REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'enseignement supérieur et de la recherche scientifique Université Mouloud Mammeri de TIZI-OUZOU Faculté du génie de la construction Département de génie civil

Mémoire de fin d'étude

En vue d'obtention du diplôme Master en génie civil. Option : construction civile et industrielle.

Expertise d'un immeuble-réservoir de capacité 1000m3 en zone sismique avec programme de réhabilitation

<u>Proposé et dirigé par :</u> M^r H. HAMMOUM

<u>Etudié par :</u> M^r HAMITOUCHE Said

Promotion 2011/2012

Au terme de ce travail, je tiens à exprimer mes vifs remerciements à M^r HAMMOUM pour m'avoir dirigé et aidé tout au long de l'élaboration du présent mémoire ; tous les enseignants du GENIE CIVIL ; M^{me} BOUBEKER et tout le personnel de la bibliothèque Génie civil (UMMTO et ENSTP) pour leur disponibilité ;

Je tiens également à remercier tous le personnel du CTC centre et CTC centre agence ouest (Alger), CTC sud (Tizi Ouzou) ainsi que ceux du CGS pour leurs orientations et documentations ;

Je remercie en particulier **M^r TALIT Mezyan** (direction des ressources en eau de la wilaya d'Alger « DREW »), **M^r BELHIMER Samy** (APC Dar El Beida), M^r MEHANI Youcef (CTC centre Alger), M^r BERKANI Hamza, M^r SADOUDI Brahim et tous le personnel qui travaillent aux archives ;

Je tiens également à remercier les membres du jury qui nous ferons l'honneur de juger notre travail ;

Enfin, à tous ceux qui ont participés de prés ou de loin à l'élaboration de ce mémoire.

Merci à tous

<u>Dédicaces</u>

Je dédie ce modeste travail à :

- Ma grande mère a quí je souhaít longue vie ;
- Mes parents quí mon beaucoup soutenus ;
- Mes frères et sœurs ;
- Tous mes amís (es);
- Aínsí que le petít yaní.

HAMITOUCHE Said

Introduction générale	01
Chapitre I : présentation de l'ouvrage	03
4 Chapitre II : caractéristiques des matériaux	16
Chapitre III : étude du contreventement	23
4 Chapitre IV : Modélisation de la structure en élémen	ıts
finis avec le logiciel Robot 2013 v26	63
	105
	137
	158

L'immeuble qui fait l'objet de notre intérêt dans ce travail de mémoire de fin d'étude est un immeuble à appartements surmonté d'un réservoir de 1000 m³ dans la commune de Dar El Beida à Alger. Commencé en octobre 1960, les travaux étaient pratiquement terminés en janvier 1962, mais les incidents de conjoncture algérienne sur la poursuite du chantier après l'indépendance retardèrent l'achèvement total de la construction, ce bâtiment appartiendra d'abord à Air Algérie où ses pilotes de lignes résideront, puis sera géré par l'APC de Dar El Beida. Actuellement, il appartient aux services de la SEAL de la même commune.

On pouvait lire dans un article publié dans une revue spécialisée de génie civil « **technique des travaux** » dans son numéro de janvier 1963 :(voir annexe 1)

« Immeuble à appartements surmonté d'un réservoir de 1000 m3 à Alger,

On vient de terminer la construction à Alger un curieux immeuble, en forme de tour carrée de 17 m de côté, à 7 étages, surmonté d'un réservoir de 1000m3, dont la **Technique des travaux** donne la description dans son numéro de septembre-octobre 1962 (p.295).

Cette construction est constituée par une tour centrale cylindrique de 6m de diamètre, supportant le réservoir et autour de laquelle sont disposés en étoile 8 voiles de béton formant l'ossature. Le contreventement est assuré par les plancher. L'ensemble est fondé sur 62 pieux Franki de 13 m de fiche par l'intermédiaire de semelles et poutres de grande rigidité.

Chaque étage comporte 4 appartements de 3 pièces, sauf le premier qui comprend 8 studios.la tour centrale abrite l'escalier, l'ascenseur, les paliers d'accès aux appartements, ainsi que les gaines dans lesquelles passent les canalisations du réservoir.

Le réservoir est constitué d'une cuvette en forme de paraboloïde de révolution raccordé à une calotte sphérique.

Les façades de comporte pas de briques, du moins extérieurement, mais utilisent largement le verre, le plastique et l'aluminium.

Le rez-de-chaussée est libre et peut être utilisé partiellement comme abri à voitures.

Le bétonnage du réservoir a été effectué, pour la première fois en Algérie, avec un béton sec projeté sur le ferraillage et le seul coffrage extérieur.

Commencé en octobre 1960, les travaux étaient pratiquement terminés en janvier 1962, mais les incidents de conjoncture algérienne sur la poursuite du chantier retardèrent l'achèvement total ». Ce bâtiment qui à ce jour demeure une prouesse de génie civil qui associe à la fois une structure à usage d'habitation et un ouvrage d'art hydraulique par sa cuve au dernier niveau fait de lui un ouvrage extrêmement complexe. Complexe dans sa conception et calcul et complexe par son comportement sous l'effet du séisme.

Si bien que depuis sa mise en service en 1962 cet ouvrage a subit plusieurs séismes sans qu'il ne soit ébranlé, tels que : El Asnam 1980, Bordj Ménaiel 1982, Oued djer 1988, Tipaza 1989; mais le séisme de boumerdes du 21 mai 2003 sera fatal pour cet ouvrage d'art.

La structure a été déclassée après une étude faite par le CTC centre agence ouest, car le noyau central a subi des dommages importants, les voiles, poteaux et poutres n'ont pas été touchés, le réservoir reste constamment vide et en 2004 un réservoir surélevé a été construit juste à coté pour reprendre la fonction du réservoir de notre structure.

L'objet de ce travail est de comprendre les raisons de cet endommagement, aussi un travail d'expertise sur site relayé par un recalcule par modélisation en éléments finis au bureau sera nécessaire pour pouvoir à la fin lancer des actions de réhabilitation.

C'est ce que nous tacherons de faire à travers les six chapitres qui suivent :

présenterons au chapitre 1 la situation géographique de notre Nous ouvrage, ses caractéristiques géométriques et les différents éléments qui le constituent ainsi que les différents plans récupérés aux archives. Au chapitre 2 nous verrons les différents matériaux utilisés dans notre structure ainsi que leurs caractéristiques mécaniques et physiques. Le chapitre 3 sera consacré à l'étude du système de contreventement. Puis au chapitre 4 nous allons voir la modélisation par éléments finis de notre structure en utilisant un logiciel de calcul (Robot Structural Analysis Professional 2013 v26) où ont s'intéressera aux grandes lignes de la modélisation, les différents paramètres à introduire au logiciel notamment ceux des deux spectre RPA88 et RPA99 v 2003, les hypothèses de calcul, lancer les calcul et l'exploitation des résultats ainsi que les difficultés rencontré lors de la modélisation. C'est au chapitre 5 que nous allons extraire les resultats nécessaires pour comprendre les causes de l'endommagement de notre structure pour pouvoir proposer des actions de réhabilitation. Au chapitre 6 on étudiera les différentes techniques de réparation pour pouvoir à la fin choisir la meilleure solution pour rendre à l'ouvrage sa résistance initiale pour laquelle il a été conçu. On terminera par une conclusion générale.

I.1/ Introduction :

Le présent projet de fin d'étude consiste en l'expertise d'un immeuble réservoir implanté à Dar El Beida en zone sismique, cet ouvrage assure à la fois une fonction d'habitation avec ses sept étages qui comportent chacun quatre appartement de trois pièces sauf le premier qui comprend huit studios, d'autre part le stockage et distribution d'eau potable.

I.2/ Localisation et situation de l'ouvrage :

Notre ouvrage est implanté dans la commune de Dar El Beida (Rue ,12 Mohamed Khamissti) à coté du centre de météorologie à 560 m de la gare de Dar El Beida (Alger), cette commune classée autrefois en zone II (zone de sismicité moyenne) sera ensuite classée en zone III (zone à forte sismicité) par le RPA 99 v2003.

Après le séisme de 2003 et vue l'endommagement du noyau, le réservoir ne sera plus fonctionnel par crainte qu'il présente un risque pour l'ouvrage, alors on a construit juste à coté (90 m environ) dans la même rue un réservoir surélevé pour reprendre la fonction de stockage et distribution d'eau potable assuré autrefois par notre ouvrage.

Figure I.1 : situation de notre projet et l'ouvrage qui le remplace

I.3/ Présentation et description de l'ouvrage :

Notre immeuble est constitué par :

- Une tour centrale cylindrique de six mètre de diamètre qui supporte le reservoir et abrite l'escalier, l'ascenseur, les paliers d'accès aux appartements, ainsi que les gaines dans lesquelles passent les canalisations du réservoir,
- Une tour carré de 17m de coté,
- Un réservoir d'une capacité de 1000 m³ constitué par une cuvette en forme de paraboloïde de révolution raccordée à une calotte sphérique,

Figure I.2 : vue générale de l'ouvrage

L'ensemble est fondé sur 62 pieux Franki de 13m de fiche par l'intermédiaire de semelles et poutres de grande rigidité.

Cet immeuble à appartements est classé par le RPA 1988 comme étant un ouvrage de grande importance (groupe 1) car il assure l'alimentation en eau potable pour toute la commune de Dar el Beida donc c'est un ouvrage qui doit rester fonctionnel pendant et après un séisme, puis par le RPA 2003 comme étant un ouvrage d'importance vitale (groupe 1A).

Le contreventement est assuré par une tour central cylindrique autour de laquelle sont disposés en étoile 8 voiles en béton formant l'ossature.

Figure I.3 : vue satellitaire de la situation de l'ouvrage « photo Google maps »

Figure I.4 : vue satellitaire de notre ouvrage et le réservoir « photo Google earth »

I.2/ Caractéristiques géométriques de l'ouvrage :

Notre structure présente les caractéristiques suivantes :

- La longueur totale du bâtiment 17,80m
- La largeur totale du bâtiment 17,80m
- La hauteur totale des appartements y compris l'acrotère 26,30m
- La hauteur totale y compris le réservoir 37,90m
- La hauteur du RDC est de 4,80m
- La hauteur de l'étage courant est de 2,87m

I.3/ Eléments de l'ouvrage :

a. Le réservoir :

Le réservoir remplis à une hauteur de 8m à partir du niveau de la cuve atteint une capacité de 1000m³, il est constitué par quatre parois d'épaisseurs différentes variant du bas vers le haut de 25cm à 10cm avec un pas de 5cm.

La cheminée a la forme d'un tronc de cône extérieurement et un cylindre intérieurement, sa hauteur est de 8,75m par rapport a la base de la cuve.

La coupole a la forme d'une calotte sphérique, avec une épaisseur de 10cm.

b. les planchers :

Tous les planchers sont réalisés en dalle pleine de 12 cm d'épaisseur, le plancher terrasse est accessible et comporte un système complexe d'étanchéité et une pente pour faciliter l'écoulement des eaux pluviales.

Les planchers assurent principalement deux fonctions : une fonction de résistance (supportent et transmettent les charges et les surcharges aux éléments porteurs de la structure), une fonction d'isolation (ils isolent thermiquement et acoustiquement les différents étages).

c. Les escaliers :

La structure comporte trois types d'escalier qui présente tous la même hauteur de marche de 17 cm et un giron de 25cm :

- Escalier à quatre volées avec deux paliers de repos pour le RDC,
- Escalier à deux volées et un palier de repos pour les étages 1 à 6,
- Escalier à une volée et sans palier de repos pour le dernier étage.

d. La cage d'ascenseur :

La cage d'ascenseur permet de se déplacer verticalement jusqu'au 7^{eme} étage, elle est constituée de voiles de 10cm d'épaisseur, la surface de sa cabine est de 1,2 m² qui permet de transporter 2 à 3 personnes.

e. Le noyau central :

De forme cylindrique, il est réalisé en béton armé avec une épaisseur de 15cm, le noyau comporte des ouvertures qui donnent accès aux différents niveaux.

f. Les Voiles :

• Pour le RDC, on a des voiles de 2m de longueur, 25cm d'épaisseur et 4,8m de hauteur.

• Pour l'étage courant les voiles ont une longueur de 2m, une épaisseur de 15 cm et 2,87m de hauteur.

• Les voiles porteurs du réservoir ont une épaisseur de 25cm et une hauteur de 4,81m, leurs coté supérieur est sous forme d'un arc et présente une double inclinaison par rapport à l'axe Z de la structure pour épouser la forme du réservoir et pouvoir transmettre correctement les charges et surcharges.

g. Les poutres :

Les poutres présentent une grande rigidité et de dimension relativement importante

- RDC : b=25cm et h=80cm
- EC : b=15cm et h=60cm

h. Le chainage :

Il est assuré par des poutres de chainage (20*40) cm² et des poteaux de (20*20) pour les coins et (15*20) cm² pour ceux du milieu.

i. La maçonnerie :

- Les façades ne comportes pas de brique extérieurement mais utilise largement le verre, le plastique et l'aluminium.
- Pour les murs intérieurs on distingue deux types, le premier comporte une cloison en brique creuse, le second type comporte deux cloisons en brique creuse séparées par une lame d'air de 5cm.

j. Les revêtements :

- Carrelage pour les planchers et escaliers.
- Céramique pour les murs de la cuisine et de la salle de bain.
- Mortier de ciment pour les murs de façade type 2 (figure III.9) extérieurement et enduit plâtre intérieurement, pour le type 1(figure III.8) enduit plâtre intérieurement et tôle double ondulation en aluminium.
- Enduit plâtre pour les cloisons intérieures.

k. Les plans :

Les plans récupérés au niveau des archives de la direction générale de l'hydraulique d'Alger dates de 1958, dont certain n'ont pas pus être récupérés notamment les notes de calcul et les plans de coffrages.

1. Plan de façade :

Figure I.5 : Plan de la façade sud-est

Figure I.6 : Plan de la façade sud-ouest

Figure I.7 : Plan de coupe « Coupe verticale par l'axe de la tour central »

3. Plan d'étage courant :

Figure I.8 : Plan de l'étage courant

« L'étage courant comporte 4 appartements de 45 m ², 69 m², 57 m² et 56 m²; chaque appartement comporte deux chambre de 10,88 m² et 11,15 m², une douche, WC, une cuisine de 5,75 m² et un séjour de 21,80 m² ».

4. Plan du premier étage :

Figure I.9 : Plan du premier étage

« Le premier étage comporte 8studio de 30m² habitables »

5. Plan du REZ de CHAUSSE (RDC):

Figure I.10 : Plan du RDC « Le RDC est utilisé comme abri à voitures »

6. Plan des fondations :

Figure I.11: Plan des fondations

« L'ouvrage est fondé sur des 62 pieux FRANKI de 13m de fiche par l'intermédiaire de semelles et poutre de grande dimension, chaque semelle repose sur 6pieux »

Conclusion :

Dans ce chapitre nous avons présenté les caractéristiques géométriques, les différents éléments qui constituent notre ouvrage ainsi que les documents récupérés au niveau des archives, les caractéristiques mécaniques et physiques de ces éléments seront présenté dans le chapitre qui suit (caractéristiques des matériaux).

II.1/ Introduction :

Dans ce chapitre, on s'intéressera aux caractéristiques physiques et mécaniques des matériaux, en utilise essentiellement la combinaison **Béton** + **Acier** qui doivent rependre aux exigences des règlementations en vigueurs notamment le [RPA 99 version 2003] ainsi que les règles du Béton armé aux états limites [BAEL 91].

II.2/ caractéristiques physiques et mécaniques des matériaux :

II.2.1/ Le béton :

Le béton est un mélange de ciment, de granulats (sable, graviers, gravillons) et de l'eau dite de gâchage ; il est défini du point de vue mécanique par sa résistance qui varie avec :

- Ta granulométrie
- The dosage en ciment
- 📽 La quantité d'eau de gâchage
- C'âge du béton

Les adjuvants sont utilisés pour améliorer les caractéristiques du béton en fonction de la

destination.

A titre indicatif le dosage courant par 1m³ est comme suite :

- Granulat (sable $\Phi \leq 5$ mm, gravier $5 \leq \Phi \leq 25$ mm).
- Gravions : 800L
- Sable : 400L
- Ciment : 300a400Kg /1m³ de classe CPA 325.
- 150 à 200L d'eau.

1. La mise en œuvre du béton :

La mise en œuvre du béton intervient de façon importante dans les qualités attendues du béton, telles que la résistance mécanique, la compacité et la porosité.

Cette mise en place est favorisée par :

- Une bonne vibration.
- Une granulométrie continue.
- Des adjuvants appelés plastifiants.

Inversement la mise en œuvre est gênée par :

- Une densité importante de ferraillage, surtout si la distance entre aciers est faible.
- Les faibles températures
- Les faibles épaisseurs de coulage.

<u>Remarque</u> :

Il est recommandé, lors du coulage du béton, de ne pas le laisser tomber d'une hauteur importante (plus d'un mètre) sans prendre des précautions spéciales, pour éviter la

ségrégation ; c'est-à-dire l'accumulation des granulats lourds au fond du moule et la montée de l'eau en partie supérieur, ce qui nuirait à sa compacité et à sa résistance.

2. La résistance caractéristique à la compression :

Un béton est défini par la valeur de sa résistance à la compression à l'âge de 28 jours f_{c28} exprimée en MPa.

✓ Pour des résistances $f_{c28} \le 40 \text{ MPa.}$:

$$\begin{cases} f_{cj} = \frac{j}{4,76+0.83j} f_{c28} & \text{Si} \quad j \langle 28 \text{ jours} \\ f_{cj} = 1.1 f_{c28} & \text{Si} \quad j \rangle 28 \text{ jours} \end{cases}$$

✓ Pour des résistances f_{c28} >40 MPa. :

$$\begin{cases} f_{cj} = \frac{j}{1,40+0.95j} f_{c28} & \text{Si} \quad j \langle 28 \text{ jours} \\ f_{cj} = f_{c28} & \text{Si} \quad j \rangle 28 \text{ jours} \end{cases}$$

On fixe : $f_{c28} = 20MPa$

3. Résistance caractéristique à la traction :

La résistance caractéristique à la traction du béton à **j** jours, notée f_{ij} , est conventionnellement définie par les relations :

 $f_{ij} = 0,6 + 0,06 f_{cj}$ Si $f_{c28} \le 60MPa$ (BAEL91 Art A.2.1.12) $f_{ij} = 0,275 f_{cj}^{2/3}$ Si $f_{c28} \ge 60MPa$

D'où :

$$f_{t28} = 1,8MPa$$

4. Contrainte limites du béton : a. Etat limites ultimes (ELU) :

Il correspond à la valeur maximale de capacité portante vis à vis de l'équilibre statique, de la résistance de l'un des matériaux et de la stabilité de forme.

La contrainte limite du béton à L'ELU est donnée par :

$$\sigma_{bc} = \frac{0.85 \times f_{c28}}{\theta \cdot \gamma_b}$$
 [MPa] [Art A.4.3.41 BAEL91]

Où:

- $\gamma_b est$ coefficient de sécurité $\rightarrow \gamma_b = \begin{cases} 1.5 en situation courante. \\ 1.15 en situation accidentelle. \end{cases}$
- θ est coefficient de durée d'application de la combinaison d'action considérée

$$\theta = \begin{cases} 1 & Si & j > 24h \\ 0,9 & Si & 1 < j < 24h \\ 0,85 & Si & j < 1h \end{cases}$$

j : durée probable d'application de la combinaison considérée.

D'ou :

$$\sigma_{bc} = \frac{0.85 \times f_{c28}}{\theta \cdot \gamma_b} = \frac{0.85 \times 20}{1.5} = 11,33 \text{ MPa}$$

b. Etat limite de service :

La contrainte limite de compression du béton est donnée par la formule :

 $\sigma_{bc} = 0.6 * f_{c28}$ [MPa] [Art A.4.5.2 BAEL91]

D'ou: $\sigma_{bc} = 12 \text{ MPa}$

c. Diagramme contraintes-déformations du béton :

• A l'état limite ultime (ELU) :

La relation contrainte-déformation est illustrée dans la figure ci-dessous :

Figure II.1 : Diagramme contrainte-déformation à l'ELU

• A l'état limite de service (ELS):

Le béton considéré comme élastique et linéaire la relation contrainte –déformation est illustrée dans la figure ci-dessous :

Figure II.2 : Diagramme de contrainte-déformation (à l'ELS)

d. Contrainte tangentielle conventionnelle :

Elle est donnée par la formule suivante :

$$\tau_u = \frac{V_u}{b \cdot . \ d_{bc}} \quad [\text{Art A.5.1 BAEL 91}]$$

 τ_u ne doit pas dépassé les valeurs suivantes :

- $\tau_u = \min (0.13f_{28}; 5 \text{ MPa})$: pour les fissurations peu nuisible.
- $\tau_u = \min (0.10 \ f_{28}; 4 \ \text{MPa})$: pour les fissurations préjudiciable ou très préjudiciable.

e. Module de déformation longitudinale :

• Module de déformation instantanée : [art A .2 .1.2 1 BAEL91]

Lorsque la contrainte appliquée est inferieure à 24 heure (chargement de courte durée), il résulte un module égale à :

$$E_{ij} = 11000 \sqrt[3]{f_{cj}}$$
 [MPa]; $E_{i28} = 29858,594$ MPa

• Module de déformation différée :

Lorsque la contrainte normale appliquée est de longue durée, et afin de tenir en compte l'effet de fluage du béton, on prend un module égale à :

$$E_{Vi} = 3700 (f_{ci})^{1/3}$$
 d'où $E_{V28} = 10043,345$ MPa

f. Module de déformation transversale :

Le module de déformation transversale noté "G" et donnée par la formule suivante :

$$\mathbf{G} = \frac{E}{2(1+\nu)}$$

Avec :

v : Coefficient de poisson. E : Module de Young.

g. Coefficient de poisson :

C'est le rapport de déformations transversales et longitudinales, il sera pris égal à :

v = 0 à l'ELU v = 0.2 à l'ELS

II.2.2/ Aciers :

a. Module d'élasticité longitudinale : Le module d'élasticité longitudinale E_s, sera pris égale à :

E_s= 200000 MPa [art .A.2 .2, 1 BAEL91]

b. Coefficient de poisson des aciers :

Le coefficient de poisson ν pour les aciers est pris égal à **0.3**

c. Limite élastique garantie (f_e) :

C'est la contrainte pour la quelle le retour élastique donne une déformation résiduelle de 2‰.

d. Diagramme contrainte – déformation :

Figure II.3 : Diagramme contrainte-déformation des aciers

e. Contrainte limite de l'acier :

• Etat limite ultime (ELU) :

La contrainte limite de la déformation de l'acier est donnée par [art A .4.3.2 BAEL91]

 $\sigma_{st} = f_e / \gamma_S$

Avec γ_S : coefficient de sécurité

 $\begin{cases} \gamma_s = 1.\,15 \text{ en situation durable.} \\ \gamma_s = 1.\,00 \text{ en situation accidentelle.} \end{cases}$

Les valeurs obtenues pour notre cas sont :

 $\sigma_{st} = 348 \text{ MPa}$ pour les HA 400

• Etat limite de service (ELS) :

Il est nécessaire de limiter les ouvertures des fissures (risque de corrosion des armatures), et ce en limitant les contraintes dans les armatures tendues sous l'action des sollicitations de service d'après les règles du **BAEL91**. On distingue trois cas de fissurations :

✓ Fissuration peu nuisible : [art 4.5.3.2 BAEL]

Dans ce cas, aucune vérification n'est nécessaire à l'ELS.

✓ Fissuration préjudiciable : [art 4.5.3.2 BAEL91]

Dans ce cas, la contrainte de traction des armatures est limitée à :

$$\sigma_s \leq \overline{\sigma}_s = \min \left\{ \frac{2}{3} f_e ; \max \left(0.5 f_e ; 110 \sqrt{\eta f_{tj}} \right) \right\}$$
 [MPa]

Avec : η coefficient de fissuration égale à :

$$\begin{cases} 1.6 \text{ pour les HA si } \Phi \geq 6mm \\ 1.3 \text{ pour les HA si } \Phi < 6mm \end{cases}$$

Les valeurs obtenues sont :

 $\overline{\sigma_{st}} = \min \{266, 66; 186, 68\}$ MPa pour les HA 400 $\Phi \ge 6 \text{ mm}$

 $\overline{\sigma_{st}}$ = min {266,66 ; 168,3} MPa pour les HA 400 Φ <6 mm

✓ Fissuration très préjudiciables : [art A .4 .5.3.4 BAEL91]

Dans ce cas, la contrainte de traction des armatures est limitée à :

$$\overline{\sigma_{st}} = 0.8* \min \left\{ \frac{2}{3} f_e; \max \left(0.5 f_e; 110 \sqrt{\eta f_{tj}} \right) \right\}$$
 MPa

Les valeurs obtenues sont :

$\overline{\sigma_{st}}$ = 0,8*min {266,66 ; max (200 ; 186,68} MPa pour les HA 400

$\overline{\sigma_{st}}$ =160 MPa

f. Protection des armatures : (art A.7.2.4 BAEL91)

Dans le but d'avoir un bétonnage correct et prémunir les armatures des effets des intempéries et des agents agressifs, on doit veiller à ce que l'enrobage C des armatures soit conforme aux prescriptions suivantes :

• C ≥ 3cm et on peut le ramener à 2cm (si la résistance caractéristique supérieure à 40MPa)

III.1/Introduction :

Le contreventement d'une construction est constitué par l'ensemble des éléments structuraux qui assurent la stabilité du bâtiment vis-à-vis des actions horizontales telles que le vent, les séismes et la poussée des terres.

Le choix d'un système de contreventement est basé sur plusieurs critères d'ordre structurel et économique.

Dans ce qui suit nous allons rechercher le système de contreventement de notre structure.

Nous allons en premier lieu rechercher la position du centre de masse de la structure ainsi que son centre de torsion pour pouvoir ensuite calculer l'excentricité.

III.2/ Calcul du centre de masse :

Le centre de masse noté G est défini comme étant le barycentre des masses des éléments de la structure, c'est aussi le point ou s'exerce les forces sismiques ; sa position par rapport à un système d'axe (OXY) choisi arbitrairement est donnée par les formules suivantes :

$$\mathbf{X}_{\mathbf{G}} = \frac{\Sigma M_{i} X_{i}}{\Sigma M_{i}} ; \qquad \mathbf{Y}_{\mathbf{G}} = \frac{\Sigma M_{i} Y_{i}}{\Sigma M_{i}}$$

Avec :

m_i: masse de l'élément considéré ;

 $X_i \ Y_i$: Coordonnées du centre de gravité de l'élément par rapport au système d'axe (OXY).

III.2.1/ Centre de masse des voiles :

a. Voiles RDC :

Les résultats sont donnés dans le tableau ci-dessous :

voiles	mi (kN)	xi(m)	yi(m)	mi*xi	mi*yi
VL 1	60	2,69	5,9	161,4	354
VL2	60	15,11	5,9	906,6	354
VL3	60	2,69	11,9	161,4	714
VL4	60	15,11	11,9	906,6	714
VL5	28,8	7,8	8,735	224,64	251,568
VL6	14,82	10,8309	10,685	160,513938	158,3517
VL7	21,9	11,084	9,395	242,7396	205,7505
VL8	19,728	10,858	7,52	214,206624	148,35456
VT1	60	5,9	2,69	354	161,4
VT2	60	11,9	2,69	714	161,4
VT3	60	5,9	15,11	354	906,6
VT4	60	11,9	15,11	714	906,6
VT5	40,932	10,19	8,6877	417,09708	355,6049364
Total	606,18			5531,197242	5391,629696

Tableau III.1 : centre de masse des voiles RDC

En aura alors : $\begin{cases} X_{G (v \text{ RDC})} = 9,12468 \text{ m} \\ Y_{G (v \text{ RDC})} = 8,8944 \text{ m} \end{cases}$

Avec :

• Pour les voiles VL1, VL2, VL3, VL4, VT1, VT2, VT3 et VT4 en à :

ep =0.25 m, L= 2m, H=4,8 m m = ρ *v = 25*2*0,25*4,8 = 60 kN

• Pour le voile VL5 en à :

ep =0,15 m, L= 1,6 m, H=4,8 m m = $\rho^*v = 25^*1,6^*0,15^*4,8 = 28,8$ kN

• Pour le voile VL6 en à :

 $\begin{array}{l} S{=}0{,}1235\ m^2 \\ H{=}4{,}8\ m \\ m = \rho^*v = 25{*}0{,}1235\ {*}4{,}8 = 14{,}82\ kN \end{array}$

• Pour le voile VL7 en à :

 $m = \rho^* v = 25^* 0,1825 *4,8 = 21,9 \text{ kN}$

• Pour le voile VL8 en à :

 $m = \rho^* v = 25^*0,1644 *4,8 = 19,728 \text{ kN}$

• Pour le voile VT5 en à :

 $m = \rho^* v = 25^* (3,28^*4,8-2,1^*1)^*0,12 = 40,932 \text{ kN}$

Figure III.1 : disposition des voiles

b. Voiles de l'étage courant :

Les résultats sont donnés dans le tableau ci-dessous :

voiles	mi (kN)	xi(m)	yi(m)	mi*xi	mi*yi
VL 1	21,525	2,69	5,9	57,90225	126,9975
VL2	21,525	15,11	5,9	325,24275	126,9975
VL3	21,525	2,69	11,9	57,90225	256,1475
VL4	21,525	15,11	11,9	325,24275	256,1475
VL5	28,8	7,8	8,735	224,64	251,568
VL6	14,82	10,8309	10,685	160,513938	158,3517
VL7	21,9	11,084	9,395	242,7396	205,7505
VL8	19,728	10,858	7,52	214,206624	148,35456
VT1	21,525	5,9	2,69	126,9975	57,90225
VT2	21,525	11,9	2,69	256,1475	57,90225
VT3	21,525	5,9	15,11	126,9975	325,24275
VT4	21,525	11,9	15,11	256,1475	325,24275
VT5	40,932	10,19	8,6877	417,09708	355,6049364
Total	298,38			2791,777242	2652,209696

Tableau III.2 : centre de masse des voiles EC

En aura également : $\begin{cases} X_{G (v EC)} = 9,35645 m \\ Y_{G (v EC)} = 8,8887 m \end{cases}$

Avec cette fois ci :

• Pour les voiles VL1, VL2, VL3, VL4, VT1, VT2, VT3 et VT4 en à :

ep =0,15 m, L= 2m, H=2,87 m m = ρ *v = 25*2*0, 15*2, 87 = 21,525 kN

Pour les autres voiles nous avons les mêmes caractéristiques que ceux du RDC

III.2.2/ Centre de masse des poutres :

Figure III.2 : disposition des poutres

Caractéristique géométrique des poutres :

RDC:	h = 0, 8 m	;	EC:	h = 0, 6 m
	b = 0,25 m			b =0,15 m
	$S = 0,2 m^2$			$S = 0,09 m^2$

a. Poutre RDC :

Element	Li (m)	Si (m²)	mi (kN)	Xi(m)	Yi(m)	mi*xi	mi*yi
p (1-2) D	1,69	0,2	8,45	0,845	5,9	7,14025	49,855
p (3-4) D	2,21	0,2	11,05	4,795	5,9	52,98475	65,195
p (4-5) D	6,00	0,2	30	8,9	5,9	267,000	177,000
p (5-6) D	2,21	0,2	11,05	13,005	5,9	143,70525	65,195
p (7-8) D	1,69	0,2	8,45	16,955	5,9	143,26975	49,855
p (1-2) E	1,69	0,2	8,45	0,845	11,9	7,14025	100,555
p (3-4) E	2,21	0,2	11,05	4,795	11,9	52,98475	131,495
p (4-5) E	6,00	0,2	30	8,9	11,9	267,000	357,000
p (5-6) E	2,21	0,2	11,05	13,005	11,9	143,70525	131,495
p (7-8) E	1,69	0,2	8,45	16,955	11,9	143,26975	100,555
p (A-B) 4	1,69	0,2	8,45	5,9	0,845	49,855	7,14025
p (A-B) 5	1,69	0,2	8,45	11,9	0,845	100,555	7,14025
p (C-D) 4	2,21	0,2	11,05	5,9	4,795	65,195	52,98475
p (C-D) 5	2,21	0,2	11,05	11.9	4 795	131 /05	52 09 475
			,	3-	1,75	131,495	32,98473
р (D-Е) 4	6,00	0,2	30	5,9	8,9	177,000	267,000
р (D-E) 4 р (D-E) 5	6,00 6,00	0,2 0,2	30 30	5,9 11,9	8,9 8,9	177,000 357,000	267,000 267,000
p (D-E) 4 p (D-E) 5 p (E-F) 4	6,00 6,00 2,21	0,2 0,2 0,2	30 30 11,05	5,9 11,9 5,9	8,9 8,9 13,005	177,000 357,000 65,195	32,98473 267,000 267,000 143,70525
p (D-E) 4 p (D-E) 5 p (E-F) 4 p (E-F) 5	6,00 6,00 2,21 2,21	0,2 0,2 0,2 0,2	30 30 11,05 11,05	5,9 11,9 5,9 11,9	8,9 8,9 13,005 13,005	131,495 177,000 357,000 65,195 131,495	32,98473 267,000 267,000 143,70525 143,70525
p (D-E) 4 p (D-E) 5 p (E-F) 4 p (E-F) 5 p (G-H) 4	6,00 6,00 2,21 2,21 1,69	0,2 0,2 0,2 0,2 0,2	30 30 11,05 11,05 8,45	5,9 11,9 5,9 11,9 5,9	8,9 8,9 13,005 13,005 16,955	131,493 177,000 357,000 65,195 131,495 49,855	32,98473 267,000 267,000 143,70525 143,70525 143,26975
p (D-E) 4 p (D-E) 5 p (E-F) 4 p (E-F) 5 p (G-H) 4 p (G-H) 5	6,00 6,00 2,21 2,21 1,69 1,69	0,2 0,2 0,2 0,2 0,2 0,2	30 30 11,05 11,05 8,45 8,45 8,45	5,9 11,9 5,9 11,9 5,9 11,9 5,9	8,9 8,9 13,005 13,005 16,955 16,955	131,493 177,000 357,000 65,195 131,495 49,855 100,555	32,98473 267,000 267,000 143,70525 143,70525 143,26975 143,26975

Les résultats sont donnés dans le tableau ci-dessous :

Tableau III.3 : centre de masse des poutres RDC

En aura alors :	$\begin{cases} \mathbf{X}_{\mathbf{G} (Ptr RDC)} = 8,9 \text{ m} \\ \mathbf{Y}_{\mathbf{G} (Ptr RDC)} = 8,9 \text{ m} \end{cases}$
	$(-0(11 \text{ kDC}))^{-0}$

b. Poutre EC :

Les résultats sont donnés dans le tableau ci-dessous :

Element	Li (m)	Si(m ²)	mi (kN)	Xi (m)	Yi(m)	mi*xi	mi*yi
p (1-2) D	1,69	0,09	3,8025	0,845	5,9	3,2131125	22,43475
p (3-4) D	2,21	0,09	4,9725	4,795	5,9	23,8431375	29,33775
p (4-5) D	6,00	0,09	13,5	8,9	5,9	120,15	79,65
p (5-6) D	2,21	0,09	4,9725	13,005	5,9	64,6673625	29,33775
p (7-8) D	1,69	0,09	3,8025	16,955	5,9	64,4713875	22,43475
p (1-2) E	1,69	0,09	3,8025	0,845	11,9	3,2131125	45,24975
p (3-4) E	2,21	0,09	4,9725	4,795	11,9	23,8431375	59,17275
p (4-5) E	6,00	0,09	13,5	8,9	11,9	120,15	160,65
p (5-6) E	2,21	0,09	4,9725	13,005	11,9	64,6673625	59,17275
p (7-8) E	1,69	0,09	3,8025	16,955	11,9	64,4713875	45,24975
p (A-B) 4	1,69	0,09	3,8025	5,9	0,845	22,43475	3,2131125
p (A-B) 4 p (A-B) 5	1,69 1,69	0,09 0,09	3,8025 3,8025	5,9 11,9	0,845 0,845	22,43475 45,24975	3,2131125 3,2131125
p (A-B) 4 p (A-B) 5 p (C-D) 4	1,69 1,69 2,21	0,09 0,09 0,09	3,8025 3,8025 4,9725	5,9 11,9 5,9	0,845 0,845 4,795	22,43475 45,24975 29,33775	3,2131125 3,2131125 23,8431375
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5	1,69 1,69 2,21 2,21	0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725	5,9 11,9 5,9 11,9	0,845 0,845 4,795 4,795	22,43475 45,24975 29,33775 59,17275	3,2131125 3,2131125 23,8431375 23,8431375
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5 p (D-E) 4	1,69 1,69 2,21 2,21 6,00	0,09 0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725 13,5	5,9 11,9 5,9 11,9 5,9	0,845 0,845 4,795 4,795 8,9	22,43475 45,24975 29,33775 59,17275 79,65	3,2131125 3,2131125 23,8431375 23,8431375 120,15
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5 p (D-E) 4 p (D-E) 5	1,69 1,69 2,21 2,21 6,00 6,00	0,09 0,09 0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725 13,5 13,5	5,9 11,9 5,9 11,9 5,9 11,9	0,845 0,845 4,795 4,795 8,9 8,9	22,43475 45,24975 29,33775 59,17275 79,65 160,65	3,2131125 3,2131125 23,8431375 23,8431375 120,15 120,15
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5 p (D-E) 4 p (D-E) 5 p (E-F) 4	1,69 1,69 2,21 2,21 6,00 6,00 2,21	0,09 0,09 0,09 0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725 13,5 13,5 4,9725	5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 5,9 5,9 5,9 5,9 5,9	0,845 0,845 4,795 4,795 8,9 8,9 13,005	22,43475 45,24975 29,33775 59,17275 79,65 160,65 29,33775	3,2131125 3,2131125 23,8431375 23,8431375 120,15 120,15 64,6673625
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5 p (D-E) 4 p (D-E) 5 p (E-F) 4 p (E-F) 5	1,69 1,69 2,21 2,21 6,00 6,00 2,21 2,21	0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725 13,5 13,5 4,9725 4,9725	5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9	0,845 0,845 4,795 4,795 8,9 8,9 13,005 13,005	22,43475 45,24975 29,33775 59,17275 79,65 160,65 29,33775 59,17275	3,2131125 3,2131125 23,8431375 23,8431375 120,15 120,15 64,6673625 64,6673625
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5 p (D-E) 4 p (D-E) 5 p (E-F) 4 p (E-F) 5 p (G-H) 4	1,69 1,69 2,21 2,21 6,00 6,00 2,21 2,21 1,69	0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725 13,5 13,5 4,9725 4,9725 4,9725 3,8025	5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9	0,845 0,845 4,795 4,795 8,9 8,9 13,005 13,005 16,955	22,43475 45,24975 29,33775 59,17275 79,65 160,65 29,33775 59,17275 22,43475	3,2131125 3,2131125 23,8431375 23,8431375 120,15 120,15 64,6673625 64,6673625 64,4713875
p (A-B) 4 p (A-B) 5 p (C-D) 4 p (C-D) 5 p (D-E) 4 p (D-E) 5 p (E-F) 4 p (E-F) 5 p (G-H) 4 p (G-H) 5	1,69 1,69 2,21 2,21 6,00 6,00 2,21 1,69 1,69 1,69	0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09	3,8025 3,8025 4,9725 4,9725 13,5 13,5 4,9725 4,9725 3,8025 3,8025	5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9 11,9 5,9	0,845 0,845 4,795 4,795 8,9 13,005 13,005 16,955 16,955	22,43475 45,24975 29,33775 59,17275 79,65 160,65 29,33775 59,17275 22,43475 45,24975	3,2131125 3,2131125 23,8431375 23,8431375 120,15 120,15 64,6673625 64,6673625 64,4713875 64,4713875

Tableau III.4 : centre de masse des poutres EC

En aura :	$\int \mathbf{X}_{\mathbf{G}(\mathbf{Ptr} \mathbf{EC})} = 8,9 \text{ m}$
	$\int \mathbf{Y}_{\mathbf{G}(\mathbf{Ptr}\mathbf{EC})} = 8,9 \text{ m}$

III.2.3/ Centre de masse des plancher :

Pour rechercher le centre de masse des plancher en doit en premier lieu calculer les charges et surcharges lui revenant.

a. Plancher terrasse (dalle pleine) :

N°	Element	Epaisseur (m)	ρ (kN/m³)	G (kN/m²)
1	étancheité multicouche	0,02	6	0,12
2	forme de pente en beton armé	0,21	25	5,25
3	isolation thermique	0,05	4	0,20
4	plancher en dalle pleine	0,12	25	3,00
5	enduit en ciment	0,01	20	0,20
		G total (k	∴N/m²)	8,77

Tableau III.5 : charge revenant au plancher terrasse

Charge revenant au plancher terrasse :

$$\label{eq:G} \begin{split} G &= 8,77 \ kN/m^2 \\ Q &= 1,5 \ kN/m^2 \ (terrasse \ accessible). \end{split}$$

 $G + Q = 10,27 \text{ kN/m}^2$

Les résultats sont donnés ci-dessous :

Element	$\operatorname{Ai}(m^2)$	mi (kN)	Xi (m)	Yi (m)	mi*xi	mi*yi
D1	34,81	357,4987	14,85	14,85	5308,855695	5308,855695
D2	35,4	363,558	8,9	14,85	3235,6662	5398,8363
D3	34,81	357,4987	2,95	14,85	1054,621165	5308,855695
D4	35,4	363,558	14,85	8,9	5398,8363	3235,6662
D5	22,811	234,26897	8,962	8,8965	2099,518509	2084,173892
D6	35,4	363,558	2,95	8,9	1072,4961	3235,6662
D7	34,81	357,4987	14,85	2,95	5308,855695	1054,621165
D8	35,4	363,558	8,9	2,95	3235,6662	1072,4961
D9	34,81	357,4987	2,95	2,95	1054,621165	1054,621165
То	tal	3118,49577			27769,13703	27753,79241

Tableau III.6 : centre de masse du plancher terrasse

En aura donc les coordonnées du centre de masse du plancher terrasse comme suite :

 $X_{G (PT)} = 8,9047 \text{ m}$ $Y_{G (PT)} = 8,8997 \text{ m}$

b. Plancher EC (dalle pleine) :

N°	Element	Epaisseur (m)	ρ (kN/m³)	G (kN/m²)
1	carrelage	0,02	22	0,44
2	mortier de pose	0,03	20	0,60
3	dalle pleine	0,12	25	3,00
4	enduit plâtre	0,02	10	0,20
5	cloison en brique creuse	0,10 9,0		0,90
	somme	G total (l	kN/m²)	5,14

Tableau III.7 : charge revenant au plancher EC

Figure III.4 : coupe verticale du plancher EC

Charge revenant au plancher EC : $G = 5,14 \text{ kN/m}^2$ $Q = 1,5 \text{ kN/m}^2$ (terrasse accessible).

 $G + Q = 6,64 \text{ kN/m}^2$

Les résultats sont donnés ci-dessous :

Element	$\operatorname{Ai}(m^2)$	mi (kN)	Xi (m)	Yi(m)	mi*xi	mi*yi
D1	34,81	231,1384	14,85	14,85	3432,40524	3432,40524
D2	35,4	235,056	8,9	14,85	2091,9984	3490,5816
D3	34,81	231,1384	2,95	14,85	681,85828	3432,40524
D4	35,4	235,056	14,85	8,9	3490,5816	2091,9984
D5	22,811	151,46504	8,962	8,897	1357,429688	1347,508728
D6	35,4	235,056	2,95	8,9	693,4152	2091,9984
D7	34,81	231,1384	14,85	2,95	3432,40524	681,85828
D8	35,4	235,056	8,9	2,95	2091,9984	693,4152
D9	34,81	231,1384	2,95	2,95	681,85828	681,85828
То	otal	2016,24264			17953,95033	17944,02937

Tableau III.8 : centre de masse au plancher EC

En aura donc les coordonnées du centre de masse du plancher Etage Courant comme suite :

$$X_{G (PEC)} = 8,9047 \text{ m}$$

 $Y_{G (PEC)} = 8,8997 \text{ m}$

Finalement le centre de masse des deux planchers terrasse et étage courant sont confondus et de coordonnées G (8,9047; 8,8997)

Figure III.5 : position du centre de masse des plancher

III.2.4/ Centre de masse de l'acrotère :

Même principe que précédemment en doit calculer tout d'abord les charges revenant à l'acrotère.

$$\begin{split} S &= 0,\,2249 \text{ m}^2 \\ G &= 25*0,\,2249*1 = 5,\,6225 \text{ kN/ml} \\ Q &= 1*1{=}1 \text{ kN/ml} \\ G + Q &= 6,\,6225 \text{ kN/ml} \end{split}$$

Figure III.6 : caractéristiques géométriques de l'acrotère

Element	Li (m)	mi (kN)	xi (m)	yi (m)	mi*xi	mi*yi
Acr 1	17,65	116,887125	8,9	0,075	1040,295413	8,766534375
Acr 2	17,65	116,887125	8,9	17,725	1040,295413	2071,824291
Acr 3	17,65	116,887125	0,075	8,9	8,766534375	1040,295413
Acr 4	17,65	116,887125	17,725	8,9	2071,824291	1040,295413
Total		467,5485			4161,18165	4161,18165

Tableau III.9 : centre de masse de l'acrotère

En aura donc :

 $X_{G (ACRO)} = 8, 9 m$ $Y_{G (ACRO)} = 8, 9 m$

III.2.5/ Centre de masse des escaliers :

Caractéristiques géométriques des escaliers :

- L'escalier du RDC comporte quatre (04) volées avec deux (02) paliers de repos.
- L'escalier de l'EC comporte deux (02) volées et un (01) palier de repos.
- L'escalier du dernier étage qui donne accès à la terrasse comporte une volée et pas de palier de repos.

Figure III.7.a : Coupe verticales de l'escalier du dernier niveau

Figure III.7.c : caractéristiques géométriques des escaliers de l'EC

Chapitre III :

étude du contreventement

Niveau	Elements	Li (m)	b (m)	Si (m²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*Yi	xgi (m)	ygi (m)	
VIII	volée	2,75	1,20	3,300	30,24	7,225	9,725	218,5165125	294,128	7 225	0 725	
(etage 7)		son	nme		30,24			218,5165125	294,128	7,225	9,125	
	volée 1	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
VII	volée 2	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	7 317047632	8 948495498	
V 11	palier	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282	7,517047052	0,940495490	
		son	nme		58,24			426,1463175	521,162			
	volée 1	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
VI	volée 2	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	7 317047632	8 948495498	
V I	palier	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282	7,517047052	0,940495490	
		son	nme		58,24			426,1463175	521,162			
	volée 1	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
V	volée 2	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	7 317047632	8 9/8/95/98	
v	palier	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282	7,517047052	0,940495490	
		son	nme		58,24			426,1463175	521,162			
	volée 1	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
IV	volée 2	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	7 317047632	8 9/8/95/98	
1 V	palier	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282	7,517047052	2,2 10 122 120	
	somme				58,24		-	426,1463175	521,162			
	volée 1	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
ш	volée 2	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	7 317047632	8 9/8/95/98	
111	palier	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282	7,517047052	0,940495490	
		son	nme		58,24			426,1463175	521,162			
	volée 1	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
п	volée 2	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	7 317047632	8 9/8/95/98	
ш	palier	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282	7,517047052	0,740475470	
		son	nme		58,24			426,1463175	521,162			
	volée 1	1,25	3,10	3,875	35,51	7,875	7,4	279,6757031	262,806			
	volée 2	1,25	1,60	2,000	18,33	7,875	11,1	144,34875	203,463			
т	volée 3	1,75	1,20	2,100	19,25	7,7	9,725	148,19805	187,172			
(RDC)	volée 4	1,75	1,20	2,100	19,25	7,875	8,35	151,5661875	160,708	8,093759258	8,835009262	
	palier 1	1,00	6,20	6,200	43,65	9,4	8,9	410,2912	388,467			
-	palier 2	1,10	2,55	2,805	19,75	6,4	8,775	126,38208	173,282			
	somme			155,73			1260,461971	1375,899				
	Total				535,42			4035,856388	4797,000	7,537763608	8,959349604	

En aura donc :

 $\mathbf{X}_{G \text{ (Escalier)}} = 7,54 \text{ m}$ $\mathbf{Y}_{G \text{ (Escalier)}} = 8,96 \text{ m}$

III.2.6/ Centre de masse des murs :

- Etage 01 :
- a. Murs extérieurs :
- Charges et surcharges revenant aux murs extérieurs :
 - o Type 1 :

Figure III.8 : coupe du mur de façade type 1

N°	Element	Epaisseur (m)	ρ (kN/m³)	G (kN/m²)
1	enduit plâtre	0,01	10	0,10
2	cloison en brique creuse	0,10	9,0	0,90
3	tôle en alu double endulation	0,035	_	0,03
	somme	G total (l	«N/m²)	1,03

Tableau III.11 : charge revenant aux murs extérieurs type 1 premier étage

• Type 2 :

Figure III.9 : coupe du mur de façade type 2

N°	Element	Epaisseur (m)	ρ (kN/m³)	G (kN/m²)
1	enduit de ciment	0,01	20,00	0,20
2	cloison en brique creuse	0,05	9,0	0,45
3	enduit plâtre	0,01	10	0,10
	somme	G total (k	N/m²)	0,75

Tableau III.12 : charge revenant aux murs extérieurs type 2 ; premier étage

Les résultats sont donnés dans les tableaux ci-dessous :

			centre de m	asse des mur	s exterieur de	l'etage 1 d	lans le sens	transversal (typ	e 1)		
Element	h (m)	Li (m)	G (kN/m²)	Si (m²)	mi (kN)	Xi(m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	4,18	1,03	11,9966	12,356498	0,05	2,09	0,6178249	25,82508082		
2	2,87	1	1,03	2,87	2,9561	0,05	5,48	0,147805	16,199428		
3	2,87	1	1,03	2,87	2,9561	0,05	12,33	0,147805	36,448713		
4	2,87	4,18	1,03	11,9966	12,356498	0,05	2,09	0,6178249	25,82508082		
5	2,87	4,18	1,03	11,9966	12,356498	17,75	15,71	219,3278395	194,1205836	8,9	8,901
6	2,87	1	1,03	2,87	2,9561	17,75	5,48	52,470775	16,199428		
7	2,87	1	1,03	2,87	2,9561	17,75	12,33	52,470775	36,448713		
8	2,87	4,18	1,03	11,9966	12,356498	17,75	15,71	219,3278395	194,1205836		
		som	me		61,250392			545,1284888	545,1876108		

Tableau III.13 : centre de masse des murs extérieur ; étage1 ; type 1

	Tableau III.14												
	centre de masse des murs exterieur de l'etage 1 dans le sens longitudinal (type 2)												
Element	Elementh (m)Li (m)G (kN/m²)Si (m²)mi (kN)Xi (m)Yi (m)mi*ximi*yiXg (m)Yg (m)												
1	1 1,7 3,2 0,75 5,44 4,08 3,03 -0,08 12,3624 -0,3264												
2	2 1,7 3,45 0,75 5,865 4,39875 8,9 -0,08 39,148875 -0,3519												
3	1,7	3,2	0,75	5,44	4,08	14,78	-0,08	60,3024	-0,3264				
4	1,7	3,2	0,75	5,44	4,08	3,03	17,88	12,3624	72,9504	8,9032487	8,9		
5	1,7	3,45	0,75	5,865	4,39875	8,9	17,88	39,148875	78,64965				
6	1,7	3,2	0,75	5,44	4,08	14,78	17,88	60,3024	72,9504				
	somme 25,1175 223,62735 223,54575												
	Tableau III.15												

			centre	e de masse d	es murs exteri	eur de l'etag	ge 1 dans le	sens transversal	(type 2)		
Element	h (m)	Li (m)	G (kN/m²)	Si (m²)	mi (kN)	Xi(m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	1,7	3,45	0,75	5,865	4,39875	-0,08	8,9	-0,3519	39,148875		
2	1,7	3,45	0,75	5,865	4,39875	17,9	8,9	78,737625	39,148875		
3	1,7	0,5	0,75	0,85	0,6375	1,46	0,18	0,93075	0,11475		
4	1,7	0,5	0,75	0,85	0,6375	4,61	0,18	2,938875	0,11475		
5	1,7	0,5	0,75	0,85	0,6375	7,21	0,18	4,596375	0,11475		
6	1,7	0,5	0,75	0,85	0,6375	10,61	0,18	6,763875	0,11475		
7	1,7	0,5	0,75	0,85	0,6375	13,21	0,18	8,421375	0,11475		
8	1,7	0,5	0,75	0,85	0,6375	16,36	0,18	10,4295	0,11475	8,91	8,9023256
9	1,7	0,5	0,75	0,85	0,6375	1,46	17,63	0,93075	11,239125		
10	1,7	0,5	0,75	0,85	0,6375	4,61	17,63	2,938875	11,239125		
11	1,7	0,5	0,75	0,85	0,6375	7,21	17,63	4,596375	11,239125		
12	1,7	0,5	0,75	0,85	0,6375	10,61	17,63	6,763875	11,239125		
13	1,7	0,5	0,75	0,85	0,6375	13,21	17,63	8,421375	11,239125		
14	1,7	0,5	0,75	0,85	0,6375	16,36	17,63	10,4295	11,239125		
somme 16,4475 146,547225 146,421											
					T	ableau III. I	4				

Finalement les coordonnées du centre de gravités des mus extérieurs du premier étage :

Xg = 8,900947057 m	
Yg = 8,902393367 m	

b. Murs intérieurs :

- Charges revenant aux murs intérieurs :
 - o Type 1 :

Figure	III 10 ·	coune	du mur	intóriour	type	1
rigure	m.10.	coupe	au mur	interteur	iype	1

N°	Element	Epaisseur (m)	ρ (kN/m³)	G (kN/m²)
1	enduit plâtre	0,01	10	0,10
2	cloison en brique creuse	0,05	9,0	0,45
3	enduit plâtre	0,01	10	0,10
	somme	G total (kN/m²)	0,65

Tableau III.16 : charge revenant aux murs intérieurs type 1 premier étage

o Type 2 :

Figure III.11 : coupe du mur intérieur type 2

N°	Element	Epaisseur (m)	ρ (kN/m³)	G (kN/m²)
1	enduit plâtre	0,01	10	0,10
2	cloison en brique creuse	0,05	9,0	0,45
3	lame d'air	0,05	_	0,00
4	cloison en brique creuse	0,05	9,0	0,45
5	enduit plâtre	0,01	10	0,10
	somme	G total (l	(N/m^2)	1,10

Tableau III.17 : charge revenant aux murs intérieurs type 2 ; premier étage

	$\begin{array}{c} \text{centre de masse des murs interieurs de l'etage 1 dans le sens longitudinal (type 1)} \\ \hline \\ $										
Element	h (m)	Li (m)	G (kN/m ²)	Si(m ²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	1,97	0,65	5,6539	3,675035	1,99	4,14	7,31331965	15,2146449		
2	2,87	0,94	0,65	2,6978	1,75357	4,35	4,14	7,6280295	7,2597798		
3	2,87	0,62	0,65	1,7794	1,15661	8,85	3,84	10,2359985	4,4413824		
4	2,87	0,62	0,65	1,7794	1,15661	8,85	5,56	10,2359985	6,4307516		
5	2,87	1,6	0,65	4,592	2,9848	11,03	2,36	32,922344	7,044128		
6	2,87	0,78	0,65	2,2386	1,45509	11,43	3,83	16,6316787	5,5729947		
7	2,87	3,49	0,65	10,0163	6,510595	11,91	4,7	77,54118645	30,5997965		
8	2,87	0,78	0,65	2,2386	1,45509	12,41	3,83	18,0576669	5,5729947		
9	2,87	1,6	0,65	4,592	2,9848	12,78	2,36	38,145744	7,044128		
10	2,87	0,62	0,65	1,7794	1,15661	14,96	3,87	17,3028856	4,4760807		
11	2,87	0,62	0,65	1,7794	1,15661	14,96	5,59	17,3028856	6,4654499		
12	2,87	1,05	0,65	3,0135	1,958775	6,51	5,85	12,75162525	11,45883375		
13	2,87	1,47	0,65	4,2189	2,742285	2,39	7,61	6,55406115	20,86878885		
14	2,87	0,95	0,65	2,7265	1,772225	4,35	7,61	7,70917875	13,48663225		
15	2,87	1,6	0,65	4,592	2,9848	4,7	8,63	14,02856	25,758824		
16	2,87	1,6	0,65	4,592	2,9848	13,06	9,17	38,981488	27,370616	8 00/3	0.02614
17	2,87	1,47	0,65	4,2189	2,742285	15,45	10,19	42,36830325	27,94388415	0,9943	9,02014
18	2,87	0,95	0,65	2,7265	1,772225	13,43	10,19	23,80098175	18,05897275		
19	2,87	3,49	0,65	10,0163	6,510595	5,9	13,1	38,4125105	85,2887945		
20	2,87	0,78	0,65	2,2386	1,45509	5,4	13,97	7,857486	20,3276073		
21	2,87	0,78	0,65	2,2386	1,45509	6,38	13,97	9,2834742	20,3276073		
22	2,87	1,6	0,65	4,592	2,9848	5,03	15,44	15,013544	46,085312		
23	2,87	1,6	0,65	4,592	2,9848	6,78	15,44	20,236944	46,085312		
24	2,87	1,05	0,65	3,0135	1,958775	11,3	11,95	22,1341575	23,40736125		
25	2,87	0,94	0,65	2,6978	1,75357	13,43	13,66	23,5504451	23,9537662		
26	2,87	1,97	0,65	5,6539	3,675035	15,87	13,66	58,32280545	50,2009781		
27	2,87	0,62	0,65	1,7794	1,15661	15,2	15,56	17,580472	17,9968516		
28	2,87	0,65	0,65	1,8655	1,212575	2,54	12,33	3,0799405	14,95104975		
29	2,87	0,65	0,65	1,8655	1,212575	2,54	13,86	3,0799405	16,8062895		
30	2,87	0,65	0,65	1,8655	1,212575	9,16	12,45	11,107187	15,09655875		
31	2,87	0,65	0,65	1,8655	1,212575	9,16	13,98	11,107187	16,9517985		
		som	me		71,18748			640,2780293	642,5479697		

	centre de masse des murs interieurs de l'etage 1 dans le sens transversal (type 1)										
Element	h (m)	Li(m)	G (kN/m ²)	Si (m²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	1,83	0,65	5,2521	3,413865	2,39	3,19	8,15913735	10,89022935		
2	2,87	1,65	0,65	4,7355	3,078075	1,78	5	5,4789735	15,390375		
3	2,87	1,65	0,65	4,7355	3,078075	3,92	5	12,066054	15,390375		
4	2,87	2,58	0,65	7,4046	4,81299	4,79	6,29	23,0542221	30,2737071		
5	2,87	0,75	0,65	2,1525	1,399125	3,92	6,35	5,48457	8,88444375		
6	2,87	1,6	0,65	4,592	2,9848	2,39	6,78	7,133672	20,236944		
7	2,87	0,58	0,65	1,6646	1,08199	3,94	8,96	4,2630406	9,6946304		
8	2,87	0,58	0,65	1,6646	1,08199	5,47	8,96	5,9184853	9,6946304		
9	2,87	1,65	0,65	4,7355	3,078075	9,13	4,7	28,1028248	14,4669525		
10	2,87	1,27	0,65	3,6449	2,369185	10,2	2,36	24,165687	5,5912766		
11	2,87	1,27	0,65	3,6449	2,369185	13,62	2,36	32,2682997	5,5912766		
12	2,87	0,94	0,65	2,6978	1,75357	10,2	4,27	17,886414	7,4877439		
13	2,87	0,94	0,65	2,6978	1,75357	13,62	4,27	23,8836234	7,4877439		
14	2,87	1,65	0,65	4,7355	3,078075	15,24	4,68	46,909863	14,405391		
15	2,87	0,58	0,65	1,6646	1,08199	12,29	8,88	13,2976571	9,6080712		
16	2,87	0,58	0,65	1,6646	1,08199	13,82	8,88	14,9531018	9,6080712	8 92562	8 83664
17	2,87	1,07	0,65	3,0709	1,996085	11,94	6,51	23,8332549	12,99451335	0,92502	8,85004
18	2,87	1,6	0,65	4,592	2,9848	15,45	11,03	46,11516	32,922344		
19	2,87	1,6	0,65	4,592	2,9848	12,99	11,03	38,772552	32,922344		
20	2,87	0,75	0,65	2,1525	1,399125	13,86	11,45	19,3918725	16,01998125		
21	2,87	1,07	0,65	3,0709	1,996085	5,86	11,29	11,6970581	22,53579965		
22	2,87	1,46	0,65	4,1902	2,72363	2,25	13,09	6,1281675	35,6523167		
23	2,87	0,87	0,65	2,4969	1,622985	7,61	13,54	12,3509159	21,9752169		
24	2,87	0,87	0,65	2,4969	1,622985	4,19	13,54	6,80030715	21,9752169		
25	2,87	1,27	0,65	3,6449	2,369185	4,19	15,44	9,92688515	36,5802164		
26	2,87	1,27	0,65	3,6449	2,369185	7,61	15,44	18,0294979	36,5802164		
27	2,87	1,46	0,65	4,1902	2,72363	8,87	13,22	24,1585981	36,0063886		
28	2,87	0,82	0,65	2,3534	1,52971	12,99	12,4	19,8709329	18,968404		
29	2,87	1,65	0,65	4,7355	3,078075	13,86	12,8	42,6621195	39,39936		
30	2,87	1,65	0,65	4,7355	3,078075	16,07	12,8	49,4646653	39,39936		
31	2,87	1,83	0,65	5,2521	3,413865	15,47	14,61	52,8124916	49,87656765		
		somm	le		73,38877			655,040104	648,5101077		

			centre de	masse des	murs interieu	r de l'etage	1 dans le s	sens transversal	(type 2)		
Element	h (m)	Li (m)	G (kN/m²)	Si (m²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	1,51	1,10	4,3337	4,76707	5,9	0,97	28,125713	4,6240579		
2	2,87	1,51	1,10	4,3337	4,76707	11,9	0,97	56,728133	4,6240579		
3	2,87	2,25	1,10	6,4575	7,10325	5,9	4,99	41,909175	35,4452175		
4	2,87	0,8	1,10	2,296	2,5256	11,9	4,27	30,05464	10,784312	Ī	
5	2,87	2,25	1,10	6,4575	7,10325	11,9	12,81	84,528675	90,9926325	8,9	8,900659
6	2,87	0,8	1,10	2,296	2,5256	5,9	13,54	14,90104	34,196624		
7	2,87	1,51	1,10	4,3337	4,76707	5,9	16,83	28,125713	80,2297881		
8	2,87	1,51	1,10	4,3337	4,76707	11,9	16,83	56,728133	80,2297881]	
		somn	ne		38,32598			341,101222	341,126478		

Tableau III.20

			centre o	de masse de	s murs interieu	r de l'etage	1 dans le se	ns longitudinal (t	ype 2)		
Element	h (m)	Li(m)	G (kN/m²	Si (m²)	mi (kN)	Xi(m)	Yi(m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	0,87	1,10	2,4969	2,74659	4,32	5,9	11,8652688	16,204881		
2	2,87	2,35	1,10	6,7445	7,41895	12,72	5,9	94,369044	43,771805		
3	2,87	2,35	1,10	6,7445	7,41895	5,09	11,9	37,7624555	88,285505		
4	2,87	0,87	1,10	2,4969	2,74659	13,46	11,9	36,9691014	32,684421		
5	2,87	1,69	1,10	4,8503	5,33533	16,74	11,9	89,3134242	63,490427	8,9030227	8,9
6	2,87	1,69	1,10	4,8503	5,33533	16,74	5,9	89,3134242	31,478447		
7	2,87	1,69	1,10	4,8503	5,33533	1,07	11,9	5,7088031	63,490427		
8	2,87	1,69	1,10	4,8503	5,33533	1,07	5,9	5,7088031	31,478447		
		somm	e		41,6724			371,0103243	370,88436		

Finalement les coordonnées du centre de gravités des murs intérieur du premier étage :

Xg = 8,938808805 m Yg = 8,919390919 m • Etage courant :

La charge revenant aux murs intérieurs et extérieurs restes les mêmes dans les différents étages :

Telle que :

- Pour les murs extérieurs en a : -Type 1: G total = 1, 03 kN/m²
 - -Type 2: G total = 0, 75 kN/m²
- Pour les murs intérieurs en a:

-Type 1: G total = 0, 65 kN/m²

-Type 2: G total = 1, 10 kN/m²

Les résultats sont donnés dans les tableaux ci-dessous :

a. Murs intérieurs :

			centre de ma	isse des m	urs interieur	de l'étage	courant da	ins le sens trans	sversal (type 2)		
Element	h (m)	Li (m)	G (kN/m²)	Si (m²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	1,65	1,10	4,7355	5,20905	5,9	0,97	30,733395	5,0527785		
2	2,87	0,5	1,10	1,435	1,5785	5,9	3,95	9,31315	6,235075		
3	2,87	1,05	1,10	3,0135	3,31485	11,9	4,2	39,446715	13,92237		
4	2,87	1,05	1,10	3,0135	3,31485	5,9	13,55	19,557615	44,9162175	8,9	8,891796875
5	2,87	1,65	1,10	4,7355	5,20905	11,9	16,83	61,987695	87,6683115		
6	2,87	0,5	1,10	1,435	1,5785	11,9	13,85	18,78415	21,862225		
		somm	e		20,2048			179,82272	179,6569775		

			centre de m	asse des m	urs interieur	de l'étage d	courant dai	ns le sens longitue	dinal (type 2)		
Element	h (m)	Li(m)	G (kN/m ²)	Si (m ²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	1,65	1,10	4,7355	5,20905	16,76	5,9	87,303678	30,733395		
2	2,87	0,3	1,10	0,861	0,9471	13,8	5,9	13,06998	5,58789		
3	2,87	0,8	1,10	2,296	2,5256	4,27	5,9	10,784312	14,90104		
4	2,87	0,8	1,10	2,296	2,5256	13,75	11,9	34,727	30,05464	8,922590909	8,9
5	2,87	0,3	1,10	0,861	0,9471	3,8	11,9	3,59898	11,27049		
6	2,87	1,65	1,10	4,7355	5,20905	1,045	11,9	5,44345725	61,987695		
		somm	e		17,3635			154,9274073	154,53515		

			centre d	le masse des	murs interieurs of	de l'etage o	courant da	ns le sens longitud	inal (type 1)		
Element	h (m)	Li(m)	G (kN/m²)	Si (m²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	0,5	0,65	1,435	0,93275	2,78	3	2,593045	2,79825		
2	2,87	0,5	0,65	1,435	0,93275	2,78	3	2,593045	2,79825		
3	2,87	1,4	0,65	4,018	2,6117	2,32	4,15	6,059144	10,838555		
4	2,87	0,85	0,65	2,4395	1,585675	4,32	4,15	6,850116	6,58055125		
5	2,87	0,55	0,65	1,5785	1,026025	5,91	4,27	6,06380775	4,38112675		
6	2,87	0,55	0,65	1,5785	1,026025	5,91	6,57	6,06380775	6,74098425		
7	2,87	0,78	0,65	2,2386	1,45509	4,3	8,15	6,256887	11,8589835		
8	2,87	0,7	0,65	2,009	1,30585	3,5	8,15	4,570475	10,6426775		
9	2,87	0,3	0,65	0,861	0,55965	1,82	8,15	1,018563	4,5611475		
10	2,87	0,35	0,65	1,0045	0,652925	0,25	8,15	0,16323125	5,32133875		
11	2,87	0,5	0,65	1,435	0,93275	9,9	1,675	9,234225	1,56235625		
12	2,87	0,5	0,65	1,435	0,93275	9,9	3,85	9,234225	3,5910875		
13	2,87	0,75	0,65	2,1525	1,399125	10	4,75	13,99125	6,64584375		
14	2,87	1,45	0,65	4,1615	2,704975	11,85	4,75	32,05395375	12,84863125		
15	2,87	1,4	0,65	4,018	2,6117	11,85	1,675	30,948645	4,3745975		
16	2,87	1,5	0,65	4,305	2,79825	12,65	3,85	35,3978625	10,7732625		

		cer	tre de mas	se des murs	interieurs de l	'etage cour	ant dans le se	ens longetudinal	(type 1) ((suite)	
17	2,87	3,95	0,65	11,3365	7,368725	16,4	3,05	120,84709	22,47461125		
18	2,87	0,5	0,65	1,435	0,93275	17,35	4,6	16,1832125	4,29065		
19	2,87	0,8	0,65	2,296	1,4924	13,55	9,67	20,22202	14,431508		
20	2,87	0,7	0,65	2,009	1,30585	14,35	9,67	18,7389475	12,6275695		
21	2,87	0,3	0,65	0,861	0,55965	16,05	9,67	8,9823825	5,4118155		
22	2,87	0,3	0,65	0,861	0,55965	17,6	9,67	9,84984	5,4118155		
23	2,87	0,5	0,65	1,435	0,93275	0,45	13,2	0,4197375	12,3123		
24	2,87	3,95	0,65	11,3365	7,368725	2,195	14,75	16,17435138	108,6886938		
25	2,87	1,5	0,65	4,305	2,79825	5	13,9	13,99125	38,895675		
26	2,87	1,45	0,65	4,1615	2,704975	5,85	13,05	15,82410375	35,29992375		
27	2,87	1,45	0,65	4,1615	2,704975	5,85	16,15	15,82410375	43,68534625		
28	2,87	0,5	0,65	1,435	0,93275	7,8	16,15	7,27545	15,0639125		
29	2,87	0,8	0,65	2,296	1,4924	7,65	13,05	11,41686	19,47582	8,95874813	8,90700597
30	2,87	0,5	0,65	1,435	0,93275	7,8	13,9	7,27545	12,965225		
31	2,87	0,6	0,65	1,722	1,1193	11,75	13,55	13,151775	15,166515		
32	2,87	0,6	0,65	1,722	1,1193	11,75	11,225	13,151775	12,5641425		
33	2,87	0,9	0,65	2,583	1,67895	13,55	13,525	22,7497725	22,70779875		
34	2,87	1,4	0,65	4,018	2,6117	15,5	13,525	40,48135	35,3232425		
35	2,87	0,5	0,65	1,435	0,93275	15,05	13,675	14,0378875	12,75535625		
36	2,87	0,5	0,65	1,435	0,93275	15,05	14,8	14,0378875	13,8047		
37	2,87	2,2	0,65	6,314	4,1041	5,4	11,5	22,16214	47,19715		
38	2,87	0,75	0,65	2,1525	1,399125	11	11,65	15,390375	16,29980625		
39	2,87	2,2	0,65	6,314	4,1041	12,4	6,3	50,89084	25,85583		
40	2,87	0,75	0,65	2,1525	1,399125	6,675	6,15	9,339159375	8,60461875]	
		somm	ne 📃		74,95579			671,5100438	667,6316693		

			centre de m	asse des mu	irs interieurs d	e l'etage c	ourant dans	s le sens transver	rsal (type 1)		
Element	h (m)	Li (m)	G (kN/m²)	Si(m ²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	0,5	0,65	1,435	0,93275	4,55	0,45	4,2440125	0,4197375		
2	2,87	4,1	0,65	11,767	7,64855	3,05	2,25	23,3280775	17,2092375		
3	2,87	1,6	0,65	4,592	2,9848	3,875	5,05	11,5661	15,07324		
4	2,87	1,45	0,65	4,1615	2,704975	1,65	5,87	4,46320875	15,87820325		
5	2,87	1,45	0,65	4,1615	2,704975	4,71	5,9	12,74043225	15,9593525		
6	2,87	0,5	0,65	1,435	0,93275	1,65	7,82	1,5390375	7,294105		
7	2,87	0,5	0,65	1,435	0,93275	3,875	7,82	3,61440625	7,294105		
8	2,87	0,8	0,65	2,296	1,4924	4,75	7,74	7,0889	11,551176		
9	2,87	2,25	0,65	6,4575	4,197375	6,25	5,42	26,23359375	22,7497725		
10	2,87	1,65	0,65	4,7355	3,078075	9,6	4	29,54952	12,3123		
11	2,87	0,3	0,65	0,861	0,55965	9,6	1,85	5,37264	1,0353525		
12	2,87	0,65	0,65	1,8655	1,212575	11,3	6,2	13,7020975	7,517965		
13	2,87	0,75	0,65	2,1525	1,399125	11,7	6,7	16,3697625	9,3741375		
14	2,87	0,55	0,65	1,5785	1,026025	13,6	6	13,95394	6,15615		
15	2,87	0,9	0,65	2,583	1,67895	13,6	4,35	22,83372	7,3034325		
16	2,87	1,4	0,65	4,018	2,6117	13,6	2,35	35,51912	6,137495		
17	2,87	0,5	0,65	1,435	0,93275	13,75	2,75	12,8253125	2,5650625		
18	2,87	0,5	0,65	1,435	0,93275	14,85	2,75	13,8513375	2,5650625		
19	2,87	0,8	0,65	2,296	1,4924	13,15	10,1	19,62506	15,07324		
20	2,87	0,55	0,65	1,5785	1,026025	14	9,975	14,36435	10,23459938		
21	2,87	0,55	0,65	1,5785	1,026025	16,5	9,975	16,9294125	10,23459938		
22	2,87	0,75	0,65	2,1525	1,399125	6,15	11,075	8,60461875	15,49530938		
23	2,87	0,55	0,65	1,5785	1,026025	6,5	11,825	6,6691625	12,13274563		
24	2,87	3,1	0,65	8,897	5,78305	4,6	13,15	26,60203	76,0471075		
25	2,87	0,5	0,65	1,435	0,93275	2,975	15,05	2,77493125	14,0378875		

		ce	ntre de ma	sse des murs	s interieurs de	l'etage con	urant dans	le sens transversa	al (type 1) (s	suite)	
26	2,87	0,5	0,65	1,435	0,93275	4,6	15,05	4,29065	14,0378875		
27	2,87	1,4	0,65	4,018	2,6117	4,225	15,45	11,0344325	40,350765		
28	2,87	0,8	0,65	2,296	1,4924	8,1	13,45	12,08844	20,07278		
29	2,87	0,7	0,65	2,009	1,30585	8,1	14,25	10,577385	18,6083625		
30	2,87	0,3	0,65	0,861	0,55965	8,1	15,95	4,533165	8,9264175		
31	2,87	2,4	0,65	6,888	4,4772	11,55	12,4	51,71166	55,51728		
32	2,87	1,45	0,65	4,1615	2,704975	13,15	11,925	35,57042125	32,25682688	0 70207202	0.05200767
33	2,87	1,5	0,65	4,305	2,79825	14	12,75	39,1755	35,6776875	0,70297205	9,03899707
34	2,87	0,5	0,65	1,435	0,93275	13,25	17,35	12,3589375	16,1832125		
35	2,87	4,05	0,65	11,6235	7,555275	14,8	15,6	111,81807	117,86229		
36	2,87	1,45	0,65	4,1615	2,704975	16,2	11,925	43,820595	32,25682688		
37	2,87	0,35	0,65	1,0045	0,652925	8,1	17,55	5,2886925	11,45883375		
38	2,87	0,35	0,65	1,0045	0,652925	9,6	0,2	6,26808	0,130585		
		somm	e		80,02995			702,9008123	724,9911305		

Finalement les coordonnées du centre de masse des murs intérieurs sont :

Xg = 8,88 m Yg = 8,955 m

b. Murs extérieurs :

		c	entre de mass	e des murs e	xtérieur de l'ét	age couran	it dans le s	ens longitudinal	(type 1)		
Element	h (m)	Li(m)	G (kN/m²)	Si (m²)	mi (kN)	Xi(m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	3,805	1,03	10,92035	11,247961	2,7225	0,11	30,6225725	1,237275655		
2	2,87	3,805	1,03	10,92035	11,247961	15,0775	0,11	169,591124	1,237275655		
3	2,87	3,805	1,03	10,92035	11,247961	2,7225	17,69	30,6225725	198,9764212	8,9	8,9
4	2,87	3,805	1,03	10,92035	11,247961	15,0775	17,69	169,591124	198,9764212		
		som	ne		44,991842			400,427394	400,4273938		

Tableau III.26

			centre de ma	asse des m	urs extérieur d	le l'étage c	ourant dan	s le sens transve	rsal (type 1)		
Element	h (m)	Li (m)	G (kN/m ²)	Si (m²)	mi (kN)	Xi (m)	Yi(m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	2,87	2,25	1,03	6,4575	6,651225	0,11	1,2	0,73163475	7,98147		
2	2,87	2,25	1,03	6,4575	6,651225	17,69	1,2	117,6601703	7,98147		
3	2,87	1,45	1,03	4,1615	4,286345	0,11	3,8	0,47149795	16,288111		
4	2,87	1,45	1,03	4,1615	4,286345	17,69	3,8	75,82544305	16,288111		
5	2,87	1,6	1,03	4,592	4,72976	0,11	14	0,5202736	66,21664	8,9	8,986423841
6	2,87	1,6	1,03	4,592	4,72976	17,69	14	83,6694544	66,21664		
7	2,87	2,25	1,03	6,4575	6,651225	0,11	16,55	0,73163475	110,0777738		
8	2,87	2,25	1,03	6,4575	6,651225	17,69	16,55	117,6601703	110,0777738		
		somme	2		44,63711			397,270279	401,1279895		

Tableau III.27

			centre de	e masse d	es murs exté	rieur de l'ét	age couran	t dans le sens tra	ansversal (type	2)	
Element	h (m)	Li(m)	$G (kN/m^2)$	Si (m ²)	mi (kN)	Xi(m)	Yi(m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	1,7	3,45	0,75	5,865	4,39875	-0,08	8,9	-0,3519	39,148875		
2	1,7	3,45	0,75	5,865	4,39875	17,88	8,9	78,64965	39,148875		
3	1,7	0,45	0,75	0,765	0,57375	7,15	0,18	4,1023125	0,103275		
4	1,7	0,45	0,75	0,765	0,57375	10,45	0,18	5,9956875	0,103275	8,879310345	8,897931034
5	1,7	0,45	0,75	0,765	0,57375	7,15	17,6	4,1023125	10,098		
6	1,7	0,45	0,75	0,765	0,57375	10,45	17,6	5,9956875	10,098		
		somme	e		11,0925			98,49375	98,7003		

			centre de m	asse des m	urs extérieurs	de l'étage c	courant dai	ns le sens longitu	idinal (type 2)		
Element	h (m)	Li (m)	G (kN/m ²)	Si (m²)	mi (kN)	Xi (m)	Yi (m)	mi*Xi	mi*yi	Xg (m)	Yg (m)
1	1,7	3,45	0,75	5,865	4,39875	8,9	-0,08	39,148875	-0,3519		
2	1,7	3,45	0,75	5,865	4,39875	8,9	17,88	39,148875	78,64965		
3	1,7	0,45	0,75	0,765	0,57375	0,18	7,2	0,103275	4,131		
4	1,7	0,45	0,75	0,765	0,57375	17,6	7,2	10,098	4,131	8,897931034	8,9
5	1,7	0,45	0,75	0,765	0,57375	0,18	10,6	0,103275	6,08175		
6	1,7	0,45	0,75	0,765	0,57375	17,6	10,6	10,098	6,08175		
		somn	ne		11,0925			98,7003	98,72325		

Finalement les coordonnées du centre de masse des murs extérieurs sont :

Xg = 8,934 mYg = 8,934 m

• Centre de masse de l'ensemble des éléments ;

Les résultats sont donnés dans le tableau ci-dessous :

			centre de	e mase de l'ensem	ble des éléments			
Niveau	Element	mi (kN)	xgi (m)	ygi (m)	mi*xgi	mi*ygi	XG (m)	YG (m)
	acrotère	467,5485	8,9	8,9	4161,18165	4161,18165		
	plancher terrasse	3118,49577	8,9047	8,8997	27769,26928	27753,6768		
	poutres	124,2	8,9	8,9	1105,38	1105,38		
VIII	escalier	30,24	7,225	9,725	218,484	294,084	9 022050111	00006600
(étage 7)	voiles	298,38	9,35645	8,8887	2791,777551	2652,210306	8,923039111	8,90800009
	murs exterieur	111,813952	8,934	8,934	998,9458472	998,9458472		
	murs interieur	192,55404	8,88	8,955	1709,879875	1724,321428		
	somme	4343,232262			38754,91821	38689,80004		
	plancher	10081,2132	8,9047	8,8997	89770,17918	89719,77312		
	poutres	621	8,9	8,9	5526,9	5526,9		
VII	escalier	291,2	7,317	8,948495498	2130,7104	2605,801889		
à	voiles	1491,9	9,35645	8,8887	13958,88776	13261,05153	8,919071886	8,904726142
III	murs exterieur	559,06976	8,934	8,934	4994,729236	4994,729236		
	murs interieur	962,7702	8,88	8,955	8549,399376	8621,607141		
	somme	14007,15316			124930,8059	124729,8629		
	plancher	2016,24264	8,9047	8,8997	17954,03584	17943,95462		
	poutres	124,2	8,9	8,9	1105,38	1105,38		
п	escalier	58,24	7,317	8,948495498	426,14208	521,1603778		
II (átago 1)	voiles	298,38	9,35645	8,8887	2791,777551	2652,210306	8,922106768	8,90116833
(etage 1)	murs exterieur	102,815392	8,902393367	8,900947057	915,3030638	915,1543608		
	murs interieur	224,57463	8,938808805	8,919390919	2007,42968	2003,068915		
	somme	2824,452662			25200,06821	25140,92858		
	plancher	2016,24264	8,9047	8,8997	17954,03584	17943,95462		
т	poutres	276	8,9	8,9	2456,4	2456,4		
(RDC)	escalier	155,73	8,094	8,835009262	1260,47862	1375,875992	8,906599042	8,895376626
(RDC)	voiles	606,18	9,12468	8,8944	5531,198522	5391,607392		
	somme	3054,15264			27202,11298	27167,83801		
	Total	24228,99072			216087,9053	215728,4295	8,918568165	8,903731567

III.3 /Calcul du centre de torsion :

III.3 .1/inertie des éléments porteurs :

- a. Inertie des voiles :
- Sens longitudinal :

$$Ix = \frac{L * e^3}{12} << Iy$$
$$Iy = \frac{e * L^3}{12}$$

• Sens transversal :

$$Iy = \frac{L * e^3}{12} << Ix$$
$$Ix = \frac{e * L^3}{12}$$

<u>Remarque :</u>

Le voile VT5 comporte une fille d'ouverture, on doit donc calculer son inertie équivalente.

$$Ie = \frac{a_n I}{\frac{60 \ 2mc}{11} \ I_0} \xrightarrow{\Psi_0}{\alpha^2} + 1$$

$$a_n = \frac{11}{20} + \frac{9}{20n} - \frac{1}{30n^2} - \frac{1}{30n^3}$$
 Si n < 11 niveaux
$$a_n = \frac{11}{20} + \frac{9}{20n} - \frac{1}{30n^2} - \frac{1}{30n^3}$$
 Si n < 11 niveaux

 $a_n=1$ Si $n \ge 11$ niveaux.

Dans notre cas en à n=VII niveaux < 11 niveaux

$$a_n = \frac{11}{20} + \frac{9}{20*8} - \frac{1}{30*8^2} - \frac{1}{30*8^3} = 0,6057$$

 $\begin{array}{l} 2a = 1m \\ 2c = 2,14m \\ \Omega_1 = 2,08 * 0,12 = 0,2496 \ m^2 \\ \Omega_2 = 0,2 * 0,12 = 0,024m^2 \end{array}$

Avec :

Ω₁, Ω₂ : Aires des éléments de refend.
i: Inertie de linteau. i=eh³/12
e: épaisseur de linteau.
h: hauteur de linteau.

$$m = \frac{2c}{\frac{1}{\Omega_1} + \frac{1}{\Omega_2}} = \frac{2,14}{\frac{1}{0,2496} + \frac{1}{0,024}} = 0,04685 \text{ m}^3$$
$$I_1 = \frac{0,12*2,08^3}{1} = 0,09 \text{ m}^4$$

$$I_{2} = \frac{\frac{12}{0.12*0.2^{3}}}{\frac{12}{12}} = 0,00008 \text{ m}^{4}$$

Donc:
$$I_{0} = 0,09008 \text{ m}^{4}$$

$$I = I_{0} + 2\text{mc} = 0,09008+2,14*0,04685=0,19 \text{ m}^{4}$$

○ Inertie du linteau:

$$i = \frac{0,12*1^3}{12} = 0,01 \text{ m}^4$$

• Coefficient de monolithisme :

$$\omega^2 = \frac{3E'i}{EI_0} \frac{I}{m} \frac{c}{a^3 he}$$

• RDC : h=4,8 m

$$\omega^2 = \frac{3*0,01}{0,09008} \frac{0,19}{0,04685} \frac{1,07}{0,5^3*4,8} = 2,4086$$

$$\omega^2 = \frac{3*0,01}{0,09008} \frac{0,19}{0,04685} \frac{1,07}{0,5^3 * 2,87} = 4,0284$$

• Degré de monolithisme :

- $\alpha = \omega Z$
 - RDC :

$$\alpha = 1,552*38,4=59,597$$

$$\psi_0 = \frac{2}{3} + \frac{2 - \alpha^2}{\alpha^3} \times \frac{sh\alpha}{ch\alpha} - \frac{2}{\alpha^2 \times ch\alpha}$$

 $\psi_0 = 0,6499$

E: Module d'élasticité du matériau constituant le refend. E':Module d'élasticité du matériau constituant le linteau (généralement E = E'). he =hauteur d'étage a: Demi portée libre de l'ouverture. I: Inertie totale de refend. $I = I_1 + I_2 + 2mc = I_0 + 2mc.$ $(I_0 = I_1 + I_2).$ C: Demi-distance entre les centres de gravité des deux éléments de refend.

m: Moment statique de chacun des éléments de refends par rapport au c.d.g de l'ensemble.
α: Degré de monolithisme.

 $(\alpha = \omega Z)$

Z: Hauteur de bâtiment.

 ω : Coefficient de monolithisme

• EC :

$$\alpha = 2,0071*38,4=77,073$$

ψ₀ =0,6537

Finalement en aura :

Iex v(RDC) = $0,11496 \text{ m}^4$ Iex v (EC) = $0,11501 \text{ m}^4$

voiles	Niveau	Li (m)	ep (m)	$Ix(m^4)$	Iy (m ⁴)
VT 1		2	0,15	0,1	0,0005625
VT 2	Π	2	0,15	0,1	0,0005625
VT 3	à	2	0,15	0,1	0,0005625
VT 4	VIII	2	0,15	0,1	0,0005625
VT 5		3,28	0,12	0,11501	0,056
VT 1		2	0,25	0,166666667	0,002604167
VT 2	т	2	0,25	0,166666667	0,002604167
VT 3		2	0,25	0,166666667	0,002604167
VT 4	(KDC)	2	0,25	0,166666667	0,002604167
VT 5		3,28	0,12	0,11496	0,05313

L'inertie des voiles, pour un niveau donné, est résumée dans les tableaux qui suivent :

Tableau III.31 : inertie de voiles transversaux

		inertie	e longitudir	nal des voiles	
voiles	Niveau	Li(m)	ep (m)	$Ix(m^4)$	Iy (m ⁴)
VL 1		2	0,15	0,0005625	0,1
VL 2		2	0,15	0,0005625	0,1
VL 3	п	2	0,15	0,0005625	0,1
VL 4	н à	2	0,15	0,0005625	0,1
VL 5	a VIII	1,6	0,15	0,00045	0,0512
VL 6	V 111	1,162	0,11	0,000128885	0,014382349
VL 7		1,668	0,11	0,000185009	0,042540205
VL 8		1,4	0,12	0,0002016	0,02744
VL 1		2	0,25	0,002604167	0,166666667
VL 2		2	0,25	0,002604167	0,166666667
VL 3		2	0,25	0,002604167	0,166666667
VL 4	Ι	2	0,25	0,002604167	0,166666667
VL 5	(RDC)	1,6	0,15	0,00045	0,0512
VL 6		1,162	0,11	0,000128885	0,014382349
VL 7		1,668	0,11	0,000185009	0,042540205
VL 8		1,4	0,12	0,0002016	0,02744

b. inertie du noyau central :

Le noyau central comporte des ouvertures qui permettent d'accéder aux différents étages, l'inertie équivalente obtenue par soustraction de l'inertie des ouvertures est donnée pour un système d'axe perpendiculaire à l'ouverture indépendant du repère globale OXY de la structure ; n'ayant pas retrouvé des formules prenant en considération ces ouvertures en va donc considérer le noyau sans ouverture.

Les deux lois nous permettant le calcul de ces inerties sont les suivantes :

$$Ix = Iy = \frac{\pi (R^4 - r^4)}{4} = \frac{\pi (3, 2^4 - 3, 05^4)}{4} = 14,3893534 \ m^4$$

III.3 .2/Centre de torsion :

Propriétés du centre de torsion :

- Une force dont la ligne d'action passe par le centre de torsion engendre uniquement un effet de translation suivant la direction de la force.
- Un moment dont l'axe vertical passe par le centre de torsion engendre uniquement une rotation dont le sens est celui du moment.

- Une force dont la ligne d'action passe par le centre de gravité de la structure engendre par rapport au centre de torsion un effet de translation et un effet de rotation de la structure.
- a. centre de torsion des voiles :

<u>Remarque :</u>

L'inertie des voiles transversaux Iy << Ix, donc en va les négliger Inversement aux voiles transversaux, les voiles longitudinaux ont une inertie suivant x plus importantes que dans l'autre sens Iy >> Ix, donc en travail seulement avec les inerties suivant y.

Les coordonnées du centre de torsion des voiles par rapport au repère (ox ;oy) sont données par les formules suivantes :

$$Xc = \frac{\sum Rvx * xi}{\sum Rvx}$$
; $Yc = \frac{\sum Rvy * yi}{\sum Rvy}$

La position du centre de torsion des voiles est donnée dans les tableaux qui suivent :

• Position du centre de torsion des voiles transversaux :

voiles	Niveau	Li (m)	He (m)	ep (m)	Ix (m ⁴)	E*10 ³ (kN/m ²)	Rvy (kN/m)	Xi (m)	Rvy*xi	Xc (m)
VT 1		2	2,87	0,15	0,1	32164195,00	1632706,953	5,9	9632971,024	
VT 2	II	2	2,87	0,15	0,1	32164195,00	1632706,953	11,9	19429212,74	
VT 3	à	2	2,87	0,15	0,1	32164195,00	1632706,953	5,9	9632971,024	0 188077707
VT 4	VIII	2	2,87	0,15	0,1	32164195,00	1632706,953	11,9	19429212,74	9,100077707
VT 5		3,28	2,87	0,12	0,11501	32164195,00	1877776,267	10,19	19134540,16	
				somme			8408604,079		77258907,69	
VT 1		2	4,8	0,25	0,166666667	32164195,00	581673,0878	5,9	3431871,218	
VT 1 VT 2	т	2 2	4,8 4,8	0,25 0,25	0,166666667 0,166666667	32164195,00 32164195,00	581673,0878 581673,0878	5,9 11,9	3431871,218 6921909,745	
VT 1 VT 2 VT 3		2 2 2	4,8 4,8 4,8	0,25 0,25 0,25	0,166666667 0,166666667 0,166666667	32164195,00 32164195,00 32164195,00	581673,0878 581673,0878 581673,0878	5,9 11,9 5,9	3431871,218 6921909,745 3431871,218	0.080720476
VT 1 VT 2 VT 3 VT 4	I (RDC)	2 2 2 2	4,8 4,8 4,8 4,8	0,25 0,25 0,25 0,25	0,166666667 0,166666667 0,166666667 0,166666667	32164195,00 32164195,00 32164195,00 32164195,00	581673,0878 581673,0878 581673,0878 581673,0878	5,9 11,9 5,9 11,9	3431871,218 6921909,745 3431871,218 6921909,745	9,089730476
VT 1 VT 2 VT 3 VT 4 VT 5	I (RDC)	2 2 2 2 3,28	4,8 4,8 4,8 4,8 4,8 4,8	0,25 0,25 0,25 0,25 0,12	0,166666667 0,166666667 0,166666667 0,166666667 0,11496	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0878 581673,0878 581673,0878 581673,0878 401214,8283	5,9 11,9 5,9 11,9 10,19	3431871,218 6921909,745 3431871,218 6921909,745 4088379,1	9,089730476
VT 1 VT 2 VT 3 VT 4 VT 5	I (RDC)	2 2 2 2 3,28	4,8 4,8 4,8 4,8 4,8 4,8	0,25 0,25 0,25 0,25 0,12 somme	0,166666667 0,166666667 0,166666667 0,166666667 0,11496	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0878 581673,0878 581673,0878 581673,0878 401214,8283 2727907,18	5,9 11,9 5,9 11,9 10,19	3431871,218 6921909,745 3431871,218 6921909,745 4088379,1 24795941,03	9,089730476

Tableau III.33

Xc =9,163987387 m

Chapitre III :

étude du contreventement

voiles	Niveau	Li(m)	He (m)	ep (m)	Iy (m ⁴)	E*103 (kN/m²	Rvx (kN/m)	Yi (m)	Rvx*yi	Yc (m)
VL 1		2	2,87	0,15	0,1	32164195,00	1632706,953	5,9	9632971,024	
VL 2		2	2,87	0,15	0,1	32164195,00	1632706,953	5,9	9632971,024	
VL 3	п	2	2,87	0,15	0,1	32164195,00	1632706,953	11,9	19429212,74	
VL4) II à	2	2,87	0,15	0,1	32164195,00	1632706,953	11,9	19429212,74	
VL 5		1,6	2,87	0,15	0,0512	32164195,00	835945,96	8,735	7301987,961	8,900774316
VL 6	V III	1,162	2,87	0,11	0,014382349	32164195,00	234821,6123	10,685	2509068,927	
VL 7		1,668	2,87	0,11	0,042540205	32164195,00	694556,8843	9,395	6525361,928	
VL 8		1,4	2,87	0,12	0,02744	32164195,00	448014,7879	7,52	3369071,205	
				somme			8744167,057		77829857,55	
VL 1		2	4,8	0,25	0,166666667	32164195,00	581673,0867	2,69	1564700,603	
VL 1 VL 2		2 2	4,8 4,8	0,25 0,25	0,166666667 0,166666667	32164195,00 32164195,00	581673,0867 581673,0867	2,69 2,69	1564700,603 1564700,603	
VL 1 VL 2 VL 3		2 2 2	4,8 4,8 4,8	0,25 0,25 0,25	0,166666667 0,166666667 0,1666666667	32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867	2,69 2,69 15,11	1564700,603 1564700,603 8789080,339	
VL 1 VL 2 VL 3 VL 4	I	2 2 2 2 2	4,8 4,8 4,8 4,8	0,25 0,25 0,25 0,25	0,166666667 0,1666666667 0,1666666667 0,1666666667	32164195,00 32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867 581673,0878	2,69 2,69 15,11 15,11	1564700,603 1564700,603 8789080,339 8789080,357	
VL 1 VL 2 VL 3 VL 4 VL 5	I (RDC)	2 2 2 2 1,6	4,8 4,8 4,8 4,8 4,8 4,8	0,25 0,25 0,25 0,25 0,25 0,15	0,166666667 0,166666667 0,166666667 0,166666667 0,0512	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867 581673,0878 178689,9722	2,69 2,69 15,11 15,11 8,735	1564700,603 1564700,603 8789080,339 8789080,357 1560856,907	8,90051693
VL 1 VL 2 VL 3 VL 4 VL 5 VL 6	I (RDC)	2 2 2 1,6 1,162	$ \begin{array}{r} 4,8 \\ 4,8 \\ 4,8 \\ 4,8 \\ 4,8 \\ 4,8 \\ 4,8 \\ 4,8 \\ 4,8 \\ \end{array} $	0,25 0,25 0,25 0,25 0,15 0,11	0,166666667 0,166666667 0,166666667 0,166666667 0,0512 0,014382349	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867 581673,0878 178689,9722 50194,95204	2,69 2,69 15,11 15,11 8,735 10,685	1564700,603 1564700,603 8789080,339 8789080,357 1560856,907 536333,0626	8,90051693
VL 1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7	I (RDC)	2 2 2 1,6 1,162 1,668	$ \begin{array}{r} 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\$	0,25 0,25 0,25 0,25 0,15 0,11 0,11	0,166666667 0,166666667 0,166666667 0,166666667 0,0512 0,014382349 0,042540205	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867 581673,0878 178689,9722 50194,95204 148466,954	2,69 2,69 15,11 15,11 8,735 10,685 9,395	1564700,603 1564700,603 8789080,339 8789080,357 1560856,907 536333,0626 1394847,032	8,90051693
VL 1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7 VL 8	I (RDC)	2 2 2 1,6 1,162 1,668 1,4	$ \begin{array}{r} 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\$	$\begin{array}{r} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,15\\ 0,11\\ 0,11\\ 0,12\\ \end{array}$	0,166666667 0,166666667 0,166666667 0,0512 0,014382349 0,042540205 0,02744	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867 581673,0878 178689,9722 50194,95204 148466,954 95766,65699	2,69 2,69 15,11 15,11 8,735 10,685 9,395 7,52	1564700,603 1564700,603 8789080,339 8789080,357 1560856,907 536333,0626 1394847,032 720165,2605	8,90051693
VL 1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7 VL 8	I (RDC)	2 2 2 1,6 1,162 1,668 1,4	$ \begin{array}{r} 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\ 4,8\\$	0,25 0,25 0,25 0,25 0,15 0,11 0,11 0,12 somme	0,166666667 0,166666667 0,166666667 0,166666667 0,0512 0,014382349 0,042540205 0,02744	32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00 32164195,00	581673,0867 581673,0867 581673,0867 581673,0878 178689,9722 50194,95204 148466,954 95766,65699 2799810,883	2,69 2,69 15,11 15,11 8,735 10,685 9,395 7,52	1564700,603 1564700,603 8789080,339 8789080,357 1560856,907 536333,0626 1394847,032 720165,2605 24919764,17	8,90051693

• Position du centre de torsion des voiles longitudinaux :

Tableau III.34

Yc =8,900711891 m

b. Centre de torsion du noyau central :

Les coordonnées du centre de torsion sont données dans les tableaux qui suivent :

	sens longitudinal (xx)									
Niveau	He (m)	Iy (m ⁴)	$E*10^3 (kN/m^2)$	Rvx (kN/m)	Yi(m)	Rvx*yi	Yc (m)			
II à VIII	2,87	14,3893534	32164195,00	234935973,5	8,9	2090930163,93	8,9			
I (RDC)	4,8	14,3893534	32164195,00	50219397,64	8,9	446952639,03	8,9			
	somme 285155371,1 2537882802,96 8,9									
			T 11 T 10	-						

Tableau III.35

sens transversal (yy)									
Niveau	He (m)	Ix (m ⁴)	E*10 ³ (kN/m ²)	Rvy (kN/m)	Xi (m)	Rvy*xi	Xc (m)		
II à VIII	2,87	14,3893534	32164195,00	234935973,5	8,9	2090930164	8,9		
I (RDC)	4,8	14,3893534	32164195,00	50219397,64	8,9	446952639	8,9		
		somme		285155371,1		2537882803	8,9		

Tableau III.36

c. Rigidité de l'ensemble voiles + noyau :

Nivoou	VO	iles	noy	/au	voiles + noyau		
INIVEAU	Rvx	Rvy	Rvx	Rvy	Rvx	Rvy	
II à VIII	8744167,057	8408604,079	234935973,5	234935973,5	243680140,6	243344577,6	
I (RDC)	2799810,883	2727907,18	50219397,64	50219397,64	53019208,52	52947304,82	

Niveaux	Elément	Rjx	Yc	Rjx*Yc	Rjy	Xc	Rjy*Xc	Xc	Yc
	voiles	8744167,057	8,90077432	77829857,556	8408604,079	9,188077707	77258907,685		
II à VIII	noyau	234935973,500	8,9	2090930164,150	234935973,500	8,9	2090930164,150	8,909954327	8,900027785
	somme	243680140,557		2168760021,706	243344577,579		2168189071,835		
	voiles	2799810,883	8,90051693	24919764,165	2727907,180	9,089730476	24795941,030		
I (RDC)	noyau	50219397,640	8,9	446952638,996	50219397,640	8,9	446952638,996	8,909775136	8,900027298
	somme	53019208,52		471872403,161	52947304,820		471748580,026		

d. Centre de torsion de l'ensemble voiles + noyau :

Tableau III.38

III.3 .3/Calcul des excentricités (RPA 4.2.7) :

L'augmentation de l'effort tranchant provoqué par la torsion d'axe verticale due à l'excentricité entre le centre de masse et le centre de torsion doit être prise en compte (Art 4-2-7-RPA 99).

Pour toutes les structures comportant des planchers ou diaphragmes horizontaux rigides dans leurs plans, on supposera qu'à chaque niveau et dans chaque direction, la résultante des forces horizontales appliquées au centre de masse à une excentricité par rapport au centre de torsion égale à la plus grande des deux valeurs :

- a. 5% de la plus grande dimension du bâtiment à ce niveau, cette excentricité doit être prise en considération de part et d'autre du centre de torsion.
- b. Excentricité théorique résultante des plans :

e = max (e théorique, e accidentelle)

• Excentricité accidentelle :

Suivant XX' : $e_{accx} = 0.05 \times Lx = 0.05 \times 17.8 = 0.89 \text{ m}$ Suivant YY' : $e_{accy} = 0.05 \times Ly = 0.05 \times 17.8 = 0.89 \text{ m}$

- Excentricité Théorique :
 - ex =Xg-Xc
 - ey = Yg Yc

Les résultats sont donnés dans le tableau suivant :

	Centre d	e torsion	Centre d	le masse	Excent	rement	Excentricité
Niveaux	Xc	Yc	Xg	Yg	ex	ey	accidentelle
VIII (étage 7)	8,91	8,9	8,923	8,908	0,013	0,008	
VII à III	8,91	8,9	8,919	8,91	0,009	0,01	0.80
II (étage 1)	8,91	8,9	8,922	8,901	0,012	0,001	0,89
I (RDC)	8,91	8,9	8,906	8,8954	0,004	0,0046	

Tableau III.39

• Excentricité adoptée :

ex =0,89 m ey =0,89 m

III.3 .4/Calcul de l'inertie polaire des voiles :

L'inertie polaire de torsion est donnée par la relation suivante :

 $J_{\Theta} = \sum I_{y}^{*} d_{1}^{2} + \sum I_{x}^{*} d_{2}^{2}$

Avec :

- d_1 : distance entre le voile transversal V_T et le centre de torsion C.
- d_2 : distance entre le voile longitudinal V_L et le centre de torsion C.

a. L'inertie polaire des voiles de l'étage courant :

sens longitudinal étage courant								
VOILE	Iy (m ⁴)	d_1^2 (m ²)	Iy*d ₁ ²					
VL1	0,1	9	0,9					
VL2	0,1	9	0,9					
VL3	0,1	9	0,9					
VL4	0,1	9	0,9					
VL5	0,0512	0,027	0,0013824					
VL6	0,014382349	3,186	0,045822164					
VL7	0,042540205	0,245	0,01042235					
VL8	0,02744	1,904	0,05224576					
	somme		3,709872674					
-	Table	au III.40						
	sens transve	rsal étage co	ourant					
voiles	$Ix(m^4)$	d2 ² (m ²)	Ix*d2 ²					
VT1	0,1	8,47	0,847					
VT2	0,1	9,57	0,957					
VT3	0,1	8,47	0,847					
VT4	0,1	5,57	0,557					
VT5	0,11501	1,43	0,1644643					
	somme		3,3724643					
	Table	au III.41						

2011/2012

	sens longitudinal rdc									
VOILE	Iy (m ⁴)	d_1^2 (m ²)	Iy*d ₁ ²							
VL1	0,166666667	9	1,50000003							
VL2	0,166666667	9	1,50000003							
VL3	0,166666667	9	1,50000003							
VL4	0,166666667	9	1,50000003							
VL5	0,0512	0,027	0,0013824							
VL6	0,014382349	3,186	0,045822164							
VL7	0,042540205	0,245	0,01042235							
VL8	0,02744	1,904	0,05224576							
	somme		6,109872686							

b. L'inertie polaire des voiles du RDC :

Tableau III.42

sens transversal rdc			
voiles	$Ix(m^4)$	d2 ² (m ²)	Ix*d2 ²
VT1	0,1666667	8,47	1,411666669
VT2	0,1666667	9,57	1,595000003
VT3	0,1666667	8,47	1,411666669
VT4	0,1666667	9,57	1,595000003
VT5	0,11496	1,43	0,1643928
	somme		6,177726145

Tableau III.43

Finalement pour l'étage courant en aura :

 $J_{\Theta} = 7,08234 \text{ m}^6$

Et pour le RDC en aura :

 $J_{\Theta} = 12,2876 \text{ m}^6$

Conclusion :

Les efforts horizontaux sont repris conjointement par le noyau central et les voiles, ce cas de figure n'est pas prévu par le RPA 2003, Nous sommes en présence d'un cas particulier qui n'est :

• Ni un système de contreventement constitué par des voiles porteur en béton armé :

« Le système est constitué de voiles uniquement ou de voiles et de portiques. Dans ce dernier cas les voiles reprennent plus de 20% des sollicitations dues aux charges verticales. On considère que la sollicitation horizontale est reprise uniquement par les voiles ».

• Ni une structure à ossature en béton armé contreventée entièrement par noyau en béton armé :

« Le bâtiment est dans ce cas-là contreventé entièrement par un noyau rigide en béton armé qui reprend la totalité de l'effort horizontal ».

	pourcentage des	inertie polaire	revenant aux e	lements porteur	S
niveaux	Elements	JO (XX)	JO (YY)	% sens X	% sens Y
VIII è II	voiles	7,08234	7,08234	32,9845433	32,984543
vman	noyau	14,3893534	14,3893534	67,0154567	67,015457
somme		21,4716934	21,4716934	100	100
	voiles	12,2876	12,2876	46,060732	46,060732
I (KDC)	noyau	14,3893534	14,3893534	53,939268	53,939268
somme 26,		26,6769534	26,6769534	100	100

Chapitre IV: Modélisation par éléments finis avec Robot 2013(V26).

IV.1/ Introduction :

Le logiciel robot (Autodesk Robot Structural Analysis 2013 v26) est destiné à l'analyse et au calcul des structures de génie civil, il dispose de plusieurs modules lui permettant la modélisation, l'analyse, le dimensionnement et la génération des dessins d'exécution des éléments dimensionnés.

La définition de la structure est réalisée en mode entièrement graphique dans l'éditeur conçu à cet effet. On peut, cependant, importer la géométrie de la structure lorsque celle-ci est créée et définie dans un logiciel de CAO tel que « AUTOCAD ».

Figure IV.1: Page d'accueil du logiciel ROBOT

IV.2/ Caractéristiques principales du logiciel :

- Définition de la structure en mode entièrement graphique.
- Possibilité de :
 - Représenter à l'écran les différents résultats (efforts, déplacements, déformations...),
 - Travailler simultanément en plusieurs fenêtres ouvertes,
 - Effectuer l'analyse statique et dynamique de la structure,
 - Composer librement les impressions (notes de calcul, captures d'écran...),
 - Copie des objets vers les autres logiciels.

IV.3/ Hypothèses de la modélisation :

On considère les hypothèses suivantes :

- ✓ La modélisation se fait par un modèle tridimensionnel avec un maillage moyen,
- ✓ L'encastrement est parfait à la base c'est-à-dire qu'on ne tient pas compte de l'interaction sol-structure.
- ✓ Les diaphragmes horizontaux (planchers) sont supposés infiniment rigides à l'effort latéral.

Il s'agit donc d'un modèle utilisé classiquement pour les bâtiments avec quelque spécification concernant le réservoir et supports avec notamment un maillage relativement fin.

IV.4/ Hypothèses de calcul :

1. Evaluation du poids de la structure :

Notre ouvrage est un immeuble à appartements surmonté d'un réservoir, donc il assure une double fonction (habitation et stockage d'eau potable), le poids de la structure doit comprendre la totalité des charges permanentes et 20% des charges d'exploitations pour tous les niveaux, 100% des charges d'exploitations pour le réservoir. [Tableau 4.5 RPA 99 version 2003].

2. *Les charges permanentes et les charges d'exploitations :*(se référer au chapitre III)

Eléments		Charges permanentes	Charges d'exploitations	
Plancher terrasse		5,77 [KN/m2]	1,5 [KN/m2]	
Plancher d'étage courant		4,77 [KN/m2]	1,5 [KN/m2]	
Acrotère		/	1 [KN/ml]	
Réservoir		/	fonction de h/surface libre	
Ecoliar DDC	volée	3,665		
Escaler KDC	palier	1,540		
Ecoliar EC	volée	3,665	2,5 [KN/m2]	
Escalet EC	palier	1,540		
Escalier dernier étage	volée	3,665		

Remarque :

Le poids propre des poutres, poteaux et poutres de chainages, dalles pleines et des voiles sont calculés et pris en compte par le logiciel Robot dans la modélisation de la structure.

Le poids propre de l'acrotère sera calculer automatiquement par le logiciel, on aura juste a introduire la charge d'exploitation.

Le chargement du réservoir se fait par rapport a la surface libre, c'est-à-dire que pour chaque parois, on calcul la position de son centre de gravité par rapport au niveau du liquide.

3. Evaluation de la charge dynamique :

Le logiciel Robot comprend dans sa base de données le règlement RPA99 modifié en 2003 ainsi que le RPA88, ils nous permettent d'évaluer les spectres de réponse en introduisant les paramètres appropriés à la structure.

✓ Les paramètres du spectre de réponse:

* Selon le RPA99 v 2003 :

• Correction de l'amortissement : $\eta = [7/(2+\xi)]^{0.5} = 0.764 > 0.7$

Avec :

 ξ = 10% (remplissage en béton armé/maçonnerie [tableau 4.2 RPA99 V 2003])

- Zone d'implantation : notre structure est implantée dans la commune de Dar El Beida (Alger), elle est classée par le RPA 2003 en Zone III (forte sismicité).
- Site S3 (l'ouvrage se trouve sur un site meuble)
- Groupe d'usage : groupe 1A (Bâtiments de production et de stockage d'eau potable d'importance vitale).
- Coefficient de comportement global du bâtiment R=3,5 (pour une structure contreventée par Noyau ou voile porteur) [RPA 99 version 2003].
- Coefficient d'accélération de la zone : *A*=0,4 (groupe d'usage 1A, zone III) tableau 4.1 [RPA 99 version 2003].
- Périodes caractéristiques associées à la catégorie de site :

$$T_1=0,15 \text{ s}$$
 ; $T_2=0,50 \text{ s}$

• **Q** : facteur de qualité, sa valeur est donnée par la formule 4-4

$$Q = 1 + \sum_{1}^{6} Pq$$

Avec :

Pq étant la pénalité à retenir selon que le critère de qualité q est satisfait ou non. Sa valeur est donnée au tableau [4.4 RPA 99 version 2003].

Critère q	Observation	Pq
1. condition minimale sur les fils de contreventement.	non	0,05
2. Redondance en plan.	non	0,05
3. Régularité en plan.	oui	0,00
4. Régularité en élévation.	non	0,05
5. contrôle de la qualité des matériaux.	oui	0,00
6. contrôle de la qualité de l'exécution.	oui	0,00
	somme	0,15

$$Q = 1 + 0,15 = 1,15$$

Selon le RPA 1988:

- Zone d'implantation : notre structure été classé autrefois sous le RPA 1988 en Zone II (moyenne sismicité).
- Site S3 (site meuble)
- Groupe d'usage : le RPA 1988 classe notre ouvrage comme étant un ouvrages de grandes importance **groupe 1** (b : ouvrages d'art devant rester fonctionnels pendant et après un séisme, certains réservoirs et châteaux d'eau).
- Coefficient de comportement global du bâtiment B= 1/3 (structure murs porteurs catégorie 5) tableau 3 [3.2.1.3.3 RPA 88].
- Coefficient d'accélération de la zone : *A*=0,25 (groupe d'usage 1, zone II) tableau 1 [3.2.1.3.1 RPA 88].
- Catégorie de l'ouvrage : dépend du système de contreventement, pour notre cas le contreventement par noyau dans la classification du RPA 2003 sera remplacer par

un système contreventé par voiles porteurs (catégorie 5) en considérant le noyau comme étant un voile.

• **Q** : facteur de qualité, sa valeur est donnée par la formule 3-3 et le tableau 4 (valeur de la pénalité Pq) [3.2.1.3.4 RPA 88]

$$Q = 1 + \sum_{1}^{6} Pq$$

1		
Critère q	Observation	Pq
1. conditions minimales des files porteuses.	non	0,05
2. Surabondance en plan.	non	0,05
3. Symétrie en plan.	oui	0,00
4. Régularité en élévation.	non	0,05
5. contrôle de la qualité des matériaux.	oui	0,00
6. contrôle de la qualité de la construction.	oui	0,00
	somme	0,15

Q = 1+0,15 =1,15

4. Combinaisons d'actions :

Les combinaisons d'actions à considérer pour la détermination des sollicitations et des déformations de calcul sont :

		Combinaisons
BAEL 99	ELU	1.35 <i>G</i> +1.5 <i>Q</i>
	ELS	G+Q
	Accidentelle	$0.8G\pm E$
x2003		G+Q+1.2±E
V2003		$G+Q\pm E$

Avec :

G : Charge permanente.

Q : Charge d'exploitation.

E : Charge sismique.

Remarque :

L'action du vent n'est pas prise en considération car elle est négligeable devant celle du séisme.

Pour les structures comportant des voiles, qui est le cas de notre structure, la combinaison $G + Q \pm 1.2E$ ne sera pas prise en considération.

Aussi dans le but de mieux visualiser les résultats de l'effet hydrodynamique, on considère pour chaque combinaison deux cas : le premier en considérant le réservoir vide, le second en le considérant plein.

Après avoir déterminé les données à introduire dans le logiciel ROBOT, on passe à la modélisation, l'analyse puis à l'exploitation des résultats de notre structure.

IV.5/ Etapes de calcul :

Après le lancement du système robot, la fenêtre représentée ci-dessous s'affiche, cette fenêtre permet de définir le type de la structure à étudier, d'ouvrir une structure déjà existante ou bien charger le module permettant d'effectuer le dimensionnement de la structure.

Figure IV.2: choix du type de structure à étudier.

IV.5.1/ choix du type de structure :

Dans notre cas on étudie la structure sous l'affaire « étude d'une coque » pour facilite le la modélisation des voiles et du réservoir, pour cela on sélectionne l'affaire

représente par l'icône :

IV.5.2/ Configuration de préférence de l'affaire :

Dans le menu « **outils** » on choisit « **préférences de l'affaire** » pour définir les différents paramètres tels que les matériaux, unités et normes de l'affaire.

Ou bien on clique sur l'icône 🌽 puis sur 🛄

La boite de dialogue ci-dessous va s'afficher :

Unités et formats Dimensions Force Autres Edition des unités Catalogues Normes de conception Charges Analyse de la structure Paramètres du travail	Dimensions de la structure : Dimensions de la section : Caractéristiques de la section : Assemblages acier (dimensions) : Barres du ferraillage (diamètre) : Section d'acier du ferraillage :	m cm cm mm cm2		
	Largeur des fissures :	mm	▼ 0,1	1 E

Figure IV.3: préférence de l'affaire.

Unités et formats :

On met toutes les valeurs avec trois (3) chiffres après la virgule.

- Dimensions : structure (m), section (cm), barre du ferraillage (mm), section d'acier (cm), fissures (mm).
- ➤ Force : on met la Force (kN), le Moment (kN.m), et la Contrainte (kN/m²).
- Autres : on met le Déplacement (cm), Rotation (deg), Température (°C), Poids (kN) et la Masse (kg).
- Edition des unités : on met les longueurs (m), Force (N) et Masse (kg).
- Matériaux : on met la Langue (Français), Acier (acier), Béton (béton), pour l'Aluminium et le Bois on ont à pas besoins dans notre cas donc on laisse telle qu'ils sont.

***** Catalogue :

- ➢ Barres d'armatures : on Sélectionne BAEL99 et on clique sur l'icône <a>

- ➢ Treillis soudés : on Sélectionne BIOMETAL et clique sur l'icône

* Normes de conceptions :

- pour le cas de notre structure qui est en Béton armé on choisi (BAEL91 mod 99, Géotechnique (DTU 13.12) et (CM66) pour les aciers.
- Charges : Pondérations (BAEL91), Charges de neige et vent (NV65/N84mod.96), Charges sismique (RPA99 (2003)).

* Analyse de la structure :

- on coche (liaisons rigides).
- Analyse modale : Dans la rubrique Type de matrice de masse on coche (Cohérente).
- * *Paramètres du travail* : Dans type de maillage on sélectionne (Normal).

Enfin on donne un nom à la nouvelle configuration puis on clique sur OK.

IV.5.3/ Définition des lignes de constructions :

Les lignes de construction jouent un rôle très important lors de la modélisation de la structure, en effet grâce à ces lignes en va définir les axes de la structure (X, Y et Z), les différents éléments de la structure, afficher les plans de travail et sélectionner les éléments situés sur une ligne de construction, se repérer dans un système d'axe.

La commande est accessible par le menu déroulant : « *structure* » puis la commande « *ligne de construction* », ou bien dans la barre d'outils « *Modèle de structure* » à droit, on

clique sur l'icône

Les lignes de construction sont introduites dans la fenêtre ci-dessous dans un system de coordonnées cartésiennes, cylindriques ou arbitraires. Dans notre cas, la structure sera modélisée en coordonnées cartésiennes.

A fin de faciliter le repérage des éléments dans le système d'axe (X, Y et Z), en définit pour chacun des trois (03) axes principaux un libellé : **1**, **2**, **3**...pour **XX'**; **A**, **B**, **C**...pour **YY'** et le libellé **valeur** pour l'axe **ZZ'**.
o [®] Lignes de construction	of Lignes de construction	of Lignes de construction
Nom : Lignes de construction 👻	Nom : Lignes de construction 👻	Nom : Lignes de construction 👻
Cartésien Cylindrique Lignes arbitraires	Cattésien Cylindrique Lignes arbitraires	Cartésien Cylindrique Lignes arbitraires
Paramètres avancés	Paramètres avancés	Paramètres avancés
X Y Z	XYZ	X Y Z
Position : Répéter x : Espacement :	Position : Répéter x : Espacement :	Position : Répéter x : Espacement :
0,00 (m) 0 🚖 1 (m)	0,00 (m) 0 🚖 1 (m)	0,00 (m) 0 🚖 1 (m)
Libellé Position	Libellé Position	Libellé Position
Insérer	Insérer	
Supprimer	Supprimer	Supprimer
Supprimer tout	Supprimer tout	Supprimer tout
Gras	Gras	Gras
	4	✓ Etages
Libellé : 123 %+v	Libellé : A B C 👻	Libellé : Valeur 🔻 🎗+v
Nouveau Gestionnaire de lignes	Nouveau Gestionnaire de lignes	Nouveau Gestionnaire de lignes
Appliquer Fermer Aide	Appliquer Fermer Aide	Appliquer Fermer Aide

Figure IV.4: définition des lignes de construction.

Après définition de toutes les lignes de construction, en clic sur *appliquer*, en peut ensuite afficher les différentes vues de notre structure, faire pivoter ou orienter le modèle grâce l'option « ViewCube-propriété » accessible a partir du menu affichage, ou bien a partir du cube qui se trouve dans la partie supérieure de l'éditeur graphique.

On peut aussi accéder aux différentes vues (2D, 2D/3D et 3D) à partir de la boite de dialogue ci-dessous :

IV.5.4/ Définition des sections (profilés des barres):

Cette étape nous permet de définir les différentes sections transversales, la commande est accessible a partir du menu « *structure* - *Caractéristiques*- *Profilés de barres* » ou dans la barre d'outils « *Modèle de structure* », on clique sur l'icône :

On clique ensuite sur « *Définir un nouveau profilé* », ou bien en clic sur l'icône t et on choisit le type et la géométrie de notre section, en introduisant les dimensions des éléments.

T Profilés	Nouvelle section
Image: Suppression of the state of the	Général Nom : POT CHAIN/ Couleur : Auto h B Réduction du moment d'inertie
Lignes/barres	Angle gamma : 90 (Deg) Type de profilé : Poteau BA
Appliquer Fermer Aide	Ajouter Fermer Aide BETON

Figure IV.5: Définition des éléments barre.

IV.5.5/ Création des barres (Affectation des sections transversales) :

En définira ainsi avec la commande « **barre** » accessible à partir de l'icône ou bien dans le menu « *structure* », tous les éléments barre (poteaux, poutres), dans notre cas les poteaux et poutres de chainage, On doit alors choisir l'élément et sa section et suivant les ligne de construction définies auparavant on dessine les éléments de la structure.

- Barres	
Barre n*: 2	Pas: 1
Nom : Poutre BA_2	
Caractéristiques	
Type : Poutre	BA 🔻
Section : PO	UTRE de cha 🔻 🛄
Matériau par défaut :	
· · · · · · ·	
Coordonnées des noeud	s (m)
Origine : <mark>-3,00; 0,0</mark>	0; 2,00
Extrémité :	
Etirer	
Position de l'axe	
Excentrement : inex	istant 🔻 📖
Ajouter Ferm	er Aide

Sarres	
Barren*: 2 Nom: Poteau B/	Pas: 1
Continue (
Section :	
Matériau par défaut :	
Coordonnées des nos	euds (m)
Origine : 0,00; 0),00; 2,00
Extrémité :	
Etire	er
Position de l'axe	
Excentrement :	nexistant 🔻 📖
Ajouter F	ermer Aide

Figure IV.6: boite de dialogue « barre » (Modélisation des poutres et des poteaux).

IV.5.6/ Création des panneaux :

Avant de modéliser les voiles, les dalles pleines et les escaliers on doit tout d'abord créer leurs lignes de construction et définir les contours, pour cela on clique sur l'icône « *poly ligne-contour* » () qui se trouve dans la barre d'outils « *Modèle de structure* » a droit et on coche la case « *contour* » et la case « *panneau* » dans « *paramètre* », puis on passe au mode graphique pour construire ces contours (*Figure IV.7.a*).

En doit ensuite leurs affecter les épaisseurs, Pour cella on sélectionne dans le menu « structure », « caractéristique » la commande « épaisseur EF » ou bien on clique sur

l'icône dans la barre d'outil a droit puis on clic sur l'icône « *définir nouvelle section* » et sur l'onglet « *uniforme* », on introduit en suite le nom, l'épaisseur et sa variation ainsi que le matériau du panneau (*Figure IV.7.c*).

Méth	ode de définition
P1 P2	 C Ligne Polyligne Contour
	Géométrie
	Paramètres
Nombre de bo Nombre de bo Nombre fix Divisions p Longueur	ords :[10] min[3] re bour l'angle 360° du bord [1.00] (m)
Rayon :	1 (m)
Créer les barres	Bardage/Face Contour/Duwerture

Figure IV.7.a (création des contours)

Uniforme	Orthotropo				
	oraiouope				
i i	i /				2
1					
Nom:	VOILE EC	Cou	leur :		-
💿 uni	forme	Ep =	15,0)00 (c	m)
🔘 vai	iable par 2 point	s			
🔘 vai 🔘 vai	iable par 2 point iable par 3 point	s s			
🔘 vai 🔘 vai	iable par 2 point iable par 3 point Coordonné	s s es du po	int	Epais	seur
🔘 vai	iable par 2 point iable par 3 point Coordonné (r	s s es du po n)	int	Epais (cm	seur 1)
) vai) vai P1 :	iable par 2 point iable par 3 point Coordonné (r 0,000; 0,000;	s s res du po n) 0,000	int	Epais (crr 0,000	seur 1)
© var © var P1 : P2 :	iable par 2 point iable par 3 point Coordonné (r 0,000; 0,000; 0,000; 0,000;	s es du po n) 0,000 0,000	int	Epais (cm 0,000 0,000	seur 1)
© vai © vai P1 : P2 : P3 :	iable par 2 point iable par 3 point Coordonné (r 0,000; 0,000; 0,000; 0,000;	s es du po n) 0,000 0,000	int	Epais (cm 0,000 0,000 0,000	seur I)
○ vai ○ vai P1: P2: P3: ■ Ré	iable par 2 point iable par 3 point Coordonné (r 0,000; 0,000; 0,000; 0,000; 0,000; 0,000; 0,000; 0,000;	s es du po m) 0,000 0,000 0,000	int	Epais (cm 0,000 0,000	seur I)
© vai © vai P1 : P2 : P3 : ₿é ďir	iable par 2 point iable par 3 point Coordonné (0,000; 0,000; 0,000; 0,000; (0,000; 0,000; duction du mom ertie	s s es du po n) 0,000 0,000 0,000	int	Epais (cm 0,000 0,000 0,000	seur n)
© vai © vai P1 : P2 : P3 : ₿é ďir	iable par 2 point iable par 3 point Coordonné (r 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; duction du mom ertie	s s es du po n) 0,000 0,000 0,000	int	Epais (cn 0,000 0,000 0,000	seur I)
© vai © vai P1 : P2 : P3 : Bé d'ir	iable par 2 point iable par 3 point Coordonné (r 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; duction du mom nertie Paramètre	s es du po m) 0,000 0,000 0,000 eent [:	int	Epais (cm (0,000 (0,000 (0,000 (0,000 (0,000 (0,000 (0,000) (0,000)	seur)
© vai ● vai P1 : P2 : P3 : ■ Ré d'ir Matériau :	iable par 2 point iable par 3 point Coordonné (r 0,000; 0,000; 0,000; 0,000; 0,000; 0,000; duction du mom ertie	s es du po m) 0,000 0,000 0,000 ent [: s de l'éla:	int	Epais (cm 0,000 0,000 0,000 0,000 0,000 1 *1g du.sol N20	seur)

Figure IV.7.c (

) X		j & ₽	
	COQUE1	→ 🖉 NOYAU	
0	COQUE2	🖉 VOILE E	
	COQUES	🖉 VOILE F	
@ 1	DALLE		
	111	+	
٠			
∢ Panne	aux		
≮ Panne	aux		
< Panne	aux	*	

Figure IV.7.b (définition des épaisseurs)

Numéro :	717	Û.
Type de cont	our	
🧿 panneau	🔘 trou	
viode de créa	ation	
point inter	ne	
4,883;18	8,950; 15,703	(m)
📉 Seuler	ment la sélection ac	stuelle
🖻 liste d'obie	ato	
🔿 liste d'obje	əts	
🔿 liste d'obje	ets	
🔊 liste d'obje	əts	
liste d'obje	ets	
 liste d'obje liste d'élér 	ets nents surfaciques (1	EF)
 liste d'obje liste d'élér Caractéristiqu 	ets nents surfaciques (1 ies	=F)
 liste d'obje liste d'élér Caractéristiqu Ferraillage : 	ets nents surfaciques (I les Voile BA	=F]
liste d'obje liste d'élér Caractéristiqu Ferraillage : Matériau :	nents surfaciques (l les Voile BA BETON20	=F)
liste d'obje liste d'élér Caractéristiqu Ferraillage : Matériau : Epaisseur :	nents surfaciques (l ies Voile BA BETON20 VOILE EC	⊑F) ▼

Figure IV.7.d

En fin, Pour la modélisation des panneaux, on clique sur l'icône « **panneau** » Se dans la barre d'outils (*Figure IV.7.d*), on coche la case panneau et on pose le curseur dans la case où l'on demande un point interne, puis on clique à l'intérieur du contour crée précédemment.

En aura alors dans la vue en 3D la représentation ci-dessous (Figure IV.7.e).

Figure IV.7.e : exemple de modélisation des panneaux

```
IV.5.7/ Création du noyau central :
```

V.2.7.a/ Caractéristiques géométriques du noyau central :

RDC: Rayon : 3,125 m Hauteur: 4,80 m Epaisseur : p1=0m ; p2=0,15m • EC : Rayon : 3,125 m Hauteur: 2,87 m Epaisseur : p1=0m ; p2=0,15m V.2.7.b/ modélisation :

Dans la barre d'outils « Modèle de structure » à droit de la fenêtre principale, on clic sur

l'icone *maile*, la commande structures types s'affiche (*figure IV.8.a*), on choisi alors dans le menu déroulons « plaques et coques : géométries types », on sélectionne le cylindre puis en clic sur ok, une nouvelle fenêtre s'ouvre ou on pourra introduire les caractéristiques géométriques, le type de maillage ainsi que le point d'insertion du cylindre.

Ke Structures types	Insertion d'une structure :Coque - cylindre
Sélection de la base de structures types PLAQUES & COQUES : Géométries types Sélection du type de structure	Ep2 H
	R JEp1 Rayon R 3.125 [m] Hauteur H 4.8 [m] Epaisseur Ep1 0 [m] Epaisseur Ep2 0.15 [m] Matériau BETON 20 Suivant
OK Annaker Aide	OK Appliquer Annuler
Figure IV.8.a	Figure IV.8.b

structure :Coque - cylindre	Insertio	oque - cylindre	nsertion d'une structure :C
Insertion Arence 1 Dimensions Maillage Inserter Arence 1 October 1	Dimensions Mailage Insérer Noe Poin Mise Fact Alph Bêtz Gan	Oui © Non Oui © Non G 4 8	Péments quadrangulaires Béments quadrangulaires Béments à 3/4 noeuds Nombre des divisions n Nombre des divisions n Nombre des divisions I
nt	Suivant Précédent Nuler	19 4 18 Appliquer Ann	Nombre des divisions I

Figure IV.8.c

Figure IV.8.d

On aura alors le résultat suivant :

Figure IV.8.e : prise en forme du noyau

Remarque :

Il ya plusieurs autre méthodes pour la création du noyau :

• On dessine un cercle à la base de la structure avec la commande cercle O telle que : R=3,125m

Centre (8,9; 8,9; 0,00)

Puis grâce à la commande extrusion \square on précise la hauteur pour avoir le cylindre avec le vecteur < 0 ; 0 ; 4,8>, puis on affecte au cylindre ses caractéristiques (maillage, épaisseur,...).

- La deuxième méthode consiste à dessiner un cylindre avec la commande cylindre puis on lui affecte ses caractéristiques.
- La troisième méthode consiste définir le noyau à partir de la commande structures

types , on choisi « *plaques et coques : géométries types* » puis on sélectionne

, le principe reste le même que la définition du cylindre avec la commande structures types, on introduit ensuite les caractéristiques géométriques du noyau avec R=r.

<u>Remarque</u>: les ouvertures du noyau peuvent être modélisées on utilisant les coordonnées cylindriques, mais le noyau sera ensuite considéré comme étant un bloc (solide), cela veut dire que la liaison avec les autres éléments ne sera plus possible car la fibre moyenne du noyau sera supprimée, donc pour notre cas on ne va pas modéliser le noyau avec ces

méthodes mais o va utiliser une autre méthode plus compliquer mais nous un résultats encor plus approché et cela on utilisons les coordonnées cylindriques.

- Tout d'abord on va créer les lignes de construction :
- On clic sur *nouveau* puis sur *cylindrique* dans la boite de dialogue ligne de construction $\mathbb{O}^{\textcircled{}}_{+}$,
- On choisit comme repère relatif le centre du noyau dans l'onglet *paramètres avancés*,
- On introduit le rayon du noyau dans l'onglet *radial*,
- Dans l'onglet *angulaire*, on devise le noyau suivant quatre (04) angles identiques puis on va créer d'autre ligne de construction suivant les angles caractérisant les ouvertures,
- Puis la hauteur des ouvertures dans l'onglet **Z**.

Figure IV.8.f

 Création des panneaux : Même procédure que précédemment (IV.2.6), mais cette fois lors de la modélisation du voile et ses ouvertures avec la commande *poly ligne-contour*, on utilise Arc *pour la base et le sommet du voile et ceux des ouvertures, ligne pour les deux autres cotés.*

IV.5.8/ modélisation du réservoir et supports:

Le réservoir à une forme très complexe, il est constitué par une cuvette en forme de paraboloïde de révolution raccordé à une calotte sphérique ainsi qu'une coupole sphérique, la complexité de cette modélisation est que les parois ont des courbure à rayons et épaisseurs variables, dans ce qui suit on va essayer d'approcher le plus possible la représentation réel du réservoir.

• Définition des lignes de construction :

Pour la modélisation des parois du réservoir, on utilise la commande « arc » accessible à

partir du menu « *structure* », « *objet* » puis « *arc* » ou on clic sur l'icone in puis sur in on aura alors la fenêtre arc qui s'affiche (*Figure IV.9.a*), on choisi « *centre et deux ponts* » et on défini pour chaque arc les coordonnées du centre ainsi que celui de ses deux cotés (départ et arrivée).

lbjet	N* 758		
	Métho	de de défin	ition
P1 P2	> ^{P3}	 centre début - début - 	et deux point: fin - centre centre - fin
	G	iéométrie	
	P	aramètres	

Figure IV.9.a

<u>**Remarque</u>** : afin de faciliter la modélisation, on travail dans l'un des deux plan XZ $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix}$ a</u>

y=8,9 ou bien YZ 1 a x=8,9 (la structure étant symétrique).

• Lorsque on aura enfin dessiné tout les arcs, on utilise la commande révolution pour donnée forme au réservoir, on introduit ensuite les caractéristiques des parois on aura alors le résultat de la *Figure IV.9.d*.

Figure IV.9.b

Figure IV.9.c

Figure IV.9.d

• Même principe pour la coupole, on dessine l'arc, on utilise la commande révolution puis on lui affecte ses caractéristiques géométriques.

Remarque :

- ✓ On doit retrouver avec grande précision les coordonnées des points qui caractérisent les arcs.
- ✓ Le point (nœud) d'arrivé de chaque arc est le point du départ de l'arc suivant, c'est-àdire que deux arcs successives se joint au même nœud.
- ✓ Avons de modéliser la coupole on doit tout d'abord introduire le chargement du réservoir, la méthode nous allons la voir dans l'étape chargement.
- Modélisation des supports :

Les voiles supportant le réservoir ont une épaisseur constante mais une forme complexe, car ils sont incliné dans les deux plans XZ et YZ donc on doit être tres précis pour pouvoir assurer correctement le transfert des charges et surcharges du réservoir, on utilise à cet effet l'onglet « géométrie» (Figure IV.9.e) dans la

```
commande « contour » dans la quelle on utilise l'option arc pour la partie du voile au contacte des parois du réservoir et l'option segment pour le reste.
```


Figure IV.9.e

Figure IV.9.f : vue en 3D du réservoir et support)

Modélisation par éléments finis avec Robot 2013(V26). Chapitre IV :

IV.5.9/ Définitions des degrés de liberté (appuis):

Pour pouvoir transmettre les charges et surcharges de la superstructure vers le sol d'assise, la structure doit être encastrée a la base, pour cella en doit définir les appuis.

La commande appuis est accessible a partir du menu « Structure », ou bien on clic sur

l'icône 🚔, la boite de dialogue « *appuis* » représentée ci-dessous s'affiche (*Figure IV.10.a*).

Figure IV.10.a

Figure IV.10.c (vue en 3D)

Pour encastrer les voiles et le noyau central, on se met à la base du plan XY, on les sélectionne, on clique ensuite sur l'onglet « Linéaires » puis sur « Encastrement » enfin sur appliquer.

IV.5.10/ Affichage des attributs :

Après avoir modélisé la structure, le logiciel nous permet de gérer l'affichage des attributs (propriétés) définis aux éléments de la structure. Pour choisir les attributs à afficher, en sélectionne la commande attributs accessible a partir du menu « Affichage-Attributs » ou on clique sur l'icône **H**, la fenêtre ci-dessous s'affiche (*Figure IV.11.a*).

) 🚺 📴 🖪 🖂
Nom	
Numéros de noeuds	
+ Description des barres	<u>0-1</u>
+ Description des panneaux	2
+ Appuis	
Croquis	
+ Repères locaux	
+ Relâchements	11011
Excentrements	
+ Symboles des charges	
Valeurs	
+ Lignes de construction	☑ :#
+ Fonds	V 🖽
∏ ^A p	fficher attributs uniquemen our les objets sélectionné
	Nom Numéros de noeuds Description des barres Description des panneaux Appuis Croquis Repêres locaux Relâchements Excentrements Yonboles des charges Valeurs Lignes de construction Fonds

Figure IV.11 : boite de dialogue attributs

IV.5.11/ Liaisons rigides : (nœud maitre et nœuds esclaves)

La liaison rigide est utilisée pour modéliser les parties parfaitement rigides des structures élastiques, les rotations et les déplacements définis pour la liaison peuvent être limités à certains degrés de liberté.

Pour satisfaire l'hypothèse du plancher infiniment rigide (diaphragmes) on doit définir le nœud maitre et les nœuds esclaves. Dans le menu « *Structure* » puis « *caractéristiques additionnels* » puis « *liaisons rigides* » dans la boite de dialogue on crée une nouvelle liaison rigide en cliquant sur l'icône

	Rigide	
★ SUPPH ∻¶Diaphragme rigide ∻¶Membrane	Nom :	neud maitre
▶ ∻¶Ineud maitre	Direction	5
	VX. 🔽 UX	
Mode d'affectation	VU 💟	
loeud maître	🔲 UZ	
	🗐 BX	
iélection des noeuds esclaves	🔲 BY	
÷	RZ	
	Aiguter	Former Aide

Figure IV.12.a : Liaison rigide

Figure IV.12.b : conditions aux limites

On clique dans la zone « nœuds maitres » et on sélectionne graphiquement un nœud quelconque appartenant au plancher ou bien on écrit sont numéro.

On clique dans la zone « sélectionner les nœuds esclaves » et on sélectionne graphiquement les nœuds esclaves (tout le plancher) ou bien on écrit leurs numéros.

On applique, aura alors le résultat suivant :

Figure IV.12.c : plancher infiniment rigide

IV.5.12/ Chargement de la structure :

IV.5.12.a/ cas de charges :

La commande est accessible à partir du menu « *chargement* »-« *cas de charge* », ou bien on clique sur l'icône ¹, elle nous permet de définir les charges statiques (permanentes et d'exploitations) de la structure, on choisit la nature et le nom puis on clique sur « *Nouveau* » (*Figure IV.13.a*).

Pour notre structure on doit définir les cas de charge suivant :

G: *Charge permanente* (nom : G ; nature : permanente). *Q*: *Charge d'exploitation* (nom : Q ; nature : exploitation). *Q_{eau}*: *Charge d'exploitation* (nom : Q_{eau} ; nature : exploitation)

Numéro :	1	Préfixe :	PERM1	
44 - C		.		- 200
Nature :	permanente 👻	Sous-nature :	poids propre	- 52
Nom :	G			
		Ajouter	Modifier	3
Liste des ca	s définis :			
N*	Nom de cas		Nature	
→1	G		poids propre	3
2	Qhabitat		d'exploitation	1
3	Qeau		d'exploitation	
٠.	m.			,
		Supprimer	Supprimer t	out

Figure IV.13.a

IV.5.12.b/ Chargement :

✓ Chargement de la structure :

Pour charger notre structure on doit suivre les étapes suivantes :

- On choisit le type de charge G, Q ou bien Q_{eau} , son orientation ainsi que le repère choisi (globale ou local),
- On sélectionne dans le menu « *chargement* » la commande « *définir charge* » ou bien on clic sur . la fenêtre de la figure *IV.13.b* s'affiche,

- On introduit la valeur de la charge dans la zone « *charge* » puis sur « *ajouter* »,
- on clique sur « *Définir* » pour définir le contour du plancher qui est soumis à une charge surfacique uniformément répartie, pour notre cas le plancher étant en dalle pleine on sélectionne le plancher ou on introduit son numéro dans la zone « *appliquer* à »,
- en fin on clic sur appliquer.

Cas n° : 1 : G Sélection : Noeud Barre Surface Poids et masse	P Kristing and S
	Valeurs
Appliquer à	Repère : 💿 global 💮 local
	Limitations géométriques
Appliquer Fermer Aide	Ajouter Fermer Aid

Figure IV.13.b

Figure IV.13.c

<u>*Remarque*</u>: dans le cas des planchers en dalle pleine la commande « *bardage* » n'est pas nécessaire.

✓ Chargement du réservoir : (*Pression hydrostatique*)

L'option Pression hydrostatique sert à définir les charges par pression hydrostatique agissant sur les éléments finis surfaciques sélectionnés. L'option est accessible après un clic

sur l'icône sur l'icône sur l'icône dans la boîte de dialogue charge (*Figure IV.13.b*).

Pression	
P	
Pression Partie constante (due à l valeur de la pression P Partie variable (due à la poids propre du liquide :	la pression uniforme) 0,000 (kPa) colonne liquide) 10 (kN/m3)
Domaine d'action niveau du liquide h : par rapport à l'axe :	0.000 (m)
Limitatio	ns géométriques

Figure IV.13.d

L'option Pression hydrostatique permet de définir les charges correspondant à la pression d'une colonne de liquide perpendiculaire à la surface de l'élément. La pression peut être uniforme ou varier linéairement. Si le signe (+) précède la valeur de la pression, la pression agit dans la direction du vecteur normal à l'élément fini surfacique ; si le signe (-) précède la valeur de la pression, la pression est contraire à l'orientation du vecteur en question.

La charge peut être uniforme (la pression p et le niveau du liquide h doivent être spécifiés) ou variable. Pour une charge variable, les valeurs suivantes doivent être spécifiées : valeur p de la pression uniforme, gravité spécifique du liquide (grav) et niveau de liquide h de base.

- Affectation de la surcharge Q_{eau}:
- \circ En premier lieu on doit calculer la hauteur de la surface libre du liquide dans le réservoir, pour cela on cherche par tâtonnement la hauteur h_{tot} qui nous donne un volume de 1000 m³,
- puis pour chaque panneau du réservoir, on calcul la position de son centre de gravité par rapport a la surface libre du liquide (niveau du liquide h),
- on introduit la valeur de h et le poids propre du liquide (10 kN/m^3) puis on clic sur « *ajouter* ».
- On sélectionne le panneau ou on introduit son numéro dans la zone « *appliquer* à »,
- On applique, on aura alors le résultat suivant :

Figure IV.13.e

Les valeurs des différentes charges sont données dans les tableaux suivant, ces tableaux sont accessible a partir de « *chargement* », « *tableau-chargement* ».

Cas	Liste	Valeurs de la charge	Nom du cas	Nature	Type de charge
1	0A563 565A568 570A573 575.	PZ Moins Coef=1,000	G	permanente	poids propre
1	510	PZ=-5,770[kN/m2]	G	permanente	(EF) surfacique uniforme
1	501A519P6 516 522 543	PZ=-4,770[kN/m2]	G	permanente	(EF) surfacique uniforme
1	57A67P2 437	PZ=-3,665[kN/m2]	G	permanente	(EF) surfacique uniforme
1	68 69 71A73 442	PZ=-1,540[kN/m2]	G	permanente	(EF) surfacique uniforme
1	56A66P2 427 429 436	PZ=-3,665[kN/m2]	G	permanente	(EF) surfacique uniforme
1	70	PZ=-1,540[kN/m2]	G	permanente	(EF) surfacique uniforme
1	444	PZ=-1,540[kN/m2]	G	permanente	(EF) surfacique uniforme
1	533	PZ=-1,540[kN/m2]	G	permanente	(EF) surfacique uniforme

• Charge permanente :

• Charge d'exploitation (habitation):

Cas	Liste	Valeurs de la charge	Nom du cas	Nature	Type de charge
2	510	PZ=-1,500[kN/m2]	Q	d'exploitation	(EF) surfacique uniforme
2	501A519P6 516 522 543	PZ=-1,500[kN/m2]	Q	d'exploitation	(EF) surfacique uniforme
2	57A65P2 67A73 437 442	PZ=-2,500[kN/m2]	Q	d'exploitation	(EF) surfacique uniforme
2	56A66P2 427 429 436	PZ=-2,500[kN/m2]	Q	d'exploitation	(EF) surfacique uniforme
2	444	PZ=-2,500[kN/m2]	Q	d'exploitation	(EF) surfacique uniforme
2	533	PZ=-2,500[kN/m2]	Q	d'exploitation	(EF) surfacique uniforme

• Chargement du réservoir :

Cas	Liste	Valeurs de la charge	Nom du cas	Nature	Type de charge
3	534	Gamma=10,000[kN/m3] H=3,475[m] Direction=+Z	Qeau	d'exploitation	(EF) pression hydrostatique
3	472	Gamma=10,000[kN/m3] H=7,500[m] Direction=+Z	Qeau	d'exploitation	(EF) pression hydrostatique
3	528	Gamma=10,000[kN/m3] H=6,400[m] Direction=+Z	Qeau	d'exploitation	(EF) pression hydrostatique
3	474	Gamma=10,000[kN/m3] H=5,400[m] Direction=+Z	Qeau	d'exploitation	(EF) pression hydrostatique
3	529	Gamma=10,000[kN/m3] H=3,775[m] Direction=+Z	Qeau	d'exploitation	(EF) pression hydrostatique
3	532	Gamma=10,000[kN/m3] H=1,337[m] Direction=+Z	Qeau	d'exploitation	(EF) pression hydrostatique

IV.5.13/ Définition des options de calculs : (analyse statique, modale et dynamique)

Dans le menu « Analyse », On clique sur « Type d'analyse » une boite de dialogue apparait :

	d'analyse	Modèle de structure	e Masses	Signe de la combinaison	Résultats - fill
N*	Tì	tre		Type d'analyse	
•	1 G 2 Q 3 Q	eau		Statique linéaire Statique linéaire Statique linéaire	
No Opéra Liste c	ouveau ations sur l	Paramètres a sélection de cas		anger type d'analyse	Supprimer

Figure IV.14.a

On clique sur « *Nouveau* » et on sélectionne le champ « *Modale*». Les paramètres de l'analyse modale sont introduits dans la boite de dialogue qui s'affiche à l'écran après validation de la boite suivante :

Nom :	Mc Shin
Type d'analyse	
Modale	
C Modale avec	définition automatique des cas sismiques
🔿 Sismique (mé	thode d'ellort horizontal équivalent)
Sismique	RPA 99 (2003) -
O Spectrale	
C Harmonique	
🔿 Temporelle	
Push over	
Analyse harm	ionique dans le domaine fréquence (FRF)
	namique par mouvement piéton (Footfall)
Excitation dyn	

Figure IV.14.b

Cas : Moda Paramètres	le	Mode d'analyse Modale		
Nombre de modes :	27	🖱 Sismique		Tolérance :
Tolérance :	0,0001	💿 Sismique (Pseudomodale)		0.01
Nombre d'itérations :	40	Méthode		
Accélération :	9,80665	🔘 Itér. sur le sous-espace par blocs	Défini	r les paramètres
Matrice des masses Cohérentes Concentrées avec rotations		Itération sur le sous-espace Méthode de Lanczos Méthode de réduction de la base Définir la base		éfinir la base
Concentrées sans rotations		Limites		
Directions actives de	la masse	Inactives	Définir les limites	
⊘ ×	VY EZ	Masses participantes	0	(%)
		Paramètres de l'analyse sismique		
🔽 Négliger la densité		Amortissement : 0,1		
Vérification de Sturm		Calcul de l'amortissement (d'après PS92)		
Paramèt	res simplifiés <<]		
		Définir l'exc	entrement	

Figure IV.14.c : paramètre de l'analyse modale

Pour l'analyse modale il faut :

- Définir le nombre de mode,
- Matrices de masse cohérentes,
- Donner la valeur de l'amortissement.

Les paramètres étant définis, on clic sur OK

On clique une second fois sur « *Nouveau* », on coche la case sismique, on choisit RPA99 version2003 et OK.

On introduit les paramètres concernant notre structure (zone, groupe d'usage, facteur de qualité, le site ainsi que le coefficient de comportement) avons de valider on met Z=0 dans « *Définition de la direction* ».

	Manufacture and a second s	
be d'analyse	Cas : Sismique RPA	99 (2003)
Modale	🔲 Cas auxiliaire	
Modale avec définition automatique des cas sismiques Sismique (méthode d'effort horizontal équivalent) Sismique RPA 99 (2003) -	Zone O I O IIa O IIb O III	Usage 1A 1B 2 3
Spectrale Harmonique	Site S1 S2 S3 S4	Définir l'excentrement
Temporelle		Mode résiduel
Push over	Coefficient de comportement : 3.	5 Définir la direction
Analyse narmonique dans le domaine tréquence (FRF) Excitation dynamique par mouvement piéton (Footfall)	Facteur de qualité : 1.	15 Filtres

Figure IV.14.d : Définition des paramètres de l'analyse sismique (RPA).

 Le logiciel permet de calculer la masse de la structure à partir des éléments et des charges que l'on introduits.

Dans le menu « *masse* » de la boite de dialogue « *option de calcul* », on clic sur convertir les cas — puis dans la fenêtre qui apparait, on choisit le cas de charge G ou Q et on clic sur puis on ferme. On choisit ensuite la direction de la conversion ainsi que le coefficient, enfin on clic sur ajouter. On refait la même opération pour l'autre charge et on ferme.

Types d'analyse	Modèle de structur	e Masses S	igne de la combinaison	Résultats - fill 🙏 👌		ion Inverser
Paramètres de la Convertir les ca: Dir. de la conve Coefficient	s 1 ersion Z - 1	[Dir. de la masse X [Ajouter la masse à Ma Ajouter	Z Y Z Z ⊂ sse dynamiqu ♥ Modifier	Cas	
Cas convertis 1 2	Dir conversion Z - Z -	Coefficient 1,000 0,200	Dir masses XY XY	Cas n* Masse dynami Masse dynami	Simple Combinaison G Attributs : Tout	roupe 2: Q 3: Qeau 4: Modale 5: Sismique RPA 99 (2
Supprimer)		alcula Ferme	Aida	Fermer	∢ m ►

Figure IV.14.e : conversion des charges en masse

<u>*Remarque*</u>: Dans le cas des structures de type coque ce qui est notre cas, la conversion des charges par pression hydrostatique en masses n'est pas possible.

IV.5.14/ Définition des combinaisons d'actions :

Dans le menu « *chargement* »puis « *combinaison manuel* », on choisi le type de la combinaison et sa nature (*Figure IV.15.a*).

Exemple : on considère les combinaisons d'actions à l'ELU

On procède comme suite :

- on choisi le type de la combinaison ELU (*Figure IV.15.a*),
- on lui donne un nom (ELU),
- on clic sur paramètres pour définir le type de combinaison sismique,
- dans la nouvelle fenêtre qui apparait on donne la nature *permanente* et le type *CQC*,
- dans la nouvelle fenêtre qui apparait (*Figure IV.15.b*), on sélectionne **G** puis on introduit le coefficient **1,35** ensuite on clic sur >,
- on refait la même chose pour **Q** avec un coefficient de **1**,**5**.

Numéro de combinaison : 6 Type de combinaison : ELU 🔹	Type de combinaison sismique CQC © SRSS © 2SM © 10%
Nom de la combinaison : ELU	Nature: permanente
Paramètres	Combinaison quadratique

Figure IV.15.a

C	Combinaison : 6 : ELU : ELU				•]
iste de cas :			Liste des c	cas dans la c	ombinaison :
Nature	Tout 💌		coefficient	N*	Nom de cas
N*	Nom de cas		1.35	1	G
3 5	Qeau Sismique RPA 99 (2003)	> >> <	1.00	2 SA	2
•	4				
Coeffici	ent: auto				
	Définir coefficients]	4	III	

Figure IV.15.b : Définition des combinaisons d'actions

Pour définir une autre combinaison on clic sur *nouvelle*, on refait la même opération pour toutes les combinaisons.

IV.5.15/ Vérification de la structure :

Avant de lancer l'analyse de la structure, le logiciel permet de vérifier s'il y a des erreurs dans la modélisation. Dans le menu « *analyse* », on clic sur « *vérifier la structure* » et ROBOT nous affiche le nombre et la nature des erreurs.

lombre d'erreurs :0	Afficher
ombre d'avertissements :0	Erreurs
	Vertissements
	Votes
	Vérifier Fermer

IV.5.16/ Affectation des étages :

L'option Etages permet de définir les étages considérés comme éléments structuraux (sélectionnés automatiquement ou manuellement). Pour une sélection d'éléments, Robot calcule les valeurs des paramètres suivants : masse, centre de gravité et de rigidité, moments d'inertie et excentrements. Ces données sont indispensables pour effectuer les calculs sismiques simplifiés pour plusieurs normes sismiques.

Dans Robot, un étage est défini comme un ensemble d'éléments de la structure (nœuds, barres, panneaux et solides). Lors de la sélection automatique et géométrique, l'étage comprend les éléments situés en totalité dans l'intervalle délimité par les niveaux définis par l'utilisateur (niveaux inférieur et supérieur de l'étage). Cependant, les éléments horizontaux placés sur un niveau inférieur de l'étage appartiennent à l'étage précédent.

La commande étage est accessible à l'aide de l'une des méthodes suivantes :

- Cliquez sur le menu Géométrie > Etages > Etages.
- Cliquez sur ^I.

La fenêtre ci-dessous s'affiche :

Figure IV.17 : commande étage

Dans la partie supérieure de la boîte de dialogue, il faut définir le niveau de la base du bâtiment. Pour terminer la définition, cliquez sur le bouton Définir.

Le champ Étages définis contient la liste des étages définis. L'étage peut être défini de deux manières :

• *Définition graphique* : après la sélection de cette option, on peut définir les étages en cliquant avec le bouton gauche de la souris dans la zone de dessin. Le niveau du

plancher est saisi dans le champ d'édition, et l'étage défini est ajouté à la liste des étages.

• *Définition manuelle* - après la sélection de cette option, la définition d'un nouvel étage commence par la saisie du niveau dans le champ Cote de niveau, suivie de l'indication du nombre de répétitions, de la hauteur et de la numérotation des étages (on a le choix entre l'une des possibilités suivantes : numérotation numérique, numérotation alphabétique et numérotation définie par l'utilisateur).

Pour définir un nouvel étage, il faut :

- 1. Indiquez le niveau de la base du bâtiment.
- 2. Si on veut que les étages se répètent à une hauteur particulière, on indique le nombre de répétitions et la hauteur d'un étage.
- 3. Indiquer la numérotation dans le champ Numérotation.
- 4. cliquer sur le bouton Insérer

Pour éliminer un étage, on met en surbrillance l'étage en question dans la liste et on clique sur *Supprimer*. Pour supprimer tous les étages, on clique sur *Supprimer tout*.

La partie centrale de la boîte de dialogue contient les champs permettant la définition des paramètres de l'étage sélectionné :

- Nom de l'étage par défaut, les étages sont désignés comme suit : Etage n
- Niveau du plancher
- Hauteur de l'étage
- Couleur affectée à un étage entraîne l'ouverture de la boîte de dialogue de sélection des couleurs.

A la fin de la modélisation on aura ce résultat :

Figure IV.18 : Vue de la structure en 3D

IV.5.17/ Analyse de la structure :

Dans le menu « *analyse* », on lance l'analyse de la structure en cliquant sur« *calculer* ».

IV. 6/ Exploitation des résultats :

Dans le menu « **résultat** » on clic sur le résultat que l'on veut afficher (réactions, diagrammes, flèche, efforts, contraintes, déplacements, ferraillage,...). On peut aussi faire un clic sur le bouton droit de la souris, on choisit « **tableau** », on coche la case du résultat que l'on veut afficher.

Figure IV.19 : tableau de données et résultats

Le logiciel nous donne plusieurs résultats, allons des efforts internes aux plans de ferraillage en passant par des notes de calculs, dans ce qui suit nous allons donner quelques exemples des résultats que l'on exploite le plus.

IV.6.1/ résultats de l'analyse modale (modes propre et périodes) :

On clique sur le bouton droit de la souris et puis sur « *tableau* », on coche la case *«mode propre »* et les résultats concernant l'analyse modale s'affichent.

	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
MAX	14,083	1,297	94,329	94,272	0,0	44,542	50,426	0,0	3989597,367	3991090,140	0,0
Cas	4	- 4	4	4	4	4	4	4	4	4	4
Mode	27	1	27	27	1	6	5	1	1	1	1
MIN	0,771	0,071	5,041	0,280	0,0	0,000	0,004	0,0	3989597,367	3991090,140	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	1	27	1	1	1	22	23	1	1	1	1

IV.6.2/ Réactions d'appuis :

Même opération	précédentes	en cochant	« Réaction :	».
----------------	-------------	------------	--------------	----

	FX [kN]	FY [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ (kNm)
MAX	172,450	139,882	833,301	11,026	9,177	0,500
Noeud	50875	52639	50898	152	139	680
Cas	13 (C) (CQC)	14 (C) (CQC)	13 (C) (CQC)	8 (C)	14 (C) (CQC)	13 (C) (CQC)
Mode						
MIN	-89,164	-94,084	-64,241	-11,249	-7,633	-0,458
Noeud	50876	53083	50072	682	131	156
Cas	8 (C)	8 (C)	3	8 (C)	8 (C)	8 (C)
Mode						

Figure IV.6.2 : Tableau des extrêmes globaux des réactions d'appuis

IV.6.3/ Déplacements des nœuds :

Même opération précédentes en cochant « Déplacements des nœuds ».

	UX [cm]	UY [cm]	UZ [cm]	RX [Rad]	RY [Rad]	RZ [Rad]
MAX	51,824	66,906	12,534	0,102	0,229	0,423
Noeud	48290	51777	50893	48377	6787	7013
Cas	13 (C) (CQC)	8 (C)	6	8 (C)	8 (C)	8 (C)
Mode			CQC			
MIN	-96,665	-71,331	-49,239	-0,136	-0,305	-0,091
Noeud	50453	49244	49950	8418	7014	48291
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Figure IV.6.3 : Tableau des extrêmes globaux des déplacements des nœuds

IV.6.4/ Vérifications de la flèche :

Même opération précédentes en cochant « flèche des barres ».

	UX [cm]	UY [cm]	UZ [cm]
MAX	0,000	0,001	0,001
Barre	147	176	291
Cas	8 (C)	8 (C)	8 (C)
Mode			
MIN	-0,000	-0,344	-0,603
Barre	165	52	316
Cas	6	5	12 (C) (CQC)
Mode	CQC	CQC	

Figure IV.6.4 : Tableau des extrêmes globaux de la flèche des barres

IV.6.5/ Effort dans les barres	: Même opération	précédentes en	i cochant « <i>effort</i>	ts »
--------------------------------	------------------	----------------	---------------------------	------

	FX [kN]	FY [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ (kNm)
MAX	1084,336	1,782	64,853	0,092	1,537	2,676
Barre	170	283	200	170	170	283
Noeud	30	34	7	30	30	34
Cas	14 (C) (CQC)	14 (C) (CQC)	8 (C)	13 (C) (CQC)	8 (C)	14 (C) (CQC)
Mode						
MIN	-32,184	-0,400	-64,853	-0,001	-79,079	-0,647
Barre	283	241	206	634	200	241
Noeud	34	6	12	67739	7	6
Cas	3	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Remarque :

Si on veut afficher les efforts internes dans les poutres par exemple, on les sélectionne, on choisit la combinaison avec laquelle on veut avoir les résultats puis on clic sur le bouton droit et on choisi propriétés de l'objet.

leometrie Lar	acteristiques NTM De	eplacements Verification	Géometrie Caractéristiques NTM Déplacements Vérification
Barre n* :	52	Longueur : 6,000 [m]	-4 000 MY [kNm]
Coordonnées	des noeuds :	Caractéristiques additionnelles :	-3.000
Noeud X	[m] Y [m] 7 [m]	Gamma = 0,0 [Deg]	-1.000
114 11	900 5,900 22,020	Count 1 G	-0.000
113 5	900 5,900 22,020	1 Poids propre PZ Moins Coef=1	2.000 Longueu
			0.000 1.000 2.000 3.000 4.000 5.000
Caractóristicus			Barre / Point [m] MY Diagramme
Caracteristique			Valeur actuelle -3,807
	Nom		pour la barre : 52 Fy
Type de ba	Poutre BA		dans le point : x=0,0 [m]
Section	poutreEC 15*60		
Matériau	BETON20		Smax
		* *	
		• •	Valeurs O Extrêmes

Figure IV.20.a : caractéristiques géométriques

aeometrie	Caractéristi	ques I	MTM	Deplac	ements Vé	ification	
0.040	UX [cm]		r				
0.030			-			1	
0.020				2 000	4 000	Longue	ur [m]
Barral	Doint Iml	UV [2		UV feml	4.000	— Diagr	amme
Valeur	actuelle	0.0	025	-0.001	-0,190		VUX
pour la	barre :		- 21	52	52		
dans le	point :		3	x=0,0 [m]			
l () dépla	cements des	barres		🔿 flèches	: maximales		

Figure IV.20.c : déplacements

🔲 Mz 📃 🔲 Smin

Aide

IV.6.6/Diagrammes des efforts dans les barres :

Dans le menu « *résultat* » on sélectionne « *diagramme-barres* » et on clique sur la case « *paramètre* » pour régler l'affichage des diagrammes, puis on fait notre choix sur les différents onglets (NTM, déformée, contraintes, réactions,).

Figure IV.21.a : paramètres des diagrammes

Figure IV.21.b : diagrammes des M.N.T

Figure IV.21.c : diagrammes des moments fléchissant a l'E.L.U

Figure IV.21.d : diagrammes des efforts normaux a l'E.L.U

Figure IV.21.e : diagrammes des tranchants FX a l'E.L.U

IV.6.7/ Déformée de la structure :

Figure IV.22.a : déformée d'un portique de la structure

On peut également avoir la déformée de la structure avec animation, pour cela on clic sur « **déformée** », on choisi le mode puis on clic sur « **démarrer** ».

Figure IV.22.b : déformée de la structure sous le premier mode de vibration

IV.6.8/ Efforts dans les voiles :

Dans le menu « *résultats* », on clique sur « *cartographie-panneaux* », on coche la case de ce qu'on veut afficher comme résultat et les valeurs s'affichent sur les voiles.

Détaillés Extrêmes Con	nposés Para	mè 🚹 🕨
Surface : M	oyenne	
Direction auto	omatique	
	хх уу ху	z
Contraintes - s		
Efforts de membrane - N		
Moments - M		
Contr. de cisaillement - t		
Efforts tranchants - Q		
Déplacements - u, w		
Rotations - R		
Réaction du sol - K		
ssage à l'intérieur du panne	eau	•
) isolignes	V avec nor	malisatior
) cartographies	🔲 avec mai	llage EF
) valeurs	🔽 descriptio	n

Figure IV.23.a : Commande cartographie

Figure IV.23.b : cartographie des voiles

Figure IV.23.c : cartographies des voiles et noyau

Figure IV.23.d : cartographie du réservoir

<u>Remarque</u> :

On peut afficher la cartographie de chaque panneau (voiles, parois du réservoir, noyau central,...), pour cela on sélectionne le panneau, on choisi la combinaison voulu puis dans la commande cartographie, on coche la case « *ouvrir nouvelle fenêtre avec l'échelle* », on aura alors les résultats des *Figures IV.23.c* et *IV.23.d*.

IV.6.9/ Affichage de la note de calcul :

Dans le menu « analyse », « note de calcul » on choisit simplifiée ou complète :

Propriétés du projet: structure finale

Type de structure : Coque

Coordonnées du centre de gravité de la structure:

Coordonnées du centre de gravité de la structure avec la prise en compte des masses statiques globales:

 $\begin{array}{lll} X = & 8.942 \ (m) \\ Y = & 8.896 \ (m) \\ Z = & 17.075 \ (m) \\ \mbox{Moments d'inertie centraux de la structure avec la prise en compte des masses statiques globales:} \\ Ix = & 191516827.036 \ (kg*m2) \\ Iy = & 191728844.101 \ (kg*m2) \\ Iz = & 82714127.140 \ (kg*m2) \\ \mbox{Masse} = & 1727740.138 \ (kg) \end{array}$

Coordonnées du centre de gravité de la structure avec la prise en compte des masses dynamiques globales: X = 8.937 (m)

 $\begin{array}{ll} X = & 8.937 \ (m) \\ Y = & 8.897 \ (m) \\ Z = & 17.075 \ (m) \\ \text{Moments d'inertie centraux de la structure avec la prise en compte des masses dynamiques globales:} \\ Ix = & 253317155.819 \ (kg*m2) \\ Iy = & 253529257.401 \ (kg*m2) \\ Iz = & 206314869.223 \ (kg*m2) \\ Masse = & 3989976.332 \ (kg) \end{array}$

Description de la structure	
Nombre de nœuds:	56074
Nombre de barres:	340
Eléments finis linéiques:	605
Eléments finis surfaciques:	55118
Eléments finis volumiques:	0
Nbre de degrés de liberté stat.:	332586
Cas:	16
Combinaisons:	10

Liste de cas de charges/types de calculs

Cas 1		:	G
Type d'analyse:	Statique	linéair	e

Cas 2 : Q Type d'analyse: Statique linéaire

Cas 3 : Qeau Type d'analyse: Statique linéaire

Cas 4 :	Modale				
Type d'analyse: Modale					
Excentricité de masse	ex =	5.00	00 (%)	ey =	5.000 (%)
Données:					
Mode d'analyse		:	Modal		
Type de matrices de masses		:	Cohérente		
Nombre de modes		:	27		
Limites		:	0.000		
Coefficient des masses participat	ntes	:	90.000		

Cas 5 : EX Type d'analyse: Sismique - RPA 99 (2003)

Direction de l'excitation:

- X = 1.000
- Y = 0.000
- Z = 0.000

Données:		
Zone		: @VAL(ZoneRPA99)@
Usage		: 1A
Assise		: S3
Coefficient de qualité		: 1.150
Coefficient de comportement		: 3.500
Amortissement		: $X = 10.00 \%$
Paramčtres du spectre:		
Correction de l'amortissement	:	$\eta = \left[\frac{7}{(2+\xi)}\right]^{0.5} = 0.764$
A = 0.400		
$T_1 = 0.150$		$T_2 = 0.500$
Cas 6 :	EY	-

Type d'analyse: Sismique - RPA 99 (2003)

Direction de l'excitation:

X = 0.000

Y = 1.000

Z = 0.000

Données:

Zone	:	@VAL(ZoneRPA99)@		
Usage	:	1A		
Assise	:	S3		
Coefficient de qualité	:	1.150		
Coefficient de comportement	:	3.500		
Amortissement	:	Х	=	10.00 %

Paramčtres du spectre:

Cas 7 : ELU vide Type d'analyse: Combinaison linéaire

Cas 8 : ELU plein Type d'analyse: Combinaison linéaire

Cas 9 : ELS vide Type d'analyse: Combinaison linéaire

Cas 10 : ELS plein Type d'analyse: Combinaison linéaire

Cas 11 : G+Qhabitat+EX Type d'analyse: Combinaison linéaire

Cas 12 : G+Qhabitat+EY Type d'analyse: Combinaison linéaire

Cas 13 : G+Qhabitat+Qeau+EX Type d'analyse: Combinaison linéaire

Cas 14 : G+Qhabitat+Qeau+EY Type d'analyse: Combinaison linéaire

Cas 15 : 0,8G+EX Type d'analyse: Combinaison linéaire

Cas 16 : 0,8G+EY Type d'analyse: Combinaison linéaire

IV.6.10/ Ferraillage des éléments :

Pour notre cas, on n'a pas à calculer les sections d'armatures des éléments mais on aura besoin de cette partie dans le chapitre réhabilitation.

Robot nous permet de ferrailler les éléments de la structure et pour se faire, on choisit dans le menu « *analyse* », « *dimensionnement élément en BA* », on choisit par exemple «*dimensionnement poteau en BA* » ; après avoir sélectionné un poteau, une boite de dialogue s'ouvre dans laquelle on choisit sous quelle combinaison le calcul se fera et on valide par OK.

- IIII -	Cas si	mples		
1	Combi	naisons manuelles		
Mode c	le groupe vant l'éta Créer les étages	ement ge étages pour les é	éments non affectés aux	
] Suiv] Cha	vant la g aîne de p ertouiou	éométrie loteaux		
V Suiv Cha Affich Lance	vant la g aîne de p ertoujou ertes cal	éométrie ioteaux rs cette fenêtre culs automatiquem	ent	
V Suiv Cha Affich Lance	vant la ge sîne de p er toujou er les cale N°A	éométrie ioteaux rs cette fenêtre culs automatiquem Type	ent Nom	
V Suiv V Cha Affich Lance	vant la gu sîne de p er toujou er les cale N° A 7	éométrie ioteaux rs cette fenêtre culs automatiquem Type ELU	ent Nom ELU vide	
V Suiv V Cha Affich Lance	vant la g iîne de p er toujou er les cal N° A 7 8	éométrie noteaux rs cette fenêtre culs automatiquem Type ELU ELU	ent Nom ELU vide ELU plein	
V Suiv V Cha Affich Lance	vant la g iîne de p er toujou er les cal N°A 7 8 9	éométrie ioteaux rs cette fenêtre culs automatiquem Type ELU ELU ELS	ent Nom ELU vide ELU plein ELS vide	
V Suiv V Cha Affich Lance V	vant la g iîne de p er toujou er les cal N°A 7 8 9 10	sométrie inoteaux rs cette fenêtre culs automatiquem Type ELU ELU ELS ELS	ent ELU vide ELU plein ELS vide ELS plein	
V Suiv V Cha Affich Lance V V	vant la g iîne de p er toujou er les cale N° A 7 8 9 10 11	éométrie loteaux rs cette fenêtre culs automatiquem Type ELU ELU ELS ELS ELS ACC	ent ELU vide ELU plein ELS vide ELS plein G+Dhabitat+EX	
V Suiv V Cha Affich Lance V V	vant la g îîne de p er toujou er les cal N° 7 8 9 10 11 12	éométrie isoteaux rs cette fenêtre culs automatiquem Type ELU ELU ELS ACC ACC	ent ELU vide ELU plein ELS vide ELS plein G+Qhabitat=EX G+Qhabitat=EX	

Figure IV.24.a : choix des combinaisons

Figure IV.24.b : poteau-vue

Apres validation de la première fenêtre, la fenêtre « *poteau-vue* » s'ouvre ou en pourra choisir le type d'armatures et la nuance des aciers \mathbb{F} , les paramètres de calcul \mathbb{F}^{-} , les paramètres du niveau $\frac{1^2}{7^3}$, la disposition du ferraillage \mathbb{F} , définir le chargement \mathbb{F} , lancer le calcul et afficher les résultats (plan d'exécution \mathbb{F}).

Géométrie Paramètres des bares Barres Barres Barres	Fichier Aide		
Nb de barres : 2	Géométrie Goarres Cadres Attentes	✓ Paramètres des barres Barre : 6 • • • • • • • • • • • • • • • • • •	rh I

Figure IV.24.c : choix des armatures et leurs nuances

Beton Acier longitudinal	Acier transversal	
Compression	Tenue au feu	OK
Simple	Forfaitaire	Annuler
Avec flexion	🖱 Calculée	Aide
Enrobage (cm)		
🔘 à l'armature transversale	Optimiser la géométrie	
a l'armature longitudinale	The second second second	Enregistrer sous
🔘 à l'axe de l'arm. longitudinale	Poteau prerabilique Dispositions sismiques	Supprimer
c >= 3,000 Fixe	Prise en compte des contraintes	1975 122
Degré d'optimisation du ferraillage	Élevé 🔻	
Tolérance des calculs :	0,97	
Dimensionnement en flexion sim	ple	
Direction My	O Direction Mz	

Figure IV.24.d : Définition des options de calcul

1 Disposition de ferraillage - BAEL 91 mod. 99	1 Disposition de ferraillage - BAEL 91 mod, 99	×
Principales Transversales A. de construction Formes Barres d'angle Diamètre: 6 Annuler Nombre max de barres dans le faisceau 1 6 Annuler Barres intermédiaires 0 6 Standard Ø Diamètre: 16 Ø Ecatements limites (m) Standard Nombre max de barres dans le faisceau 1 Ø 1 Ecatements limites (m) Nombre max de barres dans le faisceau 1 0.030 Ecatements limites (m) Supprimer Barres de construction 1 9 2 0.400 Supprimer Barres de construction 1 Ecatements Ecatements Supprimer Diamètre: Auto Rétablir Rétablir	Principales Transversales A. de construction Formes Elévation [m] e1 (= 0.400) e2 (= 0.400) scion e1 + + + + + + + + + + + + + + + + + + +	OK Annuler Aide Standard Erregister sous Supprimer

Figure IV.24.e : disposition du ferraillage

Figure IV.24.f : plan d'exécution du poteau

Conclusion :

A l'issue de ce chapitre, on a pu présenter les principales étapes de la modélisation d'une structure avec le logiciel Robot, posé les hypothèses de la modélisation et du calcul, introduit les différentes charge et surcharge ainsi que les deux spectres (RPA 1988 et le RPA 2003), on a calculé et introduit la charge hydrostatique, levé toutes les erreurs et on a lancé l'analyse.

Problèmes et difficultés rencontrés :

La structure compte 62249 éléments surfacique, 344 éléments barre, 63770 nœuds, 666 éléments finis linéiques ainsi que 387 appuis, ce qui fait au total 127416 éléments, cela nous a donné un file à retorde pendant plus de trois mois de recherche et d'analyse pour pouvoir situé les erreurs matérielles et de modélisation qui empêché d'aboutir à des résultats, au départ on été parti sur le fait que nos machine ne sont pas puissante, puis lorsque on a augmenter ses performances, ya eu le problème de la version du logiciel qui été limitée et un problème du maillage au niveau des voiles porteur du réservoir, alors à chaque fois on devait refaire la modélisation relancer les calculs et débusquer ou se trouvait l'erreur, on a constaté à la fin que les versions V23, V24 et V25 sont des version limité et qu'elles ne peuvent pas analyser des structure avec un nombre aussi important d'éléments.

L'exploitation et l'analyse des résultats nous allons les voir dans les chapitres qui suivent.
V.1/ Introduction :

Dans ce présent chapitre on s'intéressera à l'affichage des résultats (périodes de vibration, déplacements des nœuds, efforts internes...), ainsi que les différentes vérifications ; on comparera aussi les résultats de l'analyse sous les deux spectres (RPA 99 v2003 et le RPA 1988) ; ce qui nous permettra de tirer le vrais diagnostique d'expertise et lancer les actions de réhabilitation.

V.2/ Analyse des résultats :

V.2.a/ Sous le spectre du RPA 2003 :

périodes de vibration :

Elles sont données dans un tableau qui nous permet d'avoir les extrêmes globaux. La période max est de 1.46 s pour le 1^{er} mode de vibration et la période min est de 0.118s pour le 32^{eme} mode de vibration.

	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
MAX	8,447	1,460	90,053	91,235	0,0	22,216	38,040	0,0	3946438,148	3947492,691	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	32	1	32	32	1	3	2	1	1	1	1
MIN	0,685	0,118	17,407	0,344	0,0	0,000	0,000	0,0	3946438,148	3947492,691	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	1	32	1	1	1	14	16	1	1	1	1

Tableau V.1 : Les périodes de vibration sous le spectre de 2003.

Remarque :

La somme des masses modale a atteint les 90 % de la masse totale, donc on n'a pas à procéder au choix du nombre de mode. [Art 4.3.4 RPA 99 v2003].

✓ Calcul de la période fondamentale :

Les formules empirique [(4-6) et (4-7) de l'article 4.2.4. RPA 99 v 2003] a partir desquelles on peut estimer la valeur du periode fondamental (T) de la structure :

$$T = C_T h_N^{3/4}$$
 (4-6)
 $T = 0.09 h_N / \sqrt{D}$ (4.7)

Ne peuvent s'appliquer qu'aux bâtiments ordinaires, or notre structure est un ouvrage d'art mixte (bâtiment+réservoir) qui possède un comportement différent d'un bâtiment classique(on est conforté dans notre conclusion par la thèse d'ingénieur faite par les deux demoiselles ARAB Souad et ALLANE Nadia), pour cette raison nous allons utiliser la méthode de la console de RAYLEIGH qui permet le calcul des périodes de vibration d'un ouvrage assimilé à une masse concentrée reposant sur un support de masse non négligeable, on considère que le support est d'une section transversale constante, par la formule suivante :

$$T = 2\pi$$
 ((W' * Z³)/(3g*EI))^{0.5}

Avec :

$$W' = W + (33*P*h_{support} / 140)$$

W : poids de la masse concentrée (poids du réservoir plein dans notre cas).

P : poids du support par unité de longueur.

I : moment d'inertie de la section transversale du support (dans notre cas c'est l'inertie moyenne des étages+inertie des voiles porteurs du réservoir).

E : module de YOUNG du béton armé.

Z : la hauteur de centre de gravité de la masse oscillante par rapport à l'encastrement.

La valeur du centre de gravité est donnée par la formule suivante :

$$\mathbf{Z}_{g} = \sum (\mathbf{P}_{i} * \mathbf{Z}_{i}) / \sum (\mathbf{P}_{i})$$

Figure V.1

- Calcul du poids des différentes parties de l'ouvrage :
- 1. Poids du réservoir :
- a) Poids de la calotte sphérique (cuve) :

Figure V.2

 $V = \pi h^2 (3R-h)/3$

En remarquant le lien entre R, h et le rayon de la section : $R^2 = (R - h)^2 + r^2$, soit $h^2 + r^2 = 2hR$, on peut obtenir une autre écritures pour ce volume :

V=1/2*
$$\pi$$
*h (h²/3+r²)

Application numérique :

On calcul le volume extérieur et intérieur et on fait la différence avec :

h_{int}=0,65m; h_{ext}=0,9m ; r_{int}=2,78m; r_{ext}=3,16m

On aura alors $V=V_{ext}-V_{int}=6,264m^3$

Finalement le poids de la calotte sphérique sera égal a :

P=6,264*25=156,6kN

b) poids des parois du réservoir :

On obtiendra ce résultat par différence des volumes entre les deux calottes de rayon r et r'(r > r') on utilisant la formule suivante :

V=1/2* π *h (r'²+h²/3+r²)

On divise les parois du réservoir selon leurs épaisseurs en quatre (04) segments sphériques et a chaque fois on calcul le volume extérieur et intérieur de chaque segment, on aura alors :

V=V1+V2+V3+V4

V=9,37+14,35+76,39+12,83=112,94 m³

Finalement le poids des parois du réservoir sera égal a :

c) Poids de la coupole :

Le poids de la coupole sera calculé de la même manière que la cuve avec :

h_{int}=1,5m ; h_{ext}=1,6m ; r_{int}=8,2m; r_{ext}=8,45m

Application numérique :

V=1/2* π *h (h²/3+r²)

On aura V=Vext-Vint-V_{cvlindre}=181,51-160,12-0,0785=21,31 m³

Finalement le poids de la coupole sera égal a :

P=21,31*25=532,75kN

d) Poids de la cheminée :

La cheminée a une forme tronc de cône extérieurement et un cylindre intérieurement, son volume sera la différence entre son volume extérieur et intérieur.

• V tronc de cône = $[\pi^* c^* (a^2 + a^* b + b^2)]/3$

Figure V.4

Application numérique :

V tronc de cône = $[\pi *8,75*(0,7^2+0,7*0,6+0,6^2)]/3 = 11,63 \text{ m}^3$

• $V_{cylindre} = \pi^* a^{2*} b$

Figure V.5

Application numérique :

 $V_{cylindre} = \pi * 0,5^2 * 8,75 = 6,869 \text{ m}^3$

Finalement on aura le volume de la cheminée comme suite :

 $V_{\text{ cheminée}} = V_{\text{ tronc de cône}} - V_{\text{cylindre}}$

Application numérique :

V cheminée=4,761 m³

Le poids de la cheminée sera alors égal a :

On fin le poids total du réservoir vide sera égal a :

Ptot=119,025+532,75+2823,5+156,6=3631,875kN

2. poids de l'eau :

On a : $V_{eau} = 1000 \text{ m}^3$

$$P_{eau} = 1000*10 = 10000 kN$$

3. poids du réservoir plein :

 $W = P = P_{eau} + P_{réservoir vide} = 13631,875 kN$

4. poids du support par unité de longueur :

Le poids du support = poids des voiles porteur du réservoir + poids de tous les étages Ou bien :

Le poids du support = poids de toute la structure - poids du réservoir plein

P support =169687, 332 - 13631, 875=156055, 457 kN

5. Calcul de W':

W' = W + $(33* P_{support} * h_{support} / 140)$

Application numérique :

W' = 13631,875 + (33*156055, 457 *29,7 / 140)

W' = 1106131,542kN

6. Calcul de la période :

$$T = 2*\pi*((W'*Zg^3)/(3*g*EI))^{0.5}$$

Application numérique :

 $T = 2^{*}\pi \left[(1106131, 542^{*}32, 445^{3}) / (3^{*}10^{*}406159, 837^{*}29858.594) \right]^{0.5} = 2,025 \text{ s}$

Finalement :

 $T_{calcule} = 2,025s > T_{robot} = 1,46s$

<u>Remarque</u> :

Les valeurs du moment d'inertie I, le poids des étages $P_{\acute{e}tage}$, le centre de gravité du réservoir Z_g ainsi que la hauteur du support $h_{support}$ sont toutes des données extraites des fichiers résultats du logiciel robot notamment grâce à la commande résultats par étage accessible a partir de « *résultats-étages-valeurs* » et note de calcul complète accessible a partir de « *analyse - note de calcul - note de calcul complète* ».

L'article [4.2.4 du RPA99 v2003] exige que « Les valeurs de T calculées à partir des formules de Rayleigh ou de méthodes numériques ne doivent pas dépasser celles estimées à partir des formules empiriques appropriées de plus de 30% » c'est-à-dire que T+0,3T>T_{robot}.

Application numérique :

 $T+0.3T = 2,025 + 0.3*2,025 = 2,63s > T_{robot} = 1,46s \implies Condition \ verifiee$

✓ Vérification de l'effort tranchant à la base :

La résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inferieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V_{MSE} pour une valeur de la période fondamentale donnée par la formule empirique appropriée [*Article : 4.3.6*]

> Calcul de la force sismique totale: [RPA 2003 Article : 4.2.3]

La force sismique totale V, appliquée à base de la structure doit être calculée successivement dans deux directions horizontales et orthogonales selon la formule suivante :

$$V_{st} = \frac{A.D.Q}{R}.W_{T}$$
 RPA99 v2003 [formule 4-1]

Avec :

- Coefficient de comportement global du bâtiment *R*= 3,5
- Coefficient d'accélération de la zone : *A*=0,4 (groupe d'usage 1A, zone III) tableau 4.1 [RPA 99 version 2003].
- Périodes caractéristiques associées à la catégorie de site S3 (site meuble) :

$$T_1=0,15 \text{ s}$$
 ; $T_2=0,50 \text{ s}$

• Q : facteur de qualité, sa valeur est donnée par la formule 4-4

$$Q = 1 + \sum_{1}^{6} Pq = 1,15$$

D : facteur d'amplification dynamique moyen, donné par la formule (4.2) de RPA99, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure(T) :

$$D = \begin{cases} 2.5 \times \eta \dots & 0 \le T \le T_2 \\ 2.5 \times \eta \times (\frac{T_2}{T})^{\frac{2}{3}} \dots & T_2 \le T \le 3s \\ 2.5 \times \eta \times (\frac{T_2}{3})^{\frac{2}{3}} \times (\frac{3}{T})^{\frac{5}{3}} \dots & T \ge 3s \end{cases}$$

• Correction de l'amortissement : $\eta = [7/(2+\xi)]^{0.5} = 0.764 > 0.7$

Avec :

 ξ = 10% [(remplissage en béton armé/maçonnerie) tableau 4.2 RPA99 V 2003]

$$T2=0.5s \Rightarrow T2 \prec T \prec 3.0s \quad \Rightarrow \quad D=2.5\eta (T2/T)^{2/3}=2.5*0.764*(0.5/2,025)^{2/3}=0.752$$

• Wt =169687, 332 kN

On aura finalement :

$$V_{st} = \frac{0.4 * 0.752 * 1.15}{3.5} * 169687,332$$

$$V_{st} = 16764,9615 \text{ kN}$$

\succ Vérification de l'effort sismique dynamique : V_d

On doit vérifier que : $V_d \ge 0.8 V_{st}$

Sens	V _{st} (KN)	0.8 V _{st} (KN)	V _d (KN)	Observation
Sens-X	16764,9615	13411,9692	1839,044	Non vérifiée
Sens-Y	16764,9615	13411,9692	10248,988	Non Vérifiée

Tableau V.2

✓ Vérification des déplacements :

Les extrêmes globaux des déplacements de la structure sont résumés dans le tableau ci-dessous :

	UX [cm]	UY [cm]	UZ [cm]	RX [Rad]	RY [Rad]	RZ [Rad]
MAX	67,226	87,138	17,560	0,177	0,212	0,442
Noeud	48290	51778	52217	5346	6787	7013
Cas	13 (C) (CQC)	14 (C) (CQC)	13 (C) (CQC)	8 (C)	13 (C) (CQC)	13 (C) (CQC)
Mode						
MIN	-103,129	-62,079	-60,816	-0,136	-0,283	-0,151
Noeud	50454	49244	49950	8418	7014	21765
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Tableau V.3 : extrêmes globaux des déplacements des nœuds

Note : Les déplacements horizontaux à chaque niveau « k » de la structure sont calculés comme suit :

 $\delta k = R.\delta e k$ [Art 4.4.3 RPA99 version 2003 page 37]

Avec :

R=3,5 (Coefficient de comportement).

 δ_{ek} : Déplacement dû aux forces sismiques Fi (y compris l'effet de torsion).

Vérification :

D'après [Art 5.10 RPA99 v2003], les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents ne doivent pas dépasser 1% de la hauteur d'étage.

Pour notre structure : $ht \text{RDC}=4.8 \text{ } m \text{ Le déplacement max } U \le 4.8 \text{ } cm$ $ht e.courant=2.87 \text{ } m \text{ Le déplacement max } U \le 2.87 \text{ } cm$

Le déplacement relatif au niveau « **k** » par rapport au niveau « **k-1** » est égale à : $\Delta U = Uk - Uk - 1$

La vérification des déplacements est résumée dans le tableau suivant :

Niveau	déplacemen	t des niveaux	déplacements r	elatifs des niveaux	vérification	
INIveau	Max UX[cm]	Max UY[cm]	ΔUX [cm]	ΔUY [cm]	vernication	
7	0,378	0,05	/	/	/	
6	0,304	0,029	0,074	0,021	vérifié	
5	0,239	0,019	0,065	0,01	vérifié	
4	0,186	0,016	0,053	0,003	vérifié	
3	0,137	0,014	0,049	0,002	vérifié	
2	0,092	0,014	0,045	0	vérifié	
1	0,055	0,021	0,037	-0,007	vérifié	
RDC	0,04	0,014	0,015	0,007	vérifié	

Tableau V.4: Vérification des déplacements (RPA99).

✓ Les excentricités [Art 4.2.7 RPA 99 version 2003]:

Comme pour toutes les structures comportant des planchers ou diaphragmes horizontaux rigides dans leur plan, on supposera qu'à chaque niveau et dans chaque direction, la résultante des forces horizontales a une excentricité par rapport au centre de torsion égale à la plus grande des deux valeurs :

- 5% de la plus grande dimension du bâtiment à ce niveau (0,05*17,8=0,89m).
- Excentricité théorique résultant des plans.
- a. Les excentricités théoriques (*ex*0;*ey*0) données par Robot sont affichées dans le tableau suivant :

Cas/Etage	Nom	ex0 [m]	ey0 [m]
1/ 1	RDC	0,258	0,298
1/ 2	Etage 1	0,528	0,119
1/ 3	Etage 2	0,062	0,034
1/ 4	Etage 3	0,388	0,298
1/ 5	Etage 4	0,384	0,300
1/ 6	Etage 5	0,384	0,300
1/ 7	Etage 6	0,298	0,428
1/ 8	Etage 7	0,433	0,004
1/ 9	voir et support	0,055	0,001
2/ 1	RDC	0,258	0,298
2/ 2	Etage 1	0,528	0,119
2/ 3	Etage 2	0,062	0,034
2/ 4	Etage 3	0,388	0,298
2/ 5	Etage 4	0,384	0,300
2/ 6	Etage 5	0,384	0,300
2/ 7	Etage 6	0,298	0,428
2/ 8	Etage 7	0,433	0,004
2/ 9	voir et support	0,055	0,001
3/ 1	RDC	0,258	0,298
3/ 2	Etage 1	0,528	0,119
3/ 3	Etage 2	0,062	0,034
3/ 4	Etage 3	0,388	0,298
3/ 5	Etage 4	0,384	0,300
3/ 6	Etage 5	0,384	0,300
3/ 7	Etage 6	0,298	0,428
3/ 8	Etage 7	0,433	0,004
3/ 9	voir et support	0,055	0,001

Tableau V.5 : excentricités théoriques.

b- Les excentricités accidentelles (*ex1;ey1*) :

Etage	Nom	Liste	Couleur	Lx [m]	Ly [m]	ex1 [m]	ey1 [m]
1	RDC	23A828 842A84		17,800	17,800	0,890	0,890
2	Etage 1	806 829 830 845		17,800	17,800	0,890	0,890
3	Etage 2	02 831 832 846		17,800	17,800	0,890	0,890
4	Etage 3	798 833 834 847		17,800	17,800	0,890	0,890
5	Etage 4	4 835 836 848		17,800	17,800	0,890	0,890
6	Etage 5	837 838 849		17,800	17,800	0,890	0,890
7	Etage 6	6 839 840 850		17,800	17,800	0,890	0,890
8	Etage 7	779A782 841		17,800	17,800	0,890	0,890
9	voir et support	A776 807A811		17,800	17,800	0,890	0,890

Tableau V.6: excentricités accidentelles

✓ Les efforts internes dans les différents éléments :

Les extrêmes globaux des efforts sont résumés dans le tableau ci-dessous et selon les différentes combinaisons :

	FX [kN]	FY [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]
MAX	644,762	105,194	710,094	96,844	823,757	152,937
Barre	254	13	55	225	55	13
Noeud	27	2	115	38	115	2
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						
MIN	-701,433	-97,194	-536,774	-160,802	-990,480	-148,969
Barre	169	269	362	632	586	13
Noeud	29	3	115	19	115	16
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Tableau V.7 : extrêmes globaux des efforts

V.3.b/ Sous le spectre de 1988 :

périodes de vibration :

On retrouve les mêmes périodes que sous le spectre de 2003, elles sont données dans un tableau qui nous permet d'avoir les extrêmes globaux. La période max est de 1,46s pour le 1^{er} mode de vibration et la période min est de 0.118s pour le 32^{eme} mode de vibration.

	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
MAX	8,447	1,460	90,053	91,235	0,0	22,217	38,041	0,0	3946438,148	3947492,690	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	32	1	32	32	1	3	2	1	1	1	1
MIN	0,685	0,118	17,407	0,344	0,0	0,000	0,000	0,0	3946438,148	3947492,690	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	1	32	1	1	1	14	16	1	1	1	1

Tableau	V.8:	extrêmes	globaux	des	périodes
---------	------	----------	---------	-----	----------

✓ *Calcul de la force sismique totale:* [RPA 1988 Article : 3.2.1.3]

La force sismique totale V, appliquée à base de la structure doit être calculée successivement dans deux directions horizontales et orthogonales selon la formule suivante :

$$V_{st} = A*D*B*Q*W_T$$
 RPA88 [formule 3-2]

Avec :

- Coefficient de comportement global du bâtiment **B**= 1/3 (catégorie 5) tableau 3 [3.2.1.3.3 RPA 88].
- Coefficient d'accélération de la zone : *A*=0,25 (groupe d'usage 1, zone II) tableau 1 [3.2.1.3.1 RPA 88].
- **Q** : facteur de qualité, sa valeur est donnée par la formule 3-3 et le tableau 4 (valeur de la pénalité Pq) [3.2.1.3.4 RPA 88]

$$Q = 1 + \sum_{1}^{6} Pq = 1,15$$

• D : facteur d'amplification dynamique moyen, il est donné par le spectre de réponse représenté à la [figure 4 page 33] et au tableau 2 du RPA88, il peut être calculé par la formule :

D=1,26/
$$\sqrt[3]{T^2}$$
 (sol meuble)

D=0,979 (on peut vérifier en interpolant entre les valeurs données dans le tableau 2 entre D donné a T=1,4 et a T=1,5)

• Wt =169687, 332 KN (donné par robot)

Application numérique :

$$V_{st} = 0,25*0,979*1/3*1,15*169687, 332 = 15920,207$$
kN

<u>Vérification</u>: on doit vérifier que :

$$V_{d} \ge 0.6 V_{st}$$

Sens	V _{st} (KN)	0,6 V _{st} (KN)	V _d (KN)	Observation
Sens-X	15920,207	9552,124	5693,842	Non vérifiée
Sens-Y	15920,207	9552,124	9373,164	Non Vérifiée

Tableau V.9: vérification des efforts tranchants à la base

✓ Vérification des déplacements :

Les extrêmes globaux des déplacements de la structure sont résumés dans le tableau ci-dessous :

	UX [cm]	UY [cm]	UZ [cm]	RX [Rad]	RY [Rad]	RZ [Rad]
MAX	39,687	70,018	5,868	0,177	0,206	0,407
Noeud	48298	51777	52217	5346	6787	7013
Cas	8 (C)	8 (C)	13 (C) (CQC)	8 (C)	8 (C)	8 (C)
Mode						
MIN	-103,129	-62,079	-60,816	-0,136	-0,283	-0,151
Noeud	50454	49244	49950	8418	7014	21765
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Tableau V.10 : extrêmes globaux des déplacements des nœuds

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents ne doivent pas dépasser 0,75% de la hauteur d'étage.

Pour notre structure : ht RDC=4.8 m Le déplacement max $U \le 3.6 \text{ cm}$ ht e.courant=2.87 m Le déplacement max $U \le 2.153 \text{ cm}$

Le déplacement relatif au niveau « **k** » par rapport au niveau « **k-1** » est égale à : $\Delta U = Uk - Uk - 1$

La vérification des déplacements est résumée dans le tableau suivant :

Niveau	déplacement	des niveaux	déplacements rel	atifs des niveaux	vérification	
Iniveau	Max UX[cm]	Max UY[cm]	ΔUX [cm]	ΔUY [cm]	vermeation	
7	0,378	0,05	/	/	/	
6	0,304	0,029	0,074	0,021	vérifié	
5	0,239	0,019	0,065	0,01	vérifié	
4	0,186	0,016	0,053	0,003	vérifié	
3	0,137	0,014	0,049	0,002	vérifié	
2	0,092	0,014	0,045	0	vérifié	
1	0,054	0,021	0,038	-0,007	vérifié	
RDC	0,04	0,014	0,014	0,007	vérifié	

Tableau V.11 : Vérification des déplacements (RPA88).

✓ Les excentricités [Art 3.2.1.2.d RPA88]:

La distance entre le centre de masse et le centre de torsion ne dépasse à aucun niveau 25% de la largeur effective du bâtiment ou bloc mesurée perpendiculairement à la direction de l'action sismique considérée. a. Les excentricités théoriques (*ex*0;*ey*0) :

Cas/Etage	Nom	ex0 [m]	ey0 [m]
1/ 1	RDC	0,258	0,298
1/ 2	Etage 1	0,528	0,119
1/ 3	Etage 2	0,062	0,034
1/ 4	Etage 3	0,388	0,298
1/ 5	Etage 4	0,384	0,300
1/ 6	Etage 5	0,384	0,300
1/ 7	Etage 6	0,298	0,428
1/ 8	Etage 7	0,433	0,004
1/ 9	reservoir et support	0,055	0,001
2/ 1	RDC	0,258	0,298
2/ 2	Etage 1	0,528	0,119
2/ 3	Etage 2	0,062	0,034
2/ 4	Etage 3	0,388	0,298
2/ 5	Etage 4	0,384	0,300
2/ 6	Etage 5	0,384	0,300
2/ 7	Etage 6	0,298	0,428
2/ 8	Etage 7	0,433	0,004
2/ 9	reservoir et support	0,055	0,001
3/ 1	RDC	0,258	0,298
3/ 2	Etage 1	0,528	0,119
3/ 3	Etage 2	0,062	0,034
3/ 4	Etage 3	0,388	0,298
3/ 5	Etage 4	0,384	0,300
3/ 6	Etage 5	0,384	0,300
3/ 7	Etage 6	0,298	0,428
3/ 8	Etage 7	0,433	0,004
3/ 9	reservoir et support	0,055	0,001

Tableau V.12 : excentricités théoriques.

b. Les excentricités accidentelles (*ex*1;*ey*1) :

Etage	Nom	Lx [m]	Ly [m]	ex1 [m]	ey1 [m]
1	RDC	17,800	17,800	0,890	0,890
2	Etage 1	17,800	17,800	0,890	0,890
3	Etage 2	17,800	17,800	0,890	0,890
4	Etage 3	17,800	17,800	0,890	0,890
5	Etage 4	17,800	17,800	0,890	0,890
6	Etage 5	17,800	17,800	0,890	0,890
7	Etage 6	17,800	17,800	0,890	0,890
8	Etage 7	17,800	17,800	0,890	0,890
9	voir et support	17,800	17,800	0,890	0,890

Tableau V.13 : excentricités accidentelles

✓ Les efforts internes dans les différents éléments :

	FX [kN]	FY [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]
MAX	644,763	105,194	710,094	96,844	823,756	152,937
Barre	254	13	55	225	55	13
Noeud	27	2	115	38	115	2
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						
MIN	-701,433	-97,194	-536,774	-160,802	-990,480	-148,969
Barre	169	269	362	632	586	13
Noeud	29	3	115	19	115	16
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Tableau V.14 : extrêmes globaux des efforts

V.4/ Comparaison des résultats sous les deux spectres :

Dans cette partie on s'intéressera aux éléments ayant subit des dommages a fin de comprendre leurs causes, on cherchera aussi pour quoi ces dommage ont touché certain éléments et pas d'autre.

<u>Remarque</u> :

- Apres analyse des différentes combinaisons en retrouve que les cas les plus défavorables sont donnés par les deux combinaisons ci-dessous :
 - G+Q+Qeau+EX
 - G+Q+Qeau+EY

Donc dans ce qui suit on s'intéressera seulement à ces deux cas.

- Les résultats concernant le noyau central et les voiles serons afficher sous forme de cartographies, pour ce fait on utilisera la commande *cartographie des panneaux* dans le menu *résultat* après sélection des éléments à étudier.
- Chaque élément possède son propre repère (repère local), pour éviter de faire des erreurs lors de l'exploitation des résultats on doit définir la direction principale du système de coordonnées (plus précisément, pour définir l'axe x). Toutes les valeurs de résultat seront données dans ce système de coordonnées pivoté, pour cela on doit suivre ces étapes :
 - On sélectionne l'élément,
 - On affiche la cartographie de l'élément,
 - Dans la boite de dialogue *cartographie* on choisi la direction de l'axe x du repère local suivant l'axe Z en coordonnées cartésienne puis on valide.

epere local :	OK
automatique	Annule
cartésienne	Chinaic
polaire	Aide
Définition de la direction : suivant l'axe X suivant l'axe Y	k du repère la
Définition de la direction : Suivant l'axe X Suivant l'axe Y suivant l'axe Z Suivant le vecteur :	k du repère la
Définition de la direction : suivant l'axe X suivant l'axe Y suivant l'axe Z suivant le vecteur :	x du repère la X = Y =

Figure V.6.a

V.4.a/ cartographie des efforts internes du noyau central :

- 1) Combinaison G+Q+Qeau+EY
- RDC :

Figure V.6.b.1 (Nxx RPA 88)

Figure V.6.c.1 (Nyy RPA 88)

Figure V.6.d.1 (Nxy RPA 88)

Figure V.6.b.2 (Nxx RPA 2003)

-	4,531	5,58	20,	522	
32,267	-7,	128		6	875
26,363 5	,891	14,8	⁹⁸ -2,4	14	25,429
-5,085	476	3 657	4 8,18	2	2004
12,919 -6	,134	1,134	10,16	35	2,694
26,873	8,974	-11,23	3 7,86	8 -3	,241
9,012 2	2,926	13	6,4	75 2	830
19, <mark>309</mark> 9,258	10,26	0,221 8,	104 4,1 38,733	4,933	30,900
41,431 17412 -1,83	35	-1,080	6,08	4	5,281
10,026 0,9	961 '	4,183	1,560 2	,743 1	16.94
Julya	115	806	10,38		

Figure V.6.e.1 (Mxx RPA 88)

7.752	1,947 2,497 4,931	
6,261 3,62	27 -8,207 14,370 0,751 1,248 27 -5,677 23,949	5,876
23 631	-12,574 9,982 4,501 2 1.686 1947 3,676 44	,087 902
31 034	94 9,505 -0,509 21,408 0,9	903
4,093	,244 13,083 46,421 -1, 7,650 25,231 4,310	427
-3,280 3	3,357 6,972 3,452 0,321 0,321	910 8 023
17,848	3,230 1,481 3,230	5,799
2,	.321 0,007 7,628 -1,167 2,168	104
e,uoi	3,235 1,267 3,103	

Figure V.6.f.1 (Myy RPA 88)

Figure V.6.g.1 (Mxy RPA 88)

Exploitation des résultats

Figure V.6.f.2 (Myy RPA 2003)

Figure V.6.g.2 (Mxy RPA 2003)

439,256 139,196
264,577 19,658 6,563 -18,434 9,626 27,892
404,401 131,281 288,788 129,962 4,187 307,494
286,527 69,510
206,473 56,302 11,356 208,833
121,142 -0,287 -1,886 16,039
27,522 171,202 68 303 4 003 72,452
58,334 14,910 277,241
-25,525 -126,848
-234,707 28,031 166,340
18,135 1,617 16,121 141440
3,886 02,945 0,974
99.173 6,039 120.291

Figure V.6.h.1 (Qxx RPA 88)

Figure V.6.i.1 (Qyy RPA 88)

Figure V.6.h.2 (Qxx RPA 2003)

Figure V.6.i.2 (Qyy RPA 2003)

<u>Remarque</u> :

Les valeurs des efforts internes par bande de 1m du noyau RDC sont résumées dans le tableau suivant :

Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY									
Efforts		sous le spec	tre de 1988	sous le spectre de 2003		variations		variations[%]	
internes(N	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min
	Nxx	2683,425	-3999,227	4788,298	-3131,618	2104,87	-867,609	28,171186	12,166987
N [kN/m]	Nyy	2722,62	-1306,759	3683,689	-1076,787	961,069	-229,972	15,001915	9,6483139
	Nxy	1915,932	-1099,388	3371,311	-921,268	1455,38	-178,12	27,526236	8,8149591
			variation	moyenne				23,566446	10,210087
T [ltN/m]	Txx	464,461	-320,808	552,05	-294,136	87,589	-26,672	8,6166308	4,3373055
I [KIN/III]	Туу	609,917	-242,003	743,754	-175,819	133,837	-66,184	9,8869666	15,840238
			variation	moyenne				9,2517987	10,088772
м	Mxx	41,431	-11,233	47,815	-8,93	6,384	-2,303	7,1532618	11,421911
M [kN.m/m]	Муу	46,421	-12,574	61,741	-9,223	15,32	-3,351	14,163939	15,373675
	Mxy	16,37	-7,272	23,397	-5,584	7,027	-1,688	17,67043	13,130056
	variations movenne								

Tableau V.15

Analyse des contraintes :

14756,1	-14644,132	
-19816,562	-3225,991 -	2993,465
2714, 184	2611,449 -8542,635	10135,963
33,872 1497	0, 907 58,605 4 6	14,059 3097,602
-2458 <mark>2,594 3</mark>	14,141 -13908,213 3314	,815 7269,465
- <mark>16</mark> 971,014	-26661,510	5700,048
-1 <mark>78</mark> 98,750	4910,061 -11179,106	7453,695
-18664,767	-8402,655	12078,318
-21669,158	8262,937	7663,600
-10297,522	9928.064	560 7054 833
-3200 441	7467 387 8020,	142 7105,991
		422

Figure V.6.j.1 (Oxx RPA 88)

Figure V.6.k.1 (oyy RPA 88)

Figure V.6.1.1 (σxy RPA 88)

Figure V.6.j.2 (*O*xx RPA 2003)

Figure V.6.k.2 (oyy RPA 2003)

Figure V.6.1.2 (σxy RPA 2003)

Chapitre V :

<u>Remarque</u> :

Les valeurs des contraintes du noyau RDC sont résumées dans le tableau suivant :

Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY										
		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
Contrai	$ntes(\mathbf{O})$	Max	Min	Max	Min	Max	Min	Max	Min	
	σxx	17889,5	-26661,51	31921,984	-20877,45	14032,5	-5784,056	28,171182	12,166979	
σ[kPa]	σуу	18150,802	-8711,724	24557,93	-7178,577	6407,13	-1533,147	15,001916	9,6483194	
	σxy	12772,882	-7329,254	22475,41	-6141,784	9702,53	-1187,47	27,526236	8,8149852	
				variations	movennes	23 591212	11 059349			

Tableau V.16

4 Commentaires sur les résultats :

En comparaison entre les résultats obtenus, il découle les idées fortes suivantes :

effort interne	variation [%]
Ν	23,57
Т	10
М	13
σ	23,6

Le séisme de 2003 qui a endommagé notre structure lui a fait subir une augmentation des contraintes dans le noyau central allant jusqu'à presque un quart (¼) de la valeur qu'elle aurait subit sous le séisme de 1988.

Les directions des fissures engendrées sur le support (*Figure VI.5*) par le séisme recoupent très nettement avec celles données par la simulation numérique du logiciel Robot 2013 (v26) sous le spectre de réponse 2003, ce qui conforte la thèse, selon laquelle le réservoir était plein lors du séisme du 21 mai 2003 et ce qui démontre que la modélisation que nous avons adoptée est correcte.

Figure V.7 (Photo noyau central RDC)

a. Cas G+Q+EY(le réservoir est vide)

b. Cas G+Q+Qeau+EY(le réservoir est plein)

0.003

0,003

0,004 0,004

net-0,003_0 000

0,003

0,008,003

0,003

0,003

0,00

0 002

0.003

0.004

0 000

0,004

0,003 0,004

0,004

0 004

0,001

0,004

0,002

0.004

Figure V.8 (cartographie du noyau central RDC)

• EC (exemple1^{er} étage) :

Les valeurs des efforts internes du noyau EC (1^{er} étage) sont résumées dans le tableau suivant :

Efforts internes dans le noyau central (EC;1er étage);cas G+Q+Qeau+EY									
Efforts		sous le spec	tre de 1988	sous le spectre de 2003		variations		variations[%]	
internes(N,T,M)		Max	Min	Max	Min	Max	Min	Max	Min
	Nxx	2380,282	-4230,172	4990,951	-3400,733	2610,669	-829,439	35,41699	10,86947
N [kN/m]	Nyy	4198,465	-1876,843	5455,201	-1246,195	1256,736	-630,648	13,01823	20,19341
	Nxy	3978,212	-1532,036	5691,591	-1234,031	1713,379	-298,005	17,71886	10,7736
			variatio	on moyenne				22,05136	13,9455
T [kN/m]	Txx	900,915	-312,487	1105,458	-285,725	204,543	-26,762	10,19466	4,473665
1 [KIN/III]	Туу	688,272	-316,889	896,887	-181,242	208,615	-135,647	13,16051	27,23119
			variatio	on moyenne				11,67759	15,85243
м	Mxx	52,508	-19,76	65,92	-12,037	13,412	-7,723	11,32502	24,28845
IVI [kN_m/m]	Муу	49,815	-20,279	64,507	-10,294	14,692	-9,985	12,85142	32,65954
	Mxy	24,183	-9,903	31,153	-5,868	6,97	-4,035	12,59578	25,58493
			variation	ns moyennes				12,25741	27,51098

Tableau V.17

Les valeurs des contraintes du noyau EC (1^{er} étage) sont résumées dans le tableau suivant :

	Contraintes dans le noyau central (EC;1er étage);cas G+Q+Qeau+EY											
Contraintes(σ)		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]				
		Max	Min	Max	Min	Max	Min	Max	Min			
	σxx	15868,546	-28201,15	33273,006	-22671,55	17404,46	-5529,596	35,41699	10,869477			
σ [kPa]	σуу	27989,769	-12512,29	36368,007	-8307,963	8378,238	-4204,323	13,01822	20,193433			
	σxy	26521,41	-10213,57	37943,941	-8226,874	11422,53	-1986,698	17,71887	10,77359			
				variations	s moyennes	22,05136	13,9455					

Tableau V.18

4 Commentaires sur les résultats :

Même constatation concernant le noyau central au niveau de l'étage courant où ya eu une augmentation de contrainte d'on virant 22%.

effort interne	variation [%]
Ν	22
Т	15
М	27
σ	22

- 2) Combinaison G+Q+Qeau+EX :
- RDC :

	Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EX										
Effor	ts	sous le spec	tre de 1988	sous le spec	tre de 2003	varia	ations	variations[%]			
internes(N	(,T,M)	Max	Min	Max	Min	Max	Min	Max	Min		
	Nxx	4254,166	-3311,654	6700,845	-1821,045	2446,68	-1490,61	22,33388	29,04143		
N [kN/m]	Nyy	2511,075	-633,555	3367,416	-456,245	856,341	-177,31	14,56736	16,26996		
	Nxy	2472,6	-512,93	3298,51	-314,022	825,91	-198,908	14,31111	24,05315		
	17,07078	23,12151									
T [kN/m]	Txx	618,905	-199,46	790,253	-170,309	171,348	-29,151	12,1596	7,883571		
Ι [ΚΙΝ/ΠΙ]	Туу	596,209	-271,914	732,558	-145,837	136,349	-126,077	10,26132	30,17994		
			variation	n moyenne				11,21046	19,03176		
м	Mxx	54,372	-11,888	66,311	-10,115	11,939	-1,773	9,89286	8,057992		
IVI [kN_m/m]	Муу	49,731	-5,275	66,836	-3,291	17,105	-1,984	14,67396	23,16134		
[KIN.M/M]	Mxy	20,409	-5,03	26,579	-3,279	6,17	-1,751	13,13101	21,07353		
variation moyenne 12,56595 1											

Tableau V.19

Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EX										
Contraintes(σ)		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
		Max	Min	Max	Min	Max	Min	Max	Min	
	σxx	28361,104	-22077,7	44672,298	-12140,3	16311,19	-9937,4	22,33388	29,04144	
σ [kPa]	σуу	16740,499	-4223,699	22449,44	-3041,631	5708,941	-1182,07	14,56736	16,26998	
	σxy	16483,998	-3419,53	21990,065	-2093,479	5506,067	-1326,05	14,31111	24,05313	
				variations	moyennes	17,07079	23,12152			

Tableau V.20

4 Commentaires sur les résultats :

On constate presque la même variation des contraintes (en virant 25%) sous l'autre direction de l'action sismique

• EC :

		Efforts in	nternes dans l	e noyau centr	al (EC;1er éta	age);cas G+0	Q+Qeau+E2	X		
Effort	5	sous le spec	tre de 1988	sous le spec	tre de 2003	variations		variations[%]		
internes(N,	T,M)	Max	Min	Max	Min	Max	Min	Max	Min	
	Nxx	4345,328	-2910,941	6816,454	-1821,025	2471,126	-1089,92	22,13917	23,03305	
N [kN/m]	Nyy	5209,769	-783,424	7110,167	-624,137	1900,398	-159,287	15,42539	11,31653	
	Nxy	5209,769	-569,698	4663,095	-356,73	-546,674	-212,968	-5,53714	22,98808	
variations moyennes									19,11255	
T [ltN]/m]	Txx	1137,31	-165,623	1492,284	-108,019	354,974	-57,604	13,49919	21,05086	
I [KIN/III]	Туу	831,961	-92,523	1125,808	-7,417	293,847	-85,106	15,00928	85,15709	
			variatio	ns moyennes				14,25424	53,10398	
м	Mxx	68,626	-10,816	85,63	-8,521	17,004	-2,295	11,02323	11,86844	
M [kN_m/m]	Муу	60,109	-5,347	81,352	-1,592	21,243	-3,755	15,01686	54,11443	
[[איזא.111/111]	Mxy	29,593	-2,96	40,006	-1,115	10,413	-1,845	14,96142	45,27607	
	13,66717	37,08631								

Tableau V.21

Contraintes dans le noyau central (EC;1er étage);cas G+Q+Qeau+EX										
		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
Contraintes(σ)		Max	Min	Max	Min	Max	Min	Max	Min	
	σxx	28968,852	-19406,27	45443,027	-12140,17	16474,18	-7266,11	22,1392	23,03304	
σ [kPa]	σуу	34731,796	-5222,828	47401,114	-4160,911	12669,32	-1061,92	15,4254	11,31657	
	σxy	25648,79	-3797,985	31087,299	-2378,202	5438,509	-1419,78	9,58563	22,98802	
							moyennes	12,5215	19,11254	

Tableau V.22

4 Commentaires sur les résultats :

On constate une variation très importante de l'ordre de 50% de l'effort tranchant et presque 20% des contraintes.

effort interne	variation [%]
Ν	19,1
Т	53,1
М	37,1
σ	19

V.4.b/ voiles :

- Sens XX :
- a. Cas G+Q+Qeau+EX :

	Efforts internes dans le voile VL4 N°83 suivant XX (RDC);cas G+Q+Qeau+EX										
Effort	ts	sous le spec	tre de 1988	sous le spec	tre de 2003	varia	tions	variations[%]			
internes(N	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min		
	Nxx	2634,665	-4543,93	3957,008	-3691,583	1322,343	-852,347	20,06081	10,34965		
N [kN/m]	Nyy	1203,357	-8595,115	1271,362	-8183,303	68,005	-411,812	2,747989	2,454415		
	Nxy	6713,985	-6282,583	6990,924	-5918,37	276,939	-364,213	2,020728	2,985119		
variation moyenne									5,263062		
T [lcN/m]	Txx	70,143	-521,18	76,642	-430,782	6,499	-90,398	4,427564	9,495967		
I [KIN/III]	Туу	57,426	-97,164	74,816	-83,294	17,39	-13,87	13,15013	7,685999		
			variation	moyenne				8,788849	8,590983		
м	Mxx	12,871	-190,65	24,456	-162,749	11,585	-27,901	31,03652	7,895042		
IVI [l/N_m/m]	Муу	2,574	-38,129	4,891	-32,549	2,317	-5,58	31,03818	7,89496		
	Mxy	53,284	-93,341	69,666	-81,039	16,382	-12,302	13,32412	7,054708		
	variation movenne										

Tableau V.23

Contraintes dans le voile 83 (RDC) xx;cas G+Q+Qeau+EX										
		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
Contraintes(σ)		Max	Min	Max	Min	Max	Min	Max	Min	
	σxx	10538,66	-18175,72	15828,034	-14766,33	5289,374	-3409,386	20,0608	10,34965	
σ [kPa]	σуу	4813,43	-34380,46	5085,448	-32733,21	272,018	-1647,25	2,74797	2,454418	
	σxy	26855,942	-25130,33	27963,695	-23673,48	1107,753	-1456,855	2,02072	2,985125	
				variations	moyennes	8,2765	5,263063			

Tableau V.24

b. Cas G+Q+Qeau+EY :

	I	Efforts interne	s dans le voile	vL4 N°83 s	uivant XX (R	DC);cas G+	-Q+Qeau+E	ΞY	
Effor	ts	sous le spec	tre de 1988	sous le spec	tre de 2003	varia	itions	variati	ons[%]
internes(N	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min
	Nxx	1042,369	-5625,5	1351,07	-5463,248	308,701	-162,252	12,8978	1,463213
N [kN/m]	Nyy	1165,307	-9009,588	1209,082	-8861,634	43,775	-147,954	1,843632	0,82789
Nxy		6506,837	-6552,577	6651,892	-6360,26	145,055	-192,317	1,102348	1,489347
	5,28126	1,26015							
T [kN/m]	Txx	70,069	-513,714	199,864	-418,51	129,795	-95,204	48,08415	10,21257
I [KIN/III]	Туу	71,371	-94,815	97,647	-79,439	26,276	-15,376	15,54627	8,823901
			variations	s moyennes				31,81521	9,518234
м	Mxx	19,369	-189,08	65,996	-160,159	46,627	-28,921	54,62075	8,281148
M [kN_m/m]	Муу	3,874	-37,815	13,199	-32,031	9,325	-5,784	54,6184	8,281076
	Mxy	65,191	-91,932	89,161	-78,723	23,97	-13,209	15,52944	7,740178
variations moyennes 41,58953 8.									

Tableau V.25

	Contraintes dans le voile 83 (RDC) xx;cas G+Q+Qeau+EY										
Contraintes(σ)		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]			
		Max	Min	Max	Min	Max	Min	Max	Min		
	σxx	4169,477	-22506	5404,278	-21852,99	1234,801	-653,008	12,89777	1,472098		
σ [kPa]	σуу	4661,226	-36038,35	4836,326	-35446,54	175,1	-591,813	1,843633	0,827885		
	σxy	26027,35	-26210,31	26607,57	-25441,04	580,22	-769,271	1,102348	1,489353		
					variations	moyennes	5,281251	1,263112			

Tableau V.26

4 Commentaires sur les résultats :

Dans le sens XX les voiles ont subit une variation important des efforts tranchant et des moments de flexion mais les contrainte reste très faible car elle ne dépasse même pas les 6%

- Sens YY :
- a. Cas G+Q+Qeau+EX :

]	Efforts interne	es dans le voil	e VL1 N°92	suivant YY (F	RDC);cas G	+Q+Qeau+	EX	
Effort	s	sous le spec	tre de 1988	sous le spec	tre de 2003	varia	tions	variatio	ons[%]
internes(N	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min
NY FINY (N	Nxx	-6446,607	-13936,84	-6039,973	-13704,05	406,634	-232,789	-3,25657	0,842191
N [kN/m]	Nyy	1149,744	-9947,376	1172,031	-9845,72	22,287	-101,656	0,959912	0,513593
	Nxy	4815,868	-6338,342	4897,125	-6232,93	81,257	-105,412	0,83658	0,838515
	-0,48669	0,731433							
T [ltN/m]	Txx	1077,291	-70,213	1214,976	-51,737	137,685	-18,476	6,006499	15,15047
I [KIN/III]	Туу	191,112	-17,752	213,542	-15,112	22,43	-2,64	5,543007	8,033106
								5,774753	11,59179
м	Mxx	376,176	-27,818	418,692	-25,563	42,516	-2,255	5,348813	4,224349
IVI [kN_m/m]	Муу	75,234	-5,563	83,737	-0,761	8,503	-4,802	5,348774	75,93295
	Mxy	180,444	-8,263	200,025	-5,711	19,581	-2,552	5,146543	18,26249
variations moyennes 5,281377 32,									

Tableau V.27

Exploitation des résultats

Contraintes dans le voile 92 (RDC) yy;cas G+Q+Qeau+EX											
Contraintes(σ)		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]			
		Max	Min	Max	Min	Max	Min	Max	Min		
σ [kPa]	σxx	-25786,43	-55747,35	-24159,89	-54816,2	1626,537	-931,152	-3,25657	0,842187		
	σуу	4598,975	-39789,5	4688,124	-39382,88	89,149	-406,623	0,95992	0,513592		
	σxy	19263,472	-25353,37	19588,498	-24931,72	325,026	-421,65	0,83658	0,838519		
				variations	moyennes	-0,48669	0,731433				

Tableau V.28

b. Cas G+Q+Qeau+EY :

Efforts internes dans le voile VL1 N°92 suivant YY (RDC);cas G+Q+Qeau+EY										
Efforts		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
internes(N	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min	
	Nxx	-5376,788	-12808,22	-4289,094	-11857,02	1087,694	-951,193	-11,2529	3,856411	
N [kN/m]	Nyy	1228,759	-9401,291	1301,355	-8952,017	72,596	-449,274	2,869278	2,447918	
	Nxy	5147,328	-5890,057	5439,595	-5538,945	292,267	-351,112	2,760642	3,072114	
			variation	s moyennes				-1,87433	3,125481	
T [ltN/m]	Txx	949,783	-236,071	1006,07	-180,27	56,287	-55,801	2,877875	13,40272	
I [KIN/III]	Туу	169,714	-20,13	178,525	-19,003	8,811	-1,127	2,530159	2,879922	
			variation	s moyennes				2,704017	8,141319	
м	Mxx	337,279	-80,516	355,036	-60,175	17,757	-20,341	2,564873	14,45793	
M [kN.m/m]	Муу	67,455	-16,103	71,006	-12,035	3,551	-4,068	2,564621	14,45732	
	Mxy	162,031	-10,552	169,892	-9,457	7,861	-1,095	2,36832	5,472537	
	variations moyennes 2,4992									

Tableau V.29

Contraintes dans le voile 92 (RDC) yy;cas G+Q+Qeau+EY											
Contraintes(σ)		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]			
		Max	Min	Max	Min	Max	Min	Max	Min		
σ [kPa]	σxx	-21507,15	-51232,87	-17156,38	-47428,1	4350,776	-3804,77	-11,253	3,85641		
	σуу	4915,035	-37605,17	5205,419	-35808,07	290,384	-1797,1	2,86928	2,44792		
	σxy	20589,313	-23560,23	21758,379	-22155,78	1169,066	-1404,45	2,76064	3,07211		
				variations	moyennes	-1,8743	3,12548				

Tableau V.30

4 Commentaires sur les résultats :

Dans le sens YY et sous le deux cas, tout les efforts interne n'atteignes même pas une variation de 6%, sa expliquerai le fait que les voiles n'ont subit aucun dommages (pas de fissures).

Figure V.9 (photo voile du RDC)

VI.4.c/ poteaux :

Concernant les poteaux, on cherche le poteau le plus sollicité puis on compare entre les résultats trouvé sous les deux spectres.

Les résultats sont donnés dans le repère local des poteaux qui est orienté comme suite :

Remarque :

Le poteau est un élément en béton armé qui travail en flexion composée les résultats de calcul sont résumé dans les tableaux suivant :

Efforts internes dans le poteau N°254 ;cas G+Q+Qeau+EX										
Efforts		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
internes(N	I,T,M)	Max	Min	Max	Min	Max	Min	Max	Min	
N [kN]	Fx	492,191	490,079	513,022	510,91	20,831	-20,831	2,072297	-2,08104	
T [l-N]	Fy	2,948	2,948	4,516	4,516	1,568	-1,568	21,0075	-21,0075	
I [KIN]	Fz	-94,14	-94,14	-92,597	-92,597	1,543	-1,543	-0,8263	0,826296	
			variatio	ons moy				10,0906	-10,0906	
M [ltN m]	My	134,077	-143,178	131,899	-145,429	-2,178	2,251	-0,81887	-0,77995	
	Mz	4,555	0,398	6,784	0,422	2,229	-0,024	19,65782	-2,92683	
	9,419474	-1,85339								

a. Cas G+Q+Qeau+EX :

b. Cas G+Q+Qeau+EY :

Exploitation des résultats

Efforts internes dans le poteau N°254 ;cas G+Q+Qeau+EY										
Efforts	s	sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]		
internes(N,	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min	
N [kN]	Fx	479,531	477,419	492,304	490,191	12,773	-12,772	1,31432	-1,32	
THNI	Fy	0,962	0,962	1,267	1,267	0,305	-0,305	13,6833	-13,683	
I [KIN]	Fz	-95,457	-95,457	-94,752	-94,752	0,705	-0,705	-0,3706	0,37064	
			variatic	ons moy				6,65631	-6,6563	
M [kN m]	My	135,907	-141,229	134,893	-142,24	-1,014	1,011	-0,3744	-0,3567	
WI [KIN.III]	Mz	1,732	0,359	2,164	0,376	0,432	-0,017	11,0883	-2,3129	
	5,35692	-1,3348								

Tableau V.32

Figure V.11.a (N sous le RPA 1988)

Figure V.11.b (N sous le RPA 2003)

Figure V.11.c (**Uz** sous le RPA 1988)

Figure V.11.d (Uz sous le RPA 2003)

4 Commentaires sur les résultats :

Le taux de variation des efforts internes dans les poteaux est de loin très inferieur a celle constaté dans le noyau central comme la valeur max atteinte n'est que de 10%, sa explique peut être le fait que les poteaux de chainage n'ont subi aucun dommage.

V.4.d/ poutres :

Même principe que les poteaux, on cherche la poutre la plus sollicitée puis on compare entre les résultats trouvé sous les deux spectres.

Les résultats sont donnés dans le repère local de l'élément qui est orienté comme suite :

Figure V.12

Avec :

L'axe **x** *est dans le sens de la longueur de la poutre (en bleu)*

Remarque :

La poutre est un élément en béton armé qui travaille en flexion simple donc on s'interessera seulement aux moment de flexion et l'éffort tranchant correspondant.

Efforts internes dans la poutre N°55 ;cas G+Q+Qeau+EX											
Efforts		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]			
internes(N,T,M)		Max	Min	Max	Min	Max	Min	Max	Min		
T [kN]	Fz	535,442	-11,269	555,529	-11,267	20,087	-0,002	1,841204	0,008875		
M [kN.m]	My	478,173	-457,848	430,914	-467,346	-47,259	9,498	-5,19851	-1,0266		
							ons mov	-1.67865	-0.50886		

a. Cas G+Q+Qeau+EX :

Tableau V.33

b. Cas G+Q+Qeau+EY :

Efforts internes dans la poutre N°55 ;cas G+Q+Qeau+EY											
Efforts		sous le spectre de 1988		sous le spectre de 2003		variations		variations[%]			
internes(N,T,M)		Max	Min	Max	Min	Max	Min	Max	Min		
T [kN]	Fz	514,033	-11,272	520,496	-11,272	6,463	0	0,62473	0		
M [kN.m]	My	533,61	-452,239	521,635	-458,169	-11,975	5,93	-1,13481	-0,65136		
						variatio	ns moy	-0,25504	-0,32568		

Tableau V.34

4 Commentaires sur les résultats :

Même constatation que pour les poteaux, avec cette fois-ci une variation quasi nulle des efforts internes, sa explique aussi le fait que ya aucun endommagement sur cet élément.

Conclusion :

L'analyse des résultats faite sous les deux spectres nous montre que seul le noyau central a subit des endommagements, cela est dû à une grande variation de contrainte et l'importance du chargement qu'il reprend peut être aussi la cause de ces désordre sachant qu'il reprend 64,5% des charge revenant au réservoir.

Par ailleurs, lorsque un réservoir couvert, et entièrement plein, naturellement il n'y a pas de mouvement relatif du fluide par rapport au réservoir à la suite d'une excitation sismique : tout se passe comme si l'ensemble fluide+ réservoir constituait une masse unique.

Par contre, dans des réservoirs partiellement remplis, l'excitation met une partie du fluide en mouvement, ce qui conduit à la formation des vagues en surface.

NEWMARK a démontré qu'il suffisait d'un défaut de remplissage de deux pour cent (2%) de la hauteur pour que les réservoirs fermés se comportent comme des réservoirs à surface libre, du point de vue de la formation des vagues.

Pour étudier l'action du liquide sur les parois du réservoir, Housner a développée une approche, dans laquelle l'action du liquide est décomposée en une action passive provoquant des efforts d'impulsion et une action active provoquant des efforts d'oscillation.

Les efforts d'**impulsion** proviennent de ce qu'une partie de la masse du liquide, dite masse passive, réagit par inertie à la translation des parois du réservoir. Son système mécanique équivalent est obtenu en considérant une masse Mi liée rigidement au réservoir à une hauteur hi telle qu'elle exerce sur les parois les mêmes efforts horizontaux que la masse d'eau équivalente.

Quant aux efforts d'**oscillations**, ils proviennent de ce qu'une autre partie de la masse du fluide, dite masse active, se met en mouvement d'oscillation sous l'action du séisme. Son équivalent mécanique s'obtient en considérant une masse Mo retenue par des ressorts de raideurs Ko à un niveau ho, dont les oscillations horizontales exercent les mêmes efforts vibratoires que la masse active du liquide.

Figure V.13 (effet hydrodynamique dans le réservoir)

Le RPA 88, par son commentaire 2.3.2, énonce que pour les châteaux d'eau d'une capacité supérieure à 1500 m^3 , en zone II et III, une étude hydrodynamique est nécessaire.

La capacité de notre réservoir étant inferieur à $1500m^3$, l'étude hydrodynamique ne sera pas nécessaire même si on voie clairement la variation des contraintes entre le cas ou le réservoir et vide et le cas où il est plein (*Figure VI.12*).

Figure V.14

VI.1/ Introduction :

Le présent chapitre a pour objet l'étude d'une solution de réparation afin de rendre à notre ouvrage sa résistance initiale pour laquelle il a été conçu et rehausser sa sécurité vis-à-vis d'une action sismique future ; pour se faire, nous allons étudier trois (03) proposition de réparation en tenant compte des résultats obtenus précédemment.

Idéalement le choix portera sur la méthode dont le rapport coût/efficacité est le plus petit possible.

VI.2/ Actions de réparation :

La réparation d'une construction est une opération qui consiste à lui restituer, par des travaux appropriés, un niveau de service perdu.

Tenant compte de l'état des fissures observées dans le noyau central et l'intensité des efforts appliqués (chargement du réservoir), un chemisage du noyau est plus que nécessaire pour accroitre sa rigidité et réparer en même temps les fissures ; l'ajout d'un ou plusieurs éléments structuraux et aussi un cas a ne pas négliger pour augmenter la rigidité de notre structure vis-à-vis des charge horizontales et réduire par conséquence les contrainte dans le noyau.

VI.2.1/renforcement du noyau par chemisage : (première solution)

Cette technique consiste à reconstituer ou à accroitre la section d'un élément en service en le gainant de béton.

Les murs en béton armé, à cause de leur grande rigidité et leur grande résistance aux efforts tranchants, résistent très bien aux forces sismiques induites dans le bâtiment. Donc, un mur endommagé ou mal dimensionné peut être réparé et /ou rigidifié suivant qu'on veut améliorer ou pas la capacité résistante de la structure aux efforts sismiques.

Mais avons toute action de réparation on doit tout d'abord réparer les fissures.

a. Préparation des surfaces :

On doit suivre ces étapes :

• La première étape consiste en la localisation des zones à réparer ;

Figure VI.1

- On doit ensuite Enlever le béton détérioré à l'aide d'une de ces méthodes :
- 1. Burinage (gravure): elle consiste à dégager des bétons fissurés dans l'encombrement des armatures a l'aide d'un outil manuel ou pneumatique légers dit burin (sorte de ciseau en acier) ;
- 2. Repiquage : on utilise un marteau léger, pneumatique à aiguille ;
- 3. Le bouchardage : travailler avec une boucharde (marteau du tailleur de pierre).

Ces trois méthodes sont efficace mais peuvent créer des microfissures si on travail sans prendre des précautions.

Figure VI.2 : piquage à l'aide d'un marteau pneumatique

• La troisième étape consiste en la préparation de la surface et du périmètre de la réparation ;

Dans cette étape on doit laver les surfaces à l'eau et à haute pression pour enlever les poussières et les granulats dessertis et les liants dégradés.

• 4^{eme} étape : Nettoyage de la surface et des aciers :

Dans cette étape toutes les armatures présentant des signes de corrosions doivent être exposées et dégagées, le périmètre de réparation doit être piqueté sur une profondeur de 25mm, la corrosion de surface sur les barres doit être enlevée puis on applique un produit qui arrête le processus d'oxydation.

b. Injection d'un matériau de réparation :

L'injection est une opération qui consiste à faire pénétrer dans des fissures un produit susceptible de créer une liaison mécanique et /ou une étanchéité entre les parties disjointes.

• Choix du matériau de réparation :

Parmi les matériaux les plus utilisés pour la réparation des fissures on distingue :

- Mortier de ciment portland ;
- Mortiers époxydiques ;
- Mortiers coulis expansifs ;
- Béton conventionnels ;
- Bétons et mortiers au latex ;
- Béton polymères ;
- Béton conventionnels avec couche d'accrochage à base de résine époxy ;
- Bétons renforcés de fibres ;

Par ailleurs si le béton n'est ni disloqué ni écrasé, la résine époxy peut restituer au mur ses résistances initiales à la flexion et à l'effort tranchant. Cependant le mur réparé n'aura jamais la rigidité initiale. Ceci est dû au fait que les fissures très petites ne peuvent être remplies de résine.

Pour les travaux de réparation et de renforcement, il est recommandé l'utilisation des résines époxydiques, sous forme liquide, qui sont constituées par le mélange d'une base époxydique et d'un durcisseur, emballés séparément si le produit n'est pas pré dosé.

Les résines époxydiques sont caractérisées par :

- La stabilité au stockage.
- L'excellente adhérence au béton.
- Un retrait faible (évitant ainsi les fissures dues au retrait).
- Un pouvoir mouillant supérieur à celui de l'eau qui leur permet de se propager par capillarité.
- Une pression d'injection faible de 0.05à 0.3 kg/cm² (évitant ainsi l'effet de vérin).
 - Injection du matériau :

Apres avoir réalisé le forage d'injection à environ 20 à 25 cm de l'axe de la fissure, nettoyé par soufflage à l'air comprimé, on injecte la résine époxy par le trou le plus bas et sera arrêté lors de la résurgence (réapparition a l'air libre) du produit injecté par le trou qui se trouve plus haut, on terminera par un rebouchage des forages avec un mortier de réparation.

Pendant l'opération d'injection, il est nécessaire de vérifier la quantité du produit injecté, la pression d'injection, et d'examiner la zone injectée pour déceler toute fuite.

c. Confection des armatures :

Recommandation :

- Pour une bonne exécution, le chemisage en béton armé doit avoir une épaisseur de 10cm minimum ;
- Sceller des barres dans les éléments existants pour assurer une liaison efficace avec les parties nouvelles ;
- Prévoir des attentes scellées dans les fondations existantes, pour avoir un recouvrement avec les barres longitudinales des chemisages.

Le choix des dimensions de la nouvelle section est fonction de l'état de l'ancienne section et de la valeur supplémentaire de l'effort à reprendre.

La section de la paroi à une forme d'anneau, elle est soumise à un effort normal vertical N et à un moment de flexion donc les parois du noyau central sont sollicitées en flexion composée, ils se développent sur les fibres supérieures et inferieur suivant l'action sismique des contraintes normales verticales (compression et traction) que nous pouvons estimer avec la relation :

$$\sigma = (N/B) \pm (M*Rext)/Ix$$

Avec:

B : section droite de la paroi I : moment d'inertie de la paroi Moment de flexion de la paroi

Application numérique:

N (ELS) total=1314, 508*9,817=12904, 525 KN M (ELS) correspondent=35,617*9,817=349,652 KN.m $\sigma_{bc} = 0,06*f_{c28} = 0,06*20 = 12 MPa$ B= $\pi^{*}(R^{2}-r^{2}) = \pi^{*}(3,1^{2}-3,05^{2}) = 0,966m^{2}$ IX= $(\pi/4)^{*}[(R_{ext})^{4} - (R_{int})^{4}] = 9,135m^{4}$

 $\sigma = (12904,525/966) \pm (349,652*10^6*3,1*10^3)/(9,135*10^{12})$

 $\begin{array}{l} \sigma_{sup} = 13,\!45 MPa \!\!> \!\!12 MPa \\ \sigma_{inf} = \!\!13,\!24 MPa \!\!> \!\!12 MPa \end{array}$

Donc la section du béton est insuffisante, on doit donc rajoute 10cm pour le chemisage, on aura alors la nouvelle épaisseur du noyau ep=25cm

Vérification de la nouvelle section du béton :

 $\begin{array}{l} B=\pi^*(R^2\text{-}r^2)=4,987\ m^2\\ \text{On aura alors :}\\ \sigma_{sup}=2,71MPa{<}12MPa\ (v\acute{erifiée})\\ \sigma_{inf}=2,47MPa{<}12MPa\ (v\acute{erifiée}) \end{array}$

• Calcul des armatures longitudinales :

Le calcul se fera pour une bande de 1m

1. A l'ELU :

On :

$$\operatorname{Au} \geq \frac{Tu}{fe/\Upsilon s}$$

Telle que :

 $Tu = \sigma_{bt} * s = \sigma * (ep * 1)$

Avec :

Tu : effort repris par la bande de 1m à l'ELU

 σ_{bt} : contrainte de traction a l'ELU [MPa] ; σ_{bt} =8315,073MPa (résultat sur robot)

 $\sigma_{st} = fe/\gamma s = 348$ MPa (voir chapitre II)
Calcul de l'effort total de traction sur une bande de 1m:

Ttot= σ_{bt} *Stot= σ_{bt} *(ep*1)

Application numérique :

Ttot= 8315,073*250*10⁻³= 2078,768 kN

Tu revenant à la nouvelle épaisseur :

 $Tu_{nouvelle} = Ttot* \frac{ep nouvelle}{ep tot}$

Application numérique :

 $T_{u nouvelle} = 831,51 \text{ KN}$

On aura alors :

 $A_u \!\geq\! \frac{831,\!51\!*\!10^3}{348\!*\!10^2} = 23,\!894 cm^2$

 $A_u=25,12 \text{ cm}^2 = 8\text{HA20}$ avec un espacement de S=12cm

Les armatures longitudinales sont données par la formule :

$$As \ge \frac{Ts}{\overline{\sigma}_s}$$

Calcul de l'effort total de traction sur une bande de 1m:

 $Ts_{tot} = 5285,755*250*10^{-3} = 1321,44KN$

Tu revenant à la nouvelle épaisseur :

 $Ts \text{ }_{nouvelle} = Ts \text{ } tot * \frac{ep \text{ } nouvelle}{ep \text{ } tot}$

Application numérique :

Ts nouvelle=528,576KN

On aura alors le ferraillage à l'ELS comme suite :

$$As \ge \frac{528,576*10^3}{187*10^2} = 28,27 \text{cm}^2$$

 $A_s=28,27 \text{ cm}^2 = 9\text{HA20}$ avec un espacement de S=10cm

3. C.N.F : (condition de non fragilité)

Le ferraillage sera donné par la formule :

$$\operatorname{Amin} \geq \frac{B * f_{t28}}{f_e}$$

Application numérique :

$$\operatorname{Amin} \geq \frac{10*100*1,8}{400} = 4,5 \operatorname{cm}^2$$

 $Amin = 4,71 \text{ cm}^2 = 6HA10/ML$

Ferraillage adopté :

 $A = A_s = 28,27 \text{ cm}^2 = 9HA20/ML$

• Calcul des armatures transversales :

$$At = \frac{Al}{4} = \frac{91HA20}{4} = 71,47 \text{ cm}^2$$

Ferraillage adopté :

 $At=47HA14 = 72, 35 \text{ cm}^2$

d. Coffrage du noyau :

Le coffrage de la gaine doit être muni de cales d'espacement destinées à ménager un vide entre le coffrage et la surface du béton initial. Ce coffrage peut être temporaire ou permanent, peut être en bois ou en acier selon sa destination et les conditions d'exploitation.

On utilisera un coffrage métallique souvent utilisé pour la réalisation des ouvrages hydraulique (réservoir cylindrique), La surface de l'ancien béton qui doit adhérer à la partie nouvelle doit être rendue rugueuse par piquage. Il faut enlever tout béton endommagé et ensuite procéder au nettoyage à grand jet d'eau pour éliminer toutes les poussières et par la suite prévoir des crochets en acier en forme de S pour ancrer les anciennes barres aux nouvelles.

e. Bétonnage :

Le béton peut être mis en place par déversement par trémie ou tout autre procédé approuvé.

Vu l'espace réduit de la gaine, la granulométrie du béton doit être étudiée pour permettre un passage facile entre les armatures.

L'utilisation de la technique de gainage impose la vibration du béton.

Le béton doit être coulé avec l'une des méthodes suivantes :

• Béton coulé en place derrière une paroi coffrée :

- Méthode courante pour la réparation de murs en béton armés et bases des poteaux ;
- Une profondeur minimale de 150mm est généralement requise ;
- Prévoir un enrobage d'armatures d'au moins 25mm ;

Le matériau de réparation devra Avoir:

- ✓ Un faible retrait ;
- ✓ Une maniabilité suffisante ;
- ✓ Utilisation d'un vibrateur interne est parfois nécessaire ;
- ✓ Prévoir un bon mûrissement après le décoffrage de la réparation.

Figure VI.3

• Béton pompé derrière une paroi coffrée :

- Technique de réparation relativement récente ;
- Le béton est pompé d'un point bas vers un point haut ou d'une extrémité à l'autre des coffrages horizontaux.
- ✓ Avantage de cette méthode:
- Tous les types de matériaux peuvent être pompés.
- Pas de limitations d'épaisseurs ou densité d'armatures.
- La pression de pompage favorise l'adhérence.

- ✓ Inconvénients:
- Coffrages coûteux (étanchéité, solidité, plusieurs ancrages)

Figure VI.4

Dans le cas de notre ouvrage on choisi la première méthode car celle-ci est plus économique et na pas besoin d'un équipement spéciale et permet de donner des résultats appréciables du point de vue résistance.

f. Modélisation de la 1^{ere} solution (robot v 26) :

Pour cette première solution, on garde la même modélisation, on aura juste à changer l'épaisseur du noyau.

• Exploitation des résultats :

Dans cette partie, on s'intéressera seulement aux résultats concernant le noyau central.

1. Période fondamentale :

La période max est de 1.364 s pour le 1^{er} mode de vibration et la période min est de 0.115s pour le 32^{eme} mode de vibration.

	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
MAX	8,702	1,364	89,435	90,683	0,0	22,898	33,635	0,0	4155154,793	4156244,832	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	32	1	32	32	1	3	2	1	1	1	1
MIN	0,733	0,115	10,842	0,495	0,0	0,000	0,000	0,0	4155154,793	4156244,832	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	1	32	1	1	1	12	30	1	1	1	1

Tableau VI.1 : extrême globaux des périodes de vibration

2. Efforts internes :

Tenant compte que les fissures inclinées dans un mur plein en béton armé sont dues à l'action de l'effort tranchant et les fissures horizontales sont dues à l'action du moment de flexion et à son alternance, on s'intéressera plus particulièrement à ses deux efforts et aux contrainte qu'ils génèrent dans le noyau.

		E	fforts	s internes da	ans le noyau c	entral (RDC)	;cas G+Q+	Qeau+EY		
Ef	forts	structu	re no	on confortée	e structure	confortée	varia	tions	variati	ons[%]
internes	s(N,T,M	l) Ma	X	Min	Max	Min	Max	Min	Max	Min
	Nx	x 4788,	298	-3131,61	8 6736,779	-3190,323	1948,481	-58,705	16,90645	0,928591
N [kN/ı	m] Ny	ry 3683,	689	-1076,78	7 4266,048	-1233,969	582,359	-157,182	7,325513	6,802189
	Nx	xy 3371,	311	-921,268	4653,948	-886,875	1282,637	34,393	15,9825	-1,902117
				variati	on moyenne				13,40482	1,942888
T D-N/	Tx	x 552,	05	-294,136	809,289	-379,084	257,239	-84,948	18,89603	12,61816
1 [KIN/I	Ty Ty	y 743,7	54	-175,819	796,745	-194,709	52,991	-18,89	3,439859	5,09813
				variati	on moyenne				11,16794	8,858147
м	M	x 47,8	15	-8,93	104,759	-14,646	56,944	-5,716	37,32222	24,24499
IVI [l/N_m/r	My My	/y 61,74	41	-9,223	74,44	-9,169	12,699	0,054	9,325089	-0,293606
	M>	xy 23,3	97	-5,584	32,96	-8,516	9,563	-2,932	16,96861	20,79433
				variatio	ons moyenne				21,20531	14,91524
					Tablea	u VI.2				
			Con	traintes dan	s le noyau cer	ntral (RDC);c	as G+Q+Q	eau+EY		
a		structure	non	confortée	structure	confortée	varia	tions	variatio	ons[%]
Contrai	$ntes(\mathbf{O})$	Max		Min	Max	Min	Max	Min	Max	Min
	σxx	31921,98	-44	20877,45	26947,116	-12761,29	-4974,87	8116,161	-8,45073	-24,1274
σ [kPa]	σуу	24557,92	3 -	7178,577	17064,191	-4935,877	-7493,74	2242,7	-18,0042	-18,5126
	σxy	22475,4	1 -	6141,784	18615,791	-3547,501	-3859,62	2594,283	-9,39281	-26,7748
	variations moyennes								-11,9493	-23,1383

Les résultats sont donnés dans le tableau ci-dessous :

Tableau VI.3

Interprétation des résultats :

La première solution nous donne une réduction de contrainte dans le noyau allant jusqu'à presque un quart (¼) de la valeur qu'elle a subit sous le séisme du 21 mai 2003, c'està-dire que si le noyau avais 10cm d'épaisseur en plus, les contrainte dans celui-ci serait réduit de 23%.

Le poids propre de la structure ayant augmenté, affecte automatiquement les efforts internes qui subissent une augmentation d'environ 13% pour l'effort normal, 11% pour l'effort tranchant et 21% pour le moment de flexion.

VI.2.2/renforcement par ajout d'éléments structuraux (poteaux) : (2eme solution)

La deuxième solution consiste à réparer les fissures puis renforcement par ajout de poteaux au niveau du RDC pour accroitre sa rigidité, participer à acheminer les charges des niveaux supérieurs vers le sol d'assise et réduire le léger effet de torsion existant, le RPA préconise que le Min $(b_1,h_1)\geq 30$ cm en zone III, la différence de section avec ceux des niveaux supérieur étant très importante, on procédera aussi au chemisage de ces dernier.

a. Pré dimensionnement des poteaux :

Les poteaux seront pré dimensionnés à l'état limite de service en compression simple, tout en supposant que c'est le béton seul qui reprend l'effort normal $N_{s(plein)}$.

L'effort N_s (une fois que le poteau le plus sollicité soit repéré) ne sera pas déterminé avec la descente de charge, mais on va le tirer directement des fichiers résultats de robot (modélisation sous le spectre de 2003 nœud inferieur du poteau le plus solliciter au coin du 1^{er} étage a l'ELS plein).

Ns=70,952Kn

La section du poteau est donnée par la formule suivante :

 $B \ge \frac{N_s}{\overline{\sigma}_{bc}} = \frac{70,952*1000}{12} = 59,1267cm^2 \text{ (on propose une section de 30*30 pour l'étage}$

courant et 35*35 pour le RDC)

 $\sigma_{bc} = 0.6 f_{c28} = 12Mpa$: Contrainte admissible du béton à l'ELS.

 $B = b \times h$: Section du poteau.

- Vérification des dimensions imposées par le règlement parasismique algérien (RPA99 version2003 art.7.4):
 - a. Poteau 30*30 (étage courant) :

$$Min(b_1, h_1) \ge 30 \ cm.$$
$$b_1 \ge \frac{h_e}{20} = \frac{247}{20} = 12,35 \ cm.$$
$$\frac{1}{4} \le \frac{b_1}{h_1} \le 4 \longrightarrow \frac{30}{30} = 1.$$

Toutes les conditions sont satisfaites.

b. Poteau 35*35 (RDC) :

$$Min(b_{1}, h_{1}) \ge 30 \ cm$$
$$b_{1} \ge \frac{h_{e}}{20} = \frac{440}{20} = 22 \ cm$$
$$\frac{1}{4} \le \frac{b_{1}}{h_{1}} \le 4 \longrightarrow \frac{35}{35} = 1$$

Toutes les conditions sont satisfaites.

• Vérification des poteaux au flambement :

Les éléments structuraux, tels que les poteaux sont soumis en permanence à des efforts très importants de compression, alors ils risquent de subir d'importantes déformations dues au flambement ; a fin d'éviter ce flambement, on doit limiter l'élancement λ des poteaux selon la formule suivante :

$$\lambda = \frac{l_f}{i} \le 50$$

Avec :

lf : Longueur de flambement des poteaux. Le rayon de giration :

$$i_1 = \sqrt{\frac{I}{B}} = \sqrt{\frac{h.b^3/12}{b.h}}$$

Application : a. Poteau 30*30 :

$$l_f = 0,707.\ell_o = 0,707 \times 2,67 = 1,89 m$$

Le rayon de giration :

$$i_1 = \sqrt{\frac{I}{B}} = \sqrt{\frac{hb^3/12}{b.h}} = \sqrt{\frac{30*30^3/12}{30*30}} = 8,66 \ cm$$

 $\lambda_1 = \frac{l_f}{i} = \frac{189}{8,66} = 21,82 \le 50$ Vérifié (Pas de risque de flambement)

b. Poteau 35*35 :

$$l_f = 0,707.\ell_o = 0,707 \times 4,60 = 3,25 m$$

Le rayon de giration :

$$i_1 = \sqrt{\frac{I}{B}} = \sqrt{\frac{h.b^3/12}{b.h}} = \sqrt{\frac{35*35^3/12}{35*35}} = 26,73 \ cm$$

$$\lambda_1 = \frac{l_f}{i} = \frac{325}{26,73} = 12,16 \le 50$$
 Vérifié (Pas de risque de flambement)

c. Modélisation :

Pour cette parie nous allons créer des poteaux 30*30 au coin de l'étage courant et des poteaux 35*35 pour le RDC en utilisant la commande *« barre »* accessible a partir de *« structure-barre »*, on doit tout d'abord créer les ligne de construction, définir les section puis

modéliser les éléments barres et définir les appuis, on aura alors la représentation ci-dessous :

Figure VI.5

• Exploitation des résultats :

Apres avoir lancé le calcul, on aura les résultats suivant :

1. Période fondamentale :

La période max est de 1,363 s pour le 1^{er} mode de vibration et la période min est de 0,12s pour le 36^{eme} mode de vibration.

	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
MAX	8,353	1,363	89,536	89,204	0,0	24,609	36,885	0,0	4187036,422	4188112,063	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	36	1	36	36	1	3	2	1	1	1	1
MIN	0,734	0,120	10,584	0,604	0,0	0,000	0,000	0,0	4187036,422	4188112,063	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	1	36	1	1	1	21	23	1	1	1	1

Tableau VI.4 : extrêmes globaux des périodes

2. Efforts internes :

Même principe que pour la première solution, on s'intéressera aux effets induits sur le noyau :

	Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY										
Effor	ts	structure non confortée		structure	confortée	varia	tions	variations[%]			
internes(N	,T,M)	Max	Min	Max	Min	Max	Min	Max	Min		
	Nxx	4788,298	-3131,618	7178,563	-3021,253	2390,265	110,365	19,97403	-1,793715		
N [kN/m]	Nyy	3683,689	-1076,787	4300,288	-1236,345	616,599	-159,558	7,722956	6,89792		
	Nxy	3371,311	-921,268	4936,182	-861,224	1564,871	60,044	18,83686	-3,368542		
	15,51128	0,578554									
T [leN]/m]	Txx	552,05	-294,136	836,717	-364,11	284,667	-69,974	20,49782	10,63037		
I [KIN/III]	Туу	743,754	-175,819	825,746	-246,735	81,992	-70,916	5,224084	16,78271		
			variatio	n moyenne				12,86095	13,70654		
М	Mxx	47,815	-8,93	107,856	-13,221	60,041	-4,291	38,56916	19,37159		
IVI [l:N_m/m]	Муу	61,741	-9,223	75,045	-9,323	13,304	-0,1	9,726142	0,5392		
[kN.m/m]	Mxy	23,397	-5,584	33,306	-8,123	9,909	-2,539	17,47527	18,52338		
variations moyenne 21,92352											

Tableau VI.5

	Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY										
		structure non confortée		structure confortée		varia	tions	variations[%]			
Contraintes(σ)		Max	Min	Max	Min	Max	Min	Max	Min		
	σxx	31921,984	-20877,45	28714,252	-12085,01	-3207,73	8792,44	-5,29012	-26,6741		
σ[kPa]	σуу	24557,93	-7178,577	17201,152	-14945,38	-7356,78	-7766,8	-17,6172	35,10585		
σxy 22475,41 -6141,784 19744,729 -3444,898 -2730,68 2								-6,46772	-28,1316		
variations moyennes									-6,56661		

Tableau VI.6

Interprétation des résultats :

La deuxième solution nous donne une réduction de contrainte dans le noyau de seulement 10% de la valeur qu'elle a subit sous le séisme du 21 mai 2003.

Conclusion partielle :

A ce stade on retient la première solution car elle nous donne des meilleurs résultats et elle est en plus plus économique que la deuxième.

VI.2.3/renforcement par ajout d'éléments structuraux (voile): *a. Pré dimensionnement des voiles :*

Les voiles sont des éléments rigides en béton armé coulés sur place. Ils sont destinés, d'une part, à assurer la stabilité de l'ouvrage, sous l'effet des chargements horizontaux, d'autre part à reprendre une partie des charges verticales. Leurs pré-dimensionnements se feront conformément à l'article (7-7-1) du **RPA99**.

L'épaisseur des voiles doit être déterminée en fonction de la hauteur libre d'étage (he) et des conditions de rigidité aux extrémités, elle doit être au minimum égale à 15cm.

De plus, la largeur du voile doit être supérieure 4 fois son épaisseur, sinon ce dernier ne sera pas considéré comme un voile de contreventement.

L'épaisseur de ce voile sera déterminée par la formule suivante :

$$a \ge \frac{he}{20}$$

1. Etage courant :

$$h_e = 287 - 20 = 267 \text{ cm}$$
$$a \ge \frac{267}{20} = 13,35 \text{ cm}$$

2. *RDC* :

$$h_e = 480 - 20 = 460 \text{ cm}$$
$$a \ge \frac{460}{20} = 23 \text{ cm}$$

Donc en prend : a = 25 cm pour le RDC et a=20cm pour l'EC

b. *Modélisation*: (voir chapitre IV paragraphe IV.5.6)

Apres avoir créé les lignes de construction, les voile serons modélisés grâce a la commande panneaux accessible a partir du menu *« structure-panneau »*.

On aura alors la représentation ci-dessous :

Figure VI.6

• Exploitation des résultats :

1. Période fondamentale :

La période max est de 1,364 s pour le 1^{er} mode de vibration et la période min est de 0,109s pour le 32^{eme} mode de vibration.

	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
MAX	9,163	1,364	89,445	90,819	0,0	22,828	33,592	0,0	4155155,262	4156244,832	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	32	1	32	32	1	3	2	1	1	1	1
MIN	0,733	0,109	10,737	0,491	0,0	0,000	0,000	0,0	4155155,262	4156244,832	0,0
Cas	4	4	4	4	4	4	4	4	4	4	4
Mode	1	32	1	1	1	32	29	1	1	1	1

Tableau VI.7 : période fondamentale

2. Efforts internes :

	Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY										
Effor	ts	structure non confortée		structure	structure confortée		tions	variati	ons[%]		
internes(N	(,T,M)	Max	Min	Max	Min	Max	Min	Ain Max M			
	Nxx	4788,298	-3131,618	6160,958	-3073,226	1372,66	58,392	12,53656	-0,941071		
N [kN/m]	Nyy	3683,689	-1076,787	4236,948	-1120,227	553,259	-43,44	6,985032	1,977229		
	Nxy	3371,311	-921,268	4254,298	-790,38	882,987	130,888	11,57923	-7,646899		
variation moyenne									-2,20358		
T [kN/m]	Txx	552,05	-294,136	819,533	-371,257	267,483	-77,121	19,50177	11,59029		
Ι [ΚΙΝ/ΠΙ]	Туу	743,754	-175,819	805,242	-204,948	61,488	-29,129	3,969539	7,650085		
			variation	n moyenne				11,73566	9,620189		
м	Mxx	47,815	-8,93	105,102	-20,25	57,287	-11,32	37,46281	38,79369		
IVI [kN_m/m]	Муу	61,741	-9,223	72,574	-8,554	10,833	0,669	8,065369	-3,76329		
[KN.m/m]	Mxy	23,397	-5,584	32,4	-9,034	9,003	-3,45	16,13528	23,60104		
variations moyenne 20,55448 19,543											

Tableau VI.8

	Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY									
		structure non confortée		structure confortée		varia	tions	variations[%]		
Contraintes(σ)		Max	Min	Max	Min	Max	Min	Max	Min	
	σxx	31921,984	-20877,45	24643,833	-12292,91	-7278,15	8584,549	-12,8667	-25,8802	
σ[kPa]	σуу	24557,93	-7178,577	16947,792	-4480,908	-7610,14	2697,669	-18,3352	-23,1371	
	σxy 22475,41 -6141,784 17017,191 -3161,47 -5458,22 2980,314									
			-15,0076	-27,0175						

Tableau VI.9

G Commentaire sur les résultats:

Les résultats donnés par la troisième solution sont bien meilleur que ceux de la première puisque elle nous donne une réduction de contrainte dans le noyau allant jusqu'à (¼) de la valeur qu'elle a subit sous le séisme du 21 mai 2003, un devis quantitatif et estimatif sera donc nécessaire pour prendre une solution final qui nous donne un rapport coût/efficacité le plus petit possible.

VI.3/ devis estimatif & quantitatif :

Pour pouvoir estimer le coût de l'opération il y a lieu d'évaluer les quantités nécessaires pour chaque étape de réhabilitation et de renforcement.

- * Enumération des articles :
 - Article 1 : Démolition et Piquage.

Pour avoir une adhérence de l'ancien béton avec le nouveau on doit piquer sur une épaisseur de 5cm dans toute la périphérie du noyau et dans les deux parties supérieur et inférieur des poutres pour permettre l'ancrage des barres du ferraillage du noyau et enfin dans les fondation a 50cm de profondeur.

• Article 2 : Percement de béton

Pour permettre l'ancrage des scellements.

• Article 3 : Transport des terres et des déchets de piquage à la décharge publique. Le volume des terres à transporter est à multiplier par un coefficient dit de foisonnement

• Article 4 : Colmatage des fissures.

Colmatage des fissures par mise en place de la résine époxy.

• Article 5 : Fourniture et pose de produit pour scellement.

Pour permettre l'ancrage des barres d'acier à l'ancienne section de béton.

• Article 6 : Exécution du béton armé

Le béton doit être dosé à 350 Kg/m^3 .

VI.3.1/ Première solution :

✤ devis quantitatif et estimatif :

DEVIS QU	ANTITAT	IF ET ESTIMAT	IF DE LA PREMIERE SOL	UTION		
DÉSIGNATIONS	UNITÉ	QUANTITÉ	PRIX UNITAIRE (DA)	MONTANT (DA)		
Piquage des éléments en béton armé	m ³	37	4800	177600		
Percement sur béton	ml	400	300	120000		
Transport des déchets de piquage à la décharge publique	m ³	220	450	99000		
Colmatage des fissures par mise en place de la résine époxy	ml	600	1600	960000		
Fourniture et pose de produit pour scellement.	ml	400	150	60000		
Exécution de Béton Armé	m ³	148	24000	3552000		
		MONTAN	NT EN H.T	4968600		
		T.V.A	603840			
		MONTANT TO	DTAL EN T.T.C	5572440		
Le montant total en T.T.C est arrêté à la somme de : cinq million cinq cent soixante douze mille et quatre cent quara						

Tableau VI.10

DEVIS QUA	DEVIS QUANTITATIF ET ESTIMATIF DE LA TROISIEME SOLUTION										
DÉSIGNATIONS	UNITÉ	QUANTITÉ	PRIX UNITAIRE (DA)	MONTANT (DA)							
Piquage des éléments en béton armé	m ³	42	4800	201600							
Percement sur béton	ml	400	300	120000							
Transport des déchets de piquage à la décharge publique	m ³	800	450	360000							
Colmatage des fissures par mise en place de la résine époxy	ml	600	1600	960000							
Fourniture et pose de produit pour scellement.	ml	400	150	60000							
Exécution de Béton Armé	m ³	267	24000	6408000							
		MONTAN	T EN H.T	8109600							
		T.V.A	. 17%	1089360							
		MONTANT TO	DTAL EN T.T.C	9198960							
Le montant total en T.T.C est arrêté à la somme de :	tre-vingt neuf mille et neuf c	ent soixante D.A									

Tableau VI.11

4 commentaire :

Le devis de la troisieme solution pour les mêmes opérations que la première, dépasse déjà largement le cout de la première solution allant à plus de 50% et cela sans tenir compte des coffrages et confection des armatures et autre Operations donc on arrête notre devis a ce stade.

Conclusion :

Donc on retient la première solution (chemisage du noyau central avec réparation des fissures) comme solution et choix définitif pour la réhabilitation de notre ouvrage car elle nous donne des résultats satisfaisant et elle est en plus plus économique que les deux autres solutions.

VI.4/ Quelque vérification :

> Calcul de la période :

 $T = 2*\pi^*((W' * Zg^3) / (3*g*EI))^{0.5}$

Application numérique :

 $T{=}2{*}\pi \ {*}[(1179199,8244{*}32,445{}^{3})/\ (3{*}10{*}431719,0814{*}29858,594)]^{0,5}=2,028s$

Finalement :

 $T_{calcule} = 2,028s > T_{robot} = 1,364s$

<u>Remarque</u> :

Les valeurs du moment d'inertie I, le poids des étages $P_{\acute{e}tage}$, le centre de gravité du réservoir Z_g ainsi que la hauteur du support $h_{support}$ sont toutes des données extraites des fichiers résultats du logiciel robot.

✓ *vérification de la période :* [4.2.4 du RPA99 v2003]

 $T+0,3T = 2,028 +0,3*2,028 = 2,64s > T_{robot} = 1,364s \implies Condition \ verifiee$

- ✓ Vérification de l'effort tranchant à la base : [Article : 4.3.6]
- > Calcul de la force sismique totale: [RPA 2003 Article : 4.2.3]

La force sismique totale V, appliquée à base de la structure doit être calculée successivement dans deux directions horizontales et orthogonales selon la formule suivante :

$$V_{st} = \frac{A.D.Q}{R}.W_{T}$$
 RPA99 v2003 [formule 4-1]

Avec :

- *R*=3,5
- *A*=0,4
- D=2,5 η (T2/T) ^{2/3}=2,5*0,764*(0,5/2,028)^{2/3}=0,751
- Wt =180124,5931 kN

On aura finalement :

$$V_{st} = \frac{0,4*0,751*1,15}{3,5}*180124,5931$$

$$V_{st} = 17778,6 \text{ kN}$$

\blacktriangleright Vérification de l'effort sismique dynamique : V_d

On doit vérifier que : $V_d \ge 0.8 V_{st}$

Sens	V _{st} (KN)	0.8 V _{st} (KN)	V _d (KN)	Observation
Sens-X	17778,6	14222,88	1943,737	Non vérifiée
Sens-Y	17778,6	14222,88	10227,848	Non Vérifiée

Tableau VI.12

Remarque :

 $V_t < 0.80~V,$ il faudra donc augmenter tous les paramètres de la réponse (forces, déplacements, moments,...) dans le rapport $~0.8~V/V_t$

✓ Vérification des déplacements :

Les extrêmes globaux des déplacements de la structure sont résumés dans le tableau ci-dessous :

	UX [cm]	UY [cm]	UZ [cm]	RX [Rad]	RY [Rad]	RZ [Rad]
MAX	63,737	82,576	18,761	0,168	0,222	0,434
Noeud	48290	51778	52217	5346	6787	7013
Cas	13 (C) (CQC)	14 (C) (CQC)	13 (C) (CQC)	8 (C)	13 (C) (CQC)	13 (C) (CQC)
Mode						
MIN	-99,193	-61,554	-60,223	-0,135	-0,281	-0,145
Noeud	50454	49244	49950	8418	7014	21765
Cas	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)	8 (C)
Mode						

Tableau VI.13: extrêmes globaux des déplacements des nœuds

Note : Les déplacements horizontaux à chaque niveau « k » de la structure sont calculés comme suit :

 $\delta k = R.\delta e k$ [Art 4.4.3 RPA99 version 2003 page 37]

Avec :

R= 3,5 (Coefficient de comportement).

 δ_{ek} : Déplacement dû aux forces sismiques *Fi* (y compris l'effet de torsion).

Vérification :

D'après [Art 5.10 RPA99 v2003], les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents ne doivent pas dépasser 1% de la hauteur d'étage.

Pour notre structure : ht RDC=4.8 m Le déplacement max $U \le 4.8 \text{ cm}$ ht e.courant=2.87 m Le déplacement max $U \le 2.87 \text{ cm}$ Le déplacement relatif au niveau « **k** » par rapport au niveau « **k-1** » est égale à : $\Delta U = Uk - Uk - 1$

Nivoou	déplacement des niveaux		déplacements re	várification	
INIVEAU	Max UX[cm]	Max UY[cm]	ΔUX [cm]	ΔUY [cm]	vermeation
7	0,305	0,014	/	/	/
6	0,227	0,012	0,078	0,002	vérifié
5	0,184	0,004	0,043	0,008	vérifié
4	0,145	0,005	0,039	-0,001	vérifié
3	0,109	0,007	0,036	-0,002	vérifié
2	0,075	0,009	0,034	-0,002	vérifié
1	0,044	0,018	0,031	-0,009	vérifié
RDC	0,035	0,014	0,009	0,004	vérifié

La vérification des déplacements est résumée dans le tableau suivant :

Tableau VI.14: Vérification des déplacements (RPA99).

Conclusion :

La réhabilitation et le renforcement proposé ont donnés des résultats satisfaisants car elle permet une réduction des contraintes dans le noyau allant jusqu'à presque un quart (¼) de la valeur qu'elle a subit sous le séisme du 21 mai 2003 ; Aussi on a pu réduire la période de l'ouvrage de 1,46 secondes à 1,36 secondes.

Le coût global de l'opération est estimé à :

Six millions quatre cent cinquante cinq mille cent soixante dix-neuf dinars et trente quatre centimes (T.T.C).

DEVIS QUANTITATIF ET ESTIMATIF DE LA REPARATION					
DÉSIGNATIONS	UNITÉ	QUANTITÉ	PRIX UNITAIRE (DA)	MONTANT (DA)	
Piquage des éléments en béton armé	m ³	37	4800	177600	
Percement sur béton	ml	400	300	120000	
Transport des déchets de piquage à la décharge publique	m ³	220	450	99000	
Colmatage des fissures par mise en place de la résine époxy	ml	600	1600	960000	
Fourniture et pose de produit pour scellement.	ml	400	150	60000	
Exécution de Béton Armé	m ³	148	24000	3552000	
coffrage en bois pour noyau et elements autours	m²	200	500	100000	
Fourniture et pose d'acier pour beton tous diamètres et toutes nuances confondus	Kg	4984,97	90	448647,3	
		5517247,3			
		937932,041			
	Μ	6455179,34			
Le montant total en T.T.C est arrêté à la somme de :	Six millions quatre cent cinquante cinq mille cent soixante dix-neuf dinars et trente quatre centimes				

Ce travail s'inscrit clairement dans un environnement pratique de la profession d'expert où plusieurs aspects ont été traités. A commencer par une description de l'ouvrage puis une modélisation en éléments finis et enfin un programme de réhabilitation tout en faisant des visites régulières sur site pour pouvoir constater les dégâts et désordres causés par le séisme et recueillir des données utiles pour notre démarche.

Nous nous somme attaqué à un ouvrage très complexe par le fait qu'il joue une double fonction (habitation et stockage d'eau potable) et aussi du point de vue comportement et d'ailleurs nous l'avons bien vérifié au chapitre V où l'ouvrage a été assimilé à une masse concentrée(le réservoir) reposant sur un support de masse non négligeable et d'une section transversale constante(bâtiment).

En comparaison entre les deux cas ou le réservoir été plein ou vide nous avons démontré l'importance d'une étude hydrodynamique pour ce genre d'ouvrage puisque la variation des contrainte constaté au niveau du noyau central qui reprend 64,5% du poids du réservoir atteint les 17%.

Tenant compte de nos résultats et l'endommagement du noyau central constaté sur le terrain, des actions de réhabilitation de l'ouvrage été plus que nécessaire, c'est se que nous avons vu au chapitre VI où nous avons proposé et étudier des solutions pour pouvoir à la fois réparé les endommagements constaté, renforcer l'ouvrage pour augmenter sa rigidité et rehausser sa sécurité vis-à-vis d'une action sismique future tout en choisissant la solution la plus économique et qui nous donne des résultats appréciable.

Tout au long de notre travail, nous avons été contraints par un manque de documentation et réglé de calcul car le RPA 99v2003 ne postule aucun article qui traite directement un cas similaire à notre ouvrage, on a été alors a chaque fois dans l'obligation de faire des approche et utiliser a la fois deux règlement en l'occurrence le RPA et le BAEL pour la partie bâtiment et les Annales de l'institue technique du bâtiment et des travaux publics et l'EUROCODE 8 pour la partie réservoir.

A la fin, la création d'un règlement spécifique aux ouvrages hydraulique propre à l'Algérie est une nécessité pour facilité le travail des ingénieurs et master en génie civil et en hydraulique.

Enfin nous espérons que notre travail soit utile et bénéfique pour les promotions à venir.

Bibliographie

- D.T.R B.C22, Charges permanentes et charges d'exploitation.
- BAEL 91 modifiées 99 règles technique de conception et de calcul des ouvrages et construction en béton armé suivant la méthode des états-limites (Eyrolles).
- Catalogue des méthodes de réparation et de renforcement des ouvrages (centre national de recherche appliqué en génie parasismique C.G.S).
- Règles parasismiques algériennes R P A 88 (D TR B-C 2-48).
- Règles parasismiques algériennes R P A 99 version 2003.
- Mémoire de fin d'étude d'ingénieur en génie civil étudié par M^r Yassine KHELIL et M^r Arezki MEDRAR sous le thème « étude d'une structure mixte ossature auto stable en béton armé surélevée d'un réservoir d'une capacité de 400m³ » promotion 1999 dirigé par M^r HAMMOUM
- Mémoire de fin d'étude d'ingénieur sous le thème « *Expertise et confortement d'un château d'eau surélevé d'une capacité de 500m³* » étudié par Mr BERKANI Hamza *E.N.T.P*.
- Revue générale des techniques « *le génie civil* » paris, janvier1963.
- Recueil d'information sur les terrains (APC Dar el Beida, CTC centre et ouest (Alger), direction général d'Hydraulique à Alger, CTC sud Tizi Ouzou, ENSTP...).
- Annales du bâtiment et des travaux publics, Avril-joint 2010 N°2-3 ;
- Annales de l'institue technique du bâtiment et des travaux publics N°409-novembre 1982 « *calcul pratique de réservoirs en zone sismique* » ; Victor DAVIDOVICI et Abdelkader HADDADI.
- Thèse d'ingénieur des demoiselles ARAB Souad et ALLANE Nadia (promotion 2011/2012), calcul d'un bâtiment R+8 surmonté d'un réservoir en zone sismique.
- Robot Structural Analysis 2013 (V26), documentation AUTODESK.
- Recherche globale sur internet.

1" JANVIER 1968

. Immerble à appartements surmonté d'un réservoir de 1000 m² à Alger. — On yient de terminer la construction à Alger un curieux immeuble, en forme de tour carrée de 17 m de côté, à 7 étages, surmonté d'un réservoir de 1000 m², dont la *Technique des Travaux* donne la description dans son numéro de septembre octobre 1962 (p. 295).

. . .

.1.

Comme le montre la figure ci-dessous, cette construction est constituée par une tour centrale cylindrique de 6 m de diamètre, supportant le réservoir et autour de laquelle sont disposés en étoile 8 voiles de béton formant essature. Le contreventement est assuré par les planchers. L'ensemble est fondé sur 62 pieux Franki de 13 m de fiche par l'intermédiaire de senelleş et poutres de grande rigidité.

Coupe verticale par l'axe de la sour centrale de l'immeuhle de 7 étages à appartements d'Alger surmonté d'un réservoir de 1000 m⁶.

Chaque étage comporte 4 appartements de 3 pièces, sauf le premier qui comprend 8 studios. La tour centrale abrite l'escalier, l'ascenseur, les paliers d'accès aux appartements, ainsi que les gaines dans lesquelles passent les canalisations du réservoir.

Le réservoir est constitué par une cuvette en forme de paraboloïde de révolution raccorde à une calotte sphérique.

Les façades ne comportent pas de briques, du moins extérieurement, mais utilisent largement le verre, le plastique et Paluminium.

Le rez-de-chaussée est libre et peut être utilisé partiellement comme abri à voiturcs.

Le bétonnage du réservoir a été effectué, pour la première fois en Algérie, avec un béton sec projeté sur le ferraillage et le seul coffrage extérieur. Commencé en octobre 1960, les travaux étaient pratiquement terminés en janvier 1962, mais les incidents de la conjoncture algérienne sur la poursuite du chantier retardérent l'achèvement total.

ÉTUDES ÉCONOMIQUES

Lo rôle de l'industrie des travaux publics et du bâtiment dans l'économie trançaise... Dans les Annales des Ponts et Chaussées de septembre-octobre 1962 (p. 527), M. Fierre RENAUD, vice-président du conseil général des Ponts, et Chaussées montre qu'il est aujourd'hui possible, grâce aux progrès de la compitabilité nationale, de connaître la part des produits de chaque branche d'activité qui est finalement destinée à la construction des ouvrages de bâtiment et de génte civil.

Cette connaissance permet, non seule ment d'évaluer le nombre total de personnes qui coopèrent à l'acte de construire, mais aussi d'apprécier l'importance des autres moyens de production nécessaires à l'activité de cette branche.

Après avoir indiqué la méthode de calcul de cet « 'effet d'entrainement ». l'auteur donne les résultats de ce calcul par branches d'activité, puis les résultats globaux qui pernettent d'avoir un aperçu de l'influence des activités du bâtiment et des travaux publics sur l'ensemble de l'activité économique.

La conclusion est que l'industrie du bâtiment et des travaux publics, qui occupe discontament 1 459 000 personnes, soit 7.8-92 de l'ensemble des personnes actives, roquiert au total le travail de 4.231 000 personnes, soit 22.4-92 de cet ensemble.

M. Pierre Renaud met ainsi en évidence, sur des bases scientifiques, l'importance primordiale de l'industrie du bâtiment et des travaux (publics, véritable industrie pilote de l'economie.

HYDRAULIQUE

Double problème hydrologique et de distribution des caax posé par les pertes du Danube. — Le problème déjà ancien des pertes du Danube dans les calcaires fissurés du Jura Souabe entre Immendingen et Fridingen est à nouveau repris par M. K. SCHMURT dans Wasserwirtschaft, d'octobre 1961 (p. 268).

Après un bref historique de ces pertes, l'auteur expose les résultats qui ont permis d'établir les conclusions suivantes :

-- les perles maximales à Immerdingen atteignent 70 m°/s; elles sont de ± 6 m²/s à Fridingen, les eaux s'infiltrant pendant la moltié de l'année sont restituées pendant l'autre moltié; -- les trois quarts du débit de la source

-- les trois quarts du débit de la source de l'Aach proviennent de la restitution des pertes du Danube; le reste est fourni par un bassin versant de 9 km² complété par un bassin souteirain de 200 km² environ; -- l'importante accumulation des eaux

— l'importante accumulation des eaux évalué à 80 millions de m³ dans les cavités de couches calcaires étagées, reliées de place en place par des massifs portux, explique le décalage de 60 h entre les courbes de débit des pertes avant Möhringen et celles de la source de l'Aach. Ces pertes, qui à cortaines époques de

Ces pertes, qui à certaines époques de l'année peuvent complétement assécher le lit du fleuve, étant préjudiciables aux villes riveraines, l'Administration des Eaux a décidé de dévier le Danube par une galerie en avai d'Immendingen et de restiture les eaux en amont de Möhringen. Cette dé-

Annexe 1 :

Article extrait de la « Revue générale des techniques « le génie civil » paris, janvier1963 »

ROBOT 2013

Date: 04/09/12

Propriétés du projet: structure pfe

Nom du fichier :: **structure final 2003 CONFORTE.rtd** Emplacement: E:bureauAVEC NOYAU CONFORTE Créé: 27/09/12 02:19 Modifié: 23/09/12 08:46 Taille: 2006036992

Auteur : HAMITOUCHE Said Bureau: Adresse:

Caractéristiques de l'analyse de l'exemple :

Type de structure : Coque

Coordonnées du centre géométrique de la structure:

Coordonnées du centre de gravité de la structure:

Coordonnées du centre de gravité de la structure avec la prise en compte des masses statiques globales:

Iz = 83329161.569 (*kg*m2*) Masse = 1801245.931 (*kg*)

Coordonnées du centre de gravité de la structure avec la prise en compte des masses dynamiques globales:

X = 8.932 (m) Y = 8.899 (m) Z = 16.839 (m)Moments d'inertie centraux de la structure avec la prise en compte des masses dynamiques globales:

 $\begin{aligned} &Ix = 259496056.318 \ (kg*m2) \\ &Iy = 259843558.692 \ (kg*m2) \\ &Iz = 207565120.505 \ (kg*m2) \\ &Masse = 4156325.575 \ (kg) \end{aligned}$

Description de la structure		
Nombre de noeuds:	63758	
Nombre de barres:	340	
Eléments finis linéiques:	662	
Eléments finis surfaciques:	62249	
Eléments finis volumiques:	0	
Liaisons rigides:	3670	
Relâchements:	0	
Relâchements unilatéraux:	0	
Relâchements non-linéaires:	0	
Compatibilités:	0	
Compatibilités élastiques:	0	
Compatibilités non-linéaires:	0	
Appuis:	383	
Appuis élastiques:	0	
Appuis unilatéraux:	0	
Appuis non-linéaires:	0	
Rotules non-linéaires:	0	
Cas:	16	
Combinaisons:	10	
Resumé de l'analyse		
Méthode de solution - SPARSE M		
Mar. 1. 1		

Nbre de degrés de liberté stat.:	378126		
Largeur de la bande	_	_	
avant/après optimisation:	0	0	

Durée des calculs [s]	
Durée max agrégation + décomp.:	145
Durée max itér. sur sous-espace:	1199
Durée max solution prb. nonlin.:	0
Durée totale:	3189
Espace disque et mémoire utilisés [o] Espace totale du disque utilisé: Espace pour fichier TMP solveur: Espace pour itérat. s/sous-esp.: Mémoire:	-1110294576 0 145200768 221321104

Elém. diagon. de la matrice de rigidité

2.512661e+004 Précision: Min/Max après décomposition: 5.471357e+021 -3

Liste de cas de charges/types de calculs

Cas 1 : G Type d'analyse: Statique linéaire

Energie potentielle :	2.3126
Précision :	2.1142

2.31264e+002 (kN*m) 2.11428e-002

Cas 2 : Q Type d'analyse: Statique linéaire

Energie potentielle : Précision : 4.98588e+000 (kN*m) 1.53478e-002

Cas 3 : Qeau Type d'analyse: Statique linéaire

Energie potentielle : Précision : 1.65058e+004 (kN*m) 7.74917e-003

Cas 4 : Modale Type d'analyse: Modale					
Excentricité de masse	ex =		5.000 (%)	ey =	5.000 (%)
Données:					
Mode d'analyse		:	Modal		
Méthode		:	Itération sur le s	sous-espace	
Type de matrices de masses		:	Cohérente	-	
Nombre de modes		:	32		
Nombre d'itérations		:	40		
Tolérance		:	1.00000e-004		
Amortissement		:	0.100		
Limites		:	0.000		
Coefficient des masses partici	pantes	:	90.000		

Cas 5 : EX Type d'analyse: Sismique - RPA 99 (2003)

Direction de l'excitation:

X = 1.000

Y = 0.000

Z = 0.000

Données:					
Zone	:	@V/	4L(2	ZoneRPA	99)@
Usage	:	1A			
Assise	:	S3			
Coefficient de qualité	:		1.15	50	
Coefficient de comporteme	nt		:		3.500
Amortissement	:	x =		10.00 %	

Paramčtres du spectre:

Correction de l'amortissement : $= [7/(2+)]^{0,5} = 0.764$ A = 0.400 T₁ = 0.150 T₂ = 0.500

Cas 6 : EY Type d'analyse: Sismique - RPA 99 (2003)

Direction de l'excitation:

Données:

Zone	: @VAL(ZoneRPA99)@
Usage	: 1A
Assise	: S3

Coefficient de qualité : 1.150 Coefficient de comportement 3.500 : Amortissement : x = 10.00 % Paramčtres du spectre: Correction de l'amortissement : $= [7/(2+)]^{0,5} =$ 0.764 A = 0.400 $T_1 =$ 0.150 $T_2 = 0.500$ Cas 7 ELU vide : Type d'analyse: Combinaison linéaire Cas 8 : **ELU** plein Type d'analyse: Combinaison linéaire Cas 9 **ELS vide** : Type d'analyse: Combinaison linéaire **Cas 10 ELS** plein : Type d'analyse: Combinaison linéaire **Cas 11** : G+Qhabitat+EX Type d'analyse: Combinaison linéaire **Cas 12** G+Qhabitat+EY : Type d'analyse: Combinaison linéaire **Cas 13** G+Qhabitat+Qeau+EX : **Type d'analyse : Combinaison linéaire Cas 14** : G+Qhabitat+Qeau+EY Type d'analyse: Combinaison linéaire **Cas 15** 0,8G+EX : Type d'analyse: Combinaison linéaire 0.8G+EY **Cas 16** : Type d'analyse: Combinaison linéaire

Liste des tableaux

Chapitre III :

Tableau III.1 : centre de masse des voiles RDC

Tableau III.2 : centre de masse des voiles EC

Tableau III.3 : centre de masse des poutres RDC

Tableau III.4 : centre de masse des poutres EC

Tableau III.5 : charge revenant au plancher terrasse

Tableau III.6 : centre de masse du plancher terrasse

Tableau III.7 : charge revenant au plancher EC

Tableau III.8 : centre de masse au plancher EC

Tableau III.9 : centre de masse de l'acrotère

Tableau III.10 : centre de masse des escaliers

Tableau III.11 : charge revenant aux murs extérieurs type 1 premier étage

Tableau III.12 : charge revenant aux murs extérieurs type 2 ; premier étage

Tableau III.13 : centre de masse des murs extérieur ; étage1 ; type 1

Tableau III.14 : centre de masse des murs extérieur de l'étage 1 dans le sens transversal (type2)

Tableau III.15 : centre de masse des murs extérieur de l'étage 1 dans le sens longitudinal (type 2)

Tableau III.16 : charge revenant aux murs intérieurs type 1 premier étage

Tableau III.17 : charge revenant aux murs intérieurs type 2 ; premier étage

Tableau III.18 : centre de masse des murs intérieurs de l'étage 1 dans le sens longitudinal (type 1)

Tableau III.19 : centre de masse des murs intérieurs de l'étage1 dans le sens transversal (type1)

Tableau III.20 : centre de masse des murs intérieur de l'étage 1 dans le sens transversal (type2)

Tableau III.21 : centre de masse des murs intérieur de l'étage 1 dans le sens longitudinal (type 2)

Tableau III.22 : centre de masse des murs intérieur de l'étage courant dans le sens transversal (type 2)

Tableau III.23 : centre de masse des murs intérieur de l'étage courant dans le sens longitudinal (type2)

Tableau III.24 : centre de masse des murs intérieurs de l'étage courant dans le sens longitudinal (type 1)

Tableau III.25 : centre de masse des murs intérieurs de l'étage courant dans le sens transversal (type 1)

Tableau III.26 : centre de masse des murs extérieur de l'étage courant dans le sens longitudinal (type 1)

 Tableau III.27 : centre de masse des murs extérieur de l'étage courant dans le sens transversal (type 1)

Tableau III.28 : centre de masse des murs extérieur de l'étage courant dans le sens transversal (type 2)

Tableau III.29 : centre de masse des murs extérieurs de l'étage courant dans le sens longitudinal (type 2)

Tableau III.30 : centre de mase de l'ensemble des éléments

Tableau III.31 : inertie de voiles transversaux

Tableau III.32 : inertie longitudinal des voiles

Tableau III.33 : centre de torsion des voiles transversaux

Tableau III.34 : centre de torsion des voiles longitudinaux

Tableau III.35 : Centre de torsion du noyau central dans le sens longitudinal (xx)

Tableau III.36 : Centre de torsion du noyau central dans le sens transversal (yy)

Tableau III.37 : Rigidité de l'ensemble voiles + noyau

Tableau III.38 : Centre de torsion de l'ensemble voiles + noyau

Tableau III.39 : Excentricité théorique

Tableau III.40 : L'inertie polaire des voiles de l'étage courant sens longitudinal

Tableau III.41 : L'inertie polaire des voiles de l'étage courant sens transversal

Tableau III.42 : L'inertie polaire des voiles du RDC sens longitudinal

Tableau III.43 : L'inertie polaire des voiles du RDC sens transversal

Tableau III.44 : pourcentage des inerties polaires revenant aux éléments porteurs

Chapitre V:

Tableau V.1 : Les périodes de vibration sous le spectre de 2003.

Tableau V.2 : Vérification de l'effort sismique dynamique

Tableau V.3 : extrêmes globaux des déplacements des nœuds

Tableau V.4: Vérification des déplacements (RPA99).

Tableau V.5 : excentricités théoriques

Tableau V.6: excentricités accidentelles

Tableau V.7 : extrêmes globaux des efforts

Tableau V.8 : extrêmes globaux des périodes sous le spectre de 1988

Tableau V.9: vérification des efforts tranchants à la base

Tableau V.10 : extrêmes globaux des déplacements des nœuds

Tableau V.11 : Vérification des déplacements (RPA88).

Tableau V.12 : excentricités théoriques.

Tableau V.13 : excentricités accidentelles

Tableau V.14 : extrêmes globaux des efforts

Tableau V.15 : Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY

Tableau V.16 : Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY

Tableau V.17 : Efforts internes dans le noyau central (EC;1er étage);cas G+Q+Qeau+EY

Tableau V.18 : Contraintes dans le noyau central (EC; 1er étage) ; cas G+Q+Qeau+EY

Tableau V.19 : Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EX

Tableau V.20 : Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EX

Tableau V.21 : Efforts internes dans le noyau central (EC;1er étage);cas G+Q+Qeau+EX

Tableau V.22 : Contraintes dans le noyau central (EC;1er étage);cas G+Q+Qeau+EX

Tableau V.23: Efforts internes dans le voile VL4 N°83 suivant XX (RDC);cas G+O+Oeau+EX Tableau V.24 : Contraintes dans le voile 83 (RDC) xx; cas G+Q+Qeau+EX Tableau V.25: Efforts internes dans le voile VL4 N°83 suivant XX (RDC);cas G+Q+Qeau+EY Tableau V.26 : Contraintes dans le voile 83 (RDC) xx; cas G+Q+Qeau+EY Tableau V.27: Efforts internes dans le voile VL1 N°92 suivant YY (RDC);cas G+Q+Qeau+EX Tableau V.28 : Contraintes dans le voile 92 (RDC) yy; cas G+Q+Qeau+EX Tableau V.29: Efforts internes dans le voile VL1 N°92 suivant YY (RDC);cas G+O+Oeau+EY Tableau V.30 : Contraintes dans le voile 92 (RDC) yy; cas G+Q+Qeau+EY *Tableau V.31* : Efforts internes dans le poteau N°254 ; cas G+Q+Qeau+EX Tableau V.32 : Efforts internes dans le poteau N°254 ; cas G+Q+Qeau+EY Tableau V.33 : Efforts internes dans la poutre N°55 ; cas G+Q+Qeau+EX *Tableau V.34* : Efforts internes dans la poutre N°55 ; cas G+Q+Qeau+EY

Chapitre VI :

Tableau VI.1 : extrême globaux des périodes de vibration (solution 1)
Tableau VI.2 : Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY
Tableau VI.3 : Contraintes dans le noyau central (RDC); cas G+Q+Qeau+EY
Tableau VI.4 : extrêmes globaux des périodes (solution 2)
Tableau VI.5 : Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY
Tableau VI.6 : Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY
Tableau VI.7 : période fondamentale (solution 3)
Tableau VI.8 : Efforts internes dans le noyau central (RDC);cas G+Q+Qeau+EY
Tableau VI.9 : Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY
Tableau VI.9 : Contraintes dans le noyau central (RDC);cas G+Q+Qeau+EY
Tableau VI.10 : devis quantitatif et estimatif de la première solution
Tableau VI.12 : Vérification de l'effort sismique dynamique
Tableau VI.13: extrêmes globaux des déplacements des nœuds
Tableau VI.14: Vérification des déplacements (RPA99).

Liste des figures

Chapitre I :

Figure I.1 : situation de notre projet et l'ouvrage qui le remplace

Figure I.2 : vue générale de l'ouvrage

Figure 1.3 : vue satellitaire de la situation de l'ouvrage « photo Google maps »

Figure I.4 : vue satellitaire de notre ouvrage et le réservoir « photo Google earth »

Figure I.5 : Plan de la façade sud-est

Figure I.6 : Plan de la façade sud-ouest

Figure I.7 : Plan de coupe

Figure I.8 : Plan de l'étage courant

Figure I.9 : Plan du premier étage

Figure I.10 : Plan du RDC

Figure I.11: Plan des fondations

Chapitre II :

Figure II.1 : Diagramme contrainte-déformation du béton à l'ELU

Figure II.2 : Diagramme de contrainte-déformation du béton à l'ELS

Figure II.3 : Diagramme contrainte-déformation des aciers

Chapitre III :

Figure III.1 : disposition des voiles

Figure III.2 : disposition des poutres

Figure III.3 : coupe verticale du plancher terrasse

Figure III.4 : coupe verticale du plancher EC

Figure III.5 : position du centre de masse des plancher

Figure III.6 : caractéristiques géométriques de l'acrotère

Figure III.7.a : Coupe verticales de l'escalier du dernier niveau

Figure III.7.b : caractéristiques géométriques des escaliers du RDC

Figure III.7.c : caractéristiques géométriques des escaliers de l'EC

Figure III.8 : coupe du mur de façade type 1

Figure III.9 : coupe du mur de façade type 2

Figure III.10 : coupe du mur intérieur type 1

Figure III.11 : coupe du mur intérieur type 2

Chapitre IV:

Figure IV.1: Page d'accueil du logiciel ROBOT

Figure IV.2: choix du type de structure à étudier.

Figure IV.3: préférence de l'affaire.

Figure IV.4: définition des lignes de construction.

Figure IV.5: Définition des éléments barre.

Figure IV.6: boite de dialogue « barre » (Modélisation des poutres et des poteaux).

Figure IV.7.a : modélisation des panneaux (création des contours)

Figure IV.7.b : modélisation des panneaux (définition des épaisseurs)

Figure IV.7.c : introduction des caractéristiques du panneau

Figure IV.7.d : affectation des propriétés du panneau

Figure IV.7.e : exemple de modélisation des panneaux

Figure IV.8.a ; *Figure IV.8.b* ; *Figure IV.8.c* ; *Figure IV.8.d* : paramètres de la commande structure type

Figure IV.8.e : prise en forme du noyau

Figure IV.8.f : création des lignes de construction en coordonnées cylindrique

Figure IV.9.a : commande arc

Figure IV.9.b : commande révolution

Figure IV.9.c : vue en coupe du réservoir sans la coupole

Figure IV.9.d : vue en 3D du réservoir sans la coupole

Figure IV.9.e : commande géométrie pour la création des supports du réservoir

Figure IV.9.f: vue en 3D du réservoir et support

Figure IV.10.a : création des appuis linéaires avec la commande appuis

Figure IV.10.b : vue en plan des appuis de la structure

Figure IV.10.c : vue en 3D encastrement des voiles et noyau central

Figure IV.11.a : boite de dialogue attributs

Figure IV.11 : boite de dialogue attributs

Figure IV.12.a : Liaison rigide

Figure IV.12.b : conditions aux limites de la liaison rigide

Figure IV.12.c : vue d'un plancher infiniment rigide

Figure IV.13.a : définition des cas de charges

Figure IV.13.b ; Figure IV.13.c : définition de la charge surfacique

Figure IV.13.d : définition de la charge hydrostatique

Figure IV.13.e : représentation du chargement du réservoir

Figure IV.14.a : commande option de calcul

Figure IV.14.b ; *Figure IV.14.c* : paramètre de l'analyse modale

Figure IV.14.d : Définition des paramètres de l'analyse sismique (RPA)

Figure IV.14.e : conversion des charges en masse

Figure IV.15.a : paramètre des combinaisons d'action

Figure IV.15.b : Définition des combinaisons d'actions

Figure IV.16 : Vérification de la structure

Figure IV.17 : création des étages avec la commande étage

Figure IV.18 : Vue de la structure en 3D

Figure IV.19 : tableau de données et résultats

Figure IV.20.a : exemple de la commande propriétés des objets dans le fichier résultats

Figure IV.20.b : exemple M.N.T dans les éléments barre

Figure IV.20.c : exemple déplacements dans les éléments barre

Figure IV.21.a: fichier résultat, paramètres des diagrammes

Figure IV.21.b : diagrammes des M.N.T

Figure IV.21.c : diagrammes des moments fléchissant à l'E.L.U

Figure IV.21.d : diagrammes des efforts normaux à l'E.L.U

Figure IV.21.e : diagrammes des tranchants FX à l'E.L.U

Figure IV.22.a : déformée d'un portique de la structure

Figure IV.23.a : Commande cartographie

Figure IV.23.b : cartographie des voiles

Figure IV.23.c : cartographies des voiles et noyau

Figure IV.23.d : cartographie du réservoir

Figure IV.24.a : exemple du ferraillage d'un poteau, choix des combinaisons

Figure IV.24.b : poteau-vue

Figure IV.24.c : choix des armatures et leurs nuances

Figure IV.24.d : ferraillage du poteau, définition des options de calcul

Figure IV.24.e : disposition du ferraillage

Figure IV.24.f: plan d'exécution du poteau

Chapitre V:

Figure V.1 : model mathématique de la structure

Figure V.2 : schéma pour le calcul du volume d'une calotte sphérique

Figure V.3 : schéma pour le calcul du volume des parois

Figure V.4 ; Figure V.5 : schéma pour le calcul du volume de la cheminée du réservoir

Figure V.6.a : choix de l'orientation du repère local dans le fichier résultat

Figure V.6.b.1 : Nxx RPA 88

Figure V.6.b.2 : Nxx RPA 2003

Figure V.6.c.1 : Nyy RPA 88

Figure V.6.c.2 : Nyy RPA 2003

Figure V.6.d.1 : Nxy RPA 88

Figure V.6.d.2 : Nxy RPA 2003

Figure V.6.e.1 : Mxx RPA 88

Figure V.6.e.2 : Mxx RPA 2003

Figure V.6.f.1 : Myy RPA 88

Figure V.6.f.2 : Myy RPA 2003

Figure V.6.g.1 : Mxy RPA 88

Figure V.6.g.2 : Mxy RPA 2003

Figure V.6.h.1 : Qxx RPA 88

Figure V.6.h.2 : Qxx RPA 2003

Figure V.6.i.1: Qyy RPA 88

Figure V.6.i.2: Qyy RPA 2003

Figure V.6.j.1 : σxx RPA 88

Figure V.6.j.2 : σxx RPA 2003

Figure V.6.k.1 : σуу RPA 88

Figure V.6.k.2 : σуу RPA 2003

Figure V.6.1.1 : σxy RPA 88

Figure V.6.1.2 : σxy RPA 2003

Figure V.7 : Photo noyau central RDC

Figure V.8 : cartographie du noyau central RDC

Figure V.9 : photo voile du RDC

Figure V.10 : Choix du repère local des poteaux

Figure V.11.a : N sous le RPA 1988

Figure V.11.b : N sous le RPA 2003

Figure V.11.c : Uz sous le RPA 1988

Figure V.11.d : Uz sous le RPA 2003

Figure V.12 : Choix du repère local des poutres

Figure V.13 : effet hydrodynamique dans le réservoir

Figure V.14 : comparaison entre les contraintes dans le noyau central RDC cas du réservoir vide et cas plein

Chapitre VI :

Figure VI.1 : zone à réparer

Figure VI.2 : piquage à l'aide d'un marteau pneumatique

Figure VI.3 : Béton coulé en place derrière une paroi coffrée

Figure VI.4 : Béton pompé derrière une paroi coffrée

Figure VI.5 : vue en 3D modélisation de la deuxième solution

Figure VI.6 : vue en 3D modélisation de la troisième solution