaux de	
	transitions $4f^{11} - 4f^{10}5d$, $4f^{10}5d - 4f^{10}6p$ et $4f^{10}6p - 4f^{10}6s$ de l'ion Er^{+3} ,	
	avec interaction de configurations. Les paramètres P_{HFR} ont été corrigés avec un	
	facteur d'échelle SF	63
5.2	Section de deux expositions de l'erbium sous vide sur des plaques photogra-	
	phiques dans la région spectrale de (1218 - 1235)Å : Trace supérieure : $11 \mu H$;	
	Trace inférieure $64\mu H$. Les raies identifiées de ErIV sont rapportées dans le	
	(tableau 3) sauf quelques-unes lorsque l'espace est manquant. Les deux lignes	
	marquées avec * ont été signalées par Carter avec des identifications erronées.	63
5.3	Niveaux impairs et pairs des configurations de base de l'ion Er^{+3} . Les niveaux	
	théoriques sont représentés en noir.	66
5.4	Séparations d'énergie entre les plus bas niveaux d'énergie des principales configu-	
	rations des lanthanides triplement ionisés (a) $4f^{n+1} - 4f^n 5d$, (b) $4f^n 5d - 4f^n 6p$	
	et (c) $4f^n 6s - 4f^n 6p$	
	(Longues barres : mveaux connus experimentalement; barres courtes : mveaux	67
E E	Drédictions théoriques des niveaux d'énergie des configurations de la parité im	07
0.0	Predictions theoriques des inveaux d'energie des configurations de la partie ini-	70
5.6	paire et la gamme energetique de la configuration à cœur excité $5p^{2}4f^{11}5d$ et réduction de l'inter-	70
0.0	sité des faisceaux de transitions sous l'effet de l'interaction de configurations	80
57	Comparaison des niveaux d'énergie expérimentaux : a) Avec les niveaux HEB	80
0.1	b) Avec ceux corrigés après ajustement par moindres-carrés à l'étape BCE	81
5.8	Diagramme énergétique illustrant un léger déplacement des niveaux d'énergie de	01
0.0	la configuration $4f^{11}$ de l'ion Er^{+3} dans la matrice LaF_3 (en noire) par rapport	
	à ceux de l'ion libre (en bleu)	83

5.9	Comparaison des niveaux d'énergie calculés : par la méthode paramétrique de Slater - Racah (calcul semi-empirique), les niveaux expérimentaux déterminés	
5 10	dans notre analyse; niveaux d'énergie calculés par les méthodes ab initio de type (MCDHF); valeurs expérimentales du NIST	84
5.10	initio de type (MCDHF) aux valeurs expérimentales déterminés par A Meftah et al[11]	85
6.1	La zone spectrale couvrant les régions de longueurs d'onde des trois faisceaux de transitions $4f^6 - 4f^55d$, $4f^55d - 4f^56p$ et $4f^56p - 4f^56s$ de l'ion Eu^{+3} , avec interaction de configurations. Les paramètres P_{HFR} ont été corrigés avec des facteurs d'échelle SF	88
6.2	Nombre de niveaux prévus pour les configurations fondamentales $4f^{11}$ et $4f^6$, et le nombre de transitions dans les premiers faisceaux $4f^{11} - 4f^{10}5d$ et $4f^6 - 4f^55d$ respectivement des jons libres Er^{+3} et Eu^{+3} .	88
6.3	La zone spectrale couvrant les régions de longueurs d'onde des trois faisceaux de transitions $4f^{12} - 4f^{11}5d$, $4f^{11}5d - 4f^{11}6p$ et $4f^{11}6p - 4f^{11}6s$ de l'ion Er^{+2} , avec	
6.4	interaction de configurations	90 93
7.1	Niveaux d'énergie des configurations $4f^{11}$ de l'ion libre Er^{+3} rajoutés aux niveaux	07
7.2	a energie des configurations $4f^{11}$ des fanthanides trivalents (1936 - 2017) Effet de la configuration $5p^54f^{11}5d$ sur le faisceau de transitions $5p^64f^{10}5d - 5p^64f^{11}$	97 98

Liste des tableaux

- 5.1 Les raies classées de l'ion Er^{+3} dans la région de (1218-1234 Å). Les longueurs d'onde mesurées (λ_{exp} in Å) sont suivies $\Delta \lambda = \lambda_{exp} - \lambda_{Ritz}$ à partir des longueurs d'onde de Ritz (en Å), les intensités Int des plaques photographiques ou des plaques d'image sont en unités arbitraires, Les probabilités gA (10⁶ s⁻¹), g étant le poids statistique du niveau supérieur, A étant le coefficient d'émission spontanée d'Einstein. CF est le facteur d'annulation défini par l'équation (14.107), p432 dans [10]. λ_{Ritz} est dérivée des énergies des niveaux optimisées comme $\lambda_{Ritz} = (E_{upper} - E_{lower})^{-1}$. Toutes les énergies et les nombres d'onde sont en cm^{-1} .
- Niveaux d'énergie des deux configurations de la parité impaire $4f^{11}$ et $4f^{10}6p$ de 5.2l'ion Er^{+3} . Les énergies sont données en cm⁻¹. Pour chaque niveau donné : la valeur expérimentale, lorsqu'elle est disponible, les incertitudes correspondantes entre parenthèses, la valeur calculée E_{calc} résulte des codes de Cowan correspondant aux paramètres donnés dans le tableau 5.4; le nombre total de transitions impliquant la détermination expérimentale du niveau; le facteur de Landé calculé et le facteur de croissance principal Composant de la fonction propre et leurs pourcentages correspondants dans les schémas de couplage LS et JJ. Le nombre qui suit la désignation du terme est le terme parent. Une lettre minuscule est ajoutée pour distinguer deux niveaux avec la même composante principale. . . . 68 5.2suite 69

65

5.3 Niveaux d'énergie des deux configurations de la parité paire $4f^{10}5d$ et $4f^{10}6s$ de l'ion Er⁺³. Les énergies sont données en cm⁻¹. Pour chaque niveau donné : la valeur expérimentale, lorsqu'elle est disponible, les incertitudes correspondantes entre parenthèses, la valeur calculée, E _{calc} résulte des codes de Cowan correspondant aux paramètres donnés dans le tableau 5.5; le nombre total de transitions impliquant la détermination expérimentale du niveau; le facteur de Landé calculé et les composantes de la fonction propre et leurs pourcentages correspondants dans les schémas de couplage LS et JJ. Le nombre qui suit la désignation de terme est le terme parent tel que donné par le code de Cowan; Une lettre minuscule est ajoutée pour distinguer deux niveaux avec la même composante principale. 71

 5.3 5.3 5.3 5.3 5.3 5.3 5.4 	suite	72 73 74 75 76 77
	$SF = P_{ajust}/P_{HFR}$ des configurations $4f^{11}$ et $4f^{10}6p$ de la parité impaire. Les paramètres évoluant dans le même rapport sont indiqués par 'r', et par 'f' les valeurs firées	78
5.5	Paramètres ajustés et HFR de l'ion Er^{+3} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{10}5d$ et $4f^{10}6s$ de la parité paire. Les paramètres évoluant dans le même rapport sont indiqués par 'r', et par 'f' les	
5.6	valeurs fixées	79
5.7	incorporé dans LaF_3	82
6.1	interaction de configurations, et les valeurs expérimentales de NIST [26, 50] Paramètres ajustés et HFR de l'ion Er^{+2} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{12}$ et $4f^{11}6p$ de la parité paire compa- rés aux facteurs d'échelle des mêmes configurations dans les ions de la même	86
6.2	séquence isoélectronique Tm^{+3} et Yb^{+4} Paramètres ajustés et HFR de l'ion Er^{+2} en (cm^{-1}) , ainsi que leurs rapports $SF = P_{ajust}/P_{HFR}$ des configurations $4f^{11}5d$ et $4f^{11}6s$ de la parité paire com- parés aux facteurs d'échelle des mêmes configurations dans les ions de la même	91
	séquence isoélectronique Tm^{+3} et Yb^{+4}	92