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Résumé

Nous nous intéressons à la diffusion d’ondes électromagnétiques en régime harmonique, à travers un
fond homogène contenant des hétérogénéités anisotropes ou conductrices modélisées par des ouverts
à frontières Lipschitziennes, nous en dérivons une approximation de type Foldy-Lax ("point-like
interaction") où il est question d’approximer les inclusions par des pôles modulo des amplitudes
constantes, données pour ces dernières, par un système linéaire. Nous établissons la validité de cette
approximation lorsque le rapport entre le diamètre maximal (a) et la distance minimale (δ) séparant
les inhomogènes est fini i.e. a ∼ δ.

Mots-clés

Diffusion électromagnétique, Petites particules , Diffraction multiple, Approximation de Foldy-Lax.
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Abstract

We deal with the scattering of time harmonic electromagnetic waves through a cluster of both
anisotropic and perfectly conducting particles, embedded in homogeneous background, modeled by
open bounded Lipschitz Domains, we derive the Foldy-Lax approximation, valid for the mesoscale
regime that is a ∼ δ where a the maximum diameter of the particles and δ is the minimum distance
separating them.

Key words:

Electromagnetic scattering, Small bodies, Multiple scattering, Foldy-Lax approximation.
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Chapter 1

Introduction

1.1 Motivations

Multiple scattering theory could be described as a field of mathematical physics concerned by the
phenomena of diffusion through a cluster of particles. Either at quantum or continuum levels, the
main purpose is to account for the phenomenon of interaction in the most accurate and efficient
way depending on the purpose. With an abundant literature on the subject, see [49], the domain
continues to receive growing attention due to the increase of perspective in material science. The
field covers many aspects of the modern sciences and at different regimes (small or large scales and
resonating or not) from the scattering of light to seismic propagation passing by different imaging
sciences, see [43], [49], [7] and [70] for instance.

The continuous model, if considered by the integral equation approach, due to the usual bound-
ary conditions, would involve solving a system which is as large as the number of the scatterers.
Naturally, one should avoid such approach due to its complexity, and rather relay on an approxima-
tion of the problem based in the obvious physical intuition, suggesting that, the more the diameter
of the particle is small the more it should be considered as point-like scatterer. This is precisely what
L. L. Foldy initiated in [28]. Indeed, considering the scalar wave equation, that is ∆u + k2u = 0,
defined "the external field acting on the jth scatterer" to be the difference between the total field and
the Green function evaluated in the position of the scatterer modulo a constant coefficient Aj (i.e a
point-like scatterer of amplitude Aj). Then stating the assumption that "the strength of the scattered
wave from a scatterer is proportional to the external field acting on it" that is uj(rj) = gjAj , deriv-
ing a consistent algebraic linear system involving his scattering coefficients; a physical argument yet
not mathematically justified. Later on, M. Lax [46] generalized the approach for anisotropic cases,
with the same hypothesis on the strength of the field, on the assumption that "The single scattering
problem has been solved either experimentally or theoretically".

In the seventies, there were two methods proposed to justify, or precisely to give sense to these
arguments. The first one is based the use of the Fourier transform, then regularize (or cut the
singularity) in the Fourier domain and then comeback to the space variable. This is called a re-
normalization method, see [3]. The second method is based on self-adjoint extensions of symmetric
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Motivations 7

operators and the Krein’s resolvent representation. Both the two methods apply to a single particle
but provide with the exact model.

Regarding multiple particles, there were several methods proposed in the literature. They deal
with the case where these particles are stated in the small scaled regimes with different scales of
the contrasts. To cite a few of them, we start with Mazy’a et al. see [52] where Laplace and
Lamé related problems are considered. Their approach is heavily based on the maximum principles
and hence limted to low frequency scattering (actually the stationary regime). Extending their
method to Maxwell is then problematic. There were also a long list of works by A. Ramm, see [63].
However, the proposed approximations are mostly formal and their results related to Maxwell are
quite questionable. Let us also cite Ammari, see [32] who proposed the full expansions at any order,
but limited to single, or well separated, particles.

In the context of the previous intuition , and inspired by the approach in [19, 2], in the present
work, we were able to derive and rigorously justify such an approximation for the time harmonic
electromagnetic scattering. More precisely, we derived an approximation of the far field of the
scattered wave, which uniquely characterizes it, as follows

E∞(x̂) =
ℵ∑

m=1

( k2

4π
e−ikx̂·zm x̂×

(
Qm × x̂

)
+
ik

4π
e−ikx̂·zm x̂×Rm

)
+O(Error), (1.1.1)

where the amplitudes Am and Bm can be evaluated using the following linear system,

[T 1]mRm =

ℵ∑
(j≥1)j 6=m

[
Πk(zm, zj)Rj − ik∇Φk(zm, zj)×Qj

]
+H in(zm)

[T 2]mQm =

ℵ∑
(j≥1)j 6=m

[
Πk(zm, zj)Qj + ik∇Φk(zm, zj)×Rj

]
+ Ein(zm).

(1.1.2)

Here Φk and Πk := (k2I + ∇ ⊗ ∇)Φk, are respectively the fundamental solution of the Helmholtz
problem and the dyadic Green function. The Polarization tensor ([T l]m)ℵm=1, l = 1, 2, could be seen
as the scattering coefficient which precisely are evaluated by solving single scattering problem.

The main focus of the thesis is to derive these approximations by considering general configura-
tions on the contrast of the electromagnetic materials, the number of the particles ℵ, the minimum
distance between them δ and their maximum radius a. The term O(Error), appearing above, is
provided in terms of these parameters as well. The thesis contains essentially two chapters. The
first chapter concerns the scattering of electromagnetic wave from a cluster of perfect conductors,
in which we derived the Foldy-Lax approximation which is valid under the condition that

ln(a)
a3

δ3 = O(1), as a << 1. (1.1.3)

The only restriction in (1.1.3) is the appearance of the term ln(a). This is due to the use of
Neumann series inversion criterion for bounded operators. We obtained expansion for both the
far field and the near field of the scattered wave. The latter one is described as the sum of poles
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Main tools and the strategy of analysis 8

modulo constants that are described by a self containing linear system; which is invertible under a
less restrictive condition, namely

a

δ
= O(1), as a << 1. (1.1.4)

The second chapter comprises two parts. The first part, is devoted to the transmission problem,
namely the anisotropic inhomogeneities case. We derived the related results under the general
condition (1.1.4). We handled this case using Lippmann-Schwinger integral equation that we could
invert under the condition (1.1.4). In the second section, we revisited the scattering by a cluster of
perfect conductors and improved the results previously obtained by removing the ln(a) term in the
condition (1.1.3). This was possible using more pde-techniques as a certain Rellich-type identity to
estimate the densities. Precisely, we showed that both the exterior and the interior traces of the
electromagnetic fields are equivalent in norm.

Observe that the condition (1.1.4) means that we can handle the meso-scale regime of the multiple
scattering where δ ∼ a.

At the very technical level, based on the Stratton-Chu formula and taking advantage of the
properties of the different used layer potentials, we could handle the approximations of both the two
cases (perfect conductors and anisotropic inhomogeneities) in a similar way.

The two main chapters, chapter 2 and chapter 3, are written in an article style. They can be
read separately and independently. The notations are not always the same as some of them are
imposed to comply with the related literature. We are aware that this might create little confusion
at some point. We do apologize if this is the case!

1.2 Main tools and the strategy of analysis

In this section, after stating the problem, we describe the main tools used in chapter 2 and chapter 3.
Precisely, we first motivate the uniqueness issue of the solution and it natural relation to the radiation
condition. The existence of the solution is related to inverting an equivalent integral equation.
Regarding the perfectly conducting problem, we derive a surface integral system via the Maxwell
layer potentials, while for the transmission problem, we derive the Maxwell Lippmann-Schwinger
integral equation using Volume (or Newtonian) potentials. Both of these formulations are derived
starting from the Stratton-Chu formula.

1.2.1 The Maxwell system and our models of interest

Maxwell’s equation forms a particularly interesting model to describe the wave propagation of elec-
tromagnetic phenomena. Stated for the wave diffusion of the electric field E and the magnetic
field H through a given medium, with electric permittivity ε, magnetic permeability µ, and electric
conductivity σ. It reads as follows

curlE − µ∂H
∂t

= 0,

curlH + ε
∂E
∂t

= σE,
(1.2.1)

8



Main tools and the strategy of analysis 9

The parameters ε, σ and µ will be either complex/real tensor or scalar functions.
In particular, we are be interested by the diffusion of time-harmonic electromagnetic plane wave

at a fixed frequency ω. This is stated through both isotropic and anisotropic materials, represented
by multiply connected bounded Lipschitz domain D− = ∪ℵm=1Dm where ℵ is the number of con-
nected component surrounded by a homogeneous medium. We recall, that a lipschitz domain is
locally, i.e in some neighbor of each of its point, represented by the graph of a Lipschitz function.

For the anisotropic case, setting k := w
√
ε0µ0, E :=

√
ε0µ0

−1Ee−iwt and H :=
√
ε0µ0

−1He−iwt

with µr := (µ0)−1µ and εr := (ε0)−1(ε+ iσ/ω), the Maxwell equation reads

curlE − ikµrH = 0,

curlH + ikεrE = 0, in R3 \ ∂D := ∪ℵm=1∂Dm,

E = Ein + Esc,

ν × E|+ = ν × E|− across ∂D,

ν ×H|+ = ν ×H|− across ∂D.

(1.2.2)

When ε, σ and µ are scalar constant we will consider the scattering from a perfect conductor,
precisely, with k =

√
(ε+ i iσw )µ w, <

(
(ε+ i iσw )−1/2Ee−iwt

)
= E and <

(
(µ)−1/2He−iwt

)
= H the

following problem 
∇× E − ikH = 0,

∇×H + ikE = 0, in R3 \D := ∪ℵm=1Dm,

E = Ein + Esc,

ν × E|+ = 0 on ∂D.

(1.2.3)

The boundary condition ν × ( · )|+ respectively ν × ( · )|− must be understood as the extension
of exterior resp. interior trace operator, from the space of C∞-regular functions to the working
specified space, if it exist.

1.2.2 The radiation conditions and the uniqueness of the solutions

The radiation condition describes the behavior of the scattered wave at infinity. In order to properly
justify the adequacy of such a condition with the scattering problem, we need the following lemma
due to Rellich.

Lemma 1. (Lemma 2.12 [24]) Let D be a bounded open set. If E is a solution to the Helmholtz
equation R3 \D (i.e ∆E + k2E = 0 outside of D.) satisfying

lim
r−→∞

∫
∂B(0,r)

|E|2ds = 0, (Rellich)

then E ≡ 0 in R3 \D.

9
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Proof. The proof, which is standard, is based on spherical harmonic expansion (i.e Harmonic homo-
geneous, polynomials of degree n), which form a complete orthonormal system in L2(S2). Precisely

u(|x|) =

∞∑
n=0

∑
−n≤q≤n

(
Cqn(|x|) :=

∫
∂B(0,1)

u(ry)Y q
n (y)dsy

)
Y q
n (

x

|x|
) (1.2.4)

with
Y q
n (θ, φ) =

(2n+ 1(n− |q|)!
4π(n+ |q|)!

)
P |q|n (cos(θ))eiqφ

and (Pnq )(n,q)∈N×Z; |q|≤n stands for the Legendre functions given by

P qn(t) := (1− t2)
q
2
(
Pn(t)

)(q)
.

Then after writing the Helmholtz equation in polar coordinates and differentiating under the integral
(1.2.4), that the Cqn satisfies the Bessel’s differential equation

(Cqn(r))(2) +
2

r
(Cqn)(1) + (k2 − n(n+ 1)

r2
)Cqn = 0

whose solution are expressed in terms of Hankel functions, given by

Cqn(r) = αqnh
(1)
n (kr) + βqnh

(2)
n (kr), (1.2.5)

with the following asymptotic behavior

h(l)
n (r) =

e±i(r−nπ/2−π/2)

r
(1 +O(r−1)), l = 1, 2.

Finally, Parseval’s inequality gives∫
∂B(0,r)

|u|2ds = r2
∞∑
n=0

∑
−n≤q≤n

|Cqn(|x|)|2,

and helps us get
lim
r−→∞

r2|Cqn(|x|)|2 = 0.

Replacing in (1.2.5), we conclude that αqn = βqn = 0.

Remark 2. One must notice that, no particular hypothesis has been made concerning the geometry
of D. Further, due to the identity

curl2 = −∆ +∇ div,

every solution to Maxwell equation is a solution to the Helmholtz. However, a solution to the vector
Helmholtz problem is not necessarily solution to Maxwell equation unless it is divergence free.

10
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Lemma 1 describes a sufficient condition in order to have an identically null solution. In what
follows, we describe a way which helps links (Rellich) with some general behavior of the scattered
wave. Let D be a Lipschitz domain and r > 0 such that the ball B(0, r), centered at the origin with
radius r, contains D. An application of Green’s formula gives∫

∂B(0,r)
ν × E ·Hds−

∫
∂D
ν × E ·Hds

=

∫
∂Dr

ν × E ·Hds,

=

∫
Dr

(ikH ·H − (−ik) E · E)dv = ik

∫
Dr

(|H|2 − |E|2)dv.

(1.2.6)

Taking the real part in the above identity, for k ∈ R+, we have

<
∫
∂B(0,r)

ν × E ·Hds = <
∫
∂D
ν × E ·Hds. (1.2.7)

Replacing in the following development∫
∂B(O,R)

|H × ν − E|2ds =

∫
∂B(O,R)

(
|ν ×H|2 + |E|2

)
ds− 2<

∫
∂B(0,R)

ν × E ·Hds, (1.2.8)

gives ∫
∂B(O,R)

|H × ν − E|2ds =

∫
∂B(O,R)

(
|ν ×H|2 + |E|2

)
ds− 2<

∫
∂D
ν × E ·Hds. (1.2.9)

Obviously, if E = E1 − E2, is the superposition of two solutions of (1.2.3) with a similar boundary
condition that is ν × E1 = ν × E2, and subject to the same incident field (1.2.9) becomes∫

∂B(O,R)
|H × ν − E|2ds =

∫
∂B(O,R)

(
|ν ×H|2 + |E|2

)
ds (1.2.10)

Together, this last equation and Lemma 1, motivate to impose the following, well known, Silver-
Müller radiation condition

H(x)× x/|x| − E(x) = O
(

1/|x|2
)
, (1.2.11)

or its relaxed one
lim
R−→0

∫
∂B(O,R)

|H × ν − E|2ds = 0, (1.2.12)

in order to get E ≡ H ≡ 0, outside of D. Making E1 ≡ E2 and H1 ≡ H2, provids the uniqueness of
the solution.

Remark 3. We add the following two remarks.

11
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• When k ∈ C and =k > 0 it is easier to prove the uniqueness of the exterior problem, without
relaying on the Lemma 1, Indeed, from 1.2.6, we have∫

∂B(0,r)
ν × E ·Hds−

∫
∂D
ν × E ·Hds =

∫
Dr

(ik|H|2 − (−ik)|E|2)dv.

Taking the real part, we get

<
(∫

∂B(0,r)
ν × E ·Hds−

∫
∂D
ν × E ·Hds

)
= −=(k)

∫
Dr

(|H|2 + |E|2)dv.

Obviously, as =k > 0, we have

<
∫
∂B(0,r)

ν × E ·Hds→ 0, r →∞

which guaranties that

<
(∫

∂D
ν × E ·Hds

)
≥ =(k)

∫
R3\D

(|H|2 + |E|2)dv.

• The radiation condition for the Helmholtz equation was introduced by Sommerfeld in [67],
explaining the physical intuition that "We call it the condition of radiation: the sources must
be sources, not sinks, of energy. The energy which is radiated from the sources must scatter
to infinity; no energy may be radiated from infinity into the prescribed singularities of the field
(plane waves are excluded since for them even the condition u −→ 0 fails to hold at infinity)."

• It is obvious that the condition (1.2.11) implies (1.2.12). We get the equivalence using the
Stratton–Chu formula valid with the later condition, and the behavior of the Green’s kernel (
see Theorem 6.7 [24] for the Stratton–Chu formula or here after).

1.2.3 The surface and volume potentials and the existence of the solutions

Recapitulating the previous section and the motivated radiation condition, we have both the follow-
ing problems

• The time harmonic scattering from perfect conductors

∇× E − ikH = 0,

∇×H + ikE = 0, in R3 \D := ∪ℵm=1Dm.

E = Ein + Esc,

ν × E|+ = 0,

H(x)× x/|x| − E(x) = O
(

1/|x|2
)
.

(P.Perf-cond)

12



Main tools and the strategy of analysis 13

• The time harmonic scattering from anisotropic inhomogeneities

∇× E − ikµrH = 0,

∇×H + ikεrE = 0, in R3 \D := ∪ℵm=1Dm,

E = Ein + Esc,

ν × E|+ = ν × E|− across ∂D,

ν ×H|+ = ν ×H|− across ∂D.

H(x)× x/|x| − E(x) = O
(

1/|x|2
)
.

(P.Aniso)

We recall the Green’s function for the Helmholtz operator (∆ + k2),

φk(x, y) :=
1

4π

e−ik|x−y|

|x− y|
.

1.2.3.1 Boundary layer potentials and the exterior problem (P.Perf-cond)

Let D be a bounded C1 domain, and E, H two vector field in C1(D) ∩ C(D) satisfying Maxwell
equation. As a consequence of Green’s formula, we have the following Stratton-Chu representation

− curl

∫
∂D

Φk(x, y)ν × E(y)|− dsy

+
1

ik
curl2

∫
∂D
φk(x, y)ν ×H(y)|− dsy =

{
0, in R3 \D,
E. if x ∈ D.

(1.2.13)

see [24] and Theorem 5.49 of [40] for the Lipschitz boundary case. When E and H are in C1(R3 \
D)∩C(R3 \D), (i.e E, H are continuous up to the boundary.) and radiate to the infinity, we have
a similar formula, namely

curl

∫
∂D

Φk(x, y)ν × E(y)|+ dsy

− 1

ik
curl2

∫
∂D
φk(x, y)ν ×H(y)|+ dsy =

{
E(x), in R3 \D,
0, if x ∈ D.

(1.2.14)

The Green function satisfying, naturally, the Silver-Müller radiation condition, then also do both
the potentials

Mk
∂D(ν × U)(x) = curl

∫
∂D

Φk(x, y)ν × U(y) dsy (1.2.15)

and
Nk

∂D(ν × V )(x) = curl2
∫
∂D
φk(x, y)ν × V (y) dsy. (1.2.16)

13



Main tools and the strategy of analysis 14

Furthermore, the above potentials are C∞(R3 \ ∂D). If we consider the second potential, recalling
that curl2 = −∆ +∇ div, we get for a sufficiently smooth vector field V ,

Nk
∂D(ν × V )(x) =(k2 +∇ div)

∫
∂D
φk(x, y)ν × V (y) dsy,

=k2

∫
∂D
φk(x, y)ν × V (y) dsy −∇

∫
∂D
∇yφk(x, y) · ν × V (y) dsy,

=k2

∫
∂D
φk(x, y)ν × V (y) dsy +∇

∫
∂D
φk(x, y)(−ν · curlV (y)) dsy.

(1.2.17)

The last identity motivates to introduce the surface divergence of the tangential trace of a smooth
vector field as

Div(ν × V ) = −ν · curlV, (1.2.18)

to rewrite, with the above notation,

Nk
∂D(ν × U)(x) = k2

∫
∂D
φk(x, y)ν × V (y) dsy +∇

∫
∂D
φk(x, y) Div(ν × V (y)) dsy. (1.2.19)

When D has a Lipschitz boundary, then both the potential are continuous, up to the boundary with
the following trace, almost everywhere on ∂D, see [57],

ν ×Mk
∂D(A)(x)|± =[±I/2 +Mk

∂D](A)(x)

:=± 1

2
A+ ν × p.v. curl

∫
∂D

Φk(x, y) A(y)dsy,
(1.2.20)

and

ν ×Nk
∂D(A)(x)|± = [Nk

∂D](A)(x):=k2ν ×
∫
∂D

Φk(x, y)A

+ ν × p.v.∇
∫
∂D

Φk(x, y) DivA(y)dsy,

(1.2.21)

for any tangential density A such that ‖A‖L2(∂D) and ‖DivA‖L2(∂D) are finite. The space L
2,Div
t (∂D)

will signify the space of all such densities.
Similarly in the frame of the wave equation, we introduce, the single layer and the double layer

potentials as radiating solutions to the Helmholtz equation defined respectively as

Sk∂Dφ(x) :=

∫
∂D

Φk(x, y)φ(y)dsy, x ∈ R3 \ ∂D,

Kk
∂Dφ(x) :=

∫
∂D

∂Φk(x, y)

∂νy
φ(y)dsy, x ∈ R3 \ ∂D,

(1.2.22)

for φ ∈ L2(∂D). We have the following boundary traces

Sk∂D(φ)|± =[Sk∂D](φ) :=

∫
∂D

Φk(x, y)φ(y)dsy,

ν · ∇Sk∂D(φ)|± =[∓I/2 + (Kk
∂D)∗](φ) := ∓φ

2
+ p.v.

∫
∂D

∂Φk(x, y)

∂νx
φ(y)dsy,

(1.2.23)

14



Main tools and the strategy of analysis 15

and
Kk

∂D(φ)|± =[±I/2 +Kk
∂D] := ±φ

2
+ p.v.

∫
∂D

∂Φk(x, y)

∂νy
φ(y)dsy. (1.2.24)

Here (·)∗ stands for the adjoint. The above operators enjoy the following property,

1. [I/2 +Kk
∂D]∗ = [I/2 + (Kk

∂D)∗],

2. Div[±I/2 +Mk
∂D](A) = −[∓I/2 +Kk

∂D]∗(DivA)− k2ν · [Sk∂D](A),

3. ν ×∇[I/2 +Kk
∂D](φ) = [I/2 +Mk

∂D](ν ×∇φ) + k2ν × [Sk∂D](νφ),

4. Div(ν ×∇) ≡ 0.

The first and the last one are obvious. The second and the third are consequences of curl2 =
−∆+∇ div and the identity ∇xΦk(x, y) = −∇yΦk(x, y) integrating by part outside of the boundary
and using the traces (1.2.20), (1.2.21), (1.2.23) and (1.2.24).

It is clear that the field Esc := Mk
∂D(A) solves the problem (P.Perf-cond) whenever A ∈

L2,Div
t (∂D) is a solution of

[
1

2
+Mk

∂D]A = −ν × Ein, on ∂D. (1.2.25)

1.2.3.2 Volume Potentials and the transmission problem (P.Aniso)

Let us consider the following formula, (see [24] Theorem 6.1 ) valid, for any vector fields E, H
which are continuously differentiable in D and continuous up to ∂D,

E(x) =− curl

∫
∂D

Φk(x, y)ν × E(y)dsy +
k2

ik

∫
∂D

Φk(x, y)ν ×H(y)dsy

+∇
∫
∂D

Φk(x, y)ν · E(y)dsy −∇
∫
D

Φk(x, y) divE(y)dy

+ curl

∫
D

Φk(x, y)(curlE − ikH)(y)dy + ik

∫
D

Φk(x, y)(curlH + ikE)(y)dy.

(1.2.26)

We have, integrating by part∫
D

Φk(x, y) divE(y)dy =

∫
D

div(Φk(x, y)E(y))dy −
∫
D
∇yΦk(x, y) · E(y)dy,

=

∫
∂D

Φk(x, y)ν · E(y)dy + div

∫
D

Φk(x, y)E(y)dy.

(1.2.27)

Taking the gradient of this last identity and injecting it in the second term of the right hand member
of (1.2.26) gives

E(x) =− curl

∫
∂D

Φk(x, y)ν × E(y)dsy +
k2

ik

∫
∂D

Φk(x, y)ν ×H(y)dsy

−∇ div

∫
D

Φk(x, y)E(y)dy

+ curl

∫
D

Φk(x, y)(curlE − ikH)(y)dy + ik

∫
D

Φk(x, y)(curlH + ikE)(y)dy.

(1.2.28)

15



Main tools and the strategy of analysis 16

Having, in one hand,

1

ik
div

∫
∂D
φ(x, y)ν ×H(y)dsy =

1

ik

∫
∂D
φ(x, y) Div(ν ×H(y))dsy (1.2.29)

and, in another hand, integrating the left-hand side of the above, recalling that div curl ≡ 0, gives

1

ik
div

∫
∂D
φ(x, y)ν ×H(y)dsy =

1

ik
div

∫
D

curly(φ(x, y)H(y))dsy,

=
1

ik
div

∫
D
φ(x, y) curlH(y))dsy.

(1.2.30)

We conclude that

1

ik
div

∫
D
φ(x, y) curlH(y))dsy =

1

ik

∫
∂D
φ(x, y) Div(ν ×H(y))dsy. (1.2.31)

Now, we take the gradient of the precedent identity, adding its left-hand member and subtracting
the right-hand one to (1.2.26), with the notations (1.2.15) and (1.2.19), gives

E(x) =−Mk
∂D(ν × E(y))(x) +

1

ik
Nk

∂D(ν ×H(y))(x)

−∇ div

∫
D

Φk(x, y)E(y)dy − 1

ik
∇ div

∫
D
φ(x, y) curlH(y))ds

+ curl

∫
D

Φk(x, y)(curlE − ikH)(y)dy + ik

∫
D

Φk(x, y)(curlH + ikE)(y)dy.

(1.2.32)

If E = Esc + Ein, H = Hsc +H in are solution of (P.Aniso) we have,

(curlE − ikH)(y) = ik(µr − I)H, (curlH + ikE) = −ik(εr − I)E. (1.2.33)

Due to the continuity of the field across the boundary, and Esc radiating solution of the exterior
Maxwell problem, we have in D, (cf. eqs. (1.2.13) and (1.2.14))

−Mk
∂D(ν × Esc(y))(x) +

1

ik
Nk

∂D(ν ×Hsc(y))(x) = 0, (1.2.34)

and
−Mk

∂D(ν × Ein(y))(x) +
1

ik
Nk

∂D(ν ×H in(y))(x) = Ein, (1.2.35)

summing the last two equation and replacing the result in (1.2.32), motivates the following repre-
sentation,

E(x) =Ein(x) + ik curl

∫
D

Φk(x, y)CµrH(y)dy

+ (k2 +∇ div)

∫
D

Φk(x, y)CεrE(y)dy,

(1.2.36)

where Cεr := εr − I and Cµr := µr − I. Setting

Mk,CA
D (V ) := curl

∫
D

Φk(x, y)CAV (y)dy

16



Main tools and the strategy of analysis 17

and
N k,CA
D (V ) := (k2 +∇ div)

∫
D

Φk(x, y)CεrE(y)dy

gives us the following integral formulation(
I −N k,Cεr

D −ikMk,Cµr
D

ikMk,Cεr
D I −N k,Cµr

D

)(
E
H

)
=

(
Ein

H in

)
(1.2.37)

that we call the Lipmann-Schwinger equation.

It is clear that if (E,H) is solution of (1.2.37) then it is also solution of the transmission problem
(P.Aniso).

17
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Chapter 2

The Foldy-Lax Approximation for the
Full Electromagnetic Scattering by Small
Conductive Bodies of Arbitrary Shapes

2.1 Introduction and main results

The interest of estimating the waves propagating through a cluster of small inhomogeneities, em-
bedded in a homogeneous background, goes back at least to Rayleigh in the 19th century. This
interest is motivated by numerous applications in physics as in acoustics, electromagnetism and
elasticity where the inhomogeneities model acoustic bubbles, electromagnetic particles and elastic
deffects, respectively. Rayleigh already understood that as the size of the inhomogeneities is small,
when compared to the used wavelength, the dominating reflected fields are mainly poles and he de-
rived, formally, explicit approximations of these fields for special geometries, see [25] for an account
on these situations. Then Mie [54] proposed a general method for estimating the electromagnetic
waves, not necessarily in the Rayleigh regimes, but for special shapes as spheres, see also [33] for
more information. These approaches apply for well separated inhomogeneities, i.e. when the dis-
tance between them is large as compared to their relative size. To handle clusters allowing very close
inhomogeneities, Foldy, see [29], proposed an original method in the framework of acoustic waves
where the refraction indices are concentrated on the centers of the inhomogeneities, that means
there is a huge contrast between the inhomogeneities (the bubbles in this case) and the background.
Briefly, Foldy’s idea goes as follows. Motivated by physical considerations, and as the refraction is
concentrated on ’centers’ zi, i = 1, ...,m of the inhomogeneities, he represents the wave as a sum of
poles,

U(x) = U i(x) +
∑

i=1,...,m

AaiΦk(x, zi) (2.1.1)

where Aai , i = 1, ..,m, are unknown constants and Φk is the fundamental solution of the Helmholtz
propagator ∆ + k2, i.e. the pole itself. The term U i is the incident acoustic wave. The key concept

18



Introduction and main results 19

in his approach is the introduction of the field

Uj(x) := U i(x) +
∑
i 6=j

AaiΦk(x, zi) (2.1.2)

which is regarded as the external field incident on the jth inhomogeneity in the presence of all the
other inhomogeneities. The physical assumptions in Foldy’s method is that the strength of the
scattered wave from the inhomogeneity zj is proportional to the external field on it, i.e.

Aaj = geUj(zj). (2.1.3)

Evaluating (2.1.2) at the centers zi, i = 1, ...,m, we see that the coefficients Aai , i = 1, ...,m, are
solution of the following algebraic system, called also self-consistent system,

Aai −
∑
j 6=i

gai Φk(x, zj)A
a
j = gai U

i(zi) (2.1.4)

and the coefficients gai , i = 1, ...,m, are called the corresponding scattering coefficients of the model.
We can see this system as boundary conditions on the inhomogeneities. The novelty here is that
the representation (2.1.1) coupled with self-consistent system (2.1.4) take into account the multiple
interactions between the inhomogeneities. Assuming the inhomogenerities to be far away from each
other, we end up with waves reflected by single inhomogeneities. Since this work of Foldy, there was
a huge effort in understanding more its implications and extending it to other types of waves. The
reader is oriented to Martin’s book [49] form more insight in this direction.

As we can see, the derivation of the model (2.1.1)-(2.1.4) is formal even though it is driven
by physical considerations. Fortunately, these formal calculations were mathematically justified by
Berezin and Faddeev in their seminal work [12] where they use Krein theory of selfadjoint exten-
sions, see also [4, 3] for further developments in this direction. This is done in the framework of
the Schroedinger equation with point-like potentials. Another way used to give sense to Foldy’s
computations is the so-called regularization approach, see [3]. The difference between these two ap-
proaches is that the latter handles only isotropic interaction while the former allows for anisotropic
interactions. But, to our understanding, the latter is easier to implement for other types of waves
as electromagnetic and elastic waves, see [35, 17]. The Foldy method was also extended to multiple
scaled objects in [36, 37, 34] with applications to inverse scattering theory.

With this in mind, it is natural to expect that regarding small acoustic inhomogeneities (but
not necessarily highly concentrated ones as point-like scatterers), the dominated field would be the
one corresponding to the Foldy field given in (2.1.1)-(2.1.4) with appropriate scattering coefficients
gai , i = 1, ...,m. This was confirmed by several authors, see for instance ([27, 64, 53, 15, 18]) for
several related models.

Mimicking Foldy’s approach for the electromagntic waves propagating through small inhomo-
geneities with highly concentrated index of refraction, we obtain the system

E(x) = Ei(x) +
∑

i=1,...,m

AeiΠk(x, zi) (2.1.5)
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Introduction and main results 20

where Πk is the dyadic Green’s tensor, i.e. the fundamental solution of the Maxwell propagator
curl curl−k2. Here, the term Ei is the incident electromagnetic wave. The coefficients Ai, i =
1, ...,m, are now solution of the following algebraic system, which we can call the electric self-
consistent system,

Aei −
∑
j 6=i

geiΠk(x, zj)A
e
j = geiU

i(zi) (2.1.6)

and gei , i = 1, ...,m are the corresponding electric scattering coefficients.
As we can see, for waves generated by higly concentrated indices of refractions, i.e. point-like

refractive indices, the Foldy method provides the representation of the electric field as (solely) electric
dipoles, see [26] for a formal derivation and related issues. A mathematical justification of this model
can be found in [17]. However, this is not a surprise if the contrast comes from the index of refraction
via the electric permittivity keeping the magnetic permeabilitty constant and the same as the one of
the background. Regarding small inhomogeneities (but not highly concentrated indices of refraction
as point-like scatterers), the dominating part will be the Foldy field given in (2.1.5)-(2.1.6) with
appropriate scattering coefficients gei , i = 1, ...,m.

In the present work, we show that when there is a contrast for both the electric permittivity and
magnetic permeability, then the dominating field is a combination of electric as well as magnetic
dipoles. This is already observed in the literature, see for instance [44, 45, 72] and the references
therein where formal computations are proposed and discussed related to the moment method. In
[16, 10] a mathematical justification is provided for the case of well separated inhomogeneities. We
refer the interested readers to these works for more insight and related issues.

In the next section, we discuss briefly the results we derived for the case of small conductive
inhomogeneities and show the natural corresponding Foldy system which is the dominating field.
Let us emphasize that the approximation is derived taking into account all the parameters modeling
the inhomogeneities as the size, minimum distance, their number but also the used frequency.

Before closing this introduction, let us stress that in the recent twenty years or so, there were
different and highly important fields where such kind of approximations are key tools. Let us mention
few of them which are of particular interest to us:

1. Let us start with the mathematical imaging field where the small bodies can model impurities
or small tumors, for instance, that one should localize and estimate the sizes from the measured
fields (either near fields or far-fields), see [8]. In this case, based on our approximations, we can
indeed localize the small bodies by reconstructing the points zi, via MUSIC type algorithms
[8, 17], and then estimate the polarization tensors. From these polarization tensors, one can
derive lower and upper estimates of the small bodies’ sizes, see [1]. The small bodies can also
model electromagnetic nanoparticles. Imaging using electromagnetic nanoparticles as contrast
agent is a recent and highly attractive imaging modality that uses special properties of the
nanoparticles to create high contrasts in the tissue and then enhance the resolution of permit-
tivity reconstruction for instance. There are at least two types of such special properties:one
is related to the plasmonic nanoparticles (which are nearly resonant nanoparticles but might
create high dissipation) and the other one related to the all dielectric nanoparticles (which are
characterized by their high refraction indices), see [42], for instance.
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2. A second field where this kind of approximations are useful is the material sciences. Indeed,
arranging appropriately the small bodies in a given bounded domain, the whole cluster will
generate electromagnetic fields which are close to the fields generated by related indices of
refraction (or permittivities and permeabilities). These indices of refraction are dependent on
the properties of the small bodies, as the size, geometry and their own possible contrasts in
addition to the used frequencies. This opens the door to the possibility of creating desired and
new materials. Such ideas are already tested and justified to some extent mathematically in
the framework of the homogenization theory. However, this theory is based on the periodicity
(or randomness) in distributing the small bodies. As we can see it from the approximations we
provide above, we can achieve similar goals but without assuming the periodicity. In addition,
and as far the electromagnetic waves are concerned, we can handle in a unified way, the
generation of volumetric metamaterials, Gradient metasurfaces and also metawires, [71, 68].
These properties will be quantified and justified in a future work were we plan to handle more
general type of inhomogeneities than the conductive ones described in this work.

To describe precisely the inhomogeneities, let (Bi)
m
i=1 be m open, bounded and simply connected

sets containing the origin, with Lipschitz boundaries. To these sets, we correspond the small bodies
(Di)

m
i=1, i.e. the inhomogeneities, which are defined as the translations and contractions of the m

bodies (Bi)
m
i=1, that is

Di = aBi + zi, i = 1, ...,m (2.1.7)

where zi, i = 1, ...,m are given positions in R3 and a a small parameter.
We consider the scattering of a time-harmonic electromagnetic plane wave by the perfectly

conducting small bodies (Di)
m
i=1 formulated as follows (see [24])

∇× E − ikH = 0 in D+ := R3 \ ∪mi=1Di,

∇×H + ikE = 0 in D+,
(2.1.8)

with the boundary condition
ν × E = 0 on ∂D = ∪mi=1∂Di. (2.1.9)

The total electromagnetic fields are expressed as E = Ein+Esc, H = H in+Hsc where the indices
“in” and “sc” indicate the incident wave and the scattered wave, respectively. The condition (2.1.9)
corresponds to the case of perfectly conducting obstacle and ν expresses the unit outward normal
vector to the boundary of D = ∪mi=1 Di. Here the wave number k is defined through the relation
k2 = (ξω + iσ)µω where ξ, σ, µ are respectively the electric permittivity, electric conductivity and
the magnetic permeability. In the case where σ = 0, and then k is real, the scattered wave (Esc, Hsc)
must satisfies the outgoing radiation condition

lim
|x|→∞

(Hsc(x)× x− |x|Esc(x)) = 0. (2.1.10)

Motivated by applications, we restrict ourselves to incident waves of the form Ein(x) = Peikx·θ,
where θ is the incident direction, P ∈ R3 is the polarization that is orthogonal to θ.
We introduce the diameters ai = maxx,y∈Did(x, y), i ∈ {1, ...,m}, and the distance between two
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bodies Di, Dj , i 6= j, as δij = minx∈Di,y∈Dj d(x, y), for every i, j ∈ {1, ...,m}; i 6= j where d(·, ·)
stands for the Euclidean distance. We set

a := max
i∈{1,...,m}

ai, δ := min
i 6=j∈{1,...,m}

δij . (2.1.11)

We suppose in addition that ∪mi=1Di ⊂ Ω, where Ω is a bounded Lipschitz domain such that

d(∂Ω,∪mi=1Di) ≥ δ.

The scattering problem (2.1.8) under the boundary condition (2.1.9) and the radiating condition
(2.1.10) is well posed in appropriate spaces under appropriate conditions (see [60, 24]) which will
described later. In addition, when =k is different from zero, the scattered electromagnetic fields
are fastly decaying at infinity as we have attenuation. But when =k = 0, i.e. in the absence of
attenuation, we have the following behavior (as spherical-waves) of the scattered electric fields far
away from the sources Di’s

Esc(x) =
eik|x|

|x|
{E∞(τ) +O(|x|−1)}, |x| 7−→ ∞, (2.1.12)

and we have a similar behavior for the scattered magnetic field as well:

Hsc(x) =
eik|x|

|x|
{H∞(τ) +O(|x|−1)}, |x| 7−→ ∞. (2.1.13)

where (E∞(τ), H∞(τ)) is the electromagnetic far field pattern in the direction of propagation τ :=
x
|x| .

To describe our results, let us recall the dyadic Green’s function of the Maxwell propagator
Πk(x, y) := k2Φk(x, y)I + ∇x∇xΦk(x, y) where Φk(x, y) := eik|x−y|

4π|x−y| , x 6= y, is the outgoing fun-
damental solution of the Helmlholtz propagator, i.e. ∆ + k2. In addition, we introduce generic
functions ε(δs, |k|l) and εk,δ,m which express error functions as follows

ε(δs, |k|l) = O(
max(1, |k|l)

δs
)

εk,δ,m := O
((|k|+ 1) ln(m

1
3 )

δ3 +
(|k|+ 1)2 m

1
3

δ2 +
(|k|+ 1)3 m

2
3

δ

)
.

(2.1.14)

Now, we are ready to state the main result of this work.

Theorem 4. Let the small inhomogeneities be of the form Di := aBi + zi, i = 1, ...,m, and the total
electromagnetic fields (E,H) satisfy (2.1.8) and (2.1.9) such that the corresponding scattered fields
satisfy the outgoing radiation condition (2.1.10). There exists a constant C depending only on the
Lipschitz character of the Bi’s such that if

|k|2a + (1 + |k|2)
a3

δ3 +

(
ln(m

1
3 )

δ3 +
2|k|m

1
3

δ2 +
m

2
3

2δ
|k|2
)
a3 < C, (2.1.15)

then
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1. the scattered electric field has the following expansion, for =k ≥ 0, for x ∈ R3 \ (∪mi=1Di) such
that min1≤i≤m d(x,Di) ≥ δ,

Esc(x) =
m∑
i=1

(∇Φk(x, zi)×Ri + curl curl(Φk(x, zi)Qi))

+Oε(
a4

δ4 ) +Oε
(a7

δ7

)
,

(2.1.16)

2. the far field pattern has the following expansion for =k = 0

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
Ri − ikτ ×Qi

)
+O

(
(|k|3 + |k|2) ma4

)
+ |k| max(1, |k|) Oε

(a4

δ4

)
ma3,

(2.1.17)

and the errors in (2.1.16) and (2.1.17) correspond to

Oε
(a7

δ7

)
:=O

(a7

δ7 + ε(δ6, |k|+ |k|2 + |k|3)a7 + ε(δ5, |k|2)a7
)
, (2.1.18)

Oε
(a4

δ4

)
:=O

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(1 + |k|, |k|2)a
)
. (2.1.19)

The coefficients (Ri)mi=1 and (Qi)mi=1 are the solutions of the following invertible linear system

Ri +
[
P∂Di

] m∑
(j 6=i)≥1

(
Πk(zi, zj)Rj − k2∇Φk(zi, zj)×Qj

)
= −

[
P∂Di

]
curlEin(zi),

Qi −
[
T∂Di

] m∑
(j 6=i)≥1

( −∇xΦk(zi, zj)×Rj + Πk(zi, zj)Qj) = −
[
T∂Di

]
Ein(zi).

(2.1.20)

The coefficients
[
P∂Di

]
and

[
T∂Di

]
are respectively the magnetic and electric polarizability ten-

sors. They are characterized by the shapes of the conductivities, see (2.2.7) and (2.2.8) in subsection
2.2.1 for their explicit definitions. The explicit conditions under which the algebraic system (2.1.20)
is invertible as well the dependency of the upper bounds in approximations (2.1.16) and (2.1.17) on
the conductivities are provided in section 2.4 and section 2.5 respectively.

Remark 5. Based on the algebraic system (2.1.20), we can compute approximations of the electric
(and also the magnetic) fields generated by inhomogeneities with boundary conditions of the type ν×
E = 0. Let us now introduce the following change of parameters:R̃j := ikQj , Q̃j := i

kRj ,
˜[
P∂Di

]
:=

−
[
T∂Di

]
and ˜[

T∂Di
]

:= −
[
P∂Di

]
. Then the system (2.1.20) becomes, remembering that curlEin =
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ikH in and Ein = i
k curlH in,

R̃i + ˜[
P∂Di

] m∑
(j 6=i)≥1

(
Πk(zi, zj)R̃j − k2∇Φk(zi, zj)× Q̃j

)
= − ˜[

P∂Di
]

curlH in(zi),

Q̃i − ˜[
T∂Di

] m∑
(j 6=i)≥1

(
−∇xΦk(zi, zj)× R̃j + Πk(zi, zj)Q̃j

)
= − ˜[

T∂Di
]
H in(zi).

(2.1.21)

This is the algebraic system corresponding to the inhomogeneities with boundary conditions of the
type ν× curlH = 0. Hence, under the introduced change of parameters, our approximation formulas
in Theorem 4 provide the magnetic (and also the electric) fields generated by the inhomogeneities
with boundary conditions of the type ν × curlH = 0.

We call the approximation in (2.1.16) and (2.1.17) the point-interaction approximations or the
Foldy-Lax approximations as the dominant field is reminiscent to the field describing the interactions
between the points zi, i = 1, ..,m, with the scattering coefficients given by the polarization tensors[
P∂Di

]
and

[
T∂Di

]
, see [49, 36, 37, 17, 34] for particular situations. As we can see, the dominating

field is a combination of both electric and magnetic dipoles. The algebraic system above encodes
the multiple electromagnetic interactions.

As we mentioned above, since the pioneering works of Rayleigh till Foldy, the original goal of such
approximations was to reduce the computation of the fields generated by a cluster of small bodies to
inverting an algebraic system (called the Foldy linear algebraic system). With our approximations
above, and regarding the full Maxwell system, such a goal is reached with high generality as we
take into account all the parameters, m,a, δ and k, modeling the scattering by the cluster of small
conductors Di’s. To our best knowledge, there is no result in the literature where such approxi-
mations are provided with such generality and precision. At the mathematical analysis level, and
as we are using integral equations methods, we needed to derive an a priori estimate of the related
densities. The first key observation here is to derive it in the L2,Div

t spaces instead of the usual L2

spaces. As a second observation, to derive such estimates, we used a particular decomposition of
the densities, see Proposition 6 or Theorem 8, which allows to obtain the needed qualitative as well
as quantitative estimates while refining the approximation. Finally, to prove the invertibility of the
algebraic system (2.1.20) under the general condition (2.1.20), the key point is to have reduced the
coercivity inequality to the one related to scalar Helmholtz model. Let us emphasize here that as
this linear algebraic system comes form the boundary conditions, such a reduction of Maxwell to
Helmholtz is not a trivial one (even, a priori, not a natural one).

The only restriction we have in our condition (2.1.15) is the appearance of the factor ln(m). At
the technical level, see the last part of the proof of Theorem 8, its appearance is due to the fact the
singularity of the dyadic Green’s function is of the order 3 (in contrast to the ones of the Green’s
functions for the Laplace or Lamé related models). We believe that this factor can be removed using
more pde tools to invert the Calderon operator, see (2.2.20), and hope to report on this in the near
future.

The closest published works (i.e. deriving the Foldy-Lax type of approximations) are those by
A. Ramm in one side and those by V. Maz’ya, A. Movchan and M. Nieves in another side. The
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several works by A. Ramm on Maxwell are derived more in a formal way, see [65, 66]. In addition,
condition of the type a

δ << 1 are used (meaning at least that the mesoscale regimes where a ∼ δ
are not handled) and without clarifying the rates. Finally, and unfortunately, to our opinion the
form of the derived algebraic system is unclear and questionable. In a series of works dedicated to
the Laplace and Lamé models (assuming k = 0), V. Maz’ya, A. Movchan and M. Nieves proposed a
method which indeed takes into account the parameter and state the results in the mesoscale regimes
too, see [51, 50, 53]. One possible limit to their approach is the need of the maximum principle in
handling the link between the system on the boundary to fields outside. This might be a handicap
for tackling the Maxwell system for which such maximum principles are not at our hands.

2.1.1 The formal computations

The remaining part of the paper is dedicated to the proof of Theorem 4. But before going into the
details of the proof, let us briefly describe its main formal steps that we shall justify in the next
sections. Our proof is based on integral equation methods.

In Section 2.2, we show that the scattered wave, admitting the following representation

Esc(x) = curl

∫
∪mi=1∂Di

Φk(x, y)A(y) ds(y), x ∈ R3 \ ∪mi=1∂Di,

is the unique radiating solution of the equation (2.1.8) and the boundary condition (2.1.9), with a
particular density A that belongs to L2,Div

t (∪mi=1∂Di) =
∏m
i=1 L

2,Div
t (∂Di).

In addition, and this is a key observation, we show that each restriction of the density A,
ai := a/∂Di, can be decomposed as sum of the trace of a divergence free A[1]

i and curl free A[2]
i =

ν × ∇ui vector-fields, and provide the corresponding a priori estimate of the decomposition (see
Proposition 6), as summarized in Theorem 8.

In Section 3.3.3, we first derive the expansion

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
{∫

∂Di

Ai ds−
∫
∂Di

(ikτ.(y − zi))Ai(y) ds(y)

}
+O(Error).

which is due to the following simple decomposition

E∞(τ) =
m∑
i=1

ik

4π
τ ×

(∫
∂Di

A(y)e−ikτ.zids(y) +

∫
∂Di

A(y)(e−ikτ.y − e−ikτ.zi)ds(y)
)
, (2.1.22)

and the approximation, which is due to the above mentioned decomposition of the densities,∫
∂Di

(ikτ.(y − zi))Ai(y) ds(y) =

∫
∂Di

(ikτ.(y − zi))A[2]
i (y) ds(y) +O(Errori).

Integrating by part, using the fact that A[2]
i = ν×∇ui, and replacing in the previous expansion,

we obtain

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
{
Ri :=

∫
∂Di

Ai ds−Qi := ikτ ×
∫
∂Di

νui(y) ds(y)

}
+O(Error).

(2.1.23)
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With similar but trickier calculations, we derive the corresponding approximation for the near
fields.

Hence, we are left with the two total charges, namely (Ri)mi=1 and (Qi)mi=1, to estimate. The main
idea is to multiply the boundary condition (2.1.9) by particular curl free matrices, namely (∇φi)mi=1,
and a divergence free matrices ([Ψi] = [ψi1, ψ

i
2, ψ

i
3])mi=1, to get rid of the influence of, respectively, the

divergence free part of the density A and its curl free part. Precisely, we derive the expansions∫
∂Di

∇φi · ν × Einds =Ri +
[
P∂Di

] m∑
(j 6=i)≥1

(
Πk(zi, zj)Rj − k2∇Φk(zi, zj)×Qj

)
+ (Errori)

(2.1.24)

and ∫
∂Di

[Ψi] · ν × Einds =Qi +
[
T∂Di

] m∑
(j 6=i)≥1

(∇xΦk(zi, zj)×Rj −Πk(zi, zj)Qj)

+ (Errori),

(2.1.25)

see Proposition 11.

Finally, in Section 2.4, we show that the above linear system is invertible and the total charges,
that we denote by (R̂i)mi=1 and (Q̂i)mi=1, corresponding to the case without the error of approxi-
mation Errori’s and replacing the left-hand sides with −

[
P∂Di

]
curlEinc(zi) and −

[
T∂Di

]
Einc(zi)

respectively in (2.1.24) and (2.1.25), satisfy the following estimate(
m∑
i=1

(
|R̂i|2 + |Q̂i|2

)) 1
2

≤ 1

CLiµ−
a3
( m∑
i=1

(
∣∣Einc(zi)∣∣2 +

∣∣curlEinc(zi)
∣∣2)
) 1

2
. (2.1.26)

With this kind of estimate, we show that(
m∑
i=1

(
|R̂i −Ri|2 + |Q̂i −Qi|2

)) 1
2

≤ 1

CLiµ−
a3
( m∑
i=1

(Errori)
) 1

2 (2.1.27)

and replacing it in the obtained near and far fields approximations, as in (2.1.23), we derive the
estimates of Theorem 4.

2.2 Existence, unique solvability and an a priori estimation of the
density

2.2.1 Preliminaries

Let us recall few properties of the surface divergence which will be important in our later analysis,
see (Section 4 in [57] and Chapter 2 in [23]) for more details. First, we recall the surface gradient of
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a smooth function φ on ∂D, ∇t, as ∇tφ := ∇φ − (ν · ∇φ)ν where ν is the exterior unit normal to
∂D. Then the (weak) surface divergence for a tangential field A is defined using the duality∫

∂D
φDivA ds = −

∫
∂D
∇tφ ·A ds, (2.2.1)

for every φ ∈ C∞(∂D).
If A is a tangential field for which DivA exists in the sense above, and it is in L1(∂D) for

instance, then, taking φ(x) = xi in (2.2.1), we have∫
∂D

xDivA(x) ds(x) = −
∫
∂D

A(x) ds(x) (2.2.2)

and taking φ(x) = 1, we have ∫
∂D

DivA(x) ds(x) = 0. (2.2.3)

When a := ν × u for a certain sufficiently smooth vector field u, we get

DivA = −ν · curlu. (2.2.4)

Further, for a scalar function ψ, being ψ A tangential (i.e. ψ A · ν = ψ (A · ν) = 0), the following
identity holds, Div(ψA) = ∇tψ ·A+ ψDivA, and hence∫

∂Di

ψ A ds =

∫
∂Di

(x− zi)(∇ψ(x) ·A(x) + ψ(x) Div A(x)) ds(x). (2.2.5)

Indeed,
∫
∂Di

ψ A ds =
∫
∂Di
∇(x − zi)

(
ψ A

)
(x) ds(x) =

∫
∂Di

(x − zi) Div(ψ A)(x) ds(x), here
∇(x− zi) = I where I stands for the identity matrix of R3 × R3.

The spaces L2
t (∂D) and L2,Div(∂D) denote respectively the space of all tangential fields of

L2(∂D); and the subspace of L2
t (∂D) that have an L2 weak surface divergence, precisely

L2
t (∂D) = {A ∈ L2(∂D); A · ν = 0},

L2,Div
t (∂D) = {A ∈ L2

t (∂D); DivA ∈ L2
0(∂D)}

where
L2

0(∂D) := {u ∈ Lp(∂D), such that
∫
∂D

u ds = 0}

finally L2,0
t (∂D) = {A ∈ L2,Div

t (∂D); DivA = 0}.

Let us now recall some properties on the needed polarization tensors. For i = 1, ...,m, we recall
the single layer operator [Skii,D ] : L2(∂Di)→ H1(∂Di), defined as

[Skii,D ](ψ)(x) :=

∫
∂Di

Φk(x, y)ψ(y) ds(y), x ∈ ∂Di, (2.2.6)
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and the double layer operator [Kk
ii,D

] : L2(∂Di)→ L2(∂Di),

[Kk
ii,D

](ψ)(x) =

∫
∂Di

∂Φk

∂νy
(x, y)ψ(y) ds(y), x ∈ ∂Di,

with its adjoint

[(Kk
ii,D

)∗](ψ)(x) =

∫
∂Di

∂Φk

∂νx
(x, y)ψ(y) ds(y), x ∈ ∂Di,

recalling that Φk(x, y) = 1
4π

eik|x−y|

|x− y|
is the Green function for the Helmholtz equation at the wave

number k.

The operator [λI + (K0
ii,D

)∗] is invertible from L2
0(∂Di) := {f ∈ L2(∂Di)/

∫
∂Di

f(y)ds(y) = 0}
onto itself for any complex number λ such that |λ| ≥ 1

2 , see [9, 56] for instance. The following two
quantities will play an important role in the sequel:

[P∂Di ] :=

∫
∂Di

[−I/2 + (K0
ii,D

)∗]−1(ν)(y)yTds(y), (2.2.7)

and [
T∂Di

]
:=

∫
∂Di

[I/2 + (K0
ii,D

)∗]−1(ν)(y)yTds(y). (2.2.8)

The tensor [P∂Di ] is negative-definite symmetric matrix and
[
T∂Di

]
is positive-definite symmetric

matrix, (see Lemma 5 and Lemma 6 in [16] or Theorem 4.11 in [9]). Further, we have the following
scales:

[P∂Di ] = a3[P∂Bi ], and [T∂Di ] = a3[T∂Bi ]. (2.2.9)

Indeed, 1

[P∂Di ] =

∫
∂Di

[−I/2 + (K0
ii,D

)∗]−1(ν)(y) (y − zi)Tds(y),

=

∫
∂Bi

[−I/2 + (K0
ii,B

)∗]−1(ν)(si) (as+ zi − zi)Ta2 ds(y),

= a3[P∂Bi ],

and we get it in the same way for the second identity, after noticing that2[
T∂Di

]
:=

∫
∂Di

νy

[
[I/2 +K0

ii,D
]−1 (x)

]T
ds(y) =

∫
∂Di

νy

[
[I/2 +K0

ii,D
]−1 (x− zi)

]T
ds(y).

For i ∈ {1, ...,m} let (µTi )+, (µPi )+ be the respective maximal eigenvalues of [T∂Bi ], −[P∂Bi ],
and let (µTi )−, (µPi )− be their minimal ones. We define

µ+ = max
i∈{1,...,m}

((µTi )+, (µPi )+), and µ− = min
i∈{1,...,m}

((µTi )−, (µPi )−). (2.2.10)

Hence for every vector C, we get

µ−|C|2a3 ≤ [T∂Di ] C · C ≤ a
3µ+|C|2, and µ−|C|2a3 ≤ [−P∂Di ] C · C ≤ a

3µ+|C|2. (2.2.11)
1Recall that

∫
∂Di

[−I/2 + (K0
ii,D

)∗]−1(ν)(y) zTi ds(y) =
∫
∂Di

[−I/2 + (K0
ii,D

)∗]−1(ν)(y) ds(y) zTi = 0.
2We have [I/2 +K0

ii,D
](zi) = zi[I/2 +K0

ii,D
](1) = 0.
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2.2.2 Existence and uniqueness of the solution

The solution to the problem (2.1.8) under the boundary condition (2.1.9) and the radiating condi-
tions (2.1.10) can be expressed in terms of boundary integral equation (see [24, 60]), under certain
conditions in appropriate spaces that will be specified later, using either one of the representations

E(x) = Ei(x) + curl

∫
∂D

Φk(x, y)A(y) ds(y), x ∈ R3 \ (D̄ := ∪mi=1D̄i) (2.2.12)

E(x) = Ei(x) + curl curl

∫
∂D

Φk(x, y)A(y) ds(y), x ∈ R3 \ D̄ (2.2.13)

or a linear combination of the two, where A is the unknown vector density to be found to solve the
problem.
Let us consider the representation (2.2.12), i.e. for a tangential field A and s ∈ D+

Esc(s) = curl

∫
∂D

Φk(s, y)A(y) ds(y), (2.2.14)

and let be
{

Γ+(x),Γ−(x), x ∈ ∪mi=1∂Di

}
a family of doubly truncated cones with a vertex at x

such that Γ±(x) ∩D∓ = ∅, we have for almost every x ∈ ∪mi=1∂Di (see [57])

lim
s→x

s∈Γ±(x)

Esc(s) = ∓1

2
ν × a+ curl

∫
∂D

Φk(x, y)A(y) ds(y) (2.2.15)

where the integral is taken in the principal value of Cauchy sense, and the identity must be under-
stood in the sens of trace operator, then using the condition (2.1.9), we get

ν × lim
s→x

s∈Γ±(x)

Esc(s) = [±I/2 +Mk
∂D](A)(x) := ±1

2
A+ ν × curl

∫
∂D

Φk(x, y)A(y) ds(y) (2.2.16)

where [±I/2 + Mk
∂D] is called the magnetic dipole operator. Consequently, to solve the scattering

problem we need to solve the integral equation

[I/2 +Mk
∂D](A)(x) = −ν × Ein, on ∪mi=1 ∂Di (2.2.17)

or,

[I/2 +Mk
ii,D

](A) + [

m∑
(j 6=i)≥1

Mk
ij,D

](A) = −ν × Ein, xi ∈ ∂Di. (2.2.18)

where
Mk
ij,D

A(x) := ν ×
∫
∂Dj

∇xΦk(xi, y)×A(y) ds(y).

In this case the magnetic field is represented by

Hsc(x) = −ik curl curl

∫
∂D

Φk(x, y)A(y) ds(y).
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Further it satisfies

lim
s→x

s∈Γ±(x)

ν ×Hsc(s) = [Nk
∂D](A) = k2[ν × Sk∂D](A) + [ν ×∇Sk∂D](DivA), (2.2.19)

which means that ν × (Hsc)+ = (ν ×Hsc)− i.e H is continuous across the boundary, the operator
Nk is called electric dipole operator. We can write the equations in (2.2.18) in a compact form as
follows

(I/2 +MD +MN )A = −ν × EI , (2.2.20)

where R = (A1, ..., Am)T is a column matrix which vectorial components are ai := a/∂Di. Similarly,
EI = (Ein

1 , ......, E
in
m) with Ein

i = Ein/∂Di andMD is the diagonal matrix operator given by

MD :=

{
Mk
ij,D

if i = j

0 otherwise

and finallyMN is the matrix operator with null diagonal

MN =

{
0 if i = j

Mk
ij,D

if i 6= j

For k ∈ C \ {0} such that =k ≥ 0, the operators (±I/2 +Mk
ii,D

) are Fredholm with index zero from
L2,Div

t (∂Di) into it self, furthermore (±I/2 +Mk
ii,D

) are Fredholm from L2,Div
t (∂Di)/L

2,0
t (∂Di) into

it self, likewise for L2
t (∂Di). Moreover if k is not a Maxwell eigenvalue for Di then the operators are

in fact isomorphisms, see Theorem 5.3 [57] and the remark after, and [59].
Let us notice that when =k > 0, then k is not a Maxwell eigenvalue. In addition, when =k = 0

and as the radius of Di is small, by a scaling argument, this condition on k is obviously fulfilled. As
±I/2 +MD is an isomorphism andMN is compact (since the kernel of each component is of class
C∞), the operators

± I/2 +MD +MN :
m∏
i=1

E(∂Di) −→
m∏
i=1

E(∂Di), (2.2.21)

where E := L2
t , L2,Div

t , are Fredholm with zero index, so to show that the operator above is in
fact an isomorphism it is enough to show that the homogeneous problem (i.e Ein = 0), has the
unique identically null solution density that is R = 0. We derive from (2.2.17), for Ein ≡ 0 and the
uniqueness to the exterior boundary problem that

Esc(x) = curl

∫
∂D

Φk(x, y)A(y) ds(y) ≡ 0, x ∈ R3 \D, (2.2.22)

taking the rotational, we obtain

Hsc(x) = −ik curl curl

∫
∂D

Φk(x, y)A(y) ds(y) ≡ 0, x ∈ R3 \D, (2.2.23)

then going to the boundary using (2.2.19) we get

ν ×Hsc− = 0, x ∈ ∂D = ∪mi=1∂Di.
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As the homogeneous interior boundary problem admits the unique identically null solution, we get
Hsc(x) = 0, x ∈ D and hence taking the rotational gives us Esc(x) = 0, x ∈ D and ultimately
(ν × Esc)− = 0 on ∂D. Finally we have

[±I/2 +Mk
ii,D

+
m∑

(j 6=i)≥1

Mk
ij,D

](A) = 0 (2.2.24)

and taking the difference of the two identities we get ai = 0 for every i ∈ {1, ...,m}, and yield that
a ≡ 0 on ∂D = ∪mi=1∂Di. This shows that we have existence of the solution of our original scattering
problem and it can be represented as (2.2.12) with a unique tangential density A. The uniqueness of
the solution for the original scattering problem is deduced in the same way as it is done in Theorem
6.10 in [24] for instance.

2.2.3 A priori estimates of the densities

In order to derive suitable estimates of the densities ai, i = 1, ...,m, we need to use the Helmholtz de-
composition based on the following operators, which are isomorphism (see Theorem 5.1 and Theorem
5.3 in [57]),

ν · curlS0
ii,D

: L2,0
t (∂Di) −→ L2

0(∂Di),

ν ×∇S0
ii,D

: L2
0(∂Di) −→ L2,0

t (∂Di),

ν × S0
ii,D

: L2,0
t (∂Di) −→ (L2,Div

t \ L2,0
t )(∂Di) := L2,Div

t (∂Di) \ L2,0
t (∂Di).

(2.2.25)

The following decomposition holds,

Proposition 6. Each element V of Lp,Divt (∂Di) can be decomposed as

V = V + ν ×∇v (2.2.26)

where
V ∈ Lp,Divt (∂Di) \ Lp,0t (∂Di),

ν ×∇v ∈ Lp,0t (∂Di), v ∈ H1(∂Di) \ C;
(2.2.27)

which satisfies

‖V‖L2(∂Di) ≤ C1a‖V ‖L2,Div
t (∂Di)

, (2.2.28)

‖V‖
L2,Div

t (∂Di)
≤ C2‖V ‖L2,Div

t (∂Di)
, (2.2.29)

‖ν ×∇v‖
L2,0

t (∂Di)
≤ C3‖V ‖L2,Div

t (∂Di)
, (2.2.30)

and
‖v‖L2(∂Di) ≤ C4a‖A‖L2,Div

t (∂Di)
(2.2.31)

where (Ci)i=1,2,3,4. are constants which depend only on B′is,

To prove Proposition 6, we need the following identities.
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Lemma 7. For xi ∈ ∂Di, si ∈ ∂Bi, with xi = asi + z, and Â(si) = A(asi + zi), we have the
following scaling identities

a‖Â‖L2
t (∂Bi)

= ‖A‖L2
t (∂Di)

, ‖Div Â‖L2
0(∂Bi)

= ‖DivA‖L2
0(∂Di)

, (2.2.32)

and

‖[ν ×∇S0
ii,D

]−1‖L(L2,0
t (∂Di),L2

0(∂Di))
= ‖[ν ×∇S0

ii,B
]−1‖L(L2,0

t (∂Bi),L2
0(∂Bi))

, (2.2.33)

‖[ν · curlS0
ii,D

]−1‖L(L2
0(∂Di),L

2,0
t (∂Di))

= ‖[ν · curlS0
ii,B

0
]−1‖L(L2

0(∂Bi),L
2,0
t (∂Bi))

. (2.2.34)

Proof. We derive the identities in (2.2.32) as follows

‖A‖L2
t (∂Di)

=

(∫
∂D
|A(x)|2ds(x)

) 1
2

=

(∫
∂B

∣∣∣Â(s)
∣∣∣2a2ds(s)

) 1
2

=

(
a2

∫
∂B

∣∣∣Â(s)
∣∣∣2 ds(s)) 1

2

= a‖Â‖L2
t (∂Bi)

.

For the second identity, one has for φ ∈ H1(∂Di),
3∫

∂Di

DivxA(x)φ(x) ds(x) =

∫
∂Di

A(x) · ∇xφ(x) ds(x) =

∫
∂Di

Â(s) · 1

a
∇sφ̂(s)a2ds(x),

=

∫
∂Di

Divs Â(s)
1

a
φ̂(s) ds(x) =

∫
∂Di

1

a
Divs Â(s)φ(x) ds(x),

then DivxA(x) = 1
a Divs Â(s). It remains to take the norm to conclude.

Concerning (2.2.33) we have,

[ν ×∇S0
ii,D

](u)(x) = ν ×∇ 1

4π

∫
∂Di

1

|x− y|
u(y) ds(y) = ν × 1

4π

∫
∂Di

1

|x− y|3
(x− y)u(y) ds(y),

hence, for xi = asi + zi and yi = ati + zi , and û(si) = u(ati + zi)

νxi ×∇S0
ii,D

](u)(x) = νsi ×
1

4π

∫
∂Bi

1

|asi + zi − ati − zi|3
(asi + zi − ati − zi)u(ati + zi) a

2 ds(t),

= νsi ×
1

4π

∫
∂Bi

1

a3|si − ti|3
a (si − ti)u(ati + zi) a

2 ds(t),

= νsi ×
1

4π

∫
∂Bi

1

|si − ti|3
(si − ti)û(ti) ds(t) = [νxi ×∇S0

ii,B
](û)(si).

From the equality [νxi×∇S0
ii,D

]([νxi×∇S0
ii,D

]−1(u)) = u, we get replacing in the previous identity u

by [νxi ×∇S0
ii,D

]−1(u), that [νxi ×∇S0
ii,B

]( ̂[νxi ×∇S0
ii,D

]−1(u)) = û. Finally inverting the left-hand
side operator, we have the scales

̂[νxi ×∇S0
ii,D

]−1(u) = νxi ×∇S0
ii,B

]−1û. (2.2.35)

3The gradient stands for the surface gradient.
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As

‖[ν ×∇S0
ii,D

]−1‖L(L2,0
t (∂Di),L2

0(∂Di))
= sup

u∈L2
0(∂Di)

u6=0

‖[ν ×∇S0
ii,D

]−1(u)‖L2(∂Di)

‖u‖L2(∂Di)
(2.2.36)

(2.2.32) implies

‖[ν ×∇S0
ii,D

]−1‖L(L2,0
t (∂Di),L2

0(∂Di))
= sup

û∈L2
0(∂Bi)

û6=0

a‖ ̂[ν ×∇S0
ii,D

]−1(u)‖L2(∂Bi)

a‖û‖L2(∂Bi)
, (2.2.37)

and using (2.2.35)

‖[ν ×∇S0
ii,D

]−1‖L(L2,0
t (∂Di),L2

0(∂Di))
= sup

û∈L2
0(∂Bi)

û6=0

‖[ν ×∇S0
ii,B

]−1(û)‖L2(∂Bi)

‖û‖L2(∂Bi)
, (2.2.38)

the conclusion follows immediately. Similarly, we can derive (2.2.34).

Proof. (Of Proposition 6) It suffices to seek for the solution of the following equation

ν ×∇S0
ii,D

(v) + ν × S0
ii,D

(w) = V. (2.2.39)

Taking the surface divergence we have, ν · curlS0
ii,D

(w) = Div V and then using (2.2.25), w =

[ν · curlS0
ii,D

]−1 Div V . Using (2.2.33) we get the estimate

‖w‖
L2,0
t (∂Di)

≤ ‖[ν · curlS0
∂Bi

]−1‖L(L2
0(∂Bi),L

2,0
t (∂Bi))

‖(Div V )‖L2
0(∂Di)

. (2.2.40)

Put V = ν × S0
ii,D

(w),

‖V‖L2(∂Di) =

(∫
∂Di

[ν × S0
ii,D

(w)]2 ds

) 1
2

=

(∫
∂Bi

(
ν ×

∫
∂Bi

1

a|s− t|
ŵ(t)a2 ds(t)

)2

a2 ds(s)

) 1
2

,

= a2

(∫
∂Bi

(
ν ×

∫
∂Bi

1

|s− t|
ŵ(t) ds(t)

)2

ds(s)

) 1
2

= a2‖(ν × S0
ii,B

(ŵ))‖L2(∂Bi).

Using (2.2.40) for the last coming inequality, we have

‖V‖L2(∂Di) = a2‖(ν × S0
ii,B

(ŵ))‖L2
t (∂Bi)

,

≤ a2
(
‖(ν × S0

ii,B
(ŵ))‖L2

t (∂Bi)
+ ‖Div(ν × S0

ii,B
(ŵ))‖L2

0(∂Bi)

)
,

≤ ‖(ν × S0
ii,B

(ŵ))‖
L2,Div
t (∂Bi)

,

≤ a2‖ν × S0
∂Bi
‖L(L2,0

t (∂Bi),L
2,Div
t (∂Bi))

‖ŵ‖
L2,0
t (∂Bi)

,

≤ CBi
1 a

2‖V̂ ‖
L2,Div
t \(∂Bi)

= C
Bi
1 a‖V ‖L2,Div

t (∂Di)
,

(2.2.41)
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here CBi
1 := ‖ν×S0

ii,B
‖L(L2

0(∂Bi),L
2,Div
t (∂Bi))

‖[ν ·curlS0
ii,B

]−1‖L(L2,0
t (∂Bi),L

2,0
t (∂Bi))

, which gives (2.2.28).
The inequality (2.2.29) is an immediate consequence. Now, (2.2.39) becomes ν×∇S0

ii,D
(v) = V −V,

with Div(V −V) = 0, then we get successively

‖v‖L2
0(∂Di)

≤ ‖[ν ×∇S0
ii,D

]−1‖L(L2,0
t (∂Di),L2

0(∂Di))
‖V −V‖

L2,0
t (∂Di)

,

≤ ‖[ν ×∇S0
ii,B

]−1‖L(L2,0
t (∂Bi),L2

0(∂Bi))
‖V −V‖

L2,0
t (∂Di)

,

≤ CBi
3 ‖V ‖L2,Div

t (∂Di)
,

(2.2.42)

where CBi
3 := 2‖[ν×∇S0

ii,B
]−1‖L(L2,0

t (∂Bi),L2
0(∂Bi))

. We put v = S0
ii,D

(v) hence ν×∇v = ν×∇S0
ii,D

(v)

with ‖ν ×∇v‖
L2,0
t (∂Di)

= ‖ν ×∇S0
ii,D

(v)‖
L2,0
t (∂Di)

= ‖V −V‖
L2,0
t (∂Di)

. Then with (2.2.41) in mind,
we derive the estimate (2.2.30)

‖ν ×∇v‖
L2,0
t (∂Di)

= ‖V −V‖
L2,0
t (∂Di)

≤ ‖V ‖L2
t (∂Di)

+ ‖V‖L2
t (∂Di)

,

≤ ‖V ‖
L2,Div
t (∂Di)

+ C
Bi
1 a‖V ‖L2,Div

t (∂Di)
,

≤ (C
Bi
3 := (1 + C

Bi
1 ))‖V ‖

L2,Div
t (∂Di)

.

Concerning (2.2.31) we have ‖v‖L2(∂Di) = ‖S0
ii,D

(v)‖L2(∂Di), hence

‖v‖L2(∂Di) =

(∫
∂Bi

(∫
∂Bi

1

a|s− t|
v̂(t)a2 ds(t)

)2

a2 ds(s)

) 1
2

,

= a2‖S0
ii,B

(v)‖L2(∂Bi) ≤ a
2
(
‖S0

ii,B
(v̂)‖L2(∂Bi) + ‖∇tS0

ii,B
(v̂)‖L2(∂Bi)

)
,

≤ a2‖S0
ii,B
‖L(L2(∂Bi),H1(∂Bi))‖v̂‖L2(∂Bi) = a‖S0

ii,B
‖L(L2(∂Bi),H1(∂Bi))‖v‖L2(∂Di),

and with (2.2.42) we get,

‖v‖L2(∂Di) ≤ a
(
C
Bi
4 := ‖S0

ii,B
‖L(L2(∂Bi),H1(∂Bi))C

Bi
3 )‖V ‖

L2,Div
t (∂Di)

,

to conclude we put for l = 1, 2, 3, 4, Cl = max i ∈ {1, ...,m}CBi
l .

We have the following theorem

Theorem 8. There exist constants CB,2, CB,1 and Ce which depend only on B′is and independent
of their number such that if

CB,1|k|2a < 1, CB,2

(
lnm

1
3

δ3 +
2km

1
3

δ2 +
m

2
3

2δ
k2

)
a3 < 1 (2.2.43)

then
‖A‖

L2,Div
t
≤ Cea (2.2.44)

Further, in view of Proposition 6 each ai ∈ L2,Div
t (∂Di) can be decomposed as the sum of

A
[1]
i ∈ Lp,Divt (∂Di) \ Lp,0t (∂Di) and A

[2]
i = ν ×∇ui ∈ ∈ Lp,0t (∂Di), u ∈ H1(∂Di) \ C; (2.2.45)
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which satisfies

‖A[1]‖L2(∂Di) ≤ C1a‖A‖L2,Div
t (∂Di)

, (2.2.46)

‖A[1]‖
L2,Div

t (∂Di)
≤ C2‖A‖L2,Div

t (∂Di)
, (2.2.47)

‖A[2]‖
L2,0

t (∂Di)
≤ C3‖A‖L2,Div

t (∂Di)
, (2.2.48)

‖ui‖L2(∂Di) ≤ C4a‖A‖L2,Div
t (∂Di)

, (2.2.49)

where (Ci)i=1,2,3,4. are constants which depends only on the shape of the Bi’s (i.e their Lipschitz
character) and not on their number m.

From (2.2.20), we have successively

(I/2 +MD)(I + (I/2 +MD)−1MN )A = −ν × EI ,
(I + (I/2 +MD)−1MN )A = −(I/2 +MD)−1ν × EI ,

and if
‖(I/2 +MD)−1‖‖MN‖ < 1, (2.2.50)

we get

‖A‖ ≤ ‖(I/2 +MD)−1‖
1− ‖(I/2 +MD)−1‖‖MN‖

‖ν × EI‖,

where
‖A‖ := max

m∈{1,...,M}
‖Am‖L2,Div

t (∂Dm)
,

‖(I/2 +MD)−1‖ := max
i∈{1,...,m}

‖(I/2 +Mk
ii,D

)−1‖L(L2,Div
t (∂Dm),L2,Div

t (∂Dm))
,

‖MN‖ := max
i∈{1,...,m}

M∑
j=1
j 6=m

‖Mk
ij,D
‖L(L2,Div

t (∂Dj),L
2,Div
t (∂Di))

.

Proof. We prove that under the condition (2.2.43), we have (2.2.44). The properties (2.2.45)-(2.2.49)
are immediate conclusions of Proposition 6 and do not rely on (2.2.43).

We set diam(B) := maxi∈{1,..,m} diam(Bi) and we suppose that diam(B) ≤ 1.

For every i ∈ {1, ...,m} and xi = asi + zi ∈ ∂Di, si ∈ ∂Bi we write Â(si) := A(asi + zi), and
Ă(xi) = A(xi−zia ), and set

M0
ii,D

:= ν ×
∫
∂Di

∇Φ0(xi, y)×A(y) ds(y).

We have, knowing that [I/2 + M0
ii,D

] is invertible (see Theorem 5.1 property (xix) in [57]), the
identity

[I/2 +Mk
ii,D

] = [I/2 +M0
ii,D

]
(
I + [I/2 +M0

ii,D
]−1[Mk

ii,D
−M0

ii,D
]
)
, (2.2.51)
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then, by inverting the operators in each side, under the condition that

‖[Mk
ii,D
−M0

ii,D
][I/2 +M0

ii,D
]−1‖ ≤ ‖[I/2 +M0

ii,D
]−1‖‖[Mk

ii,D
−M0

ii,D
]‖ < 1, (2.2.52)

we get [I/2 +Mk
ii,D

]−1 =
(
I + [I/2 +M0

ii,D
]−1[Mk

ii,D
−M0

ii,D
]
)−1

[I/2 +M0
ii,D

]−1. As(
I + [I/2 +M0

ii,D
]−1[Mk

ii,D
−M0

ii,D
]
)−1

=
∑
n≥0

(
−[I/2 +M0

ii,D
]−1[Mk

ii,D
−M0

ii,D
]
)n

we have finally

‖[I/2 +Mk
ii,D

]−1‖ ≤
‖[I/2 +M0

ii,D
]−1‖

1− ‖[I/2 +M0
ii,D

]−1‖‖[Mk
ii,D
−M0

ii,D
]‖
. (2.2.53)

From here L(E) := L(E,E) denotes the space of continuous linear operators which are defined from
E to E. Hence the proof of (2.2.44), based on the condition (2.2.43), is reduced to the following two

estimates:
‖[I/2 +M0

ii,D
]−1‖L

(
L

2,Div
t (∂Di)

) ≤‖[I/2 +M0
ii,B

]−1‖L(L2
t (∂Bi))

+ ‖[I/2− (K0
ii,B

)∗]−1‖L(L2
0(∂Bi)),

(2.2.54)

and

‖MN‖L(L2,Div
t (∂Bi)) ≤

26CB
δ

(
ln (n+ 1)

δ2 +
2kn

δ
+
n

2
(n+ 1)k2

)
a3. (2.2.55)

where n = O(m
1
3 ), and CB is a constant which depends exclusively on Bi’s. In some places of the

next computations, we use the notation
C0 := 26.

To justify (2.2.54) and (2.2.55), we need the following lemma.

Lemma 9. We have the following scaling estimations

‖[I/2 +M0
ii,D

]−1‖L(L2
t (∂Di))

= ‖[I/2 +M0
ii,B]−1‖L(L2

t (∂Bi))
, (2.2.56)

‖[I/2−K0
ii,D

]−1‖L(L2
0(∂Di))

= ‖[I/2−K0
ii,B

]−1‖L(L2
0(∂Bi))

, (2.2.57)

and
‖[Mk

ii,D
−M0

ii,D
]‖L(L2,Div

t (∂Di),L
2,Div
t (∂Di))

≤ 2CB |∂B||k|
2a‖A‖L2(∂Di). (2.2.58)

Proof. For (2.2.56) and (2.2.57), we, first have

M0
ii,D

(A)(xi) = ν ×
∫
∂Di

(4π)2Φ3
0(xi, y)(xi − y)×A(y) ds(y),

= ν ×
∫
∂Qi

(4π)2

a3
Φ3

0(si, t)a(si − t)×A(at+ zi)a
2ds(t),

= ν ×
∫
∂Qi

(4π)2Φ3
0(si, t)(si − t)×A(at+ zi) ds(t) = {M0

ii,B
Â}̂ ,
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which leads to ̂[I/2 +M0
ii,D

]−1(A) = [I/2 + M0
ii,B

]−1Â. With this in mind, considering (2.2.32) we
get

‖[I/2 +M0
ii,D

]−1‖L(L2
t (∂Di))

= sup
(b6=0)∈L2

t (∂Di)

‖[I/2 +M0
ii,D

]−1(A)‖L2
t (∂Di)

‖A‖L2
t (∂Di)

,

= sup
(b6=0)∈L2

t (∂Di)

a‖ ̂[I/2 +M0
ii,D

]−1(A)‖L2
t (∂Bi)

a‖Â‖L2
t (∂Bi)

,

= sup
(Â 6=0)∈L2

t (∂Bi)

‖[I/2 +M0
ii,D

]−1(Â) ‖L2
t (∂Bi)

‖Â‖L2
t (∂Bi)

.

We obtain (2.2.57) in the same way. For (2.2.58), by Mean-value-theorem, we have

(Φk(x, y)− Φ0(x, y)) =
1

4π

eik|x−y|

|x− y|
− 1

4π

e0|x−y|

|x− y|
=

∫ 1

0
ik

1

4π
eikl|x−y|dl. (2.2.59)

Taking the gradient gives

∇x(Φk(x, y)− Φ0(x, y)) =
(ik)2

4π

∫ 1

0

leikl|x−y|

|x− y|
(x− y)dl, (2.2.60)

thus, being =k = 0, |∇x(Φk(x, y)− Φ0(x, y))×A(y)| ≤ |k|
2

4π |A(y)| ≤ |k|
2

4π |A(y)|, and

|(Φk(x, y)− Φ0(x, y))b| ≤ |k|
4π
|A(y)|, (2.2.61)

then it comes∣∣∣[Mk
ii,D
−M0

ii,D
](A)

∣∣∣ =

∣∣∣∣∫
∂Di

∇(Φk − Φ0)(xi, y)×A(y) ds(y)

∣∣∣∣ ≤ ∫
∂Di

|k|2

4π
|A(y)| ds(y),

≤ |k|
2|∂Bi|

1
2a

4π

(∫
∂Di

|A|2ds
) 1

2

.

Taking the norm in both sides,

‖[Mk
ii,D
−M0

ii,D
](A)‖2L2(∂Di)

≤

(
|k|2(|∂Bi||∂Bi|)

1
2a2

4π
‖A‖L2(∂Di)

)2

. (2.2.62)

We have the identities, Div[Mk
ii,D
−M0

ii,D
](A)(x) = −[k2ν ·Skii,D ](A)− [(Kk

ii,D
−K0

ii,D
)∗](DivA). To

estimate [(Kk
ii,D
− K0

ii,D
)∗](DivA), we can reproduce the same steps as we did to obtain (2.2.62).

We obtain

‖[(Kk
ii,D
−K0

ii,D
)∗]‖2L2

0(∂Di)
≤

(
|k|2(|∂Bj ||∂Bi|)

1
2a2

4π
‖DivA‖L2

0(∂Di)

)
. (2.2.63)
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Using (2.2.61), we deduce that∣∣∣[k2ν · Skii,D ](A)
∣∣∣ =

∣∣∣[k2ν · (Skii,D − S
0
ii,D

)](A) + k2ν · S0
ii,D

](A)
∣∣∣,

≤ |k|
3|∂Bi|a
4π

‖A‖L2(∂Di) +
∣∣∣[k2aν · S0

ii,B
](Â)

∣∣∣,
and taking the norm, we get 4

‖[k2ν · Skii,D ]b‖L2(∂Di)≤
|k|3(|∂Bj ||∂Bi|)

1
2a2

4π
‖A‖L2(∂Di)+ |k|

2a2(|∂Bj |)
1
2 ‖S0

ii,B
‖‖Â‖L2(∂Bi),

≤ |k|
3(|∂Bj ||∂Bi|)

1
2a2

4π
‖A‖L2(∂Di) + |k|2a(|∂Bj |)

1
2 ‖S0

ii,B
‖‖A‖L2(∂Di),

≤ CB |∂B||k|
2a‖A‖L2(∂Di),

(2.2.64)
where |∂B| = maxi|∂B| and CB is the maximum of the constants that appear in the inequalities
(2.2.62) and (2.2.63). Hence

‖[Mk
ii,D
−M0

ii,D
](A)‖

L2,Div
t (∂Di)

≤ 2CB |∂B||k|
2a‖A‖L2(∂Di). (2.2.65)

To prove (2.2.54), let us recall that we have

‖[I/2 +M0
ii,D

]−1‖ = sup
b6=0

(
‖[I/2 +M0

ii,D
]−1A‖2L2(∂Di)

+ ‖Div[I/2 +M0
ii,D

]−1A‖2L2(∂Di)

‖A‖2
L2(∂Di)

+ ‖DivA‖2
L2(∂Di)

) 1
2

(2.2.66)

Considering the fact that5 Div[I/2 +M0
ii,D

]−1 = [I/2− (K0
ii,D

)∗]−1 Div, then (2.2.66) gives

‖[I/2 +M0
ii,D

]−1‖ = sup
b 6=0

(
‖[I/2 +M0

ii,D
]−1A‖2L2(∂Di)

+ ‖[I/2− (K0
ii,D

)∗]−1 DivA‖2L2(∂Di)

‖A‖2
L2(∂Di)

+ ‖DivA‖2
L2(∂Di)

) 1
2

,

≤ sup
b 6=0

( ‖[I/2 +M0
ii,D

]−1A‖2L2(∂Di)

‖A‖2
L2(∂Di)

+ ‖DivA‖2
L2(∂Di)

) 1
2

+ sup
b 6=0

(‖[I/2− (K0
ii,D

)∗]−1 DivA‖2L2(∂Di)

‖A‖2
L2(∂Di)

+ ‖DivA‖2
L2(∂Di)

) 1
2

,

where the last inequality is due to the fact that α2 + β2 ≤ α2 + β2 + 2αβ for α, β ≥ 0. Finally, as
α2 ≤ β2 + α2, we get 6

‖[I/2 +M0
ii,D

]−1‖ ≤ sup
b 6=0

(
‖[I/2 +M0

ii,D
]−1A‖2

‖A‖2

) 1
2

+ sup
b 6=0

(
‖[I/2− (K0

ii,D
)∗]−1 DivA‖2

‖DivA‖2

) 1
2

.

To prove (2.2.55), we will need the following lemma
4Notice that a‖Â‖L2(∂Bi)

= ‖A‖L2(∂Di)
.

5It suffices to write, for b, c ∈ L2,Div such that b = [I/2 + M0
ii,D

]−1c, Div c = Div[I/2 + M0
ii,D

]b = [I/2 −
(K0

ii,D
)∗] DivA and inverting [I/2− (K0

ii,D
)∗] to get DivA = [I/2− (K0

ii,D
)∗]−1 Div c.

6With L2-norm.
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Lemma 10. For every i, j ∈ {1, ...,m}, under the condition that a ≤ δ < 1 we have

‖Mk
ij,D
‖L(L2,Div

t (∂B),L2,Div
t (∂B))

≤ 4(|∂Bi||∂Bj |)
1
2

πδij

( 1

δij
+ |k|

)2
a3. (2.2.67)

Proof. For i 6= j, xi ∈ ∂Di we have, recalling (2.2.5), that∫
∂Dj

Φk(xi, y)A(y) ds(y) =

∫
∂Dj

(
∇y(y − zj)

)(
Φk(xi, y)A(y)

)
ds(y),

=

∫
∂Dj

(y − zj) Div (Φk(xi, y)A(y)) ds(y),

=−
∫
∂Dj

(y − zj)Φk(xi, y) DivA(y) ds(y)

−
∫
∂Dj

(y − zj)∇yΦk(xi, y) ·A(y) ds(y).

(2.2.68)

Being −Mk
ij,D

(A) = −ν ×∇x ×
∫
∂Dj

Φk(xi, y)×A(y) ds(y), it comes from (2.2.68)

−Mk
ij,D

(A) =ν ×∇x ×
∫
∂Dj

(y − zj)Φk(xi, y) DivA(y) ds(y)

+ ν ×∇x ×
∫
∂Dj

(y − zj)∇yΦk(xi, y) ·A(y)) ds(y),

=ν ×
∫
∂Dj

(y − zj)×∇xΦk(xi, y) DivA(y) ds(y)

+ ν ×
∫
∂Dj

(y − zj)×∇x∇yΦk(xi, y) ·A(y)) ds(y).

(2.2.69)

As 7

−∇x∇yΦk(x, y) = (4π)4Φk(x, y)Φ2
0

{
(Φ0 − ik)2 + (Φ0 − ik)Φ0 + Φ2

0

}
(x, y)

(
(x− y)(x− y)T

)
+ (4π)2ΦkΦ0(Φ0 − ik)(x, y) I,

where (x− y)T stands for the transpose vector of (x− y), we get8

|∇x∇yΦk(x, y)| ≤ 3

4π

1

δij

( 1

δij
+ |k|

)2
, (2.2.70)

and

|∇yΦk(x, y)| ≤ 1

4π

1

δij

(
1

δij
+ |k|

)
. (2.2.71)

7 Notice that
(
(x− y)(x− y)T

)
b = (b · (x− y)) (x− y) and (x− y)× (x− y) = 0.

8As e−=k δij ≤ 1.
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Hence, in view of (2.2.69), using Holder’s inequality,∣∣∣Mk
ij,D

(A)(xi)
∣∣∣ ≤|∇xΦk(xi, y)|‖(y − zj)‖L2(∂Di)‖DivA‖L2(∂Di)

+ |∇y∇xΦk(xi, y)|‖(y − zj)‖L2(∂Di)‖A(y)‖L2(∂Di),

≤2 |∂Bj |
1
2

πδij

( 1

δij
+ |k|

)2
a2‖A(y)‖

L2,Div
t (∂Di)

,

from which follows that

‖Mk
ij,D

(A)‖L2(∂Di) ≤
2(|∂Bi||∂Bj |)

1
2

πδij

( 1

δij
+ |k|

)2
a3‖A‖

L2,Div
t (∂Di)

. (2.2.72)

Taking the surface divergence of Mk
ij,D

(A) gives

DivMk
ij,D

(A)(xi) = −
∫
∂Dj

∂Φk(xi, y)

∂νx
DivA(y) ds(y)− k2ν ·

∫
∂Dj

Φk(xi, y)A(y) ds(y) (2.2.73)

and using (2.2.68)

∣∣∣DivMk
ij,D

(A)(xi)
∣∣∣ ≤ ∣∣∣∣∣

∫
∂Dj

∂Φk(xi, y)

∂νx
DivA(y) ds(y)

∣∣∣∣∣+

∣∣∣∣∣
∫
∂Dj

(y − zj)∇Φk(xi, y) ·A(y) ds(y)

∣∣∣∣∣
+

∣∣∣∣∣
∫
∂Dj

(y − zj)Φk(xi, y) DivA(y) ds(y)

∣∣∣∣∣.
Using the Mean-value-theorem, we get9 successively∣∣∣∣∣

∫
∂Dj

∂Φk(xi, y)

∂νx
DivA(y) ds(y)

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂Dj

∂ (Φk(xi, y)− Φk(xi, zj))

∂νx
DivA(y) ds(y)

∣∣∣∣∣,
≤ |∂Bj |

1
2

πδij

(
1

δij
+ |k|

)2

a2‖DivA‖L2(∂Dj),

and, ∣∣∣∣∣
∫
∂Dj

(y − zj)∇Φk(xi, y) ·A(y) ds(y)

∣∣∣∣∣ ≤ a2|∂Bj |
1
2

1

4πδij
(

1

δij
+ |k|)‖A‖L2(∂Dj),∣∣∣∣∣

∫
∂Dj

(y − zj)Φk(xi, y) DivA(y) ds(y)

∣∣∣∣∣ ≤ a2|∂Bj |
1
2

1

4πδij
‖DivA‖L2(∂Dj).

9Notice that ∫
∂Di

∇Φk(xi, zj) DivA ds(y) = ∇Φk(xi, zj)

∫
∂Di

DivA ds(y) = 0.
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zi

zj1
zj2

R0
R1

R2

R3

Figure 2.1: Possible configuration for the scatterers.

The sum of the three last inequalities, gives us the estimates

∣∣∣DivMk
ij,D

(A)(xi)
∣∣∣ ≤ 3|∂Bj |

1
2

πδij

(
1

δij
+ |k|

)2

a2
(
‖A‖

L2,Div
t (∂Di)

+ ‖DivA‖L2(∂Dj)

)
, (2.2.74)

and then

‖DivMk
ij,D

(A)‖L2(∂Di) ≤
3(|∂Bi||∂Bj |)

1
2

πδij

(
1

δij
+ |k|

)2

a3‖A‖
L2,Div

t (∂Di)
. (2.2.75)

We conclude by combining (2.2.72) and (2.2.75).

Based on Lemma 10, let us show the proof of (2.2.55). Draw l spheres (Slδ(zi)){l=1,2,...,n} centered
at zi with radius lδ , where n will be determined later, let Rl = Sl+1 −Sl, and R0 = S1 the volume
of each Rl is given by

V ol(Rl) =
4π ((l + 1)δ)3

3
− 4π(lδ)3

3
=

4π(3l2 + 3l + 1)δ3

3
. (2.2.76)

For j 6= i, we consider the spheres S 1
2
δ(zj). We claim that for j2 6= j1, int(S 1

2
δ(zj1))∩int(S 1

2
δ(zj2)) =

∅, where int(S 1
2
δ) stands for the interior of S 1

2
δ. Indeed, if t was in the intersection, we would have

dj1,j2 = min{x∈Dj1 ,y∈Dj2} d(x, y) ≤ d(zj1 , zj2) ≤ d(zj1 , t) + d(t, zj2) < δ
2 + δ

2 = δ, which contradicts
the fact that δ is the minimum distance. Hence, each domain Dj1 located in zj1 occupy the volume
of S 1

2
δ(zj2) which is not shared with another Dji . Then the maximum number of Dj ’s that could

occupy each Rl, for l = 1, ...,m, corresponds to the maximum number of spheres S 1
2
δ(zj) that could

fit in the closure of Rl. Considering the case where zj is on ∂Rl, only the half of the ball is in Rl,
see the figure.
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If ml corresponds to the maximum amount of locations zj that are in the closure of Rl then

ml ≤ V ol(Rl)/(
V ol(S 1

2 δ
)

2 ) = 24(3l2 + 3l + 1) ≤ 26l2, whenever l ≥ 4, then, being
∑n

l=1ml = m ≤∑n
l=1 24(3l2 + 3l+ 1) = 24n(n2 + 3n+ 3), we get n = O(m

1
3 ). Now, considering lemma 10, we have

‖Mk
ij,D
‖L(L2,Div

t (∂B),L2,Div
t (∂B))

≤ 4(|∂Bi||∂Bj |)
1
2

πδij

( 1

δij
+ |k|

)2
a3 ≤ Ci,j

δij

( 1

δij
+ |k|

)2
a3,

hence, for CB = maxi,j∈{1,...,m}Ci,j , we have

m∑
(j 6=i)≥1

‖Mk
ij,D
‖L(L2,Div

t (∂B),L2,Div
t (∂B))

≤ CB
n∑
l=1

∑
zj∈Rl

1

δij

( 1

δij
+ |k|

)2
a3. (2.2.77)

Since for every zj ∈ R̄l, lδ ≤ δij we get

m∑
(j 6=i)≥1

‖Mk
ij,D
‖L(L2,Div

t (∂B),L2,Div
t (∂B))

≤ CB
n∑
l=1

∑
zj∈Rl

1

lδ

(
1

lδ
+ k

)2

a3,

≤ CB
n∑
l=1

24(3l2 + 3l + 1)
1

lδ

(
1

lδ
+ k

)2

a3,

≤ 26CB

n∑
l=1

l2
1

lδ

(
1

lδ
+ k

)2

a3,

≤ 26CB
δ

(
ln (n+ 1)

δ2 +
2kn

δ
+
n

2
(n+ 1)k2

)
a3.

(2.2.78)

Considering (2.2.56) and (2.2.58), the condition (2.2.52) is acquired if

|∂Bi|eCB
4π diam(B)2

(ka)2‖[I/2 +M0
ii,B

]−1‖L(L2
t (∂Bi),L

2
t (∂Bi))

< 1, (2.2.79)

If we set CBi = |∂Bi|
4π diam(B)2 ‖[I/2 +M0

ii,B
]−1‖L(L2

t (∂Bi),L
2
t (∂Bi))

we get from (2.2.53)

‖[I/2 +Mk
ii,D

]−1‖ ≤ Ci,a :=
‖[I/2 +M0

ii,B
]−1‖L(L2

t (∂Bi),L
2
t (∂Bi))

1− CBi (eka − 1) ka
, (2.2.80)

so we find ‖(I/2 +MD)−1‖ ≤ Ca := maxi∈{1,...,m}Ci,a, under the condition (2.2.79).

2.3 Fields approximation and the linear algebraic systems

Based on the representation (2.2.12), the expression of the far field pattern is given by

E∞(τ) =
ik

4π
τ ×

∫
∂D

A(y)e−ikτ.yds(y),
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where τ = (x/|x|) ∈ S2. We put

Ri :=

∫
∂Di

A
[1]
i ds, Qi :=

∫
∂Di

νuids, (2.3.1)

whereA[1]
i and ui are defined in Theorem 8, with the notation (2.1.14) repeating the same calculations

as in (2.2.78), we derive the estimate

m∑
j≥1
j 6=i

1

δij

(
(

1

δij
+ |k|)3 + (

1

δij
+ |k|)2 + (

1

δij
+ |k|)

)

= O
( 1

δ4 +
(|k|+ 1) ln(m

1
3 )

δ3 +
(|k|+ 1)2 m

1
3

δ2 +
(|k|+ 1)3 m

2
3

δ

)
=: εk,δ,m.

(2.3.2)

Proposition 11. For =k = 0, the far field pattern can be approximated by

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ × {Ri − ikτ ×Qi}+O
(

(|k|3 + |k|2) ma4
)
. (2.3.3)

For =k ≥ 0, and for every x ∈ R3 \ ∪mi=1Di, such that dx := d(x,∪mi=1Di) ≥ δ, the scattered electric
field has the following expansion,

Esc(x) =

m∑
i=1

(
∇xΦk(x, zi)×Ri +∇y ×∇x × (Φk(x, zi)Qi)

)
+O

(a4

δ4 + εk,δ,m a4
)
. (2.3.4)

The elements (Ri)mi=1 and (Qi)mi=1 are solutions of the following linear algebraic system

Ri +
[
P∂Di

] m∑
(j 6=i)≥1

(
Πk(zi, zj)Rj − k2∇Φk(zi, zj)×Qj

)
= −

[
P∂Di

]
curlEin(zi)

+O

(
a7

δ4 + |k|εk,δ,ma7 + |k|2a4

)
.

(2.3.5)

Qi −
[
T∂Di

] m∑
(j 6=i)≥1

( −∇xΦk(zi, zj)×Rj + Πk(zi, zj)Qj) = −
[
T∂Di

]
Ein(zi)

+O

(
a7

δ4 + εk,δ,ma7 + (1 + |k|)a4

)
.

(2.3.6)

2.3.1 Justification of (3.3.68) and (2.3.4)

Lemma 12. For =k = 0, the far field pattern can be approximated by

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
{∫

∂Di

Ai ds−
∫
∂Di

(ikτ.(y − zi))Ai(y) ds(y)

}
(2.3.7)
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with an error estimate given by O
(
e|k|a m (|k|3)a4

)
. Precisely, in view of the decomposition (2.2.45)

of Theorem 8 and (2.2.79) the far field admits the following expansion

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ × {Ri − ikτ ×Qi}+O
(

(|k|3 + |k|2) ma4
)
. (2.3.8)

Proof. To prove (2.3.7), we write

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
∫
∂Di

Am(y) ds(y)

+
ik

4π

m∑
i=1

τ ×
∫
∂Di

(
e−ikτ.y − e−ikτ.zi

)
Am(y) ds(y)

(2.3.9)

for every i ∈ {1, ...,m} and evaluate the term

Q(τ,zm) := τ ×
∫
∂Di

(
e−ikτ.y − e−ikτ.zm

)
Am(y) ds(y).

Developing the exponential in Taylor series, we obtain

Q(τ,zi) =e−ikτ.ziτ ×
∫
∂Di

(
e−ikτ.(y−zi) − 1

)
Am(y) ds(y),

=e−ikτ.zmτ ×
∫
∂Di

∑
n≥1

(−ikτ.(y − zm))n

n!
Am(y) ds(y),

=e−ikτ.zmτ ×
(∫

∂Di

∑
n≥2

(−ikτ.(y − zm))n

n!
Am(y) ds(y) +

∫
∂Di

(−ikτ.(y − zm))Am(y) ds(y)
)
.

As |y − zi| ≤ a, the first term gives us,10∣∣∣e−ikτ.ziτ × ∫
∂Di

∑
n≥2

(−ikτ.(y − zi))n

n!
Ai(y) ds(y)

∣∣∣ ≤ |∂Bi| 12 ∑
n≥2

(|k|a)n

n!
a‖A‖L2(∂Di),

≤ |∂Bi|
1
2

∑
n≥2

(|k|a)n−2

n!
|k|2a4 ≤ |∂B|

1
2 e|k|a|k|2a4.

Taking the sum over i, we get

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
Ri −

∫
∂Di

(ikτ.(y − zi))Ai(y) ds(y)
)

+O(e|k|a|k|3ma4). (2.3.10)

Now, considering the decomposition (2.2.45) of theorem 8, we have∫
∂Di

(ikτ.(y − zi))Ai(y) ds(y) =

∫
∂Di

ikτ.(y − zi)(A[1]
i +A

[2]
i )(y) ds(y),

=

∫
∂Di

(ikτ.(y − zi))A[2]
i (y) ds(y) +O(|k|a4),

10We have
∑
n≥2

(|k|a)n−2

n!
≤
∑
n≥2

(|k|a)n−2

(n−2)!
= e|k|a.
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where O(|k|a4) comes from∣∣∣∣∫
∂Di

ikτ.(y − zi)A[1]
i (y) ds(y)

∣∣∣∣ ≤ |k|a2|∂Bi|‖A[1]‖L2(∂Di) ≤ |k|a
2|∂Bi|C1a‖A‖L2,Div

t (∂Di)
,

≤ |k||∂Bi|C1Cea
4.

Then
∫
∂Di

ikτ.(y− zi) Ai ds(y) =
∫
∂Di

ikτ.(y− zi) ν×∇ui ds(y) +O(|k|a4). Multiplying by e−ikτ.zi
and taking the sum over i, we obtain

m∑
i=1

e−ikτ.zi
∫
∂Di

ikτ.(y − zi)Ai ds(y) =

m∑
i=1

e−ikτ.zi
(∫

∂Di

ikτ.(y − zi)ν ×∇ui ds(y) +O(|k|a4)

)
,

With this last approximation, (2.3.10) gives

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
Ri −

∫
∂Di

ikτ.(y − zi) ν ×∇ui(y) ds(y)
)

+O
(

(e|k|a|k|3 + |k|2) ma4
)
.

Finally, integrating by part the second term of the second member, we obtain∫
∂Di

ikτ.(y − zi) ν ×∇ui ds(y) = −ik
∫
∂Di

(ν ×∇yτ.(y − zi))ui ds(y),

= +ik

∫
∂Di

(τ × ν)ui(y) ds(y) = ikτ ×Qi.

Lemma 13. The electric field has the following asymptotic expansion

Esc(x) =
m∑
i=1

(
∇xΦk(x, zi)×Ri +∇y ×∇x × (Φk(x, zi)Qi)

)
+O

(
1

δ

(
1

δ3 +
3|k|+ 1

δ2 +
5|k|2

δi0,i
+ |k|2 + |k|3

)
a4

)
+O

( m∑
(i 6=i0)≥1

1

δi0,i

(
1

δ3
i0,i

+
3|k|+ 1

δ2
i0,i

+
5|k|2

δi0,i
+ |k|2 + |k|3

)
a4

)
.

(2.3.11)

Proof. For x ∈ R3 \ ∪mi=1Di, using Taylor formula with integral reminder, we get from the represen-
tation (2.2.12)

Esc(x) =
m∑
i=1

∫
∂Di

(
∇xΦk(x, zi) +

(
∇y∇xΦk(x, zi) · (y − zi)

))
×Ai(y) ds(y)

+
m∑
i=1

∫
∂Di

∫ 1

0
D3Φk(x, ty + (1− t)zi) ◦ (y − zi)(y − zi)×Ai(y) ds(y),
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which is11

Esc(x) =

m∑
i=1

(
∇xΦk(x, zi)×Ri +

∫
∂Di

(
−∇x

(
∇xΦk(x, zi) · (y − zi)

))
×Ai(y) ds(y)

)
+

m∑
i=1

∫
∂Di

∫ 1

0
D3Φk(x, ty + (1− t)zi) ◦ (y − zi)(y − zi)×Ai(y) ds(y),

(2.3.12)

As it was done in (2.3.40), with dx,i := d(x, ∂Di), we have

∣∣∫
∂Di

∫ 1

0
D3Φk(x, ty + (1− t)zi) ◦ (y − zi)(y − zi)×Ai(y) ds(y)

∣∣
≤ e−=kdx,i

dx,i

( 1

dx,i
+ |k|

)3
a2

∫
∂Di

|ai|ds.

For a fixed x ∈ R3 \ Ω, set dx := mini∈{1,...,m} dx,i, hence there exists some i0 such that dx =
d(x, ∂Di0), further

δi0,i = d(∂Di0 , ∂Di) ≤ dx,i + dx,i0 ,

from which follows
1

dx,i
≤ 2

δi0,i
. (2.3.13)

Summing over i, the reminder, remain smaller then

O
( m∑

(i 6=i0)≥1

e−=kδi0,i/2

δi0,i

( 1

δi0,i
+ |k|

)3
a4 +

e−=kδ

δ

(1

δ
+ |k|

)3
a4
)
. (2.3.14)

The second term under the sum of (2.3.12) is precisely

∇y ×∇x × (Φk(x, zi)Qi) +O
(e−=kδi0,i/2

δi0,i

( 1

δi0,i
+ |k|

)2
a4
)
. (2.3.15)

Indeed,∫
∂Di

∇x
(
∇xΦk(x, zi) · (y − zi)

)
×Ai(y) ds(y) =

∫
∂Di

∇x ×
[(
∇xΦk(x, zi) · (y − zi)

)
Ai(y)

]
ds(y).

As we did for the far field approximation, we get in view of decomposition (2.2.45)∫
∂Di

(∇xΦk(x, zi).(y − zi))Ai(y) ds(y) =

∫
∂Di

∇xΦk(x, zi).(y − zi)
(
A

[1]
i +A

[2]
i

)
(y) ds(y), (2.3.16)

and being∣∣∣∣∫
∂Di

∇x (∇xΦk(x, zi).(y − zi))×A
[1]
i (y) ds(y)

∣∣∣∣ ≤ C e−=kdx,idx,i

(
1

dx,i
+ |k|

)2

a

∫
∂Di

|A[1]
i |ds,

11Recall that ∇y∇xΦk(x, y) = −∇x∇xΦk(x, y).
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we get, due to (2.2.46)∫
∂Di

∇ (∇Φk(x, zi).(y − zi))×A
[1]
i (y) ds(y) = 0

(e−=kdx,i
dx,i

(
1

dx,i
+ |k|

)2

a4
)
. (2.3.17)

Further, integrating by part, in the second step of the following identities∫
∂Di

(
∇xΦk(x, zi).(y − zi)

)
A

[2]
i (y) ds(y)

∫
∂Di

(∇xΦk(x, zi).(y − zi)) ν ×∇ui(y) ds(y),

= −
∫
∂Di

ν ×∇y (∇xΦk(x, zi).(y − zi))ui(y) ds(y),

=

∫
∂Di

∇xΦk(x, zi)× νui(y) ds(y) = ∇xΦk(x, zi)×Qi,

and differentiating, we get

−∇x ×
∫
∂Di

(∇xΦk(x, zi).(y − zi))A
[2]
i (y) ds(y) = ∇y∇x(Φk(x, zi)Qi). (2.3.18)

Hence, considering (2.3.17), (2.3.15) follows from (2.3.16). Replacing (2.3.15) and (2.3.14) in (2.3.12)
gives

Esc(x) =
m∑
i=1

(
∇xΦk(x, zi)×Ri +∇y ×∇x × (Φk(x, zi)Qi) +O

(e−=kdx,i
dx,i

( 1

dx,i
+ |k|

)2
ma4

))

+O
( m∑
i=1

e−=kδi0,i/2

δi0,i

( 1

δi0,i
+ |k|

)3
a4
)
.

Repeating the calculations done to get (2.3.14), we obtain

Esc(x) =
m∑
i=1

(
∇xΦk(x, zi)×Ri +∇y ×∇x × (Φk(x, zi)Qi)

)
+O

(e−=kδ
δ

[(1

δ
+ |k|

)2
+
(1

δ
+ |k|

)3]
a4
)

+O
( m∑

(i 6=i0)≥1

e−=kδi0,i/2

δi0,i

[( 1

δi0,i
+ |k|

)2
+
( 1

δi0,i
+ |k|

)3]
a4
)
.

The approximation (2.3.4) follows using (2.3.2).

2.3.2 Justification of (2.3.5) and (2.3.6)

We provide the justification of (2.3.6) and then the one of (2.3.5).
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2.3.2.1 Justification of (2.3.6)

Let ψ be any smooth enough vectorial function. Multiplying by (2.2.17) and integrating over ∂Di,
we get∫

∂Di

ψ · [I/2 +Mk
ii,D

]A ds+

m∑
(j 6=i)≥1

∫
∂Di

ψ · [Mk
ij,D

](Aj) ds = −
∫
∂Di

ψ · νi × Ein ds. (2.3.19)

Recalling the scaling (2.2.56) and the estimate (2.2.62)12, we have∣∣∣∣∫
∂Di

ψ · [I/2 +Mk
ii,D

]A
[1]
i ds

∣∣∣∣∣ ≤ ‖ψ‖(‖[I/2 +M0
ii,D

]A
[1]
i ‖+ ‖[Mk

ii,D
−M0

ii,D
]A

[1]
i ‖
)
,

≤ ‖ψ‖L2(∂Di)

(
C

[M0
ii,B

]
+
|k|2(|∂B|)a2

4π

)
‖A[1]

i ‖L2(∂Di).

In view of the decomposition (2.2.45), we obtain
∣∣∫
∂Di

ψ · [I/2 + (Mk
ii,D

)]A
[1]
i ds

∣∣ = O(‖ψ‖L2(∂Di)a
2),

and then (2.3.19) gives

O(‖ψ‖L2(∂Di)a
2) +

∫
∂Di

ψ · [I/2 +M0
ii,D

+ (Mk
ii,D
−M0

ii,D
)](A

[2]
i ) ds

+
m∑

(j 6=i)≥1

∫
∂Di

ψ · [Mk
ij,D

](A
[1]
j +A

[2]
j ) ds) ds = −

∫
∂Di

ψ · νi × Ein ds.

Using (2.2.62) and the estimates (2.2.48) of the decomposition (2.2.45), in the left hand side, we get

O(‖ψ‖L2a2) +

∫
∂Di

ψ · [I/2 +M0
ii,D

](A
[2]
i ) ds+O(|ka|2‖ψ‖L2a)

+
m∑

(j 6=i)≥1

∫
∂Di

ψ · [Mij ](A
[1]
j +A

[2]
j ) ds =

∫
∂Di

−ψ · νi × Ein ds.
(2.3.20)

Now, we show how we choose appropriate candidates ψ to derive the estimates (2.3.5) and (2.3.6).

Lemma 14. There are functions (ψl)l=1,2,3. such that ν × ψl ∈ L2,Div
t (∂Di) and satisfiesing, for

constants C
(M0

ii,B
)
, C

(M0
ii,B

,K0∗
ii,B

)
which depends only on |∂B|,

‖ν × ψl‖L2(∂Di) ≤ C(M0
ii,B

)
|∂B|a2, ‖ν × ψl‖L2,Div

t (∂Di)
≤ C

(M0
ii,B

,K0∗
ii,B

)
|∂B|a, (2.3.21)

and for which the approximation∫
∂Di

ψl · [I/2 +M0
ii,D

](A
[2]
i ) ds = O(a4 + |k|2a5) +

∫
∂Di

νliui ds, (2.3.22)

hold, here ν ×∇ui = A
[2]
i .

12With L2(∂Di) norms.
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Proof. Let (bl)l=1,2,3 be the solution of the following equation

[−I/2 +M0
ii,D

](bl) = −ν × Vl, (2.3.23)

where, (el)l=1,2,3. being the canonical base of R3 V1 = (0, 0, (x− zi) · e2), V2 = ((x− zi) · e3, 0, 0) and
V3 = (0, (x− zi) · e1, 0). It is evident that curlVl = el, further bl ∈ L2,Div

t (∂Di), and13

ν × (ν × bl) = (ν · bl)ν − (ν · ν)bl = −bl. (2.3.24)

We put ψl := −ν × bl, hence ν × ψl = bl, and Div(ν × ψl) = DivAl. Solving (2.3.23) amounts to
solve the following problem (it suffices to take the surface divergence in the identity (2.3.24))

[I/2 + (K0
ii,D

)∗](ν · curlψl) = −νli . (2.3.25)

Further, as it was done in (2.2.56) and (2.2.54), the following estimates hold

‖ν × ψl‖L2(∂Di) ≤ ‖[−I/2 +M0
ii,B

]−1‖L(L2
t (∂Bi))

‖ν × Vl‖L2(∂Di) ≤ C(M0
ii,B

)
|∂B|a2,

and

‖ν × ψl‖L2,Div
t (∂Di)

≤ ‖[−I/2 +M0
ii,B

]−1‖L(L2,Div
t (∂Bi))

‖Vl‖L2,Div
t (∂Di)

≤ CM0
ii,B

,K0∗
ii,D

|∂B|a.

We have the following relations (see Lemma 5.11 [57])

[I/2 +M0
ii,D

](A
[2]
i ) = [I/2 +M0

ii,D
](ν ×∇ui) = ν ×∇[I/2 +K0

ii,D
](ui), (2.3.26)

and, for every scalar function w, 14∫
∂Di

wν · curlψ ds = −
∫
∂Di

ψ · (ν ×∇w) ds. (2.3.27)

Hence, the term under the integral of the left hand side of (2.3.20), using (2.3.26) and (2.3.27), gives∫
∂Di

ψ · [I/2 +M0
ii,D

](A
[2]
i ) ds =

∫
∂Di

ψ · ν ×∇[I/2 +K0
ii,D

](ui) ds,

= −
∫
∂Di

(ν · curlψ)[I/2 +K0
ii,D

](ui) ds,

= −
∫
∂Di

[I/2 + (K0
ii,D

)∗](ν · curlψ) uids.

(2.3.28)

Using (2.3.28) with ψl as in (2.3.23), we get

O((a2 + |ka|2a)a2) +

∫
∂Di

[I/2 + (K0
ii,D

)∗](ν · curlψl)ui ds = O(a4) +O(|k|2aa4)−
∫
∂Di

νliui ds,

to conclude that ∫
∂Di

ψl · [I/2 +M0
ii,D

](A
[2]
i ) ds = O(a4 + |k|2a5) +

∫
∂Di

νliui ds. (2.3.29)

13Having ν · bl = 0 and ν · ν = 1.
14A direct application of (2.2.3) with a = wψ.
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We recall the notations, for l = 1, 2, 3,

[T∂Di ]
l :=

∫
∂Di

νli [I/2 +K0
ii,D

]−1(x− zi) ds.

Lemma 15. The second term of the left hand side of (2.3.20) admits the following approximations∫
∂Di

ψl · [Mk
ij,D

]A
[1]
j ds =[T∂Di ]

l · ∇xΦk(zi, zj)×Rj +O(
1

δij

( 1

δij
+ |k|

)2
a7) (2.3.30)

and ∫
∂Di

ψl · [Mk
ij,D

](A
[2]
j ) ds =[T∂Di ]

l ·
(
−k2Φk(zi, zj)I +∇x∇yΦk(zi, zj)

)
Qj

+O

(
1

δij

(
(

1

δij
+ |k|)3 + (

1

δij
+ |k|)

)
a7

)
.

(2.3.31)

In addition, we have the approximation∫
∂Di

ψl · νi × Ein ds =

∫
∂Di

νli [I/2 +K0
ii,D

]−1(x− zi) ds · Ein(zi) +O(ka4). (2.3.32)

Proof. Adding and subtracting ∇xΦk(zi, y), we write∫
∂Di

ψl·[Mk
ij,D

]A
[1]
j ds

=

∫
∂Di

ψl · (νxi ×
∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y) ds(y))ds(x)

+

∫
∂Di

ψl · (νxi ×
∫
∂Dj

(∇xΦk(zi, y))×A[1]
j (y) ds(y)) ds(x).

(2.3.33)

For the first integral of the right hand side, we get, using Holder’s inequality then the Mean-value-
theorem, with L2(∂Di) norm,∣∣∣∣∣

∫
∂Di

ψl · (νxi ×
∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y) ds(y)) ds(x)

∣∣∣∣∣
≤ ‖ψl‖ ‖

∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y) ds(y)‖.

As ∣∣∣(∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y)) ds(y)

∣∣∣
≤ sup

x∈∂Di
|(x− zi)|‖A[1]

j ‖ sup
x∈∂Di,y∈∂Dj

|∇x∇xΦk(xi, y)|a|∂Bi|
1
2 ,

with (2.2.70), we get∣∣∣∣(∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y)) ds(y) ds(x)

∣∣∣∣ ≤ e−=k δij

4π

1

δij

( 1

δij
+ |k|

)2
a4. (2.3.34)
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Finally∣∣∣∣∫
∂Di

ψl · (νxi ×
∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y) ds(y)) ds(x)

∣∣∣∣ ≤ e−=k δij

4πδij

( 1

δij
+ |k|

)2
a7,

which is ∫
∂Di

ψl · (νxi ×
∫
∂Dj

(∇xΦk(xi, y)−∇xΦk(zi, y))×A[1]
j (y) ds(y)) ds(x)

= O(
1

δij

( 1

δij
+ |k|

)2
a7).

(2.3.35)

For the second integral of the right hand side of (2.3.33), we get∫
∂Di

ψl · (νxi ×
∫
∂Dj

∇xΦk(zi, y)×A[1]
j (y) ds(y)) ds(x)

=

∫
∂Di

ψl · (νxi ×
∫
∂Dj

∇x (Φk(zi, y)− Φk(zi, zj))×A
[1]
j (y) ds(y)) ds(x)

+

∫
∂Di

ψl · (νxi ×∇xΦk(zi, zj)×
∫
∂Dj

A
[1]
j (y) ds(y)) ds(x).

Using again the Mean-value-theorem as in (2.3.35) for the first integral of the second member, we
get∫

∂Di

ψl·(νxi ×
∫
∂Dj

∇xΦk(zi, y)×A[1]
j (y) ds(y)) ds(x)

=O(
1

δij

( 1

δij
+ |k|

)2
a7) +

∫
∂Di

ψl · (νxi ×∇xΦk(zi, zj)×
∫
∂Dj

A
[1]
j ds(y)) ds(x).

(2.3.36)

In addition, considering the fact that, for any vectors a, b, c of R3 we have a · (b× c) = −c · (b× a),
we write 15 ∫

∂Di

ψl · (νxi ×∇xΦk(zi, zj)×
∫
∂Dj

A
[1]
j ds) ds(x)

=

∫
∂Di

ψl · νxi ×∇ ((x− zi) · ∇xΦk(zi, zj)×Rj) ds(x),

= −
∫
∂Di

νxi × ψl · ∇ ((x− zi) · ∇xΦk(zi, zj)×Rj) ds(x).

Integrating by parts, and considering (2.3.25), we have∫
∂Di

ψl · (νxi ×∇xΦk(zi, zj)×Rj) ds(x) =

∫
∂Di

Div(ν × ψl) ((x− zi) · ∇xΦk(zi, zj)×Rj) ds(x),

= −
∫
∂Di

ν · curlψl ((x− zi) · ∇xΦk(zi, zj)×Rj) ds(x),

=
(∫

∂Di

I/2 + (K0
ii,D

)∗]−1(νli)(x− zi) ds
)
· ∇xΦk(zi, zj)×Rj .

15Recall the definition of Rj =
∫
∂Di

(A
[1]
j +A

[2]
j ) ds =

∫
∂Di

A
[1]
j ds.
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Replacing in (2.3.36), summing over j gives the first approximation. For (2.3.31), being A
[2]
j =

ν ×∇uj we have (see Lemma 5.11 [57])

[Mk
ij,D

]ν ×∇uj = ν ×∇[Kk
i,j ]uj − k2 ν × [Skij,D ](νyuj), (2.3.37)

then ∫
∂Di

ψl · [Mk
ij,D

](A
[2]
j ) ds = ψl · (ν ×∇[Kk

i,j ]uj − k2 ν × [Skij,D ](νyuj)). (2.3.38)

The first term of the right hand side gives 16∫
∂Di

ψl · ν ×∇[Kk
i,j ]uj ds

= −
∫
∂Di

ν · curlψ(x)

∫
∂Dj

νy · ∇yΦk(xi, y)uj(y) ds(y) ds(x),

= −
∫
∂Di

ν · curlψ(x)

∫
∂Dj

νy · ∇y (Φk(xi, y)− Φk(zi, y))uj(y) ds(y) ds(x).

(2.3.39)

By Taylor formula at the first order, 17

∇y (Φk(xi, y)− Φk(zi, y)) = ∇x∇yΦk(zi, y)(x− zi) +O
( 1

δij
(

1

δij
+ |k|)3a2

)
, (2.3.40)

(2.3.39) gives∫
∂Di

ψl · ν ×∇[Kk
i,j ]uj ds =−

∫
∂Di

ν · curlψ(x)
(∫

∂Dj

∇x∇yΦk(zi, y)(x− zi) · νyuj(y) ds(y)
)
ds(x)

+

∫
∂Di

ν · curlψ(x)

∫
∂Dj

νy ·O
( 1

δij
(

1

δij
+ |k|)3a2

)
uj(y) ds(y) ds(x).

Adding and subtracting ∇x∇yΦk(zi, zj) under the integral, with the approximation (2.3.40), yields∫
∂Di

ψl · ν ×∇[Kk
i,j ]uj ds =−

∫
∂Di

ν · curlψ(x)
(∫

∂Dj

∇x∇yΦk(zi, zj)(x− zi) · νyuj(y) ds(x)
)
ds(y)

+

∫
∂Di

ν · curlψ(x)

∫
∂Dj

2× νy ·O
( 1

δij
(

1

δij
+ |k|)3a2

)
uj(y) ds(y) ds(x).

In view of (2.2.49), we have∣∣∣∫
∂Di

ν · curlψ(x)

∫
∂Dj

νy ·O
( 1

δij
(

1

δij
+ |k|)3a2

)
uj(y) ds(y) ds(x)

∣∣∣
≤ ‖ν · curlψ‖‖

∫
∂Dj

νj ·O
( 1

δij
(

1

δij
+ |k|)3a2

)
uj ds‖,

≤ O(
1

δij

( 1

δij
+ |k|

)3
a3)O(a)‖uj‖O(a),

= O
( 1

δij
(

1

δij
+ |k|)3a7

)
.

16Being
∫
∂Di

(ν · curlψ)C = 0, for any constant vector C.
17Actually

∣∣∣∫ 1

0
D3Φk(tx+ (1− t)zi, y)dt ◦ (x− zi) (x− zi)

∣∣∣ ≤ C
δij

(
1
δij

+ |k|
)3
a2.

52



Fields approximation and the linear algebraic systems 53

It follows, with (∇x∇yΦk(zi, zj))
T standing for the transpose,∫

∂Di

ψl · ν ×∇[Kk
i,j ]uj ds =−

∫
∂Di

ν · curlψ(x)(x− zi) ·
((
∇x∇yΦk(zi, zj)

)T ∫
∂Dj

νjuj ds
)
ds(x)

+O
( 1

δij
(

1

δij
+ |k|)3a7

)
,

hence, being (∇x∇yΦk(zi, zj))
T = ∇x∇yΦk(zi, zj), we get in view of (2.3.25) that∫

∂Di

ψl · ν ×∇[Kk
i,j ]uj ds

=O
( 1

δij
(

1

δij
+ |k|)3a7

)
−
∫
∂Di

[I/2 + (K0
ii,D

)∗]−1(−νli)(x− zi) ds · (∇x∇yΦk(zi, zj)Qj) .

(2.3.41)

Now, consider the second term of (2.3.38), 18

−k2

∫
∂Di

ψl · (ν × [Skij,D ](νyuj(y))) ds

= k2

∫
∂Di

(νxi × ψl(x)) ·
∫
∂Dj

Φk(xi, y)(νyuj(y)) ds(y) ds(x),
(2.3.42)

we have∫
∂Dj

Φk(xi, y)(νyuj(y)) ds(y) =

∫
∂Dj

Φk(zi, y) (νyuj(y)) ds(y)

+

∫
∂Dj

∫ 1

0
(∇xΦk(tx+ (1− t)zi, y)dt) · (x− zi)) (νyuj(y)) ds(y),

and repeating the same approximation in y, with the following estimate∣∣∣∫
∂Dj

∫ 1

0
(∇xΦk(tx+ (1− t)zi, y)dt) · (x− zi)) (νyuj(y)) ds(y)

∣∣∣ ≤ C a2

δij
(

1

δij + |k|
)‖uj‖2L(∂Di),

≤ C 1

δij

( 1

δij
+ |k|

)
a4,

we get∫
∂Dj

Φk(xi, y)(νyuj(y)) ds(y) = Φk(zi, zj)

∫
∂Dj

νjuj ds+ 2 O
( 1

δij
(

1

δij
+ |k|)a4

)
. (2.3.43)

Replacing in (2.3.42), gives

−k2

∫
∂Di

ψl · (ν × [Skij,D ](νyuj)) ds =k2

∫
∂Di

(νxi × ψl(x)) ·
(

Φk(zi, zj)Qj

+O
( 1

δij
(

1

δij
+ |k|)a4

))
ds(x)

18With the following product rule u · (v × w) = −w · (v × u).
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Considering the estimate (2.3.21), we have

−k2

∫
∂Di

ψl · (ν × [Skij,D ](νyuj))ds = k2

∫
∂Di

(νxi × ψl(x)) · Φk(zi, zj)Qjds(x) +O
( 1

δij

( 1

δij
+ |k|

)
a7
)
,

and then, with (2.2.2) for the second inequality, we derive

−k2

∫
∂Di

ψl·(ν × [Skij,D ](νyuj)) ds

= k2

∫
∂Di

(νxi × ψl(x)) · Φk(zi, zj)∇ ((x− zi) · Qj) ds(x) +O
( 1

δij

( 1

δij
+ |k|

)
a7
)
,

= −k2

∫
∂Di

Div(νxi × ψl(x))Φk(zi, zj) ((x− zi) · Qj) ds(x) +O
( 1

δij

( 1

δij
+ |k|

)
a7
)
.

As consequence, being Div(ν × ψ) = −ν · curlψ, we obtain

−k2

∫
∂Di

ψl·(ν × [Skij,D ](νyuj)) ds

=k2

∫
∂Di

[I/2 + (K0
ii,D

)∗]−1(−νli)(x)
(
(x− zi) · Φk(zi, zj)Qj

)
ds(x)

+O
( 1

δij

( 1

δij
+ |k|

)
a7
)
.

(2.3.44)

It remain to put together (2.3.41), (2.3.44) and to sum over j to get the conclusion. Concerning
(2.3.32), doing as in (2.3.42)∫

∂Di

ψl(x) · νxi × Ein(x) ds(x)

=−
∫
∂Di

νxi × ψl · Ein(zi) ds(x)−
∫
∂Di

νxi × ψl · (Ein(xi)− Ein(zi)) ds(x),

=−
∫
∂Di

νxi × ψl · Ein(zi) ds(x) +O(‖νxi × ψl‖L2(∂Di)‖(E
in(xi)− Ein(zi))‖L2(∂Di)).

With the Mean value Theorem, we get

‖(Ein(xi)− Ein(zi))‖L2(∂Di) = ‖
∫ 1

0
∇Ein(txi + (1− t)zi)dt · (x− zi)‖L2(∂Di) = O(ka2),

thus, considering (2.3.21), and (2.2.2) for the last identity, we end up with∫
∂Di

ψl(x)νxi × Ein(x) ds(x) = −
∫
∂Di

νxi × ψl(x) · ∇
(
(x− zi) · Ein(zi)

)
ds(x) +O(ka4),

=

∫
∂Di

−νxi · curlψl(x)
(
(x− zi) · Ein(zi)

)
ds(x) +O(|k|a4).

Using (2.3.25) gives the conclusion.
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Finally, the approximation for the Qi’s, with
[
T∂Di

]
as defined in (2.2.8),

Qi =
[
T∂Di

] m∑
(j 6=i)≥1

(−∇xΦk(zi, zj)×Rj + Πk(zi, zj)Qj)−
[
T∂Di

]
Ein(zi)

+O(
m∑

(j 6=i)≥1

1

δij

(
(

1

δij
+ |k|)3 + (

1

δij
+ |k|)2 + (

1

δij
+ |k|)

)
a7)

+O((1 + |k|+ |k|2a) a4),

holds. It suffices, for l = 1, 2, 3, to replace the approximations of Lemma 14 and Lemma 15 in (2.3.20)
to conclude. Developing the approximation error of the above equation, as pointed in (2.3.2), gives
(2.3.6).

2.3.2.2 Justification of (2.3.5)

Let φ be any smooth enough scalar function. Multiply each side of (2.2.17) by ∇φ and integrate
over ∂Di to get, using the relation (2.2.1),∫

∂Di

φDiv [I/2 +Mk
ii,D

]A ds +

m∑
(j 6=i)≥1

∫
∂Di

φ Div[Mk
ij,D

](a) ds

= −
∫
∂Di

φ Div(νxi × Ein) ds.

(2.3.45)

As curl2 = curl curl = −∆ +∇ div, we have∫
∂Di

φ

(
[I/2− (Kk

∂Di
)∗] DivA− k2νxi · [Skii,D ]A

)
ds

−
m∑

(j 6=i)≥1

∫
∂Di

φ

(
[(Kk

i,j)
∗] DivA+ k2νxi · [Skij,D ]A

)
ds = −

∫
∂Di

φ νi · curlEin ds.
(2.3.46)

Let now φ be the solution to the following integral equation

[−I/2 +K0
ii,D

](φ)(x) = (x− zi), (2.3.47)

then, as result of (2.2.57), φ satisfies the following estimate

‖φ‖L2(∂Di) ≤ CK0
ii,B

a2. (2.3.48)

The tensor
[
P∂Di

]
is defined in (2.2.7). The justification of (2.3.5) is a direct consequence of the

following expansions.

Lemma 16. With the previous notation we have the following three approximations∫
∂Di

φ

(
[I/2− (Kk

∂Di
)∗] DivA−k2νxi · [Skii,D ]A

)
ds = Ri +O((a+ 1)|k|2a4). (2.3.49)
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∫
∂Di

φ
(

[(Kk
i,j)
∗] DivA+ k2νxi · [Skij,D ]A

)
ds

=
[
P∂Di

](
Πk(zi, zj)Rj − k2∇xΦk(zi, zj)×Qj

)
+O

((
(

1

δij
+ |k|)3 + (

1

δij
+ |k|) + |k|2(

1

δij
+ |k|)2

)a7

δij

)
,

(2.3.50)

∫
∂Di

φ νi · curlEin ds =
[
P∂Di

]
∂Di

curlEin(zi) +O(|k|2a4). (2.3.51)

Proof. We have for (2.3.49)∫
∂Di

φ

(
[I/2− (Kk

ii,D
)∗] DivA+k2νxi · [Skii,D ]A

)
ds

=

∫
∂Di

φ

(
[I/2− (K0

ii,D
)∗] DivA+ [(K0

ii,D
)∗ − (Kk

ii,D
)∗] DivA

+ k2νxi · [Skii,D ]A

)
ds,

(2.3.52)

Using (2.2.64) and (2.2.63), the right-hand side gives∫
∂Di

φ[I/2− (K0
ii,D

)∗] DivA ds+ O(|k|2a2‖DivA‖L2
0(∂Di)

‖φ‖L2(∂Di))

+O(|k|2a‖A‖L2(∂Di)‖φ‖L2(∂Di)).

With (2.3.48) and (2.2.44), it becomes∫
∂Di

φ[I/2− (K0
ii,D

)∗] DivA ds+O((a+ 1)|k|2a4). (2.3.53)

Hence as
∫
∂Di

φ[I/2− (K0
ii,D

)∗] DivA ds =
∫
∂Di

[I/2−K0
ii,D

]φDivA ds, with the definition (2.3.47)
the right-hand side of (2.3.52) ends up to be

−
∫
∂Di

(x− zi) DivA(x) ds(x) +O((a+ 1)|k|2a4) = Ri +O((a+ 1)|k|2a4). (2.3.54)

Concerning (2.3.50), we obtain, after developing the first term of the first member in Taylor series,∫
∂Di

φ[(Kk
i,j)
∗](DivA)ds

=

∫
∂Di

φ(x)ν ·
∫
∂Dj

(∇yΦk(x, zj) +∇y∇xΦk(x, zj) · (y − zj)) DivA(y) ds(y) ds(x)

+

∫
∂Di

φ(x)ν ·
∫
∂Dj

(∫ 1

0
D3
y,y,xΦk(x, ty + (1− t)zj) ◦ (y − zj) · (y − zj)

)
DivA(y)ds(y)ds(x),
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which gives as we did it in (2.3.40)19∫
∂Di

φ [(Kk
i,j)
∗](DivA) =

∫
∂Di

φ(x) ν ·
∫
∂Dj

(∇y∇xΦk(x, zj) · (y − zj)) DivA(y) ds(y) ds(x)

+O(
1

δij

( 1

δij
+ |k|

)3
a2a‖DivA‖a‖φ‖).

Repeating the same computations for x ∈ ∂Di, we get, in consideration of (2.3.48)∫
∂Di

φ [(Kk
i,j)
∗](DivA) =

∫
∂Di

φ(x) ν ·
∫
∂Dj

(∇y∇xΦk(zi, zj) · (y − zj)) DivA(y) ds(y) ds(x)

+ 2 O(
1

δij

( 1

δij
+ |k|

)3
a7).

With the notation (2.2.7), we get 20∫
∂Di

φ [(Kk
i,j)
∗](DivA) ds = −

[
P∂Di

]
(∇y∇xΦk(zi, zj)Rj) +O(

1

δij

( 1

δij
+ |k|

)3
a7). (2.3.55)

Concerning the second term of the first member of (2.3.50), we have in view of (2.2.45) theorem 8∫
∂Di

φ k2νi · [Skij,D ](Aj) ds =

∫
∂Di

φ k2νi · [Skij,D ]
(
A

[1]
j +A

[2]
j

)
ds, (2.3.56)

and then∫
∂Di

φ k2νi · [Skij,D ](A
[1]
j ) ds =

∫
∂Di

φ(x) k2νxi ·
∫
∂Dj

(Φk(x, y)− Φ(zi, zj))A
[1]
j (y) ds(y) ds(x)

+

∫
∂Di

φ(x) k2νxi ·
∫
∂Dj

Φk(zi, zj)A
[1]
j (y) ds(y) ds(x),

Using Mean-value-theorem, we get for the right-hand side of the above equation∫
∂Di

φ k2νi ·
(∫

∂Dj

O
(
(

1

δij
+ |k|) 1

δij
a
)
A

[1]
j (y) ds(y)

)
ds

+k2Φk(zi, zj)

∫
∂Di

φ νi ·
(∫

∂Dj

A
[1]
j (y) ds(y)

)
ds,

then considering the estimates (2.2.46) and (2.3.48), with Holder’s inequality give∫
∂Di

φ k2νi · [Skij,D ](A
[1]
j ) ds =

[
P∂Di

]
k2Φk(zi, zj)Rj +O

(
(

1

δij
+ |k|) 1

δij
a7
)
. (2.3.57)

The second term of the second member of (2.3.56) gives, again considering (2.2.45),∫
∂Di

φ k2νi · [Skij,D ]A
[2]
j ds =

∫
∂Di

φ(x) k2νxi ·
∫
∂Dj

Φk(x, y)ν ×∇uj ds(y) ds(x),

19Note that
∫
∂Dj
∇xΦk(x, zj) DivA = 0.

20Recall that
∫
∂Dj

(y − zj) DivA(y) ds(y) = −
∫
∂Dj

A(y) ds(y) = −Rj .
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which, by integrating by parts, gives∫
∂Di

φ k2ν · [Skij,D ]A
[2]
j ds =

∫
∂Di

φ(x) k2νxi ·
(
−
∫
∂Dj

uj(y)νyi ×∇yΦk(x, y) ds(y)
)
ds(x).

Now, doing a first order approximation, we have∫
∂Di

φ k2ν · [Skij,D ]A
[2]
j ds

=

∫
∂Di

φ(x) k2νxi ·
(
−
∫
∂Dj

ujνj ds
)
×∇yΦk(x, zj) ds(x)

+

∫
∂Di

φ(x) k2νxi ·
(
−
∫
∂Dj

uj(y)νyi ×
(
∇yΦk(x, y)−∇yΦk(x, zj)

)
ds(y)

)
ds(x),

and similarly to (2.3.35) the right-hand side is equal to∫
∂Di

φ(x) k2νxi ·
(
−
∫
∂Dj

ujνj ds
)
×∇yΦk(x, zj) ds(x)

+

∫
∂Di

φ(x) k2νxi ·
(
−
∫
∂Dj

ujνj ×O
( 1

δij
(

1

δij
+ |k|)2a

)
ds

)
ds(x),

which, in view of the estimates (2.2.49) and (2.3.48), becomes∫
∂Di

φ(x) k2νxi ·
(
−
∫
∂Dj

ujνj ds
)
×∇yΦk(x, zj) ds(x) +O

( |k|2
δij

(
1

δij
+ |k|)2a7

)
. (2.3.58)

Repeating the same calculation, for x ∈ ∂Di, gives∫
∂Di

φ k2ν · [Skij,D ]A
[2]
j ds =

∫
∂Di

φ k2νi ·
(
−
∫
∂Dj

ujνj ds
)
×∇yΦk(zi, zj) ds

+O
( |k|2
δij

(
1

δij
+ |k|)2a7

)
.

Hence, being V × U = −U × V for any vectors U, V , and ∇yΦk(x, y) = −∇xΦk(x, y) we get with
the notations (2.2.7)∫

∂Di

φ k2ν·[Skij,D ]A
[2]
j ds = −

[
P∂Di

]
k2∇xΦk(zi, zj)×Qj +O

(
|k|2 1

δij
(

1

δij
+ |k|)2a7

)
. (2.3.59)

The last approximation of Lemma 16 being obvious, we end the proof of (2.3.5) by taking the sum
over j of the two first approximations and replacing in (2.3.46).

2.4 Invertibility of the linear system

For µ+ and µ− defined as in (2.2.10) and E = (E)2m
i=1 defined as

Ei =

{
Ein(zi), i ∈ {1, ...,m},
curlEin(zi−m), i ∈ {m+ 1, ..., 2m},

(2.4.1)

we have the following proposition.
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Proposition 17. Under the condition

CLi := 1− CLs
µ+a3

δ3 > 0, (2.4.2)

for some constant CLs, 21 the following linear system is invertible

Q̂i −
[
T∂Di

] m∑
(j 6=i)≥1

(
−∇xΦk(zi, zj)× R̂j + Πk(zi, zj)Q̂j

)
= −

[
T∂Di

]
Ein(zi),

R̂i +
[
P∂Di

] m∑
(j 6=i)≥1

(
Πk(zi, zj)R̂j − k2∇Φk(zi, zj)× Q̂j

)
= −

[
P∂Di

]
curlEin(zi),

(2.4.3)

and the solution satisfies the following estimate(
m∑
i=1

(
|R̂i|2 + |Q̂i|2

)) 1
2

:=
(〈
Q̂, Q̂

〉
C3×m +

〈
R̂, R̂

〉
C3×m

) 1
2 ≤ 1

CLiµ−
a3
〈
Ê , Ê

〉 1
2

C3×2m . (2.4.4)

Further, if the condition (2.2.43) is satisfied, then the system could be inverted using Neumann series
with the following estimate

|Ri| ≤
1

CL2
i
µ−
a3|Ei|, |Qi| ≤

1

CL2
i
µ−
a3|Ei+m|. (2.4.5)

To prove this result, we need to introduce some notations. Let (Ĉi)i∈{1,...,2m} be defined as

Ĉi =

{[
T∂Di

]−1Q̂i, i ∈ {1, ...,m},

−
[
P∂Di−m

]−1R̂i−m, i ∈ {m+ 1, ..., 2m},

and let Q be the following diagonal Bloc matrix

Qi :=

{[
T∂Di

]
, for i ∈ {1, ...,m},

−
[
P∂Di−m

]
for i ∈ {m+ 1, ..., 2m},

(2.4.6)

with Q1,1 = Diag(Qi)
m
i=1, and Q2,2 = Diag(Qi+m)mi=1.

Consider

θ̂i,j Ĉj := ∇xΦk(zi, zj)× Ĉj =

0 − ∂3Φk(zi, zj) ∂2Φk(zi, zj)

∂3Φk(zi, zj) 0 − ∂1Φk(zi, zj)

− ∂2Φk(zi, zj) ∂1Φk(zi, zj) 0

 Ĉj , (2.4.7)

and define the following bloc matrix

Σk :=

[
Σk

1,1 0Cm×Cm

0Cm×Cm Σk
2,2

]
= (σki,j)

2m
i,j=1, Θk :=

[
0Cm×Cm Θk1,2

Θk2,1 0Cm×Cm

]
= (θki,j)

2m
i,j=1,

21The constant CLs is provided in (2.4.36).
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where

σki,j :=


−Πk(zi, zj), i 6= j, i, j ∈ {1, ...,m},
−Πk(zi−m, zj−m), i 6= j, i, j ∈ {m+ 1, ..., 2m},
0, otherwise,

(2.4.8)

and

θki,j =


θ̂i,j−m, i ∈ {1, ...,m}, j ∈ {1 +m, ..., 2m},

k2θ̂i−m,j j ∈ {1, ...,m}, i ∈ {1 +m, ..., 2m},
0, otherwise.

(2.4.9)

With these notations, solving the system (2.4.3) is equivalent to solve the equation

Ĉ + ΣkQĈ +ΘkQĈ = E . (2.4.10)

If we multiply both sides of the last system by QĈ we get〈
Ĉ,QĈ

〉
C3×2m +

〈
ΣkQĈ,QĈ

〉
C3×2m +

〈
ΘkQĈ,QĈ

〉
C3×2m =

〈
E ,QĈ

〉
C3×2m (2.4.11)

where
〈
·, ·
〉
C3×2m stands for the usual scalar product in C3×2m.

Adding and subtracting
〈
Σ0QĈ,QĈ

〉
C3×2m gives〈

Ĉ,QĈ
〉
C3×2m +

〈(
Σk − Σ0

)
QĈ,QĈ

〉
C3×2m+

〈
Σ0QĈ,QĈ

〉
C3×2m

+
〈
ΘkQĈ,QĈ

〉
C3×2m =

〈
E ,QĈ

〉
C3×2m ,

(2.4.12)

Let χ
∂Ω̂

denotes the characteristic function on ∂Ω̂ = ∪mi=1∂Bδ/4(zi) where Br(z) := B(z, r) denotes
a ball of center z and radius r, and

〈
·, ·
〉
L2(∂Ω̂)

denotes the usual scalar product of L2(∂Ω).

Lemma 18. For U :=
∑m

i=1 νxi ·QiĈiχ∂Bzi
δ/4

, and V :=
∑2m

i=m+1 νxi−m ·QiĈiχ∂Bzi−m
δ/4

with νxi being

the outward unit normal vector to ∂Bzi
δ/4, we have

Σ0
1,1Q1,1Ĉ1 · Q1,1Ĉ1 =

482

π2δ6

(〈
S0
∂Ω̂
U ,U

〉
L2(∂Ω̂)

−
m∑
i=1

〈
S0
∂B

zi
δ/4

U ,U
〉
L2(∂B

zi
δ/4

)

)
, (2.4.13)

Σ0
2,2Q2,2Ĉ2 · Q2,2Ĉ2 =

482

π2δ6

(〈
S0
∂Ω̂
V,V

〉
L2(∂Ω̂)

−
2m∑

i=m+1

〈
S0
∂B

zi−m
δ/4

V,V
〉
L2(∂B

zi−m
δ/4

)

)
, (2.4.14)

|
〈(

Σk − Σ0
)
QĈ,QĈ

〉
C3×2m | ≤

63
1
2 |k|2m

2
3

4πδ

2m∑
i=1

|QiĈi|2 =
63

1
2 |k|2D(Ω)

2
3

4πδ3

〈
QĈ,QĈ

〉
C3×2m , (2.4.15)

and

|
〈
ΘkQĈ,QĈ

〉
C3×2m | ≤

1

8π

(1 + |k|2)Ck,D(Ω)

δ3

〈
QĈ,QĈ

〉
C3×2m . (2.4.16)

where Ck,D(Ω)
:= max(C0D(Ω)

1
3 , |k|C0

(
D(Ω)

2
3 +D(Ω)

1
3

)
).
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Proof. To prove (2.4.13), using Mean-value-theorem for harmonic function, for j 6= i, we have

∇x∇yΦ0(zi, zj) =
3× 43

4πδ3

∫
B(zj ,

δ
4

)
∇x∇yΦ0(zi, y)dy =

48

πδ3∇x
∫
B(zj ,

δ
4

)
∇yΦ0(zi, y) dy (2.4.17)

then using Gauss divergence theorem,

∇x∇yΦ0(zi, zj) =
48

πδ3∇x
∫
∂B

zi
δ/4

Φ0(zi, y)νy ds(y). (2.4.18)

Repeating the same for zi we get

∇x∇yΦ0(zi, zj) =
482

π2δ6

∫
∂B

zi
δ/4

∫
∂B

zi
δ/4

Φ0(x, y)νxν
T
y ds(y) ds(x), (2.4.19)

and from
〈
Σ0

1,1Q1,1Ĉ1,Q1,1Ĉ1

〉
C3×m =

∑m
i=1

∑m
1≤j 6=i(∇x∇yΦ0(zi, zj)Qj Ĉj) · QiĈi, using (2.4.19), we

get〈
Σ0

1,1Q1,1Ĉ1,Q1,1Ĉ1

〉
=

482

π2δ6

m∑
i=1

( m∑
1≤j 6=i

∫
∂B

zi
δ/4

∫
∂B

zi
δ/4

Φ0(x, y)νxν
T
y ds(y) ds(x) Qj Ĉj

)
·QiĈi,

=
482

π2δ6

m∑
i=1

∫
∂B

zi
δ/4

( m∑
1≤j 6=i

∫
∂B

zi
δ/4

Φ0(x, y)νy ·Qj Ĉj ds(y)
)
νx ·QiĈi ds(x).

(2.4.20)

Adding and subtracting
∑m

i=1

∫
∂B

zi
δ/4

∫
∂B

zi
δ/4

Φ0(x, y)νy ·Qj Ĉi ds(y)νx ·QiĈi ds(x), gives

〈
Σ0

1,1Q1,1Ĉ1,Q1,1Ĉ1

〉
=

482

π2δ6

m∑
i=1

∫
∂B

zi
δ/4

( m∑
j=1

∫
∂B

zi
δ/4

Φ0(x, y)νy ·Qj Ĉj ds(y)
)
νx ·QiĈids(x),

− 482

π2δ6

m∑
i=1

∫
∂B

zi
δ/4

∫
∂B

zi
δ/4

Φ0(x, y)νy ·Qj Ĉi ds(y)νx ·QiĈids(x),

(2.4.21)

and then (2.4.20) becomes,〈
Σ0

1,1Q1,1Ĉ1,Q1,1Ĉ1

〉
C3×m =

482

π2δ6

∫
∂Ω̂:=∪2m

i=1∂B
zi
δ/4

∫
∪2m
j=1∂B

zi
δ/4

Φ0(x, y)U(y) ds(y) U(x) ds(x)

− 482

π2δ6

2m∑
i=1

∫
∂B

zi
δ/4

∫
∂B

zi
δ/4

Φ0(x, y)νy ·Qj Ĉi ds(y)νx ·QiĈi ds(x).

The same arguments remain valid for (2.4.14).
Concerning (2.4.15), we have

∣∣(−k2Φk(zi, zj)I +∇x∇yΦk(zi, zj)−∇x∇yΦ0(zi, zj))
∣∣ ≤ 6|k|2

4πδij
. (2.4.22)
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Indeed, recalling (2.2.59) and (2.2.60)

∇y(Φk(x, y)− Φ0(x, y)) =
−(ik)2

4π

∫ 1

0

leikl|x−y|

|x− y|
(x− y)dl (2.4.23)

then we have also

∇x∇y(Φk(x, y)− Φ0(x, y)) =
−(ik)3

4π

∫ 1

0
l2eikl|x−y|dl

(x− y)(x− y)T

|x− y|2

−(ik)2

4π

∫ 1

0
leikl|x−y|dl

(
I

|x− y|
+

(x− y)(x− y)T

|x− y|3

)
.

Integrating by part the first term of the right-hand side, gives

∇x∇y(Φk(x, y)− Φ0(x, y)) =
(
k2Φk(x, y)− k2

4π

∫ 1

0
2l
eikl|x−y|

|x− y|
dl
)(x− y)(x− y)T

|x− y|2

+
−(ik)2

4π

∫ 1

0
leikl|x−y|dl

( I

|x− y|
+

(x− y)(x− y)T

|x− y|3
)
.

Hence, we get

|Πk(zi, zj)−Π0(zi, zj)| =
∣∣k2Φk(zi, zj)I −∇x∇yΦk(zi, zj) +∇x∇yΦ0(zi, zj)

∣∣,
≤
∣∣k2Φk(zi, zj)

∣∣+ |∇x∇yΦk(zi, zj)−∇x∇yΦ0(zi, zj)| ≤
6|k|2

4πδij
.

Now, as〈(
Σk

1,1 − Σ0
1,1

)
Q1,1Ĉ1,Q1,1Ĉ1

〉
C3×m =

m∑
i=1

( m∑
1≤j 6=i

(Πk(zi, zj)−Π0(zi, zj))Qj Ĉj
)
·QiĈi (2.4.24)

using Holder’s inequality, for the inner sum, we get

∣∣∣〈(Σk
1,1 − Σ0

1,1

)
Q1,1Ĉ1,Q1,1Ĉ1

〉∣∣∣ ≤ m∑
i=1

( m∑
1≤j 6=i

|Πk(zi, zj)−Π0(zi, zj)|2
) 1

2
( m∑

1≤j 6=i

∣∣∣Qj Ĉj∣∣∣2) 1
2
∣∣∣QiĈi∣∣∣,

which gives in view of (2.4.22)∣∣∣〈(Σk
1,1 − Σ0

1,1

)
Q1,1Ĉ1,Q1,1Ĉ1

〉
C3×m

∣∣∣ ≤ m∑
i=1

( m∑
1≤j 6=i

(
3|k|2

2πδij
)2
) 1

2

( m∑
j=1

∣∣∣Qj Ĉj∣∣∣2) 1
2
∣∣∣QiĈi∣∣∣.

Repeating Holder’s inequality for the outer sum, we obtain

∣∣∣〈(Σk
1,1 − Σ0

1,1

)
Q1,1Ĉ1,Q1,1Ĉ1

〉
C3×m

∣∣∣ ≤( m∑
i=1

m∑
1≤j 6=i

(
3|k|2

2πδij
)2

m∑
j=1

∣∣∣Qj Ĉj∣∣∣2) 1
2
( m∑
i=1

∣∣∣QiĈi∣∣∣2) 1
2
,

≤
( m∑
i=1

m∑
1≤j 6=i

(
6|k|2

4πδij
)2

) 1
2( m∑

j=1

∣∣∣Qj Ĉj∣∣∣2). (2.4.25)
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The inner sum gives, as we did it in (2.2.78),

m∑
1≤j 6=i

(
6|k|2

4πδij
)2 ≤

m
1
3∑

l=2

7l2
32|k|4

42π2l2δ2 = 7m
1
3

32|k|4

42π2δ2 ,

and then ( m∑
i=1

m∑
1≤j 6=i

(
3|k|2

2πδij
)2
) 1

2 ≤ m
1
2
(
7m

1
3

32|k|4

42π2δ2

) 1
2 ≤ 63

1
2 |k|2m

2
3

4πδ
.

Repeating the same calculation for
∣∣∣〈(Σk

2,2 − Σ0
2,2

)
Q2,2Ĉ2,Q2,2Ĉ2

〉
C3×m

∣∣∣ leads to the conclusion. For
the last assertion (2.4.16), we proceed as follows:

〈
ΘkQĈ,QĈ

〉
C3×2m =

m∑
i=1

( m∑
j 6=i
∇Φk(zi, zj)×Qj+mĈj+m

)
·QiĈi

+

m∑
i=1

( m∑
j 6=i

k2∇Φk(zi, zj)Qj Ĉj
)
·Qi+mĈ i+m,

(2.4.26)

The first term of the right hand side of (2.4.26) is smaller then

1

4π

m∑
i=1

m∑
j 6=i

|Qj+mĈj+m|
δij

(
1

δij
+ |k|)|QiĈi|, (2.4.27)

which is,

1

4π

m∑
i=1

m∑
j 6=i

|Qj+mĈj+m|
δij

|QiĈi|
δij

+
1

4π

m∑
i=1

m∑
j 6=i

|k|
1
2 |Qj+mĈj+m|

δ
1
2
ij

|k|
1
2 |QiĈi|

δ
1
2
ij

, (2.4.28)

and do not exceed 22

1

8π

m∑
i=1

m∑
j 6=i

( |Qj+mĈj+m|2
δ2
ij

+
|QiĈi|2

δ2
ij

)
+

1

8π

m∑
i=1

m∑
j 6=i

( |k||Qj+mĈj+m|2
δij

+
|k||QiĈi|2

δij

)
, (2.4.29)

which in its turn, is not greater than23

1

8π

m∑
j=1

|Qj+mĈj+m|2
m∑
i 6=j

1

δ2
ij

+
1

8π

m∑
i=1

|QiĈi|2
m∑
j 6=i

1

δ2
ij

+
|k|
8π

m∑
j=1

|Qj+mĈj+m|2
m∑
i 6=j

1

δij
+
|k|
8π

m∑
i=1

|QiĈi|2
m∑
j 6=i

1

δij
.

22Comes from 2ab ≤ a2 + b2 for every real numbers A, b.
23being

∑m
i=1

∑m
j 6=i ai,j =

∑m
j=1

∑m
i6=j ai,j , for every real numbers ai,j .
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We have, as done in (2.2.78), for m ≤ D(Ω)/δ3,

m∑
j 6=i

1

δ2
ij

=

(m/2)
1
3∑

l=2

C0l
2

l2δ2 =
C0(m2 )

1
3

δ2 ≤ C0D(Ω)
1
3

δ3 =
C(1)
D(Ω)

δ3 . (2.4.30)

We get, in a similar way,

m∑
j 6=i

1

δij
=

(m/2)
1
3∑

l=2

C0l
2

lδ2 =
C0(m2 )

1
3

(
(m2 )

1
3 + 1

)
2δ

≤
C0

(
D(Ω)

2
3 +D(Ω)

1
3

)
2δ3 =

C(2)
D(Ω)

δ3 . (2.4.31)

Then, for Ck,D(Ω)
:= max(C(1)

D(Ω)
, |k|C(2)

D(Ω)
), we obtain∣∣∣∣ m∑

i=1

m∑
j 6=i
∇Φk(zi, zj)×Qi+mĈi+m ·QiĈi

∣∣∣∣ ≤ 1

8π

Ck,D(Ω)

δ3

2m∑
i=1

∣∣∣QiĈi∣∣∣. (2.4.32)

Repeating the same argument for the second term of the right-hand side of (2.4.26) gives the
conclusion.

Proof. (of Proposition 17) If we consider (2.4.12), in view of (2.4.13) and (2.4.14), we get〈
Ĉ,QĈ

〉
C3×2m +

〈
ΘkQĈ,QĈ

〉
C3×2m +

〈(
Σk − Σ0

)
QĈ,QĈ

〉
C3×2m

+
482

π2δ6

(〈
S0
∂Ω̂
U ,U

〉
L2(∂Ω̂)

−
m∑
i=1

〈
S0
∂B

zi
δ/4

U ,U
〉
L2(∂B

zi
δ/4

)

)
+

482

π2δ6

(〈
S0
∂Ω̂
V,V

〉
L2(∂Ω̂)

−
2m∑

i=m+1

〈
S0
∂B

zi−m
δ/4

V,V
〉
L2(∂B

zi−m
δ/4

)

)
=
〈
E ,QĈ

〉
C3×2m .

Using the fact that
〈
S0
∂Ω̂

φ, φ
〉
L2(∂Ω̂)

≥ 0, for every φ ∈ L2(∂Ω) we get〈
Ĉ,QĈ

〉
C3×2m +

〈
ΘkQĈ,QĈ

〉
C3×2m+

〈(
Σk − Σ0

)
QĈ,QĈ

〉
C3×2m

− 482

π2δ6

( m∑
i=1

〈
S0
∂B

zi
δ/4

U ,U
〉
L2(∂B

zi
δ/4

)
+

2m∑
i=m+1

〈
S0
∂B

zi−m
δ/4

V,V
〉
L2(∂B

zi−m
δ/4

)

)
≤
〈
E ,QĈ

〉
C3×2m .

By the definition of Q and the inequalities (2.2.11), we have〈
QĈ,QĈ

〉
C3×2m ≤ µ+a3

〈
Ĉ,QĈ

〉
C3×2m . (2.4.33)

Using (2.4.15) and (2.4.16), we arrive at(
1−

[(1 + |k|2)Ck,D(Ω)

8π
+

63
1
2 |k|2D(Ω)

2
3

4π

]µ+a3

δ3

)〈
Ĉ,QĈ

〉
C3×2m

− 482

π2δ6

( m∑
i=1

〈
S0
∂B

zi
δ/4

U ,U
〉
L2(∂B

zi
δ/4

)
+

2m∑
i=m+1

〈
S0
∂B

zi−m
δ/4

V,V
〉
L2(∂B

zi−m
δ/4

)

)
≤
〈
E ,QĈ

〉
C3×2m .

(2.4.34)
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Further, the following scaling inequality holds〈
S0
∂B

zi
δ/4

U ,U
〉
L2(∂B

zi
δ/4

)
=

∫
B
zi
δ/4

∫
B
zi
δ/4

(Φ0(x, y)νx ·QiĈi ds(y))νy ·QiĈi ds(x),

=

∫
∂B

zi
1

(∫
∂B

zi
1

1

(δ4 )
Φ0(s, t) νt ·QiĈi(

δ

4
)2 ds(t)

)
νs ·QiĈi(

δ

4
)2 ds(s),

≤ (
δ3

43
)‖S

B1‖
∣∣∣QiĈi∣∣∣∣∣∂B0

1

∣∣ = (
4πδ3

43
)‖S

B1‖
∣∣∣QiĈi∣∣∣2,

which remains valid for
〈
S0
∂B

zi−m
δ/4

V,V
〉
L2(∂B

zi−m
δ/4

)
, gives in (2.4.34)

(
1−

[(1 + |k|2)Ck,D(Ω)

8π
+

63
1
2 |k|2D(Ω)

2
3

4π

]µ+a3

δ3

)〈
Ĉ,QĈ

〉
C3×2m

−
122‖S

B1‖
πδ3

2m∑
i=1

∣∣∣QiĈi∣∣∣2 ≤ 〈E ,QĈ〉C3×2m .

As
〈
E ,QĈ

〉
C3×2m ≤

〈
Ĉ,QĈ

〉 1
2

C3×2m

〈
E ,QE

〉 1
2

C3×2m we get, with (2.4.33),

(
1−

[(1 + |k|2)Ck,D(Ω)

8π
+

122‖S
B1‖

π
+

63
1
2 |k|2D(Ω)

2
3

4π

]µ+a3

δ3

)〈
Ĉ,QĈ

〉
C3×2m ≤〈

Ĉ,QĈ
〉 1

2

C3×2m

〈
E ,QE

〉 1
2

C3×2m ,

which is precisely (
1− CLs

µ+a3

δ3

)〈
Ĉ,QĈ

〉 1
2

C3×2m ≤
〈
E ,QE

〉 1
2

C3×2m (2.4.35)

where we set

CLs :=
[(1 + |k|2)C0

(
(1 + |k|

2 )D(Ω)
1
3 + |k|

2 D(Ω)
2
3

)
8π

+
122‖S

B1‖
π

+
63

1
2 |k|2D(Ω)

2
3

4π

]
(2.4.36)

recalling the constants Ck,D(Ω)
. Then a sufficient condition for the solvability of (2.4.3) is given by

CLs
µ+a3

δ3 < 1. Further, if the previous condition is satisfied, then from(2.4.35), considering (2.2.11),
we get (

1− CLs
µ+a3

δ3

)
µ−a3

〈
Ĉ, Ĉ

〉 1
2

C3×2m ≤ µ+a3
〈
E , E

〉 1
2

C3×2m , (2.4.37)

and the definition of C, yields inverting (2.2.11)

〈
Ĉ, Ĉ

〉 1
2

C3×2m =
(〈
Q−1

1,1Q̂,Q
−1
1,1Q̂

〉
C3×m +

〈
Q−1

2,2R̂,Q
−1
2,2R̂

〉
C3×m

) 1
2
,

≥µ
+

a3

(〈
Q̂, Q̂

〉
C3×m +

〈
R̂, R̂

〉
C3×m

) 1
2
.
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Replacing in (2.4.37), we obtain(
1− CLs

µ+a3

δ3

)
µ−µ+

(〈
Q̂, Q̂

〉
C3×m +

〈
R̂, R̂

〉
C3×m

) 1
2 ≤ µ+a3

〈
E , E

〉 1
2

C3×2m . (2.4.38)

Concerning (2.4.5), it suffice to observe that∣∣∣Σk
∣∣∣ ≤ 2

m∑
i=1

|Πk(zi, zj)| ≤
1

2π

m∑
i=1

( |k|2
δij

+
3

δij

( 1

δij
+ |k|

)2)
,

and ∣∣∣Θk∣∣∣ ≤ 2

m∑
i=1

|∇Φk(zi, zj)| ≤
1

2π

m∑
i=1

1

δij

( 1

δij
+ |k|

)
,

which, summing as in (2.2.78) gives,∣∣∣ΣkQ
∣∣∣+
∣∣∣ΘkQ∣∣∣ ≤ ∣∣∣Σk

∣∣∣+
∣∣∣Θk∣∣∣ ≤ 4µ+

(
lnm

1
3

δ3 +
2km

1
3

δ2 +
m

2
3

2δ
k2

)
a3

with this, it comes that, for

CL2
i

= 1− 4µ+

(
lnm

1
3

δ3 +
2km

1
3

δ2 +
m

2
3

2δ
k2

)
a3

|Ci| ≤
1

CL2
i

|Ei|. (2.4.39)

2.5 End of the proof of Theorem 4

With the notations of the previous section, the linear system ((2.3.6),(2.3.5)) becomes

C + ΣkQC +ΘkQC = E + ε(a, δ,|k|,m)a3, (2.5.1)

with (Ci)i∈{1,...,2m} defined as

Ci :=

{[
T∂Di

]−1Qi, i ∈ {1, ...,m},

−
[
P∂Di−m

]−1Ri−m, i ∈ {m+ 1, ..., 2m},
(2.5.2)

and ε(a, δ, |k|,m) = (εi(a, δ, |k|,m))mi=1 with

εi(a, δ, |k|,m) :=


a4

δ4 + εk,δ,ma4 + (1 + |k|)a, i ∈ {1, ...,m},

a4

δ4 + |k|εk,δ,ma4 + |k|2a, i ∈ {m+ 1, ..., 2m}.
(2.5.3)

66



End of the proof of Theorem 4 67

The difference between (2.5.1) and (2.4.10) implies

C − Ĉ) + ΣkQ(C − Ĉ) +ΘkQ(C − Ĉ) = ε(a, δ,|k|,m), (2.5.4)

which gives, with the estimates (2.4.4)

m∑
i=1

(
|R̂i −Ri|2 + |Q̂i −Qi|2

)
≤ 1

CLiµ−

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2

2m a6,

(2.5.5)

and, with (2.4.5)
|R̂i −Ri| ≤

1

CL2
i
µ−

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2
a3,

|Q̂i −Qi| ≤
1

CL2
i
µ−

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2
a3.

(2.5.6)

We set

Oε(
a4

δ4 ) := O
(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)
.

Lemma 19. We have the following asymptotic approximation for the far field,

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
R̂i − ikτ × Q̂i

)
+O

(
(|k|3 + |k|2) ma4

)
+
|k|
2π

max(1, |k|)
CLiµ−

Oε
(a4

δ4

)
ma3

and the following one for the scattered field

Esc(x) =

m∑
i=1

(
∇Φk(x, zi)× R̂i + curl curl(Φk(x, zi)Q̂i)

)
+

(CL2
i
µ−)−1

µ+
×Oε(a

4

δ4 ) (2.5.7)

+O
(
(CL2

i
µ−)−1a

7

δ7 + ε(δ6, |k|+ |k|2 + |k|3)a7 + ε(δ5, |k|2)a7
)
. (2.5.8)

Proof. Recalling the approximation of the far field in Proposition 11, we have

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
(Ri − R̂i)− ikτ × (Qi − Q̂i

)
+
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
R̂i − ikτ × Q̂i

)
+O

(
(|k|3 + |k|2) ma4

)
.

(2.5.9)
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For the first term of the right hand side, we have

| ik
4π

m∑
i=1

e−ikτ.ziτ ×
(
(Ri − R̂i)− ikτ × (Qi − Q̂i)

)
|

≤ 2
|k|
4π

max(1, |k|) m
1
2

( m∑
i=1

(∣∣∣Ri − R̂i∣∣∣2 +
∣∣∣Qi − Q̂i∣∣∣2)) 1

2
,

≤ |k|
2π

max(1, |k|)
CLiµ−

Oε
(a4

δ4

)
ma3.

With this estimate, (2.5.9) becomes

E∞(τ) =
ik

4π

m∑
i=1

e−ikτ.ziτ ×
(
R̂i − ikτ × Q̂i

)
+O

(
(|k|3 + |k|2) ma4

)
+
|k|
2π

max(1, |k|)
CLiµ−

Oε
(a4

δ4

)
ma3.

(2.5.10)

Again, in view of Proposition 11, we have

Esc(x) =

m∑
i=1

(
∇Φk(x, zi)×

(
Ri − R̂i

)
+ curl curl(Φk(x, zi)

(
Qi − Q̂i

)
)
)

+

m∑
i=1

(
∇Φk(x, zi)× R̂i + curl curl(Φk(x, zi)Q̂i)

)
+O

(a4

δ4 + εk,δ,m a4
)
.

(2.5.11)

Let i0 be as in (2.3.13), from the representation of the linear system we have 24

m∑
(i 6=i0)≥1

(
∇Φk(zi0 , zi)×

(
Ri − R̂i

)
+ curl curl(Φk(zi0 , zi)

(
Qi − Q̂i

)
)

)
=[T∂Di0 ]−1

(
Qi0 − Q̂i0

)
+ εi0(a, δ, |k|,m),

24Notice that −Πk(x, y) = ∇y ×∇x × Φk(x, y) I.
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hence, adding and subtracting the last identity to (2.5.11) gives

Esc(x) =

(
∇Φk(x, zi0)×

(
Ri0 − R̂i0

)
+ curl curl(Φk(x, zi0)

(
Qi0 − Q̂i0

)
)

)
+

m∑
(i 6=i0)≥1

[
(∇Φk(x, zi)−∇Φk(zi0 , zi))×

(
Ri0 − R̂i0

)
+ curl curl

((
Φk(x, zi)− Φk(zi0 , zi)

)(
Qi − Q̂i

))]
+ [T∂Di0 ]−1

(
Qi0 − Q̂i0

)
+ εi0(a, δ, |k|,m)

+

m∑
i=1

(
∇Φk(x, zi)× R̂i + curl curl(Φk(x, zi)Q̂i)

)
+O

(a4

δ4 + εk,δ,m a4
)
.

(2.5.12)

For x ∈ ∂Ω, 1
dx,i0

= 1
δ and then the first term of the right hand side of (2.5.12) is smaller then(
1

δ

(1

δ
+ |k|

)
|Ri0 − R̂i0 |+

( |k|2
δ

+
1

δ

(1

δ
+ |k|

)2)|Qi0 − Q̂i0 |) (2.5.13)

which gives, considering (2.5.6)

(CL2
i
µ−)−1

( 1

δ3 +
1 + 2|k|
δ2 +

|k|+ 2|k|2

δ

)(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2
a3,

which is

O
(
(CL2

i
µ−)−1a

7

δ7 + ε(δ6, |k|)a7 + ε(δ5, |k|2)a7
)
. (2.5.14)

The second term of (2.5.12) is exactly
m∑

(i 6=i0)≥1

[(∫
[0,1]
∇x∇xΦk(tx+ (1− t)zi0 , zi) dt · (x− zi0)

)
×
(
Ri0 − R̂i0

)
+
(∫

[0,1]
∇xΠk(tx+ (1− t)zi0 , zi) dt · (x− zi0)

)(
Qi − Q̂i

)]
,

which turns out to be not greater then
m∑

(i 6=i0)

i≥1

[
1

δi0,i

( 1

δi0,i
+ |k|

)2
δ|Ri0 − R̂i0 |+

( |k|2
δi0,i

( 1

δi0,i
+ |k|

)
+

1

δi0,i

( 1

δi0,i
+ |k|

)3)
δ
∣∣∣Qi − Q̂i∣∣∣],

and, due to (2.5.6), not exceed
m∑

(i 6=i0)≥1

[
1

δi0,i

( 1

δi0,i
+ |k|

)2
δ +

( |k|2
δi0,i

( 1

δi0,i
+ |k|

)
+

1

δi0,i

( 1

δi0,i
+ |k|

)3)
δ

]

×(CL2
i
µ−)−1

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2

2a3,
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hence summing as in (2.2.78) gives

O
( 1

δ4 +
(1 + |k|) ln(m1/3)

δ3 +
(|k|+ |k|2)m1/3

δ2 +
(|k|3 + |k|2)m2/3

δ

)
δ

×(CL2
i
µ−)−1

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2

2a3,

which is, for m = O(1/δ3), the analogue of (2.5.14) with the following additional term

ε(δ6, |k|2 + |k|3)a7 + ε(δ5, |k|2)a7. (2.5.15)

The third term of (2.5.12), due to (2.2.11) and (2.5.6), is bounded by

(CL2
i
µ−)−1

µ+

(a4

δ4 + (1 + |k|)εk,δ,ma4 + max(|k|2, 1 + |k|)a
)2

=
(CL2

i
µ−)−1

µ+
×Oε(a

4

δ4 ), (2.5.16)

compiling this last error with (2.5.14) and the additional term (2.5.15) gives us the result.
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Chapter 3

Foldy-Lax approximation of the
electromagnetic fields generated by
anisotropic inhomogeneities in the
mesoscale regime with complements for
the perfectly conducting case

3.1 General setting and main results

3.1.1 General setting

Understanding the interaction between the waves (as the light or the acoustic fluctuations or the
elastic displacements) with the matter has been of fundamental importance since a long time. Since
the pioneering works of Rayleigh and Kirchhoff, it was known that the wave diffracted by small scaled
inhomogeneities is dominated by the first multipoles (poles or dipoles). In modern terminology, the
dominating fields are given by (polarized) point sources located at the center of the particles. As far
as the three types of waves, cited above, are concerned these point sources are the Green’s functions
of the corresponding propagator. In this direction, the next key step is achieved by Mie [55] in his full
expansion of the electromagnetic field for spherically shaped particles. These formal expansions were
later mathematically justified, see for instance [25] in the framework of low frequencies expansions.
A further step was achieved in [10] where the full expansion at any order is derived and justified.

These works dealt with single or well separated inhomogeneities. In other words, only the
interaction of the single inhomogeneity and the wave is taken into account. In the presence of
multiple and close inhomogeneities, then mutual interactions between them and the waves should
be taken into account. In this respect, a formal argument to handle such multiple interaction was
proposed by Foldy in his seminal work [29]. To state his formulas, he looks the inhomogeneities
as point-like potentials (i.e. Dirac-like potentials). Then, he states a close form of the scattered
wave by simply eliminating the singularity on the locations of these potentials. This elimination
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of the singularity translates a physical motivation saying that ’the scattering coefficient of each
point-like scatterer is proportional to the external field acting on it’, which is known as the Foldy
assumption. These formal representations of the scattered waves are then stated on more sound
mathematical arguments by Berezin-Faddeev, see [12], in the framework of the Krein’s selfadjoint
extension of symmetric operators. Another related method is the so called regularization method
(or the renormalization technique) which aims at computing the Green’s function, and hence the
Schwartz integral operator, in the presence of the collections of inhomogeneities. This idea consists
in taking the Fourier transform of the formal equation,’cut’ or regularize and invert the related
equations, via Weinstein-Aronsza theorem, in the Fourier domain and then comeback. More details
on these ideas can be found in the book [3]. The Faddeev approach was extended to singular
potentials supported not only on points but also on curves and surfaces, see [47, 48] for more details.
This approach gives as, via the Krein’s resolvent representations, exact formulas to represent the
scattered waves generated by singular potentials. However, our goal is to deal with cluster of small
scaled inhomogeneities. The intuitive believe is that the dominant part of the generated waves
would be reminiscent to the exact formulas described above, for Dirac-like potentials supported
on the centers of the inhomogeneities, but with scattering coefficients modeled by geometric or
contrasts properties of the inhomogeneities. This is called the Foldy-Lax approximation or the
point-interaction approximation.

Several methods were proposed in the literature to justify such approximations, see [64, 53, 18, 20]
for instance regarding acoustic and elastic waves. Descriptions and relation/differences between these
works can be found in [21]. Let us emphasize here that those works dealt with exterior problems
(impenetrable inclusions, holes or voids). Regarding electromagnetic waves, very few works are
proposed, apart from [66] where both the results and the justifications are quite questionable. In
our previous work [13], we considered the case of perfectly conductive inclusions and we gave a
rigorous justification of this Foldy-Lax approximation under general conditions on the cluster of
such inclusions as their minimum distance between them δ and their maximum radius a of the
form ln(δ−1) a

δ is bounded by a constant depending only on the Lipschitz character of the shapes
of the inclusions. The only limitation of this result, to handle the mesoscale regime (i.e. δ ∼ a),
is the appearance of the term ln(δ−1). This term appears naturally in the analysis, in that work,
which is heavily based on the scales of the related layer potentials knowing that the dyadic Maxwell
fundamental solution has a singularity of order 3 (while the ones of Laplace or Lamé have singularities
of the order 1).

In this present work, we get rid of this logarithmic term and state the approximation in the
mesoscale regime. But the most important contribution is to handle the transmission problem and
the impenetrable problem in a unified way. In addition, anisotropic and eventually complex valued
electromagnetic material parameters can be handled as well. Our arguments can be summarized as
follows. To handle the anisotropic transmission problem, we provided a representation of the solution
using the electromagnetic Lippmann-Schwinger operator and give an estimate of the total field. To
overcome the logarithmic constraint, instead of using Neumann series to estimates the density of
the used representation, we make use of a Rellich identity and, inspired by some arguments from
[57], with appropriate changes, we prove that both the exterior and the interior traces have an
equivalent norm modulo a constant which depends on the geometry of the inhomogeneities and
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the material parameters (via their contrasts). Regarding the perfect conductor problem, we use
layer potential representation of the solution. Using an appropriate Helmholtz decomposition for
the density, appearing in the layer potential representation, we transforme the boundary integral
interaction operator into a volume one to get Lippmann-Schwinger like integral representation. This
allows us to translate the result obtained for the transmission problem to the perfectly conductive
case.

It is worth mentioning that even in the scalar case, i.e. related to the Laplace operator, with a
cluster of small obstacles with Neumann boundary conditions was left open to our best knowledge.
The approach we follow here definitely handles this case and provides the corresponding Foldy-Lax
approximation in the same generality as we are proposing in it this work.

In the case of periodically distributed small inhomogeneities, the homogenization applies, see
[11, 38], and provides the equivalent media with averaged materials. As compared to homoge-
nization, the Foldy-Lax approximation has several advantages. The first one is that we have the
dominating field (i.e. the Foldy-Lax field) for general (and not only periodic) distributions of the
small inhomogeneities. This reduces the complexity of the forward problem to compute the scattered
fields by inverting an algebraic system. Second, higher order approximations are possible with more
effective dominating fields, i.e. with generalized Foldy-Lax fields. So far, this is not fully justified,
but we believe it to be true and we will report on it in the future. Third, as we have freedom in
distributing these inhomogeneities, then we can generate not only volumetric equivalent materials
but also low dimensional ones as surfaces and curves. This opens the way to applications in low
dimensions metamaterials as well, see [6, 5] for instance. As far as the Maxwell model is concerned,
the Foldy-Lax approximation provided here shows that one can generate volumetric materials and
Gradient-metasurfaces. The first situation is modeled by modifying both the background permit-
tivity and permeability. The second is modeled by an equivalent interface with jumps of both the
electric and magnetic fields across it.

The rest of the paper is described as follows. In the next subsection, we state clearly the models
and the obtained results with critical discussion about them. In section 2 and section 3, we provide
the full proofs of the results for the transmission and the perfectly conducting models respectively.
A short Appendix is added at the end to include technical tools and in particular a useful lemma on
the counting of the number of small particles distributed in any given bounded set in terms of the
parameters δ and a.

3.1.2 Main results

We deal with the scattering of time-harmonic electromagnetic plane waves at a frequency ω in a
medium composed of an isotropic and constant background and an anisotropic material represented
by multiply connected, bounded, Lipschitz1 domain D− = ∪ℵm=1Dm where ℵ is the number of

1This means that the boundary is locally described by the graph of a Lipschitz function. More details are given
later.
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connected components. The Maxwell equations read as follows
∇× E − iωµH = 0, in R3 \ ∂D,
∇×H+ iωεE = σE , in R3 \ ∂D,
E = E in + Esc,

ν × E|+ = ν × E|−, ν ×H|+ = ν ×H|− on ∂D

(3.1.1)

with the notation ∂D := ∪ℵm=1∂Dm where ε and σ are respectively the electric permittivity and
the conductivity and µ corresponds to the magnetic permeability. These parameters can be real or
complex tensor or scalar valued functions. Here E in stands for the incident wave. It is solution of
the first two equations above everywhere in the space. The vector field Esc stands for the scattered
vector field.

We also consider the scattering from a perfect conductor modeled by the following problem
∇× E − iωµH = 0,

∇×H+ iωεE = 0, in R3 \D,
E = E in + Esc,

ν × E|+ = 0, on ∂D,

(3.1.2)

where ν is the unit outward normal vector to the boundary of D−. The surrounding background of
D− is homogeneous with constant parameter ε0, µ0 and null conductivity σ. In both the two models
above, the scattered field must satisfy the radiation conditions(√

µ0ε
−1
0

)
Hsc(x)× x

|x|
− Esc(x) = O

( 1

|x|2
)
. (3.1.3)

Setting k := w
√
ε0µ0, E :=

√
ε0µ0

−1E and H :=
√
ε0µ0

−1H with µr := (µ0)−1µ and εr :=
(ε0)−1(ε+ iσ/ω), we arrive at

curlE − ikµrH = 0, in R3 \ ∂D,
curlH + ikεrE = 0, in R3 \ ∂D,
E = Esc + Ein,

ν × E|− − ν × E|+ = ν ×H|− − ν ×H|+ = 0,

Hsc × x

|x|
− Esc = O

( 1

|x|2
)
, |x| → ∞,

(P1)

for the inhomogeneous (i.e. transmission) problem and
∇× E − ikH = 0, in R3 \D
∇×H + ikE = 0, in R3 \D,
E = Ein + Esc,

ν × E|+ = 0, on ∂D,

. (P2)
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for the conductive (i.e. exterior) problem. For both the two models the incident field (Ein, H in)
satisfies in the whole space the system{

curlEin − ikH in = 0,

curlH in + ikEin = 0.
(3.1.4)

Motivated by applications, typical incident electric fields are plane waves, i.e of the form Ein :=
Ein(x, θ) := P eikθ·x, x ∈ R3, where P is the (constant) vector modeling the polarization direction
and θ, with |θ| = 1, is the incident direction such that P · θ = 0. The related magnetic incident field
is then H in := H in(x, θ) := P × θ eikθ·x/ik.

We suppose that,
Dm := aDm + zi, i = 1, ...,ℵ, (3.1.5)

where each set Di, contained in the ball B1/2
0 := B(0, 1/2), and contains the origin, is assumed to

be a Lipschitz bounded domain. The points (zi)
ℵ
i=1 are their given locations in R3 and a ∈ R+ is a

small parameter measuring the maximum relative radius.
Let δmj := minx∈Dm,y∈Dj d(x, y), be the distance between two bodies Dm, Dj ,m 6= j, and set

δ := min
m 6=j∈{1,...,ℵ}

δmj .

Let us recall that a bounded open connected domain B, is said to be a Lipschitz domain with
character (l∂B, L∂B) if for each x ∈ ∂D there exist a coordinate system (yi)i=1,2,3, a truncated
cylinder C centered at x whose axis is parallel to y3 with length l satisfying l∂B ≤ l ≤ 2l∂B, and
a Lipschitz function f that is |f(s1)− f(s2)| ≤ L∂B|s1 − s2| for every s1, s2 ∈ R2 , such that
B ∩ C = {(yi)i=1,2,3 : y3 > f(y1, y2)} and ∂B ∩ C = {(yi)i=1,2,3 : y3 = f(y1, y2)}. In this work, we
assume that the sequence of Lipschitz characters (l∂Dm , L∂Dm)ℵi=1 of the bodies Dm, i = 1, ...,ℵ, is
bounded.

Regarding the problem P1, we need some assumptions on the electromagnetic material properties
of the small particles. Precisely, we suppose that the contrast of magnetic permeability and electric
permittivity , which are assumed to be respectively real and complex valued 3× 3-tensor, are, with
their derivative, essentially uniformly bounded , i.e.

(‖CA‖W1,∞(∪i=1mDm))A=εr, µr ≤ c∞, (3.1.6)

and essentially uniformly coercive that is, for almost every x ∈ D, we have

<
(
Cεr(x)U · U

)
≥ cε−∞ |U |

2,

Cµr(x)U · U ≥ cµ−∞ |U |2,
(3.1.7)

with positive constants cε−∞ and cµ−∞ . Here we used the notation CA := A− I, where I is the identity
matrix of R3 × R3. I will stand for the identity operator.

Under these conditions, both the scattering problem (P1) and (P2) under their respective trans-
mission/boundary and radiating conditions are well posed in appropriate spaces following the lines
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described in [22, 62] for instance. More details are given in the text. In addition, due to the Stratton-
Chu formula when =k is different from zero, the scattered electromagnetic fields have a fast decay
at infinity as we have attenuation. But when =k = 0, i.e. in the absence of attenuation, we have
the following behavior (as spherical-waves) of the scattered electric fields far away from the sources
Dm’s

Esc(x) =
eik|x|

|x|
{E∞(x̂) +O(|x|−1)}, |x| 7−→ ∞, (3.1.8)

and we have a similar behavior for the scattered magnetic field as well

Hsc(x) =
eik|x|

|x|
{H∞(x̂) +O(|x|−1)}, |x| 7−→ ∞ (3.1.9)

where (E∞(x̂), H∞(x̂)) is the electromagnetic far field pattern in the direction of propagation x̂ :=
x
|x| .

We set, for m ∈ {1, ...,ℵ},
Am
f :=

1

|Dm|

∫
Dm

fdv, (3.1.10)

and

Af (x) :=
ℵ∑

m=1

Am
f χDm(x). (3.1.11)

Here dv is the volume measure of R3, and dv(x) will be denoted dx while for the surface measure
of R3 write ds and dsx when the variable of integration is specified. Finally, we recall the Green’s
function for the Helmholtz operator (i.e. the fundamental solution for the Helmholtz equation)

Φk(x, y) =
1

4π

eik|x−y|

|x− y|
, x 6= y,

and the electromagnetic dyadic Green’s function

Π(x, y) := k2Φk(x, y)I +∇x∇xΦk(x, y) = k2Φk(x, y)I−∇x∇yΦk(x, y), x 6= y. (3.1.12)

Our main results are stated in the following two theorems.

Theorem 20. For the scattering by a cluster of small anisotropic particles embedded in a homo-
geneous background whose parameter satisfy the conditions (3.1.7), with maximal diameter a and
minimal distance separating them δ = cra. The far field of the scattered wave admits, provided that
cr = O(|k|), the following expansions,

• If both εr and µr are symmetric, then we have the following approximation

E∞(x̂) =
ℵ∑

m=1

(
k2

4π
e−ikx̂·zm x̂×

(
Rεrm × x̂

)
+
ik

4π
e−ikx̂·zm x̂×Qµrm

)

+O
( |k|(2|k|+ 1)

c3
r

[ 1

c4
r

+ a |ln(cra)|+ a
])
,

(3.1.13)
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where (Rεrm ,Qµrm )ℵm=1 is the solution of the following invertible linear system

[Pµ
∗
r

Dm
]−1Qµrm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Q

µr
j − ik∇Φk(zm, zj)×Rεrj

]
+H in(zm)

[Pε
∗
r

Dm
]−1Rεrm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Rεrj + ik∇Φk(zm, zj)×Q

µr
j

]
+ Ein(zm).

For m = 1, ...,ℵ.

(3.1.14)

• If, in the contrary, εr or µr is not symmetric, then, with (Am
εr)
ℵ
m=1 and (Am

µr)
ℵ
m=1 standing

for their respective average in each particle Dm, we have

E∞(x̂) =
ℵ∑

m=1

(
k2

4π
e−ikx̂·zm x̂×

(
Rm × x̂

)
+
ik

4π
e−ikx̂·zm x̂×Qm

)

+O
( |k|(2|k|+ 1)

c3
r

[ 1

c4
r

+ a |ln(cra)|+ a
])
,

(3.1.15)

where, in this case,
(
Rm
)ℵ
m=1

and
(
Qm
)ℵ
m=1

is the solution the invertible following linear
system

[T
Am
µ∗r

Dm
]−1Qm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Qj − ik∇Φk(zm, zj)×Rj

]
+H in(zm),

[T
Am
ε∗r

Dm
]−1Rm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Rj + ik∇Φk(zm, zj)×Qj

]
+ Ein(zm),

For m = 1, ...,ℵ.

(3.1.16)

[T
Am
µ∗r

Dm
]−1 := Am

Cµ∗r
[P

Am
µ∗r

Dm
]−1(Am

Cµr )−1,

and
[T

Am
ε∗r

Dm
]−1 := Am

Cε∗r
[P

Am
ε∗r

Dm
]−1(Am

Cεr )−1.

For a given matrix B, we have

[PBDm ] :=

∫
Dm

∇V (B − I)dv (3.1.17)

with V is the solution of the following integral equation

V − div

∫
Dm

1

|x− y|
(B − I)∇V (y)dy = (y − zm), y ∈ Dm. (3.1.18)
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Theorem 21. For the scattering by a cluster of small conducting particles, with maximal diameter
a and minimal distance separating them δ = cra, with cr = O(|k|), the far field of the scattered
wave admits the following expansion

E∞(x̂) =

ℵ∑
m=1

(
k2

4π
e−ikx̂·zm x̂×

(
Rm × x̂

)
+
ik

4π
e−ikx̂·zm x̂×Qm

)

+O
(cL|k|(2|k|+ 1)

c3
r

[ 1

c4
r

+ a |ln(cra)|+ a
])
,

(3.1.19)

where (Rm,Qm)ℵm=1 is the solution the invertible linear system

[
TDm

]−1Qm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Qj − ik∇Φk(zm, zj)×Rj

]
+H in(zm)

[
PDm

]−1Rm =
ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Rj + ik∇Φk(zm, zj)×Qj

]
+ Ein(zm),

For m = 1, ...,ℵ, (3.1.20)

with [
PDm

]
:=

∫
∂Dm

[−I/2 + (K0
∂Dm)∗]−1(ν)y∗dsy,[

TDm
]

:=

∫
∂Dm

[
1

2
I + (K0

∂Dm)∗]−1(ν)y∗dsy.

(3.1.21)

Before we provide the proofs of the above theorem, we would like to address some remarks.

• In the error of approximation, the constant appearing in the Landau notation are bounded by
the largest ratio of the eigenvalues of both ε, µ, for the Theorem 20, and the largest Lipschitz
constant for Theorem 21.

• In our opinion, and in the current form of the algebraic systems, it is hard to improve the
approximation error order, except maybe for rotation invariant geometries by using the fun-
damental Newton’s theorem for fields that are also rotation invariant.

• The tensor that appears could be explicitly calculated for simple geometries (sphere, ellipsoid)
for more details see [9]. Further more, for a perfect conductor case, the tensor can be explicitly
calculated, for convex geometries, using Neumann series as the spectral radius of the double
layer potential have a spectral radius that is smaller than 1

2 .

• It is also possible to evaluate [PµrDm ] and [PεrDm ], using boundary integral equation when both
ε∗r and µ∗r are symmetric definite positive matrix see Section 3.2.1 here after.

3.2 Scattering by Anisotropic Inhomogenities. Problem (P1)

Let us introduce the Newton-like potential

SkD(V ) :=

∫
D

Φk(x, y)V (y)dy, (3.2.1)
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defined, for V in L2(D) and maps continuously L2(D) into H2(D), (see Theorem 9.11 [30]) precisely∥∥∥SkD(V )
∥∥∥
H2(D)

≤ c2,k‖V ‖L2(D), (3.2.2)

which is a compact integral operator from L2(D) to Hs(D), s < 1. The constant c2,k remains
independent of D. To show it, it suffices to write

SkD(V ) = SkB(v,R)(V χD)

for any sufficient large radius R to contain D and v ∈ D, and

‖SkD(V )‖H2(D) ≤ ‖SkB(v,R)(V χD)‖H2(B(v,R)) ≤ c2,k‖V χD‖L2(B(v,R)). (3.2.3)

Finally by H(curl, D), we mean the subspace of L2(D)-vector fields, with L2(D) rotational, that is

H(curl, D) =
{
u ∈ L2(D) | curlu ∈ L2(D)

}
. (3.2.4)

We also define, for a bounded tensor C,

Sk,CD (V ) :=

∫
D

Φk(x, y)C(y)V (y)dy, (3.2.5)

for V in L2(D).

3.2.1 Anisotropic polarization tensor

Let us set
[PBDm ] :=

∫
Dm

∇V CB
m CB dv, (3.2.6)

where V CB
m := V sc

m + (x− zm) is the solution of the following problem

∆V CB
m = 0 in R3 \Dm,

div(A∇V CB
m ) = 0 in Dm,

V CB
m = V sc + (x− zi),
V CB
m |− − V CB

m |+ = 0 on ∂Dm,

ν ·B∇V CB
m |− − ν · ∇V CB

m |+ = 0,

V sc
m → 0, |x| → ∞.

(PrAni(1))

The problem (PrAni(1)) is solved by the following Lippmann-Schwinger integral equation with Vl :=
(V CB
m )l = V CB

m · el, for l = 1, 2, 3,

Vl − divS0,CB
Dm

(∇Vl) = (x− zm) · el. (3.2.7)

The following proposition summarizes the needed properties of the polarization tensor introduced
above.
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Proposition 22. Every solution to (PrAni(1)) satisfies the following estimate

‖V ‖H1(Dm) ≤

(
1

2
− a2‖CB‖L∞(Dm)

√
3

π

)−1

(‖CB‖L∞(Dm) + 1)a3/2. (3.2.8)

Furthermore, whenever B ∈W1,∞(Dm) and a sufficiently small, the tensor (3.2.6) behaves like CB
in terms of positive or negative definiteness and symmetry, namely

([PBDm ]U,U) > 0, whenever (CBU,U) > 0, (3.2.9)

and
<([PBDm ]U,U) > 0,whenever <(CBU,U) > 0. (3.2.10)

In addition, we have the following scaling property

[PBDm ] = a3[PB̂Dm
], (3.2.11)

where for s ∈ Dm, B̂(s) := B(as+ zm).

Before stating the proof, we need to introduce the anisotropic polarization tensor, defined in ([9],
p.121-122 ), as (

[PB
∂Dm ]

)
ij

=

∫
∂Dm

ν · (CBej)(Θm)i|−ds,

where Θm solves, for a fixed m ∈ {1, ...,ℵ}, the following transmission problem

∆Θ = 0 in R3 \Dm,

div(B∇Θ) = 0 in Dm,

Θ|− −Θ|+ = (x− zm) on ∂Dm,

ν ·B∇Θ|− − ν · ∇Θ|+ = ν · ∇(x− zm),

Θ→ 0, |x| → ∞.

(PrAni)

Obviously, we have

Θm :=

{
V sc
m in R3 \Dm,

V sc
m + (x− zm) in Dm.

(3.2.12)

Hence, being(
[PB

∂Dm ]
)
ij

=

∫
∂Dm

ν · (CBej)(Θm)i|−ds =

∫
Dm

div
(

(CBej) (Θm · ei)
)
dv,

=

∫
Dm

((∇Θm)∗ei) · (CBej)dv +

∫
Dm

(Θm · ei) div(CBej)dv.

we get2

[PB
∂Dm ] = [PBDm ] +

∫
Dm

Θm ⊗ div(C∗B)dv, (3.2.13)

2Recall that, for a given matrix A Aej · ei = (A)ij
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or
[PBDm ] = [PB

∂Dm ]−
∫
Dm

Θm ⊗ div(C∗B)dv. (3.2.14)

where the divergence is applied to each line of the matrix taken as a vector field, and C∗B stands for
the transpose of CB. With the above notations, we have the following lemma.

Lemma 23. (Theorem 3.4 of [39]) The polarization tensor [PB
∂Dm ] behaves like CB in term of

positive or negative definiteness and symmetry.

Proof. (of Proposition 22) The operator [I − divSi,CBDm
∇] is one-to-one on H1(Dm), provided that

CB is definite-positive, and it satisfies the following estimates (see [41] or the proof of (3.2.32) in
the next subsection.)

‖[I − divSi,CBDm
∇](V )‖H1,CB (Dm) :=

∫
Dm

[I − divSi,CBDm
∇](V ) · V dx

+

∫
Dm

∇[I − divSi,CBDm
∇](V ) · CB∇V dx ≥

‖V ‖H1(Dm)

2
.

(3.2.15)
We have

‖[div(Si,CBDm
− S0,CB

Dm
)∇Vl]‖H1(Dm) ≤

3√
π
a2‖Vl‖H1(Dm), (3.2.16)

since, due to (A.0.3) and (A.0.4), we have both

|[div(Si,CBDm
− S0,CB

Dm
)∇](V )(x)| ≤ 1

4π

∫
Dm

|∇Vl(y)| dy ≤ 1√
3

a
3
2

4
‖Vl‖H1(Dm)

|∇[div(Si,CBDm
− S0,CB

Dm
)∇](V )(x)| ≤

∫
Dm

1

4π|x− y|

[
1 +

(
2 +

1

|x− y|

)
|x− y|

]
|∇Vl(y)| dy,

≤
∫
Dm

1

2π

[
1 +

1

|x− y|

]
|∇Vl(y)| dy ≤ 2√

π

√
a‖Vl‖H1(Dm),

(3.2.17)

being, obviously,∫
Dm

1

|x− y|2
dy ≤ lim

r→0

∫
B(y,a)\B(y,r)

1

|x− y|2
dy ≤ lim

r→0

∫ 2π

0

∫ π

0

∫ a

r

1

R2
R2dR sin(θ)dθ dφ ≤ 2πa.

(3.2.18)

We write

(x− zi) = [I − divSi,CBDm
](V ) = [I − divSi,CBDm

](V ) + [div(Si,CBDm
− Sk,CBDm

)∇](V ), (3.2.19)

then from (3.2.15) and (3.2.16), we get

‖(x− zi)‖H1,Q(Dm) ≥ ‖[I − divSi,CBDm
](V )‖H1,Q(Dm) − ‖[div(Si,CBDm

− Si,CBDm
)∇](V )‖H1,Q(Dm),

≥
‖V ‖H1(Dm)

2
−
√

3a2

√
π
‖CB‖L∞(Dm)‖V ‖H1(Dm).
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The remaining part of the proof is due to the fact that, for a sufficiently small, [PBDm ] inherits its
property from [PB

∂Dm ] through Lemma 23.

Finally, we have the following, obvious, statement.

Proposition 24. For UCB
m := CB∇V CB

m , we have∫
Dm

UCB
m dv =

∫
Dm

CB∇V CB
m dv = [PBDm ], (3.2.20)

for CB symmetric. If B is a constant matrix and not necessarily symmetric, we have∫
Dm

UCB
m dv = CB[PBDm ]C−1

B . (3.2.21)

3.2.2 Lippmann-Schwinger integral formulation and apriori estimates.

In this section, we establish the wellposedness of our problem (P1). We start with showing the
uniqueness of its solution and then prove its existence using a Lippmann-Schwinger integral repre-
sentation of the electromagnetic field and at the same time we give an estimate of the total field
taking into account the cluster of our small inhomogeneities.

We first recall that the contrast of magnetic permeability and electric permittivity, which are
assumed to be respectively real and complex valued 3×3-tensor, essentially uniformly bounded with
their derivatives, i.e.

(‖CA‖W1,∞(∪i=1mDm))A=εr, µr ≤ c∞, (3.2.22)

and essentially uniformly coercive, that is, for almost every x ∈ D, we have

<
(
Cεr(x)U · U

)
≥ cε−∞ |U |

2,

Cµr(x)U · U ≥ cµ−∞ |U |2.
(3.2.23)

A sufficient condition to get the above inequality for the contrast of the relative electric permittivity
is given by

ρ−(<Cεr)− ρ
+(=Cεr) > 0,

where ρ+(A) and ρ−(A) stand respectively, for the largest and the smallest eigenvalue of A. As Cµr
is a real valued 3× 3-tensor, it suffices for it to be definite positive.
Indeed, we have

<
〈
V,CεrV

〉
= <

〈
V ,CεrV

〉
=
〈
=V,<Cεr=V

〉
+
〈
<V,<Cεr<V

〉
+
(〈
<V,=Cεr=V

〉
−
〈
=V,=Cεr<V

〉)
,

≥ ρ+(<Cεr)(‖=V ‖
2 + ‖<V ‖2)− 2ρ−(=Cεr)(‖=V ‖‖<V ‖),

≥
(
ρ−(<Cεr)− ρ

+(=Cεr)
)
‖V ‖2.

(3.2.24)
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Proposition 25. The Problem (P1) admits a unique solution.

Proof. We suppose that εr and µr are 3 × 3-tensors. Let (E = E1 − E2, H = H1 − H2) be the
difference of two solutions of the problem (P1). Obviously both the normal trace of E and H are
continuous across the boundary and satisfy the Silver–Müller radiation condition, hence, due to
Green’s formula, we have∫

∂D
ν×E|± ·Hds = ik

∫
D
µrH ·Hdv+ik

∫
D
E ·εrEdv = ik

(∫
D
µrH ·Hdv−

∫
D
E ·εrEdv

)
, (3.2.25)

and taking the real part gives

−<
∫
∂D

ν × E ·Hds =

∫
D

(µr − µ∗r)=H · <Hdv +

∫
D

(εr − ε∗r)=E · <Edv. (3.2.26)

Furthermore, we have, =(H) × <(H) = =(E) × <(E) = 0,3 and, with (εr)ij standing for the
component of εr, we have

(εr − ε∗r)V =

U(εr):=︷ ︸︸ ︷ (εr)12 − (εr)21

(εr)13 − (εr)31

(εr)23 − (εr)32

 ×V, (3.2.27)

which guaranties that (µr−µ∗r)=H ·<H = (U(εr)×=(H))·<H = 0. The same observation concerning
the second integral of the right-hand side of (3.2.26), implies that

<
∫
∂D

ν × E ·Hds = 0.

The Rellich lemma (see [22]) induces that E ≡ H ≡ 0.

To prove the exitence of the solution and derive the needed estimates, we use the equivalent
Lippmann-Schwinger equation. For that, we define the operator of Lippmann-Schwinger to be

LS(εr,µr) :=

(
I − (k2 +∇ div)Sk,CεrD −ik curlSk,CµrD

+ik curlSk,CεrD I − (k2 +∇ div)Sk,CµrD

)
. (3.2.28)

We set (E,H) to be a solution, provided that it is solvable, of the integral equation,

LS(εr,µr)
(
E
H

)
=

(
Ein

H in

)
. (ML.S)

and (EA, HA) the solution of the Lippmann-Schwinger equation with averaged parameter, that is

LS(Aεr ,Aµr )

(
EA
HA

)
=

(
Ein

H in

)
. (A−ML.S)

With the previous notations, we have the following proposition.
3Due to the fact that H ×H = E × E = 0.
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Proposition 26. A solution of the equation (ML.S) for <(k) ≥ 0, =(k) ≥ 0 solves the prob-
lem (P1). Further, under the conditions (3.2.23), the operator LS(εr,µr) is an isomorphism of
H(curl,∪ℵm=1Dm) provided that

cr :=
δ

a
≥ c02|k|c2

∞

max(cε
−
∞ , c

µ−
∞ )

, (3.2.29)

and V := E,H, satisfy the following estimates

‖V ‖L2(∪ℵm=1Dm)) ≤ C‖(E
in, H in)‖H(curl,∪ℵm=1Dm)). (3.2.30)

Besides for Cµr , Cεr in W1,∞(∪i=1mDm) and (EA, HA) solution of (A−ML.S) then

‖EA − E‖L2(∪Dm) ≤ c2,kc∞a
(
‖H‖L2(∪Dm) + ‖E‖L2(∪Dm)

)
,

‖HA −H‖L2(∪Dm) ≤ c2,kc∞a
(
‖H‖L2(∪Dm) + ‖E‖L2(∪Dm)

)
,

(3.2.31)

for some positive constant which depends only on k.

To prove this proposition, we need the following lemma.

Lemma 27. The potential N iα,CA
D,V (V ) := N iα,CA

D (V ) := ((iα)2 +∇ div)Siα,CAD (V ) solves(
curl2N iα,CA

D + α2N iα,CA
D

)
(V ) = −α2CAV

and we have for α ≥ 0

−
∫
D
N iα,CA
D,V · CAV dv ≥ ‖N iα,CA

D,V ‖H(curl,R3) ≥ α2‖N iα,CA
D,V ‖

2
L2(R3\D) ≥ 0. (3.2.32)

Further, bothMk,CA
D := ik curlSiα,CAD and N iα,CA

D −N k,CA
D are compact operators, and it holds that∫

D
(N iα,CA

D −N k,CA
D )(V ) · CAV dv ≤

|k|(|k|+ 1)

4π

(
(|k|+ 5)a

5
2 + 23c0

|k|+ 5

(1 + 2cr)2cr

)
‖CAV ‖2L2(Dm),

(3.2.33)∫
D
Mk,CA1

D (V1) · CA2V2dv ≤
(

(
1

2
+
k

4
a)a+ c0

(1 + |k|)
4πc3

r

)
‖CA2V2‖L2(D)‖CA1V1‖L2(D),

(3.2.34)

where we recall that cr = δ
a .

Proof. First, we write∫
D

(N iα,CA
D,V · CAV )dv = −

∫
D
N iα,CA
D,V ·

(
curl2N iα,CA

D,V + α2N iα,CA
D,V

)
dx,

= −
∫
D
N iα,CA
D,V · curl2N iα,CA

D,V dx− α2‖N iα,CA
D,V ‖

2
L2(D).

(3.2.35)
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Due to Green’s formula inside D, we have∫
∂D

ν ×N iα,CA
D,V · curlN iα,CA

D,V ds = ‖curlN iα,CA
D,V ‖

2
L2(D) −

∫
D
N iα,CA
D,V · curl2N iα,CA

D,V dx. (3.2.36)

As, outside of D, N iα,CA
D,V satisfies the Maxwell equation for k = iα, a direct application of Green’s

identity outside of D, for a sufficiently large R > 0,4 implies that∫
∂BR

ν ×N iα,CA
D,V · curlN iα,CA

D,V ds

−
∫
∂D

ν ×N iα,CA
D,V · curlN iα,CA

D,V ds = ‖curlN iα,CA
D,V ‖

2
L2(BR\D) + α2‖N iα,CA

D,V ‖
2
L2(BR\D)

which guaranties5 that

−<
(∫

∂D
ν ×N iα,CA

D,V · curlN iα,CA
D,V ds

)
≥ ‖curlN iα,CA

D,V ‖
2
L2(R3\D) + α2‖N iα,CA

D,V ‖
2
L2(R3\D).

Further, we have

=
(∫

∂BR

ν
∂BR
×N iα,CA

D,V · curlN iα,CA
D,V ds

)
−=

(∫
∂D

ν ×N iα,CA
D,V · curlN iα,CA

D,V ds
)

= 0,

which, with the radiation condition, gives

−
∫
∂D

ν ×N iα,CA
D,V · curlN iα,CA

D,V ds ≥ ‖curlN iα,CA
D,V ‖

2
L2(R3\D) + α2‖N iα,CA

D,V ‖
2
L2(R3\D). (3.2.37)

The above inequality in (3.2.36) gives

‖curlN iα,CA
D,V ‖

2
L2(R3\D) + α2‖N iα,CA

D,V ‖
2
L2(R3\D) ≤ −‖curlN iα,CA

D,V ‖
2
L2(D) +

∫
D
N iα,CA
D,V · curl2N iα,CA

D,V dv.

Then this last inequality in (3.2.35) ends the proof of (3.2.32).

Let us now prove (3.2.34) and (3.2.33). We write, for α = 1,

∥∥∥[N i,CA
D,V −N

k,CA
D,V ]

∥∥∥
L2(Dm)

≤
( ℵ∑
m=1

∥∥∥[N i,CA
Dm,V

−N k,CA
Dm,V

]
∥∥∥2

L2(Dm)

) 1
2

+
( ℵ∑
m=1

∥∥∥[N i,CA
D\Dm,V −N

k,CA
D\Dm,V ]

∥∥∥
L2(Dm)

) 1
2
.

(3.2.38)

4The continuity of the normal trace of N iα,CA
D,V across ∂D is due the facts that the operator ν×∇ is an isomorphism

From Hs(∂D) \ R to H1−s(∂D) \ R and divSiα,CA
D (·) have a continuous Dirichlet trace.

5The obvious thing is that <
∫
∂BR

ν ×N iα,CA
D,V · curlN iα,CA

D,V ds −→0
R−→∞, due to the exponential decay of the kernel as

α > 0.
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Obviously, we have, due to (A.0.2), that

[N i,CA
D/Dm,V

−N k,CA
D/Dm,V

](x) = Intm1 + Intm2

where

Intm1 :=k2

∫
D\Dm

eik|x−y|

4π|x− y|
(CAV )(y)dy −

∫
D\Dm

e−|x−y|

4π|x− y|
(CAV )(y)dy

and

Intm2 :=

∫
D\Di

∫ 1

0

e

(
(ik+1)t−1

)
|x−y|((ik + 1)t− 1

)
4π(ik − 1)−1|x− y|

[
I+
(
(ik+1)t−1− 1

|x− y|

)(x− y)
2
⊗

|x− y|

]
dt(CAV )(y)dy.

We have, using Hölder’s inequality, 6

|Intm1 | ≤
(|k|2 + 1)

4π

ℵ∑
j≥1

j 6=m

a
3
2

δmj
‖CAV ‖L2(Dj),

and

|Intm2 | ≤
∫
D\Dm

|k|(|k|+ 1)

4π

[ 2

|x− y|
+ |k|

]
|CAV |(y)dy,

≤
ℵ∑
j≥1

j 6=m

|k|(|k|+ 1)

4π

[ 2

δjm
+ |k|

]
a

3
2 ‖CAV ‖L2(Dj)

,

which helps conclude, using Hölder’s inequality for the second step once more and (A.0.6) of Lemma
43, that

ℵ∑
m=1

∥∥∥N i,CA
D/Dm,V

−N k,CA
D/Dm,V

∥∥∥2

L2(Dm)

≤
ℵ∑

m=1

( ℵ∑
j≥1

j 6=m

|k|(|k|+ 1)

4π

[ 3

δjm
+ |k|

]
a

3
2 ‖CAV ‖L2(Dj)

)2
a3,

≤c0

((|k|+ 1)

4π|k|−1

)2
ℵa6

ℵ∑
j≥1

j 6=m

[ 9

δ2
jm

+
2|k|
δjm

+ |k|2
]
‖CAV ‖2L2(Dj)

,

≤c0

((|k|+ 1)

4π|k|−1

)2
ℵa6

[9ℵ
1
3

δ2 +
2ℵ

2
3 |k|
δ

+ ℵ|k|2
]
‖CAV ‖2L2(D).

(3.2.39)

6We have considered |k| > 1.
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Hence

ℵ∑
m=1

∥∥∥N i,CA
D/Dm,V

−N k,CA
D/Dm,V

∥∥∥2

L2(Dm)

≤ c0

((|k|2 + |k|)
4π

)2[ 9a6

(a/2 + δ)4δ2 +
2a6|k|

(a/2 + δ)5δ
+

a6|k|2

(a/2 + δ)6

]
‖CAV ‖2L2(D),

≤ c0

((|k|2 + |k|)
4π

)2[ 9(24)

(1 + 2cr)4c2
r

+
26|k|

(1 + 2cr)5cr
+

26|k|2

(1 + 2cr)6

]
‖CAV ‖2L2(D),

≤ 23c0

((|k|2 + |k|)
4π

)2[ |k|2 + 4|k|+ 18

(1 + 2cr)4c2
r

]
‖CAV ‖2L2(D).

(3.2.40)

We deal now with the first term of the right-hand side of (3.2.38). We write∣∣∣[N i,CA
Dm,V

−N k,CA
Dm,V

](x)
∣∣∣ ≤∫

Dm

|k|(|k|+ 1)

4π

[( 3

|x− y|
+ |k|

)]
|CAV |(y)dy,

≤|k|(|k|+ 1)

4π

[(∫
Dm

3

|x− y|2
dy
) 1

2
+ |k|a

3
2

]
‖CAV ‖L2(Dm)

and, as done in (3.2.18), we obtain

ℵ∑
m=1

∥∥∥[N i,CA
Dm,V

−N k,CA
Dm,V

](x)
∥∥∥2

L2(Dm)
≤
ℵ∑

m≥1

a3
( |k|(|k|+ 1)

4π

)2[√
6πa+ |k|a

3
2

]2
‖CAV ‖2L2(Dm),

≤
( |k|(|k|+ 1)

4π

)2[√
6πa+ |k|a

3
2

]2
a3‖CAV ‖2L2(∪m≥1Dm).

(3.2.41)
Gathering (3.2.40) and (3.2.41), we have∥∥∥[N i,CA

D,V −N
k,CA
D,V ]

∥∥∥
L2(D)

≤|k|(|k|+ 1)

4π

(
(|k|+ 5)a

5
2 + 23c0

|k|+ 5

(1 + 2cr)2cr

)
‖CAV ‖L2(Dm). (3.2.42)

To derive (3.2.34), we write

,

ℵ∑
m=1

∫
Dm

Mk,CA1
D,V1

· CA2V2dv =

ℵ∑
m=1

∫
Dm

Mk,CA1
Dm,V1

· CA2V2dv +

ℵ∑
m=1

∫
Dm

ℵ∑
j≥1

j 6=m

Mk,CA1
Dj ,V1

· CA1V2dv.

(3.2.43)
The first term of the second member can be estimated using young’s inequality∣∣∣∣∫

R3

u(x)(v ∗ w)(x)dx

∣∣∣∣ ≤ ‖u‖L2(R3)‖w‖L2(R3)‖v‖L1(R3),
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with u(x) = |CA2V2|(x)χDm(x), v(x) = |∇Φk|(x)χB(0,a)(x), w(x) = |CA1V1|(x)χDm(x). We get7

ℵ∑
m=1

∫
R3

|CA2V2|(x)χDm(x)

∫
R3

|∇φk(x− y)|χB(0,a)(x− y) |CA1V1|(y)χDm(y)dy dx

≤
ℵ∑

m=1

‖CA2V2χDm‖L2(R3)‖CA1V1χDm‖L2(R3)

∥∥∇ΦkχB(0,a)

∥∥
L1(R3)

,

≤‖CA2V2‖L2(D)‖CA1V1‖L2(D)

∫
B(0,a)

1

4π

( 1

|x− y|2
+
|k|
|x− y|

)
dx,

≤(
1

2
+
k

4
a)a‖CA2V2‖L2(D)‖CA1V1‖L2(D).

(3.2.44)

The later sum in the right hand side of (3.2.43) is smaller than

S1 :=

ℵ∑
m=1

∫
Dm

ℵ∑
j≥1

j 6=m

∫
Dj

1

δmj
(

1

δmj
+ |k|) |CA1V1| |CA2V2|dv, (3.2.45)

and similar calculation, as done above and using (A.0.6) of Lemma 43, gives successively

S1 ≤
ℵ∑

m=1

a3‖CA2V2‖L2(Dm)

(
c0(
ℵ

1
3

δ2 +
|k|ℵ

2
3

δ
)
) 1

2
( ℵ∑
j≥1

j 6=m

(
1

δ2
ij

+
|k|
δmj

)‖CA1V1‖2L2(Dj)

) 1
2
,

≤
(
c0(
ℵ

1
3

δ2 +
|k|ℵ

2
3

δ
)
) 1

2
a3

(
‖CA2V2‖2L2(D)

ℵ∑
m=1

ℵ∑
j≥1

j 6=m

(
1

δ2
ij

+
|k|
δmj

)‖CA1V1‖2L2(Dj)

) 1
2

,

≤c0(
ℵ

1
3

δ2 +
|k|ℵ

2
3

δ
)a3‖CA2V2‖L2(D)‖CA1V1‖L2(D),

which implies that∣∣∣∣∣
ℵ∑

m=1

∫
Dm

Mk,CA1
D (V1) · CA2V2dv

∣∣∣∣∣ ≤ c0
(1 + |k|)

4πc3
r

‖CA2V2‖L2(D)‖CA1V1‖L2(D). (3.2.46)

Proof. (Proposition 26) Consider the equation (ML.S), which is, with the notation of Lemma 27
and

〈
·, ·
〉
standing for the scalar product in L2(D),〈

E,CεrE
〉
−
〈
N iα,Cεr
D,E ,CεrE

〉
−
〈
N k,Cεr
D,E −N iα,Cεr

D,E ,CεrE
〉
−
〈
ikMk,Cµr

D,H ,CεrE
〉

=
〈
Ein · CεrE

〉
,〈

H,CµrH
〉
−
〈
N iα,Cµr
D,H ,CµrH

〉
−
〈
N k,Cµr
D,H −N iα,Cµr

D,H ,CµrH
〉

+
〈
ikMk,Cεr

D,E ,CµrH
〉

=
〈
H in,CµrH

〉
,

7Notice that Dm ⊂ B(zm,
a
2

) ⊂ B(y,a) whenever y ∈ Dm, and χB(0,a)(x− y) = χB(y,a)(x).
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and with (3.2.32), taking the real part of the above equation, we get

<
〈
E,CεrE

〉
−<

〈
N k,Cεr
D,E −N iα,Cεr

D,E ,CεrE
〉
−<

〈
ikMk,Cµr

D,H ,CεrE
〉
≤<
〈
Ein · CεrE

〉
,

<
〈
H,CµrH

〉
−<

〈
N k,Cµr
D,H −N iα,Cµr

D,H ,CµrH
〉

+ <
〈
ikMk,Cεr

D,E ,CµrH
〉
≤<
〈
H in,CµrH

〉
.

(3.2.47)

With the estimations (3.2.33), (3.2.34) of Lemma 27 and the assumption (3.2.23) we get8

cε
−

∞ ‖E‖
2 − c2

∞
|k|(|k|+ 1)

4π

(
a

3
2 + 23c0

|k|+ 5

(1 + 2cr)2cr

)
‖E‖2

−c2
∞|k|

(
a+ c0

(1 + |k|)
4πc3

r

)
‖H‖‖E‖ ≤

〈
Ein · CεrE

〉
,

c
µ−
∞ ‖H‖2 − c2

∞
|k|(|k|+ 1)

4π

(
a

3
2 + 23c0

|k|+ 5

(1 + 2cr)2cr

)
‖H‖2

−c2
∞|k|

(
a+ c0

(1 + |k|)
4πc3

r

)
‖H‖‖E‖ ≤

〈
H in,CµrH

〉
,

which, under the conditions

cr ≥
c02|k|c2

∞

max(cε
−
∞ , c

µ−
∞ )

,
|k|(|k|+ 1)

4π
a < 1, and a ≤ 1

16
, (3.2.48)

gives

‖E‖2 − 1

4π
‖H‖‖E‖ ≤ c∞

cε
−
∞

∥∥Ein∥∥‖E‖,
and

‖H‖2 − 1

4π
‖H‖‖E‖ ≤ c∞

c
µ−
∞

∥∥H in∥∥‖H‖.
More precisely,

‖E‖ ≤ 5c∞

4cε
−
∞

(∥∥Ein∥∥+
1

4π

∥∥H in∥∥), (3.2.49)

and
‖H‖ ≤ 5c∞

4c
µ−
∞

(∥∥H in∥∥+
1

4π

∥∥Ein∥∥). (3.2.50)

Concerning the estimate (3.2.31), identifying both left hand sides of the eqs. (ML.S) and (A−
ML.S), we have

(HA −H)− (k2 +∇ div)S
k,ACµr
D (HA −H) + ik curlS

k,ACεr
D (EA − E)

= −(k2 +∇ div)S
k,Cµr−ACµr
D (H) + ik curlS

k,Cεr−ACεr
D (E),

8 Assuming that |k|a ≤ 1.
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then, due to estimates (3.2.30) for the solution of Lippmann-Schwinger integral equation, we obtain

‖HA −H‖L2(D) ≤
∥∥∥−(k2 +∇ div)S

k,Cµr−ACµr
D (H) + ik curlS

k,Cεr−ACµr
D (E)

∥∥∥
L2(D)

,

≤ c2,k

(∥∥(Cµr −ACµr )H
∥∥
L2(D)

+
∥∥(Cεr −ACµr )E

∥∥
L2(D)

)
,

≤ c2,kc∞a
(
‖H‖L2(D) + ‖E‖L2(D)

)
.

Remark 28. We have two observations:

• We can consider either both real tensor or complex valued ones for the relative electric per-
mittivity and magnetic permeability inducing similar assumption concerning the corresponding
contrast in (3.2.23).

• We could improve the condition on the ratio a
δ by taking a larger α. But this would increase

the constant that appears in the estimation (3.2.30) which will result in the worsening of the
error of approximation in the latter calculation.

3.2.3 Field approximation and the related linear system

We set
QBm :=

∫
Dm

CBH dv, RBm :=

∫
Dm

CBE dv (3.2.51)

and write, with (EA, HA) solution of (A−ML.S),

Qm :=

∫
Dm

HA dv, Rm :=

∫
Dm

EA dv. (3.2.52)

For Uµ
∗
r

m = C∗µr∇V
µ∗r
m and U

ε∗r
m = C∗εr∇V

ε∗r
m , where V

µ∗r
m , V

ε∗r
m are the respective solutions of

(PrAni(1)) with B = µ∗r and B = ε∗r , we recall that

U
µ∗r
m − C∗µr∇ divS0

Dm(U
µ∗r
m ) = C∗µr (3.2.53)

and

U
ε∗r
m − C∗µr∇ divS0

Dm(U
ε∗r
m ) = C∗εr . (3.2.54)

Due to Equation (3.2.8), we get

‖Uµ
∗
r

m ‖L2(Dm) ≤ ‖C∗µr∇V ‖L2(Dm) ≤ c∞a
3
2 , (3.2.55)

and
‖Uε

∗
r

m ‖L2(Dm) ≤ ‖C∗εr∇V ‖L2(Dm) ≤ c∞a
3
2 , (3.2.56)
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where

c∞ := max
m≤ℵ

sup
x∈Dm, B=εr,µr.

(‖B‖L∞(Dm) + 2)2(
1
2 − a2‖B‖L∞(Dm)

√
3
π

)
is a positive constant.

The following assumption could be seen as a consequence of the scaling (3.2.11) and Lemma 23,
for A = εr, µr,

µ−Ba
3|V |2 ≤ [PBDm ]V · V ≤µ+

Ba
3|V |2 whenever B ∈W∞(Dm,R3 × R3), (3.2.57)

and

µ−Ba
3|V |2 ≤ <

(
[PBDm ]V · V

)
≤µ+

Ba
3|V |2 whenever B ∈W∞(Dm,C3 × C3), (3.2.58)

where µ+
A := maxm µ

+
A,m, µ

−
A := minm µ

−
A,m and (µ±A,m)ℵm=1 are constants that satisfy the previous

inequalities for each Dm.
We set for U, V ∈ L2(Dm)

Erm(U, V ) := O

( ℵ∑
(j≥1)

j 6=m

[‖V ‖L2(Dj)

δ4
mj

+
(3|k|
δ3
mj

+
3|k|2 + 1

δ2
mj

+
|k|(|k|2 + 1)

δmj

)(
‖U‖L2(Dj)

+‖V ‖L2(Dj)

)]
a

11
2

)
.

(3.2.59)
With (A.0.6) of Lemma 43, we obtain

ℵ∑
m=1

Erm(U, V )2 = O

(
‖U‖2L2(D)

a11

δ8 +
(
‖U‖2L2(D) + ‖V ‖2L2(∪mDm)

)(|k|+ 2)3a11|ln(δ)|
δ6

)
. (3.2.60)

The far field of the scattered wave is given by, see ([22], (6.26)-(6.27) p. 199),

E∞(x̂) =
k2

4π
x̂×

(∫
∪ℵm=1Dm

e−ikx̂·yCεrE(y)dy × x̂
)

+
ik

4π
x̂×

∫
∪ℵm=1Dm

e−ikx̂·yCµrH(y)dy. (3.2.61)

Furthermore, for the scattering of plane wave, (3.2.30) gives, with (3.2.49) and (3.2.50),

‖E‖L2(D) ≤
5c∞

4cε
−
∞

(
|P |+ |k|

4π
|θ × P |

)( 1

cr

) 3
2

(3.2.62)

and

‖H‖L2(D) ≤
5c∞

4cε
−
∞

( 1

4π
|P |+ |k||θ × P |

)( 1

cr

) 3
2
.

(3.2.63)

With the above estimates, we have the following result.

Proposition 29. For x̂ ∈ S1, we have the following approximations for the far field of the scattered
waves
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1. if Cµr , Cεr are symmetric.

E∞(x̂) =
ℵ∑

m=1

(
k2

4π
e−ikx̂·zm x̂×

(
Rεrm × x̂

)
+
ik

4π
e−ikx̂·zm x̂×Qµrm

)
+
( |k|3
c3
r

a
)
, (3.2.64)

2. if Cµr , Cεr are not symmetric

E∞(x̂) =

ℵ∑
m=1

(
k2

4π
e−ikx̂·zm x̂×

(
CεrRm × x̂

)
+
ik

4π
e−ikx̂·zm x̂× CµrQm

)

+O

(
|k|3 + |k|2

c3
r

a+
|k|c∞(c∞c2,k + 1)

c3
r

a

)
,

(3.2.65)

uniformly for x̂ ∈ S2, where
(
Rεrm

)ℵ
m=1

and
(
Qµrm

)ℵ
m=1

are solutions of the following system

Qµrm = [PµrDm ]

( ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Q

µr
j − ik∇Φk(zm, zj)×Rεrj

]
+H in(zm)

)

+ Erm(H,E) +O
(
k2‖CµrH‖L2(Dm)a

7
2 + ‖CεrE‖L2(Dm)a

5
2 + |k|2a4

)
,

Rεrm = [PεrDm ]

( ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Rεrj + ik∇Φk(zm, zj)×Q

µr
j

]
+ ·Ein(zm)

)

+ Erm(E,H) +O
(
k2‖CεrE‖L2(Dm)a

7
2 + ‖CµrH‖L2(Dm)a

5
2 + |k|a4

)
,

(3.2.66)

and
(
Rm
)ℵ
m=1

and
(
Qm
)ℵ
m=1

are solutions the following system

Qm = [P
Am
µ∗r

Dm
](Am

Cµ∗r
)−1

( ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Aj

CµrQj − ik∇Φk(zm, zj)×Aj
CεrRj

]
+H in(zm)

)

+ Erm(HA) +O(k2‖ACµrHA‖L2(Dm)a
7
2 + ‖ACεrEA‖L2(Dm)a

5
2 ),

Rm = [P
Am
ε∗r

Dm
](Am

Cε∗r
)−1

( ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Aj

CεrRj + ik∇Φk(zm, zj)×Aj
CµrQj

]
+ Ein(zm)

)

+ Erm(EA) +O(k2‖ACµrEA‖L2(Dm)a
7
2 + ‖ACεrHA‖L2(Dm)a

5
2 ).

(3.2.67)

Proof. For x ∈ Dm, we have from (ML.S)

H − (k2 +∇ div)Sk,CµrDm
(H)

+ ik curlSk,CεrDm
(E) =

ℵ∑
j≥1

j 6=m

[
(k2 +∇ div)Sk,CµrDj

(H)− ik curlSk,CεrDj
(E)(x)

]
+ Ein(x),

(3.2.68)
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and

E − (k2 +∇ div)Sk,CεrDm
(E)

− ik curlSk,CµrDm
(H) =

ℵ∑
j≥1

j 6=m

[
(k2 +∇ div)Sk,CεrDj

(E) + ik curlSk,(Cµr )
Dj

(H)(x)
]

+H in(x),
(3.2.69)

• (Derivation of (3.2.66)) Multiplying the first member of (3.2.68), by Uµ
∗
r

m and integrating over
Dm, we derive∫

Dm

U
µ∗r
m (x) ·

(
H − (k2 +∇ div)Sk,CµrDm

(H) + ik curlSk,CADm
(E)
)

(x)dx

=

∫
Dm

U
µ∗r
m ·

[
I −∇ divS0,Cµr

Dm

]
(H)(x)dx− k2

∫
Dm

U
µ∗r
m (x) · Sk,CµrDm

(H)(x)dx

−
∫
Dm

U
µ∗r
m (x) ·

(
∇ div

[
Sk,CADm

− S0,CA
Dm

]
(H)− ik curlSk,Q

c(εr)
Dm

(E)
)

(x)dx,

=

∫
Dm

U
µ∗r
m ·

[
I −∇ divS0,Cµr

Dm

]
(H)(x)dx

+O
(
k2a7/2‖CµrH‖L2(Dm) + a5/2‖CεrE‖L2(Dm)

)
.

(3.2.70)

Indeed, due to the third identity (A.0.4), for α = 0, it is obvious that∣∣∣∇ div
[
Sk,CADm

−S0,CA
Dm

]
(H)(x)

∣∣∣
≤
∣∣∣∫
Dm

(∫ 1

0

e

(
(ik)t
)
|(x−y)|k2t

4π|x− y|

[
I +

(
ikt− 1

|x− y|

)(x− y)
2
⊗

|x− y|

]
dt
)

(CµrH)(y)dy
∣∣∣,

≤
∫
Dm

[ 2k2

4π|x− y|
+
k3

4π

)] ∣∣(CµrH)(y)
∣∣dy,

≤
[ k2

2π

(
lim
r→0

∫
B(y,a)\B(zm,r)

1

|x− y|2
dy
) 1

2
+
k3

4π
a

3
2

]∥∥CµrH∥∥L2(Dm)
,

≤
[ k2

2π
πa

1
2 +

k3

4π
a

3
2

]∥∥CµrH∥∥L2(Dm)
,

hence, ∥∥∥∇ div
[
Sk,CµrDm

− S0,Cµr
Dm

]
(H)

∥∥∥
L2(Dm)

≤ π

3

[ k2

√
2π

+
k3

4π
a
]
a2
∥∥CµrH∥∥L2(Dm)

.

We also have, for similar reasons,∥∥∥k2
[
Sk,CµrDm

]
(H)

∥∥∥
L2(Dm)

≤ π

3

[ k2

2π

√
2πa

1
2

]
a

3
2

∥∥CµrH∥∥L2(Dm)
.
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Regarding the third term of (3.2.70), we have∣∣∣∫
Dm

U
µ∗r
m (x) ·

(
ik curlSk,Q

c(εr)
Dm

(H)
)

(x)dx
∣∣∣

≤‖Uµ
∗
r

m ‖L2(Dm)

∥∥CµrH∥∥L2(Dm)

∫
B(0,a)
|∇Φk(x)|dx,

≤
cµra

3
2

∥∥CµrH∥∥L2(Dm)

4π

∫
B(0,a)

( 1

|x− y|2
+
|k|
|x− y|

)
dx,

≤cµr(
1

2
+
k

4
a)a

5
2

∥∥CµrH∥∥L2(Dm)
.

Hence, we get from (3.2.70)∫
Dm

U
µ∗r
m ·

[
H − (k2 +∇ div)Sk,CµrDm

(H)− ik curlSk,Q
c(εr)

Dm
(E)
]
dv

=

∫
Dm

[
I − C∗µr∇ divS0

Dm

]
(U
µ∗r
m ) ·H dv +O(k2‖CµrH‖L2(Dm)a

7
2 + ‖CεrE‖L2(Dm)a

5
2 ),

=

∫
Dm

C∗µrH dv +O(k2‖CµrH‖L2(Dm)a
7
2 + ‖CεrE‖L2(Dm)a

5
2 ).

(3.2.71)
Multiplying the second member of (3.2.68) by Uµ

∗
r

m ind integrating over Dm, gives

ℵ∑
j≥1

j 6=m

∫
Dm

U
µ∗r
m (x) ·

[∫
Dj

Πk(x, y)(CµrH)(y)dy + ik

∫
Dj

∇Φk(x, y)× (CεrE)(y)dy
]
dx

+

∫
Dm

U
µ∗r
m ·H indv,

and a first order approximation, considering (A.0.1), gives∫
Dm

U
µ∗r
m dv ·

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)

∫
Dj

(CµrH)(y)dy + ik∇Φk(zm, zj)×
∫
Dj

(CεrE)(y)dy
]

+

∫
Dm

U
µ∗r
m dv H in(zj) +O(|k|2a4) + 2Erm(H,E),

(3.2.72)

which gives, when the contrasts are symmetric, joined with (3.2.71), the first approximation
in (3.2.66). Similar calculation gives the second one starting from (3.2.69), and multiplying by
U
ε∗r
m as defined in (3.2.54).

• (Derivation of (3.2.67)) When, in the other hand, both Cεr ,Cµr are in W1,∞(∪ℵm=1Dm),
and not necessarily symmetric, we get, with a first order approximation, for the combined
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eqs. (3.2.71) and (3.2.72) of the corresponding integral formulation of the Problem (A−ML.S)∫
Dm

A∗CµrHA dv +O(k2‖ACµrHA‖L2(Dm)a
7
2 + ‖ACεrEA‖L2(Dm)a

5
2 )

=

∫
Dm

U
Aµ∗r
m dv ·

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)

∫
Dj

(ACµrHA)(y)dy + ik∇Φk(zm, zj)×
∫
Dj

(ACεrEA)(y)dy
]

+

∫
Dm

U
Aµ∗r
m ·H indv + Er(EA,HA)

m (HA),

which we rewrite as

A∗CµrRm +O(k2‖ACµrHA‖L2(Dm)a
7
2 + ‖ACεrEA‖L2(Dm)a

5
2 )

=

∫
Dm

U
Aµ∗r
m dv ·

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)ACµrRm + ik∇Φk(zm, zj)×ACεrQm

]

+

∫
Dm

U
Aµ∗r
m ·H indv + Er(EA,HA)

m (HA),

or more precisely

ACµ∗r
Rm +O(k2‖ACµrHA‖L2(Dm)a

7
2 + ‖ACεrEA‖L2(Dm)a

5
2 )

=ACµ∗r
[P

Am
µ∗r

Dm
]A−1

Cµ∗r
·
ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)ACµrRm + ik∇Φk(zm, zj)×ACεrQm

]

+

∫
Dm

U
Aµ∗r
m dv ·H in(zm) + Er(EA,HA)

m (HA) +O(|k|2a4).

as for the symmetric case, the slights changes, for the second equation, are retrieved in the
error of approximation.

• (Derivation of (3.2.64)) Concerning the far field approximation (3.2.64), a first order approx-
imation gives

E∞(x̂) =

ℵ∑
m=1

( k2

4π
x̂×

∫
Dm

e−ikx̂·zmCεrE(y)× x̂dy +
ik

4π
x̂×

∫
Dm

e−ikx̂·zmCµrH(y)dy
)

+
ℵ∑

m=1

(
k2

4π
x̂×

(∫
Dm

(e−ikx̂·y − e−ikx̂·zm)CεrE(y)× x̂dy

+
ik

4π

∫
Dm

(e−ikx̂·y − e−ikx̂·zm)CµrH(y)dy
))

.

(3.2.73)

As ∣∣∣(e−ikx̂·y − e−ikx̂·zm)
∣∣∣ ≤ ∣∣∣∣ikx̂ ∫ 1

0
e−ikx̂·(ty+(1−t)zm)dt · (y − zm)

∣∣∣∣ ≤ |k|a, (3.2.74)
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we get

E∞(x̂) =
ℵ∑

m=1

( k2

4π
x̂×

∫
Dm

e−ikx̂·zmCεrE(y)× x̂dy +
ik

4π
x̂×

∫
Dm

e−ikx̂·zmCµrH(y)dy
)

+O

( ℵ∑
m=1

|k|3 + |k|2

4π
a
(
a

3
2 ‖CεrE‖L2(Dm) + a

3
2

∥∥CµrH∥∥L2(Dm)

))
(3.2.75)

then follows

E∞(x̂) =
ℵ∑

m=1

( k2

4π
x̂×

∫
Dm

e−ikx̂·zmCεrE(y)× x̂dy +
ik

4π
x̂×

∫
Dm

e−ikx̂·zmCµrH(y)dy
)

+O

(
|k|3 + |k|2

4π

(
ℵa3)

1
2

(
‖CεrE‖L2(∪Dm) +

∥∥CµrH∥∥L2(∪Dm)

) 1
2
a

)
.

(3.2.76)
The conclusion comes using the estimations (3.2.62) and (3.2.63).
The approximation (3.2.65) could be achieved by adding-subtracting to (3.2.76) above the
following expression

E∞(x̂) =

ℵ∑
m=1

( k2

4π
x̂×

∫
Dm

e−ikx̂·zmACεrEA(y)× x̂dy +
ik

4π
x̂×

∫
Dm

e−ikx̂·zmACµrHA(y)dy
)
.

Precisely

E∞(x̂) =

ℵ∑
m=1

( k2

4π
x̂×

∫
Dm

e−ikx̂·zmACεrEA(y)× x̂dy +
ik

4π
x̂×

∫
Dm

e−ikx̂·zmACµrHA(y)dy
)

+
ℵ∑

m=1

(
k2

4π
x̂×

∫
Dm

e−ikx̂·zm
(
CεrE −ACεrEA

)
(y)× x̂dy

+
ik

4π
x̂×

∫
Dm

e−ikx̂·zm
(
CµrH −ACµrHA

)
(y)dy

)
+O

(
|k|3 + |k|2

c3
r

a

)
.

(3.2.77)
Obviously∫

Dm

e−ikx̂·zm
(
CεrE −ACεrEA

)
(y)dy =

∫
Dm

e−ikx̂·zm
[
Cεr
(
E − EA

)]
(y)dy

+

∫
Dm

e−ikx̂·zm
[(

Cεr −ACεr

)
EA

]
(y)dy,
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achieving that

ℵ∑
m=1

∣∣∣∣∫
Dm

e−ikx̂·zm
(
CεrE −ACεrEA

)
(y)dy

∣∣∣∣ ≤ ℵ∑
m=1

a
3
2 ‖Cεr‖L∞(Dm)‖E − EA‖L2(Dm)

+

ℵ∑
m=1

a
3
2a‖Cεr‖W∞(Dm)‖EA‖L2(Dm).

Using Hölder’s inequality, with both (3.2.31) and similar (3.2.62) and (3.2.63) for EA, we get

ℵ∑
m=1

∣∣∣∣∫
Dm

e−ikx̂·zm
(
CεrE −ACεrEA

)
(y)dy

∣∣∣∣ = O

(
c2
∞c2,k + c∞

c3
r

a

)
. (3.2.78)

With similar calculation we get

ℵ∑
m=1

∣∣∣∣∫
Dm

e−ikx̂·zm
(
CµrH −ACµrHA

)
(y)dy

∣∣∣∣ = O

(
c2
∞c2,k + c∞

c3
r

a

)
. (3.2.79)

Injecting both of the above estimations in (3.2.77) gives the results.

Proposition 30. Both the linear systems

[Pµ
∗
r

Dm
]−1Q̂µrm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Q̂

µr
j − ik∇Φk(zm, zj)× R̂εrj

]
+ Ĥ in(zm),

[Pε
∗
r

Dm
]−1R̂εrm =

ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)R̂εrj + ik∇Φk(zm, zj)× Q̂

µr
j

]
+ Êin(zm),

(3.2.80)

and

Am
Cµ∗r

[P
Am
µ∗r

Dm
]−1Qm =

( ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Aj

Cµr Q̂j − ik∇Φk(zm, zj)×Aj
Cεr R̂j

]
+ Ĥ in(zm)

)
,

Am
Cε∗r

[P
Am
ε∗r

Dm
]−1Rm =

( ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)Aj

Cεr R̂j + ik∇Φk(zm, zj)×Aj
Cµr Q̂j

]
+ Êin(zm)

)
,

(3.2.81)

are invertible, provided
δ

a
= cr ≥ 3|k|µ+

(εr,µr)
. (3.2.82)

97



Scattering by Anisotropic Inhomogenities. Problem (P1) 98

For |k| > 1 we have the following estimates

( ℵ∑
m=1

|Q̂µrm |2
) 1

2 ≤
9µ+

(εr,µr)
a3

8

(( ℵ∑
m=1

|H in(zm)|2
) 1

2
+

1

3

( ℵ∑
m=1

|Ein(zm)|2
) 1

2

)
, (3.2.83)

and ( ℵ∑
m=1

|R̂εrm |2
) 1

2 ≤
9µ+

(εr,µr)
a3

8

(
1

3

( ℵ∑
m=1

|H in(zm)|2
) 1

2
+
( ℵ∑
m=1

|Ein(zm)|2
) 1

2

)
. (3.2.84)

Furthermore (Am
Cεr R̂m,A

m
Cµr Q̂m)ℵm=1 satisfy similar estimates.

Proof. We deal with the case of real valued coefficients (i.e assumption (3.2.57) is fulfilled). When
either one of them or both are complex valued, we procceed in the same way taking the real parts
in the the coming derivations.

• (First linear system) We start writing the system (3.2.80) as follows

Qm−
ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)[P

µ∗r
Dj

]Qj − ik∇Φk(zm, zj)× [Pε
∗
r

Dm
]Rj

]
= H in(zm),

Rm−
ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)[PεrDm ]Rj + ik∇Φk(zm, zj)× [Pµ

∗
r

Dm
]Qj

]
= Ein(zm),

(3.2.85)

where Qj := [Pµ
∗
r

Dj
]−1Q̂µrj and Rj := [Pµ

∗
r

Dj
]−1Rµrj for j ∈ {1, ...,ℵ}. Observing that, due to

mean value property for harmonic function,

|B(0, δ/4)|2
ℵ∑

m=1

ℵ∑
j≥1

j 6=m

[
Π0(zm, zj)[P

µ∗r
Dj

]Qj · [P
µ∗r
Dm

]Qm

]

=
ℵ∑

m=1

ℵ∑
j≥1

j 6=m

∫
B(zm,δ/4)

∫
B(zj ,δ/p)

[
Π0(x, y)[Pµ

∗
r

Dj
]Qj · [P

µ∗r
Dm

]Qm

]
dydx,

=

ℵ∑
m=1

(∫
B(zm,δ/4)

∫
B(z,ρ)

[
Π0(x, y)

ℵ∑
j≥1

χDj (x)[Pµ
∗
r

Dj
]Qj · [P

µ∗r
Dm

]Qm

]
dydx

−
∫
B(zm,δ/4)

∫
B(zm,δ/4)

[
Π0(x, y)χDj (x)[Pµ

∗
r

Dm
]Qm · [P

µ∗r
Dm

]Qm

]
dydx

)
,

(3.2.86)

for some z and ρ such that z ∈ ∪ℵm=1B(zm, δ/4) ⊂ B(z, ρ).Also forQ(x) =
∑ℵ

j≥1 χDj (x)[Pµ
∗
r

Dj
]Qj
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we get

−|B(0, δ/4)|2
ℵ∑

m=1

ℵ∑
j≥1

j 6=m

[
Π0(zm, zj)[P

µ∗r
Dj

]Qj · [P
µ∗r
Dm

]Qm

]

= −
∫
B(z,ρ)

N 0,I
B(z,ρ)(Q)(x) ·Q(x)dx

+

ℵ∑
m=1

∫
B(zm,δ/4)

∫
B(zm,δ/4)

[
Π0(x, y)[Pµ

∗
r

Dm
]Qm · [P

µ∗r
Dm

]Qm

]
dydx,

in such a way that

−
ℵ∑

m,j=1

j 6=m

[
Π0(zm, zj)[P

µ∗r
Dj

]Qj · [P
µ∗r
Dm

]Qm

]

≥
∑ℵ

m=1

|B(0, δ/4)|2

∫
B(zm,δ/4)

∫
B(zm,δ/4)

[
Π0(x, y)[Pµ

∗
r

Dm
]Qm · [P

µ∗r
Dm

]Qm

]
dydx.

(3.2.87)

With this in mind we have, from the first equation of linear system,

ℵ∑
m=1

Qm · [P
µ∗r
Dm

]Qm −
ℵ∑

m,j=1

j 6=m

Πk(zm, zj)[P
µ∗r
Dj

]Qj · [P
µ∗r
Dm

]Qm

+

ℵ∑
m,j=1

j 6=m

ik∇Φk(zm, zj)× [Pε
∗
r

Dm
]Rj · [P

µ∗r
Dm

]Qm =

ℵ∑
m=1

H in(zm) · [Pµ
∗
r

Dm
]Qm.

Using (3.2.87) we get

ℵ∑
m=1

Qm · [P
µ∗r
Dm

]Qm −
ℵ∑

m,j=1

j 6=m

(Πk −Π0)(zm, zj)[P
µ∗r
Dj

]Qj [P
µ∗r
Dm

]Qm

+
ℵ∑

m,j=1

j 6=m

ik∇Φk(zm, zj)× [Pε
∗
r

Dj
]Rj · [P

µ∗r
Dm

]Qm

+

∑ℵ
m=1

|δ4 |2

∫
B(zm,

δ
4

)

∫
B(zm,

δ
4

)

[
Π0(x, y)[Pµ

∗
r

Dm
]Qm · [P

µ∗r
Dm

]Qm

]
dydx ≤

ℵ∑
m=1

H in(zm) · [Pµ
∗
r

Dm
]Qm.

(3.2.88)

As we have, see ([30], Theorem 9.9),∥∥∥∥∫
R3

Π0(·, y)χB(zm,1)(y)dy

∥∥∥∥
L2(R3)

=
∥∥χB(zm,1)

∥∥
L2(R3)

(3.2.89)
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we get, with Sℵ(Π0) standing for the third term of the left-hand side of (3.2.88),

Sℵ(Π0) ≤
∑ℵ

m=1

|B(0, 1)|2

∫
B(zm,1)

∫
B(zm,1)

[
Π0(x, y)[Pµ

∗
r

Dm
]Qm · [P

µ∗r
Dm

]Qm

]
dydx,

≤
∑ℵ

m=1

|B(0, 1)|2

∥∥∥∥∥
∫
B(zm,1)

Π0(x, y)[Pµ
∗
r

Dm
]Qmdy

∥∥∥∥∥
L2(B(zm,1))

∥∥∥[Pµ
∗
r

Dm
]Qm

∥∥∥
L2(B(zm,1))

≤
ℵ∑

m=1

∣∣∣[Pµ∗rDm ]Qm

∣∣∣2,
which replaced in (3.2.88), together with (A.0.4), for α = 0, gives

ℵ∑
m=1

Qm · [P
µ∗r
Dm

]Qm −
ℵ∑

m,j=1

j 6=m

(
|k|2
( 2

δmj
+ |k|

)
+
|k|2

δmj

)∣∣∣[Pµ∗rDj ]Qj

∣∣∣∣∣∣[Pµ∗rDm ]Qm

∣∣∣
−

ℵ∑
m,j=1

j 6=m

(
|k|
δmj

( 1

δmj
+ |k|

))∣∣∣[Pε∗rDj ]Rj

∣∣∣∣∣∣[Pµ∗rDm ]Qm

∣∣∣
−

ℵ∑
m=1

∣∣∣[Pµ∗rDm ]Qm

∣∣∣2 ≤ ℵ∑
m=1

∣∣H in(zm)
∣∣∣∣∣[Pµ∗rDm ]Qm

∣∣∣.
(3.2.90)

From the above inequality, with calculations similar to (3.2.39), we get

ℵ∑
m=1

Qm · [P
µ∗r
Dm

]Qm −
( 3|k|2

(a/2 + δ)
1
2δ

+
|k|(|k|2 + 1)

(a/2 + δ)
3
2

) 1

(a/2 + δ)
3
2

ℵ∑
m=1

∣∣∣[Pµ∗rDm ]Qm

∣∣∣2
−

(
|k|
δ

( 1

(a/2 + δ)δ
+

|k|
(a/2 + δ)2

))( ℵ∑
m=1

∣∣∣[Pε∗rDm ]Rm

∣∣∣2) 1
2
( ℵ∑
m=1

∣∣∣[Pµ∗rDm ]Qm

∣∣∣2) 1
2

−
ℵ∑

m=1

∣∣∣[Pµ∗rDm ]Qm

∣∣∣2 ≤ ℵ∑
m=1

∣∣H in(zm)
∣∣∣∣∣[Pµ∗rDm ]Qm

∣∣∣,
then, with the original notations, we get

ℵ∑
m=1

[Pµ
∗
r

Dm
]−1Q̂µrm · Q̂µrm −

( 3
√

2|k|2

(1 + 2cr)
1
2 cr

+

√
2

3|k|(|k|2 + 1)

(1 + 2cr)
3
2

) √
2

3

(1 + 2cr)
3
2

∑ℵ
m=1|Q̂

µr
m |2

a3

−

(
|k|
cr

( 2

(1 + 2cr)
+

2|k|
(1 + cr)2

))(∑ℵ
m=1|R̂

εr
m |2

) 1
2
(∑ℵ

m=1|Q̂
µr
m |2

) 1
2

a3

−
ℵ∑

m=1

|Q̂µrm |2 ≤
ℵ∑

m=1

|H in(zm)||Qµrm |.

(3.2.91)
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Due to (3.2.57), considering that, both

1

a3µ+
(εr,µr)

|Q̂µrm |2 ≤ [Pµ
∗
r

Dm
]−1Q̂µrm · Q̂µrm ≤

1

a3µ−(εr,µr)
|Q̂µrm |2 (3.2.92)

and
1

a3µ+
(εr,µr)

∣∣∣R̂εrm ∣∣∣2 ≤ [Pε
∗
r

Dm
]−1R̂εrm · R̂εrm ≤

1

a3µ−(εr,µr)
|Q̂µrm |2 (3.2.93)

are satisfied, both (3.2.91) and the obtained result from repeating the same calculation for the
second equation, gives, with cr ≥ 3|k|µ+

(εr,µr)
and |k| > 1,

(
7

9
− a3)

ℵ∑
m=1

|Q̂µrm |2 −
2

9

( ℵ∑
m=1

|R̂εrm |2
) 1

2
( ℵ∑
m=1

|Q̂µrm |2
) 1

2 ≤ µ+
(εr,µr)

a3
ℵ∑

m=1

|H in(zm)||Q̂µrm |,

and

(
7

9
− a3)

ℵ∑
m=1

|R̂µrm |2 −
2

9

( ℵ∑
m=1

|Qεrm |2
) 1

2
( ℵ∑
m=1

|R̂µrm |2
) 1

2 ≤ µ+
(εr,µr)

a3
ℵ∑

m=1

|Ein(zm)||Q̂µrm |.

which, for a ≤ 1
3 , gives

ℵ∑
m=1

|Q̂µrm |2 −
1

3

( ℵ∑
m=1

|R̂εrm |2
) 1

2
( ℵ∑
m=1

|Q̂µrm |2
) 1

2 ≤ µ+
(εr,µr)

a3

3

( ℵ∑
m=1

|H in(zm)|2
) 1

2
( ℵ∑
m=1

|Q̂µrm |2
) 1

2
,

and

ℵ∑
m=1

|R̂µrm |2 −
1

3

( ℵ∑
m=1

|Qεrm |2
) 1

2
( ℵ∑
m=1

|R̂µrm |2
) 1

2 ≤ µ+
(εr,µr)

a3

3

( ℵ∑
m=1

|Ein(zm)|2
) 1

2
( ℵ∑
m=1

|Q̂µrm |2
) 1

2
.

Then follows the conclusion, namely

( ℵ∑
m=1

|Q̂µrm |2
) 1

2 ≤ µ+
(εr,µr)

a3
( ℵ∑
m=1

|H in(zm)|2
) 1

2
+

1

3

( ℵ∑
m=1

|R̂εrm |2
) 1

2
,

and ( ℵ∑
m=1

|R̂µrm |2
) 1

2 ≤ µ+
(εr,µr)

a3
( ℵ∑
m=1

|Ein(zm)|2
) 1

2
+

1

3

( ℵ∑
m=1

|Qεrm |2
) 1

2
.

• (Non symmetric case) We could deduce the estimate from the above calculation writing down
the linear system as follows, first we set, for m ∈ {1, ...,ℵ}

[T
Am
µ∗r

Dm
]−1 :=Am

Cµ∗r
[P

Am
µ∗r

Dm
]−1(Am

Cµr )−1,

[T
Am
ε∗r

Dm
]−1 :=Am

Cε∗r
[P

Am
ε∗r

Dm
]−1(Am

Cεr )−1,
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and, this time

Rm := [T
Am
ε∗r

Dm
]−1Am

Cεr R̂m, (3.2.94)

Qm := [T
Am
µ∗r

Dm
]−1Am

Cµr Q̂m (3.2.95)

the system (3.2.81) can, hence, be written as

Qm−
ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)[T

Aµ∗r
Dj

]Qj − ik∇Φk(zm, zj)× [T
Aε∗r
Dm

]Rj

]
= H in(zm),

Rm−
ℵ∑
j≥1

j 6=m

[
Πk(zm, zj)[T

Aε∗r
Dm

]Rj + ik∇Φk(zm, zj)× [T
Aµ∗r
Dm

]Qj

]
= Ein(zm),

(3.2.96)

hence, following the same line as in the proof for the first linear system, we get

( ℵ∑
m=1

|ACµr Q̂m|
2
)(1/2)

≤
9µ+

(εr,µr)
a3

8

(( ℵ∑
m=1

|H in(zm)|2
) 1

2
+

1

3

( ℵ∑
m=1

|Ein(zm)|2
) 1

2

)
,

( ℵ∑
m=1

|ACεr R̂m|
2
)(1/2)

≤
9µ+

(εr,µr)
a3

8

(
1

3

( ℵ∑
m=1

|H in(zm)|2
) 1

2
+
( ℵ∑
m=1

|Ein(zm)|2
) 1

2

)
,

(3.2.97)

with unchanged condition on
cr = 3|k|µ+

(εr,µr)
, |k| > 1. (3.2.98)

For the last statement, it suffices to observe, that CA and its transpose C∗A share the same
eigenvalues, and hence leave those of [PA∗Dm ]−1 identical to those of [T A∗Dm

]−1.

Proof. (Of Theorem 20)

• We start with (3.1.13), noticing that, for (Q̂µrm , R̂µrm )ℵm=1 solution of (3.2.80) and (Qµrm ,Rµrm )ℵm=1

solution of (3.2.66) then (Q̂µrm −Qµrm , R̂µrm −Rµrm )ℵm=1 solves (3.2.80) with

Ĥ in(zm) = [Pµ
∗
r

Dm
]−1

(
Erm(H,E) +O

(
k2‖CµrH‖L2(Dm)a

7
2 + ‖CεrE‖L2(Dm)a

5
2

))
(3.2.99)

and

Êin(zm) = [Pε
∗
r

Dm
]−1

(
Erm(E,H) +O

(
k2‖CεrE‖L2(Dm)a

7
2 + ‖CµrH‖L2(Dm)a

5
2

))
. (3.2.100)

102



Scattering by Anisotropic Inhomogenities. Problem (P1) 103

Thus, with the estimates (3.2.83), (3.2.84) and (3.2.92), we have, with the aid of (3.2.60) for
the third inequality

( ℵ∑
m=1

|Q̂µrm −Qµrm |2
) 1

2

≤
9µ+

(εr,µr)

8µ−(εr,µr)

[{ ℵ∑
m=1

(
Erm(H,E) +O

(
k2‖CµrH‖L2(Dm)a

7
2 + ‖CεrE‖L2(Dm)a

5
2
))2
} 1

2

+
1

3

{ ℵ∑
m=1

(
Erm(E,H) +O

(
k2‖CεrE‖L2(Dm)a

7
2 + ‖CµrH‖L2(Dm)a

5
2
))2
} 1

2

]
,

≤
9µ+

(εr,µr)

8µ−(εr,µr)

[( ℵ∑
m=1

Erm(H,E)2
) 1

2
+

( ℵ∑
m=1

O
(
k2‖CµrH‖L2(Dm)a

7
2 + ‖CεrE‖L2(Dm)a

5
2

)2
) 1

2

+
( ℵ∑
m=1

Erm(E,H)2
) 1

2
+

( ℵ∑
m=1

O
(
k2‖CεrE‖L2(Dm)a

7
2 + ‖CµrH‖L2(Dm)a

5
2

)2
) 1

2
]
,

≤
9µ+

(εr,µr)

8µ−(εr,µr)

[
O

(
‖H‖2L2(D)

a11

δ8 +
(
‖E‖2L2(D) + ‖H‖2L2(D)

)(|k|+ 2)3a11|ln(δ)|
δ6

) 1
2

+
(
O

(
k2(

ℵ∑
m=1

‖CµrH‖
2
L2(Dm)a

7)
1
2 + (

ℵ∑
m=1

‖CεrE‖
2
L2(Dm)a

5)
1
2

)

+O

(
‖E‖2L2(D)

a11

δ8 +
(
‖E‖2L2(D) + ‖H‖2L2(D)

)(|k|+ 2)3a11|ln(δ)|
δ6

) 1
2

+
(
O
(
k2(

ℵ∑
m=1

‖CεrE‖
2
L2(Dm)a

7)
1
2 + (

ℵ∑
m=1

‖CµrH‖
2
L2(Dm)a

5)
1
2
)2) 1

2

]
.

With the estimates (3.2.62) and (3.2.63), for the scattering of plane waves, we obtain

( ℵ∑
m=1

|Q̂µrm −Qµrm |2
) 1

2 ≤
4µ+

(εr,µr)

8µ−(εr,µr)
× c∞(|k|+ 1)

min(cε
−
∞ , c

µ−
∞ )c

3
2
r

[
O

(
a11

δ8 +
(|k|+ 2)3a11|ln(δ)|

δ6

) 1
2

+O
(
k2c∞a

7/2 + c∞a
5/2
)]
,

(3.2.101)
hence,

( ℵ∑
m=1

|Q̂µrm −Qµrm |2
) 1

2
= O

(c(εr,µr)(|k|+ 1)

c
3/2
r

[ 1

c4
r

+ a |ln(cra)|+ a
]
a3/2

)
, (3.2.102)
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and with similar calculations follows( ℵ∑
m=1

|R̂µrm −Rµrm |2
) 1

2
= O

(c(εr,µr)(|k|+ 1)

c
3/2
r

[ 1

c4
r

+ a |ln(cra)|+ a
]
a3/2

)
, (3.2.103)

with

c(εr,µr) :=
4µ+

(εr,µr)

8µ−(εr,µr)
× c∞(|k|+ 1)

min(cε
−
∞ , c

µ−
∞ )

.

Recalling the approximation (3.2.64), we have

E∞(x̂) =

ℵ∑
m=1

(
k2

4π
e−ikx̂·zm x̂×

(
Rεrm × x̂

)
+
ik

4π
e−ikx̂·zm x̂×Qµrm

)
+O
(
a
)
,

=
ℵ∑

m=1

(
k2

4π
e−ikx̂·zm x̂×

(
R̂εrm × x̂

)
+
ik

4π
e−ikx̂·zm x̂× Q̂µrm

)
+O
(
a
)

+
( ℵ∑
m=1

|k|2

16π2

∣∣∣e−ikx̂·zm∣∣∣) 1
2
( ℵ∑
m=1

|Q̂µrm −Qµr |2
) 1

2

+
( ℵ∑
m=1

|k|2

16π2

∣∣∣e−ikx̂·zm∣∣∣) 1
2
( ℵ∑
m=1

|R̂εrm −Rεr |2
) 1

2
,

(3.2.104)

which with the estimations (3.2.102) and (3.2.103) reduces to

E∞(x̂) =
ℵ∑

m=1

(
k2

4π
e−ikx̂·zm x̂×

(
R̂εrm × x̂

)
+
ik

4π
e−ikx̂·zm x̂× Q̂µrm

)
+O
(
a
)

+
|k|
2π

1

δ3/2
O
(c(εr,µr)(|k|+ 1)

c
3/2
r

[ 1

c4
r

+ a |ln(cra)|+ a
]
a3/2

)
,

(3.2.105)

or

E∞(x̂) =
ℵ∑

m=1

(
k2

4π
e−ikx̂·zm x̂×

(
R̂εrm × x̂

)
+
ik

4π
e−ikx̂·zm x̂× Q̂µrm

)
+O
(
a
)

+
|k|
2π
O
(c(εr,µr)(|k|+ 1)

c3
r

[ 1

c4
r

+ a |ln(cra)|+ a
])
.

(3.2.106)

• The approximation (3.1.15) can be justified in a similar way replacing, respectively, Am
CεrRm

and Am
CµrQm by Rm and Qm.
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3.3 Scattering by perfect conductors, i.e. (P2)

3.3.1 Preliminaries and notations

3.3.1.1 Boundary traces, Surface gradient and related operator

Let φ and U be smooth, respectively, scalar and vector valued functions. The tangential gradient of
φ, is given by ∇tφ := −ν ×

(
ν ×∇φ

)
, where ν is the outward unit normal to D. Then the (weak)

surface divergence of A, of tangential fields, that is ν ·A = 0, is defined by the duality identity∫
∂D

φ DivA ds = −
∫
∂D
∇tφ ·A ds. (3.3.1)

or by the relation, for A = ν × U ,
DivA = −ν · curlU. (3.3.2)

Obviously, from (3.3.1), if DivA exists, taking φm(x) = 1, gives
∫
∂D DivA(x) dsx = 0, see [57]

and Chapter 2 in [22] for more details.

The spaces L2,Div
t (∂D) denote the space of all tangential fields of L2(∂D) that have an L2

0(∂D)
weak surface divergence, precisely

L2,Div
t (∂D) =

{
A ∈ L2(∂D); A · ν = 0, such that DivA ∈ L2

0(∂D)
}
,

where
L2

0(∂D) :=
{
A ∈ L2(∂D) such that

∫
∂D

Ads = 0
}
.

We recall, the usual Single and Double layer-potentials, either scalar or vector field, defined,
respectively, as follows

Sk∂D( · ) :=

∫
∂D

Φk(x, y)( · (y)) dsy, (3.3.3)

Kk
∂D( · ) :=

∫
∂D

∂Φk(x, y)

∂νy
( · (y)) dsy. (3.3.4)

These fields are C∞(R3 \∂D). In addition, they admit the following Dirichlet trace, for almost every
x ∈ ∂D

Sk∂D(A)(x)|± := [Sk∂D](A)(x) := lim
s→x

s∈Γ±(x)

Sk∂D(A)(s) =

∫
∂D

Φk(x, y)A(y) dsy, (3.3.5)

Kk
∂D(A)(x)|± := [±I/2 +Kk

∂D](A)(x) := lim
s→x

s∈Γ±(x)

Kk
∂D(A)(s) = ±1

2
A(x) + p.v.

∫
∂D

∂Φk(x, y)

∂νy
A(y) dsy,

(3.3.6)
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were
{

Γ±(x), x ∈ ∪ℵm=1∂Dm

}
is a family of doubly truncated cones with a vertex at x, which lies

in both sides of the boundary, such that Γ±(x) ∩ D∓ = ∅ and the integral (3.3.6) is taken in the
principal value of Cauchy sense. For every s ∈ [0, 1], all the operators

[S0
∂D] : H−s(∂D) −→ H1−s(∂D),

[±I/2 +K0
∂D] : Hs(∂D)→ Hs(∂D),

[±I/2 + (K0
∂D)∗] : H−s0 (∂D)→ H−s0 (∂D),

are isomorphisms. More details can be found in [69] and [56].

3.3.1.2 Virtual-mass and Polarization tensor

The following two quantities will play an important role in the sequel[
PDm

]
:=

∫
∂Dm

[−I/2 + (K0
∂Dm)∗]−1(ν)y∗dsy,

[
TDm

]
:=

∫
∂Dm

[
1

2
I + (K0

∂Dm)∗]−1(ν)y∗dsy.

(3.3.7)

Both −
[
PDm

]
and

[
TDm

]
are positive-definite symmetric matrices, (see Lemma 5 and Lemma 6 in

[16] or Theorem 4.11 in [9]) and satisfy the following scales[
PDm

]
= a3

[
PDi

]
, and

[
TDm

]
= a3

[
TDm

]
. (3.3.8)

For i ∈ {1, ...,ℵ} let (µTi )+, (µPi )+ be the respective maximal eigenvalues of
[
TDm

]
, −
[
PDm

]
, and

let (µTi )−, (µPi )− be their minimal ones. We define

µ+ := max
i∈{1,...,ℵ}

((µTi )+, (µPi )+), µ− := min
i∈{1,...,ℵ}

((µTi )−, (µPi )−). (3.3.9)

Hence for every vector C, we get

µ−|C|2a3 ≤ [T∂Dm ] C · C ≤ a3µ+|C|2,
µ−|C|2a3 ≤ −[P∂Dm ] C · C ≤ a3µ+|C|2.

(3.3.10)

3.3.2 Existence and uniqueness of the solution

3.3.2.1 Maxwell layer potentials and boundary traces

The well-posedness of the problem (P2) is addressed in [22] and [61], for instance, and the unique
solution can be expressed in terms of layer potentials. Especially, when k ∈ C \R∗, with =k > 0, or
with additional hypothesis on k ∈ R+, we can use the following representation,

E(x) := Ein(x) + curlSk∂D(A)(x), x ∈ D+ = R3 \ ∪ℵm=1Di (3.3.11)

where A is the unknown vector density in L2,Div
t (∂D), to be found to solve the problem. In this

case, the magnetic field is given by

H(x) := H in(x) +
1

ik
curl curlSk∂D(A)(x), (3.3.12)
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with, for almost every x ∈ ∪ℵm=1∂Dm, the following traces are valid, see [57]), are valid

[I/2 +Mk
∂D](A)(x) :=ν × lim

s→x
s∈Γ±(x)

curlSk∂D(A)(s) = ±1

2
A+ ν × curl

∫
∂D

Φk(x, y)A(y) dsy,

[Nk
∂D](A[2])(x) :=ν × lim

s→x
s∈Γ±(x)

curl2 Sk∂D(A)(s)

=k2ν ×
∫
∂D

Φk(x, y)A(y) dsy +∇
∫
∂D

Φk(x, y) DivA(y) dsy.

(3.3.13)
For the perfect conductor boundary condition, such a representation gives birth to the following
singular integral equation

[I/2 +Mk
∂D](A) = ν × Ein,

which can be written as

[I/2 +Mk
mDm

+
ℵ∑
j≥1

j 6=m

Mk
mDj

](A) = ν × Ein, (3.3.14)

with, for x ∈ ∂Dm and j ∈ {1, ...,ℵ},

Mk
mDj

A(x) := ν ×
∫
∂Dj

∇xΦk(x, y)×A(y) dsy. (3.3.15)

For the surface divergence, we have

Div[I/2 +Mk
∂D](A)(x) = −[k2ν · Sk∂D](A)− [I/2− (Kk

∂D)∗](DivA). (3.3.16)

In addition, for every u ∈ H1(∂Dm) (cf. Lemma 5.11 in [57])

[I/2 +Mk
∂D](ν ×∇u) = ν ×∇[I/2 +Kk

∂D](u)− k2 ν × [Sk∂D](νu). (3.3.17)

The fact that the operators appearing in (3.3.14) are isomorphisms on L2,Div
t (∂D) is addressed in

the next section together with an estimate of the density.

3.3.2.2 A priori estimates of the densities

The following result together with the fact that [±I/2 +Mk
∂D] is of closed range, makes it describe

an isomorphism of L2,Div
t (∂D). The proof goes in two steps. In the first step, we prove the estimate

when the wave number k has a positive imaginary part, =k > 0, (ex. k = i). As [Mk
∂D −M i

∂D] is
compact, we deduce, in a second step, a similar estimates for k ∈ R+, under an appropriate condition
on cr (i.e. the dilution parameter).

Theorem 31. Let k ∈ C such that =(k) > 0. For any A ∈ L2,Div
t (∂D), there exists a positive

constant cL,k, which depends only on k and the Lipschitz character of the D’s, such that

‖A‖2L2,Div
t (∂D)

=
ℵ∑

m=1

‖A‖2L2,Div
t (∂Dm)

≤ cL,k‖[±I/2 +Mk
∂D]A‖2L2,Div

t (∂D)
. (3.3.18)
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In order to derive this estimate, we need to use the following key Helmholtz decomposition of
the densities

Lemma 32. Each element Am of L2,Div
t (∂Dm) can be decomposed as Am = A1

m +A2
m where

A1
m = ν ×∇vAm ∈ L2,0

t (∂Dm), vm ∈ H1(∂Dm) \ C and A2
m ∈ L2,Div

t (∂Dm) \ L2,0
t (∂Dm), and

(3.3.19)
with the estimates

‖A2
m‖L2(∂Dm) ≤ c1a‖Am‖L2,Div

t (∂Dm)
, ‖A2

m‖L2,Div
t (∂Dm)

≤ c2‖A‖L2,Div
t (∂Dm)

,

‖A1
m‖L2,0

t (∂Dm)
≤ c3‖Am‖L2,Div

t (∂Dm)
, ‖vAm‖L2(∂Dm) ≤ c4a‖A‖L2,Div

t (∂Dm)
.

where (ci)i=1,2,3,4. are constants which depend only on the Lipschitz character of the D′ms.

To prove Lemma 32, it suffices to seek for the solution of the following equation,{
[ν ×∇S0

∂Dm ](w) + [ν × S0
∂Dm ](W ) = Am,

[ν · curlS0
∂Dm ](W ) = DivAm,

(3.3.20)

and get the desired estimations, using the scaling properties of the implied operators, with A2
m =

[ν × S0
∂Di

](W ) and A1
m = [ν ×∇S0

∂Di
](w). The details can be found in [14].

In what follows, cL and ck will designate generic constants independent of a and depend, re-
spectively, on the Lipschitz character of D and k.

Suppose that E and H = curlE/ik are two vector fields that satisfy the Maxwell system,
with a complex wave number k, =(k) > 0 and such that ν × E is in L2,Div(∂D := ∪ℵm=1∂Dm).
Hence, in view of the decomposition of Lemma 38, there exist ei and Ei such that, in each ∂Dm,
νi × E = ν ×∇ei + ν × Ei with the following estimate,

‖ν × Ei‖L2(∂Dm) ≤c1a‖E‖L2,Div
t (∂Dm)

, ‖ei‖L2(∂Dm) ≤ c4a‖E‖L2,Div
t (∂Dm)

.

recalling that ‖E‖L2,Div
t (∂Dm)

= ‖ν × E‖L2(∂Dm) + ‖ν · curlE‖L2(∂Dm).

Let us set e :=
∑ℵ

m=1 χ∂Dmei, E :=
∑ℵ

m=1 χ∂DmEi. With this notations, for every x ∈ ∂D =
∪ℵm=1∂Dm, we get

ν × E = ν ×∇e + ν × E, (3.3.21)

and the following estimates hold

‖ν × E‖L2(∪ℵm=1∂Dm) ≤c1a‖E‖L2,Div
t (∂∪ℵm=1Dm)

, ‖ei‖L2(∪ℵm=1∂Dm) ≤ c4a‖E‖L2,Div
t (∂∪ℵm=1Dm)

.

(3.3.22)
Indeed, with Lemma 38,

‖ν × E‖2L2(∪ℵm=1∂Dm)
=

ℵ∑
m=1

∫
∂Dm

(νi × E)2ds ≤
ℵ∑

m=1

c2
1a

2

(∫
∂Dm

(ν × Ei)2 + (div ν × Ei)2ds

)
,

≤c2
1a

2
ℵ∑

m=1

∫
∂Dm

(ν × Ei)2ds = c2
1a

2‖E‖2L2,Div
t (∂D)

.

The second estimation can be done in the same way.
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Lemma 33. For any solution E to the Maxwell system, continuous up to the boundary, we have∣∣∣ 1

ik

∫
∂D

ν · E × curlE ds
∣∣∣ ≤ cL a ‖H‖L2,Div

t (∂D)
‖E‖L2,Div

t (∂D)
, (3.3.23)

with cL independent of a and k, from which follows

‖E‖2H(curl,D) ≤ cLcka‖H‖L2,Div
t (∂D)

‖E‖L2,Div
t (∂D)

(3.3.24)

where ck := 1/min
(
=k/|k|2,=(k)

)
.

Proof. Considering the decomposition (3.3.21), and using (3.3.1) for the second identity, we have∫
∂D

E · ν × curlE ds =

∫
∂D

(∇e + E) · ν × curlE ds = −
∫
∂D

e Div(ν × curlE) ds+

∫
∂D

E · ν × curlE ds,

= k2

∫
∂D

e ν · E ds+

∫
∂D

E · ν × curlE ds.

Taking the absolute value, with Hölder’s inequality and involving the estimates (3.3.22), we get
successively∣∣∣∣ 1

ik

∫
∂D

E · ν × curlE ds

∣∣∣∣ ≤‖e‖L2(∂D)‖
k2

ik
ν · E‖L2(∂D) + ‖E‖L2(∂D)‖

1

ik
ν × curlE‖L2(∂D),

≤cL a ‖H‖L2,Div
t (∂D)

‖E‖L2,Div
t (∂D)

.

For (3.3.24), consider the following Green’s identity

1

ik

∫
D
|curlE|2dx+ ik

∫
D
|E|2dx =

1

ik

∫
∂D

ν × E · curlE ds. (3.3.25)

The real part gives,

=k
|k|2

∫
D
|curlE|2dx+ =k

∫
D
|E|2dx = −<

( 1

ik

∫
∂D

ν × E · curlE ds
)
,

then, with ck := 1/min
(
=k/|k|2,=(k)

)
involving the estimates (3.3.23), we obtain∫

D
|curlE|2dx+

∫
D
|E|2dx ≤ ckcL a ‖H‖L2,Div

t (∂D)
‖E‖L2,Div

t (∂D)
.

Lemma 34. We have, the following estimates for the exterior (E+) and interior (E−) traces of the
radiating electric field E∫

∂D

∣∣ν × (ν × E±)
∣∣2 ≤cLck(‖H±‖L2,Div

t (∂D)
‖E±‖L2,Div

t (∂D)
+ ‖ν · E±‖2L2(∂D)

)
, (3.3.26)

and ∫
∂D

∣∣ν · E±∣∣2 ≤cLck(‖H±‖L2,Div
t (∂D)

‖E±‖L2,Div
t (∂D)

+ ‖ν × (ν × E±)‖2L2(∂D)

)
, (3.3.27)

and due to the Maxwell equation symmetry, same estimates remain true for the magnetic field H.
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Proof. Let E and X be two vector fields, with X real valued, and consider the following identity∫
D=∪ℵm=1Dm

div

(
1

2
|E|2X −Re(E ·X) E

)
dx =

∫
∂D=∪ℵm=1∂Dm

(
1

2
|E|2X −Re(E ·X) E

)
· νds.

(3.3.28)

Following [58], let X̂m ∈ C∞(Dm) be compactly supported in R3, such that X̂m · ν∂Dm ≥ cLm > 0
with support as small as wanted. Such a choice is possible due to Lemma 1.5.1.9 in [31]. Recall that
Dm ⊂ B(0, 1

2) and Dm = aDm + zm.
Set c−L := minm∈{1,...,ℵ} cLm , and define, for every x ∈ R3,

X(x) :=
ℵ∑

m=1

(
X̂m

((x− zm)

ε

)
χB(zm,

3a
2

)

)
.

Then X satisfies, for any positive scalar function V,∫
∂D

V X · νds =
ℵ∑

m=1

∫
∂Dm

V (εsm + zm)X̂(sm) · ν∂Dma
2dssm ≥

ℵ∑
m=1

cLm

∫
∂Dm

V (εsm + zm)a2ds

≥ c−L
∫
∂D

V ds,

(3.3.29)
and for c+

L := maxm supDm

(
|div X̂|, |∇ X̂|, |X̂|

)
, we obtain

sup
x∈Dm

|∇X(x)| ≤ 1

a
sup
s∈Dm

∣∣∣∇sX̂(s)
∣∣∣ ≤ c+

L

a
,

sup
x∈Dm

|divX(x)| ≤ 1

a
sup
s∈Dm

∣∣∣divs X̂(s)
∣∣∣ ≤ c+

L

a
.

(3.3.30)

Being |E|2 = E · E, we get both

div(|E|2X/2) =
(
|E|2 divX + (∇E)E ·X + (∇E) E ·X

)
/2,

and
div((E ·X) E) = (E ·X) divE − (∇E)X · E − (∇X)E · E.

Taking their real parts then their difference9, gives

div
(1

2
|E|2X −<

(
(E ·X)E

))
= <

(1

2
|E|2 divX − E ·X divE − E · ∇X E + E ×X · curlE

)
.

9Noticing that
<
(
(∇E)X · E

)
= <

(
(∇E)X · E

)
,

and
<
(
(∇E)X · E − (∇E)E ·X

)
= <

(
curlE · (E ×X)

)
= <

(
curlE · (E ×X)

)
.
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As E is divergence free, replacing in (3.3.28), we have∫
∂D

( |E|2X
2
−<(E ·X)E

)
· νds = <

∫
D

( |E|2 divX

2
− E · (∇X)E + E ×X · curlE

)
dv. (3.3.31)

Since E = (ν · E)ν − ν × (ν × E), we obtain

<
∫
∂D

(E ·X) E · ν ds = −<
∫
∂D

(
ν × (ν × E) ·X ν · E − |ν · E|2ν ·X

)
ds

and then the left hand side of (3.3.31) becomes∫
∂D

(1

2
|E|2 − |ν · E|2

)
X · ν ds+ <

∫
∂D

ν × (ν × E) ·X ν · E ds,

hence it follows, with (3.3.30),∣∣∣∫
∂D

( |E|2
2
− |ν · E|2

)
ν ·Xds

∣∣∣ ≤ c+
L

( 1

a

∫
D

3|E|2

2
dv +

∫
D
|E| |curlE|dv

)
+
∣∣∣∫
∂D

ν × (ν × E) ·X ν · E ds
∣∣∣,

As |E|2 = |ν × (ν × E)|2 + |(ν · E)ν|2, using Hölder’s inequality, we have∣∣∣∫
∂D

1

2

(
|ν × (ν × E)|2 − |ν · E|2

)
X · ν ds

∣∣∣ ≤ c+
L

( 1

a
‖E‖H(curl,D)2 + ‖ν × E‖L2(∂D)‖ν · E‖L2(∂D)

)
,

(3.3.32)

which, in view of (3.3.29), gives both∫
∂D
|ν × (ν × E)|2ds ≤

c+
L

c−L

(‖E‖H(curl,D)2

a
+ ‖ν × E‖L2(∂D)‖ν · E‖L2(∂D)

)
+ ‖ν · E‖2L2(∂D),

and ∫
∂D
|ν · E|2ds ≤

c+
L

c−L

(‖E‖H(curl,D)2

a
+ ‖ν × E‖L2(∂D)‖ν · E‖L2(∂D)

)
+ ‖ν × (ν × E)‖2L2(∂D).

Using (3.3.24), we get∫
∂D
|ν × (ν × E)|2ds ≤ cL,k

(
‖H‖L2,Div

t (∂D)
‖E‖L2,Div

t (∂D)
+ ‖ν × E‖L2(∂D)‖ν · E‖L2(∂D) + ‖ν · E‖2L2(∂D)

)
,

and∫
∂D
|ν · E|2ds ≤ cL,k

(
‖H‖L2,Div

t (∂D)
‖E‖L2,Div

t (∂D)
+ ‖ν × E‖L2(∂D)‖ν · E‖L2(∂D) + ‖ν × (ν × E)‖2L2(∂D)

)
.

Then 10
∫
∂D
|ν × (ν × E)|2ds ≤ cL,k

(
(1 +

1

|k2|
)‖H‖L2,Div

t (∂D)
‖E‖L2,Div

t (∂D)
+ ‖ν · E‖2L2(∂D)

)
,∫

∂D
|ν · E|2ds ≤ cL,k

(
(1 +

1

|k2|
)‖H‖L2,Div

t (∂D)
‖E‖L2,Div

t (∂D)
+ ‖ν × (ν × E)‖2L2(∂D)

)
.

(3.3.33)

10Being ‖ν × E‖L2(∂D) ≤ ‖E‖L2,Div
t (∂D)

, ‖ν · E‖L2(∂D) ≤ 1
|k|2 ‖H‖L2,Div

t (∂D)
,
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Concerning the exterior field, we consider a ball Br(0), with a sufficiently large radius r, which
contains D = ∪ℵm=1Dm and the support of X. Let Dr := Br \D, applying Green’s formula (3.3.25)
on Dr gives∫

Dr

( 1

ik
|curlE|2 + ik|E|2

)
dx =

∫
∂B(0,r)

ν × E · 1

ik
curlE ds−

∫
∂D

ν × E · 1

ik
curlE ds. (3.3.34)

As =k > 0, due to the asymptotic behavior (3.1.8), we have

2<
(∫

∂Br

E · 1

ik
curlE × ν ds

)
−→ 0,

then, the real part of (3.3.34) and letting r to ∞ gives

−
∫
R3\D

(=(k)

|k|2
|curlE|2 + =k|E|2

)
dv ≥ −<(

∫
∂D

ν × E · 1

ik
curlE ds),

hence ∫
R3\∪ℵm=1Dm

(
|curlE|2 + |E|2

)
dv ≤ck<(

∫
∂D

ν × E · 1

ik
curlE ds), (3.3.35)

which is the analogue formula for (3.3.24). The rest of the proof is identical.

As a direct consequence of Lemma 34, we have the following assertion

Lemma 35. For every solution (E,H) to the Maxwell system, continuous up to the boundary, with
wave number k, we have both

‖E±‖L2,Div
t (∂D)

≤ c2
L,k‖H±‖L2,Div

t (∂D) (3.3.36)

and

‖H±‖L2,Div
t (∂D)

≤ c2
L,k‖E±‖L2,Div

t (∂D)
. (3.3.37)

In addition, taking E = curlSk∂D(A) for some A ∈ L2,Div
t (∂D) with the trace limites as in (3.3.13)

we have
‖[±I/2 +Mk

∂D]A‖L2,Div
t (∂D)

≤ cL,k‖[Nk
∂D]A‖L2,Div

t (∂D)
, (3.3.38)

and
‖[Nk

∂D]A‖L2,Div
t (∂D)

≤ cL,k‖[±I/2 +Mk
∂D]A‖L2,Div

t (∂D)
. (3.3.39)

Proof. (Lemma 35) For the first part, being E = ν × (ν × E) + ν · E ν, we have

‖E‖2L2(∂D) ≤ ‖ν × (ν × E)‖2L2(∂D) + ‖ν · E‖2L2(∂D).

Hence, with the first inequality of Lemma 34, we get

‖E±‖2L2(∂D) ≤ cL,k
( |k|2 + 1

|k|2
‖H±‖L2,Div

t (∂D)
‖E±‖L2,Div

t (∂D)
+ ‖ν · E±‖2L2(∂D)

)
+ ‖ν · E±‖2L2(∂D)

(3.3.40)
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and with the same argument, for the magnetic field using the second inequality of Lemma 34, we
get

‖H±‖2L2(∂D) ≤ cL,k
( |k|2 + 1

|k|2
‖H±‖L2,Div

t (∂D)
‖E±‖L2,Div

t (∂D)
+ ‖ν ×H±‖2L2(∂D)

)
+ ‖ν ×H±‖2L2(∂D).

(3.3.41)
Adding the last two inequalities and observing that

‖E±‖L2,Div
t (∂D)

≤ ‖E±‖2L2(∂D) + ‖H±‖2L2(∂D) (3.3.42)

and that

‖ν · E±‖2L2(∂D) + ‖ν ×H±‖2L2(∂D) ≤ (1 + 1/|k|)‖H±‖L2,Div
t (∂D)

(‖E‖L2(∂D) + ‖H‖L2(∂D)), (3.3.43)

gives

‖H±‖2L2(∂D) + ‖E±‖2L2(∂D)

≤ cL,k

((
‖H±‖L2,Div

t (∂D)
‖E±‖L2,Div

t (∂D)
+ ‖H±‖L2,Div

t (∂D)
(‖E‖L2(∂D) + ‖H‖L2(∂D))

)
+ ‖ν ×H±‖2L2(∂D) + ‖ν · E±‖2L2(∂D)

)
,

≤ cL,k ‖H±‖L2,Div
t (∂D)

(
‖H±‖2L2(∂D) + ‖E±‖2L2(∂D)

) 1
2
.

Hence(
‖H±‖2L2(∂D) + ‖E±‖2L2(∂D)

) 1
2 ≤ cL,k‖H∓‖L2,Div

t (∂D)
≤ cL,k

(
‖H∓‖2L2(∂D) + ‖E∓‖2L2(∂D)

) 1
2
.

Interchanging E and H in (3.3.40) and (3.3.42) then repeating the same calculation gives(
‖H±‖2L2(∂D) + ‖E±‖2L2(∂D)

) 1
2 ≤ cL,k‖E±‖L2,Div

t (∂D)
≤ cL,k

(
‖H±‖2L2(∂D) + ‖E±‖2L2(∂D)

) 1
2
.

The two last inequalities give us the desired result.

The estimates in Theorem 31 follow using the triangular inequality and (3.3.38). Indeed,

‖A‖L2,Div
t

(∂D) =
∥∥∥(I/2 +Mk

∂D)A− (−I/2 +Mk
∂D)A

∥∥∥
L2,Div
t (∂D)

,

≤
∥∥∥(I/2 +Mk

∂D)A
∥∥∥
L2,Div
t (∂D)

+
∥∥∥(−I/2 +Mk

∂D)A
∥∥∥
L2,Div
t (∂D)

,

≤ (1 + c2
L,k)

∥∥∥(±I/2 +Mk
∂D)A

∥∥∥
L2,Div
t (∂D)

.

(3.3.44)
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Remark 36. Similar calculations lead to the following estimates

‖[±I/2 +M0
∂D]A‖L2(D) ≤ cL‖[∓I/2 +M0

∂D]A‖L2(D) + ‖[S0
∂D]A‖L2(D) (3.3.45)

with instead of (3.3.25), we use the following inequality∫
∂D

ν × [S0
∂D]A · curl [S0

∂D]A|±ds ≥
∥∥curlS0

∂D(A)
∥∥2 −

∥∥∇S0
∂D(DivA)

∥∥∥∥S0
∂D(DivA)

∥∥
including the following one∫

∂D
ν × curl [S0

∂D]A|± · ∇[S0
∂D] DivAds ≥

∥∥∇S0
∂D(DivA)

∥∥,
where the norms are either of L2(D) or L2(R3 \D) with the use of a similar decomposition (i.e Lemma 32).

Theorem 37. There exist a positive constant cL,k which depends only on the Lipschitz character of
Dm’s and k such that,

• If =k = 0 and cr = δ
a ≥ c02cL(|k|+ 4)cL,1, then

ℵ∑
m=1

‖A‖2L2,Div
t (∂Dm)

≤ 3cL,1ℵa2, (3.3.46)

for cL,1 stands for the constant that appears in (31) of Theorem 31 for k = i.

• If =(k) > 0 and cr = 1
ℵ∑

m=1

‖A‖2L2,Div
t (∂Dm)

≤ cL,kℵa2. (3.3.47)

The following lemma will help us provide a short cut to derive the desired estimates and approx-
imations, using the results of section 3.2.3.

Lemma 38. For each m ∈ {1, ...,ℵ} and x ∈ Dm, we set,

H1,A
m (x) := S0

∂Dm(w)(x) and H2,A
m (x) := S0

∂Dm(W )(x). (3.3.48)

where w and W are solutions of (3.3.20), then

A = ν ×∇H1,A
m (x) + ν ×H2,A

m (x), (3.3.49)

and we have the following estimates holds

‖∇H1,A
m ‖L2(Dm) ≤ cLa

1
2 ‖Am‖L2,Div

t (∂Dm)
, (3.3.50)

and
‖curlH2,A

m ‖L2(Dm) ≤ cLa
1
2 ‖Am‖L2,Div

t (∂Dm)
(3.3.51)

are satisfied with some positive constant cL depending only on the Lipschitz character of Dm’s.
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Proof. With the aid of the Green formula, being curl2H2,A = 0 in Dm,

‖curlH2,A
m ‖2L2(Dm) =

∫
∂Dm

ν ×H2,A
m · curlH2,A

m |−ds,

≤
∥∥ν ×H2,A

m

∥∥
L2(∂Dm)

∥∥ν × curlH2,A
m |−

∥∥
L2(∂Dm)

,

≤cLa‖Am‖L2,Div
t

(∂Dm)cL
∥∥ν · curlH2,A

m |−
∥∥
L2(∂Dm)

≤ c+
La‖Am‖

2
L2,Div
t

(∂Dm).

Again, using Green formula, we have∫
Dm

∣∣∇H1,A
m

∣∣2dv =

∫
∂Dm

H1,A
m ν · ∇H1,A

m |−ds

≤
∥∥H1,A

m

∥∥
L2(∂Dm)

∥∥ν · ∇H1,A
m |−

∥∥
L2(∂Dm)

,

≤ cLa‖Am‖L2,Div
t (∂Dm)

cL
∥∥ν ×∇H1,A

m |−
∥∥
L2(∂Dm)

≤ c+
La‖Am‖

2
L2,Div
t (∂Dm)

.

Lemma 39. For every k ∈ R+, the operator Mk
∂D −M i

∂D is compact and we have, under the
condition on cr,

‖
(
Mk

∂D −M i
∂D

)
A‖L2,Div

t (∂D)
≤
( 1

16π2c2
L,1

+ cL,ka
2
) 1

2 ‖A‖L2,Div
t (∂D)

. (3.3.52)

Proof. We have, due to the representation (3.3.14)

‖
(
Mk

∂D −M i
∂D

)
A‖2L2,Div

t (∂D)
≤

[( ℵ∑
m=1

‖
(
Mk

mDm
−M i

mDm

)
Am‖2

) 1
2

+
( ℵ∑
m=1

‖
ℵ∑
j≥1

j 6=m

(Mk
mDj
−M i

mDj
)Aj‖2

) 1
2

]2

.

(3.3.53)

Using (A.0.3), we obtain

|[Mk
mDm

−M i
mDm

](A)| ≤cL,ka‖Am‖L2,Div
t (∂Dm)

. (3.3.54)

Due to (3.3.16), (A.0.2) for α = 1 and (A.0.3), we get

|[Div(Mk
mDm

−M i
mDm

)](A)| ≤cL
(

(ck + cL)
)
a‖A‖L2,Div

t (∂Dm)
+ (1 + k2)|[ν · S0

∂Di
](A)|.

With
C1
L,k := (1 + k2)‖[S0

mDm
]‖L(L2(∂Dm)),

we get

‖[Mk
mDm

−M i
mDm

](A)‖2L2,Div
t (∂Dm)

≤ cL,ka4‖Am‖2L2,Div
t (∂Dm)

+ C1
L,ka

2‖Am‖2L2,Div
t (∂Dm)

. (3.3.55)
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Summing over m

ℵ∑
m=1

‖[Mk
mDm

−M i
mDm

](A)‖2L2,Div
t (∂Dm)

≤ cL,ka2
ℵ∑

m=1

‖Am‖2L2,Div
t (∂Dm)

. (3.3.56)

For x ∈ ∂Dm, we have, with the notation of Lemma 27

Mk
mDj

(A)(x) =− ν ×N k,I
D/Dm

(∇H1,A
j +H2,A

j ) + ν ×Mk,I
D/Dm

(curlH2,A
j ), (3.3.57)

and

divMk
mDj

(A)(x) =− ν · N k,I
D/Dm

(curlH2,A
j ) + k2ν · Mk,I

D/Dm
(∇H1,A

j +H2,A
j ). (3.3.58)

Indeed,

Mk
mDj

(A)(x) =ν × curl

∫
∂Dj

Φk(x, y)(ν ×∇H1,A
j + ν ×H2,A

j )(y)dsy,

=ν × curl

∫
Dj

curly

(
Φk(x, y)(∇H1,A

m +H2,A
m )(y)

)
dsy,

=− ν ×
(

curl2
∫
Dj

Φk(x, y)(∇H1,A
j +H2,A

j )(y)dsy − curl

∫
Dj

Φk(x, y) curlH2,A
j (y)dsy

)
.

taking the surface divergence clear the second equation. Now, from (3.3.57) similarly to what was
done to get (3.2.40), (3.2.46) we get both

ℵ∑
m=1

‖
ℵ∑
j≥1

j 6=m

(
Mk

mDj
−M i

mDj

)
(A)‖2L2(∂Dm) ≤c0

(1 + |k|)2

16π2c6
r

m∑
j=1

‖curlH2,A
j (y)‖2L2(Dj)

a

+23c0

( |k|(|k|+ 1)

4π

)2[ (|k|+ 4)2

(1 + 2cr)4c2
r

] m∑
j=1

‖∇H1,A
j +H2,A

j ‖2L2(Dj)

a
,

ℵ∑
m=1

‖
ℵ∑
j≥1

j 6=m

Div
(
Mk

mDj
−M i

mDj

)
(A)‖L2(∂Dm) ≤23c0

|k|2(1 + |k|)2

c6
r

ℵ∑
j=1

‖∇H1,A
j +H2,A

j ‖2L2(Dj)

a

+23c0

( |k|(|k|+ 1)

4π

)2[ (|k|+ 4)2

(1 + 2cr)4c2
r

] m∑
j=1

‖curlH2,A
j (y)‖2L2(Dj)

a
,

From Lemma 38 we get

ℵ∑
m=1

‖
ℵ∑
j≥1

j 6=m

(
Mk

mDj
−M i

mDj

)
(A)‖2L2,Div

t (∂Dm)

≤ 23c0cL

( |k|(|k|+ 1)

4π

)2[ 1

c6
r

+
(|k|+ 4)2

(1 + 2cr)4c2
r

] m∑
j=1

‖A‖2L2,Div
t (∂Dm)

,

(3.3.59)
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which give, with cr as stated in Theorem 37,
ℵ∑

m=1

‖
ℵ∑
j≥1

j 6=m

(
Mk

mDj
−M i

mDj

)
(A)‖2L2,Div

t (∂Dm)
≤ 1

(4π)2c2
L,1

‖A‖2L2,Div
t (∂D)

. (3.3.60)

Proof. (Theorem 37). Now, we end up the proof of Proposition 37 as follows∥∥∥[I/2 +Mk
∂D](A)

∥∥∥ ≥∥∥[I/2 +M i
∂D](A)

∥∥− ∥∥∥[M i
∂D −Mk

∂D](A)
∥∥∥,

≥
∥∥[I/2 +M i

∂D](A)
∥∥− ( 1

16π2c2
L,1

+ cL,ka
2
) 1

2 ‖A‖2L2,Div
t (∂D)

≥
( 1

cL,1
−
( 1

16π2c2
L,1

+ cL,ka
2
) 1

2
)
‖A‖2L2,Div

t (∂D)
.

Then for cL,ka ≤ 1
3cL,1∥∥ν × Ein∥∥2

L2,Div
t (∂D)

=
∥∥∥[I/2 +Mk

∂D](A)
∥∥∥ ≥ 1

3cL,1
‖A‖2L2,Div

t (∂D)
.

3.3.3 Fields approximation and the linear algebraic systems

Based on the representation (3.3.11), the expression of the far field pattern is given by

E∞(x̂) =
ik

4π
x̂×

∫
∂D

A(y)e−ikx̂.ydsy, (3.3.61)

where x̂ = (x/|x|) ∈ S2 and A is the solution of the (3.3.14). As it was done in [14], let us consider
(ψml )3

l=1 as the solution of

[−I/2 +M0
iDi

](ν × ψlm) = −ν × Vl, (3.3.62)

with
V ∗1 = (0, 0, (x− zi) · e2), V ∗2 = ((x− zi) · e3, 0, 0), and V ∗3 = (0, (x− zi) · e1, 0).

Taking the surface divergence of (3.3.62) gives

[I/2 + (K0
∂Dm)∗](ν · curlψlm) = −νli . (3.3.63)

Notice that∫
∂Dm

ν × ψlmds = −
∫
∂Dm

(y − zm)ν · curlψlm(y)dsy

= −
∫
∂Dm

[I/2 + (K0
∂Dm)]−1(y − zm) [I/2 + (K0

∂Dm)∗]ν · curlψlm(y)dsy

=

∫
∂Dm

[I/2 + (K0
∂Dm)]−1(y − zm) νlidsy.

(3.3.64)
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As curlVl = el, it holds that∫
∂Dm

νluds =

∫
∂Dm

νl · curlV uds = −
∫
∂Dm

ν × Vl · ∇uds =

∫
∂Dm

Vl · ν ×∇uds (3.3.65)

for any scalar function u ∈ H1(∂Dm). Finally, let φm be the solution to the following integral
equation

[−1

2
I +K0

∂Dm ](φm)(x) = (x− zi). (3.3.66)

Lemma 40. Due to the scale invariance of both the double-layer and the Maxwell-dipole operators,
the following estimates hold

‖ν × ψlm‖L2(∂Di) ≤ cLa
2, ‖ν × ψlm‖L2,Div

t (∂Di)
≤ cLa, and ‖φm‖L2(∂Dm) ≤ cLa2. (3.3.67)

Proposition 41. For =k = 0, the far field pattern can be approximated by

E∞(x̂) =
ik

4π

ℵ∑
m=1

e−ikx̂.zm x̂×
{
Q1
m − ikx̂×Q2

m

}
+O

( |k|3
cr

a
)
. (3.3.68)

The elements (Q1
m)ℵi=1 and (Q2

m)ℵi=1 are solutions of the following linear algebraic system

Q2
m = −

[
PDm

] ℵ∑
j≥1

j 6=m

(
Πk(zm, zj)Q2

j − k2∇Φk(zm, zj)×Q1
j

)
−
[
PDm

]
curlEin(zi),

+ Erm
(
curlH2,A,∇H1,A +H2,A

)
+O

(
(a+ 1)|k|2a3‖Am‖L2,Div

t (∂Dm)
+ |k|a

)
,

(3.3.69)

Q1
m =

[
TDm

] ℵ∑
j≥1

j 6=m

(
−∇Φk(zm, zj)×Q2

j + Πk(zm, zj) Q1
j

)
−
[
TDm

]
Ein(zi)

+ Erm
(
(∇H1,A +H2,A), curlH2,A

)
+O

(
(a+ 1)|k|2a3‖Am‖L2,Div

t (∂Dm)
+ a

)
.

(3.3.70)

Proof. • (The far field Approximation) Starting from the expression (3.3.61) with representation
of the density as in (3.3.49) we get with a simple integration by part

E∞(x̂) =
ik

4π

ℵ∑
m=1

(
x̂×

∫
Dm

e−ikx̂.y curlH2,A
m (y)dsy

+ ikx̂×
∫
Dm

e−ikx̂.y
(
∇H1,A

m (y) +H2,A
m (y)

)
× x̂dsy

)
.

(3.3.71)

This representation (3.3.71) is the analogous of (3.2.61), stated for the transmission problem,
in such a way that, the far field approximation is done in similar way, with the appropriate
changes that involve (38) (i.e the appearance of the constant cL).
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• (Derivation of the linear system)

For (3.3.69), multiplying (3.3.14) by ∇φm and integrating over Dm, we obtain∫
∂Dm

∇φm · [I/2 +Mk
mDm

](Am) ds

= −
∑
j≥1

j 6=m

∫
∂Dm

∇φm · [Mk
mDj

](Aj)ds+

∫
∂Dm

∇φm · ν × Einds.
(3.3.72)

Integrating by part and considering (3.3.58), we get∫
∂Dm

∇φm·[I/2 +Mk
mDm

](Am) ds

=
∑
j≥1

j 6=m

∫
∂Dm

(
−φmν · N k,I

Dj
(curlH2,A

j ) + k2ν · Mk,I
Dj

(∇H1,A
j +H2,A

j )
)
ds

+

∫
∂Dm

∇φm · ν × Einds.

(3.3.73)

We have∫
∂Dm

∇φm · [I/2 +Mk
mDm

](Am) ds = Q2
m +O

(
|k|2a3‖Am‖L2,Div

t (∂Dm)

)
. (3.3.74)

Indeed, using the relation (3.3.1), we have∫
∂Dm

φm Div[I/2 +Mk
mDm

]A ds

=

∫
∂Dm

φm

(
[I/2− (Kk

∂Di
)∗] DivA− k2νxi · [Sk∂Di ]A

)
ds.

=

∫
∂Dm

φm

(
[I/2− (K0

∂Dm)∗ + (K0
∂Dm −K

k
∂Di

)∗] DivA+ k2ν · [Sk∂Di ]A
)
ds,

Hence, with the definition (3.3.66), we get∫
∂Dm

φm[I/2− (K0
∂Dm)∗] DivA ds =

∫
∂Dm

[I/2−K0
∂Dm ]φm DivA ds,

=−
∫
∂Dm

(x− zi) DivA(x) dsx,

=

∫
∂Dm

curlH2,A dv

and the left-hand side of (3.3.73) ends up to be

Q2
m +O((a+ 1)|k|2a3‖Am‖L2,Div

t (∂Dm)
). (3.3.75)
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As already done in (3.2.72), with a first order approximation, the second member of (3.3.73)
can be approximated by

−
[∫

∂Dm

φm ⊗ νds
] ℵ∑

j≥1

j 6=m

(
Πk(zm, zj)

∫
Dj

curlH2,A
j dv − k2∇Φk(zm, zj)×

∫
Dj

(∇H1,A
j +H2,A

j )dv

)

+ Erm
(
curlH2,A,∇H1,A +H2,A

)
(3.3.76)

where

∇H1,A +H2,A =

ℵ∑
m=1

(∇H1,A
j +H2,A

j )χDm(x)

and

curlH2,A =
ℵ∑

m=1

curlH2,A
j χDm(x).

Replacing both (3.3.74) and (3.3.76) in (3.3.73) gives the result;

Q2
m = −

[
PDm

][ ℵ∑
j≥1

j 6=m

(
Πk(zm, zj)Q2

j − k2∇Φk(zm, zj)×Q1
j

)
+ curlEin(zm)

]

+Erm
(
curlH2,A,∇H1,A +H2,A

)
+O

(
(a+ 1)|k|2a3‖Am‖L2,Div

t (∂Dm)
+ |k|a

)
.

(3.3.77)

Concerning (3.3.70) we have, for [Ψm] = (ψlm)(l=1,2,3) as described in (3.3.62),∫
∂Dm

[Ψ]m·[I/2 +Mk
mDm

](Am) ds

= −
∑
j≥1

j 6=m

∫
∂Dm

[Ψ]m · [Mk
mDj

](Aj)ds+

∫
∂Dm

[Ψ]m · ν × Einds.
(3.3.78)

The left-hand-side is equal to

Q1
m +O(a3‖A‖L2,Div

t (∂Dm)
). (3.3.79)

Indeed,∫
∂Dm

ψlm · [I/2 +Mk
mDm

]Am ds = O(a3‖Am‖L2,Div
t (∂Dm)

)

+

∫
∂Dm

ψlm · [I/2 +M0
iDi

](A1
m) ds

(3.3.80)
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and, in view of the decomposition Lemma 38, we have, due to the scale invariance of [I/2 +
M0

mDm
] (see [14]), the estimates (3.3.67), those of Lemma 32, and similar estimate for (3.3.55)

with α = 0, that∣∣∣∣∫
∂Dm

ψlm · [I/2 +Mk
mDm

]A2
m ds

∣∣∣∣∣ ≤‖ψlm‖(‖[I/2 +M0
mDm

]A2
m‖+ ‖[Mk

mDm
−M0

mDm
]A2

m‖
)
,

≤‖ψlm‖L2(∂Dm)

(
cL +

|k|2(|∂D|)a2

4π

)
‖A2

m‖L2(∂Dm),

≤
(
cl +

|k|2(|∂D|)a2

4π

)
a3‖Am‖L2,Div

t (∂Dm)
.

Further with (3.3.63), (3.3.17) and the representation lemma 32 we have, for the second term
of the left-hand member of (3.3.80)∫

∂Dm

ψlm · ν ×∇[I/2 +K0
∂Dm ](uAm)ds =

∫
∂Dm

−[I/2 + (K0
∂Dm)∗](ν · curlψlm) uAmds.

=

∫
∂Dm

νlu
A
mds.

Due to (3.3.65) and Lemma 32, we have∫
∂Dm

νlu
A
mds =

∫
∂Dm

Vl · ν ×
(
∇uAm +H1,A

)
ds+O(a3‖A‖L2,Div

t (∂Dm)
), (3.3.81)

hence follows, integrating by part for the second step,∫
∂Dm

νlu
A
mds =

∫
∂Dm

Vl · ν ×∇uAmds =

∫
∂Dm

Vl · ν ×
(
∇uAm +H1,A

)
ds+O(a3‖A‖L2,Div

t (∂Dm)
),

=

∫
Dm

∇(H2,A +H1,A) · el dv −
∫
Dm

Vl · curlH1,Adv

+O(a3‖A‖L2,Div
t (∂Dm)

).

(3.3.82)

Then (3.3.51) gives∫
∂Dm

[Ψ]mν ×∇[I/2 +K0
∂Dm ](uAi )ds =

∫
∂Dm

νuAmds = Q1
m +O(a3‖A‖L2,Div

t (∂Dm)
).

(3.3.83)

For the first term of the right-hand-side of (3.3.78), we have, with (3.3.57) and a first order
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approximation,∑
j≥1

j 6=m

∫
∂Dm

ψlm · [Mk
mDj

]Ajds

= −
∑
j≥1

j 6=m

∫
∂Dm

ψlm ·
(
ν×N k,I

Dj
(∇H1,A

j +H2,A
j )− ν ×Mk,I

Dj
(curlH2,A

j )
)

= −
∑
j≥1

j 6=m

∫
∂Dm

ψlm ·

(
ν×
(

Πk(zm, zj)

∫
Dj

(∇H1,A
j +H2,A

j )dv
)

− ν ×
(
∇Φk(zm, zj)×

∫
Dj

curlH2,A
j dv

))
+Erm

(
(∇H1,A +H2,A), curlH2,A

)
.

(3.3.84)

We rewrite (3.3.84) as follows

∑
j≥1

j 6=m

∫
∂Dm

ψlm · [Mk
mDj

]Ajds =
∑
j≥1

j 6=m

∫
∂Dm

ν × ψlm ·

(
Πk(zm, zj)Q1

j −∇Φk(zm, zj)×Q2
j

)

+ Erm
(
(∇H1,A +H2,A), curlH2,A

)
,

(3.3.85)
or, more precisely with (3.3.64) in mind and l = 1, 2, 3 gives, according to (3.3.7),

∑
j≥1

j 6=m

∫
∂Dm

[Ψ]m · [Mk
mDj

]Ajds =
[
TDm

]∑
j≥1

j 6=m

(
Πk(zm, zj)Q1

j − k2∇Φk(zm, zj)×Q2
j

)

+ Erm
(
(∇H1,A +H2,A), curlH2,A

)
.

(3.3.86)
Assembling both (3.3.86) and (3.3.79) in (3.3.78) gives us (3.3.70).

As in the proof of Proposition 30, with µ+ and µ− as defined in (3.3.9), we have the following
proposition.

Proposition 42. Under the condition that

δ

a
= cr ≥ 3|k|µ+. (3.3.87)
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the following linear system is invertible

Q̂2
m = −

[
PDm

] ℵ∑
j≥1

j 6=m

(
Πk(zm, zj)Q̂2

j − k
2∇Φk(zm, zj)× Q̂1

j

)
−
[
PDm

]
curlEin(zi),

Q̂1
m =

[
TDm

] ℵ∑
j≥1

j 6=m

(
−∇Φk(zm, zj)× Q̂2

j + Πk(zm, zj) Q̂1
j

)
−
[
TDm

]
Ein(zi).

(3.3.88)

and the solution satisfies the following estimates( ℵ∑
m=1

(
|Q̂1

m|2
)) 1

2

≤ 9µ+a3

8

( ℵ∑
m=1

(
|E(zi)|2 + |curlE(zi)|2

)) 1
2

, (3.3.89)

and ( ℵ∑
m=1

(
|Q̂2

m|2
) 1

2

≤ 9µ+a3

8

( ℵ∑
m=1

(
|E(zi)|2 + |curlE(zi)|2

)) 1
2

. (3.3.90)

The proof of Theorem 21 is similar to the anisotropic transmission problem with cL,k,µ :=

cL,k(|k| + 1) 4µ+

8µ− cL,k(|k| + 1) and cL,k describes the ratio of the largest Lipschitz constant that is
involved in section 3.3 and the smallest one.
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Appendix A

Appendix

A.0.1 Green function approximations

A simple application of mean value theorem gives

(
Φk(x, y)− Φk(zm, y)

)
=

∫ 1

0
∇Φk(tx+ (1− t)zm, y)dt ◦ (x− zm) = O

( 1

δmj

( 1

δmj
+ |k|

)
a
)
,

∇
(
Φk(x, y)− Φk(zm, y)

)
=

∫ 1

0
D2Φk(tx+ (1− t)zm, y)dt ◦ (x− zm) = O

( 1

δmj

( 1

δmj
+ |k|

)2
a
)
,

∇∇
(
Φk(x, y)− Φk(zm, y)

)
=

∫ 1

0
D3Φk(tx+ (1− t)zm, y)dt ◦ (x− zm) = O

( 1

δmj

( 1

δmj
+ |k|

)3
a
)
.

(A.0.1)
whenever y ∈ Dj and j 6= m. We will also need the following first order expansion of the Green’s
function1

[Φk − Φiα](x) =
(ik − α)

4π

∫
[0,1]

e

(
(ik)t−(1−t)α

)
|x| dt, (A.0.2)

∇[Φk − Φiα](x) =
[(ik − α)

4π

∫
[0,1]

e(ikt−(1−t)α)|x| (ikt+ (1− t)α
)
dt
] x

|x|
, (A.0.3)

[⊗∇]2[Φk − Φiα](x) =

∫ 1

0

e(ikt−(1−t)α)|x|(ikt+ (1− t)α
)

4π (ik − α)−1|x|

[
I +

(
ikt+ (1− t)α− 1

|x|

) [⊗x]2

|x|

]
dt.

(A.0.4)

A.0.2 Counting lemma

Lemma 43. For any non negative function g we have

ℵ∑
i≥1,i 6=j

g(δmj) ≤ 48
∑

1≤l≤ℵ
O≤i≤k≤l

g
([(

l2 + k2 + i2
) 1

2
(cr + 1)− 1

]
a
)
, (A.0.5)

1By (x)
p
⊗ we mean the p-times repeated tensor product of x.
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and for any non negative sequence (αm)ℵm=1

ℵ∑
m=1

( ℵ∑
j≥1

j 6=m

αm
δqmj

)2
≤
( c0

δq

ℵ
1
3∑

l=1

l2−q
)2

ℵ∑
m=1

α2
m. (A.0.6)

zkSQ2

zl+1

SQ1

zi

zl

d(zk,zl+1)

δ + a

δ + a

δ + a

Figure A.1: Disposition of the faces Fl.

Proof. From a given position zi we split the space into equidistant cubes (CUl), centered at zi, such
that each of its faces support some of the (zj)

ℵ
j≥1

j 6=m
, and each of its faces, (Fl) are distant from Fl±1

with distance δ + a, (see fig. A.1). Obviously the distance from a point zj ∈ Fl to zi is

d(zi, zj) =
√

(d(zi, Fl)2 + d(zj , zl)2),

d(zi, Fl) = l(δ + a),
(A.0.7)

zl being the orthogonal projection of zi on Fl. Repeating the same splitting on each faces Fl, we
draw concentric squares (SQk)

l
k=1, centered at zl, and there is 4 or 8 location that are equidistant

from a given square SQk to zl which correspond to the intersection of a circle with a square sharing
the same center, similarly, for a point zp ∈ SQk, we get, with zk standing for one of its orthogonal
projection on SQk,

d(zp, zl) =
√

(d(zp, zk)2 + d(SQk, zl)2),

d(SQk, zl) = k(δ + a),
(A.0.8)

further
d(Bazi , B

a
zj ) = d(zi, zj) + a.
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SQk

zq

zl

k × (δ + a)

d(zq ,zl)

Figure A.2: Counting on the square SQk.

So, for a non negative function g, it comes with (A.0.7) that

g
(
d(Bazi , B

a
zj )
)

=

ℵ∑
j( 6=i)=1

g
(
d(zi, zj)− a

)
=

ℵ∑
l=1

6
∑
zj∈Fl

g
(
d(zj , zi)− a

)
,

=6
ℵ∑
l=1

∑
zj∈Fl

g
((
d(Fl, zi)

2 + d(zl, zj)
2
) 1

2 − a
)

≤6
ℵ∑
l=1

l∑
k=0

8
∑

zp∈SQk

g
((
l2(δ + a)2 + d(zl, zp)

2
) 1

2 − a
)
,

and with (A.0.8)

ℵ∑
j( 6=i)=1

g
(
d(Bazi , B

a
zj )
)
≤6× 8

ℵ∑
l=1

l∑
k=0

k∑
p=0

g
((
l2(δ + a)2 + d(zl, SQk)

2 + d(zp, zk)
2
) 1

2 − a
)
,

≤6× 8

ℵ∑
l≥1

l∑
k=0

k∑
p=0

g
((
l2(δ + a)2 + k2(δ + a)2 + i2(δ + a)2

) 1
2 − a

)
,

which guaranties that

ℵ∑
j( 6=i)=1

g
(
d(Bazi , B

a
zj )
)
≤6× 8

∑
1≤l≤ℵ

O≤i≤k≤l

g
([(

l2 + k2 + i2
) 1

2
(cr + 1)− 1

]
a
)
.
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For (A.0.6), using Hölder’s inequality for the inner sum, and considering (A.0.5), we obtain

ℵ∑
m=1

( ℵ∑
j≥1

j 6=m

αj
δqmj

)2
≤
ℵ∑

m=1

([ ℵ∑
j≥1

j 6=m

( αj
δ
q
2
mj

)2
] 1

2
[ ℵ∑
j≥1

j 6=m

( 1

δ
q
2
mj

)2
] 1

2
)2

,

≤
ℵ∑

m=1

( ℵ∑
j≥1

j 6=m

( αj
δqmj

) ℵ∑
j≥1

j 6=m

1

δqmj

)
,

≤ 1

δq

ℵ
1
3∑

l=1

l(2−4)
ℵ∑

m=1

ℵ∑
j≥1

j 6=m

αj
δqmj

.

The proof ends with

ℵ∑
m=1

ℵ∑
i≥1,m 6=j

αj
δqmj

=
ℵ∑

m=1

∑
ℵ≥j≥1

i 6=j

αj
δqmj

=
ℵ∑
j=1

αj
∑
m≥1

m6=j

1

δqmj
.

127



Bibliography 128

Bibliography

[1] F. Al-Musallam, D. P. Challa, and M. Sini. Location and size estimation of small rigid bodies
using elastic far-fields. 2014.

[2] F. Al-Musallam, D. P. Challa, and M. Sini. The equivalent medium for the elastic scattering by
many small rigid bodies and applications. IMA Journal of Applied Mathematics, page hxw042,
2016.

[3] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden. Solvable models in quantum me-
chanics. Springer Science & Business Media, 2012.

[4] S. Albeverio and P. Kurasov. Singular perturbations of differential operators: solvable
Schrödinger-type operators, volume 271. Cambridge University Press, 2000.

[5] H. Ammari, D. P. Challa, A. P. Choudhury, and M. Sini. The equivalent media generated
by bubbles of high contrasts: Volumetric metamaterials and metasurfaces. arXiv preprint
arXiv:1811.02912, To appear in SIAM MMS., 2018.

[6] H. Ammari, D. P. Challa, A. P. Choudhury, and M. Sini. The point-interaction approxima-
tion for the fields generated by contrasted bubbles at arbitrary fixed frequencies. Journal of
Differential Equations, 267(4):2104–2191, 2019.

[7] H. Ammari et al. Mathematical Modeling in Biomedical Imaging. Springer, 2009.

[8] H. Ammari, E. Iakovleva, D. Lesselier, and G. Perrusson. Music-type electromagnetic imaging
of a collection of small 3-d bounded scatterers. 2007.

[9] H. Ammari and H. Kang. Polarization and Moment Tensors. Applied Mathematical Sciences.
Springer, 2007.

[10] H. Ammari and A. Khelifi. Electromagnetic scattering by small dielectric inhomogeneities.
Journal de mathématiques pures et appliquées, 82(7):749–842, 2003.

[11] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures,
volume 374. American Mathematical Soc., 2011.

[12] F. A. Berezin and L. D. Faddeev. Remark on the schrodinger equation with singular potential.
In Doklady Akademii Nauk, volume 137, pages 1011–1014. Russian Academy of Sciences, 1961.

128



Bibliography 129

[13] A. Bouzekri and M. Sini. The foldy–lax approximation for the full electromagnetic scattering by
small conductive bodies of arbitrary shapes. Multiscale Modeling & Simulation, 17(1):344–398,
2019.

[14] A. Bouzekri and M. Sini. The foldy–lax approximation for the full electromagnetic scattering by
small conductive bodies of arbitrary shapes. Multiscale Modeling & Simulation, 17(1):344–398,
2019.

[15] M. Cassier and C. Hazard. Multiple scattering of acoustic waves by small sound-soft obstacles in
two dimensions: mathematical justification of the foldy–lax model. Wave Motion, 50(1):18–28,
2013.

[16] S. Cedio-Fengya, D J. Moskow. Identification of conductivity imperfections of small diameter
by boundary measurements. continuous dependence and computational reconstruction. Inverse
Problems, 14, 06 1998.

[17] D. P. Challa, G. Hu, and M. Sini. Multiple scattering of electromagnetic waves by finitely many
point-like obstacles. Mathematical Models and Methods in Applied Sciences, 24(05):863–899,
2014.

[18] D. P. Challa and M. Sini. On the justification of the foldy–lax approximation for the acoustic
scattering by small rigid bodies of arbitrary shapes. Multiscale Modeling & Simulation, 12(1):55–
108, 2014.

[19] D. P. Challa and M. Sini. On the justification of the foldy-lax approximation for the acoustic
scattering by small rigid bodies of arbitrary shapes. siam, 48:55–108, 2014.

[20] D. P. Challa and M. Sini. The foldy-lax approximation of the scattered waves by many small
bodies for the lamé system. Mathematische Nachrichten, 288(16):1834–1872, 2015.

[21] D. P. Challa and M. Sini. Multiscale analysis of the acoustic scattering by many scatterers of
impedance type. Zeitschrift für angewandte Mathematik und Physik, 67(3):58, 2016.

[22] D. Colton and R. Kress. Integral equation methods in scattering theory, volume 72. Wiley, New
York, 2013.

[23] K. R. Colton D. Integral equation methods in scattering theory. Wiley, New York., 1983.

[24] K. R. Colton D. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. 2013.

[25] G. Dassios, R. Kleinman, et al. Low frequency scattering. Oxford University Press, 2000.

[26] P. De Vries, D. V. Van Coevorden, and A. Lagendijk. Point scatterers for classical waves.
Reviews of modern physics, 70(2):447, 1998.

[27] R. Figari, E. Orlandi, and S. Teta. The laplacian in regions with many small obstacles: fluctu-
ations around the limit operator. Journal of statistical physics, 41(3-4):465–487, 1985.

[28] L. L. Foldy. The multiple scattering of waves. i. general theory of isotropic scattering by
randomly distributed scatterers. Physical Review, 67(3-4):107, 1945.

129



Bibliography 130

[29] L. L. Foldy. The multiple scattering of waves. i. general theory of isotropic scattering by
randomly distributed scatterers. Physical Review, 67(3-4):107, 1945.

[30] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. springer,
2015.

[31] P. Grisvard. Elliptic problems in nonsmooth domains. SIAM, 2011.

[32] H. K. Habib Ammari. Boundary layer techniques for solving the helmholtz equation in the
presence of small inhomogeneities. Mathematical Analysis and Applications., 296(2):190 – 208,
2004).

[33] W. Hergert and T. Wriedt. The Mie theory: basics and applications, volume 169. Springer,
2012.

[34] G. Hu, A. Mantile, and M. Sini. Direct and inverse acoustic scattering by a collection of
extended and point-like scatterers. Multiscale Modeling & Simulation, 12(3):996–1027, 2014.

[35] G. Hu and M. Sini. Elastic scattering by finitely many point-like obstacles. Journal of Mathe-
matical Physics, 54(4):042901, 2013.

[36] K. Huang and P. Li. A two-scale multiple scattering problem. Multiscale Modeling & Simulation,
8(4):1511–1534, 2010.

[37] K. Huang, P. Li, and H. Zhao. An efficient algorithm for the generalized foldy–lax formulation.
Journal of Computational Physics, 234:376–398, 2013.

[38] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of differential operators and
integral functionals. Springer Science & Business Media, 2012.

[39] E. Kim, H. Kang, and K. Kim. Anisotropic polarization tensors and detection of an anisotropic
inclusion. SIAM Journal on Applied Mathematics, 63(4):1276–1291, 2003.

[40] A. Kirsch and F. Hettlich. The mathematical theory of time-harmonic maxwells equations, vol.
190 of applied mathematical sciences, 2015.

[41] A. Kirsch and A. Lechleiter. The operator equations of lippmann-schwinger type for acoustic
and electromagnetic scattering problems in l 2. Applicable Analysis, 88(6):807–830, 2009.

[42] A. Krasnok, M. Caldarola, N. Bonod, and A. Alú. Spectroscopy and biosensing with optically
resonant dielectric nanostructures. Advanced optical materials, 6(5), 2018.

[43] A. Lagendijk and B. A. Van Tiggelen. Resonant multiple scattering of light. Physics Reports,
270(3):143–215, 1996.

[44] A. Lakhtakia. General theory of the purcell-pennypacker scattering approach and its extension
to bianisotropic scatterers. The Astrophysical Journal, 394:494–499, 1992.

130



Bibliography 131

[45] A. Lakhtakia. Strong and weak forms of the method of moments and the coupled dipole method
for scattering of time-harmonic electromagnetic fields. International Journal of Modern Physics
C, 3(03):583–603, 1992.

[46] M. Lax. Multiple scattering of waves. Reviews of Modern Physics, 23(4):287, 1951.

[47] A. Mantile, A. Posilicano, and M. Sini. Self-adjoint elliptic operators with boundary conditions
on not closed hypersurfaces. Journal of Differential Equations, 261(1):1–55, 2016.

[48] A. Mantile, A. Posilicano, and M. Sini. Limiting absorption principle, generalized eigenfunc-
tions, and scattering matrix for laplace operators with boundary conditions on hypersurfaces.
Journal of Spectral Theory, 8(4):1443–1486, 2018.

[49] P. A. Martin. Multiple scattering: interaction of time-harmonic waves with N obstacles. Number
107. Cambridge University Press, 2006.

[50] A. N. M. Maz’ya, V.; Movchan. Mesoscale asymptotic approximations to solutions of mixed
boundary value problems in perforated domains. Multiscale Modeling and Simulation, 9, 01
2011.

[51] V. Maz’ya and A. Movchan. Asymptotic treatment of perforated domains without homogeniza-
tion. Mathematische Nachrichten, 283(1):104–125, 2010.

[52] V. Maz’ya, A. Movchan, M. Nieves, et al. Green’s kernels and meso-scale approximations in
perforated domains, volume 2077. Springer, 2013.

[53] V. Maz’ya, A. Movchan, M. Nieves, et al. Green’s kernels and meso-scale approximations in
perforated domains, volume 2077. Springer, 2013.

[54] G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der
physik, 330(3):377–445, 1908.

[55] G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der
physik, 330(3):377–445, 1908.

[56] D. Mitrea. The method of layer potentials for non-smooth domains with arbitrary topology.
Integral Equations and Operator Theory, 29(3):320–338, 1997.

[57] D. Mitrea, M. Mitrea, and J. Pipher. Vector potential theory on nonsmooth domains in R3

and applications to electromagnetic scattering. Journal of Fourier Analysis and Applications,
3(2):131–192, 1996.

[58] M. Mitrea. Electromagnetic scattering on nonsmooth domains. Mathematical Research Letters,
1(6):639–646, 1994.

[59] M. Mitrea. Sharp hodge decompositions, maxwell’s equations, and vector poisson problems
on nonsmooth, three-dimensional riemannian manifolds. Duke Mathematical Journal, 125, 12
2004.

131



Bibliography 132

[60] J.-C. Nédélec. Acoustic and electromagnetic equations: integral representations for harmonic
problems, volume 144. Springer Science, 2001.

[61] J.-C. Nédélec. Acoustic and electromagnetic equations: integral representations for harmonic
problems. Springer Science & Business Media, 2001.

[62] J.-C. Nédélec and J. Planchard. Une méthode variationnelle d’éléments finis pour la résolu-
tion numérique d’un problème extérieur dans R3. Revue française d’automatique informatique
recherche opérationnelle. Mathématique, 7(R3):105–129, 1973.

[63] A. G. Ramm. Wave scattering by small bodies of arbitrary shapes. Springer, 2005.

[64] A. G. Ramm. Wave scattering by small bodies of arbitrary shapes. Springer, 2005.

[65] A. G. Ramm. Electromagnetic wave scattering by small perfectly conducting particles and
applications. Journal of Mathematical Physics, 55(8):083505, 2014.

[66] A. G. Ramm. Scattering of electromagnetic waves by many small perfectly conducting or
impedance bodies. Journal of Mathematical Physics, 56(9):091901, 2015.

[67] A. Sommerfeld. Partial differential equations in physics, volume 1. Academic press, 1949.

[68] S. A. Tretyakov. A personal view on the origins and developments of the metamaterial concept.
Journal of Optics, 19(1), 2017.

[69] G. Verchota. Layer potentials and regularity for the dirichlet problem for laplace’s equation in
lipschitz domains. Journal of Functional Analysis, 59, 1984.

[70] R.-S. Wu. Multiple scattering and energy transfer of seismic waves—separation of scattering
effect from intrinsic attenuation—i. theoretical modelling. Geophysical Journal International,
82(1):57–80, 1985.

[71] K. Yao and Y. Liu. Plasmonic metamaterials. Nanotechnology Reviews, 3(2):177–210, 2014.

[72] M. A. Yurkin and A. G. Hoekstra. The discrete dipole approximation: an overview and recent
developments. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1-3):558–589,
2007.

132


	Remerciements
	Contents
	Introduction
	Motivations
	Main tools and the strategy of analysis
	The Maxwell system and our models of interest
	The radiation conditions and the uniqueness of the solutions
	The surface and volume potentials and the existence of the solutions


	The Foldy-Lax Approximation for the Full Electromagnetic Scattering by Small Conductive Bodies of Arbitrary Shapes
	Introduction and main results
	The formal computations

	Existence, unique solvability and an a priori estimation of the density
	Preliminaries
	Existence and uniqueness of the solution
	A priori estimates of the densities

	Fields approximation and the linear algebraic systems
	Justification of (3.3.68) and (2.3.4)
	Justification of (2.3.5) and (2.3.6)

	Invertibility of the linear system
	End of the proof of Theorem 4

	Foldy-Lax approximation of the electromagnetic fields generated by anisotropic inhomogeneities in the mesoscale regime with complements for the perfectly conducting case
	General setting and main results
	General setting
	Main results

	Scattering by Anisotropic Inhomogenities. Problem (P1)
	Anisotropic polarization tensor
	Lippmann-Schwinger integral formulation and apriori estimates.
	Field approximation and the related linear system

	Scattering by perfect conductors, i.e. (P2)
	Preliminaries and notations
	Existence and uniqueness of the solution
	Fields approximation and the linear algebraic systems


	Appendix
	Green function approximations
	Counting lemma


	Bibliography

