
MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE.

UNIVERSITÉ MOULOUD MAMMERI, TIZI- OUZOU

FACULTÉ DES SCIENCES

DÉPARTEMENT DE MATHÉMATIQUES

THÈSE DE DOCTORAT LMD

SPÉCIALITÉ : MATHÉMATIQUES

OPTION : ANALYSE MATHÉMATIQUE ET APPLICATIONS

Présentée par :

Souad AMRANE

Sujet :

Analyse de Stabilité des Systèmes Dynamiques à Retard

Devant le jury d’examen composé de :

Morsli Mohamed Professeur UMMTO Président
Bedouhene Fazia Professeur UMMTO Rapporteur
Boussaada Islam Professeur Univ. Paris-Saclay Co-rapporteur
Bonnet Catherine Professeur INRIA Examinatrice
Rahmani Leila Professeur UMMTO Examinatrice
Kara Radouene Professeur UMMTO Examinateur

Soutenue : le 09/02/2021



Acknowledgments

Foremost, i would like to express my sincere gratitude to my thesis director Mme. Fazia
BEDOUHENE for having followed my research with a lot of interest and availability, for
her patience, motivation, enthusiasm and immense knowledge. Her guidance helped
me in all the time of research and writing of this thesis. I also thank her for her confi-
dence in my capacities and for helping me with her experience and her meticulousness
in the work. I thank her so much for all her efforts to create an environment in the LMPA
laboratory so that the phd-students can work in favorable conditions.

I would also like to express my gratitude to my thesis supervisor Mr. Islam Bous-
saada, authorized to conduct research at the University of Paris-Sud, which wanted to
guide me to the end of this work. Thank you for your scientific exchanges, your precious
advice and for all the time that you have devoted to my research and all the internet
working sessions organized via skype or zoom from my first year of the thesis.

I would like to express my profound gratitude to Mr. Mohamed Morsli, Professor
at the University of Tizi-Ouzou for having honored me by accepting to preside over the
jury of this thesis.

In addition, I would like to thank Mr. Radouene Kara, Professor at the University
of Tizi-Ouzou, Mme. Catherine Bonnet Professor at INRIA and Mme. Rahmani leila,
Professor at the University of Tizi-Ouzou for agreeing to sit on the jury.

A special mention to Professor Silviu-Iulian Niculescu for her collaboration in our
research work.

Finally, I can not conclude without expressing my warmest thanks to all the members
of my family who have always supported me.

ii



Table des matières

Chapitre 1

General Introduction

1.1 History and application of delay differential equation . . . . . . . . . . . 1

1.2 System with Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Stability Analysis of Time Delay Systems . . . . . . . . . . . . . . . . . . 4

1.5 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapitre 2

Generalities and previous literature

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Functional Differential Equation . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Categories of Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Retarded Delay Differential Equation RDDE . . . . . . . . . . . . . . . . 12

2.4.1 Initial value problem and stability definitions . . . . . . . . . . . 12

2.4.2 Existence and uniqueness results . . . . . . . . . . . . . . . . . . 13

2.4.3 Characteristic Equation . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Neutral Functional Differential Equation (NFDE) . . . . . . . . . . . . . 17

iii



Table des matières

2.5.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Spectrum properties . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Stability of Time Delay Systems . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Time-Domain Methods . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Frequency-Domain Methods . . . . . . . . . . . . . . . . . . . . . 23

2.7 Oscillation and non-oscillation in time delay systems . . . . . . . . . . . 38

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapitre 3

Spectral abscissa and rightmost-roots assignment for time delay systems

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Prerequisites and Problem Statement . . . . . . . . . . . . . . . . . . . 44

3.3 On the coexistence of real spectral value and their dominancy for scalar

delay equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Second-order systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapitre 4

Some insights on rightmost spectral values assignment for generic second

order delay system

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 On qualitative properties of s1 as a root of (4.3) . . . . . . . . . . 62

4.2.2 Some properties of the quasipolynomial (4.3). . . . . . . . . . . . 65

4.2.3 Application of Stépàn-Hassard’s formula . . . . . . . . . . . . . . 73

4.3 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

General conclusion and some research perspectives 81

iv



Table des figures

1.1 The water temperature regulation problem in the shower taken from [24]. 3

2.1 (Left) Spectrum distribution of (2.5) for a =−2 and b = 3.(Right) Enve-
lope of characteristic roots of (2.5) for the same value of a and b, illus-
trated using QPmR toolbox from [20]. . . . . . . . . . . . . . . . . . . . 15

2.2 Envelope curve of the characteristic equation with a =, b =, and τ = 0.5 16
2.3 (Right) The distribution of the spectrum of equation (2.13) with a =

b = 1
2 and the delay ~τ = (1,2). (Left) The distribution of the spectrum

of equation (2.13) with perturbed delay ~τ = (0.99,2), illustrated using
QPmR toolbox from [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 D-decomposition method applied to the scalar equation (2.15) taken
from [118]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 The simplified contour used in [48] for applying the argument principle
to investigate the dominancy of multiple root. . . . . . . . . . . . . . . . 32

2.6 The standard Bromwich contour usually used for asymptotic stability in-
vestigation tacked from [110]. . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Envelope curve of the characteristic equation (3.7). Case when s0 = −2
is a double root. The critical delay τ = 0.5 corresponds to the value that
vanishes the coefficient a = 2− 1

τ
, see [52]. . . . . . . . . . . . . . . . . . 48

3.2 Envelope curve of the characteristic equation (3.7). Case of co-existence
of two simple real roots s1 =−1, s2 =−2. . . . . . . . . . . . . . . . . . 49

3.3 (Left) Decreasing behavior of the envelope curve versus τ < τ∗∗. (Right)
Increasing behavior of the envelope curve versus τ ≥ τ∗∗. Case s1 = −1
and s2 =−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



Table des figures

3.4 Asymptotic behavior of the negative roots of the envelope curve. s2 =−1,
s1 =−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Envelope curve of the characteristic equation (3.36). Case s1 = −2, s2 =
−3, s3 =−13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Envelope curve of the characteristic equation (3.36). Case s1 = −2, s2 =
−3, s3 ≥−R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 (Left) The distribution of the spectrum corresponding to scaled equation
(4.15). (Right) The distribution of the spectrum corresponding to the
equation (4.3). Case s1 = −1 and d = 1. The dominancy property is pre-
served in the scaled quasi-polynomial function. The roots distribution is
illustrated using QPmR toolbox. . . . . . . . . . . . . . . . . . . . . . . 66

4.2 (Left) Variation of the functions w→ f τ,d
1 (w) and w→ f τ,d

2 (w) for τ = 0.1
and d = 1. (Right) Zoom of the functions f τ,d

1 and f τ,d
2 . . . . . . . . . . . 69

4.3 Variation of the function r 7→ B(r). . . . . . . . . . . . . . . . . . . . . . . 70
4.4 (Left) Variation of the functions r→ Gk(r) for k = 1. (Right) Variation of

the function Gk for k > 1, more precisely for k = 3. . . . . . . . . . . . . . 72
4.5 Variation of the function S′d,r(0) . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 (Left)Location of roots of R for τ = 0.1 and d = 1. (Right) Sign of S for

the same value of τ and d. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Zeros distribution of quasipolynomial (4.41) with ω = 1.2, ζ = 0.472 and

the controller gains given by (4.42) . . . . . . . . . . . . . . . . . . . . . 76

vi



Notations and acronyms

1. Acronyms :
– TDS : Time Delay system.

– LTI : Linear Time Invariant.

– FDE : Functional Differential Equation .

– RDDE : Retarded Delay Differential Equation.

– NFDE : Neutral Functional Differential Equation .

– ODE : Ordinary differential Equation.

– MID : Multiplicity Induced Dominancy.

– CIR : Crossing Imaginary Root.

– TDPS : Time Delay Positive System.

2. Notations :
– R : The set of real numbers.

– R+ : Positive reals.

vii



Notations and acronyms

– R?
+ : Non-negative reals.

– C : The set of complex numbers.

– C+ : The right half complex plane.

– C− : The left half complex plane.

– ℜ(.) : The real part of a complex number.

– ℑ(.) : The imaginary part of a complex number.

viii



Personal publications

ix



Personal publications

Below is a list of publications related to the work of this thesis :

– Journals

1. Souad Amrane, Fazia Bedouhene, Islam Boussaada and Silviu-Iulian Niculescu.
On Qualitative Properties of Low-Degree Quasipolynomials : Further remarks on
the spectral abscissa and rightmost-roots assignment. Bull. Math. Soc. Sci. Math.
Roumanie Tome, volume : 61, pages : 361-381. 2018.

2. Souad Amrane, Islam Boussaada, Fazia Bedouhene and Silviu-Iulian Niculescu.
Some insights on rightmost spectral values assignment for time delay systems.
to appear in IFAC-PapersOnline Journal Elsevier. 2020.

– International Conferences

1. Souad Amrane, Fazia Bedouhene, Islam Boussaada. On some applications of
center manifold theory. 2ème Colloque International sur la théorie des opéra-
teurs, EDP et ses applications, 23-24 novembre 2016 (CITO’2016) à l’université
Echahid Hamma lakhdar. EL oued.

– National Conference

1. 3ème Journée de Mathématique. 07-08 decembre à l’université de Med Boudiaf
M’sila.

x



CHAPITRE

1

General Introduction

Contents
1.1 History and application of delay differential equation . . . . . . . . 1
1.2 System with Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Stability Analysis of Time Delay Systems . . . . . . . . . . . . . . . . 4
1.5 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 History and application of delay differential equa-
tion

For a very long time, people in various scientific fields have used ordinary or partial dif-
ferential equations (since they were born in the late 17th century) to describe systems
of which the future state was determined by the present state and the rate of change
of the state. With a more and more profound understanding of the world, people gra-
dually found out that in some cases it would be unrealistic not to consider the influence
of the past on the present. At the IV International Congress of Mathematicians (Rome,
April 10th 1908), Picard [109] pointed out the importance of “heredity” in the modeling
of physical systems, namely the influence of the past state on the present or future state.

Volterra seemed to be the first to apply this idea. In (1931), he wrote a fundamental
book on the role of hereditary effects on models for the interaction of species. In his
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General Introduction

work [111, 112] he formulated some general differential equations incorporating the
past states of systems to treat the problems about the hereditary phenomena and to
model viscoelasticity in population dynamics. Unfortunately, his results were not dra-
wing enough attention, but it gained much momentum (especially in the Soviet Union)
after 1940 due to the consideration of meaningful models of engineering systems and
control.
During the 1950’s, the theory of functional differential equations has been developed
extensively. In 1951, Mishkis published the book Linear differential equations with re-
tarded argument, which is considered to be the first rather complete research in this
area. In the ’50s and ’60s, several books about functional differential equations appea-
red [6, 7, 75, 101]. They focused on the linear systems with retarded arguments and
presented a well-organized theory, which also mathematically supported research in
other areas. Now delay differential equations have been applied in various fields to
describe behaviours with time lags, for example, in economics [7, 8, 54, 96], in phy-
sics [63, 65, 109], in population dynamics [61, 62, 84, 111], in botanic [86, 89, 90], in
epidemiology [53,55,60,83], in medical science [4], even in pedagogy [72], [73].

Most research on functional differential equations (FDE) dealt primarily with linear
equations and the preservation of stability (or instability) of equilibria under small non-
linear perturbations when the linearization was stable (or unstable). For the linear equa-
tions with constant coefficients, it was natural to use the Laplace transform. This led to
expansions of solutions in terms of the eigenfunctions and the convergence properties
of these expansions.

1.2 System with Time Delay

The problem of investigation of time-delay systems has been exploited over many years.
Time-delay is very often encountered in various technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc.
A distinct feature of time-delay systems is that their evolution depends on the informa-
tion of the past history with a selective memory. Such systems may be modeled using
differential equations. The presence of time-delay in dynamical systems may induce
complex behavior, and this behavior is not always intuitive. Even if a system’s equation
is scalar, oscillations may occur.
The study of oscillatory/ non oscillatory solutions of delay differential equation has
been the focus of numerous contributions, see for instance [1, 6, 70] and [22] where
the strongest deal is with linear delay differential equations with constant coefficients
and constant delay. In this case necessary and sufficient conditions are given for all so-
lutions to be oscillatory, for the case of non constant coefficient and non constant delay
and for nonlinear equations, typical results give conditions sufficient for all solutions to
be oscillatory, or conditions sufficient for some solutions to be non oscillatory see for
instance [23] and [77].

Time-delay in control loops are usually associated with degradation of performance
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1.3. Practical Example

and robustness, but at the same time, there are situations where time-delay are used
as controller parameters. So, time delay has also been purposely introduced in control
design for enhancing stability or performance. Early contributions in this direction can
be traced to the work of Smith [13]. Recently, several results have been published in
this context, see for example [49].

1.3 Practical Example

Before discussing time delay systems in more details, let us start by giving an example
to give the reader a glimpse on how widely time delays may occur in practice.

Example 1.3.1. To illustrate the widespread presence of time delays, consider the water
temperature regulation problem in the shower, which we encounter almost every day and is
a simple example of a dynamical system with a propagation delay. This example was taken
from [24].
When taking a shower one has to mix warm and cold water to obtain the right water tem-
perature. However, when one adds, for example, more warm water to increase the perceived
temperature of the water, it can take some time before this change is noticeable because the
water takes some time to reach the showerhead. An impatient person who does not anti-
cipate this delay, will increase the water temperature too much. This overshoot has to be
corrected, but now impatience will cause the water temperature to become too low, etc.
Fortunately, experience has told us how to deal with this delay and, hence, how to avoid
large temperature deviations. The water temperature regulation problem in the shower is
illustrated in Figure 1.1.

FIGURE 1.1 – The water temperature regulation problem in the shower taken from [24].
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General Introduction

The example just given can be described in the form of a mathematical model using FDEs
presented as follows :

1. Let xd be the desired value we would like the perceived water temperature to reach.

2. Let x(t) denote the water temperature in the mixer output.

3. Let τ be the time needed by the water to go from the mixer output to the person’s
head.

4. Suppose that the change in water temperature at the mixer output, i.e., where the
warm and cold water are mixed, is proportional to the change of the mixer angle α,
which influences the ratio of warm and cold water only and not the flow of water, via
some constant c.

5. Assume that the rate of rotation of the handle is proportional to the deviation in
water temperature from xd perceived by the person via coefficient k (which depends
on the person’s temperament).

6. At time t the person feels the water temperature leaving the mixer at time t−τ, which
results in the following equation with the constant delay τ :

ẋ(t) =−ck
[
x(t− τ)− xd(t)

]
, t ∈ R. (1.1)

1.4 Stability Analysis of Time Delay Systems

The problem of stability analysis of time-delay systems has received considerable at-
tention and many papers dealing with this problem have appeared. In the literature,
various stability analysis techniques have been utilized to derive stability criteria for
asymptotic stability of the time-delay systems by many researchers. The developed sta-
bility criteria are classified often into two classes : time-domain and frequency-domain
approaches.

In the first approach, we have the comparison principle based techniques for functional
differential equations [25], [27] and respectively the Lyapunov stability approach with
the Krasovskii and Razumikhin based methods [77], [28]. The stability problem is thus
reduced to one of finding solutions to Lyapunov [29] or Riccati equations [30], solving
linear matrix inequalities (LMIs) [31–34] or analyzing eigenvalue distribution of appro-
priate finite-dimensional matrices [35].
Most results in the literature use matrices for presenting the Lyapunov functional and
formulate the stability condition as LMIs, which can be efficiently solved as a convex
programming problem. However, the infinite dimensional nature of the Lyapunov func-
tional means any presentation using a small number of decision variables will in general
introduce conservativeness.

In the second approach, the stability of LTI time-delay systems depends exactly on the
roots of the associated characteristic equation. The system is asymptotically stable if and
only if all the roots of the associated characteristic equation are located on the left half
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1.4. Stability Analysis of Time Delay Systems

complex plane. This observation leads to the spectrum-based approaches. Due to the
fact that the characteristic equation of time-delay systems are not polynomials, com-
puting the rightmost characteristic root is a challenging problem. Several approaches
for numerically computing the rightmost characteristic roots exist [99], but intensive
computation is required. To avoid these difficulties, different methods have been pro-
posed in the literature, as an example we cite the root locus methods which consists to
determine the number of characteristic roots on the right complex half plane for a gi-
ven parameter domain without knowing the exact locations of characteristic roots, and
among this method we have D-decomposition method and τ-decomposition method.
The main idea of D-decomposition approach is to separate the parameter space into
disjoint sub-regions. In each sub-region, the number of unstable roots is constant. On
the boundary of the sub-regions, imaginary characteristic roots appear. By analyzing
the behaviors of these imaginary characteristic roots with respect to small variation of
parameters, the system stability can be determined for different sub-regions in the pa-
rameter domain. The τ-decomposition methods [26] can be viewed as a special case of
the D-decomposition methods as the parameter involved in this case is the delay τ.

Among these methods we can also find a new result discussed in recent studies which fo-
cus on the stability and stabilizing controllers design for linear time invariant retarded
time delay systems where the stability analysis is done using an interesting property,
called Multiplicity Induced-Dominancy (MID in the sequel). As a matter of fact, it is
shown that multiple spectral values for Time-delay systems can be characterized using
a Birkhoff/Vandermonde based approach ; see for instance [45–47,52]. More precisely,
in [46], it is shown that the admissible multiplicity of the zero spectral value is bounded
by the generic Polya and Szegö bound denoted PSB, which is nothing but the degree
of the corresponding quasipolynomial (i.e the number of the involved polynomials plus
their degree minus one), see for instance [16]. In [47], it is shown that a given cros-
sing imaginary roots with non vanishing frequency never reaches PSB and a sharper
bound for its admissible multiplicities is established. Moreover, in [52], the variety cor-
responding to a multiple root for scalar Time-delay equations defines a stable variety
for the steady state. The multiplicity of a root itself is not important as such but its
connection with the dominancy of this root is a meaningful tool for control synthesis.
An example of a scalar retarded equation with two delays is studied in [47] where it is
shown that the multiplicity of real spectral values may reach the PSB. In addition, the
corresponding system has some further interesting properties : (i) it is asymptotically
stable, (ii) its spectral abscissa (rightmost root) corresponds to this maximal allowable
multiple root located on the imaginary axis. Such observations enhanced the outlook
of further exhibiting the existing links between the maximal allowable multiplicity of
some negative spectral value reaching the quasipolynomial degree and the stability of
the trivial solution of the corresponding dynamical system. This property induced from
multiplicity appears also in optimization problems since such a multiple spectral va-
lue is nothing but the rightmost root, see also [17, 18]. Also notice that the property
was already observed in [19], where a tuning strategy is proposed for the design of a
delayed Proportional-Integral controller by placing a triple real dominant root for the
closed-loop system. However, the dominancy is only checked using a Mikhailov curve
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General Introduction

and QPmR toolbox, see for instance [20]. To the best of our knowledge, the first time
an analytical proof of the dominancy of a spectral value for the scalar equation with
a single delay was presented in [21]. The dominancy property is further explored and
analytically shown in the case of second-order systems and a rightmost root assignment
based design using delayed state-feedback is proposed in [41, 42] where its applicabi-
lity in damping active vibrations for a piezo-actuated beam is proved. See also [48,50]
which exhibit an analytical proof for the dominancy of the spectral value with maximal
multiplicity for second-order systems controlled via a delayed proportional-derivative
controller.

1.5 Objectives of the thesis

This thesis is devoted to stability analysis of linear time delay systems with single delay.
The main objectives consists to address the problem of the spectral abscissa characteri-
zation and the coexistence of non oscillating modes, which are not necessary multiple
for retarded time delay systems. This study is mainly inspired by the recent results of
Professor Boussaada see [45], [47], [42], [41], [48], [51], where the property Multi-
plicity Induced Dominancy (MID) is investigated. So, by this dissertation we investigate
the effect of coexistence of real roots on the stability of the trivial solution. In other
words, we give necessary and sufficient conditions for the coexistence of sufficiently
many negative non oscillating roots, guaranteing the location of the remaining roots in
the left half plane.
The dominancy of such non oscillating modes is analytically shown for the considered
reduced order time delay systems (scalar and second order delay differential equation),
using an adequate factorization, which allows to write the quasipolynomial in an some
appropriate integral form and find its right most roots. furthermore, if they are negative,
this guarantees the asymptotic stability of the trivial solution. The stability analysis in
our case is difficult and complicated compared to the MID case due to the number of
parameters to handle.

The drawback of the methods mentioned previously is that in some cases a factorization
of the quasipolynomial function is hard to be established, especially for the quasipoly-
nomial with higher order. To overcome this difficulties the dominancy property can be
shown using the stability criteria proposed and developed in [110] and generalized la-
ter in [82], which allows to compute analytically the number of characteristic roots in
the right-half complex plane, (i.e., unstable roots) for time-delay system of retarded
type. Such idea is exploited in the context of delayed output feedback by an appropriate
partial pole placement for generic linear second order time-invariant retarded system
with single delay. Our objective here is to construct an appropriate delay state feedback
controller allowing to guarantee the stability of the system in the closed loop. To do
this, we use the stability criterion based on the manifold defined by the coexistence of
maximal number of negative spectral values and Stépàn-Hassard formula.
To show the importance of the work proposed in this thesis, we summarize the contri-
butions in the following items
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1.6. Outline of the thesis

1. Develop efficient methods for precise stability of linear time-invariant retarded
time delay systems with single delay in frequency domain approach.

2. Acquire a deeper understanding of the connection between stability of the system
and the manifold characterizing the coexistence of non oscillating modes of redu-
ced order time delay systems.

3. The destabilizing effect of the delays is well known, but it can also have a stabi-
lizing effect which is exploited in this thesis, by stabilizing a second order system
without delay using a delayed control law (Proportional Derivative controller, PD
in the sequel).

4. Apply the proposed stability analysis to study the problem of stabilizing the Mach
number of a transonic flow in a wind tunnel.

1.6 Outline of the thesis

This thesis consists of three principal chapters. In what follows, more details about the
content of each part :

Chapter 2 : Devoted to present some useful preliminaries and to remind of some es-
sential definitions needed to better understand the manuscript. In addition, it contains
a description background to time-delay systems as well as an overview of some existing
methods in frequency domain approach.

Chapter 3 : This chapter dedicated to the stability analysis of time delay system with
single delay, based on the spectrum distribution of the corresponding characteristic
equation. The main contribution of this chapter consists in proposing a design approach
which is a delayed output feedback where the candidates’ parameters result from the
manifold defined by the coexistence of an exact number of negative spectral values,
which is equal to the degree of the quasipolynomial, which guarantees the asymptotic
stability of the system’s solutions. So, first we investigate the coexistence of non os-
cillatory modes for the scalar differential equation. Next, second order delay equation
with three real spectral values is considered. The stability of this class of systems is
guaranteed using the property of the dominancy which is shown using an adequate fac-
torization. At the end of this chapter, further description of the spectrum description is
presented using the W-Lambert function.

Chapter 4 : This part focus on the study of generic second order systems with single
delay. Unfortunately, the method discussed in the previous chapter can not be applied
for this class of system since we are not able to find an adequate factorization which
allows to proof the dominancy. So, to deal with the stability of this kind of system we use
an appropriate state feedback controller allowing to guarantee the stability in the closed
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loop. The dominancy property is shown using the Stépàn-Hassard formula based on the
argument principle, which allows to compute the number of roots in the right-half.
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2.1 Introduction

The aim of this chapter is to represent both the necessary and crucial reminders for the
comprehension of this thesis, and previous literature of the different methods for the
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stability analysis of time-delay systems which is known also as hereditary systems or
systems with memory, with aftereffect, or time lag, etc. This kind of systems have been
widely encountered when modeling phenomena in both scientific and engineering disci-
plines largely due to the time needed to transport material or information. The evolution
of time-delay systems depends on the information of the past history with a selective
memory. Such systems may be modeled using differential equations on abstract or func-
tional spaces. The most way is to describe time-delay systems as functional differential
equations(FDE). So, we start by introducing some properties of functional differential
equations, there exists different type of this function, but we are only interested by
the study of retarded functional differential equations RFDEs and neutral differential
equation NFDEs. We state briefly the stability criteria in time domain approach. Most
important results about the zeros characteristic function as well as a survey of the basic
methods of stability in frequency domain will be given. Finally, we close this chapter by
exposing some results on the oscillations of time delay systems.

2.2 Functional Differential Equation

Functional differential equation find use in mathematical models that assume a specific
behavior or phenomenon depends on the present as well as the past state of a system.
In other words, past events explicitly influence future result. For this reason, functio-
nal differential equation are used in many applications rather than ordinary differential
equation.
There exists different types of FDEs that are used in numerous applications, namely
retarded functional differential equations (RFDEs), neutral functional differential equa-
tions (NFDEs) and advanced functional differential equations (AFDEs). The classifica-
tion depends on whether the rate of change of the current state of the system depends
on past values, future values or both, see [97]. So, we have the following classification.
– When the rate of change of the state depends on the present and past values of the

system state, the model corresponds to a retarded functional differential equation
(RFDE), and it is described in general as follows :

ẋ(t) = f
(
t,x(t),x(t− τ)

)
.

– When the rate of change of the state depends not only on the present and past va-
lues of the system state but also on the earlier value of the state rate change (under
appropriate constraints on the corresponding delay difference operator), the corres-
ponding equation is of neutral type, also known as neutral functional differential
equation (NFDE), and it can be written as follows :

ẋ(t) = f
(
t,x(t),x(t− τ), ẋ(t− τ)

)
.

– When the rate of change of state is determined by future values of the state, the
system is described by an advanced functional differential equation (AFDE), and it is
given by :

ẋ(t− τ) = f
(
t,x(t),x(t− τ)

)
.

Notice that, AFDE is rarely used in practical applications.
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The delay phenomena may occur on functional differential equation in different ways.
In what follows, we introduce some kind of the delays.

2.3 Categories of Delay

There exists two main ways in which the delay is widely used in the literature : in a
punctual way, we speak then about systems with punctual (or discrete) delays or in a
continuous way leading to the so-called distributed delay systems. So, The way to treat
time-delay systems differs according to the type of delay. let us start by :

Systems with discrete delay

Time-delay system with discrete delay that has been largely used is described as follows :

ẋ(t) =
n

∑
i=0

Ai x(t− τi).

This class of system are largely studied over the years and conditions for stability and
stabilization have been formulated, see [92], [100] and references therein.
Based on the relation between the delays, we can distinguish two types of discrete
delays : commensurate delays and incommensurate delays.

1. Commensurate : τi ∈R, i ∈N are commensurate if τi/τ j is rational, which corres-
ponds to finding a minimal delay τ such that τi = iτ, then the system becomes as
follows :

ẋ(t) =
n

∑
i=0

Ai x(t− iτ).

The characteristic equation associated to this class of system have the same al-
gebraic properties as the system with single delay see [103]. Hence, the stability
problem can be treated similarly to the single delay case. In [88], the authors
study the systems with commensurate delay depend coefficient, the stability ana-
lysis method are developed based on the corresponding characteristic equation
following a generalized τ-decomposition approach.

2. Incommensurate : The delays τi ∈ N are free parameters. Several studies exists
in the literature for stability and stabilization of systems with this kind of delay. In
recent results [48], [50] the asymptotic stability of this type of systems is studied
using the new property namely multiplicity induced dominancy (MID).

Systems with distributed delay∫ t
s−τ

x(s)ds : this type of delay is widely studied in the literature. See for example [110]
for stability of time delay systems.
Notice that, we are interested only in this thesis by retarded and neutral functional
differential equations with discrete delay.

11
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State-dependent delay

The delay is presented as a function of the state of the system, it arise frequently in
applications as model of equations and for this reason the study of this type of equation
has received a significant amount of attention in the last years, we refer to [66].

2.4 Retarded Delay Differential Equation RDDE

Retarded delay differential equation (RDDE) is an equation where the evolution of the
system at a certain time t depends on the state of the system at an earlier time t −
τ. This is distinct from ordinary differential equations (ODEs) where the derivatives
depend only on the current value of the independent variable. So, a simple ODE might
be written as follows :

ẋ(t) = ax(t),

while an example of a simple DDE is

ẋ(t) = ax(t− τ).

To solve this equation at the moment t, it is obvious that it is necessary to know the
value of the system at time t = −τ, but in order to calculate the solution of system at
time t = τ we need to know the value of system at time t = 0. Consequently, to know
the complete solution in the interval [0,τ], we need to know the whole initial solution
(condition) in the interval [−τ,0]. Therefore, in what follows we first have to prescribe
such an initial condition. The following results can be found in [9].

2.4.1 Initial value problem and stability definitions

Let us consider the vector space C ([a,b],Rn) which is a Banach space of continuous
function that maps the interval [a,b] to Rn. More precisely, for [a,b] = [−τ,0], let C :=
C ([−τ,0],Rn) to denote the state space. For a function φ ∈ C , the continuous norm ‖.‖s
is given by :

‖φ‖s = max
−τ<θ<0

‖φ(θ)‖,

where ‖.‖ denotes the Euclidean norm. For any positive number A and continuous func-
tion φ ∈ C ([t0− τ, t0 +A]), we use φt to denote a segment of the function φ defined as
φt(θ) = φ(t +θ), ∀θ ∈ [−τ,0].
The general form of an autonomous retarded functional differential equation is

ẋ(t) = f (xt), (2.1)

where the functional f : C → Rn is continuous.
The asymptotic behavior of functional differential equations is an important property in
many applications and it is studied using a several methods. Moreover, it is known that
the stability of a DDEs is defined as the stability of (so called) null solution and we have
the following definitions.
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Definition 2.4.1. [9]. The solution xt = 0 of equation (2.1) is said to be :

1. Stable if and only if ∀ε > 0, ∀φ ∈ C ([−τm,0],Rn) ∃δ > 0 such that :

‖φ‖s < δ ⇒ ∀t ≥ 0 ‖xt(φ)‖s < ε.

2. Asymptotically stable if and only if it is stable and

lim
t 7→∞

x(φ)(t) = 0.

3. Exponentially stable if and only if for any initial condition φ ∈ C , ∃C > 0 and γ > 0
such that :

‖xt(φ)‖s ≤Ce−γt‖φ‖s.

2.4.2 Existence and uniqueness results

In what follows we present some classic results on the existence and uniqueness of
solution of the equation (2.1), which can be found in [79] and [110].

Definition 2.4.2. [110]. A function f is said to be Lipschiz function if there exists a
positive real constant K such that for all φ1,φ2 ∈ C

‖ f (φ1)− f (φ2)‖< K ‖φ1−φ2‖, ∀ t ∈ [0,+∞).

Definition 2.4.3. [79]. For a given φ ∈ C, t0 ∈ R, a solution of the equation (2.1) is
a function denoted by x(t) such that x(t) = φ(t) if t ∈ [t0− τ, t0] satisfying (2.1) for t ∈
[t0, t0 +A] with A > 0. Such a function is said solution of (2.1) with initial value φ at t0 or
simply solution through (t0,φ) and it is often noted by

x(t) = x(t0,φ , f ).

Theorem 2.4.4. [79](Existence). suppose Ω an open subset in R×C and f ∈ C(Ω,Rn).
If (t0,φ) ∈Ω then there exists a solution of equation (2.1) passing through (t0,φ).

Theorem 2.4.5. [79](Uniqueness). Suppose Ω is an open set in R×C and f : Ω→Rn) is
continuous and f (t,φ) is lipschizian in φ in each compact set in Ω. If (t,φ) ∈Ω then there
is a unique solution of equation (2.1) through (t0,φ).

Notice that, in this thesis we are only interested by the study of autonomous linear
functional differential equations with discrete delays. So we linearize (2.1) about the
origin which leads to a linear time delay system of the following form :

ẋ(t) = A0x(t)+
m

∑
i=1

Aix(t− τi), (2.2)

where Ai ∈ Rn×n, i = 0,1 . . . ,m are real matrices, x(t) ∈ Rn is state variable at time t
and 0 < τ1 < τ2 < .. . < τm represents the time delays. For an initial condition φ ∈
C ([−τm,0],Rn) the solution of (2.2) is defined as follows :

x(φ)(θ) = φ(θ), θ ∈ [−τm,0].
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The state at time t is given by the function segment xt(φ) ∈ C ([−τm,0],Rn) defined as :

xt(φ)(θ) = x(φ)(t +θ), θ ∈ [−τm,0].

This solution can be defined in the other way using the operator T (t) which gives :

T (t)φ(θ) = xt(φ)(θ) = x(φ)(t +θ), θ ∈ [−τm,0].

This is a strongly continuous semigroup, the infinitesimal generator of which is Aφ = dφ

dθ

with the domain :

D(A) =
{

φ ∈ C ([−τm,0],Rn) :
dφ

dθ
∈ C ([−τm,0],Rn), φ(0) = A0(φ)+

m

∑
k=1

Akφ(−τm)
}
.

2.4.3 Characteristic Equation

The characteristic equation for an homogeneous linear functional differential equation
with constant coefficients is obtained from the equation by looking for nontrivial solu-
tions of the form cets with c ∈ Cn×1 \{0} . The characteristic function associated to the
system (2.2) is given by :

∆(s,τ) := det
(

s I−A0−
m

∑
i=1

Ai e−sτi
)
. (2.3)

Example 2.4.6. The scalar equation :

ẋ(t) =−ax(t)−bx(t− τ), (2.4)

has a no trivial solution of the form cest if and only if :

csest = acest +bces(t−τ)

which implies that :
s = a + be−sτ ,

hence
f (s) = s − a −be−sτ = 0. (2.5)

f (s) = 0 is called the characteristic equation associated to (2.4).

Definition 2.4.7. For the delay differential equation DDE (2.2), we have the following
definitions :
– If s ∈ C satisfies the characteristic equation :

∆(s,τ) = 0, (2.6)

we say that s is a characteristic root.
– The set of all solutions of (2.6) is called spectrum of DDE (2.2) and denoted by :

σ := {s ∈ C, ∆(s,τ) = 0}.
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– The spectral abscissa corresponding to the system (2.2) is defined as the real part of
rightmost eigenvalues of the corresponding supremum i.e

α(τ) = sup{ℜ(s) : ∆(s,τ) = 0}.

The stability analysis of (2.2) is equivalent to the problem of determining conditions
under which all roots of its characteristic equation lie in the left-half complex plane and
no sequence of characteristic roots approaches the imaginary axis.
In what follows, we introduce a proposition which plays an important role in the study
of continuity properties of the spectrum of time-delay systems and allows to construct
an envelope curve around the characteristic roots of the quasipolynomial (2.3). For
more details see [9].

Proposition 2.4.8. [9]. If s is a spectral value corresponding to (2.2) then it satisfies :

|s| ≤ ‖A0‖2 +
m

∑
i=1
‖Ai‖2 eℜ(s)τi.

FIGURE 2.1 – (Left) Spectrum distribution of (2.5) for a=−2 and b= 3.(Right) Envelope
of characteristic roots of (2.5) for the same value of a and b, illustrated using QPmR
toolbox from [20].

Properties of Characteristic Roots

The presence of the exponential term e−sτ , induced by time-delay term x(t − τ) make
the characteristic equation transcendental (i. e, infinite dimensional), so it has an infi-
nite number of roots. Equation of this type are studied in [103], [9] and we have the
following results.
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Proposition 2.4.9. If there exists a sequence {sk}k≥1 of characteristic roots of (2.2) such
that

lim
k→∞
|sk| →+∞,

then
lim
k→∞

ℜ(sk)→−∞.

Corollaire 2.4.10. The roots of (2.3) have the following properties :
– There are only a finite number of characteristic roots in any vertical strip of complexes

plane, given by
{s ∈ C, γ1 < ℜ(s)< γ2},

with γ1,γ2 ∈ R, γ1 < γ2.
– There exists a number γ0 ∈ R such that all characteristic roots are confined to the half

plane
{s ∈ C, ℜ(s)< γ0}.

According to the previous corollary, we deduce that the spectral abscissa always exists
and is finite. So there always exists a rightmost root s such that :

ℜ(s) = α(τ).

FIGURE 2.2 – Envelope curve of the characteristic equation with a =, b =, and τ = 0.5

Hence, in term of the supremum the asymptotic stability of RDDE (2.2) is equivalent to
that the spectral abscissa is negative i.e

α(τ)< 0.

Notice that the spectral abscissa of retarded functional differential equation is conti-
nuous, see (Theorem. 1.14 [9]).
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Remark 2.4.11. There is a relationship between the spectra of the linear operator A, T (t)
and the characteristic roots that is :
– The characteristic roots are the eigenvalues of the operator A, and it is also known that

σ(A) = Pσ(A) (point spectrum)

– The spectra of A and T (t) are related as follows :

σ(T (t)) = exp(t σ(A)) plus possibly {0}.

If s∈ σ(A) then est ∈ Pσ(T (t)). Conversely, If z(t)∈ σ(T (t)) and z(t) 6= 0 then there exists
s ∈ σ(A) such that z(t) = est .

Remark 2.4.12. The stability analysis of (2.2) can be also determined by the spectral
radius rσ (T (1)). Hence the null solution of (2.2) is exponentially stable if and only if

rσ (T (1))< 1.

For more detail see [9] and [103].

2.5 Neutral Functional Differential Equation (NFDE)

In this section, we introduce an another class of equations depending on past as well as
present value which involve derivatives with delays as well as the function itself. Such
equations are called neutral delay differential equations (NDDEs) (or neutral functional
differential equations(NFDEs)). In order to establish this class of systems, we need to
introduce the following definition from [77].

Definition 2.5.1. [77]. Suppose Ω ⊆ R×C is open with elements (t,φ). A function D :
Ω→ Rn is said to be atomic at β on Ω if D is continuous together with its first and second
Frechet derivatives with respect to φ and Dφ , the derivative with respect to φ is atomic at
β on Ω.

The atomicity specifies the manner in which D(t,φ) varies with φ . Now, we can define
a general class of neutral delay differential equation. Let us consider a Banach space C
and Ω⊆ R×C then this equations can be described as follows :

d
dt

D(t,xt) = f (t,xt), (2.7)

where f : Ω→ Rn, and D : Ω→ Rn are given continuous functions with D is atomic at
zero. The function D is called difference operator for NDDE(D,f).

Example 2.5.2. If τ > 0, B is an n×n constant matrix, f : Ω→ Rn and

D(φ) = φ(0)−Bφ(−τ)

is continuous then the pair (D, f ) defines an NDDE of the form :

d
dt
[x(t)−Bx(t− τ)] = f (t,xt).
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2.5.1 Existence and uniqueness

In this part, we consider the questions of existence and uniqueness of solutions of
NFDEs. This results can be found in [79] and [103].

Definition 2.5.3. [79]. For a given NFDE(D,f), a function x is said to be a solution of the
NFDE(D,f) if there are t0 ∈ R, A > 0 such that :

x ∈ C ([t0− τ, t0 +A),Rn), (t,xt) ∈Ω, t ∈ (t0, t0 +A),

D(t,xt) is continuously differentiable and satisfies equation (2.7) on [t0, t0 +A).
For a given t0 ∈ R, φ ∈ C and (t0,φ) ∈ Ω, we say that x(t0,φ ,D, f ) is a solution through
(t0,φ) if there is an A > 0 such that on [t0− τ, t0 +A) and xt0(t0,φ ,D, f ) = φ .

Theorem 2.5.4. [79](Existence). If Ω is an open set in R×C and (t0,φ) ∈Ω, then there
exists a solution of NFDE(D,f) through (t0,φ).

Theorem 2.5.5. [79](Uniqueness). If Ω⊆R×C is open and f : Ω→Rn is lipschitzian in
φ on compact sets of Ω, then for any (t0,φ) ∈Ω there exists a unique solution of NFDE(D,f)
through (t0,φ).

2.5.2 Characteristic equation

The same thing as the case of retarded functional differential equations, we are inter-
ested in a particular class of NFDE(D,f) having a linear difference operator. Thus in the
sequel, we consider the following representations.

d
dt

(
x(t)+

m

∑
k=1

Hkx(t− τk)

)
= A0x(t)+

m

∑
k=1

Akx(t− τk), (2.8)

where x(t) ∈ Rn is the state variable at time t and 0 < τ1 < τ2 < .. . < τm represent
the time-delays. The characteristic equation of (2.8) can be obtained by substituting
a simple solution of the form cest where c ∈Cn×1 0 in (2.8) which leads to the following
equation :

∆N(s,τ) = det
(

s
(

I−
m

∑
k=1

Hke−sτk
)
−A0−

m

∑
k=1

Ake−sτk

)
. (2.9)

The zeros of (2.9) are called the characteristic roots of (2.8). The stability definitions
are similar for DDEs of retarded type.
The associated delay difference equation of (2.8) is given by :

D(xt) = x(t)−
m

∑
k=1

Hkx(t− τk) = 0. (2.10)

Let :
CD([−τm,0],Rn) = {φ ∈ C ([−τm,0],Rn) : D(φ) = 0},
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which a closed subspace of C ([−τm,0],Rn). For any initial condition φ ∈CD([−τm,0],Rn),
the solution of (2.10) is defined by

y(φ) : t ∈ [−τm,0]→ y(φ)(t) ∈ Rn.

Hence the state at time t is given by :

yt(φ)(θ) = y(φ)(t +θ), θ ∈ [−τm,0].

We denote by TD(t) the corresponding solution operator.
The characteristic equation corresponding to (2.10) is given by :

∆D(s,τ) = det
(

I−
m

∑
k=1

Hke−sτk
)
, (2.11)

the zero of (2.11) is called the characteristic roots of (2.10), and its spectral abscissa is
defined as follows :

αD = sup{ℜ(s) : ∆D(s,τ) = 0}. (2.12)

Definition 2.5.6. The null solution of (2.8) is exponentially stable if and only if all charac-
teristic roots are located in the open left half plane and bounded away from the imaginary
axis .

The exponential stability of the null solution of (2.10) is related with the exponential
stability of (2.8), this result is summarized in the following proposition :

Proposition 2.5.7. A necessary condition for exponential stability of the null solution of
the neutral equation (2.8) is the exponential stability of the null solution of the delay
difference equation (2.10).

2.5.3 Spectrum properties

Recall that in the case of retarded system, the number of characteristic roots lying to
the right of such a line are finite. More precisely, there are only a finite number of
characteristic roots in any vertical strip of the complex plane, see corollary (2.4.10).
For the linear neutral system (2.8) the situation is more complicated. The following
proposition from [9] describe the typical behavior of the spectrum.

Proposition 2.5.8. Suppose s satisfies (2.11), then there exists a sequence of characteristic
root of (2.9) {sn}n≥1, such that

lim
n→∞

ℜ(sn) = ℜ(s), lim
n→∞

ℑ(sn) = ∞.

Therefore, contrary to the retarded time delay systems, the characteristic roots of the
neutral system contained in a given vertical strip of the complex plane can be infinite.
The spectrum of delay system of neutral type may exhibit such peculiarities, this refers
to the fact that even when all characteristic roots are stable for τ = 0, for τ being small
and positive infinitely many of these roots may becomes unbounded. In other words, a
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small variation of time delay in delay difference equation (2.10) associated with (2.8)
may affects the continuity properties of the characteristic roots which leads to infinitely
large root variation. This sometimes called behavioral discontinuity, a feature unique to
neutral differential equation as compared to delay differential equation.
To develop a general theory it is necessary initially to impose additional restrictions on
the delay difference equation (2.10).
This problem is solved in [9] by introducing a theorem which gives sufficient conditions
for a continuous spectral abscissa. In particular if the associated difference operator
is strongly stable then the spectral abscissa is continuous. For further details on the
continuity properties of the spectral abscissa, see [9], [79] and [103].

Definition 2.5.9. We say that the null solution of (2.10) is strongly exponentially stable
if it is remains stable when subjected to small variation in the delays.

For more information in this context we refer to [76]. The following example from
[79] shows that a small perturbations on the delay may destroy the stability of delay
difference equation.

Example 2.5.10. Consider the neutral system

d
dt
(x(t)−ax(t−1)−bx(t−2)) = cx(t)+bx(t−1).

The associated delay difference equation :

x(t) = ax(t−1)+bx(t−2), (2.13)

whose characteristic equation is

1−ae−s +be−2s = 0.

Using a change of variable X = es, the roots of this equation is given by :

X =
a±
√

a2 +4b
2

.

For a = b = 1
2 , |X |2 = 1

2 . Therefore, e2s = 1
2 which means that s =−1

2 ln(2)< 0 implies that
ℜ(s)< 0.
For a given n > 0, we consider the equation :

x(t) =−1
2

x(t−1− 1
2n+3

)− 1
2

x(t−2).

x(t) = sin(n+ 3
2)π t is a solution of this equation and it does not approach zero as t →

∞. For a small perturbation 1
2n+3 in the delay, we take n sufficiently large for each such

perturbation, the equation has a solution which does not approach zero. In other words
the spectrum αD is not continuous which means that it is sensitive to infinitesimal delay
perturbations.
To show the behavior of the supremum of delay difference equation (2.13), we plot the
characteristic roots in the complex plan for both the nominal delay ~τ = (1,2) and the
perturbed delay~τ = (0.99,2). For small delay perturbation, a change in the behavior of the
spectrum may occur and this is illustrate in Figure 4.1.
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FIGURE 2.3 – (Right) The distribution of the spectrum of equation (2.13) with a = b = 1
2

and the delay ~τ = (1,2). (Left) The distribution of the spectrum of equation (2.13) with
perturbed delay ~τ = (0.99,2), illustrated using QPmR toolbox from [20].

2.6 Stability of Time Delay Systems

The main methods of examining the stability of time delay systems can be classified into
two types : frequency and time domain methods. Frequency domain methods determine
the stability of a system from the distribution of the roots of the corresponding charac-
teristic equation. In the time domain methods many of the stability analysis have been
formulated based on Lyapunov’s second method using Lyapunov Krasovskii functionals
or Lyapunov Razumikhin functions. In this thesis, we focus on methods in the frequency
domain for stability analysis. However, it is important to cite some of the methods in
the time domain developed in the literature.

2.6.1 Time-Domain Methods

In this part, we give sufficient conditions for the stability of the solution x = 0 of Func-
tional Differential Equations (FDEs) which generalize the second method of Lyapunov
for Ordinary Differential Equations (ODEs). We consider the following system :{

ẋ(t) = f (t,x(t),xt),
xt0(θ) = φ(θ) with θ ∈ [−τ,0]. (2.14)

Lyapunov’s second method requires the existence of a positive definite function V such
that V̇ < 0 if x 6= 0. Clearly this requires a few adaptations on the Lyapunov function since
it is no an ordinary function but a functional which depends on certain past values of
the argument t which makes the state space infinite dimensional. For this, two extension
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have been developed in this context, the first introduced by Krasovskii which leads to
the use of functional, the second is developed by Razumikhin who proposed to use
function rather than functional.

Lyapunov-Krasovskii Stability Theorem

Krasovskii approach consists to search a functional V (t,xt) that are decreasing along the
solutions of equation (2.14). Let V : R×C → R be continuous, and x(t,φ) be a solution
of (2.14) at time t. Then, we may calculate the derivative of V with respect t as :

V̇ (t,φ) = lim
h→0+

sup
1
h

[
V (t +h,xt+h(t,φ)−V (t,φ)

]
.

The function V̇ (t,φ) is the upper right-hand Dini’s derivative of V (t,φ) along the solu-
tions of equation (2.14).

Theorem 2.6.1. (Lyapunov-Krasovskii stability theorem) [79] : Suppose f : R×C → Rn

takes R× (bounded sets of C ) into bounded sets of Rn, and u,v,w :R+→R+ are continuous
nondecreasing functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there
is a continuous function V : R×C → R such that :

u(|φ(0)|)≤V (t,φ)≤ v(|φ |)

V̇ (t,φ)≤−w(|φ(0)|)
then the solution x = 0 of equation (2.14) is uniformly stable.
If u(s)→ ∞ as s→ ∞, the solutions of equation (2.14) are uniformly bounded.
If w(s)> 0 for s > 0, then the solution x = 0 is uniformly asymptotically stable.

Razumikhin Stability Theorem

Lyapunov Krasovskii theorem requires the manipulation of functionals, which makes it
difficult to apply. This motivated the use of a classical Lyapunov function V (t,x(t)) for
ordinary differential equations instead of functionals. The Lyapunov functions are much
simpler to use and it is natural to explore the possibility of using the rate of change of
a function in Rn to determine sufficient conditions for stability. On the other hand, it is
not necessary to require that V̇ (t,x(t)) ≤ 0 for all initial conditions, but only for special
solutions of the system. This approach is called the Razumikhin theorem.

Theorem 2.6.2. (Razumikhin theorem) [79] : Suppose f :R×C →Rn takes R× (bounded
sets of C ) into bounded sets of Rn.
Suppose that u,v,w : R+→ R+ are continuous nondecreasing functions. u(s), v(s) positive
for s > 0, u(0) =0, v(0) =0.
If there is a continuous functions V : Rn×Rn→ R such that

u(|x|)≤V (t,x)≤ v(|x|), t ∈ R, x ∈ Rn.

The following statement hold
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1. V̇ (t,φ(0)) ≤ −w(|φ(0)|) if V (t + θ ,φ(θ)) ≤ V (t,φ(0)),θ ∈ [−τ,0], then the solution
x = 0 of the equation (2.14) is uniformly stable.

2. If there exists a continuous nondecreasing function p : R+→ R+, p(s) > s for s > 0
such that : V̇ (t,φ(0))≤−w(|φ(0)|) if V (t +θ ,φ(θ))≤V (t,φ(0)), θ ∈ [−τ,0].

2.6.2 Frequency-Domain Methods

Stability analysis of ordinary differential equation is determined from the roots of the
characteristic equation which is a polynomial. The corresponding system is called stable
if and only if all of the roots have negative real part, in this case Routh-Hurwitz crite-
rion allows to give precise conditions for stability. For delay differential equations, the
stability is also determined by the location of roots of the characteristic function, but as
known this function takes the form of quasi-polynomial function, which is transcenden-
tal and admits infinitely many roots. Furthermore, the Routh-Hurwitz criteria are not
applicable. Many approaches have been taken to determine the stability of functional
differential equation.

Roots Locus Methods

Due to the difficulty in computing the characteristic roots of time-delay systems, it is
desirable to determine system stability without the exact knowledge of the abscissa of
the characteristic equation. So the root locus method consists to determine the values
of the parameters for which the characteristic equation has roots on the imaginary axis.
Such result is defined in the following theorem.

Theorem 2.6.3. If the matrices A0, . . .Am and the delays τ1, . . . ,τm are varied then a loss
or acquisition of exponential stability of the null solution of (2.2) is associated with cha-
racteristic roots on the imaginary axis.

1. D-Decomposition method : This approach due to Neimark [102] is a powerful
tool for stability analysis when the characteristic roots close to C+ depend on τ

continuously. The idea of this approach is to divide the parameter space into dis-
joint sub-regions. This method is also known as D-subdivision method. For each
point of the boundaries the corresponding characteristic equation has at least one
root in the imaginary axis. The points in the interior of each sub-region correspond
to the roots of characteristic equation with the same number of zeros with positive
real parts. The number of zeros with positive real parts can only change when a
zero passes across the imaginary axis, i.e., when the point in the coefficient space
passes across the boundary of the region.
The regions having no zero with positive real part correspond to the set of para-
meters for which the considered system is asymptotically stable.

Example 2.6.4. To illustrate this method, we consider the following equation

ẋ(t)+ax(t)+bx(t− τ) = 0, (2.15)
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To apply the D-decomposition method, we need to fixe the delay parameter and we
analyze the system with respect to other parameters. The characteristic equation as-
sociated to (2.15) is given by :

∆(s,a,b) = s+a+be−sτ = 0, (2.16)

this latter equation admits the root s = 0 for

a+b = 0. (2.17)

Likewise, if equation (2.16) has a pure imaginary root s = iw, then we have

∆(iw,a,b) = iw+a+be−iwτ = 0. (2.18)

By separating the real parts and the imaginary parts, we obtain an equation para-
meterized in w of the boundaries of the D-decomposition :

a(w) =−w cos(wτ)

sin(wτ)
, b(w) =

w
sin(wτ)

. (2.19)

b(w) can be prolonged by continuity at w = 0, and we have

lim
w→0

w
sin(wτ)

= b(0) =
1
τ
.

So, we deduce that the point (a,b) =
(−1

τ
, 1

τ

)
, there are a several regions as illustrated

in the figure 2.4.

FIGURE 2.4 – D-decomposition method applied to the scalar equation (2.15) taken from
[118].

For b = 0, the equilibrium x = 0 of the system (2.15) is asymptotically stable if and
only if a > 0. So, the region I correspond to the set of parameters for which (2.15) is
asymptotically stable.
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The next step consists to determine the number of zeros with positive real part. To
do this, we need to calculated the sign of the differential of the real part of the root
calculated at the point of the boundary.
For example, for s = 0 we have a+b = 0, and at this point we get :

ℜ
( ds

da

)
=
−1

1−bτ
. (2.20)

Hence, we distinguish two cases :

(a) for b < 1
τ
, we have ℜ

( ds
da

)
< 0. For each pair of parameters (a,b) located in the

region II, the system admits a unique characteristic root with a positive real
part.

(b) for b > 1
τ
, the expression (2.20) has a positive sign, so when we go from the

region II to region III, the number of unstable roots increases by 1. We do the
same thing for the other regions.

2. τ-Decomposition method : When the parameter p in the D-decomposition me-
thod developed in the previous section is the delay parameter, it is known as the
τ-decomposition method. So, in this case the stability analysis is done with respect
to the delay parameter and the other parameters of the system are assuming to be
fixed. The τ-decomposition method proceeds as follows :

– First, we decompose the delay axis into intervals such that in the interior of each
interval, the system has no imaginary roots, therefore the number of unstable
roots,i.e root ∈C+ is constant for all points of the interval.

– The second step consists to investigate the change of the number of roots at
the end points of the delay intervals computed in the previous step, such that
each end point of the interval corresponds to a characteristic root crossing with
respect to the imaginary axis. More precisely one has to determine how many
characteristic roots will move toward C+. This step is refereed to as the crossing
direction.

Root crossing direction analysis

For a given critical pair ( jw?,τ?), where τ? is the value of delay for which the characte-
ristic equation admits root on the imaginary axis. If s = jw? is a simple root, then

d ∆(s,τ)
d s

( jw?,τ?) 6= 0.

By the implicit function theorem see [91], in a neighborhood of ( j w?,τ?) the characte-
ristic root s is a function of τ denoted here as s(τ). We have :

d s(τ?)
d τ

=−∂τ ∆(s,τ)
∂s ∆(s,τ)

( jw?,τ?).
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In order to determine the root crossing direction, the following quantity must be consi-
dered,

Sgn
(

ℜ

(
d

d τ
s(τ?)

))
, (2.21)

according to this term, we have the following situations :
1. If the term given in (2.21) is positive then the characteristic roots crosses the

imaginary axis and moves toward C+ as τ increases through τ?.
2. If this term is negative then the characteristic roots moves toward C− and becomes

stable.
3. When the right hand side of equation is zero, higher order derivatives needs to be

computed, which is introduced in [99] and briefly discussed in [88].

Method of Walton and Marshell (1987)

Method of Walton and Marshell or direct method was introduced in [113] and it is
also discussed in [98], it is an algebraic method for the stability of delay differential
equation. The idea of this method consists in finding values of the retard τ? for which
the characteristic equation has roots on the imaginary axis, and at these points τ? that
a change in the asymptotic behavior of the system can produce, we are therefore led to
calculate a place of the roots parameterized in τ. To better illustrate the ideas of this
methods, we consider systems with a single delay, hence equation (2.2) becomes :

ẋ(t) = Ax(t)+Bx(t− τ),

whose characteristic equation is given by :

∆(s,τ) = det(sI−A−Be−sτ).

This later can be rewritten as follows :

∆(s,τ) = P(s)+Q(s)e−sτ .

The procedure of this method is summarized in what follows :
1. Determine the location of the roots of the non-retarded system (∆(s,0) = 0).
2. Calculate the polynomial W obtained from the equation

∆(s,τ) = 0 = ∆(s,τ),

for the imaginary roots s = j w. So we have :{
P(−iw)+Q(−iw)e−iwτ = 0

P(iw)+Q(iw)eiwτ = 0.

We known that, when the root s lies on the imaginary axis, for some w∈R, e−sτ lies
on the unit circle of the complex plane, hence the exponential term is eliminated
from this equation which leads to the following polynomial in w2 :

F(w2) = P( j w)P(− jw)−Q( j w)Q(− j w). (2.22)

Notice that the degree of (2.22) is equal to that of P(s). Without loss of generality
only positive solutions w are considered.
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3. Search a possible real positive roots of F(w2) = 0 which also correspond to roots
of ∆(s,τ) = 0. If there are no solutions of polynomial (2.22) there are no crossing
point and no change appears on the stability of the system as the delay is increa-
sed. This means that the system remains stable / unstable according to whether
the system free of delay stable / unstable respectively.

4. If there exists a critical value τ? for which a zero lie in the imaginary axis then
it is necessary to determine in which direction the zero crosses the axis. So we
distinguish two situation : when the roots passes from the left to right which
leads to destabilizing values and when the roots passes from right to left which
gives stabilizing values. Therefore, stability is guaranteed for these values of retard
τ > τ?.

Example 2.6.5. Let us consider the system

ẋ(t) = Ax(t)+Bx(t− τ) = 0, (2.23)

where

A =

(
0 1
−1 −1

)
and B =

(
0 0
0 −1

)
. (2.24)

The characteristic equation corresponding to (2.23) is given by :

s2 + s+1+ se−sτ = 0. (2.25)

1. The equation
∆(s,0) = s2 +2s+1 = (s+1)2 = 0, (2.26)

has a unique solution which means that the system is asymptotically stable for τ = 0.

2. We have :

q(w2) = (−w2 + j w+1)(−w2− j w+1)− ( jw)(− jw) = (w2−1)2 = 0. (2.27)

3. w2 = 1 is a double root of the later equation. Thus the zeros touch the imaginary axis
at w = 1. So for this value of w we have

∆( j,τ) = e− j τ +1 = 0, (2.28)

hence cos(τ) = −1 and sin(τ) = 0 which implies that τ = (2n+ 1)π with n positive
number.

4. The system (2.23) is asymptotically stable for all value of τ 6= (2n+1)π.

There exists an interesting relationship between the function F(w) defined in (2.22)
and the crossing direction of the characteristic roots. Therefore, the following theorem

shows that it is not necessary to calculate ℜ

(
∂ s
∂τ

)
but that its sign may be deduced from

the polynomial given by (2.22).
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Theorem 2.6.6. (Walton and Marshall [113] :)

sgn

(
ℜ

(
∂ s
∂τ

))
= sgn

(
∂F
∂w2

)
,

where s = iw for w2 positive root of equation (2.22).

According to the last equation, as t sweeps through τ? from left, a pair of imaginary
roots ± jw? crosses the imaginary axis toward the right half complex plane if F ′(w?)> 0.
This pair of roots move toward the left half complex plane if F ′(w?)< 0.

Lambert W-function

Introduced in the 1700s by Lambert and Euler (Corless et al., 1996), the Lambert W
has been used in a variety of applications (see [58]) to find solutions for different non-
algebraic equation including exponential functions or logarithm as well as to give expli-
cit formulas for nonlinear equations which were previously mostly solved numerically.
The Lambert W function is the logarithmic type function defined as the multivalued
inverse of the complex function f (x) = xex, where x is any complex number. Lambert W
function is defined to be any function W (x) satisfies :

W (x) = eW (x) = x.

For each integer k there is one branch denoted by Wk(x), W0 is known as the principle
branch. W0(x) is real and positive for x ∈ (0,∞) and W0(x), W−1(x) both are real and ne-
gative for x ∈ (−1

e ,0). All other Wk(x) are complex ∀x.

Example 2.6.7. Solving the equation x + ex = 0. We have :

x+ ex = 0 ⇒ x =−ex,

rewriting the later equation under the form :

−xe−x = 1,

we obtain the following solution :

−x =W0(1) =−0.56714.

Relationship between DDEs and Lambert W function :
The Lambert W function, known to be useful for solving scalar first-order DDEs, it has
recently been extended to higher order systems of DDEs using the matrix Lambert W
function. In their article Asl and Ulsoy [2] connected the roots of (2.5) with solutions
to a specific exponential polynomial known as the Lambert W equation ( [59]). Let us
consider the first order system given by the equation (2.4), recall that the corresponding
characteristic equation is described by :

s+a+be−sτ = 0.
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To solve for the roots of this equation, we rewrite it in the form

τ(s−a)e−τ(s−a) =−bτ e−τ a. (2.29)

Define a new function W such that :

W (bτ e−aτ) = τ(s−a).

The function to be solved becomes :

W (bτ e−aτ)eW (bτ e−aτ ) = bτ e−aτ ,

which is the same form as W (x)eW (x) = x, the well studied Lambert W function. Hence
the roots of (2.5) are written as follows :

s =
1
τ

W (bτ e−aτ)+a.

For a general introduction to analysis of time delay system using the Lambert W function
we refer to [114].

Method of Hopf bifurcation

In dynamical systems, a bifurcation occurs when a small smooth change made to the
parameter values (the bifurcation parameters) of a system causes a sudden “qualita-
tive” or topological change in its behavior, see [94], [70]. Generally, at a bifurcation
value, the local stability properties of equilibria, periodic orbits or other invariant sets
changes. In other words, we known that in a dynamical system, a parameter is allowed
to vary, then the differential system may change. An equilibrium can become unstable
and a periodic solution may appear or a new stable equilibrium may appear making the
previous equilibrium unstable. The value of parameter at which these changes occur is
known as ”bifurcation value” and the parameter that is varied is known as the ”bifur-
cation parameter”. In what follows, we present the classic Hopf bifurcation theory for
delay differential equations discussed in [3] where the delay plays the role of bifurcation
parameter. To explain this better, let us consider the linear system :

ẋ(t)+ax(t)+bx(t− τ) = 0, (2.30)

where b > a > 0. The associated characteristic equation is given by :

s+a+be−sτ = 0. (2.31)

A standard requirement for a Hopf bifurcation at such an equilibrium is that a pair of
complex conjugate roots of the characteristic equation(2.31) cross the imaginary axis
of the complex plane (with nonzero imaginary part) as the parameter τ in the model is
varied.
Substituting s = iw? in (2.31) we get :{

a =−b cos(w?τ),
w? = bsin(w?τ).

(2.32)
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These two equations determine the two unknown w? and τ for (2.31) to have two purely
imaginary roots. For positive w? it will follows from (2.32) that :

cos(w?
τ)< 0 and sin(w?

τ)> 0,

and hence we derive that w?τ satisfies :

2π n+
π

2
< w?

τ < 2π +π.

If we solve (2.31) for unknown w?, τ we obtain :{
w? =

√
b2−a2,

τ? = cos−1(−a/b)/w?,

where τ? represents the hopf bifurcation value and it is sometimes called "delay induced
bifurcation". In particular, for values of τ near τ?, the trivial solution of (2.30) is asymp-
totically stable for τ < τ? and it losses it stability when τ > τ?. We have similar situation
for all τ?+ 2kπ, k = 1,2, . . .. Thus, for τ = τ? the linear variational system (2.30) has a
periodic solutions with a period of 2π

w? .

Multiplicity Induced Dominancy (MID) approach

The effect of the multiplicity of spectral values on the exponential stability of the re-
tarded functional differential equation is recently studied. This approach consists in
studying the connection between the maximal multiplicity of some negative spectral
value where the maximal multiplicity correspond to the degree of the quasipolynomial
and the stability of trivial solution of the corresponding dynamical system. So, several
methods have been proposed to show the dominancy property, for example in [48, 50]
the dominancy is shown using an adequate factorization, and in [49], it is shown using
Stépan-Hassard formula.
– Factorization based approach

1. First order system : The property multiplicity induced dominancy is first intro-
duced in [52] for the scalar differential equation with one delay represented by
the following linear system :

ẋ(t)+ax(t)+bx(t− τ) = 0. (2.33)

The study of stability of the later system is based on the analytic characterization
of the rightmost root of the corresponding characteristic function, which implies
the dominancy of one of the spectral values of (2.33) with maximal multiplicity.
The analytical proof of this result is established using an adequate factorization
of the quasipolynomial function. The following proposition gives conditions on
the equations parameters that guarantees the asymptotic stability of the system
(2.33).
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Proposition 2.6.8. [50]. For a given delay τ ∈R+, system (2.33) admits a double
spectral value at s = s0 if and only if

s0 =−
aτ +1

τ
and b =

e−aτ−1

τ
. (2.34)

If a >−1
τ

then the zero solution of system (2.33) is asymptotically stable and s = s0
is the corresponding rightmost root.
If a = −1

τ
then s0 = 0 is the only double spectral value of (2.33) on the imaginary

axis, and the set of unstable root is empty.

2. Second order system : The multiplicity-induced-dominancy is extended for se-
cond order retarded differential equations described by :

ẍ(t)+a1ẋ(t)+a0x(t)+βx(t− τ) = 0. (2.35)

The corresponding characteristic equation after using the change of variable s =
c1λ

2 , (normalized characteristic function) is as follows :{
∆̃(λ , τ̃) = λ 2 +2λ +a0 +αe−λ τ̃

where α = 4
c2

1
β , τ̃ = c1

2 τ and a0 = 4 c0
c2

1
. (2.36)

The following theorem gives conditions on the parameter coefficients guaran-
teing the stability of the corresponding system.

Theorem 2.6.9. [42].

(a) The multiplicity of any given root of the quasipolynomial function (2.36) is
bounded by 3.

(b) The quasipolynomial (2.36) admits a real spectral value at λ = λ0 with alge-
braic multiplicity 3 if and only if

τ̃ =

√
1

a0−1
, λ0 =−1− 1

τ̃
, α =−2e−(1+τ̃)

τ̃2 . (2.37)

(c) If (2.37) is satisfied then λ = λ0 is the rightmost root of (2.36).

– Argument principle
The principle of argument is a well known tool for stability analysis of time delay
systems based on the knowledge of the characteristic polynomials, see [103], [105]
and [104]. The same principle holds for quasipolynomial of the form :

∆(s,τ) = P(s)+Q(s)e−sτ . (2.38)

If the polynomials P(s) and Q(s) satisfy certain conditions, the stability of the system
can be easily determined by mapping the contour (C) and using the argument prin-
ciple to determine if any root s satisfying (2.38) lie inside the contour in which case
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the system (2.38) is unstable. The argument principle gives the number of root of
∆(s,τ) = 0 inside C by calculating

1
2π

∆Carg∆(s,τ), (2.39)

which is equivalent to the counterclockwise encirclement of the origin. The following
theorem from [110] gives the number of unstable roots of the characteristic function.
Theorem 2.6.10. [110]. Let the characteristic function (2.38) have no zeros in the
imaginary axis, then the number of its zero in the right half plane is determined by :

Z =
1

2πi
lim

R→∞

∮
C

∂s∆(s,τ)
∆(s,τ)

ds. (2.40)

According to the Cauchy residue theorem or the principle of argument, the integral in
(2.40) gives (Z−P)2π i where Z and P are the number of zeros and poles (including
the multiplicities) respectively within the closed contour (C). The contour limR→∞(C)
encircles the whole right half plane and the characteristic function has no pole.

The result on maximal multiplicity induced dominancy for spectral values for generic
retarded second order system with single delay is analytically studied in [48] and [49]
using the argument principle. Such that, in [48] propose a parameterized analysis
along the contour C, the contour chosen is given in Figure 2.5. For the result in [49],
they use Stépàn Hassard formula proposed in [82] which allows to establish necessary
and sufficient conditions for asymptotic stability of the zero solution of linear time
delay systems.

FIGURE 2.5 – The simplified contour used in [48] for applying the argument principle
to investigate the dominancy of multiple root.

1. A parameterized based approach : The proposition that follows generalizes the
Theorem 2.6.9 which is restricted to β = 0. In this case, the dominancy property
is shown using a parameterized analysis.
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Proposition 2.6.11. [48]. Consider the quasipolynomial function

s2 + c1s+ c0 +(β0 +β1s)e−τs. (2.41)

The following assertion hold :

(a) The multiplicity of any given root of the quasipolynomial (2.41) is bounded by
4, it can be attained only on the real axis.

(b) The quasipolynomial (2.41) admits a real spectral value at s = s± with alge-
braic multiplicity four if and only if, either

s+ =
−2+
√
−2+c0τ2

τ

β0 = 2 e−2+
√
−2+c0τ2

(−5+
√
−2+c0τ2)

τ2

β1 = −2 e−2+
√
−2+c0τ2

τ
, c1 =−2

√
−2+c0τ2

τ
,

(2.42)

or 
s− =

−2−
√
−2+c0τ2

τ

β0 = 2 e−2−
√
−2+c0τ2

(−5−
√
−2+c0τ2)

τ2

β1 = −2 e−2−
√
−2+c0τ2

τ
, c1 = 2

√
−2+c0τ2

τ
,

(2.43)

where τ is arbitrarily chosen satisfying c0τ2 ≥ 2.

(c) If either (2.42) and (2.43) is satisfied then s = s± is the rightmost root (2.41).

2. Stépàn-Hassard formula : In [82] the authors gives a formula that count the
number of roots in the right half plane of the characteristic equation for linear
time delay system with constant coefficients. This formula allows to establish
necessary and sufficient conditions for asymptotic stability of zeros solution of
linear delay differential equation using the so called Stépàn-Hassard formula.

Definition 2.6.12. [110]. The curve (g) is called a Bromwich contour if

g =
3⋃

k=1

(gk), (2.44)

where (gk) (k = 1,2,3) is given in the complex plane as follows :

g1 ={s = Reiθ , R ∈ R+ and θ :−π

2
→ π

2
},

g2 ={s = iw, w : 0→ R},
g3 ={s = iw, w : 0→−R},

as illustrated in Figure 2.6.
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FIGURE 2.6 – The standard Bromwich contour usually used for asymptotic stability
investigation tacked from [110].

Theorem 2.6.13 (Hasard’s Theorem [82]). . Let A1, ...,Am be real n by n matrices,
and let τ1, · · · ,τm be nonnegative reals. Let

∆(s,τ) = det(sI−
m

∑
j=1

e−sτ jA j). (2.45)

Let ρ1, · · · ,ρJ be the positive zeros of R(y) = ℜ(i−n∆(iy)), counted by multiplicity
and ordered so that ρ1 ≥ ·· · ≥ ρJ > 0. For each j = 1, · · · ,J such that ∆(iρ j) = 0,
assume that the multiplicity of iρ j a zero of ∆(λ ) is the same as the multiplicity
of ρ j as a zero of R(y). Then, the number of roots of the characteristic equation
∆(λ ) = 0 which lie in ℜ(s)> 0, counted by multiplicity, is given by the formula :

n−K
2

+
1
2
(−1)rsgnS(k)(0)+

J

∑
j=1

(−1) j−1sgnS(ρ j), (2.46)

where K is the number of zeros of ∆(s,τ) on ℜ(λ ) = 0, counted by multiplicity, k is
the multiplicity of s = 0 as a root of ∆(s,τ) = 0, and S(y) = Im(i−n∆(iy)). Further-
more, the count (2.46) is odd if ∆(k)(0) < 0 and is even if ∆(k)(0) > 0. If R(y) has
no positive zeros, set r = 0 and omit the summation term in (2.46). If λ = 0 is not
a root of the characteristic equations, set k = 0 and interpret S(0)(0) as S(0) and
∆(0)(0) as ∆(0).

The main hypothesis (no zero in the positive half plane) is verified in [78] where
the authors employed a rectangle region in the positive half plane inside which
all zeros (if any) of ∆(s,τ) must lie and numerical quadrature is used to approxi-
mate integral of the logarithmic derivative of ∆(s,τ) around the boundary of
this rectangle. The following example is studied in [78]. Using the Stepàn Ha-
sard formula is much simpler and more efficient then applying the result in [78].
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Example 2.6.14. [82]. Consider the following linear time delay system with two
delays

ẋ(t) = δ
[
x(t− τ1)+ x(t− τ2)

]
, (2.47)

where δ = π3
−3
2 , τ1 = 1, and τ2 = 2, which arises in Hopf bifurcation analysis of a

nonlinear delay differential equation considered in [78]. The characteristic equa-
tion corresponding to (2.47)

∆(s) = s+δ (e−s + e−2s). (2.48)

To apply the formula , assume that there exists w > 0 such that s = iw is a root of
(2.48) and define{

R(w) = ℜ
(
i−1∆(iw,τ)

)
= w−δ (sin(w)+ sin(2w)),

S(w) = ℑ
(
i−1∆(iw,τ)

)
=−(cos(w)+ cos(2w)).

(2.49)

∆(s,τ) has a pair of zero ±iw =±iπ

3 .
R(w) has a positive real zero w = π

3 and we have R′(π

3 ) = 1+ δ

2 6= 0 which implies
that the multiplicity of π

3 as a root of R(w) is one so rho1 = 1 and x = 1. From this
we deduce that ∆′( iπ

3 ) 6= 0 hence the multiplicity of iπ
3 6= 0 as a root of ∆(w) is one,

and we have S(ρ1) = 0.
Now, we are able to calculate the number of zero of ∆(s,τ) in ℜ(s)> 0

z =
n− k

2
+

1
2
(−1)k sgn S(k)(0), (2.50)

in this case, we have r = 1, k = 0 and K = 2 which gives

z =
1
2
−1+

1
2
(−1)sgn S(0) = 0.

We conclude that there are no zeros in the right half plane, which ensure the stability
of the corresponding system.

The paper [49] revisit recent result on maximal Multiplicity Induced Dominancy
(MID) for spectral values, so it focuses on the effect of multiplicity of spectral
values on the exponential stability of the generic second order system. So, they
consider the following system :

ẍ(t)+aẋ(t)+bx(t) = u(t), (2.51)

where u is the unknown control and a and b are parameters. The aim of this
study is to construct a control u under the following form

u(t) = α0x(t− τ)−a1ẋ(t− τ), (2.52)

such that, the following closed loop system is stable

ẍ(t)+a1ẋ(t)+a0x(t)+α0x(t− τ)+α1ẋ(t− τ) = 0. (2.53)
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To do this, they establish conditions on the parameters of the generic control
problem. The corresponding characteristic equation is given by :

∆(,τ) = P(s)+Q(s)e−τs, (2.54)

where {
P(s) = s2 +as+a0,
Q(s) = α1(s)+α0.

(2.55)

The following theorem gives conditions on the parameter coefficients parameters
guaranteing the stability of the corresponding system.

Theorem 2.6.15. [49]. Considering equation (2.54) the following assertion hold
– The multiplicity of any given root of the quasipolynomial function (2.54) is boun-

ded by 4 it can be attained only on the real axis and under the negativity of ∆.
– The quasipolynomial (2.54) admits a real spectral value at s = s0 with algebraic

multiplicity 4 if and only if

s0 =−
a1 +
√
−2∆

2
, (2.56)

and the system parameters satisfy :

τ = 2

√
− 2

∆
, α0 =

5∆−a1
√
−2∆

4
es0τ , α1 =−

√
−2∆

2
es0τ . (2.57)

– If (2.57) is satisfied then s = s0 is the spectral abscissa corresponding to (2.54).
– If (2.57) is satisfied then the trivial solution of the closed loop equation (2.51) is

asymptotically stable if and only if
(
a1 ≥ 0 and a0 >

a2
1

4

)
or
(
a1 < 0 and a0 >

3a2
1

8

)
.

Dominant Pole of Time Delay Positive Systems

Positive systems constitute a class of systems that has the important property that its
state variables are never negative, given a positive initial state. These systems appear
frequently in practical applications in biology, network communications, economics and
probabilistic systems. A particularity of TDPS is that they are asymptotically stable if and
only if its corresponding system delay-free system is asymptotically stable, and this pro-
perty holds irrespective of the length of delays. The paper [64] focus on the dominant
pole analysis of asymptotically stable time-delay positive systems (TDPSs). The authors
assert that the exact calculation of dominant pole is possible for this class of systems ,
which is not the case for general LTI-TDS (which are not necessary positive).

The considered system is given as follows :

Σ :
{

ẋ(t) = A0x(t)+∑
N
i=1 Aix(t− τi) (t ≥ 0),

x(θ) = φ(θ) (−τ ≤ θ ≤ 0),
(2.58)

where A0 ∈Mn, Ai ∈Rn×n
++ i = 1, . . . ,N with τ := maxi=1,...,N τi and φ ∈C([−τ,0],Rn) is the

function of initial condition.
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Now, we need to state some useful results on the properties of positive systems. So, the
characteristic equation associated to(2.58) is given by :

det
(
λ I−A0−

N

∑
i=1

Aie−λiτi
)
= 0. (2.59)

The set of solutions of (2.59) is denoted by ΛΣ ∈ C, and the dominant pole of the time
delay positive system (2.58) is defined by :

κ(Σ) := arg max
λ∈ΛΣ

ℜ(λ ). (2.60)

Definition 2.6.16. [80, 85]. The TDS (2.58) is said to be positive if for every φ ∈
C([−τ,0],Rn

+), the solution x satisfies x(t) ∈ Rn
+ for all t ≥ 0.

Proposition 2.6.17. [80, 85]. The TDS (2.58) is positive if and only if A0 ∈ Mn and
Ai ∈ Rn×n

+ i = 1, . . . ,N).

The following theorem gives a characterization of the dominant pole of TDPS.

Theorem 2.6.18. [64]. Consider the TDPS Σ described by (2.58) and assume Σ is asymp-
totically stable, i.e.,

A =
N

∑
i=0

Ai ∈Mn∩Hn. (2.61)

Then, the dominant pole κ(Σ) defined by (2.60) is given by :

κ(Σ) =−α
? < 0, (2.62)

where α? ∈ R++ is a unique solution of

λF
(
α
?I +A0 +

n

∑
i=1

Aieα?τi
)
= 0.

Moreover, we have :
κ(Σ)≥ κ(Σ0) = λF(A), (2.63)

irrespective of τi ∈ R++ (i = 1, . . . ,N).

Other stability criteria

In this part, we discussed briefly some other stability criteria, which are based on the
stability analysis of characteristic functions. This criteria is also briefly studied in [103]
and [110].
Pontryagin criterion : The characteristic equation of linear delay system with a single
or commensurate delay can be transformed into the following form

∆(s,es) =
p

∑
j=0

q

∑
k=0

a jk s j eks. (2.64)

The main idea behind the Pontryagin criterion [106], [107] can be summarized as
follows : suppose (2.64) has principal term (i.e. apq 6= 0). Let F(w) and G(w) denote the
real and the imaginary part, respectively of the quasipolynomial ∆(s,es) Then :
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– If all the roots of ∆(s,es) are in C, then the roots of F(w) and G(w) are real simple,
alternate and

F ′(w)G(w)−F(w)G′(w)> 0 ∀ w ∈ R. (2.65)

– Conversely, all the roots of ∆(s,es) are in C− if one of the next conditions is satisfied.

1. All the roots of F(w) and G(w) are real simple alternate and the inequality (2.65)
is satisfied for at least one w ∈ R.

2. All the roots of F(w) (or G(w)) are real simple and for each root the inequality
(2.65) holds.

Although, this method has strong limitations and it may become very complicated for
systems with more delays than one.
Cheboterev criterion : is the most generalization of Routh-Hurwitz criterion for quasi-
polynomial (2.64). However [57], its application as an analytical criterion is not effec-
tive. Practically, since it has a drawback of computing a large number of determinants.
Yesupovisch criterion : This criterion can be used for quasipolynomial (2.64) in the
special form

∆(s,es) = P(s)+Q(s)e−sτ , (2.66)

where P and Q are polynomials, see [110]. It is clear that only linear time delay system
with single delay can be investigated in this way. In fact, the idea of this method is to
transform the stability analysis to test sign of some function with respect to the real axis.

2.7 Oscillation and non-oscillation in time delay sys-
tems

Oscillatory solutions of differential equations with or without delay have been fre-
quently encountered in many physical and mechanical systems and biological processes
described by a mathematical model. In 1836, when investigating the thermal conducti-
vity, Jacques Charles Sturm posed oscillation problems of the second-order differential
equation

ẍ(t)+q(t)x(t) = 0, (2.67)

in the real domain, which initiated a whole new direction in the qualitative theory
of differential equations. His innovative idea was to deduce oscillatory properties of
unknown solutions of a given differential equation from known ones of an another. For
further insight, we refer to [87].
We say that an object is in oscillation, if it passes continuously from one side to the other
of a position called the equilibrium position.
If we consider for example a pendulum, in this case the mass passes alternately from
one side to the other of the equilibrium position, which is at the lowest point of the
movement of the pendulum. If we assume that x = 0 is the equilibrium position this
means that the position of the object takes alternately positive and negative values.
An oscillatory solution is generally defined as follows. See [70] and [1].

38



2.7. Oscillation and non-oscillation in time delay systems

Definition 2.7.1. A non trivial solution x is said to be oscillatory, if there exists a sequence
{tm} as m→ ∞ such that x(tm) = 0 (m1.2.3 . . ., and x is said to be non oscillatory if there
exists a T ∈ [t0,∞) such that |x(t)|> 0 for t > T .

The essence of the oscillation theory lies in establishing conditions for the existence of
oscillatory (non oscillatory) solutions and/or the convergence to zero, in studying the
laws of distribution of the zeros, in obtaining the lower bounds for the distance bet-
ween consecutive zeros, in studying the number of zeros in a given interval, as well as
in examining the relationship between the oscillatory properties of solutions and cor-
responding oscillatory processes in systems of diversified physical nature. Since Sturm’s
pioneering work, the oscillation theory has become an indispensable mathematical tool
for many sciences and high technologies.

Igor Gumowski [74] was the first to propose an analytical study of periodical solutions,
starting from DDE of first order, with constant delay, and delay function of the state
variable. The effect of delay on the oscillatory and nonoscillatory behavior of delay
differential equation

ẋ(t)+ax(t− τ) = 0, (2.68)

can be summarized in the following proposition.

Theorem 2.7.2. Let a ∈ (0,∞) then all nontrivial solutions of (2.68) are oscillatory

aeτ > 1, (2.69)

and (2.68) has a nonoscillatory solution if

aeτ ≤ 1.

Such a result is a very special case of a large class of DDEs studied by Gopalsamy [69].
As in the previous section, the study of the influence of parameters on the appearance
of oscillating solutions is based on a fundamental result about the relationship between
linear DDE (1.6) and the position of the characteristic roots of equation (1.7) in the
complex plan . This result is given by the following proposition from [69].

Proposition 2.7.3. All nontrivial solutions of (1.3.1) are oscillatory if and only if the
associated characteristic equation

s+ae−sτ = 0,

has no real roots.

Theorem that follows gives conditions in oscillation of solution of linear time delay
systems with several delays, see [69].

Theorem 2.7.4. For a j,τ j ∈ (0,∞), all solutions of the equation

ẋ(t)+
m

∑
j=1

a jx(t− τ j) = 0, (2.70)
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are oscillatory if and only if :

− s+
m

∑
j=1

a jesτ j > 0 for all s ∈ (0,∞). (2.71)

Condition (2.71) is easily seen to be equivalent to aeτ > 1 when n = 1.
Now, we present some previous literature on the known result of oscillatory solution of
first order linear equation. Hence many authors have considered the delay differential
equation with positive coefficient.

ẋ(t)+ p(t)x(t− τ) = 0. (2.72)

The result of Ladas [95] has been inspirational to several authors working in oscillation
of delay differential equations, where they proved that every solution of (2.72) oscillates
if :

lim
t→∞

inf
∫ t

t−τ

p(s)ds >
1
e

and lim
t→∞

inf
∫

t− τ

2
t
p(s)ds > 0. (2.73)

Integral condition like (2.73) have been employed by many others in the study on f
oscillatory properties of various functional differential equation. For example, see the
papers [71], [95], and [115].
In Cahlon 1998 [56] a new property has been introduced called generic oscillation and
generic non oscillation defined as a topological assessment of the extent of oscillatory
or non oscillatory solutions of a linear delay differential equation. Specifically, they
generalize theorem (2.7.2) and theorem (2.7.4) and give concrete condition for the
solution of (2.70) to be generically oscillatory or generically non oscillatory.

Theorem 2.7.5. Let τ j ≥ 0 ( j = 1, . . . ,n).
1. Suppose that a j > 0 ( j = 1, . . . ,n) (2.71) holds then all solution of (2.70) are oscil-

latory.
2. Suppose that a j ∈ R ( j = 1, . . . ,n) and

−s0 +
n

∑
j=1
|a j|es0τ j < 0.

for s0 > 0 then the solution of (2.70) are generically nonoscillatory.
3. Suppose that a j > 0 ( j = 1, . . . ,n) and some τi > 0. If

−s0 +
n

∑
i=1

aies0τi = 0,

For some s0 > 0 and

−s+
n

∑
j=1

a jesτ j ≥ 0,

for all s > 0,then the solutions of (2.70) are generically non oscillatory.

This result is the first study on the generic oscillations which can yield more insight into
solutions of DDEs than the standard oscillation theorem.
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2.8 Conclusion

This chapter gave an overview of some important stability criteria encountered in the
context of linear time delay systems.
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CHAPITRE

3
Spectral abscissa and rightmost-

roots assignment for time delay sys-
tems
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3.1 Introduction

The objective of this chapter centers on the stability and stabilizing-controllers design
for linear time-invariant retarded time-delay systems. The study of conditions on the
equation parameters that guarantees the exponential stability of solutions is a question
of ongoing interest and remains an open problem especially when the systems are of
high order or having multiple and/or distributed delays. The starting point of this study
is an interesting property Multiplicity Induced Dominancy (MID) which ensure the sta-
bility of the considered system. So, in this chapter, we aim to formulate conditions on
the coefficients parameters that guarantees the coexistence of certain number of non
oscillating spectral values which are not necessary multiple. The design approach we
propose here is merely a delayed-output-feedback where the candidates’ parameters
result from the manifold defined by the coexistence of an exact number of negative
spectral values, which guarantees the asymptotic stability of the system’s solutions. The
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dominancy of such non oscillating modes is analytically shown for the considered re-
duced order Time-delay systems (scalar and second order system) using an adequate
factorization. This chapter is organized as follows : first, we recall some important facts
on the spectrum distribution for retarded Time-delay systems. Next the coexistence of
non oscillatory modes for the scalar differential equation with a single delay is investi-
gate. After this second order delay equation with three real spectral values is considered.
Some concluding remarks ends the chapter.

3.2 Prerequisites and Problem Statement

In this section, we present some important facts and properties of the spectrum distri-
bution of Time-delay systems. Let consider the generic n-order system with a single time
delay :

ẋ(t) = A0x(t)+A1x(t− τ). (3.1)

Here τ is a positive constant delay and the matrices A j ∈ Mn(R) for j = 0 . . .1. It is
well known that the asymptotic behavior of the solutions of (3.1) is determined from
the spectrum designating the set of the roots of the associated characteristic function
(denoted in the sequel ∆(s,τ)). Namely, the characteristic function corresponding to
system (3.1) is a quasipolynomial ∆ : C×R+→ C of the form :

∆(s,τ) = det(sI−A0−A1e−τs). (3.2)

Asymptotic stability of the trivial solution and oscillatory behavior of (3.1) are known.
In particular, the zero solution of this equation is asymptotically stable if and only if all
roots of (3.2) lie in the left half plane, and all solutions of (3.1) are non oscillatory if
and only if (3.2) have a real roots.
We start by introducing a proposition which plays an important role in the study of
continuity properties of the spectrum of retarded Time-delay systems. For more details
see [9, page 10]

Proposition 3.2.1. [9] If s is a spectral value corresponding to system (3.1) then it
satisfies

|s| ≤ ‖A0 +A1e−sτ‖2. (3.3)

The above proposition allows to construct an envelope curve around the characteristic
roots of the quasipolynomial (3.2).
The following result was first introduced and claimed in the problems collection publi-
shed in 1925 by G. Pólya and G. Szegö. In the fourth edition of their book [16, Problem
206.2, page 144 and page 347], G. Pólya and G. Szegö emphasize that the proof was
obtained by N. Obreschkoff in 1928 using the principle argument, see [11]. Such a re-
sult gives a bound for the number of quasipolynomial’s roots in any horizontal strip. As
a consequence, a bound for the number of quasipolynomial’s real roots can be easily
deduced.
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Theorem 3.2.2 ( [16]). Let τ1, . . . ,τN denote real numbers such that τ1 < τ2 < .. . < τN
and d1, . . . ,dN positive integers such that d1 + d2 + . . .+ dN = D. Let fi, j(s) stand for the
function fi, j(s) = si−1 exp(τ js), for 1 ≤ i ≤ d j and 1 ≤ jN. Let ] be the number of zeros of
the function

f (s) = ∑
1≤ j≤N
1≤i≤d j

ci, j fi, j(s) (3.4)

that are contained in the horizontal strip α ≤ Im(z)≤ β . Assuming that

∑
1≤k≤d1

|ck,1|> 0 and ∑
1≤k≤dN

|ck,N |> 0

then

(τN− τ1)(β −α)

2π
−D+1≤ ]≤ (τN− τ1)(β −α)

2π
+D+N−1. (3.5)

Setting α = β = 0, the above theorem yields ]PS ≤D+N−1 where D stands for the sum of
the degrees of the polynomials involved in the quasipolynomial function f and N designates
the associated number of polynomials. This gives a sharp bound for the number of s real
roots.

3.3 On the coexistence of real spectral value and their
dominancy for scalar delay equation

Consider the simple scalar differential equation with one delay representing a biological
model discussed by K.L.Cooke in [10]. It describes a vector disease dynamics where []
the infected host population x(t) is governed by :

ẋ(t)+ax(t)+bx(t− τ) = 0, (3.6)

here b > 0 designates the contact rate between infected and uninfected populations and
it is assumed that the infection of the host recovery proceeds exponentially at a rate
b > 0, see also [12] for more insights on the modeling and stability results.
The characteristic equation associated to (3.6) is as follows :

∆(s,τ) := s+a+bexp(−sτ) = 0. (3.7)

Theorem 3.3.1. For a given delay τ > 0, the system (3.6) admits two distinct real spectral
values at s = s2 and s = s1, with s2 < s1, if and only if

a = a(s1,s2,τ) :=
s2 exp(−s1τ)− s1 exp(−s2τ)

exp(−s2τ)− exp(−s1τ)
;

b = b(s1,s2,τ) :=
s1− s2

exp(−s2τ)− exp(−s1τ)
.

(3.8)

45



Spectral abscissa and rightmost-roots assignment

– Moreover, both spectral values s2 and s1 of (3.6) are negative, if and only if there exists
a critical delay τ∗∗,

τ
∗∗ =

ln |s2|− ln |s1|
s1− s2

(3.9)

such that a(s1,s2,τ)≥ 0 for all τ ≥ τ∗∗.
– The spectral value s1 is nothing but the spectral abscissa corresponding to (3.6). Further-

more, the zero solution of (3.6) is asymptotically stable.

Remark 3.3.2. From a control theory point of view, the assignment of such real negative
spectral values subjects to choose them in the interval ]−∞,−a[.

Proof : According to the Theorem 3.2.2, see also [16], the number of real roots for
(3.7) is two, hence we are interested to investigate the existence of two distinct negative
spectral values, s2 and s1 with s2 < s1. The values of a and b are calculated by solving
the system : {

s2 +a+bexp(−s2τ) = 0;
s1 +a+bexp(−s1τ) = 0. (3.10)

We obtain immediately the values of a and b given in (3.8), as functions of s2 and s1 and
τ. These values are unique for each fixed τ > 0. Observe that b(s1,s2,τ) > 0 for every
τ > 0, while the parameter a(s1,s2,τ) changes the sign according to the delay τ and the
position of s1 and s2 on the real line. On the other hand, both s1 +a and s2 +a are not
null, otherwise, b = 0 and then s1 = s2. Which is impossible. Now, from (3.10), we have

s1 +a
s2 +a

= exp(−τ(s1− s2)).

This means that s2 +a and s1 +a have necessarily same sign, and the following expres-
sion of τ :

τ =− ln(s1 +a)− ln(s2 +a)
s1− s2

(3.11)

is well-defined. Applying the Mean Value Theorem to the function t 7→ ln(t +a), t ∈
[s2,s1]. This ensures the existence of c ∈]s2,s1[ such that

τ =− 1
c+a

. (3.12)

Since τ > 0 so c + a < 0. Consequently s2 + a < a + c < 0. This means that s2 < −a.
Likewise for s1, since sign(s1 +a) = sign(s2 +a), we get s1 <−a.
To show the negativeness of s2 and s1, we use the variations of the mapping τ 7→
a(s1,s2,τ). An easy calculation shows that a is a continuous and increasing function
from −∞ to −s1. So, if equation a(s1,s2,τ) = 0 admits a root τ∗∗ > 0, then a(s1,s2,τ)≥ 0,
for all τ ≥ τ∗∗. Consequently, s1 < 0. Conversely, if s1 < 0 then a(s1,s2,τ) ≥ 0, for all
τ ≥ τ∗∗.
The study of the stability of the system (3.6) is based on the dominancy of s1. To do this,
we use an adequate factorization of the quasipolynomial ∆(s,τ) from the characteristic
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equation (3.7). This later can be written as follows :

∆(s,τ) = (s− s1)

(
1− (a+ s1)− exp(−(s− s1)τ)

s− s1

)

= (s− s1)

(
1− (a+ s1)

(−exp(−(s− s1)τ)

s− s1
+

1
s− s1

))
.

(3.13)

Thus,

∆(s,τ) = (s− s1)

(
1− τ(a+ s1)

∫ 1

0
exp(−τ(s− s1)t)dt

)
. (3.14)

To prove that s1 is the right most root (dominancy), we assume that there exists some
s0 = ζ + jη , a root of (3.7) such that ζ > s1. Then

1 = τ(a+ s1)
∫ 1

0
exp(−τ(s0− s1)t)dt

= Re

(
τ(a+ s1)

∫ 1

0
exp(−τ(ζ + jη− s1)t)dt)

)

≤ τ|a+ s1|
∣∣∣∣∣
∫ 1

0
exp(−τ(ζ + jη− s1)t)dt

∣∣∣∣∣
≤ τ|a+ s1|

∫ 1

0
exp(−τ(ζ − s1)t)dt. (3.15)

From (3.12), we have

τ <
1

−(a+ s1)
=

1
|a+ s1|

. (3.16)

Thus
τ | a+ s1 |< 1. (3.17)

Moreover, since ζ − s1 > 0, we have∫ 1

0
exp(−τ(ζ − s1)t)dt < 1. (3.18)

Inequality (3.15) can not be satisfied simultaneously with (3.17) and (3.18). Which
proves that the hypothesis ζ > s1 is inconsistence. So s1 is the spectral abscissa corres-
ponding to (3.6), guarantying the asymptotic stability of the system (3.6).

Theorem 3.3.1 shows that the co-existence of two spectral negative values s1 and s2 is
guaranteed by the positivity of the quantity a(s1,s2,τ), for τ > 0. Inequality a(s1,s2,τ)≥ 0
is satisfied if and only if

τ ≥ τ
∗∗ =

ln |s2|− ln |s1|
s1− s2

. (3.19)

with a(s1,s2,τ
∗∗) = 0.
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Remark 3.3.3. 1. In recent results [45,47], where the question of the effect of multiple
spectral values on the dynamics of time-delay systems is investigated. So, we are
interested in the behavior and the geometric structure of the corresponding envelope,
in which case a(s0,τ) = −s0− 1

τ
; and b(s0,τ) =

1
τ

exp(τs0). The connected structure
of the envelope is then observed, with the appearance of an invariant node with
respect to the delay, at the spectral abscissa s0, for every τ ≥ τ̃. This critical value τ̃

corresponds to the value that vanishes a(s0,τ), namely, τ̃ =− 1
s0

, see Figure 3.
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τ increases from 0.5

FIGURE 3.1 – Envelope curve of the characteristic equation (3.7). Case when s0 = −2
is a double root. The critical delay τ = 0.5 corresponds to the value that vanishes the
coefficient a = 2− 1

τ
, see [52].

2. Interestingly, when considering two real distinct spectral values, varying the value of
delay τ may induce a change in the geometry of the envelope curve. The connected
structure of the envelope is lost. Indeed, as τ increases reaching some critical delay
τ∗, the connected structure of the envelope is preserved. Exceeding this critical value
τ∗, there is appearance of two connected components, moving away more and more
until a constant distance, reached for every delay τ ≥ τ∗∗, see Figure 3.2.

3. Such geometry is observed in [14], when the analytical study and synthesis of right-
most eigenvalues of ẋ(t) = Ax(t− τ) is considered.

The description of this kind of curve, when considering two simples spectral values s2,
s1, with s2 < s1 < 0, is given in the following theorem.

Theorem 3.3.4. Let

Cτ :=C (s2,s1,τ) =
{
(x,y) ;

√
x2 + y2 = (|a(s2,s1,τ)|+ |b(s2,s1,τ)|exp(−xτ))

}
(3.20)

be the envelope curve associated to the quasipolynomial (3.7).
By browsing the delay τ from a small value until a large value, the following assertions
holds for (3.7) :

1. For any τ > 0, the envelope curve Cτ intersects one times the real axis, in a positive
abscissa, x+(τ).
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FIGURE 3.2 – Envelope curve of the characteristic equation (3.7). Case of co-existence
of two simple real roots s1 =−1, s2 =−2.

2. There exists τ∗,τ∗∗ > 0, with τ∗ < τ∗∗, such that :
– When τ = τ∗, the curve Cτ∗ contains a node, (x(τ∗),0), in the region x < 0.
– For τ < τ∗, there is only one intersection of the envelope curve with the real axis.
– For τ ∈]τ∗∗,τ∗[, the curve Cτ splits into two disjoint segments Cτ

1 and Cτ
2 , which

intersect the the region ]s2,s1[ at points (x−1 (τ),0) and (x−2 (τ),0), respectively.

– There exists x(τ∗∗) < s2 such that for every τ < τ∗∗,
◦

Cτ∗∗ ⊂
◦

Cτ in the region x >

x(τ∗∗), and for every τ > τ∗∗,
◦

Cτ ⊂
◦

Cτ∗∗.
– For τ ≥ τ∗∗, the curve Cτ splits into two disjoint segments Cτ

1 and Cτ
2 , with the

property that (s2,0) ∈
⋂

τ≥τ∗∗C
τ
1 and (s1,0) ∈

⋂
τ≥τ∗∗C

τ
2 and

d(Cτ
1 ,C

τ
2) = |s2− s1|.

3. As τ → ∞,
– x−1 (τ)→ s2, x−2 (τ)→ s1 and x+(τ)→ −s1. The two first limits are reached from

τ = τ∗∗, see Figure 3.4.
– C∞, the envelope limit, is the circle centered at the origin with the rayon r = |s1|.

Proof 1.

To find the point of intersection of the curve with the x-axis, we solve this system of two
equation obtained from (3.20) using the W-Lambert function [15]{

|a|+ |b|e−xτ − x = 0
|a|+ |b|e−xτ + x = 0. (3.21)

Using a change of variable z =−xτ we obtain

|s1− s2|ez− z
τ
|e−s2τ − e−s1τ |+ |s2e−s1τ − s1e−s2τ |= 0 (3.22)

|s1− s2|ez +
z
τ
|e−s2τ − e−s1τ |+ |s2e−s1τ − s1e−s2τ |= 0. (3.23)
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FIGURE 3.3 – (Left) Decreasing behavior of the envelope curve versus τ < τ∗∗. (Right)
Increasing behavior of the envelope curve versus τ ≥ τ∗∗. Case s1 =−1 and s2 =−2

The above two equation are under the following form γez +β +σ = 0, where γ = |s1− s2|,
β =±e−s2τ−e−s1τ

τ
and σ = |s2e−s1τ − s1e−s2τ |.

The existence of real solutions depends on the sign of the discriminant ∆(τ) = γ

β
e−

σ

β and its
position with respect to −e−1.

1. For τ > 0, we search the positive solution, so we study the equation (3.23). The
discriminant of this equation is given by :

∆
+(τ) =

τ|s1− s2|
|e−s2τ − e−s1τ | exp

(
− τ|s2e−s1τ − s1e−s2τ |

|e−s2τ − e−s1τ |
)
. (3.24)

Hence equation (3.23) has a positif real solution

z+1 (τ) =−W0(∆
+)− |s2e−s1τ − s1e−s2τ |

|e−s2τ − e−s1τ | ,

thus

x+(τ) =
1
τ

W0(∆
+)+

|s2e−s1τ − s1e−s2τ |
|e−s2τ − e−s1τ | , (3.25)

which implies that the envelope curve intersects only one times the real axis in the
right half plan at x+(τ).

2. Now we study the equation (3.22), where the discriminant is written as follows :

∆
−(τ) =− τ|s1− s2|

|e−s2τ − e−s1τ | exp
(

τ|s2e−s1τ − s1e−s2τ |
|e−s2τ − e−s1τ |

)
. (3.26)

Since ∆−(τ)< 0, we need to evaluate the sign of ∆−(τ)+ e−1. Note that the function
τ 7→∆−(τ)+exp(−1) is continuous on R+. In addition, as τ→ 0, ∆−(τ)+exp(−1)→
−exp(1)+ exp(−1)< 0. We have then

∆
−(τ∗∗) =−ln

(
s1

s2

)((
s1

s2

)− s1
s2−s1 −

(
s1

s2

)− s2
s2−s1

)−1

+ e−1.
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The variations of

F(t) :=−ln(t)
(

t−
t

1−t − t−(1−t)−1
)−1

+ e−1, t ∈ R∗+−{1}

show that ∆−(τ∗∗)+ e−1 > 0,∀t ∈ R∗+−{1}. Thanks to the intermediate values theo-
rem, there exists τ∗ ∈]0,τ∗∗[ such that ∆−(τ∗)+ e−1 = 0.
– For τ = τ∗, ∆− (τ∗) =−e−1, so (3.22) admits a (double) negative real solution

x−d (τ
∗) =

1
τ∗

W0(−e−1)− |s2e−s1τ − s1e−s2τ |
|e−s2τ − e−s1τ | =− 1

τ∗
− |s2e−s1τ − s1e−s2τ |
|e−s2τ − e−s1τ | ,

which allows to the appearance of a node at the point (x(τ∗),0). This equation
admits also a positive solution (x+(τ),0) given by (3.25), from which we deduce
that there are two intersections with the real axis.

– For τ < τ∗, there exists one positive solution (x+(τ),0) given by (3.25), which
corresponds to unique intersection with the half real axis, x > 0.

– For τ ∈]τ∗,τ∗∗[, we have ∆−(τ)+e−1 > 0, then equation (3.22) admits two negative
real solutions

z1 (τ) = −W0
(
∆
−)+ τ |s2e−s1τ − s1e−s2τ |

|e−s2τ − e−s1τ | ,

z2 (τ) = −W−1
(
∆
−)+ τ |s2e−s1τ − s1e−s2τ |

|e−s2τ − e−s1τ | ,

thus

x−1 (τ) =
1
τ

W0
(
∆
−)− |s2e−s1τ − s1e−s2τ |

|e−τs2− e−s1τ | , (3.27)

x−2 (τ) =
1
τ

W−1
(
∆
−)− |s2e−s1τ − s1e−s2τ |

|e−s2τ − e−s1τ | , (3.28)

this implies that the curve Cτ intersects two times the real axis, from which we
deduce that the curve splits into two disjoints segments Cτ

1 and Cτ
2 which intersect

the region ]s2,s1[ at points (x−1 (τ),0) and (x−2 (τ),0) respectively. Details about the
property Cτ

2 ∩Cτ
2 = /0 will be presented bellow.

– Here we consider the case where τ < τ∗∗. Recall that the sign of a(s2,s1,τ) depends
on the parameter τ > 0, while b(s2,s1, .)> 0. So

|s2 exp(−s1τ)− s1 exp(−s2τ)|=


0 if τ = τ∗∗

s2 exp(−s1τ)− s1 exp(−s2τ) if τ > τ∗∗

s1 exp(−s2τ)− s2 exp(−s1τ) if τ < τ∗∗

Hence

d
dτ

(|a(s2,s1,τ)|) =


e−τs2e−τs1

(s2− s1)
2

(e−τs2− e−τs1)2 if τ > τ∗∗

−e−τs2e−τs1
(s2− s1)

2

(e−τs2− e−τs1)2 if τ < τ∗∗
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d
dτ

(|b(s2,s1,τ)|exp(−xτ)) = e−xτ (s1− s2)

(e−τs2− e−τs1)

(
s2e−τs2− s1e−τs1

e−τs2− e−τs1
− x
)

Note that s2e−τs1− s1e−τs2 = (1−θτ)e−θτ (s2− s1), for some θ ∈ ]s2,s1[ , so

x̄(τ) ∆
=

s2e−τs1− s1e−τs2

e−τs2− e−τs1
< 0, ∀τ > 0.

In addition, τ 7→ x̄(τ) is continuous and increasing on ]0,τ∗∗[, with

lim
τ→τ∗∗

x(τ) = s2− (s1− s2)

(
s2

s1

) s1

s2− s1

(
s2

s1

) s2

s2− s1 −
(

s2

s1

) s1

s2− s1

= x(τ∗∗)< s2.

Thus τ 7→ |b(s2,s1,τ)|exp(−xτ) is decreasing on R+∗, for every x > x(τ∗∗) .
This means that when x > x(τ∗∗) , the function

τ 7→ |a(s2,s1,τ)|+ |b(s2,s1,τ)|exp(−xτ)

is continuous and decreasing on ]0,τ∗∗[ . We deduce that

∀τ ∈ ]0,τ∗∗[ ; C (s2,s1,τ
∗∗)⊂C (s2,s1,τ) .

On the other hand, the variations of x 7→ |a(s2,s1,τ)|+ |b(s2,s1,τ)|exp(−xτ) show
that for all x ∈ R− [s2,s1] and for all τ > τ∗∗

|b(s2,s1,τ
∗∗)|exp(−xτ

∗∗)−
(
|a(s2,s1,τ)|+ |b(s2,s1,τ)|exp(−xτ)

)
< 0, (3.29)

from which we deduce that

∀ τ > τ
∗∗; C (s2,s1,τ

∗∗)⊂C (s2,s1,τ) . (3.30)

– Now we study the case of τ > τ∗∗. We have

lim
τ→τ∗∗

C (s2,s1,τ) =
⋂

τ<τ∗∗
C (s2,s1,τ) =C (s2,s1,τ

∗∗)

=
{
(x,y) ;

√
x2 + y2 = M(s2,s1,x)

}
where

M(s2,s1,x) =
s1− s2(

s2

s1

)− s2− x
s1− s2 −

(
s2

s1

)− s1− x
s1− s2

.

Observe that

M(s2,s1,s2) = −s2;
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M(s2,s1,s1) = −s1.

Hence the boundary of C (s2,s1,τ
∗∗) contains both (s1,0) and (s2,0). We get more,

that is
(s2,0) ∈

⋂
τ≥τ∗∗

Cτ
1 and (s1,0) ∈

⋂
τ≥τ∗∗

Cτ
2 . (3.31)

On the other hand, since

M (s2,s1,αs1 +(1−α)s2) =−s2

(
s1

s2

)α

for every α ∈ ]0,1[, we can show that

C (s2,s1,τ
∗∗)∩ ]s2,s1[ = /0.

Indeed, if not there exists z ∈ ]s2,s1[ , such that |z| ≤M (s2,s1,z) . Writing z = αs1 +
(1−α)s2, for some α ∈ ]0,1[ , we have

−s1 < |z| ≤ −s2

(
s1

s2

)α

<−s2

(
s1

s2

)
=−s1.

This implies that
−s1 <−s1

a contradiction.
This reasoning allows us to show that

C (s2,s1,τ
∗∗)∩

{
(x,y) ∈ R2, s2 < x < s1

}
= /0. (3.32)

In fact, in the contrary case, we will get

−s1 ≤
√

s2
1 + y2 <

√
x2 + y2 = |z| ≤ −s2

(
s1

s2

)α

<−s1.

Impossible. This means that the envelope curve C (s2,s1,τ
∗∗) is splits into two dis-

jointed parts Cx<s2 (s2,s1,τ
∗∗) and Cx>s1 (s2,s1,τ

∗∗), separated by the band
{
(x,y) ∈ R2, s2 < x < s1

}
.

As a consequence, we get that distance

d
(
Cx<s2 (s2,s1,τ

∗∗) ,Cx>s1 (s2,s1,τ
∗∗)
)

= d
(
Cx<s2 (s2,s1,τ) ,Cx>s1 (s2,s1,τ)

)
= inf

z1∈Cx<s2(s2,s1,τ
∗∗)

z2∈Cx>s1(s2,s1,τ
∗∗)

d (z1,z2)

= s1− s2, ∀τ > τ
∗∗.

d being the Euclidean distance.

3. Now, we deal with the asymptotic behavior of the envelope curve, x−1 (τ), x−2 (τ), and
x+(τ) as τ → ∞.
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– Since ∆−(τ) ∈
]
−e−1,0

[
, we have W0 (∆

−(τ)) satisfies :

−1 =W0
(
−e−1)<W0

(
∆
−(τ)

)
<W0 (0) = 0,

thus
lim
τ→∞

1
τ

W0
(
∆
−)= 0.

From this we deduce that
lim
τ→∞

x−1 (τ) = s1.

On the other hand, since we have

d(Cτ
1 ,C

τ
2) = s1− s2, ∀τ > τ

∗∗,

we deduce that
lim
τ→∞

x−2 (τ) = s2.
1 (3.33)

Similarly, we prove that lim
τ→∞

x+(τ) =−s1. Indeed, there is always τ0 > 0 such that

|s2e−s1τ − s1e−s2τ |
|e−τs2− e−s1τ | >−s1

2
, for all τ ≥ τ0.

This means that x+(τ) in (3.25) given via the WLambert function satisfies

x+ (τ)>−s1

2
, ∀τ ≥ τ0.

Using the fact that

0 <
e−τx+(τ)

|e−τs2− e−s1τ | <
e

s1τ

2
|e−τs2− e−s1τ | , ∀τ ≥ τ0.

we deduce that
e−τx+(τ)

|e−τs2− e−s1τ | = 0. Letting τ tend to ∞ in the following expression :

x+(τ) =
e−τx+(τ)

|e−τs2− e−s1τ | +
|s1e−τs2− s2e−s1τ |
|e−τs2− e−s1τ | (3.34)

we obtain
lim
τ→∞

x+(τ) = |s1|.2

1. As a consequence, using (3.28), we get the following property of the WLambert function :

limτ→∞

1
τ

W−1 (∆
−(τ)) = 0.

2. As a consequence, we get the following property lim
τ→∞

1
τ

W0 (∆
+) = 0.
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FIGURE 3.4 – Asymptotic behavior of the negative roots of the envelope curve. s2 =−1,
s1 =−2

– Let us consider the equation of the envelope curve (3.20). In the region x > s1, we
have

lim
τ→∞
|b(s1,s2,τ)|exp(−xτ) = 0,

and

lim
τ→∞
|a(s1,s2,τ)|= |s1|.

Hence, we deduce that as τ → ∞ the envelope curve (3.20) becomes

x2 + y2 = s2
1,

which corresponds to a circle C∞ with the ray r = |s1|. Concerning the region x < s2,
simulation results show that for τ sufficiently large, the segment Cτ

1 disappears. The
question of finding the upper bound of τ for which Cτ

1 is exactly the half-plan x≤ s2
remains open.

3.4 Second-order systems

Second-order linear systems capture the dynamic behavior of many natural phenomena,
and have found wide applications in a variety of fields, such as vibration and structural
analysis. The equation of this system is given as follows :

ẍ(t)+aẋ(t)+bx(t)+αx(t− τ) = 0. (3.35)

The characteristic equation associated to (3.35) is given by :

∆(s,τ) = s2 +as+b+α exp(−sτ) = 0. (3.36)
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Theorem 3.4.1. The system (3.35) admits three distinct real spectral values s3, s2 and s1
with s3 < s2 < s1 if and only if the parameters a, b and α satisfy

a = a(s1,s2,s3,τ) :=
1
Q ∑

i, j,k∈Λ

i< j,i6= j 6=k

(−1)i+ j (s2
i − s2

j)exp(−skτ)

b = b(s1,s2,s3,τ) :=− 1
Q

∑
i, j,k∈Λ

i< j,i 6= j 6=k

(−1)i+ j sis j(si− s j)exp(−skτ)

α = (s1,s2,s3,τ) :=− 1
Q

∏
i, j∈Λ

i< j

(si− s j)

(3.37)

where
Q := Q(s1,s2,s3,τ) = ∑

i, j,k∈Λ

i< j,k 6=i, j

(−1)i+ j (si− s j)exp(−skτ).

In this case, α is necessarily negative.
– The spectral value s1 is negative if and only if there exists τ0 > 0 such

a(s1,s2,s3,τ0)+ s2 = 0.

– s1 is the spectral abscissa of (3.35). This guarantees the asymptotic stability of the sys-
tem.

Proof 2. The parameters given in (3.37) can be easily obtained by solving the system
s2

3 +as3 +b+αe−s3τ = 0
s2

2 +as2 +b+αe−s2τ = 0
s2

1 +as1 +b+αe−s1τ = 0.
(3.38)

Now, let us study the sign of α. Recall that

α =−(s1− s2)(s2− s3)(s1− s3)

Q(s1,s2,s3,τ)
. (3.39)

We apply twice the Mean Value Theorem to the denominator Q(s1,s2,s3,τ), we get :

Q(s1,s2,s3,τ) = s2e−τs3− s1e−τs3 + s1e−τs2− s3e−τs2 + s3e−τs1− s2e−τs1

= (s2− s1)
(
e−τs3− e−τs1

)
+(s3− s1)

(
e−τs1− e−τs2

)
= −τ (s2− s1)(s3− s1)

∫ 1

0
e−τ(ts1+(1−t)s3)dt

+τ (s3− s1)(s2− s1)
∫ 1

0
e−τ(ts1+(1−t)s2)dt

= −τ (s2− s1)(s3− s1)
∫ 1

0

(
e−τ(ts1+(1−t)s3)− e−τ(ts1+(1−t)s2)

)
dt

= τ
2 (s2− s1)(s3− s1)(s3− s2)

∫ 1

0

∫ 1

0
(1− t)e−τ(ts1+(1−t)(θs3+(1−θ)s2))dθdt.
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This means that
α (s1,s2,s3,τ) =

−1

τ2Q̃ (s1,s2,s3,τ)
(3.40)

where

Q̃ (s1,s2,s3,τ) =
∫ 1

0

∫ 1

0
(1− t)e−τ(ts1+(1−t)(θs3+(1−θ)s2))dθdt > 0.

Now, let us show the negativeness of s1, s2, s3. From (3.38) and (3.40) , we get that
(s3− s2) [s3 + s2 +a] =−α [e−τs3− e−τs2]> 0
(s2− s1) [s2 + s1 +a] =−α [e−τs2− e−τs1]> 0
(s3− s1) [s3 + s1 +a] =−α [e−τs3− e−τs1 ]> 0.

Since s3 < s2 < s1, we obtain the following equations :
s3 + s2 <−a
s2 + s1 <−a
s3 + s1 <−a

(3.41)

System (3.41) is reduced to the single inequality s2 + s1 <−a, from which we deduce that
s3 < s2 < −a

2 , and s1 < −a− s2. Since τ 7→ a(s1,s2,s3,τ)+ s2 is continuous and increasing
from −∞ to −s1 when τ varies in R+∗, this means that a(s1,s2,s3,τ)+ s2 takes positive
values if (and only if) s1 < 0. This means that the equation a(s1,s2,s3,τ)+ s2 = 0 has a
(unique) root, τ0 > 0.
Now, to study the stability of the system, we need to study the dominancy of s1 by using an
adequate factorization of the quasipolynimial (3.36), so we have :

s2 +as+b+α exp(−τs) = (s− s2)(s− s1)

[
s2 +as+b+α exp(−τs)

(s− s2)(s− s1)

]
= (s− s2)(s− s1)P(s,s1,s2,τ).

The factor P(s) :=P(s,s1,s2,τ) can be rewritten under the more suitable form

P(s) = 1+
(a+ s2 + s1)s+b− s2s1

(s− s2)(s− s1)
+

α exp(−τs)
(s− s2)(s− s1)

= 1− s2
2 +as2 +b

(s1− s2)(s− s2)
+

s2
1 +as1 +b

(s1− s2)(s− s1)
+

α exp(−τs)
(s2− s1)(s− s2)

− α exp(−τs)
(s2− s1)(s− s1)

= 1+
α exp(−τs)

(s2− s1)(s− s2)
− α exp(−τs2)

(s2− s1)(s− s2)
+

α exp(−τs1)

(s1− s2)(s− s1)
− α exp(−τs)

(s2− s1)(s− s1)
.

Using the integral form of the remainder in Taylor’s Theorem, we get

P(s) = 1+
α exp(−τs2)(exp(−τ (s− s2))−1)

(s2− s1)(s− s2)
+

α exp(−τs1)(1− exp(−τ (s− s1)))

(s2− s1)(s− s1)

= 1+
α exp(−τs2)

(
−τ (s− s2)

1∫
0

e−τ(s−s2)tdt
)

(s2− s1)(s− s2)
−

α exp(−τs1)

(
−τ (s− s1)

1∫
0

e−τ(s−s1)tdt
)

(s2− s1)(s− s1)
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= 1+
ατ

(s2− s1)

1∫
0

exp(−τts)(exp(−τ (1− t)s1)− exp(−τ (1− t)s2))dt.

Using again the following integral representation

exp(−τ (1− t)s1)−exp(−τ (1− t)s2)=−τ (s1− s2)
∫ 1

0
exp(−τ (1− t)(θs2 +(1−θ)s1))dθ

we get

P(s,s1,s2,τ) = 1+ατ
2

1∫
0

1∫
0

(1− t)exp(−τt (s− s1))exp(−τ [s1 +θ (1− t)(s2− s1)])dθdt.

To prove the dominancy property, namely s1 is the rightmost root of (3.36), let us assume
that there exists some s0 = ζ + jη a root of (3.36) such that ζ > s1. Then P(s0,s1,s2,τ) = 0
and for any t > 0, one has :

exp(−τ [t (ζ − s1)])< 1.

So

1 =−ατ
2

1∫
0

1∫
0

(1− t)exp(−τt (s0− s1))exp(−τ [s1 +θ (1− t)(s2− s1)])dθdt

= Re

(
−ατ

2
1∫

0

1∫
0

(1− t)exp(−τt (s0− s1))exp(−τ [s1 +θ (1− t)(s2− s1)])dθdt

)

≤ |α|τ2
1∫

0

1∫
0

(1− t)exp(−τt (ζ − s1))exp(−τ [s1 +θ (1− t)(s2− s1)])dθdt

< |α|τ2
1∫

0

1∫
0

(1− t)exp(−τ [(1−θ (1− t))s1 +θ (1− t)s2])dθdt. (3.42)

Using the relation 1−θ (1− t) = t +(1− t)(1−θ) , we get

exp(−τ (1−θ (1− t))s1) = exp(−τts1)exp(−τ (1− t)(1−θ)s1) .

Moreover, since s3 < s1, we obtain, for every t ∈ (0,1) and every θ ∈ (0,1) , the following
estimation

exp(−τ (1− t)(1−θ)s1)< exp(−τ (1− t)(1−θ)s3) .

Summing up, using (3.40) , inequality (3.42) becomes

1 < |α|τ2
1∫

0

1∫
0

(1− t)exp(−τts1)exp(−τ (1− t) [(1−θ)s3 +θs2])dθdt = |α|τ2Q̃ = 1,

which is inconsistent. This proves the dominancy of s1. The proof of Theorem 3.4.1 is
achieved.
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Remark 3.4.2. The geometric structure of envelope curve of the quasipolynomial (4.2),
defined by √

x2 + y2−‖A0‖2−‖A1‖2 e−τx = 0, (3.43)

with A0 =

(
−a 1
−b 0

)
and A1 =

(
0 0
−α 0

)
, may loose its connection as observed in the

first order equation, depending on the distribution of the roots s1, s2, s3 and the delay τ.
More precisely, three cases can be observed according to the distance of the root s3 with
respect to the centered circle, of radius R, with

R2 = ‖A0‖2
2 =

1
2

(√
(a2 +(b−1)2)(a2 +(b+1)2)+a2 +b2 +1

)
(3.44)

1. If s3 <−R, exceeding some critical value of the delay τ = τ̃ gives rise to the birth of two
disconnected components as illustrated in Figure 3.5 (left), where the arrows indicate
the motion direction of the envelope as τ increases. For τ sufficiency large, the right
component is the centered circle, of radius R, while the left component approaches
the half-plane delimited by x = s3. The two components are separated by the distance
−R− s3.

FIGURE 3.5 – Envelope curve of the characteristic equation (3.36). Case s1 =−2, s2 =−3,
s3 =−13.

2. If s3 > −R, the connected structure of the envelope is preserved independently from
the delay τ . For τ sufficiency large, the envelope takes the shape of a vertical (f)
never closing and which is carried by the centered circle of radius R and delimited by
the vertical line x = s3 as can be seen in Figure 3.6 (left).

3. If s3 = −R, the connected structure of the envelope is still preserved as in the second
case. Here the structure (f) is also observed. This structure is deformed when the
delay increases. Indeed, the angular points are getting closer and closer, until forming
a node at s3, see Figure 3.6 (right).
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FIGURE 3.6 – Envelope curve of the characteristic equation (3.36). Case s1 =−2, s2 =−3,
s3 ≥−R.

3.5 Concluding remarks

The property of multiplicity induced-dominancy for spectral value of time-delay systems
of retarded type is extended through this work. More precisely, it is shown, for redu-
ced order Time-delay systems, that assigning PSB real spectral values (not necessarily
multiple root) make them the rightmost roots of the corresponding quasipolynomial.
Furthermore, if they are set to be negative, this guarantees the asymptotic stability of
the trivial solution. This new result emphasizes a new delayed controller-design based
on the trivial solution’s decay rate assignment.
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4.1 Introduction

The main objective of this chapter consists to investigate the stability and stabilization of
some generic linear second order time-invariant retarded system with single delay. This
study is mainly inspired by [49]where a property called Multiplicity-Induced-Dominancy
(MID) is emphasized for generic second order delay system that we consider in this
chapter, which consists in characterizing the exponential decay rate of the trivial so-
lution. The main idea of this study is to built an appropriate delayed-state-feedback
controller allowing to guarantee the stability of the system in the closed loop using an
appropriate partial pole placement. Recently in [81] it is shown that under appropriate
conditions, the coexistence of the maximal number of negative distinct roots guarantees
their dominancy. In this case an adequate factorization is found for the scalar equation
and second order system with single delay allowing to write the quasipolynomial in
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an integral operator form. But in some cases such a factorization is hard to be establi-
shed, especially for the quasi-polynomials with higher degrees which is the case for the
equation studied in this chapter. The argument principle based stability criteria allows
to calculate analytically the number of unstable characteristic roots for retarded time-
delay system avoiding the direct calculating the corresponding improper integral. So
this chapter focus on the application of the Stépàn-Hassard approach to show the do-
minancy of spectral values which are not necessarily multiple. To do this, a conditions
on the system parameters guaranteeing the co-existence of the maximal number of real
roots is established, and the argument principle is applied to shown the dominancy of
real spectral values in the particular case of equidistributed roots .

4.2 Main Results

Let us focus on the second order system

ẍ(t)+a1ẋ(t)+a0x(t) = u(t), (4.1)

where u is the unknown control. Assume that the system (4.1) is unstable in the un-
controlled case, namely when u(t) = 0. Our aim is to built a delayed-state-feedback
controller under the form :

u(t) =−α0x(t− τ)−α1ẋ(t− τ), (4.2)

which allows to stabilize solutions of control system (4.1). The characteristic quasi-
polynomial function corresponding to the generic control problem is described as fol-
lows :

∆(s,τ) = P(s)+Q(s)e−sτ = 0, (4.3)

where P(s) and Q(s) are polynomials in s with degree of Q(s) is less then the degree of
P(s). In our case, we consider

P(s) = s2 +a1s+a0s and Q(s) = α1s+α0. (4.4)

4.2.1 On qualitative properties of s1 as a root of (4.3)

The following theorem gives conditions on the parameter coefficients that allows assi-
gning a maximum number of spectral values of the second order system (4.1)-(4.2).
This result is useful in control theory.

Proposition 4.2.1. The following assertions hold :
– The quasipolynomial (4.3) admits four distinct real spectral values s1, s2, s3 and s4 with
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s4 < s3 < s2 < s1 if and only if the parameters a1, a2 , α1 and α0 satisfy

a1(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
1 s2

1 s1e−s1τ e−s1τ

1 s2
2 s2e−s2τ e−s2τ

1 s2
3 s3e−s3τ e−s3τ

1 s2
4 s4e−s4τ e−s4τ

∣∣∣∣∣∣∣∣ ,

a0(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
s2

1 s1 s1e−s1τ e−s1τ

s2
2 s2 s2e−s2τ e−s2τ

s2
3 s3 s3e−s3τ e−s3τ

s2
4 s4 s4e−s4τ e−s4τ

∣∣∣∣∣∣∣∣ ,

α1(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
1 s1 s1e−s1τ s2

1
1 s2 s2e−s2τ s2

2
1 s3 s3e−s3τ s2

3
1 s4 s4e−s4τ s2

4

∣∣∣∣∣∣∣∣ ,

α0(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
1 s1 s2

1 s1e−s1τ

1 s2 s2
2 s2e−s2τ

1 s3 s2
3 s3e−s3τ

1 s4 s2
4 s4e−s4τ

∣∣∣∣∣∣∣∣ ,

(4.5)

where

Q(τ) =

∣∣∣∣∣∣∣∣
1 s1 s1e−s1τ e−s1τ

1 s2 s2e−s2τ e−s2τ

1 s3 s3e−s3τ e−s3τ

1 s4 s4e−s4τ e−s4τ

∣∣∣∣∣∣∣∣ . (4.6)

– The spectral value s1 is negative if and only if there exists τ0 > 0 such that

a1(τ0)+ s2 = 0. (4.7)

Proof : – According to the G. Pólya and G. Szegö Theorem [16], the number of real
roots of (4.3) is four, hence we investigate the existence of four distinct real spec-
tral values s1 > s2 > s3 > s4. The coefficients of the quasi-polynomial function (4.3)
described by (4.5) and (4.6) are obtained by solving the following system

s2
i +a1si +a0 +(α1si +α0)exp(−siτ) = 0, i = 1 . . .4, (4.8)

that we can represents under the more suitable form :
1 s1 s1e−s1τ e−s1τ

1 s2 s2e−s2τ e−s2τ

1 s3 s3e−s3τ e−s3τ

1 s4 s4e−s4τ e−s4τ




a0
a1
α1
α0

=


−s2

1
−s2

2
−s2

3
−s2

4

 . (4.9)

System (4.8) admits a unique solution because the Vondermonde-type matrix in Q(τ)
is invertible, for every τ > 0. Indeed, its determinant is positive since τ 7→ Q(τ) is
increasing from 0 to ∞, with Q(0) = 0. To get the formulas (4.5), we just apply the
Cramer’s rule.
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– The negativity of the root s1 is shown through the variation of the function

τ 7→ a1(τ)+ s2. (4.10)

So, for all values of τ ∈R+∗, this later function is continuous and increasing from −∞

to −s1, from which we deduce that τ 7→ a1(τ)+ s2 takes a positive values if and only
if s1 < 0. See [81].

Due to the computation complexity of these time-delay dependant coefficients, we
consider only the case of equidistance roots. This allows also to decrease the number of
parameters to handle. So, we suppose that the roots of (4.3) are such that :

d = |s1− s2|= |s2− s3|= |s3− s4|. (4.11)

Substituting the formula (4.11) in (4.5) and (4.6) the above parameter coefficients are
rewritten as follows :

a1 (τ) =
1

edτ −1
(
2s1−5d +dedτ −2s1edτ

)
a0 (τ) =

1(
edτ −1

)2

(
6d2−ds1e2dτ +6ds1edτ −5ds1 + s2

1e2dτ −2s2
1edτ + s2

1

)

α1 (τ) = 2de−2dτ
eτs1

e−dτ −1

α0 (τ) =
−2de−2dτeτs1(

e−dτ −1
)2

(
3d− s1 + s1e−dτ

)
(4.12)

The following theorem gives conditions on the negativeness of s1.

Theorem 4.2.2. The spectral values s1 is negative if and only if one of the following equi-
valent conditions is satisfied :

1. The spectral value s1 is explicitly given by :

s1 =−4
d

edτ −1
.

2. The delay τ takes the value

τ
∗ =

1
d

ln
1
s1

(−4d + s1) .

3. The distance d between the real roots satisfies

d =

1
4

s1−
1
τ

LambertW

l,
τs1

4
e

τs1

4

 | l ∈ Z

 \
{

2iπl
τ
| l ∈ Z

}]
∩ ]0,+∞[ .
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Proof : We use the characterization of the negativeness of s1 given by equation (4.7).
Observe that, as τ → ∞

a1(τ) =
1

edτ −1

(
2s1−5d +dedτ −2s1edτ

)
→ d−2s1,

with the property that τ 7→ a1 (τ) is bounded by −s1. So if there exists τ∗ such that
a1 (τ

∗)+ s1−d = 0, we obtain that s1 < 0, and vis versa. Now, to get the value of s1, τ∗

and d respectively, we just have to solve the equation

4d− s1 + s1edτ = 0. (4.13)

Easy computation gives the value of s1 and τ?. For the value of d, it can be calculated
using the Lambert W function since the unknown (d) appears both outside and inside
the exponential function. The Lambert W function is defined as the multivalued function
that satisfies

x =W (x)eW (x),

for any complex number x. Equivalently, it may be defined as the inverse of the complex
function f (x) = xex.
In order to solve equation (4.13) for d we rewrite it as follows :(

d− s1

4

)
e−τd =−s1

4
,

this implies that

−τ

(
d− s1

4

)
e−τ

(
d− s1

4

)
=

s1τ

4
e

s1τ

4 .

From the later equation, we have

LambertW
(

τs1

4
e

τs1
4

)
=−dτ +

τs1

4
. (4.14)

Hence

d =

1
4

s1−
1
τ

LambertW

l,
τs1

4
e

τs1

4

 | l ∈ Z


\
{

2iπl
τ
| l ∈ Z

}]
∩ ]0,+∞[ .

4.2.2 Some properties of the quasipolynomial (4.3).

Parametrization and scaling :

To show dominancy property for s1, we need to make some transformations, namely,
scaling the spectral values of the quasipolynomial function (4.3). Using the change of
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variables z = s− s1, and substituting the value of new coefficients in (4.3) we get the
scaled quasipolynomial function

∆̃(z,τ)= z2+
1

r−4r2 +6r3−4r4 + r5

(
d (5r−16r2+18r3−8r4+r5)z + 6d2 (r−2r2+r3)

+
(

2d (1−3r+3r2− r3)z −6d2(r−2r2 + r3)
)

e−τz

)
,

where r = eτd.
The last function can be reduced to the following expression :

∆̃(z,τ) = z2 +
d (r−5)
(r−1)

z +
6d2

(r−1)2 −
(

2d
r(r−1)

z +
6d2

(r−1)2

)
e−τz. (4.15)

The zeros of (4.3) are just the scaled zeros of (4.15). So s1 is a root of (4.3) is equivalent
to state that 0 is a zeros of (4.15). See Figure 4.1. Hence the dominancy proof of 0 is
equivalent to the dominancy proof of s1.

Quasi−polynomial spectrum
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Scaled quasi−polynomial spectrum
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FIGURE 4.1 – (Left) The distribution of the spectrum corresponding to scaled equa-
tion (4.15). (Right) The distribution of the spectrum corresponding to the equation
(4.3). Case s1 =−1 and d = 1. The dominancy property is preserved in the scaled quasi-
polynomial function. The roots distribution is illustrated using QPmR toolbox.

Characterizing imaginary roots of the scaled equation

We introduce a deflation which eliminates the roots on the imaginary axis. So, let us
first investigate nonzero imaginary roots for (4.15). Assume that there exists w > 0 such
that : z = iw is a root of (4.15). Let define :{

R(w) = ℜ(i−2(∆̃(iw,τ))),
S(w) = ℑ(i−2(∆̃(iw,τ))).
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Hence, we get :{
R(w) = w2− 6d2

(r−1)2 +
2d

r(r−1)wsin(wτ)+ 6d2

(r−1)2 cos(wτ) = 0,

S(w) = −d(r−5)
(r−1) w+ 2d

r(r−1)wcos(wτ)− 6d2

(r−1)2 sin(wτ) = 0.
(4.16)

Using Some algebraic computations for the equation (4.16) we eliminate the trigono-
metric functions as follows cos(wτ) = r

2
−w2(r−1)2(2r+5)+18d2r

(r−1)2w2+9d2r ,

sin(wτ) = (r−1)w
2d(r−1)2w2+9d2r2

(
− r(r−1)2w2−3d2r2(r−5)+6d2r

)
.

Using the standard trigonometric identity

cos2(wτ)+ sin2(wτ) = 1,

we obtain 0 and some others solutions which are eliminated since we are considered the
assumption that w is a real positive. Hence, the deflated function which is integrated on
the Bromwich contour is given by

∆̂(z,τ) =
∆̃(z,τ)

z
. (4.17)

On the non-existence of positive real roots of the function R

Proposition 4.2.3. The following property is fulfilled. The function w 7→ R(w) has no po-
sitive real roots in the interval [w??,+∞[, where w?? is given as follows :

w?? = max(w?
1,w

?
2), (4.18)

where

w?
1 =
−arctan

(
2
3

√
3r2+1
r2

)
+π

τ
and

w?
2 =

d
r(r−1)

(
1+
√

2(1+6r2)
)
.

Proof :

Finding the value of w?
1 :

Recall that we are dealing with transcendental equation of the form

R(w) = w2 +
2d sin(wτ)

r(r−1)
w+

6d2 cos(wτ)

(r−1)2 − 6d2

(r−1)2 = 0, (4.19)
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we notice that the equation (4.19) can be written under the form of a second order
polynomial on w with variable coefficients, so the solutions of this later are obtained by
calculating the discriminant δ which is given in this case by :

δ =
−d2

r2(r−1)2 (cos2(wτ)+6r2 cos(wτ)−6r2−1). (4.20)

Equation (4.19) admits two non-explicit solutions if we have

− cos2(wτ)−6r2 cos(wτ)+6r2 +1 > 0. (4.21)

To check if the condition (4.21) is fulfilled, we study the variation of

w 7→ −cos2(wτ)−6r2 cos(wτ)+6r2 +1. (4.22)

To do it we pose X = cos(wτ) we obtain

−X2−6r2X +6r2 +1 = 0. (4.23)

The solutions of the equation (4.23) are X2 = 1 and X1 =−6r2−1. Since −1 < cos(wτ)≤
1, the quantity (4.22) is non-negative for any d > 0, r > 1 and w≥ 0.
The non-explicit solutions of (4.19) are written as follows :

w = f τ,d
1 (w) =−d sin(wτ)

r (r−1)
+

√√√√d2
(
−6 cos(wτ)r2− (cos(wτ))2 +6r2 +1

)
r2 (r−1)2 , (4.24)

w = f τ,d
2 (w) =−d sin(wτ)

r (r−1)
−

√√√√d2
(
−6 cos(wτ)r2 +(cos(wτ))2 +6r2 +1

)
r2 (r−1)2 . (4.25)

Finding the number of root of the equation (4.19) is equivalent to finding the number
of points of intersection of the line y = w and the graph of f τ,d

1 and f τ,d
2 . We have

f τ,d
2 (w) =− d

r(r−1)

(
sin(wτ)+

√
−cos2(wτ)−6r2 cos(wτ)+6r2 +1

)
, (4.26)

this quantity defines a 2π

τ
-periodic function. Evaluating the sign of f τ,d

2 on the interval
]0,2π

τ
[ gives

1. For wτ ∈]0,π[, we have sin(wτ)> 0
and

√
−cos2(wτ)−6r2 cos(wτ)+6r2 +1 > 0 which implies that f τ,d

2 (w)< 0.

2. For wτ ∈ [π,2π], suppose that :
sin(wτ)+

√
−cos2(wτ)−6r2 cos(wτ)+6r2 +1 < 0, thus√

−cos2(wτ)−6r2 cos(wτ)+6r2 +1 <−sin(wτ),

this means that

1− cos(wτ)< 0,
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4.2. Main Results

FIGURE 4.2 – (Left) Variation of the functions w→ f τ,d
1 (w) and w→ f τ,d

2 (w) for τ = 0.1
and d = 1. (Right) Zoom of the functions f τ,d

1 and f τ,d
2 .

we obtain a contradiction, which ensures that
f τ,d
2 (w) < 0. See Figure 4.2. So, we eliminate the equation (4.25) since we are dealing

with the positive value of w. So the study of the equation (4.19) is equivalent to the
study of the equation f τ,d

1 (w) = 0. The equation (4.24) allows to obtain a certain bound
w? for the solution of (4.19). Indeed, w 7→ f τ,d

1 being bounded, more precisely, we have :

| f τ,d
1 (w)| ≤ d

r(r−1)

(
1+
√

2(1+6r2)
)
= w?

1, (4.27)

so for all values of w > w? the equation (4.19) have no solutions.

Finding the value of w?
2 :

It can be calculated using the variation of the function w 7→ f τ,d
1 (w). We have

d f τ,d
1

d w
(w) =

d
r (r−1)

(
− cos(wτ)τ +1/2

2 cos(wτ)sin(wτ)τ +6r2 sin(wτ)τ√
−(cos(wτ))2−6r2 cos(wτ)+6r2 +1

)
,

this equation admits two roots given by :

w1 =
arctan

(
2
3

√
3r2+1
r2

)
−π

τ
,

w2 =
−arctan

(
2
3

√
3r2+1
r2

)
+π

τ
.

The value of w1 can be eliminated since it is negative for all values of r and d. Hence
in what follows we exploit the value of w2 which is always positive for any τ and d. We
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Some insights on rightmost spectral values assignment for time delay systems

substitute this value in the quantity f τ,d
1 (w)−w we obtain :

f τ,d
1 (w)−w = A(r)B(r), (4.28)

where A(r) and B(r) are given respectively as follows :

A(r) =
1

τ r(r−1)(3r2 +2)
,

B(r) =
3r2 +2

r2

(
(r4− r3)

(
arctan

2
3

√
3r2 +1

r2 −π

)
+
√

2r2 ln(r)

(3r2 +2
r2

(
27r6 +36r4 +18r2 +2

)
+81r6 +104r4 +36r2

) 1
2

)
−2ln(r)

√
3r2 +1.

Since τ > 0 and r > 1 the quantity A(r) is always positive. The study of the variation of
the function r 7→ B(r) given in the formula (4.28) shows that this quantity is negative.
See Figure 4.3. We conclude that f τ,d

1 (w)−w < 0 which means that from this value of w

FIGURE 4.3 – Variation of the function r 7→ B(r).

the line y = w can not intersect the graph of f τ,d
1 implying the non-existence of solutions

of the function f τ,d
1 . This value is given by :

w = w?
2 =
−arctan

(
2
3

√
3r2+1
r2

)
+π

τ
. (4.29)

At the end, the bound for the non-existence of positive real roots for the function R is
given as follows :

w?? = max(w?
1,w

?
2).

The dominancy proof of s1 is based on the application of Stépàn-Hassard’s formula and
the argument principle.
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4.2. Main Results

Remark 4.2.4. Notice that, the bound for the non-existence of positive real roots for the
function R can be reformulated depending only on the system parameters. the result is
presented in the following proposition.

Proposition 4.2.5. The following property is fulfilled. The function w 7→ R(w) has no po-
sitive real roots for the values of τ > τ?, where τ? is given as follows :

τ
? =−

√
3

6d

(
2W
(
−1,−1

6
π
√

3 exp
(−1

6

√
3π

))√
3+π

)
.

Proof 3. Recall that :

R(w) = w2− 6d2

(r−1)2 +
2d

r(r−1)
wsin(wτ)+

6d2

(r−1)2 cos(wτ). (4.30)

In order to find the number of positive real roots of the function R, we try to evaluate this
function on the interval

[kπ

τ
, (k+1)π

τ

]
, with k > 0.

– For k=1, firstly we substitute the value w = kπ

τ
in the function R, we obtain

R(w) =

(
π

τ
−
√

12d
(eτd−1)

)(
π

τ
+

√
12d

(eτd−1)

)
. (4.31)

We notice that the quantity

(
π

τ
+
√

12d
(eτd−1)

)
is always positive for all values of τ and d.

Concerning the other quantity, we let

G(τ) =

(
π

τ
−
√

12d
(eτd−1)

)
with τ,d > 0, (4.32)

this function vanishes for the given values of τ

τ
? =−

√
3

6d

(
2W
(
−1,−1

6
π
√

3 exp
(−1

6

√
3π

))√
3+π

)
. (4.33)

In order to plot and study the variation of the function G, we rewrite it as a function of
a single variable r using the change of variable r = eτd, so we obtain :

G̃(r) = π(r−1)−
√

12ln(r),

hence we see that :{
For τ ≤ τ? G̃(r)< 0 which means that R(w)< 0.
For τ > τ? G̃(r)> 0 implying that R(w)> 0.

(4.34)

Secondly, we inject the value of w = (k+1)π
τ

in R, we obtain

R
(

2π

τ

)
=

4π2

τ2 > 0.

Therefore, according to the mean value theorem, the function R admits at least one roots
on the interval [π

τ
, 2π

τ
] for the values of τ ≤ τ?.
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– For k > 1 we distinguish two cases :

1. k is even, we obtain

R(w) =
(

kπ

τ

)2

> 0 for all values of τ and d.

2. k is odd, we get :

R(w) =
(

kπ(r−1)−
√

12 ln(r)
)(

kπ(r−1)+
√

12 ln(r)
)
.

The quantity
(

kπ(r−1)+
√

12 ln(r)
)

is always positive. We let

G̃k(r) = kπ(r−1)−
√

12 ln(r). (4.35)

The later function vanishes for the following value of τ

τ =−
√

3
6d

(
2W
(
−1,

1
6

π
√

3 exp
(−k

6

√
3π

))√
3+ kπ

)
(4.36)

FIGURE 4.4 – (Left) Variation of the functions r→ Gk(r) for k = 1. (Right) Variation of
the function Gk for k > 1, more precisely for k = 3.

Notice that the value of τ given by (4.36) is always negative for all values of k and
d. Since we are dealing with the positive values of τ, the obtained value is omitted.
The variation of the function G̃k shown that G̃k(r) > 0 for all values of τ and d
see Figure 4.4, which means that R(w) is always positive. From the mean value
theorem, we conclude that the function R has no roots on the interval

[kπ

τ
, (k+1)π

τ

]
for k > 1.

In conclusion, the function R has no positive real roots for the values of τ > τ? with τ? is
given by (4.33).
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4.2.3 Application of Stépàn-Hassard’s formula

The continuation of the study consists in applying the formula (2.46) given in [82] to
show dominancy of s1.

Theorem 4.2.6. Under the condition given in Proposition 4.2.3, the spectral value s1 is
the spectral abscissa of Equation (4.3).

Proof : Using the formula (2.46) we calculate the number Z of unstable roots of the
system (4.1).

Before applying the formula (2.46), we need first evaluate the sign of S(κ)(0). Recall
that κ = 1, and

S(w) = d(r − 1)2wcos(wτ) − dr(r − 1)(r − 5)w − d2r6sin(wτ), (4.37)

we have S(0) = 0 and elementary computation gives the derivative :

S′d,r(0) =−
d
(
6drτ + r3−6r2 +3r+2

)
r (r−1)2 .

The study of variation of the function

FIGURE 4.5 – Variation of the function S′d,r(0)

r 7→ −
(

6 ln(r)+ r2−6r+3+
2
r

)
,

shows that this equation admits a single root r = 1 and it is always negative. See fi-
gure (4.5). This implies that S′d,r(0)< 0.
We know that from a certain bounds w = w??

2 given in Proposition 4.2.3, the equation
(4.19) has no positive real roots, so we have J = 0 and the summation term can be
omitted, hence the number of roots in the positive half plan is as follows :

Z =
2−1

2
+

1
2
(−1)0 (−1) =

1
2
− 1

2
= 0.
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Some insights on rightmost spectral values assignment for time delay systems

In conclusion, we deduce that the dominancy of z = 0 as a root of the deflated quasipo-
lynomial function ∆̂(z,τ) given by (4.17) is equivalent to the dominancy of s = s1 as a
root of the quasipolynomial function ∆(s,τ) given by (4.3). This ensures the stability of
the corresponding system (4.1), see appendix for further details.

Remark 4.2.7. The variations of the functions R and S with respect to w depend on the
variations of τ and d. These later show that R and S may admit real positive roots, especially
for sufficiently small values of τ and d, see Figure 4.6. However the characterization of these
roots remain complicated due to the computations complexity. Since we are dealing with
pole assignment method the value of d can be fixed, for example if we take d = 1, for all
values of τ such that τ > 0.28, the function R have no roots.

FIGURE 4.6 – (Left)Location of roots of R for τ = 0.1 and d = 1. (Right) Sign of S for the
same value of τ and d.

4.3 Illustrative example

As an illustration of the presented result, we consider the problem of stabilizing the
Mach number of a transonic flow in a wind tunnel. The analysis of transonic flows is
a challenging problem in compressible fluid dynamics, since a full model of the flow
would involve considering the Navier-Stokes equations in a three-dimensional domain
and boundary controls for temperature and pressure regulation. A simplified model was
considered in [117] in order to analyze the response of the Mach number of the flow to
changes in the guide vane angle. Instead of using a PDE model, propagation phenomena
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are modeled through a time delay, leading to the following time-delay system{
κm′(t)+m(t) = kϑ(t− τ0),

ϑ ′′(t)+2ζ ωϑ ′(t)+ω2ϑ(t) = ω2u(t),
(4.38)

in which m, ϑ , and u represent perturbations of the Mach number of the flow, the
guide vane angle, and the input of the guide vane actuator, respectively, with respect
to steady-state values. The parameters κ and k depend on the steady-state operating
point and are assumed to be constant as long as m, ϑ , and u remain small, and satisfy
κ > 0 and k < 0. The parameters ζ ∈ (0,1) and w > 0 come from the design of the guide
vane angle actuator and are thus independent of the operating point. The time delay τ0
is assumed to depend only on the temperature of the flow. Notice that, in the absence
of control (u(t) = 0), the open-loop system (4.38) is exponentially stable. The design of
the stabilizing feedback for (4.38) improving its stability properties has been considered
in [116] and [48]. The design we propose here is a delayed PD controller which can be
written :

u(t) = α0x(t− τ)+α1ẋ(t− τ1). (4.39)

In closed loop system, the corresponding characteristic equation reads

∆(s,τ1) = (s−a)((sα1 +α0t)e−sτ1 +2ωsζ +ω
2 + s2). (4.40)

Since the parameter a is fixed then one focus on the second factor only,

∆4(s,τ1) = s2 +2ωsζ +ω
2 +(sα1 +α0)e−sτ1. (4.41)

To assign four equidistributed rightmost real spectral values sk = −k for k ∈ [1, . . . ,4].
one uses (4.12). For instance, for ω = 1.2 and dampin8g factor ζ = 0.472 it is sufficient
to set :

α0 =−
3087
6050

, α1 =−
343
3630

, and τ1 = ln
22
7
. (4.42)

Figure 4.7 exhibits the spectrum distribution corresponding to (4.41).

4.4 Conclusion

A new dominancy result of the spectral values which are not necessarily multiple is es-
tablished through this paper for a class of second order time delay system with single
delay. The stability analysis is based on the argument principle and the Stépàn-Hassard
formula which allows to count the number of unstable roots of the corresponding cha-
racteristic equation. This study is not achieved since we are considered only the case
where the real part of the quasipolynomial function have no roots. The other case re-
mains under investigation.
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FIGURE 4.7 – Zeros distribution of quasipolynomial (4.41) with ω = 1.2, ζ = 0.472 and
the controller gains given by (4.42)

.

Appendix : Dominancy proof using the argument prin-
ciple

The first step of the dominancy proof using the argument principle is to translate the
quasipolynomial function ∆(s,τ), in order to reduce the study in a standard contour
called Bromwich contour. According to the approach of [82], the next step consists
in establishing asymptotic properties of scaled quasipolynomial function ∆̃(z,τ) and
∂z∆̃(z,τ)/∆̃(z,τ). We then deflated ∆̃(z,τ) to remove any zeros on the imaginary axis,
and define the contour of integration. Next we apply the argument principle to count
the zeros in the right half plane of the deflated function ∆̂(z,τ) and work out the asymp-
totic behavior of the logarithmic residue as the chosen contour is increased.

Asymptotic behavior : The characteristic function (4.15) can be written in the follo-
wing form :

∆̃(z,τ) = z2 +d1(z,τ)z+d2(z,τ), (4.43)
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with
d1(z,τ) = ã1 + α̃1e−zτ and d2(z,τ) = ã0 + α̃0e−zτ ,

where

ã1 =
d (r−5)
(r−1)

, α̃1 =
2d

r(r−1)
,

ã0 =
6d2

(r−1)2 , α̃0 =
6d2

(r−1)2 .

Then
∂z∆̃(z,τ) = [2+∂zd1(z,τ)]z+o(1), (4.44)

and
∂z∆̃(z,τ)

∆̃(z,τ)
= z−1[2+∂zd1(z,τ)]+o(|z|−2). (4.45)

Deflation : The deflation of the characteristic function allows to eliminate the root on
the imaginary axis. We know that there exists a single root on the imaginary axis z0 = 0
of multiplicity one. We put

P(z) = (z− z0),

which gives :

∆̂(z,τ) =
∆̃(z,τ)
P(z)

=
∆̃(z,τ)

z
. (4.46)

Integration contour CR :

Let CR denote the Bromwich contour g1∪g2∪g3 for any R ∈ R, where

g1 ={z = Reiθ ,θ :−π

2
→ π

2
},

g2 ={z = iw,w : R→ 0},
g3 ={z = iw,w : 0→−R}.

For R→ ∞ all zero of Q(s,τ) in ℜ(s) > 0 are inside CR. By the argument principle, the
number of such zeros, counted by multiplicity is given by :

Z =
1

2πi

∮
CR

∂z∆̂(z,τ)

∆̂(z,τ)
d z. (4.47)

The later quantity can be rewritten in the Bromwich contour as follows :

Z =
1

2πi

∫
g1

∂z∆̂(z,τ)

∆̂(z,τ)
d z+

1
2πi

∫
g2∪g3

∂z∆̂(z,τ)

∆̂(z,τ)
d z. (4.48)

We will next evaluate both integrals given in (4.48).
Integral over g1 and its limit as R→ ∞

77



Some insights on rightmost spectral values assignment for time delay systems

For sufficiently large R, ∆̃(z,τ) and P(z) are non zero for z on g1 and from (4.48) we
have

1
2πi

∫
g1

∂z∆̂(z,τ)

∆̂(z,τ)
d z =

1
2πi

∫
g1

∂z∆̃(z,τ)

∆̃(z,τ)
d z− 1

2πi

∫
g1

P′(z)
P(z)

dz.

We have

1
2πi

∫
g1

∂z∆̃(z,τ)

∆̃(z,τ)
d z =

1
2πi

∫ π

2

− π

2

z−1[2+∂z(z,τ)]+o(|z|−2)dz

=
1

2πi

∫ π

2

− π

2

1
Reiθ [2+d′1(Reiθ ,τ]+o(|Reiθ |−2)

)
Rieiθ dθ

=
1

2π

∫ π

2

− π

2

[2+d′1(Reiθ ,τ)]dθ +o(R−1).

In the later integral we have |d′1(z,τ)| is bounded for τ > 0, thus limR→∞ d′1(Reiθ ) = 0 for
θ ∈

[−π

2 , π

2

]
. by dominated convergence

lim
R→∞

1
2π

∫
g1

∂z∆̃(z,τ)

∆̃(z,τ)
d z = 1. (4.49)

The second integral is as follows :

1
2πi

∫
g1

P′(z)
P(z)

dz =
1

2πi

∫
g1

1
z

dz =
1
2
. (4.50)

Finally, from (4.49) and (4.50) the integral over g1 is given by :

1
2πi

∫
g1

∂z∆̂(z,τ)

∆̂(z,τ)
d z =

1
2
=

n−K
2

. (4.51)

Integral over g2 ∪ g3 and its limit as R→ ∞ We introduce functions M(w) and N(w)
which are the real and imaginary part of the deflated quasipolynomial function ∆̂(z,τ)
respectively, hence

M(w) = ℜ
(
iK−n

∆̂(iw)
)
= ℜ

(
i−1 ∆̃(iw)

iw

)
=

1
w

R(w),

N(w) = ℑ
(
iK−n

∆̂(iw)
)
= ℑ

(
i−1 ∆̃(iw)

iw

)
=

1
w

S(w).

From this, we have

M(w)+ iN(w) =
R(w)+ iS(w)

w
. (4.52)

Setting the polar representation

M(w)+ iN(w) = A(w)eiφ(w,τ), (4.53)
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where

A(w) =
√

M2(w)+N2(w) and φ(w) = arctan
N(w)
M(w)

,

then we have :
∂z∆̂(z,τ)

∆̂(z,τ)
=

∂sA(w)
A(w)

+ i∂sφ(w). (4.54)

Thus

1
2πi

∫
g2∪g3

∂z∆̂(z,τ)

∆̂(z,τ)
dz =

1
2πi

∫ R

−R

[
∂sA(w)
A(w)

+ i∂sφ(w)
]
dw =

1
π

(
φ(0)−φ(R)

)
.

Since φ ′(w) is even and ∂sA(w)/A(w) is odd, according to the result in [82]. Finally the
integration over the contour g2∪g3 becomes

lim
R→∞

1
2πi

∫
g1

∂z∆̂(z,τ)

∆̂(z,τ)
d z =

φ(0)
π

. (4.55)

Calculation of φ(0)
M(w) and N(w) is given respectively as follows

M(w) =
1
w

[
w2− 6d2

(r−1)2 +
2d sin(wτ)

r(r−1)
w+

6d2 cos(wτ)

(r−1)2

]
,

N(w) =
1
w

[
− d(r−5)

(r−1)
w+

2d cos(wτ)

r(r−1)
w− 6d2 sin(wτ)

(r−1)2

]
.

Both cases represent the indetermination 0/0. Using l’hospital’s rule we obtain M(0) and
N(0) as follows

M(0) = lim
w→0

1
1!

[
2w−6

d2 sin(τ w)τ

(r−1)2 +2
d sin(τ w)
r (r−1)

+2
dwcos(τ w)τ

r (r−1)

]
,

N(0) = lim
w→0

1
1!

[
2

d cos(τ w)
r (r−1)

−2
dwsin(τ w)τ

r (r−1)
−6

d2 cos(τ w)τ

(r−1)2 +
(−r+5)d

r−1

]
,

which means that

M(0) = 0,

N(0) =−d
(
6dτ r+ r3−6r2 +3r+2

)
(r−1)2 r

< 0.

The later conditions satisfy condition (b) of ( [82] : page 228). Recall that in our study
we have two cases : R have two real roots and R have no roots. The number of roots
of R coincides with the number of roots of M which is the real part of the deflated
quasipolynomial function. Let us consider the case where M has no positive roots, so
the change in φ(w) on the interval [0,∞[ is given by the formula :

0−φ(0) =−π

2
sgnN(0) implying that φ(0) =−π

2
. (4.56)
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At the end according to (4.51) and (4.55) one obtains :

lim
R→∞

∮
CR

∂z∆̃(z,τ)

∆̃(z,τ)
d z =

1
2
− 1

2
= 0, (4.57)

from which we deduce the dominancy, implying the stability of the corresponding sys-
tem.
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General conclusion and some re-
search perspectives

This thesis is dedicated to the stability analysis of retarded time delay systems. The
research is principally focused on the stability of reduced order linear time delay sys-
tem with single delay in frequency domain approach, where the stability of time-delay
systems depends exactly on the roots of the associated characteristic equation. The sys-
tem is asymptotically stable if and only if all the roots of the associated characteristic
equation are located on the left half complex plane. In this context, we have seen how
to formulate necessary and sufficient conditions for the coexistence of non oscillating
roots for reduced order time delay system (scalar and second order delay differential
equation) guaranteing the location of the remaining roots in the left half plane, which
ensure the stability of the corresponding system. The dominancy of such non oscillating
mode has been studied using an adequate factorization.
A new dominancy result of the spectral values has been established for generic linear
second order time delay system. The stability criteria based on the manifold defined by
the coexistence of the maximal number of negative spectral values, and constructing an
appropriate delayed state feedback controller allowing to guarantee the stability of the
system in the closed loop. For this class of system, the dominancy property is shown
using the argument principle and stépàn Hasard formula which allows to count the
number of unstable roots of the corresponding characteristic equation.

Perspectives :

Many questions remain in this area. As future research perspectives on the results pre-
sented in this manuscript, we intend to develop and improve the following points :

– Consider the case where the real part of the quasipolynomial function associated to
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the generic second order system has a real roots.

– Try to find an adequate factorization to study the stability of generic second order
delay system.

– Generalize this study for higher order delay systems.

– Extend the property of coexistence of non oscillating modes to study the stability of
neutral time-delay differential equation.
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Résumé

Notre étude concerne une approche du domaine fréquentiel dans l’analyse de stabilité
et stabilisation via une conception de contrôleur d’ordre réduit pour les systèmes à
retard linéaire invariant dans le temps. Plus précisément, nous abordons le problème de
caractérisation de l’abscisse spectrale et la coexistence de modes non oscillants pour ces
équations differentielle fonctionelles. L’approche de conception que nous proposons est
simplement une rétroaction de sortie retardée où les paramètres résultent de la variété
définie par la coexistence d’un nombre exact de valeurs spectrales négatives, ce qui
garantit la stabilité asymptotique des solutions du système. La dominance de ces modes
non oscillants est montrée analytiquement pour les systèmes à retard d’ordre réduit
en utilisant deux approches différentes, La première méthode consiste à trouver une
factorisation adéquate, permettant d’écrire le quasipolynôme sous forme d’intégrale. La
deuxième consiste à appliquer la formule de Stépàn Hasard permettant de calculer le
nombre de racines instables du système correspondant.

Mots-clés: Systèmes à retard ; Approche fréquentielle ; Conception du contrôleur ; Prin-
cipe d’argument ; Placement de pôles ; oscillation ; Formule de Stépàn-Hasard.

Abstract

Our study concerns a frequency domain approach for the stability analysis and stabiliza-
tion via reduced-order controller design for linear time-invariant retarded Time-delay
systems. More precisely, we address the problem of the spectral abscissa characteriza-
tion and the coexistence of non oscillating modes for such functional differential equa-
tions. The design approach we propose is merely a delayed-output-feedback where the
candidates’ parameters result from the manifold defined by the coexistence of an exact
number of negative spectral values, which guarantees the asymptotic stability of the sys-
tem’s solutions. The dominancy of such non oscillating modes is analytically shown for
the considered reduced order Time-delay systems using two different approaches, the
first method consists to find an adequate factorization, allowing to write the quasipoly-
nomial function in an some appropriate integral operator form. The second consists to
apply Stépàn Hasard formula allowing to count the number of unstable roots of the
corresponding system.

Keywords: Time-delay systems ; Frequency-domain approach, Controller design ; Argu-
ment principle ; Pole placement ; Oscillation ; Stépàn-Hasard formula.
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