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Résumé : Univariate global optimization problems attract attention of researchers.Several
methods [23] have been studied in the literature for univariate global optimization problems
. Optimization in R presents the same difficulty as in Rn. Many algorithms are directed in
this direction. For cutting methods in Global optimization or Optimsation gradient method
in general . In this work, we propose to improve: The article submitted: ( Simulations for
efficient combination of two lower bound functions in univariate global optimization. AIP
Conference Proceedings 1863, 250004 (2017) ; https ://doi.org/10.1063/1.4992412, (2017).
) In this context too, we will accelerate the speed of the Algorithm for better complexity
with technics (CSP, Arithmetic analysis and Interval and another). It should be noted that,
we have made conclusive simulations in this direction .
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1 Introduction

Global optimization problems are reputed to be the most difficult problems to solve in the field
of optimization, R.O., applied mathematics, optimal control ..... Generally, the applied methods
do not provide the exact optimum because in general, these methods give local optimums.This
is why we opt for global optimization methods.But the problem does not stop here, because it is
important to highlight the multiplicities of the solutions, in addition there is also a problem of
algorithmic complexity to be improved every time by using the test problems.Univariate global
optimization problems attract attention of researchers.Several methods [?] have been studied
in the literature for univariate global optimization problems .Optimization in R presents the
same difficulty as in Rn. Many algorithms are directed in this direction. For cutting methods
in Global optimization or Optimsation gradient method in general . In this work, we propose
to improve: The article submitted: ( Simulations for efficient combination of two lower bound
functions in univariate global optimization. AIP Conference Proceedings 1863, 250004 (2017) ;
https ://doi.org/10.1063/1.4992412, (2017). ) In this context too, we will accelerate the speed
of the Algorithm for better complexity with technics (CSP, Arithmetic analysis and Interval and
another). It should be noted that, we have made conclusive simulations in this direction .
Our work is built on 03 steps
The first step is to solve any optimization problem in dimension 1.
The second step: it is to solve a problem of any optimation in dimension n > 1, with separable
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variables, which will introduce us to the third stage (step).
The third step is to solve any optimization problem in dimension n > 1 using the results of the
first two steps, the theoretical results concerning this step and our main personal contribution.We
will test this on for example 10 problems test . in order to test the effectiveness of our work. Our
goal too :: 1 / Improve the performance of the Algorithm in ( [?]). 2 / simplify this algorithm.
3 / Apply the new Algorithm for better complexity on the 10 test problems and other test
problems.

We consider the following problem

(P )

{
min f(x)

x ∈ [x0, x1] ⊂ R

Main Improvements (Main Contributions)

Improvements are (Types C.S.P)
1 / Extra rapid convexity test (test A1)
2 / Computation of bounds, to inhibit intervals by anlyse intervals or affine arithmetic (test A2)
3 / The derivative and its bound, to inhibit intervals by anlyse intervals or affine arithmetic.(test
A3)
4/ if Smooth Form involved Direct Execution.

These 04 procedures will be integrated in the process of the Algorithm, to accelerate the speed
of convergence towards the optimal solution.

global optimization with a single variable is not easy because; the functions must be see and
especially their forms in a general way. In real cases these functions do not offer facilities for
studying them. Many research and methods in global optimization can not bypass global opti-
mization with a single variable, in other words: depend on the study to a variable to find the
optimal solution.
with f(x) a non-convex C2-continuous function on the interval [x0, x1] of R.
Univariate global optimization problems attract attention of researchers not only because they
arise in many real-life applications but also the methods for these problems are useful for the
extension for the multivariate case or by reducing the multidimensional case to the univariate
case. One class of deterministic approaches, which called lower bounding method, emerged from
the natural strategy to find a global minimum for sure. The efficiency of a method is in the
construction of tight lower bound and to discard a large regions which do not contain the global
minimum as quickly as possible.

In order to solve the global optimization problem, many envelope methods have been proposed
(see [21] and references therein). Several methods have been studied in the literature for univari-
ate global optimization problems, among them we can cite the classical αBB method developed
in [19], another method using a quadratic lower bound is developed in [23] for univariate case.
The latter is generalized to multivariate case in [25]. In [21], tight convex lower bound for
univariate C2-continuous functions are proposed by using a piecewise quadratic lower bound
obtained by αBB method which allows to find convex envelope in finite number of subdivisions.
In [24], a branch and prune algorithm is proposed, the pruning step(outer and inner) consists
in solving linear equation, the linear bounding function is obtained by interval analysis.
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2 Background

2.1 Lower bound function in αBB method [19]

The lower bound function in αBB method on the interval [x0, x1] is given by :

LBα(x) = f(x)− Kα

2
(x− x0)(x1 − x)

with Kα ≥ max{0,−f ′′(x)}, ∀x ∈ [x0, x1]. The main properties of this lower bound function are:

1. It is convex (i.e. LB′′α(x) = f ′′(x) +Kα ≥ 0, ∀x ∈ [x0, x1]).

2. It coincides with the function f(x) at the endpoints of the interval [x0, x1] (i.e. by con-
struction of (LBα(x)).

3. It is a lower bound function (i.e. f(x)−LBα(x) =
Kα
2 (x− x0)(x1 − x) ≥ 0, ∀x ∈ [x0, x1]).

For more details one see [19].

2.2 Quadratic lower bound function [23]

The quadratic lower bound developed in [23] on the interval [x0, x1] is given by :

LBLO(x) = f(x0)
x1 − x

x1 − x0
+ f(x1)

x− x0

x1 − x0
− K

2
(x− x0)(x1 − x)

with K ≥ |f ′′(x)|, ∀x ∈ [x0, x1]. The main properties of this lower bound function are:

1. It is convex (i.e. LB′′LO(x) = K ≥ 0).

2. It coincides with the function f(x) at the endpoints of the interval [x0, x1] ( i.e. by
construction of LBLO(x)).

3. It is a lower bound function (i.e. (f(x) − LBLO(x))
′′ = f ′′(x) − K ≤ 0, ∀x ∈ [x0, x1].)

which implies that (f(x) − LBLO(x)) is concave, it vanishes at the endpoints of [x0, x1]
then f(x) ≥ LBLO(x), ∀x ∈ [x0, x1].

Details of the main results

The optimization of univariate functions presents the same difficulties as the functions to mul-
tivariate. We find this for example in gradient methods and eigen value calculations .

1/ (test A1)
The properties of functions exploited to produce formulations that can express convexity, con-
cavity and invexity.
2/ (test A2)
We use in this context, the properties of the functions, lower bound in different forms.
3/ (test A3)
In another context, the properties of functions, derivability and differentiability are used.
Remark
Property reformulations of exploited functions to produce simple forms that can be effectively
used.
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3 Branch and Bound Algorithm and its convergence

The Branch and Bound algorithm is an efficient algorithm. he gave a lot of experimental evi-
dence. This algorithm exists on several variants. We use one of its variants in this document.
Many works in global optimization, notably in DC / DCA, global reverse-convex optimization,
global optimization type reformulation and overall multi-objective stochastic blur optimization
use Branch and bound variants.
Method based on Branch-and-bound (BB) is one of the most popular deterministic global op-
timization frameworks. It consists on subdividing the solution space into smaller regions where
the upper and lower bounds to the objective function value are computed. According to these
bounds, each region is explored or fathomed out of the built Branch and Bound tree. Global
solution is then obtained once the current best upper bound (UB) value is close to current best
lower bound (LB) value within a specified tolerance ε. In this section, we introduce the algo-
rithm for finding the global solution of problem (P ) and we show its convergence.

Algorithm Branch and Bound (BB)

Step 1 : Initialization

a0) if Smooth Form involved Direct Execution.

a) Let ε be a given small number and let [a0, b0] the initial interval

b) Compute K0
α = max{0, supx∈[a0,b0](−f

′′(x))} and K0
q = max{0, supx∈[a0,b0]f

′′(x)}

b1) Test C.S.P A1

b2) Test C.S.P A2

b3) Test C.S.P A3

c) Apply Convex/concave test

d) Apply the pruning test in order to reduce and update the searching interval

e) Set k := 0;T 0 = [a0, b0];M := T 0

f) Compute LB0
α(x) and LB0

q (x) on T 0, and solve the convex program to obtain an optimal solution z0 and s∗0.

min
{
z : LB0

α(x) ≤ z, LB0
q (x) ≤ z, z ∈ R, x ∈ T 0

}
(1)

g) Set UB0 := min
{
f(a0), f(b0), f(s∗0)

}
= f(s0), LB0 = LB(T 0) := z0.

h) If UB0 − LB0 ≤ ε then print s0 as an ε-optimal solution; EXIT the algorithm.
else Set M ← {T 0}, k ← 1

Step 2 : Iteration

a) Selection step

• Select Tk = [ak, bk] ∈M , the interval such that LBk = minLB(Tk)

b) Bisection step

• Bisect Tk into two sub-rectangles Tk
1 = [a1k, b

1
k], T

k
2 = [a2k, b

2
k] by w-subdivision procedure via s∗ k

c) Computing step

• For i = 1, 2 do

1. Compute Kki
α and Kki

q on the interval Tk
i

2. Convex test : if Kki
α = 0 then update LB(Tk

i ) and UB(Tk
i ) and go to step d

3. Concave test: if Kki
q = 0 then update LB(Tk

i ) and UB(Tk
i ) and go to step d

31) Test C.S.P A1 on the interval Tk
i
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32) Test C.S.P A2 on the interval Tk
i

33) Test C.S.P A3 on the interval Tk
i

4. Pruning test : Compute LBki
q and solve LBki

q = UBk to reduce the searching interval [aik, b
i
k]

5. Compute LBki
α (x). Let zki and s∗ki be the solution of the convex problem

min
{
z : LBki

α (x) ≤ z, LBki
q (x) ≤ z, z ∈ R, x ∈ Tk

i

}
(2)

and LB(Tk
i ) = zki

6. Set M ←M
∪
{Tk

i : UBk − LB(Tk
i ) ≥ ε, i = 1, 2} \ {Tk}

d) Updating step

• Update the lower bound: LBk = min{LB(T ) : T ∈M}.

• Delete from M all the intervals T such that LB(T ) > UBk − ε.

e) Stopping step

• If M = ∅ then Output sk as an optimal solution and exit algorithm

• else set k ← k + 1, and return to Step 2a).

Convergence of Algorithm

The purpose of the calculation artifices of types A1 , A2 and A3 is to accelerate the convergence of the above Algorithm
and the elements of demonstrations are as follows (see in https ://doi.org/10.1063/1.4992412, (2017). ) .

Experimental Study

Test Problem f1 : b(s) = b(s) = (s+ sin(s)) ∗ exp(−s2) , ∀s ∈ [ -10 , 10 ]

Progression of iterations .......
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entiled of interval Interval Interval reduced s∗ (0ptimal)
T0 [ -10 , 10 ] [ -10 , 10 ] -
T11 [ -10 0 ] [ -10 0 ] -
T12 [0 10 ] [0 10 ] -
T21 [0 5 ] [ 0 5 ] -
T22 [5 10 ] [ 0 5 ] -
T31 [0 2.5241 ] [ -1.2224 -0.2612] -
T32 [ 2.5241 5 ] [ 2.5241 5 ] -
T41 [ -1.2224 -.74183] [ -0.789 -.7418 ] -
T42 [-0.74183 -0.2612] [-0.7418 -0.2612] -0.679576

Solution in 05 Iterations

Test Problem f2 : b(s)= −sin((2) ∗ s+ 1)− sin((3) ∗ s+ 2)− sin((4) ∗ s+ 3)− sin((5) ∗ s+ 4)− sin((6) ∗ s+ 5) , ∀s ∈
[ -10 , 10 ]

Progression of iterations .......

Iterations Interval reduced LBk UBk s∗ (0ptimal) Obs
1 [-9.2032 ,-8.8311] -1.2168 -0.7511 -9.0276 Convexe
2 [-8.1341 , -8.1102] -2.0114 -1.9602 -8.1102 Convexe
3 [-8.1102 , -7.8800] -2.0354 -0.8251 -8.0804 Convexe
4 [-6.9879 , -6.6800] -3.3729 -0.8253 -6.7201 Convexe
5 [-6.6800 , -6.6265] -3.3179 -3.0890 -6.6799 Convexe
6 [-6.3721 , -6.0605] -0.8244 0.1006 -6.3721 Concave
7 [-5.9017 , -5.6907] -0.8454 -0.4738 -5.7290 Convexe
8 [-2.9200 , -2.5489] -1.2168 -0.7550 -2.7444 Convexe
9 [-1.8509 , -1.8270] -2.0114 -1.9601 -1.8270 Convexe
10 [-1.8270 , -1.5968] -2.0354 -0.8251 -1.7972 Convexe
11 [-0.7047 , -0.3968] -3.3729 -0.8253 -0.4369 Convexe
12 [-0.3968 , -0.3434] -3.3178 -3.0891 -0.3967 Convexe
13 [0.5157 , 0.7332] -0.8454 -0.4184 0.5542 Convexe
14 [4.3521 , 4.4708] -2.0290 -1.6198 4.4708 Convexe
15 [4.4709 , 4.6235] -2.0354 -1.4683 4.4860 Convexe
16 [5.5785 , 5.8864] -3.3729 -0.8253 5.8463 Convexe
17 [5.8864 , 5.9398] -3.3177 -3.0893 5.8865 Convexe
18 [6.1943 , 6.5058] -0.8244 0.1009 6.1943 Concave
19 [6.6646 , 6.8756] -0.8454 -0.4737 6.8374 Convexe
20 [9.5854 , 10.0000] -1.2168 -0.5577 9.8220 Convexe

Solution in 20 Iterations
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Test Problem f3 :b(s) = b(s) = s4 − 3 ∗ s3 − 1.5 ∗ s2 + 10 ∗ s , ∀s ∈ [ -5 , 5 ]

Progression Of iterations .......

Entitled of Interval Interval Interval reduced s∗ (0ptimal)
T0 [ -5 , 5 ] [-3.635 5 ] -
T11 [-3.635 0.6825 ] [-1.8069 0.6825] -
T12 [0.6825 5 ] [0.6825 1.6243] -
T21 [-1.8069 -0.5622] [-1.8069 -0.5622] -1.0000
T22 [-0.5622 0.6825] [-0.9157 -0.5622] -

Solution in 03 Iterations

The second step: it is to solve a problem of any optimation in dimension n > 1

with separable variables

We consider the following problem

(P )

{
min f(x) =

∑n
i=1 fi(xi)

x ∈ D ⊂ Rn

* / The results above will help us to solve. among others
* / The techniques of parallelism
* / C.S.P Techniques
* / The techniques of artificial intelligence

The third step is to solve any optimization problem in dimension n > 1

We consider the following problem

(P )

{
min f(x)

x ∈ D ⊂ Rn

* / The functions to be treated are of any types.
* / First of all, the functions of the holder.
* / To use any function, with any combination of functions (sin, cos, exp, log, power..........).
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4 Conclusion

The study done in this paper proves a lot efficiency of our algorithm model. The experimental results prove the efficiency of
our proposed method . The comparison of the results of our method was made compared to well-known methods in global
optimization. The results were satisfactory .
In this paper we proposed a branch and prune algorithm for computing all global minimizers of univariate functions subject
to bound constraints. The algorithm uses a combination of two lower bounds and utilizes a pruning technique as well as a
convex/concave test in order to accelerate the search process. Numerical results show that the proposed method is efficient.

Our Algorithm supports a wide range of problems (mono - multi objectives) in global optimization, with signomial functions,
sin, cos, arcsin, arcosin, arctang, sh, ch, ..... powers, log, exp ........ .. ∈ Rn.
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