République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique .

UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU

Faculté du Génie de la Construction

Département de Génie Mécanique

Mémoire de fin d'étude en vue de l'obtention du diplôme

'MASTER ACADEMIQUE' En Génie Mécanique Option : Énergétique

Etude préliminaire de modélisation du flux thermique critique (CHF)

Proposé et dirigé par :

M.Ferrouk

Réalisé par : Chemoun Azeddine Cherfi Nadia

Année universitaire : 2015/2016

Résumé :

La crise d'ébullition est une dégradation brutale de l'échange thermique entre une paroi chauffante et un fluide caloporteur, elle est susceptible de causer un accident grave dans plusieurs dispositifs industriels.

Le flux thermique critique (CHF) est donc, une condition importante qui définit la limite supérieure d'exploitation convenable d'équipement thermique utilisant le transfert de chaleur par ébullition dans les systèmes à flux de chaleur imposé. La prédiction précise de son apparition est un sujet de préoccupation primordiale. Bien que des recherches intensives sur le phénomène de l'échauffement critique aient été menées sur le plan expérimental, une approche théorique s'avère plus adéquate et moins coûteuse. Plusieurs modèles basés sur des mécanismes physiques ont été proposés dans la littérature et largement débattus. Dans le cas des flux thermiques élevés, la crise d'ébullition en convection forcée prend la forme de la caléfaction.

Cette étude s'intéresse essentiellement au flux thermique critique rencontré dans la région d'ébullition locale (sous saturée). L'objectif de ce travail est de mettre au point un modèle à l'aide du logiciel R représentant au mieux les données expérimentales disponibles en s'inspirant du modèle établi par Mudawar et David Hall.

D'autre part, une tentative d'extension de la méthode de prédiction du flux thermique critique à l'aide de la table de 2006 pour des vitesses massiques élevées (>8000 kg/m² s) a été testée. Plusieurs modèles ont été testés et les résultats obtenus ont été discutés.

Mots clés : crise d'ébullition, caléfaction, ébullition locale.

Variables	Signification	Unité		
Ø	Représente le flux	Mw/m ²		
L	La longueur du tube	m		
D	Le diamètre du tube	mm		
G	Débit spécifique (vitesse massique)	Kg/m ² s		
Р	La pression	Mpa		
Х	Le titre	/		
Ti	Température initiale	°K		
ΔT	Différence de température	°K		
$ ho_L$	Masse volumique du liquide	Kg/m ³		
$ ho_G$	Masse volumique du gaz (vapeur)	Kg/m ³		
Н	Enthalpie	J/Kg		
Pol	Représente la variable pollution dans l'exemple du chapitre 3	/		
Рор	Représente la variable nombre de population dans l'exemple du chapitre 3	/		
Tem	Représente la variable temperature dans l'exemple du chapitre 3	°K		
Usi	Représente la variable nombre d'usines dans l'exemple du chapitre 3	/		
CHF	Flux thermique critique	Mw/m ²		
RAP	Représente le rapport L/D explicité dans le chapitre 5	/		
RDENS	Représente le rapport ρ_L/ρ_G explicité dans le chapitre 5	/		
RDSM	Représente le rapport entre le flux expérimental et le flux prédit	/		
XI	Le titre à l'entrée explicité dans le chapitre 5	/		
ХО	Le titre à la sortie explicité dans le chapitre 5	/		

Liste des figures :

Figure 1.1 Allure générale de la courbe de Nukiyama(1934)	2 c
Figure 1.3 Evolution des températures et régimes d'écoulement en ébullition convective (collier &	∠
thome 1994).	4
Figure 1.4 Carte d'ébullition des différentes régions d'échange thermique (Collier, 1981)	6
Figure 1.5 Différentes configurations de l'écoulement au flux critique	6
Figure 1.6 Différentes Mécanismes de crise d'ébullition à faible titre « caléfaction »	7
Figure 2.1 Variable indépendante pour un tube vertical à flux uniforme	9
Figure 2.2 Les limites du flux thermique critique.	.10
Figure 2.3. Évaluation du flux critique avec les deux méthodes : HBM et DSM	.11
Figure 3.1 Représentation graphique des variables.	.24
Figure 4.1 Interface graphique du logiciel R	.27
Figure 5.1 Distribution des variables constituant le modèle 1.1.	.30
Figure 5.2 Distribution des variables constituant le modèle 1.2.	.31
Figure 5.3 Distribution des variables constituant le modèle 1.3.	.32
Figure 5.4 Distribution des variables constituant le modèle 1.4.	.33
Figure 5.5 Distribution des variables constituant le modèle 1.5.	.34
Figure 5.6 Distribution des variables constituant le modèle 1.6.	.35
Figure 5.7 Distribution des variables constituant le modèle 1.7.	.36
Figure 5.8 Distribution des variables constituant le modèle 1.8.	.37
Figure 5.9 Distribution des variables constituant le modèle 1.9.	.38
Figure 5.10 Distribution des variables constituant le modèle 1.10.	.39
Figure 5.11 Distribution des variables constituant le modèle 1.11.	.40
Figure 5.12 Distribution des variables constituant le modèle 1.12.	.41
Figure 5.13 Distribution des variables constituant le modèle 2.1.	.43
Figure 5.14 Distribution des variables constituant le modèle 2.2.	.44
Figure 5.15 Distribution des variables constituant le modèle 2.3.	.45
Figure 5.16 Distribution des variables constituant le modèle 2.4.	.46
Figure 5.17 Distribution des variables constituant le modèle 2.5.	.47
Figure 5.18 Distribution des variables constituant le modèle 2.6.	.48
Figure 5.19 Distribution des variables constituant le modèle 3.1.	.50
Figure 5.20 Distribution des variables constituant le modèle 3.2.	.51
Figure 5.21 Distribution des variables constituant le modèle 3.3.	.52
Figure 5.22 Distribution des variables constituant le modèle 3.4.	.53
Figure 5.23 Distribution des variables constituant le modèle 3.5.	.54
Figure 5.24 Distribution des variables constituant le modèle 3.6.	.55
Figure 5.25 Distribution des variables constituant le modèle 3.7.	.56
Figure 5.26 Distribution des variables constituant le modèle 3.8.	.57
Figure 5.27 Distribution des variables constituant le modèle 3.9.	.58
Figure 5.28 Distribution des variables constituant le modèle 3.10.	.59
Figure 5.29 Distribution des variables constituant le modèle 3.11.	.60
Figure 5.30 Distribution des variables constituant le modèle 3.12.	.61
Figure 5.31 Distribution des variables constituant le modèle 3.13.	.63

LISTE DES FIGURES ET LISTE DES TABLEAUX

Figure 5.32 Distribution des variables constituant le modèle 3.14.	64
Figure 5.33 Distribution des variables constituant le modèle 3.15.	65
Figure 5.34 Distribution des variables constituant le modèle 3.16.	66
Figure 5.35 Distribution des variables constituant le modèle 3.17.	67
Figure 5.36 Distribution des variables constituant le modèle 3.18.	68
Figure 5.37 représentation graphique CHF en fonction des conditions locales XO.	71

Liste des tableaux:

Tableau 2.1 Extrait de la table de 2006 (Groeneveld et al ; 2007)	16
Tableau 2.2 : La banque de données utilisée	17
Tableau 3.1 Représentation de la banque de donnée	23
Tableau 3.2 Représentation des valeurs des différentes composantes de l 'ANOVA	25
Tableau 5.1 Indices de qualité pour les modèles pour les prédicteurs en conditions d'entrée (UCC).42
Tableau 5.2 Indices de qualité pour les modèles pour les prédicteurs en conditions locales (LCC)	49
Tableau 5.3 Indices de qualité pour les modèles pour le facteur multiplicateur de la table de 2006	
(RDSM)conditions d'entrée	62
Tableau 5.4 Indices de qualité pour les modèles pour le facteur multiplicateur de la table de 2006	
(RDSM) en conditions locales	69
Tableau 5.5 Récapitulatif des meilleurs modèles	70

Sommaire

Liste des figures	<u>iii</u>
Liste des tableaux	iii
Liste des abréviations	iv

Chapitre1 : Généralités

Introduction générale	1
1.1 Configuration de l'écoulement :	2
1.2 Ebullition en vase clos :	2
1.3 Ebullition en convection forcée à l'intérieur d'un tube chauffant :	3
1.4 Crise d'ébullition :	5

Chapitre2 : Prédiction du flux critique par l'approche empirique

2.1 Tube vertical chauffé uniformément :	9
2.2 Les limites du flux thermique critique :	10
2.3 Type de prédicateurs de flux critique :	11
2.4 Tables standards de flux thermique critique :	15
2.5 La banque de données de CHF utilisée :	17

Chapitre3 : Modélisation

3.1 La modélisation :	19
3.2 Régression linéaire simple :	19
3.3 ANOVA (analyse de la variance) :	20
3.4 Régression linéaire multiple :	21
3.5 Etude d'un cas :	23

Chapitre 4 : Modélisation Sous R

4.1 Présentation du logiciel R :	27
4.2 Les Principales Fonctionnalités du langage	27
4.3 Modélisation des données expérimentales du CHF	28
4.4 Programme principal :	28

Chapitre 5 : Résultats et discussions

5.1 Modèles pour les prédicteurs en conditions d'entrée (UCC) :	. 30
5.2 Modèles pour les prédicteurs en conditions locales (LCC) :	. 43
5.3 Modèles pour le facteur multiplicateur de la table de 2006 (RDSM) :	. 49
5.4. Discussion des résultats :	. 69
Conclusion générale	72
Bibliographie	74
ANNEXE A	75

Le présent travail a pour but l'élaboration d'un modèle mathématique(corrélations) représentant au mieux les données expérimentales du flux thermique critique et de tenter d'étendre le domaine de validité de la méthode de prédiction du CHF par la technique de tables (Look-up table) pour des vitesses massiques supérieures à 8000 kg/m² s.

Il existe plusieurs termes pour désigner le flux thermique critique. Les termes les Plus utilisés dans la littérature sont le CHF (en anglais Critical Heat Flux) et la crise d'ébullition (boiling crisis).

La crise d'ébullition est un phénomène brutal et destructif qu'il faut à tout prix éviter. En effet, dans les centrales nucléaires et dans les systèmes dégageant une puissance thermique et refroidis à l'eau, l'échange n'est assuré efficacement qu'en en contact avec du liquide.

Si le système est mal refroidi, il verra sa température de paroi augmenter et peut atteindre la température de fusion entrainant ainsi la destruction du système. Donc, il est indispensable de maitriser ce phénomène en disposant d'outils prédicateurs (modèles ou corrélations) afin d'éviter les conditions critiques d'où l'intérêt de notre travail. A partir d'une base de données expérimentales CHF, on se propose de mettre au point un modèle qui représente au mieux ces données. Et par la même occasion nous voulons étendre le domaine de validité de la table de CHF de 2006.

Le chapitre 2 traite de la crise d'ébullition et de la description de la banque de données expérimentales du flux critique dont nous disposons.

Le chapitre 3 est consacré à la modélisation des données d'une façon générale.

Le chapitre 4 décrit les étapes suivies pour les différents modèles arrêtés et choisis sous le logiciel R.

Le chapitre 5 présente les résultats obtenus ainsi leurs discussions.

La conclusion et les développements possibles en perspective sont exposés après le chapitre5.

En annexe, sont donnés les programmes utilisés pour les différents modèles sous différentes conditions (locales et d'entrée).

Ce chapitre aborde la description des différents régimes d'ébullition et les configurations d'écoulements qui apparaissent lors de l'ébullition en convection forcée à l'intérieur d'un tube chauffé.

1.1 Configuration de l'écoulement :

Dans cette section nous examinons en détail les différentes configurations d'écoulement qui apparaissent lors de l'ébullition en convection forcée à l'intérieur d'un tube chauffé. Avant de passer à l'ébullition en convection forcée, il est bon de rappeler les différents régimes d'ébullition rencontrés lors de l'ébullition en vase clos.

1.2 Ebullition en vase clos :

C'est l'ébullition que l'on rencontre dans un volume rempli de réfrigérant à l'état statique, dans lequel sont plongés des éléments chauffants fournissant un flux de chaleur sur leur paroi.

Une expérience célèbre réalisée par Nukiyama (1934), a permis de mettre en évidence les différents régimes d'ébullition sur un fil chauffant plongé dans l'eau. L'expérience consiste à chauffer progressivement le fil par effet Joule et à tracer la courbe donnant la densité de flux thermique \emptyset en fonction de la surchauffe $\Delta T_{sat} = T_p - T_{sat}$. Dans une première série d'essais, Nukiyama (1934) a utilisé un fil de nichrome et a obtenu la branche AC de la figure 1.1. Au point C, le fil se rompait brutalement. Ayant remplacé le fil de nichrome par un fil de platine, Nukiyama (1934) a obtenu la branche AC puis la branche C'E. En diminuant la puissance électrique, la branche ED était décrite puis la branche D'A.

Figure 1.1. Allure générale de la courbe de Nukiyama(1934)

Figure 1.2. Courbe de Nukiyama

L'allure de la courbe, ainsi construite par Nukiyama (1934), laissait donc présager l'existence d'un phénomène d'hystérésis et d'une branche descendante CD. Sur cette branche, les points de fonctionnement sont instables pour un chauffage à flux imposé.

Un chauffage à températures imposés, comme celui réalisé par Drew & Mûller en 1937 (Delhaye, 1995), permet de tracer tout l'ensemble de la courbe représentée sur la figure 1.2.

Cette courbe, appelée courbe d'ébullition ou courbe de Nukiyama, possède plusieurs tronçons correspondant à des régimes thermiques différents. Jusqu'au point A, le fil est baigné par le liquide en convection naturelle. Au point A apparaissent les petites bulles de vapeur prenant naissance en des points bien précis du fil, appelés sites de nucléation et s'élevant sous forme de chapelets. C'est l'ébullition nucléée à bulles isolées. Ces bulles commencent à s'agglomérer pour former des poches et même des colonnes de vapeur. Cette ébullition nucléée se produit sur le tronçon BC. Au point C, le volume de vapeur produit est tel que le liquide ne peut plus atteindre le fil chauffant et assurer son refroidissement. Cela explique sur la figure 1.1 le passage du point de fonctionnement de C à C'et l'augmentation brutale de la température T_p du fil, ce qui avait entrainé la fusion du fil de nichrome. Le point C correspond à ce qui est communément appelé la crise d'ébullition ou encore le flux thermique critique ou le flux thermique maximal. Il existe un certain nombre de termes anglais pour désigner ce point qu'il est utile de connaitre : burnout, peakheat flux, departure of nucleate boiling, critical heat flux, first boiling transition. Le tronçon DE correspond à l'ébullition en film encore appelée ébullition pelliculaire ou le fil chauffant et entouré d'une gaine de vapeur d'où s'échappent régulièrement des bulles de vapeur. Le point D correspond au point dit de flux thermique minimal ou de température minimale de film stable, tandis que le tronçon CD correspond à l'ébullition de transition, régime mal défini.

1.3 Ebullition en convection forcée à l'intérieur d'un tube chauffant :

La figure 1.3 représente l'évolution d'un écoulement liquide – vapeur avec apport de chaleur à la paroi [3](Collier & Thome, 1994). Le liquide entre au bas de la conduite à débit constant et à une température inférieure à la température de saturation.

Figure 1.1 Evolution des températures et régimes d'écoulement en ébullition convective (collier & thome.1994).

Pour un flux de chaleur donné, l'évolution de la configuration de l'écoulement ainsi que la distribution qualitative des températures de fluide et de paroi sont données sur la figure 1.4. Sur cette dernière, sept régions, ou se produisent des phénomènes bien caractéristiques, apparaissent clairement :

Région A : il s'y produit de la convection forcée et éventuellement des bulles de dégazage. Cet état est dénommé : convection forcée en simple phase liquide.

Région B : région d'ébullition locale ou les bulles de vapeur se forment à la paroi et se condensent au centre du canal, là où le liquide n'a pas encore atteint la température de saturation. Dans cette région, on observe une stabilisation de la température de paroi de quelques degrés au-dessus de la température de saturation. Cependant, si le flux de chaleur (de paroi) devient important, le taux de production de vapeur s'accroit de telle sorte qu'une couche de vapeur vient isoler la paroi entrainant une dégradation brutale du coefficient de transfert de chaleur. C'est le phénomène de crise d'ébullition (DNB : Departure from Nucleate Boiling).

Dans un réacteur PWR, le risque de la crise d'ébullition oblige à se limiter à l'ébullition locale. On peut cependant rencontrer les régions d'ébullition suivantes dans les réacteurs à eau bouillante (*BWR*) et dans les régions génératrices de vapeur.

Région C : les bulles devenant très nombreuses s'agglomèrent (*phénomène de coalescence*) et forment des bouchons de vapeur. Cette région est appelée : écoulement à bouchon (plug*flow* ou *slug-flow*).

Région D : les bouchons se rejoignent les uns les autres et forment un manchon de vapeur au centre du tube. La paroi est baignée par un mince film annulaire de liquide, d'où le nom de cette région dite à écoulement annulaire (annular-*flow*).

Région E : le film liquide annulaire s'épuise peu à peu par vaporisation. Lorsqu'il disparait on assiste au phénomène d'assèchement (crise d'ébullition) ou dry out qui peut lui aussi entrainer le *burnout*.

Région F: le film liquide a complètement disparu, il ne reste qu'un brouillard formé de microscopique gouttelettes en suspension dans la vapeur, d'où le nom « d'écoulement à brouillard » donné à cette région (*mist-flow*).

Région G : il n'y a plus du tout de phase liquide, on a un écoulement simple phase de vapeur sèche ou s'appliquent les lois classiques de la convection forcée.

1.4 Crise d'ébullition :

Elle résulte d'une dégradation locale de l'échange thermique due au remplacement du liquide par de la vapeur au niveau de la paroi. Selon la région d'ébullition, on distingue deux types de crises d'ébullition (figure 1.4et 1.5) qui correspondent à des mécanismes physiques différents : La caléfaction ou « *Departure from Nucleat Boiling*(DNB) » et l'assèchement ou « *Dryout* ».

Figure 1.2 Carte d'ébullition des différentes régions d'échange thermique (Collier, 1981).

Figure 1.3 Différentes configurations de l'écoulement au flux critique.

Dans les systèmes à flux imposés (refroidissement des cœurs de réacteurs nucléaires, moteur à combustion interne, tubes électroniques,) l'élément chauffant peut alors atteindre des températures supérieures à son point de fusion et se dégrader brutalement. Cet état de destruction ou limite de destruction est désigné par Collier (1971, 1981) [2] par le terme « burnout » et survient généralement avec un certain retard par rapport à l'assèchement (dryout). Le terme de flux thermique critique en anglais « Critical Heat Flux (CHF) » est utilisé pour désigner les deux types de crise d'ébullition.

La figure 1.4 dresse la carte d'ébullition « idéalisée » des régions d'échanges thermique observées dans un canal vertical chauffé uniformément, présentées en fonction du flux et du titre.

Les conséquences de la crise d'ébullition à faible titre sont beaucoup plus graves que l'assèchement. Les principaux mécanismes conduisant à son apparition sont au nombre de trois (voir figure ci-après).

Figure 1.4 Différentes Mécanismes de crise d'ébullition à faible titre « caléfaction ».

- 1- L'accumulation des bulles de vapeur près de la paroi chauffante. Le recouvrement de la paroi par les bulles empêche tout contact avec le liquide.
- 2- Des fortes surchauffes locales de la paroi aux emplacements des sites de nucléation dues à la formation et à l'accroissement des bulles de vapeur, sous des conditions défavorables à leur détachement.
- 3- Formation de taches sèches pendant le passage de gros bouchons de vapeur en régime d'écoulement avec bouchons.

Le chapitre 2 est consacré à la présentation des méthodes de prédiction du flux thermique critique par l'approche empirique.

Cette approche consiste à trouver à l'aide des outils d'analyse statique, des corrélations ou expression mathématiques représentant au mieux les mesures expérimentales de flux thermique critique. Le flux critique dans un système à flux imposé, est défini comme la condition qui provoque une augmentation importante de la température de paroi suite à une légère modification d'un des paramètres du système (par exemple le flux thermique, le débit ou la température du fluide). Les corrélations obtenues sont des combinaisons de paramètres expérimentaux comme la pression, le diamètre et la longueur de la conduite, la température d'entrée du fluide et le mode de chauffage. Dans ce qui suit nous passons en revue les corrélations et méthodes empiriques de prédiction de crise d'ébullition pour deux modes de chauffage : flux de chaleur uniforme à la paroi et pour une distribution non uniforme du flux.

2.1 Tube vertical chauffé uniformément :

Dans le cas d'un chauffage uniforme à la paroi du tube, les paramètres indépendants (figure 2.1) influençant le flux thermique critique sont au nombre de cinq (Collier&Thome, 1994) : le débit spécifique G, la température d'entrés T_i du fluide, la pression P du système, le diamètre interne D, et la longueur L du tube.

Figure 2.1Variable indépendante pour un tube vertical à flux uniforme.

Le flux critique est donc une fonction de cinq variables :

$$\phi_{CRT} = fn(G, D, p, L, (\Delta T_{SUB})_i)$$
(2.1)

2.2 Les limites du flux thermique critique :

Lors de la prédiction ou la mesure du flux thermique critique, il est bon de connaître et de situer les limites de ce dernier. On sait tant que la température de paroi n'a pas atteint la température de saturation, l'ébullition n'aura pas lieu. Donc le flux critique minimal est donné lorsque la température de paroi est égale à T_{SAT} et il s'écrit de la forme suivante (collier &Thome, 1994) [1] :

$$(\emptyset_{CRIT})_{MIN} = \frac{(\Delta T_{SUB})_i}{\frac{4L}{GCp_I D} + \frac{1}{h_{I_0}}}$$
(2.2)

Le flux thermique critique se produira à un titre inférieur ou égale à 1 (x (z) = 1) pour lequel le liquide s'est complètement vaporisé. Ce qui conduit à la relation du flux critique maximale suivante :

$$(\phi_{CRIT})_{MAX} = \frac{GDi_{LG}}{4L} \left(1 + \frac{Cp_L(\Delta T_{SUB})_i}{i_{LG}} \right)$$
(2.3)

Ces limites sont déduites à partir de simples considérations et permettent de représenter graphiquement (figure2.2) la zone possible d'existence du flux thermique critique. La connaissance de cette zone est d'une importance capitale, lors de l'application des corrélations pour l'estimation du flux thermique critique à un problème donné. Car il faut être prudent et il faut veiller à ce que le flux estimé soit compris dans la zone hachurée de la figure 2.2.

Sous refroidissem ent à l'entrée (ΔT_{SUB}) i

Figure 2.2Les limites du flux thermique critique.

2.3 Type de prédicateurs de flux critique :

L'équation (2.1) peut s'exprimer en fonction du titre d'entrée :

$$\phi_{CRIT} = fn(G, D, p, L, X_{in}) \tag{2.4}$$

Dans le cas où le flux de chaleur à la paroi est uniforme, il a été démontré et vérifié par plusieurs chercheurs, que le flux critique se produit au voisinage de la sortie du tube, et nous pouvons donc confondre le titre critique avec le titre en sortie. En éliminant la longueur L, en faisant appel au bilan thermique simplifié entre l'entrée et la sortie du tube, l'équation (2.4) devient :

$$\phi_{CRIT} = fn(G, D, p, L, X_{CRIT})$$
(2.5)

Les corrélations du flux critique sont donc classées en deux catégories : Corrélations en conditions d'entrée (Up *Stream conditions corrélation* (UCC)) et les corrélations en conditions locales (*Local conditions corrélation* (LCC)).

Avec les corrélations en conditions d'entrée, l'évaluation est directe puisque les quantités du terme de droite de l'équation (2.4) sont connues. Alors que les corrélations en conditions locales, l'évaluation peut se faire de deux manières :

-méthode de substitution directe (DSM Direct Substitution Method)

-méthode de bilan thermique (HBM Heat Balance Method).

Avec la méthode de DSM, le titre local en chaque position est évalué à l'aide du bilan thermique.

Ce titre local est ensuite directement injecté dans la corrélation en conditions locales pour obtenir la valeur du flux critique (figure 2.3). Dans le cas dans la méthode de HBM, le flux critique à une position donnée est obtenu par une procédure itérative qui satisfait simultanément l'équation (2.5) et l'équation d'énergie (bilan thermique) en variant le flux de chaleur.

Les deux méthodes ne sont pas équivalentes en termes de performances de représentation de données expérimentales. Pour comprendre cette différence, on a représenté la situation sur un graphe $\emptyset_{CRIT} = \text{fn} (x_{CRIT})$ ou les conditions P, G, D et L sont supposés fixées (figure 2.3).

Selon Inasaka et Nariai (1996), Celata (1996) et Groeneveld (1996b), l'écart type résiduel obtenu avec la méthode HBM est significativement plus petit que l'écart type résiduel obtenu avec la méthode DSM en comparant avec les données expérimentales. Par contre Siman-Tov (1996) prétend le contraire en disent que la méthode DSM est l'unique méthode correcte pour la comparaison avec les données expérimentales.

Nous donnons ci-après les corrélations les plus communément utilisées pour la prédiction du flux critique :

Bowring (1972)

En retenant le même principe que la corrélation de Macbeth, Bowring (1972) a développé une corrélation en conditions d'entrée donnéepar :

$$\phi_{CRIT} = \frac{A' + D G C p_L(\Delta T_{SUB})_i}{C' + Z}$$
(2.6)

Les grandeurs A' t C'sont définis par les relations suivantes :

$$A' = \frac{0.5793 \, D \, G \, i_{LG} \, F_1}{1.0 + 0.0143 \, F_2 \, D^{0.5} \, G} \tag{2.7}$$

$$C' = \frac{0.077 F_3 DG}{1.0 + 0.347 F_4 (G/1356)^n}$$
(2.8)

Avec n = 2.0 - 0.00725 p. Les grandeurs F₁, F₂, F₃ et F₄sont des fonctions de la pression, données sous forme de table.

La corrélation de Bowring ne doit pas être employée en dehors des gammes de paramètres pour laquelle elle a été établie, à savoir :

- Un écoulement eau-vapeur ascendant dans un tube vertical,
- Une pression p de 2 à 190 bars,
- Un diamètre D du tube chauffant compris entre 2 et 45 mm,
- Une longueur Z du tube chauffant comprise entre 0.15 et 3.70m,
- Une vitesse massique G comprise entre 136 et 18600 kg / m^2 s.

L'erreur quadratique moyenne de cette corrélation par rapport à l'ensemble des résultats expérimentaux (3800 données obtenues en tube vertical) est de 7 %.

Biasi et al (1967)

Une corrélation en condition locale a été développée par Biasi et al (1967). Selon la valeur du titre, ils ont proposé, pour le calcul du flux critique les relations suivantes :

À faible titre :

$$\phi_{CRIT} = \frac{1.833 \times 10^3}{D^n G^{1/6}} \left[\frac{f(p)}{G^{1/6}} - X(Z) \right]$$
(2.9)

À titre élevé :

$$\phi_{CRIT} = \frac{3.78 \times 10^3 h(p)}{D^n G^{0.6}} [1 - X(Z)]$$
(2.10)

Avec n = 0.4 pour $D \ge 1$ cm et n = 0.6 pour D < 1 cm et les fonctions f(p) et h(p) sont données par :

$$f(p)=0.7249+0.099pexp(-0.032p)$$
 (2.11)

h (p)=-1.159+0.149pexp(-0.019)+
$$\frac{8.99 \text{ p}}{10+\text{p2}}$$
 (2.12)

La corrélation de Biasi et Al, a été établie dans le domaine suivant :

- Une pression p comprise entre 2.7 et 140 bars,
- Un diamètre D du tube chauffant compris entre 3 et 37.5 mm,
- Une longueur Z du tube chauffant comprise entre 0.20 et 6 m,
- Une vitesse massique G comprise entre 100 et 6000 kg/m²s,
- Un titre compris entre $1/(1+\rho_L/\rho_G)$ et 1.

Tong (1972) :

Il a développé une corrélation connue sous le nom de W3 de Westinghouse.

Elle est très utilisée dans la plupart des projets de réacteurs à eau sous pression :

 $\emptyset_{CRIT} = \{(2.002 - 0.0000624 \text{ p}) + (0.1722 - 0.0000143 \text{ p}) \exp(x (18.177 - 0.000599 \text{ p}))\}$

$$[1.157 - 0.869 \text{ x}][0.2664 + \exp(-124.1\text{D})][0.8258 + 3.41^* 10^{-4}(h_{L,SAT} - \text{he})]$$
(2.13)

Ou p est la pression en kPa.

Les conditions d'utilisation de cette corrélation sont :

- Une pression p comprise entre 70 et 160 bars,
- Un diamètre hydraulique D compris entre 0.5 et 1.8 cm,
- Un titre thermodynamique compris entre -0.15 et +0.15,
- Une vitesse massique G comprise entre 1356 et 6780 kg/m²s,

Et l'enthalpie à l'entrée doit être supérieure à 928 kJ/kg.

Drescher et Köhler (1981)

En comparant les résultats d'une série de 3000 expériences, incluant celles des Russes, Drescher et Köhler (1981) ont développé, à faible titre, la corrélation de flux critique suivante :

$$\emptyset_{\text{CRIT}} = (10.3 - 17.5p^* + 8p^2) \cdot \left(\frac{8.10^{-3}}{D}\right)^{\frac{1}{2}} \left(\frac{G}{1000}\right)^{0.68p^* - 1.2x - 0.3} e^{-1..5x}$$
(2.14)

Avec $p^* = p/p_{cr} et \phi_{CRIT} en MW/m^2$. Et le domaine d'application est le suivant :

- Une pression p comprise entre 29 et 196 bar $(0.13 \le p^* \le 0.89)$,
- Un diamètre D du tube chauffant compris entre 4 et 25 mm,
- Une sous saturation à l'entrée comprise entre 0 et 75 K,
- Une vitesse massique G comprise entre 500 et 5000 kg/m²s.

Hall etMudawar (200a, b)

Hall et Mudawar (2000a, b) [6] ont évalué et compilé les données expérimentales mondiales incluant leurs données de CHF rassemblant 32544 points obtenus dans les gammes de conditions suivantes :

- Pression : 70 21800 kPa,
- Débit spécifique : 10 134000 kg/m2 s,
- Titre thermodynamique : 2.25 1.0
- Diamètre : 0.00025 0.0447 m
- Rapport L/D : 1.7 2484.

À partir de cette base de données et en se limitant seulement à la région d'ébullition locale, Hall et Mudawar (2000a, b) [6] ont proposé deux corrélations optimisées de flux critique :

$$\phi_{CRIT} = B_0 i_{LG} \tag{2.15}$$

Ou B_0 est donné en fonction du type de corrélation utilisée :

Corrélation	Equation	Constantes
Locale (LCC)	$B_{0} = C_{1} W e_{D}^{C_{2}} (\rho_{L} / \rho_{G})^{C_{3}} \Big[1 - C_{4} (\rho_{L} / \rho_{G})^{C_{5}} x_{o} \Big]$	$C_1 = 0.0722$ $C_2 = -0.312$ $C_3 = -0.644$
Entrée(UCC)	$B_{0} = \frac{C_{1}We_{D}^{C_{2}}(\rho_{L}/\rho_{G})^{C_{3}}\left[1 - C_{4}(\rho_{L}/\rho_{G})^{C_{5}}x_{i,*}\right]}{1 + 4C_{1}C_{4}We_{D}^{C_{2}}(\rho_{L}/\rho_{G})^{C_{3}+C_{5}}(L/D)}$	$C_4 = 0.900$ $C_5 = 0.724$

Hall et Mudawar(2000b) recommandent l'utilisation de la corrélation en conditions d'entrée et indiquent le domaine de validité suivant :

Corrélation	$D \times 10^3$ (m)	L/D	$G \times 10^{-3}$ (kg/m ² s)	$P \times 10^{-5}$ (N/m ²)	x _i (-)	x _L (-)
Locale (LCC)	0.25 15.0		0.3 30.0	1 200		-1.00 -0.05
Entrée(UCC)	0.25 15.0	2 200	0.3 30.0	1 200	-2.00 0.00	-1.00 0.00

2.4 Tables standards de flux thermique critique :

Une autre méthode de présentation des données expérimentales du flux thermique critique a été développée à l'origine par les chercheurs Russes (Doroschchuk et al.1976), que l'on peut classer dans la même catégorie que les corrélations locales. Elle consiste à construire une table de regroupant les valeurs expérimentales du flux thermique critique en fonction du titre thermodynamique, de la pression et du débit spécifique. Les essais concernant des tubes d'un diamètre de 8 mm chauffés uniformément. Cette table est remise à jour régulièrement. En effet, Groeneveld et ses co-auteurs (1986) ont développé une table couvrant un éventail de conditions beaucoup plus large. Cette table (the 1986 lookuptable) a été largement adoptée par les codes d'analyse de sûreté des réacteurs nucléaires tels que RELAP5/MOD3, CATHARE et CATHENA. Dix ans après, Groeneveld et al (1996) ont publié une autre table (the 1995 lookuptabe), développée conjointement par l'AECL Research of Canada et l'institut IPPE de Russie rassemblant 22946 points expérimentaux. Récemment, une version mise à jour de la table (the 2006 lookup table) a été développée (Groeneveld et al.2007) en incluant toutes les données mondiales récentes du flux thermique critique. Le domaine de validité de la table est le suivant :

- Une pression : 1 200 bars
- Débit spécifique : 0 800 kg/m2 s
- Titre thermodynamique : 0.5 1.0

Par rapport aux corrélations et aux modèles semi analytique de prédiction du flux critique, cette méthode présente les avantages suivants :

- Prédiction précise,
- Gammes d'application les plus larges
- Facilité d'utilisation (propriétés du fluide ne sont pas nécessaires)
- Facilité de mise à jour
- Tendances paramétriques et asymptotiques correctes.

Pour un diamètre du tube autre que 8 mm, le flux de chaleur critique est donné par la relation suivante :

$$\phi_{CRIT} = \phi_{CRIT}$$
, 8 mm $(\frac{8}{D})^{0.5}$ (2.16)

 $O\dot{u}: 4 \le D \le 16.$

Un extrait de table de 2006 est donné par le tableau((pour 1, 3 et 10 bars.

Pressure	Mass Flux		PREAM _0																					
[kPa]	[kg m ⁻¹ s ⁻¹]											m. in a	m 1											
	X→	-0.50	-0.40	-0.30	-0.20	-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	1
100	0	8111	7252	6302	4802	4086	3057	1990	1142	637	415	284	223	188	165	152	142	133	123	114	110	96	55	0
100	50	8317	7271	6326	5035	4236	3453	2420	1570	1011	784	641	587	553	531	475	443	419	387	347	277	239	204	0
100	100	8390	7295	6371	5322	4586	3640	2942	2103	1558	1275	1013	885	847	811	789	758	745	715	700	600	459	359	0
100	300	10698	9288	7795	6020	5009	3865	3196	2479	1961	1707	1317	1177	1172	1159	1150	1100	1085	1041	1031	675	517	366	0
100	500	12882	10946	9224	6791	5348	3938	3369	2685	2087	1808	1412	1347	1311	1303	1282	1260	1212	1193	1071	605	450	295	0
100	750	16982	14405	11641	7496	5662	4234	3471	2780	2229	1970	1649	1606	1591	1563	1510	1495	1400	1280	595	415	243	206	0
100	1000	19441	16278	13255	8232	5971	4495	3533	3012	2653	2349	2070	2000	1980	1930	1715	1550	1359	1165	503	322	172	105	0
100	1500	22781	19225	15465	9100	6603	5358	3741	3524	3166	2917	2635	2572	2467	2378	1908	1350	1005	815	302	.210	126	51	0
100	2000	25268	21321	17143	9141	7059	6036	4074	3855	3556	3402	3167	2986	2720	2549	1696	1105	805	595	247	105	87	39	0
100	2500	28026	23599	18346	9503	7506	6516	4502	4047	3852	3599	3228	3019	2676	2458	1148	956	708	485	290	120	46	22	0
100	3000	30294	25465	19383	9779	8063	7088	4826	4182	3976	3389	2968	2706	2369	1829	940	846	665	532	302	159	55	20	0
100	3500	32227	27043	21068	10156	8518	7302	5113	4384	4106	3196	2769	2557	2311	1729	1158	891	817	670	402	210	75	28	0
100	4000	33928	28471	22722	10512	8728	7528	5582	4709	4228	3119	2736	2504	2282	1850	1470	1160	1030	823	475	248	96	38	0
100	4500	35406	29774	23890	10945	9088	8067	6267	5013	4272	3287	2769	2541	2304	1972	1718	1405	1185	969	585	289	129	61	0
100	5000	36808	30988	24979	11185	9592	8576	6748	5113	4342	3410	2890	2629	2355	2066	1779	1498	1247	1030	647	347	167	81	0
100	5500	38232	32141	25791	11929	10084	8940	6867	5175	4389	3465	2954	2680	2406	2128	1848	1595	1334	1118	729	409	206	101	0
100	6000	39525	33222	26637	13026	10396	9347	6919	5241	4423	3580	2921	2681	2447	2170	1908	1651	1418	1204	807	468	244	121	0
100	6500	40727	34244	27480	14371	10748	9701	6995	5295	4491	3620	2918	2694	2477	2209	1965	1719	1493	1281	878	523	282	142	0
100	7000	41950	35224	28165	15045	11091	10522	7062	5370	4513	3668	2958	2724	2501	2247	2013	1780	1559	1349	943	576	319	162	0
100	7500	43448	36075	28604	15822	11538	10726	7087	5381	4585	3699	2996	2751	2526	2285	2060	1838	1622	1414	1000	615	347	180	0
100	8000	44338	36803	29089	16599	12085	10900	7313	5392	4689	3780	3031	2778	2553	2320	2103	1890	1679	1473	1054	651	371	196	0
	X÷	-0.50	-0.40	-0.30	-0.20	-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	1
300	0	8027	7043	6206	4761	4106	3131	2483	1374	883	606	420	313	248	205	180	165	148	141	135	131	125	67	0
300	50	8153	7058	6287	5304	4564	3729	2847	2071	1587	1315	1052	871	709	599	516	499	457	389	372	362	274	207	0
300	100	8418	7315	6499	5509	4883	4013	3238	2638	2150	1869	1528	1373	1262	1183	1127	1065	1057	1033	902	691	502	394	0
300	300	10397	9094	7805	6085	5320	4107	3429	3011	2617	2263	1862	1657	1614	1576	1513	1480	1446	1403	1193	722	572	419	0
300	500	12787	10894	9193	6962	5664	4134	3563	3285	2821	2405	2001	1832	1688	1663	1610	1610	1520	1504	1112	616	452	297	0
300	750	16084	13658	11132	7493	5853	4282	3743	3512	2987	2538	2062	1868	1698	1676	1636	1598	1447	1300	656	440	253	207	0
300	1000	17866	15378	12753	8194	6038	4572	3898	3610	3224	2791	2450	2230	2070	1990	1805	1570	1369	1173	523	334	184	112	0
300	1500	21559	18208	14718	9252	7091	6091	4818	4243	3557	3134	2981	2720	2658	2491	2042	1365	1016	813	308	210	130	57	0
300	2000	23993	20257	16367	10134	8179	6790	5171	4462	3759	3490	3410	3232	2894	2672	1803	1108	822	599	254	118	88	41	0
300	2500	26215	22280	18013	10477	8534	7134	5245	4519	3951	3681	3444	3248	2846	2521	1168	981	732	488	292	132	47	23	0
300	3000	27747	23975	19028	10840	8691	7393	5326	4551	4081	3502	3082	2977	2523	1868	945	852	681	534	304	161	56	21	0
300	3500	29254	25440	20427	10948	8793	7585	5600	4681	4195	3283	2967	2695	2389	1788	1170	895	820	675	410	226	76	29	0
300	4000	30763	26771	21520	11006	8997	8017	6253	5184	4271	3344	2951	2648	2383	1960	1500	1170	1050	850	499	264	97	39	0
300	4500	32150	27994	22599	11137	9388	8517	6725	5594	4329	3504	2981	2677	2408	2094	1746	1423	1228	998	600	304	126	59	0
300	5000	33465	29133	23700	11600	9705	8845	7103	6052	4369	3655	3048	2739	2449	2139	1843	1542	1289	1061	665	358	165	80	0
300	5500	34919	30223	24325	12512	10147	9115	7281	6122	4427	3720	3070	2776	2501	2200	1881	1636	1377	1153	748	418	206	100	0
300	6000	36122	31241	25169	13522	10870	9576	7398	6323	4481	3685	3104	2773	2543	2247	1942	1708	1462	1241	828	476	244	121	0

Tableau 2.1 Extrait de la table de 2006 (Groeneveld et al ; 2007)

2.5 La banque de données de CHF utilisée :

La base de données de CHF sur laquelle, nous travaillons contient 1136 points expérimentaux du flux thermique critique données en fonction des variables indépendants (P, G, D, T_{IN} , L)

N	Р	G	D	Z	TIN	CHF	RDSM	DIRECTION	NAME
1	0.20	9113.9	2.4	0.036	20.9	22.177	1.039	VERTICAL	FIORIBERG1
2	0.63	9988.0	8.0	0.100	29.6	17.584	0.911	VERTICAL	G3B8UA
3	2.11	9998.1	8.0	0.100	30.5	21.576	0.802	VERTICAL	G3B8UA
4	3.51	9993.3	6.0	0.100	30.5	27.773	0.890	VERTICAL	G3B6UA
5	3.10	9961.6	8.0	0.100	29.1	25.046	0.874	VERTICAL	G3B8UA
6	4.98	10045.6	6.0	0.100	31.2	25.702	0.815	VERTICAL	G3Z6UA
7	4.64	9945.7	8.0	0.100	30.5	29.514	1.041	VERTICAL	G3Z8UA
8	0.62	9887.2	8.0	0.100	39.7	16.784	0.963	VERTICAL	G4B8UA
9	0.64	9898.7	8.0	0.100	50.3	16.787	1.050	VERTICAL	G5B8UA
10	0.63	9806.5	8.0	0.100	60.1	15.085	1.028	VERTICAL	G6B8UA
:	•••	:	••	:	:	:	:	:	:
1133	5.52	9803.9	10.0	0.150	123.7	21.300	1.266	HORIZONTAL	SIET
1134	3.70	14896.9	10.0	0.150	59.3	35.600	1.615	HORIZONTAL	SIET
1135	3.72	9789.8	15.0	0.300	58.8	20.100	1.144	HORIZONTAL	SIET
1136	3.72	8676.6	15.0	0.300	98.7	18.260	1.338	HORIZONTAL	SIET

Nous donnons ci-après un extrait du fichier contenant ces données.

Tableau 2.2 : La banque de données utilisée.

La 1^{*ere*} colonne donne le numéro de la ligne.

Les colonnes 2 à 6 donnent les valeurs des variables indépendants pour lesquels le CHF est obtenue.

La colonne 7 : représente le CHF, la variable à expliquer.

La colonne 8 : donne le rapport du flux critique prédit par la table de 2006 en utilisant la méthode de substitution directe sur le flux critique expérimental la colonne 7.

La colonne 9 : donne la référence ou le nom de l'auteur qui a publié les données du CHF.

La colonne 10 : donne la disposition du tube (verticale ou horizontale)

Les plages des différentes variables se résument comme suit :

-Pression	0.090 à 17.22 MPa.
-Vitesse massique	7930 à 134000 kg/m ² s
-Ti	0.60 à 204.5 °C.

-Diamètre	0.2 à 15 Mm.
-Longueur	0.002 à 0.584 m.
-CHF	8.72 à 276 Mw/ m^2 .

Le chapitre 3 sera consacré à la modélisation et tous les outils statistiques intervenant dans l'élaboration de notre travail.

Dans ce chapitre nous allons présenter les outils statistiques utilisés lors de la modélisation des données.

Nous expliciterons aussi la structure, les théories et les méthodes de calcul pour les différents modèles de régression linéaire à savoir la régression linéaire à une seule variable et à plusieurs variables.

3.1 La modélisation :

La modélisation est une représentation mathématique des données régissant un système réel et ce quel que soit sa forme : Physique, ou graphique.

Cette représentation intelligible est indispensable pour assurer la compréhension des systèmes naturels complexe. La modélisation fait appel à des variables suivantes :

-Variable à expliquer Y.

-Variable explicatives X_1 ; X_2 ;...: X_k .

On suppose que les variations de Y sont influencées par les variables explicatives.

-Le modèle permet d'exprimer sous la forme d'une relation mathématique la liaison supposée.

-La connaissance de ces variables permet à l'aide du modèle de prédire Y.

-Estimer les valeurs de Y ponctuellement et par intervalle.

-Le modèle permet de mesurer l'impact ou l'effet d'une variable explicative sur Y.

Dans ce qui suit nous donnons la description des outils statistiques utilisés pour l'établissement d'un modèle représentant les données d'une variable à expliquer.

3.2 Régression linéaire simple :

Un modèle de régression linéaire est un modèle de régression d'une variable expliquée sur une ou plusieurs variables explicatives dans lequel on fait l'hypothèse que la fonction qui relie les variables explicatives à la variable expliquée est linéaire avec ses paramètres.

Une régression linéaire assume qu'il existe une relation linéaire entre une variable dépendante (Y) et une variable indépendante (X)

Cette relation est décrite par l'équation suivante :

$$Y = a_0 + a_1 X + E$$
 (3.1)

Ou \mathcal{E} est un terme d'erreur qui représente la portion de la variable dépendante qui ne peut pas être expliquée par la variable indépendante.

La régression linéaire simple nous permet d'obtenir des modèles simples à une seule variable.

Les différents modèles qu'on peut obtenir par la régression linéaire sont présentés comme suit :

A- Modèle 1 :

$$Y = a_0 + a_1 X + a_2 X^2 + \dots + a_k X^k$$
(3.2)

C'est un modèle polynomial de degrés k.

B-Modèle 2 :

$$Y = a_0 X^{a_1} \tag{3.3}$$

C-Modèle 3 :

$$Y = \exp(a_0 + a_1 X)$$
 (3.4)

D-Modèle 4 :

 $Y = a_1 \sin X + a_2 \sin^2 X + \dots + a_k \sin^k X$ (3.5)

Le modèle est sous forme d'une série harmonique.

3.3 ANOVA (analyse de la variance) :

Les analyses de variance ou analyses factorielles sont des techniques permettant de savoir si une ou plusieurs variables dépendantes (appelées aussi variables endogènes ou variables à expliquer) sont en relation avec une ou plusieurs variables dites indépendantes (ou variables exogènes ou variables explicatives).

Afin de mieux comprendre l'ANOVA [8] nous définissons les paramètres suivants :

Degrés de liberté : désigne le nombre de variables aléatoires qui ne peuvent être déterminées ou fixées par une équation (notamment les équations des tests statistiques).

$$Ddl=n-p \tag{3.6}$$

Ou n est le nombre des variables et p est le nombre des variables explicatives

La variance : mesure la dispersion (carrée) moyenne autour de la moyenne de la variable X.

$$V(X) = (1/n) \sum (x_i - \mu_x)^2$$
(3.7)

 μ_x Étant la moyenne de la variable

> L'écart-type (σ) : est la racine carrée de la variance donnée par :

$$(\sigma) = \sqrt{(V(X))}$$
(3.8)

La covariance : mesure si les dispersions des deux variables autour de leurs moyennes se produisent indépendamment (covariance nulle) ou si elles sont liées (positivement ou négativement).

$$COV(X,Y) = E\left[(X - \mu_x)(Y - \mu_y)\right]$$
(3.9)

- Intervalle de confiance : il permet d'évaluer la précision de l'estimation d'un paramètre sur l'échantillon.
- Le test de Student, ou test t : est un ensemble de tests d'hypothèse paramétriques où la statistique calculée suit une loi de Student lorsque l'hypothèse nulle est vraie. Un test de Student peut être utilisé notamment pour tester statistiquement l'hypothèse d'égalité de l'espérance de deux variables aléatoires suivant une loi normale et de variance inconnue. Il est aussi très souvent utilisé pour tester la nullité d'un coefficient dans le cadre d'une régression linéaire.
- → Le \mathbb{R}^2 : C'est un paramètre qui permet d'évaluer le degré d'adéquation du modèle. Plus le \mathbb{R}^2 s'approche de 1 le modèle trouvé est adéquat ($0 \le \mathbb{R}^2 \le 1$).
- Le R : Corrélation entre les valeurs observées et modélisées. À noter que le R est la racine carrée du R².
- Test de Fisher, ou test F:est un test d'hypothèse statistique qui permet de tester l'égalité de deux variances en faisant le rapport des deux variances et en vérifiant que ce rapport ne dépasse pas une certaine valeur théorique que l'on cherche dans la table de Fisher.
- Coefficient de corrélation simple :Permet de quantifier la force du lien linéaire entre les variables utilisées il est donné par :

$$\rho_{xy} = \frac{COV(X,Y)}{\sigma_x \sigma_y} \tag{3.10}$$

 μ_x et μ_y sont les moyennes des variables X et Y

3.4 Régression linéaire multiple :

La régression linéaire multiple modélise l'espérance conditionnelle de la variable dépendante Y par rapport à plusieurs variables explicatives notées X_1, \ldots, X_K . C'est une extension de la régression linéaire simple.

$$Y = a_0 + a_1 X_1 + a_2 X_2 + \dots + a_k X_k + \mathcal{E}$$
(3.11)

La régression linéaire multiple nous permet d'obtenir des modèles simples à plusieurs variables.

Nous donnons ci-après les différents types de modèles qu'on peut obtenir par la régression linéaire multiple :

-Type 1 :

$$Y = a_0 + a_2 X_1 + a_3 X_2 + \dots + a_k X_{k-1}$$
(3.12)

-Type 2 :

$$Y = a_0 + a_1 X_1 + a_2 X_1^2 + a_3 X_2 \tag{3.13}$$

Polynôme du 2^{nd} degrés ici la variable X_1 est indépendante elle n'évolue pas linéairement.

-Type 3 :

$$Y = a_0 \times (X_1 \land a_1) \times (X_2 \land a_2) \times \dots \times (X_k \land a_k)$$

$$(3.14)$$

-Type 4 :

$$Y = \exp(a_0 + a_1 X_1 + a_2 X_2 + \dots + a_k X_k)$$
(3.15)

-Type 5 :

$$Y = a_0 + a_1 X_1 + a_2 X_1^2 + a_3 X_2 + a_4 X_3$$
(3.16)

Nous donnons maintenant les étapes à suivre pour faire une régression linéaire pour un échantillon de valeurs de la variable Y à expliquer en fonction les variables explicatives Xi.

Etape 1 : Vérifier la possibilité d'une liaison linéaire entre Y et chacune des variables Xi a) représentation graphique b) coefficient de corrélation

Etape 2 : Estimation des paramètres a) coefficients a_i b) l'écart-type (écart-type de la régression)

Etape 3 : Validation du modèle : a) Indice de qualité R² b) Validité globale F de Fisher c)Validité marginale t de Student

Etape 4 : Étude des résidus, détection des points atypiques

3.5 Etude d'un cas :

Afin de se familiariser avec les techniques de modélisation et de maitriser le jargon utilisé en statistique ; plusieurs exemples disponibles dans la littérature ont été traités. A titre d'exemple nous présentons l'exemple de la référence [9].

Dans cet exemple, les auteurs se proposent d'étudier la pollution atmosphérique de 20 villes des Etats Unis en fonction des (03) variables indépendantes qui sont : la température, le nombre d'usines et la population.

	Pol	Tem	Usi	Рор
Atlanta	24	62	368	497
Baltimore	47	55	625	905
Chicago	110	51	3344	3369
Denver	17	52	454	515
Des_Moines	17	49	104	201
Detroit	35	50	1064	1513
Hartford	56	49	412	158
Indianapolis	28	52	361	746
Jacksonville	14	68	136	529
Kansas City	14	55	381	507
Little Rock	13	61	91	132
Louisville	30	56	291	593
Miami	10	76	207	335
Minneapolis	29	44	669	744
NewOrleans	9	68	204	361
Phoenix	10	70	213	582
SanFrancisco	12	57	453	716
Washington	29	57	434	757
Wichita	8	57	125	277
Wilmington	36	54	80	80

Les données recueillies pour ces 20 villes se présentent comme suit :

Tableau 3.1 Représentation de la banque de donnée.

La première étape est la représentation graphique :

Figure 3.1 Représentation graphique des variables.

Les coefficients de corrélations : l'utilisation de l'équation (3.10) donne les résultats suivants :

cor(pol,pop) 0.3734 cor(pol,tem) -0.6161 cor(pol,usi) 0.6503

Les coefficients (ai) s'écrivent comme suit :

tem-0.02573 usi0.71712 pop-0.38543

Le modèle obtenu est le suivant :

pol= (-0.025773) × tem+ (0.71712) × usi+(-0.38543) × pop+2.78374

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Tem	1	3.43	3.43	15.87	0.0011
Usi	1	1.72	1.72	7.94	0.0124
Рор	1	0.43	0.43	1.99	0.1771
Residu	16	3.46	Néant	Néant	Néant

Pour la validation du modèle les auteurs ont d'abord calculé l'ANOVA :

Tableau 3.2 Représentation des valeurs des différentes composantes de l'ANOVA.

Ou Df est le degré de liberté (degree of freedom) donné par l'équation (3.6)

Df=20-4=16

SumSq est la somme des carrés

MeanSq est la moyenne des carrés

F value est la valeur du test de Fisher pour chaque variable explicative (test de Fisher partiel) Pr(>F) est la probabilité sur le test de Fisher.

Calcul de l'indice de qualité R²:

$$R^2 = \frac{SCE}{SCT} \qquad 0 \le R^2 \le 1$$

SCT représente la somme des carrés totale qui est définie par :

$$SCT = SCE + SCR$$

Ou SCE représente la somme des carrés modélisés (de la régression) qui a pour expression :

 $SCE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$

Et SCR représente la somme des carrés résiduelle exprimé comme suit :

$$SCR = \sum_{i=1}^{n} \hat{e}_{i}^{2}$$

A noter que : y_i Est la valeur observée \hat{y}_i Est la valeur prédite $\hat{e}_i = y_i - \hat{y}_i$ est la valeur résiduelle

D'après l'ANOVA : SCE=5.58 SCR=3.46 SCT=9.04 Le R^2 aura alors pour valeur : R^2 =5.58/9.04 R^2 =0.61 Le modèle est valide à 61%

Le R :

 $R = \sqrt{(0.61)} = 0.781$

Le test de Fisher global est exprimé par : Carré moyen expliqué/Carré moyen résiduel

 $F_c=(SCE/p)/(SCR/(n-p-1))$

Dans notre cas : N =20 et P=3 donc le calcul du F_c :

 $\begin{array}{l} F_c {=} \left(5.58 \; / 3 \right) / \left(3.46 / 16 \right) \\ F_{c {=}} 8.60 \end{array}$

N.B :

 R^2 Augmente avec le nombre de variables explicatives Nous notons que ($R^2 = 1$ si p = n - 1) Si $R^2 = 0$ absence de liaison linéaire L'écart-type des résidus qui est défini par (il n'est jamais donné explicitement) : $\sigma^2 =$ Var (\mathcal{E})

Dans le chapitre 4 nous exposerons le travail de modélisation de notre banque de données en se basant sur le logiciel R qui va nous permettre d'évaluer tous les modèles possibles.

Dans ce chapitre nous présentons le logiciel R, les étapes suivies pour la modélisation de la banque de données de CHF en se basant sur les techniques décrites précédemment au chapitre trois (03).

4.1Présentationdu logiciel R :

Le R est un logiciel de développement scientifique spécialisé dans le calcul et l'analyse statistique. Il est aussi :

-Un langage de programmation,

- -Un environnement,
- -Un projet open source (projet GNU),
- -Un logiciel multi-platforme (Linux, Mac, Windows).

4.2 Les Principales Fonctionnalités du langage :

- Gestion des données (lecture, manipulation et stockage)

- Algèbre linéaire (opérations classiques sur les vecteurs, tableaux et matrices)

- Statistiques et analyse des données. Il dispose d'un grand nombre de méthodes d'analyse de données (des plus anciennes et aux plus récentes)

- sorties graphiques (sorties écran ou sur fichier)

-Système modulaire. Il est Alimenté par la communauté (+ de 2000 extensions !)

-Interface facile avec C/C++, F

Le logiciel comporte de nombreuses fonctions pour les analyses statistiques et graphiques ; ceux-ci sont visualisés immédiatement dans une fenêtre propre et peuvent être exportes sous divers formats.

B RStudio	ALC: NOT THE OWNER OF			= <u>0</u> ×
File Edit Code View Plots Session Build Debug Tools Help ♥ ♥				📵 Project: (None)
0 Untitled1 ×	-0	Environment History		-0
🗇 🗇 🔊 🔒 🗖 Source on Save 🛛 🔍 🖉 - 🛛 🗐	📑 Run 🛛 📑 🕞 Source 🔹 🖹	🥣 🔒 📑 Import D	ataset + 🧹	🗏 list • 🛛 🎯
1		🚳 Global Environment	•	Q,
		Data		A
		O TABLEAU	1136 obs. of 6 variables	
		Values		
		chemin	"C:\\Users\\Administrateur\\Des	sktop\\azeddine\\COM
		G	num [1:1136] 9.12 9.21 9.21 9.	21 9.21
		Imtableau	List of 12	
		RAP	num [1:1136] 2.71 2.53 2.53 2.8	81 2.53
		RDENS	num [1:1136] 6.73 5.61 4.38 3.8	83 3.97 +
		Files Plots Package	25 Help Viewer	-0
		👌 🧄 🖉 Zoom		
1:1 (Top Level) +	R Script ‡			
Console ~1 🔗	-0			
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.	*			
R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.				
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.	E			
[Workspace loaded from ~/.RData]				
>				

Figure 4.1 Interface graphique du logiciel R.
4.3 Modélisation des données expérimentales du CHF :

Des programmes rédigés sous R ont été élaborés et sont données en annexe A. En fonction des variables indépendantes retenues, différents modèles ont été testés.

Les modèles ou prédicteurs établis sont essentiellement de trois types :

-prédicteurs donnant le CHF en fonctions des conditions locales (LCC).

-prédicteurs donnant le CHF en fonctions des conditions d'entrée (UCC).

-Prédicteurs donnant le facteur multiplicateur du CHF (Extension de la table 2006) servant à corriger la valeur prédite par la table de CHF de 2006 à l'aide de la méthode DSM.

Nous rappelons que les variables explicatives ou indépendantes sont :

- G : vitesse massique
- L : longueur de tube
- D : diamètre de tub
- X_i : titre a l'entrée
- X_o : titre a la sortie
- P : pression

Les variables L et D sont regroupées en une seule adimensionnelle $(\frac{L}{p})$.

La variable pression est remplacé par le rapport des masses volumiques $\left(\frac{\rho_L}{\rho_G}\right)$ du liquide et de la vapeur d'eau afin d'obtenir des modèles ou corrélations plus générales.

Pour faciliter la compréhension des programmes élaborés, donnés en annexes, nous donnons la signification et la syntaxe des instructions utilisées dans ce qui suit :

4.4 Programme principal :

chemin<-choose.files() : permet de preciser le chemin du fichier contenant la banque de données.

Read. Table:Elle permet de lire un fichier formaté sous forme de table.

Read. Table : stocke les données sous forme d'objet data. Frame.

header : une valeur logique (FALSE ou TRUE) indiquant si le fichier contient les noms des variables sur la 1^{er} ligne.

TABLEAU<-data. Frame(Read. Table(chemin.header=TRUE))

attach () : permet de s'affranchir du nom du data frame et de travailler directement avec le nom de ses composantes.

pairs (y) :siYest une matrice ou un data. Frame, dessine tous les graphes bis variés entre lescolonnes.

qqnorm (Y) : quantiles de Yen fonction des valeurs attendues selon une loi normale.

pairs (cbind.data.frame(Y,X1, . . . ,XK)): dessine les graphes après la normalisation des données.

Lm () : permet d'effectuer une régression linéaire (linear model).

Anova(l) : calcule une table d'analyse de variance pour un ou plusieurs modèles.

Summary() :retourne un résumedétaillé ; elle permet aussi de calculer le R².

cor() : permet de calculer le coefficient de corrélation linéaire.

Coefficients () : extraction des coefficients du modèle.

plot () : Graphe Du modèle modèle.

Quelques instructions servant à détailler le graphe du modèle obtenu :

 $plot(predict(lm(Y,X_1,\ldots,X_K)),predict(lm(Y,X_1,\ldots,X_K)))$

abline(0,1)

 $plot(predict(lm(Y \sim X_1, \ldots, X_K)), predict(lm((Y \sim X_1, \ldots, X_K)), type="n"))$

 $text(predict(lm((Y \sim X_1, ..., X_K)), predict(lm((Y \sim X_1, ..., X_K)), row.names(TABLEAU)))$

Le chapitre 5 aborde les résultats et leurs discussions.

Dans ce chapitre nous présentons les résultats obtenus par les programmes rédigés en R pour les différents types de prédicteurs.

Les corrélations obtenues ainsi que les paramètres clefs de la modélisation sont donnés et discutés.

5.1 Modèles pour les prédicteurs en conditions d'entrée (UCC) : Modèle 1.1 : $logCHF = (\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI)$

$$CHF = EXP[(-5.402296e - 05) \times \left(\frac{\rho_L}{\rho_G}\right) + (2.229129e - 05) \times (G) + (-8.805430e - 03) \times \left(\frac{L}{D}\right) + (-1.503077) \times (XI) + (2877520)]$$

Figure 5.1 Distribution des variables constituant le modèle 1.1.

Modèle 1.2 : *CHF* = $log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$ $CHF = (1.40343) \log\left(\frac{\rho_L}{\rho_G}\right) + (51.506364) \log G + (-14.806460) \log\left(\frac{L}{D}\right)$ $+ (-91.086053) \log(XI) - (451.764539)$ $(-91.086053) \log(XI) - (451.764539)$ CHF RDENS G RAP

Figure 5.2 Distribution des variables constituant le modèle 1.2.

Modèle 1.3 : $logCHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

 $CHF = EXP[(0.03131238) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.81651915) \log(G) + (-0.21578687) \log\left(\frac{L}{D}\right) + (-1.68596662) \log(XI) - (4.47711265)]$

Figure 5.3 Distribution des variables constituant le modèle 1.3.

Figure 5.4 Distribution des variables constituant le modèle 1.4.

Modèle 1.5 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

$$\begin{split} CHF &= EXP[(-1.533362e - 03) \times (\frac{\rho_L}{\rho_G}) \times (5.092169e - 05) \times (G) \times (-2.006810) \\ &\times (L/D) \times (-1.097221 \times (XI) \times (2.838694)] \end{split}$$

Figure 5.5 Distribution des variables constituant le modèle 1.5.

Modèle 1.6 : *CHF* = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

 $CHF = (12.7287671) \log\left(\frac{\rho_L}{\rho_G}\right) \times (-94.0358257) \log(G) \times (-316.1277368) \log\left(\frac{L}{D}\right) \times (4752.2615657) \log(XI) \times (1038.8551110)$

Figure 5.6 Distribution des variables constituant le modèle 1.6.

Modèle 1.7 : $log CHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$

 $CHF = EXP[(0.0382193) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.9668553) \log(G) + (-0.6632463) \log\left(\frac{L}{D}\right) + (-8.7124970) \log(XI) + (8.3424560) \log(XO) - 5.0180028]$

Figure 5.7 Distribution des variables constituant le modèle 1.7.

Modèle 1.8 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$ $CHF = EXP[(-0.0001324457) \times \left(\frac{\rho_L}{\rho_G}\right) + (0.0000219949) \times (G)$ $+ (-0.0065398179) \times \left(\frac{L}{D}\right) + (-8.71249704) \times (XI)$

Figure 5.8 Distribution des variables constituant le modèle 1.8.

Modèle 1.9 : *CHF* = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$

 $CHF = (1.708394) \log\left(\frac{\rho_L}{\rho_G}\right) + (58.152579) \log(G) + (-34.588207) \log\left(\frac{L}{D}\right) \\ + (-401.722096) \log(XI) + (368.811830) \log(XO) - (475.676765)$

Figure 5.9 Distribution des variables constituant le modèle 1.9.

Modèle 1.10 : $logCHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$

$$CHF = \left(\frac{\rho_L}{\rho_G}\right)^{(1.81950711)} + (G)^{(1.42165417)} + \left(\frac{L}{D}\right)^{(3.51951557)} + (X0)^{(-92.77211279)} + (XI)^{(61.71411199)} + (-10.27978428)$$

Figure 5.10 Distribution des variables constituant le modèle 1.10.

Modèle 1.11 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$ CHF = $EXP[(6.102082e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) \times (6.589946e - 05) \times (G)$ $\times (2.100489e - 03) \times \left(\frac{L}{D}\right) \times (3.403677) \times (XO) \times (-4.466792) \times (XI)$

× (1.892777)]

Figure 5.11 Distribution des variables constituant le modèle 1.11.

Modèle 1.12 : *CHF* = $\log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$ $CHF = (377.031134) \log\left(\frac{\rho_L}{\rho_G}\right) \times (203.566361) \log(G) \times (483.660984) \log\left(\frac{L}{D}\right)$ \times (-39531.847134) log(XO) \times (8183.132465) log(XI) × (-2157.226688) CHF RDENS G RAP XI хо -10 15

Figure 5.12 Distribution des variables constituant le modèle 1.12.

-0.5

-1.5

10.0 11.0

9.0

150 250

Modèle	R ²	R ²	Ecart type
		ajusté	résiduel
Modèle 1.1 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$	0.7862	0.7855	0.3265
Modèle 1.2 : <i>CHF</i> = $log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$	0.7474	0.7465	23.09
Modèle 1.3 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$	0.829	0.8284	0.292
Modèle 1.4 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$	0.8968	0.8954	0.2279
Modèle 1.5 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$	0.8425	0.8404	0.2816
Modèle 1.6 : <i>CHF</i> = log $\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$	0.8709	0.8692	16.59
Modèle 1.7 : log CHF = $log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$	0.9282	0.9279	0.1893
Modèle 1.8 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$	0.8413	0.8407	0.2813
Modèle 1.9 : <i>CHF</i> = log $\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$	0.7931	0.7922	20.9
Modèle 1.10 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$	0.988	0.9876	0.078444
Modèle 1.11 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$	0.9219	0.9197	0.1997
Modèle 1.12 : <i>CHF</i> = log $\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$	0.9298	0.9279	12.32

Tableau 5.1 Indices de qualité pour les modèles pour les prédicteurs en conditions d'entrée (UCC)

5.2 Modèles pour les prédicteurs en conditions locales (LCC) :

Modèle 2.1 : $log CHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ CHF = $EXP[(-0.04184597) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.79367815) \log(G) + (-0.18773053) \log\left(\frac{L}{D}\right) + (-1.16427677) \log(XO) - (3.69539466)]$

Modèle 2.2 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ CHF = $EXP[(-0.0001324457) \times \left(\frac{\rho_L}{\rho_G}\right) + (0.0000219949) \times (G)$ + $(0.0065398179) \times \left(\frac{L}{D}\right) + (-1.3046889613) \times (XO) + (3.0320319271)]$

Figure 5.14 Distribution des variables constituant le modèle 2.2.

Modèle 2.3 : *CHF* = $log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ $CHF = (-1.983317) \log\left(\frac{\rho_L}{\rho_G}\right) + (50.167602) \log(G) + (-12.662780) \log\left(\frac{L}{D}\right)$ $+(-69.531462)\log(X0) - (414.692994)$ CHF RDENS G

150

Ö 50 Modèle 2.4 : $logCHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ $CHF = \left(\frac{\rho_L}{\rho_G}\right)^{(7.6857146)} + (G)^{(6.6521716)} + \left(\frac{L}{D}\right)^{(17.4151655)} + (XO)^{(-15.2778374)} + (-59.0506928)$

Figure 5.16 Distribution des variables constituant le modèle 2.4.

Modèle 2.5 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ $CHF = EXP[(-3.792277e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) \times (3.725211e - 05) \times (G)$ $\times (-8.134644e - 03) \times \left(\frac{L}{D}\right) \times (-1.097221) \times (XO) \times (2.873735)]$

Figure 5.17 Distribution des variables constituant le modèle 2.5.

Modèle 2.6 : $CHF = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ $CHF = (482.13885) \log\left(\frac{\rho_L}{\rho_G}\right) \times (371.58573) \log(G) \times (1080.86980) \log\left(\frac{L}{D}\right)$ $\times (-4531.20269) \log(XO) \times (-3385.75805)$

Figure 5.18 Distribution des variables constituant le modèle 2.6.

Modèle	R ²	R ² ajusté	Ecart type résiduel
Modèle 2.1 : $log CHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.7881	0.7873	0.3251
Modèle 2.2 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.7545	0.7536	0.3499
Modèle 2.3 : <i>CHF</i> = $log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.7228	0.7218	24.19
Modèle 2.4 : $logCHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.839	0.8368	0.2848
Modèle 2.5 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.7896	0.7868	0.3255
Modèle 2.6 : <i>CHF</i> = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.8582	0.8563	17.38

Tableau 5.2 Indices de qualité pour les modèles pour les prédicteurs en conditions locales (LCC)

5.3 Modèles pour le facteur multiplicateur de la table de 2006 (RDSM) :

*conditions d'entrée :

Modèle 3.1 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

RDSM =
$$EXP[(0.1796369) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.3852569) \log(G) + (-0.0384027) \log\left(\frac{L}{D}\right) + (-0.8514916) \log(XI) - (4.75929679)]$$

Chapitre 5

Figure 5.19 Distribution des variables constituant le modèle 3.1.

Modèle 3.2 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

 $RDSM = EXP[(3.222640e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) + (1.022214e - 05) \times (G) + (8.653323e - 04) \times \left(\frac{L}{D}\right) + (-4.664046e - 01) \times (XI) - (3.892210e - 01)]$

Figure 5.20 Distribution des variables constituant le modèle 3.2.

Figure 5.21 Distribution des variables constituant le modèle 3.3.

Modèle 3.4 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

$$RDSM = \left(\frac{\rho_L}{\rho_G}\right)^{(-0.93175283)} + (G)^{(-0.46798045)} + \left(\frac{L}{D}\right)^{(-1.43318440)} + (XI)^{(30.39642556)} + EXP(3.51951279)$$

Figure 5.22 Distribution des variables constituant le modèle 3.4.

Modèle 3.5 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$ $RDSM = EXP[(-3.826245e - 04) \times \left(\frac{\rho_L}{D}\right) \times (2.289652e - 07) \times (G)$

$$\begin{aligned} RDSM &= EXP[(-3.826245e - 04) \times \left(\frac{1}{\rho_G}\right) \times (2.289652e - 07) \times (G) \\ &\times (8.457018e - 03) \times \left(\frac{L}{D}\right) \times (-4.391966e - 01) \times (XI) \\ &\times (-4.206492e - 01)] \end{aligned}$$

Modèle 3.6 : $RDSM = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$

 $RDSM = (-3.54696736) \log\left(\frac{\rho_L}{\rho_G}\right) \times (-2.15383810) \log(G) \times (-5.18391872) \log\left(\frac{L}{D}\right) \times (63.41795057) \log(XI) \times (20.33295436)$

Modèle 3.7 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$

 $RDSM = EXP[(0.18005359) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.39432552) \log(G) + (-0.06539438) \log\left(\frac{L}{D}\right) + (1.27534648) \log(XI) + (0.50323427) \log(XO) - (4.79192431)]$

Figure 5.25 Distribution des variables constituant le modèle 3.7.

 $\begin{aligned} \textbf{Modèle 3.8} : logRDSM &= \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right) \\ \text{RDSM} &= EXP[(3.141734e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) + (9.957329e - 06) \times (G) \\ &+ (2.415412e - 03) \times \left(\frac{L}{D}\right) + (1.099940e - 01) \times (XI) \\ &+ (-6.615474e - 01) \times (XO) - (3.828175e - 01)] \end{aligned}$

Figure 5.26 Distribution des variables constituant le modèle 3.8.

Modèle 3.9 :*RDSM* = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$

 $RDSM = (0.2576359) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.5014093) \log(G) + (-0.0594653) \log\left(\frac{L}{D}\right) \\ + (-0.2069651) \log(XO) + (-1.2600221) \log(XI) - (5.3246195)$

Figure 5.27 Distribution des variables constituant le modèle 3.9.

Modèle 3.10 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$ RDSM = $\left(\frac{\rho_L}{\rho_G}\right)^{(-7.3247698)} + (G)^{(-8.5871807)} + \left(\frac{L}{D}\right)^{(-19.5442106)} + (XO)^{(325.7345773)} \times (XI)^{(-7.7236881)} + EXP(71.2056054)$

Figure 5.28 Distribution des variables constituant le modèle 3.10.

 $\begin{aligned} \textbf{Modèle 3.11} : logRDSM &= \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right) \\ RDSM &= EXP[(5.374101e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) \times (4.879312e - 06) \times (G) \\ &\times (1.700207e02) \times \left(\frac{L}{D}\right) \times (-8.309888e06) \times (XO) \\ &\times (1.064179e + 00) \times (XI) \times (-4.680700e - 01)] \end{aligned}$

Figure 5.29 Distribution des variables constituant le modèle 3.11.

Modèle 3.12 :*RDSM* = $\log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$

 $RDSM = (-20.2006121) \log\left(\frac{\rho_L}{\rho_G}\right) \times (-19.5764143) \log(G) \times (-48.9635181) \log\left(\frac{L}{D}\right) \times (691.4319585) \log(XO) \times (38.0533953) \log(XI) \times (174.9634448)$

Figure 5.30 Distribution des variables constituant le modèle 3.12.

Modèle	\mathbf{R}^2	\mathbf{R}^2	Ecart	type
		ajusté	résiduel	type
Modèle 3.1 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$	0.487	0.4852	0.2632	
Modèle 3.2 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$	0.4126	0.4105	0.2817	
Modèle 3.3 : $RDSM = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$	0.4865	0.4846	0.3628	
Modèle 3.4 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$	0.5455	0.5394	0.249	
Modèle 3.5 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$	0.5323	0.526	0.2526	
Modèle 3.6 : $RDSM = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XI\right)$	0.5938	0.5883	0.3242	
Modèle 3.7 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.4671	0.4647	0.2684	
Modèle 3.8 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.4151	0.4126	0.2812	
Modèle 3.9 : <i>RDSM</i> = $\log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.4866	0.4843	0.3629	
Modèle 3.10 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.622	0.6114	0.2287	
Modèle 3.11 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.5966	0.5853	0.2363	
Modèle 3.12 : <i>RDSM</i> = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.6689	0.6596	0.2948	

Tableau 5.3 Indices de qualité pour les modèles pour le facteur multiplicateur de la table de 2006 (RDSM)conditions d'entrée.

*conditions locales :

Modèle 3.13 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ RDSM = $EXP[(0.168333524) log\left(\frac{\rho_L}{\rho_G}\right) + (0.368975625) log(G)$ + $(0.004212233) log\left(\frac{L}{D}\right) + (-0.888373467) log(XO) - (4.598319233)]$

Chapitre 5

Figure 5.31 Distribution des variables constituant le modèle 3.13.
Modèle 3.14 :*RDSM* = $\log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$

 $RDSM = (0.246056654) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.476364029) \log(G) + (0.009304935) \log\left(\frac{L}{D}\right) + (-1.581851407) \log(XO) - (5.133340728)$

Figure 5.32 Distribution des variables constituant le modèle 3.14.

Modèle 3.15 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$

$$RDSM = EXP[(3.166628e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) + (1.000136e - 05) \times (G) + (2.148914e - 03) \times \left(\frac{L}{D}\right) + (5.422392e - 01) \times (XO) - (3.863126e - 01)]$$

Figure 5.33 Distribution des variables constituant le modèle 3.15.

Modèle 3.16 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$

$$RDSM = \left(\frac{\rho_L}{\rho_G}\right)^{(-0.95941717)} + (G)^{(-1.11530071)} + \left(\frac{L}{D}\right)^{(-2.47082481)} \times (39.76508392) \log(XO) + EXP(8.49429063)$$

Figure 5.34 Distribution des variables constituant le modèle 3.16.

Modèle 3.17 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$ $RDSM = EXP[(-2.776585e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) \times (1.841581e - 06) \times (G)$

Figure 5.35 Distribution des variables constituant le modèle 3.17.

Modèle 3.18 : *RDSM* = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$

 $RDSM = (-4.1261965) \log\left(\frac{\rho_L}{\rho_G}\right) \times (-3.2334015) \log(G) \times (-7.5615186) \log\left(\frac{L}{D}\right) \times (74.6744615) \log(XO) \times (29.4585106)$

Figure 5.36 Distribution des variables constituant le modèle 3.18.

Chapitre 5

Modèle	\mathbb{R}^2	\mathbb{R}^2	Ecart t	ype
		ajusté	résiduel	
Modèle 3.13 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.4773	0.4754	0.2657	
Modèle 3.14 : <i>RDSM</i> = $\log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.4809	0.479	0.3647	
Modèle 3.15 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.4151	0.413	0.2811	
Modèle 3.16 : $logRDSM = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.5347	0.5285	0.2519	
Modèle 3.17 : $logRDSM = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.5156	0.5092	0.2571	
Modèle 3.18 : $RDSM = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO\right)$	0.5825	0.5169	0.3287	

Tableau 5.4Indices de qualité pour les modèles pour le facteur multiplicateur de la table de 2006 (RDSM) en conditions locales.

5.4 Discussion des résultats :

D'après l'analyse des 5 tableaux récapulatifs nous y sommes arrivés aux conclusions suivantes :

-Que plus le nombre de variables explicatives augmente (conditions locales et d'entrée réunies) plus le R^2 augmente ce qui permet de confirmer le test de Fisher (la proportionnalité entre le nombre de variables et le R^2).

-Que la variable étudiée doit être le plus explicite possible d'ailleurs avec la méthode DSM nous avons obtenu des résultats nettement inférieurs à ceux obtenus avec le CHF.

-Que le modèle choisi doit avoir l'écart résiduel le plus petit.

Donc nous retenons 4 modèles dont l'indice de qualité est le plus grand :

Modèle 1.7: $\log CHF = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right), R^2 = 0.9282$ $CHF = EXP[(0.0382193) \log\left(\frac{\rho_L}{\rho_G}\right) + (0.9668553) \log(G) + (-0.6632463) \log\left(\frac{L}{D}\right) + (-8.7124970) \log(XI) + (8.3424560) \log(XO) - 5.0180028]$ **Modèle 1.10** : $logCHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right), R^2 = 0.988$

$$CHF = \left(\frac{\rho_L}{\rho_G}\right)^{(1.81950711)} + (G)^{(1.42165417)} + \left(\frac{L}{D}\right)^{(3.51951557)} + (XO)^{(-92.77211279)} + (XI)^{(61.71411199)} + (-10.27978428)$$

Modèle 1.11 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right), R^2 = 0.9219$

$$\begin{aligned} \text{CHF} &= EXP[(6.102082e - 04) \times \left(\frac{\rho_L}{\rho_G}\right) \times (6.589946e - 05) \times (G) \\ &\times (2.100489e - 03) \times \left(\frac{L}{D}\right) \times (3.403677) \times (XO) \times (-4.466792) \times (XI) \\ &\times (1.892777)] \end{aligned}$$

Modèle 1.12:
$$CHF = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right), R^2 = 0.9298$$

 $CHF = (377.031134) \log\left(\frac{\rho_L}{\rho_G}\right) \times (203.566361) \log(G) \times (483.660984) \log\left(\frac{L}{D}\right)$
 $\times (-39531.847134) \log(XO) \times (8183.132465) \log(XI)$
 $\times (-2157.226688)$

Les modèles	\mathbb{R}^2
Modèle 1.7 : $log CHF = log(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI)$	0.9282
Modèle 1.10 : $logCHF = log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.988
Modèle 1.11 : $logCHF = \left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.9219
Modèle 1.12 : <i>CHF</i> = log $\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right)$	0.9298

Tableau 5.5 Récapitulatif des meilleurs modèles

Mais D'après Hall et Mudawar [7] le modèle choisi doit satisfaire aux conditions suivantes :

-CHF proportionnel à D avec une puissance négative

-CHF proportionnel à G avec une puissance positive

-CHF inversement proportionnel à XO

-Effet de la pression sur le CHF ne sont pas encore connus

Revenons à notre cas :

Le modèle 1.10 dont les caractéristiques sont :

-R²=0.988

-Écart type résiduel=0.07844

-(L/D) ^ 3.51951557 ce qui donne D^ (-3.51951557) ; puissance négative

-(G) ^ (1.42165417) ; puissance positive

-Des tables : CHF est inversement proportionnel à XO.

Figure 5.37 Représentation graphique CHF en fonction des conditions locales XO.

Toutes les conditions réunies nous concluons donc que le modèle 1.10 est le meilleur modèle à appliquer que dans ce domaine bien sûr c'est-à-dire pour des vitesses massiques $8000 \le G \ge 13400$.

 $\begin{aligned} \mathbf{Modèle} &: logCHF = \log\left(\frac{\rho_L}{\rho_G}, G, \frac{L}{D}, XO, XI\right) \\ CHF &= \left(\frac{\rho_L}{\rho_G}\right)^{(1.81950711)} + (G)^{(1.42165417)} + \left(\frac{L}{D}\right)^{(3.51951557)} \\ &+ (XO)^{(-92.77211279)} + (XI)^{(61.71411199)} + (-10.27978428) \end{aligned}$

CONCLUSION GENERALE

Pour mener à bien notre étude sur la modélisation des données expérimentales du CHF que nous disposons, il a fallu en premier lieu maitriser les notions fondamentales de la statistique descriptive et inferentielle.

Des outils ou logiciels payants dédiés au traitement de données sont disponibles sur le marché. Cependant ces derniers ne sont pas à notre portée et c'est la raison pour laquelle nous nous sommes orientés vers le langage R qui est un logiciel libre.

Pour la maitrise du langage R, plusieurs cas de traitement de données disponibles dans la littérature ont été traités.

Pour la compréhension et l'explication du phénomène du flux thermique critique, une recherche bibliographique sur les méthodes de prédiction du CHF a été menée. Il ressort de cette recherche bibliographique qu'il existe deux types de prédicteurs : corrélations en conditions d'entrée (UCC) et corrélations en conditions locales (LCC).

Pour les conditions d'entrée, la prédiction est directe par contre pour les conditions locales deux méthodes sont possibles : la méthode de substitution directe (DSM ; Substitute Direct Method) et la méthode du bilan thermique (HBM ; Heat Balance Method).

Avec la méthode DSM, l'application de la corrélation est directe alors que la méthode HBM nécessite un calcul itératif satisfaisant le bilan thermique. Vu la simplicité de la méthode DSM, une tentative d'extension de la table de CHF de 2006 a été testé.

Plusieurs modèles de prédicteurs en conditions d'entrée et en conditions locales ont été testés. Pour le facteur multiplicatif permettant d'étendre la table de 2006 plusieurs modèles ont été également testés :

En fonction de l'indice de qualité, R^2 , caractérisant un modèle ou un prédicteur les meilleurs modèles obtenus sont résumés comme suit :

-Conditions locales :

$$CHF = (482.13885) \log\left(\frac{\rho L}{\rho G}\right) \times (371.58573) \log(G) \times (1080.86980) \log\left(\frac{L}{D}\right) \times (-4531.20269) \log(XO) \times (-3385.75805)$$

-Conditions d'entrée :

$$CHF = \left(\frac{\rho L}{\rho G}\right)^{(1.81950711)} + (G)^{(1.42165417)} + \left(\frac{L}{D}\right)^{(3.51951557)} + (XO)^{(-92.77211279)} + (XI)^{(61.71411199)} - 10.27978482$$

-Facteur de correction pour la table de 2006

$$CHF = CHF_{table 2006} * R$$

Où

$$R = (-20.2006121) \log\left(\frac{\rho L}{\rho G}\right) \times (-19.5764143) \log(G) \times (-48.9635181) \log\left(\frac{L}{D}\right) \times (691.4319585) \log(XO) \times (38.0533953) \log(XI) \times (174.9634448)$$

L'analyse des données expérimentales montre que le CHF à D avec une puissance négative ; proportionnel à G avec une puissance positive et inversement proportionnel au titre de sortie XO. Le meilleur modèle présentant un indice de qualité de 0.988 a été obtenu en conditions d'entrée (modèle 1.10)

En perspectives, pour le facteur de correction pour lequel l'indice de qualité est faible, il est souhaitable d'étudier et de présenter plusieurs corrélations en palier en fonction du débit spécifique G. Aussi dans le cas où nous voulons étudier le domaine de la table de 2006 en utilisant la méthode HBM, un facteur de correction est plus que nécessaire.

[1] Nukiyama, S., 1934. Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. J. Soc. Mech. Eng. Jpn. 37.

[2] Delhaye, J.M., 1995. Transferts de chaleur associés à l'ébullition ou à la condensation des

corps purs sur des parois, Techniques de l'ingénieur, volume B 1I.

[3] Collier J.G and Thome J,R 1994 Convective Boiling and Condensation , 3^{rd} Edition, Oxoford University Press , New York

[4] J-G Collier 1981 convective Boiling and Condensation 2nd Edition,McGraw Hill Book Company

[5] Bowring, R. W., 1972. A simple but accurate round tube uniform heat flux, dryout correlation over the pressure range 0.7-17MN/m2. AEEW-R 789.

[6] Biasi, L., et al., 1967. Studies on burnout. Part 3. Energia Nucleare, 14(9), 530-536.

[7] Hall D,D et Mudawar I,2000, Critical Heat Flux (CHF) For Water Flow In Tubes,I Complication and Assechment Of World CHF Data Int,5, Of Heat and Mass Transfer 43,22573-2604

[8] Sebastien Ballesteros UMR 7625 Ecologie Evolution Ecole Normale Supérieure Paris

[9] Modèle Linéaire , D Chessel et J.Thiolouse

Autres références :

Groeneveld, D. C. & Snoek, C. W., 1986. A comprehensive examination of heat transfer correlation suitable for reactor safety analysis, in Multiphase Science and Technology, Vol. 2 181-274.

Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. The 1986 AECL-UO critical Heat Flux Lookup Table. Heat Transfer Engineering. 7, 46-62.

Groeneveld, D.C., et al., 1996. The 1995 look-up table for critical heat flux. Nucl. Eng. Des. 163, 1-23.

Groeneveld, D.C., 1996. On the definition of critical heat flux margin. Nucl. Eng. Des.163, 245.

Groeneveld, D.C., Shan, J.Q., Vasic, A.Z., Leung, L.K.H., Durmayaz, A., Yang, J., Cheng, S.C., Tanase, A., 2007. The 2006 CHF look-up table. Nucl. Eng. Des. 237, 1909-1922.

Celata, G.P., 1996. Letter to the editor; On the application method of critical heat flux correlations. Nucl. Eng. Des. 163, 241-242.

Doroschchuk et al., 1976. Tabular data for calculating bournout when boiling water in unifomly heated round tubes, Teploenergitika, 23 (9), 90-92.

Steiner, D. & Taborek, J, 1992. Flow Boiling Heat Transfer in Vertical tubes Correlated by an Asymptotic Model', heat transfer engineering, vol. 13 no. 2.

Thèse Doctorat Ferrouk Mohamed contribution à la crise d'ébullition à faible titre : la caléfaction.

Ferrouk, M. & Aouragh, S., 1995. Analyse du point de détachement des bulles lors de l'ébullition en convection forcée, 2ème rencontre maghrébine sur la mécanique, pp. 251-255, Constantine, Algérie.

Les programmes détaillés des 36 modèles trouvés :

Modèle 1 : $logCHF = log(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI)$

chemin<-choose.files() chemin TABLEAU<-data. Frame(Read. Table(chemin. Header=TRUE)) attach (TABLEAU) pairs(TABLEAU) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XO<-TABLEAU\$XO XI<-TABLEAU\$XI pairs(cbind.data.frame(CHF,RDENS,G,RAP,XI,XO)) lmTABLEAU<-lm(CHF~RDENS+G+RAP+XI+XO) lmTABLEAU<-lm(CHF~G+RAP+XI+XO+RDENS) anova(ImTABLEAU) lmTABLEAU<-lm(CHF~RAP+XI+XO+RDENS+G) anova(ImTABLEAU) lmTABLEAU<-lm(CHF~XI+XO+RDENS+G+RAP) anova(ImTABLEAU) lmTABLEAU<-lm(CHF~XO+RDENS+G+RAP+XI) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI,XO)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XI) cor(CHF,XO) coefficients (lm(CHF~RDENS+G+RAP+XI+XO)) plot(predict(lm(CHF~RDENS+G+RAP+XI+XO)),predict(lm(CHF~RDENS+G+RAP+XI+X))) O))) abline(0,1)plot(predict(lm(CHF~RDENS+G+RAP+XI+XO)),predict(lm(CHF~RDENS+G+RAP+XI+X O)),type="n") text(predict(lm(CHF~RDENS+G+RAP+XI+XO)),predict(lm(CHF~RDENS+G+RAP+XI+X))) O)),row.names(TABLEAU)

Modèle 2 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
attach(TABLEAU)
qqnorm(log(CHF))
qqline(log(CHF))</pre>

CHF<-log(TABLEAU\$CHF) **RDENS<-TABLEAU\$RDENS** G<-TABLEAU\$G RAP<-TABLEAU\$RAP XI<-TABLEAU\$XO XO<-TABLEAU\$XO ImTABLEAU<-Im(CHF~RDENS+G+RAP+XI+XO) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XI+XO+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XI+XO+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XI+XO+RDENS+G+RAP) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XO+RDENS+G+RAP+XI) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI,XO)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XI) cor(CHF,XO) coefficients (Im(CHF~RDENS+G+RAP+XI+XO)) plot(predict(lm(pol~tem+usi+pop)),predict(lm(pol~tem+usi+pop))) plot(predict(Im(CHF~RDENS+G+RAP+XI+XO)),predict(Im(CHF~RDENS+G+RAP+XI+XO))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XI+XO)),predict(Im(CHF~RDENS+G+RAP+XI+XO)),type=" n") text(predict(Im(CHF~RDENS+G+RAP+XI+XO)),predict(Im(CHF~RDENS+G+RAP+XI+XO)),row.na mes(TABLEAU))

Modèle 3 : *CHF* = $\log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin,header=TRUE)) attach(TABLEAU) qqnorm((CHF)) qqline((CHF)) CHF<-TABLEAU\$CHF RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI XO<-TABLEAU\$XXI XO<-TABLEAU\$XO pairs(cbind.data.frame(CHF,RDENS,G,RAP,XI,XO)) ImTABLEAU<-Im(CHF~RDENS+G+RAP+XI+XO) anova(ImTABLEAU)

```
ImTABLEAU<-Im(CHF~G+RAP+XI+XO+RDENS)
anova(ImTABLEAU)
ImTABLEAU<-Im(CHF~RAP+XI+XO+RDENS+G)
anova(ImTABLEAU)
ImTABLEAU<-Im(CHF~XI+XO+RDENS+G+RAP)
anova(ImTABLEAU)
ImTABLEAU<-Im(CHF~XO+RDENS+G+RAP+XI)
anova(ImTABLEAU)
summary(ImTABLEAU)
cor(cbind.data.frame(RDENS,G,RAP,XI,XO))
cor(CHF,RDENS)
cor(CHF,G)
cor(CHF,RAP)
cor(CHF,XI)
cor(CHF,XO)
coefficients (Im(CHF~RDENS+G+RAP+XI+XO))
plot(predict(Im(CHF~RDENS+G+RAP+XI+XO)),predict(Im(CHF~RDENS+G+RAP+XI+XO)))
abline(0,1)
plot(predict(Im(CHF~RDENS+G+RAP+XI+XO)),predict(Im(CHF~RDENS+G+RAP+XI+XO)),type="
n")
text(predict(Im(CHF~RDENS+G+RAP+XI+XO)),predict(Im(CHF~RDENS+G+RAP+XI+XO)),row.na
mes(TABLEAU))
```

Modèle 4 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XI\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) **RDENS<-TABLEAU\$RDENS** G<-TABLEAU\$G RAP<-TABLEAU\$RAP XI<-TABLEAU\$XI ImTABLEAU<-Im(CHF~RDENS+G+RAP+XI) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XI+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XI+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XI+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XI)

coefficients (Im(CHF~RDENS+G+RAP+XI)) plot(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI)),type="n") text(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI)),row.names(TA BLEAU))

Modèle 5 : *CHF* = log $\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XI\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm((CHF)) qqline((CHF)) CHF<-TABLEAU\$CHF RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI pairs(cbind.data.frame(CHF,RDENS,G,RAP,XI)) ImTABLEAU<-Im(CHF~RDENS+G+RAP+XI)anova(ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XI+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XI+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XI+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XI) coefficients (Im(CHF~RDENS+G+RAP+XI)) plot(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI)),type="n") text(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI)),row.names(TA BLE

Modèle 6 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XI\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G)

RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI ImTABLEAU<-Im(CHF~RDENS+G+RAP+XI) (ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XI+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XI+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XI+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XI) coefficients (Im(CHF~RDENS+G+RAP+XI)) plot(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI)),type="n") text(predict(Im(CHF~RDENS+G+RAP+XI)),predict(Im(CHF~RDENS+G+RAP+XI)),row.names(TA BLEAU))

Modèle 7 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XO<-TABLEAU\$XO ImTABLEAU<-Im(CHF~RDENS+G+RAP+XO) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XO+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XO+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XO+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XO)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XO)

coefficients (Im(CHF~RDENS+G+RAP+XO)) plot(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO)),type="n") text(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO)),row.names(T ABLEAU)

Modèle 8 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XO\right)$

chemin<-choose.files() Tattach(TABLEAU) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) RDENS<-TABLEAU\$RDENS G<-TABLEAU\$G RAP<-TABLEAU\$RAP XO<-TABLEAU\$XO TABLEAU<-data.frame(read.table(chemin.header=TRUE)) ImTABLEAU<-Im(CHF~RDENS+G+RAP+XO) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XO+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XO+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XO+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XO)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,RAP) cor(CHF,XO) coefficients (Im(CHF~RDENS+G+RAP+XO)) plot(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO)),type="n") text(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO)),row.names(T ABLEAU)

Modèle 9 : *CHF* = $\log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) attach(TABLEAU) qqnorm((CHF)) qqline((CHF)) CHF<-TABLEAU\$CHF

RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XO<-TABLEAU\$XO pairs(cbind.data.frame(CHF,RDENS,G,RAP,XO)) ImTABLEAU<-Im(CHF~RDENS+G+RAP+XO) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~G+RAP+XO+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~RAP+XO+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(CHF~XO+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XO)) cor(CHF,RDENS) cor(CHF,G) cor(CHF,G) cor(CHF,RAP) cor(CHF,XO) coefficients (Im(CHF~RDENS+G+RAP+XO)) plot(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO))) abline(0,1) plot(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO)),type="n") text(predict(Im(CHF~RDENS+G+RAP+XO)),predict(Im(CHF~RDENS+G+RAP+XO)),row.names(T ABLEAU)

Modèle 10 : $logRDSM = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

chemin<-choose.files() qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XO<-TABLEAU\$XO XI<-TABLEAU\$XI ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XI+XO) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~G+RAP+XI+XO+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~RAP+XI+XO+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XI+XO+RDENS+G+RAP) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XO+RDENS+G+RAP+XI) anova(ImTABLEAU)

summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI,XO)) cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XI) cor(RDSM,XO) coefficients (Im(RDSM~RDENS+G+RAP+XI+XO)) plot(predict(Im(RDSM~RDENS+G+RAP+XI+XO)),predict(Im(RDSM~RDENS+G+RAP+XI+XO))) abline(0,1) plot(predict(Im(RDSM~RDENS+G+RAP+XI+XO)),predict(Im(RDSM~RDENS+G+RAP+XI+XO)),ty pe="n") text(predict(Im(RDSM~RDENS+G+RAP+XI+XO)),predict(Im(RDSM~RDENS+G+RAP+XI+XO)),ty pe="n")

Modèle 11 : $logRDSM = \left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) RDENS<-TABLEAU\$RDENS G<-TABLEAU\$G RAP<-TABLEAU\$RAP XO<-TABLEAU\$XO XI<-TABLEAU\$XI ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XI+XO) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~G+RAP+XI+XO+RDENS) anova(ImTABLEAU) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XI+XO+RDENS+G+RAP) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XO+RDENS+G+RAP+XI) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI,XO)) cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XI) cor(RDSM,XO) coefficients (Im(RDSM~RDENS+G+RAP+XI+XO)) plot(predict(Im(RDSM~RDENS+G+RAP+XI+XO)),predict(Im(RDSM~RDENS+G+RAP+XI+XO))) abline(0,1) plot(predict(Im(RDSM~RDENS+G+RAP+XI+XO)),predict(Im(RDSM~RDENS+G+RAP+XI+XO)),ty pe="n")

text(predict(Im(RDSM~RDENS+G+RAP+XI+XO)),predict(Im(RDSM~RDENS+G+RAP+XI+XO)),ro w.names(TABLEAU))

Modèle 12 : $RDSM = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

```
chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
attach(TABLEAU)
qqnorm((RDSM))
qqline((RDSM))
RDSM<-TABLEAU$RDSM
RDENS<-log(TABLEAU$RDENS)
RAP<-log(TABLEAU$RAP)
G<-log(TABLEAU$G)
XO<-TABLEAU$XO
XI<-TABLEAU$XI
pairs(cbind.data.frame(RDENS,G,RAP,XO,XI,RDSM))
ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XO+XI)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~G+RAP+XO+XI+RDENS)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~RAP+XO+XI+RDENS+G)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~XO+XI+RDENS+G+RAP)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~XI+RDENS+G+RAP+XO)
anova(ImTABLEAU)
summary(ImTABLEAU)
cor(cbind.data.frame(RDENS,G,RAP,XO,XI))
cor(RDSM,RDENS)
cor(RDSM,G)
cor(RDSM,RAP)
cor(RDSM,XO)
cor(RDSM,XI)
coefficients (Im(RDSM~RDENS+G+RAP+XO+XI))
plot(predict(Im(RDSM~RDENS+G+RAP+XO+XI)),predict(Im(RDSM~RDENS+G+RAP+XO+XI)))
abline(0,1)
plot(predict(Im(RDSM~RDENS+G+RAP+XO+XI)),predict(Im(RDSM~RDENS+G+RAP+XO+XI)),ty
pe="n")
text(predict(Im(RDSM~RDENS+G+RAP+XO+XI)),predict(Im(RDSM~RDENS+G+RAP+XO+XI)),ro
w.names(TABLEAU))
```

Modèle 13 : $logRDSM = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO\right)$

chemin<-choose.files() qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM)

```
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XO<-TABLEAU$XO
ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XO)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~G+RAP+XO+RDENS)
ImTABLEAU<-Im(RDSM~RAP+XO+RDENS+G)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~XO+RDENS+G+RAP)
anova(ImTABLEAU)
summary(ImTABLEAU)
cor(cbind.data.frame(RDENS,G,RAP,XO))
cor(RDSM,RDENS)
cor(RDSM,G)
cor(RDSM,RAP)
cor(RDSM,XO)
coefficients (Im(RDSM~RDENS+G+RAP+XO))
plot(predict(Im(RDSM~RDENS+G+RAP+XO)),predict(Im(RDSM~RDENS+G+RAP+XO)))
abline(0,1)
plot(predict(Im(RDSM~RDENS+G+RAP+XO)),predict(Im(RDSM~RDENS+G+RAP+XO)),type="n"
)
text(predict(Im(RDSM~RDENS+G+RAP+XO)),predict(Im(RDSM~RDENS+G+RAP+XO)),row.nam
es(TABLEAU))
```

Modèle 14 : $RDSM = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO\right)$

```
chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
attach(TABLEAU)
qqnorm((RDSM))
qqline((RDSM))
RDSM<-TABLEAU$RDSM
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XO<-TABLEAU$XO
pairs(cbind.data.frame(RDENS,G,RAP,XO,RDSM))
ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XO)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~G+RAP+XO+RDENS)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~RAP+XO+RDENS+G)
anova(ImTABLEAU)
ImTABLEAU<-Im(RDSM~XO+RDENS+G+RAP)
anova(ImTABLEAU)
summary(ImTABLEAU)
cor(cbind.data.frame(RDENS,RAP,G,XO))
```

cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XO) coefficients (lm(RDSM~RDENS+G+RAP+XO)) plot(predict(lm(RDSM~RDENS+G+RAP+XO)),predict(lm(RDSM~RDENS+G+RAP+XO))) abline(0,1) plot(predict(lm(RDSM~RDENS+G+RAP+XO)),predict(lm(RDSM~RDENS+G+RAP+XO)),type="n" text(predict(lm(RDSM~RDENS+G+RAP+XO)),predict(lm(RDSM~RDENS+G+RAP+XO)),row.nam es(TABLEAU))

Modèle 15 : $logRDSM = \left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO\right)$

chemin<-choose.files() qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) **RDENS<-TABLEAU\$RDENS** G<-TABLEAU\$G RAP<-TABLEAU\$RAP XO<-TABLEAU\$XO ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XO) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~G+RAP+XO+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~RAP+XO+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XO+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XO)) cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XO) coefficients (Im(RDSM~RDENS+G+RAP+XO)) plot(predict(Im(RDSM~RDENS+G+RAP+XO)),predict(Im(RDSM~RDENS+G+RAP+XO))) abline(0,1) plot(predict(Im(RDSM~RDENS+G+RAP+XO)),predict(Im(RDSM~RDENS+G+RAP+XO)),type="n" text(predict(Im(RDSM~RDENS+G+RAP+XO)),predict(Im(RDSM~RDENS+G+RAP+XO)),row.nam es(TABLEAU))

Modèle 16 : $logRDSM = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XI\right)$

chemin<-choose.files() qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM)

RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XI) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~G+RAP+XI+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~RAP+XI+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XI+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI)) cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XI) coefficients (Im(RDSM~RDENS+G+RAP+XI)) plot(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI))) abline(0,1) text(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI)),row.names (TABLEAU))

Modèle 17 : $logRDSM = \left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XI\right)$

chemin<-choose.files() qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) RDENS<-TABLEAU\$RDENS G<-TABLEAU\$G RAP<-TABLEAU\$RAP XI<-TABLEAU\$XI ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XI) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~G+RAP+XI+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~RAP+XI+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XI+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI)) cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XI)

coefficients (Im(RDSM~RDENS+G+RAP+XI)) plot(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI))) abline(0,1) plot(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI)),type="n") text(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI)),row.names (TABLEAU))

Modèle 18 : $RDSM = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XI\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) attach(TABLEAU) qqnorm((RDSM)) qqline((RDSM)) RDSM<-TABLEAU\$RDSM RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI pairs(cbind.data.frame(RDSM,RDENS,G,RAP,XI)) ImTABLEAU<-Im(RDSM~RDENS+G+RAP+XI) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~G+RAP+XI+RDENS) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~RAP+XI+RDENS+G) anova(ImTABLEAU) ImTABLEAU<-Im(RDSM~XI+RDENS+G+RAP) anova(ImTABLEAU) summary(ImTABLEAU) cor(cbind.data.frame(RDENS,G,RAP,XI)) cor(RDSM,RDENS) cor(RDSM,G) cor(RDSM,RAP) cor(RDSM,XI) coefficients (Im(RDSM~RDENS+G+RAP+XI)) plot(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI))) abline(0,1) plot(predict(lm(RDSM~RDENS+G+RAP+XI)),predict(lm(RDSM~RDENS+G+RAP+XI)),type="n") text(predict(Im(RDSM~RDENS+G+RAP+XI)),predict(Im(RDSM~RDENS+G+RAP+XI)),row.names (TABLEAU))

Modèle 19: $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF)

RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI XO<-TABLEAU\$XO pairs(cbind.data.frame(CHF,RDENS,G,RAP,XO,XI)) ImTABLEAU<-Im(CHF~RDENS*G*RAP*XI*XO) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(CHF~RDENS*RAP*G*XO*XI)) plot(predict(Im(CHF~RDENS*RAP*G*XO*XI)),predict(Im(CHF~RDENS*RAP*G*XO*XI))) abline(0,1) plot(predict(Im(CHF~RDENS*RAP*G*XO*XI)),predict(Im(CHF~RDENS*RAP*G*XO*XI)),type=" n") text(predict(Im(CHF~RDENS*RAP*G*XO*XI)),predict(Im(CHF~RDENS*RAP*G*XO*XI)),row.na mes(TABLEAU))

Modèle 20 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) **RDENS<-TABLEAU\$RDENS** G<-TABLEAU\$G RAP<-TABLEAU\$RAP XO<-TABLEAU\$XO XI<-TABLEAU\$XI pairs(cbind.data.frame(CHF,RDENS,G,RAP,XO,XI)) ImTABLEAU<-Im(CHF~RDENS*G*RAP*XO*XI) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(CHF~RDENS*G*RAP*XO*XI)) plot(predict(Im(CHF~RDENS*G*RAP*XO*XI)),predict(Im(CHF~RDENS*G*RAP*XO*XI))) abline(0,1) plot(predict(Im(CHF~RDENS*G*RAP*XO*XI)),predict(Im(CHF~RDENS*G*RAP*XO*XI)),type=" n") text(predict(Im(CHF~RDENS*G*RAP*XO*XI)),predict(Im(CHF~RDENS*G*RAP*XO*XI)),row.na mes((TABLEAU))

Modèle 21 : $CHF = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO, XI\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) qqnorm((CHF)) qqline((CHF)) XO<-TABLEAU\$XO

XI<-TABLEAU\$XI CHF<-TABLEAU\$CHF RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) pairs(cbind.data.frame(CHF,RDENS,G,RAP,XO,XI)) ImTABLEAU<-Im(CHF~RDENS*G*RAP*XO*XI) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(CHF~RDENS*G*RAP*XO*XI)) plot(predict(Im(CHF~RDENS*G*RAP*XO*XI)),predict(Im(CHF~RDENS*G*RAP*XO*XI))) abline(0,1) plot(predict(Im(CHF~RDENS*G*RAP*XO*XI)),predict(Im(CHF~RDENS*G*RAP*XO*XI)),type=" n") text(predict(Im(CHF~RDENS*G*RAP*XO*XI)),predict(Im(CHF~RDENS*G*RAP*XO*XI)),row.na mes((TABLEAU)))

Modèle 22 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO\right)$

chemin<-choose.files() qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XO<-TABLEAU\$XO pairs(cbind.data.frame(CHF,RDENS,G,RAP,XO)) ImTABLEAU<-Im(CHF~RDENS*G*RAP*XO) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(CHF~RDENS*G*RAP*XO)) plot(predict(Im(CHF~RDENS*G*RAP*XO)),predict(Im(CHF~RDENS*G*RAP*XO))) abline(0,1) plot(predict(Im(CHF~RDENS*G*RAP*XO)),predict(Im(CHF~RDENS*G*RAP*XO)),type="n") text(predict(Im(CHF~RDENS*G*RAP*XO)),predict(Im(CHF~RDENS*G*RAP*XO)),row.names(T ABLEAU)

Modèle 23 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm(log(CHF)) qqline(log(CHF)) CHF<-log(TABLEAU\$CHF) RDENS<-TABLEAU\$RDENS G<-TABLEAU\$G RAP<-TABLEAU\$RAP

XO<-TABLEAU\$XO pairs(cbind.data.frame(CHF,RDENS,RAP,G,XO)) ImTABLEAU<-Im(CHF~RDENS*G*RAP*XO) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(CHF~RDENS*RAP*G*XO)) plot(predict(Im(CHF~RDENS*RAP*G*XO)),predict(Im(CHF~RDENS*RAP*G*XO))) abline(0,1) plot(predict(Im(CHF~RDENS*RAP*G*XO)),predict(Im(CHF~RDENS*RAP*G*XO)),type="n") text(predict(Im(CHF~RDENS*RAP*G*XO)),predict(Im(CHF~RDENS*RAP*G*XO)),row.names(T ABLEAU)

Modèle 24 : $CHF = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO\right)$

```
chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
qqnorm((CHF))
qqline((CHF))
CHF<-TABLEAU$CHF
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XO<-TABLEAU$XO
pairs(cbind.data.frame(CHF,RDENS,G,RAP,XO))
ImTABLEAU<-Im(CHF~RDENS*G*RAP*XO)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(CHF~RDENS*G*RAP*XO))
plot(predict(Im(CHF~RDENS*G*RAP*XO)),predict(Im(CHF~RDENS*G*RAP*XO)))
abline(0,1)
plot(predict(Im(CHF~RDENS*G*RAP*XO)),predict(Im(CHF~RDENS*G*RAP*XO)),type="n")
text(predict(Im(CHF~RDENS*G*RAP*XO)),predict(Im(CHF~RDENS*G*RAP*XO)),row.names(T
ABLEAU)
```

Modèle 25 : $logCHF = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XI\right)$

```
chemin<-choose.files()
attach(TABLEAU)
qqnorm(log(CHF))
qqline(log(CHF))
CHF<-log(TABLEAU$CHF)
RDENS<-log(TABLEAU$CHF)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XI<-TABLEAU$XI
pairs(cbind.data.frame(CHF,RDENS,G,RAP,XI))
ImTABLEAU<-lm(CHF~RDENS*G*RAP*XI)
anova(ImTABLEAU)
```

summary(ImTABLEAU) coefficients (Im(CHF~RDENS*G*RAP*XI)) plot(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI))) plot(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI)),type="n") text(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI)),row.names(TA BLEAU))

Modèle 26 : $logCHF = \left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XI\right)$

```
chemin<-choose.files()
attach(TABLEAU)
qqnorm(log(CHF))
qqline(log(CHF))
CHF<-log(TABLEAU$CHF)
RDENS<-TABLEAU$RDENS
G<-TABLEAU$G
RAP<-TABLEAU$RAP
XI<-TABLEAU$XI
pairs(cbind.data.frame(CHF,RDENS,G,RAP,XI))
ImTABLEAU<-Im(CHF~RDENS*G*RAP*XI)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(CHF~RDENS*G*RAP*XI))
plot(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI)))
abline(0,1)
plot(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI)),type="n")
text(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI)),row.names(TA
BLEAU))
```

Modèle 27 : $CHF = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XI\right)$

```
chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
attach(TABLEAU)
qqnorm((CHF))
qqline((CHF))
CHF<-TABLEAU$CHF
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XI<-TABLEAU$XI
pairs(cbind.data.frame(CHF,RDENS,G,RAP,XI))
ImTABLEAU<-Im(CHF~RDENS*G*RAP*XI)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(CHF~RDENS*G*RAP*XI))
plot(predict(Im(CHF~RDENS*G*RAP*XI)),predict(Im(CHF~RDENS*G*RAP*XI)))
abline(0,1)
```

plot(predict(lm(CHF~RDENS*G*RAP*XI)),predict(lm(CHF~RDENS*G*RAP*XI)),type="n") text(predict(lm(CHF~RDENS*G*RAP*XI)),predict(lm(CHF~RDENS*G*RAP*XI)),row.names(TA BLEAU))

Modèle 28 : $logRDSM = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

chemin<-choose.files() qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XO<-TABLEAU\$XO XI<-TABLEAU\$XI pairs(cbind.data.frame(RDSM,RDENS,G,RAP,XO,XI)) ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XO*XI) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(RDSM~RDENS*G*RAP*XO*XI)) plot(predict(Im(RDSM~RDENS*RAP*G*XO*XI)),predict(Im(RDSM~RDENS*RAP*G*XO*XI))) abline(0,1) plot(predict(Im(RDSM~RDENS*RAP*G*XO*XI)),predict(Im(RDSM~RDENS*RAP*G*XO*XI)),ty pe="n") text(predict(Im(RDSM~RDENS*RAP*G*XO*XI)),predict(Im(RDSM~RDENS*RAP*G*XO*XI)),ro w.names(TABLEAU))

Modèle 29 : $logRDSM = \left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

```
chemin<-choose.files()
qqnorm(log(RDSM))
qqline(log(RDSM))
RDSM<-log
RDSM<-log(TABLEAU$RDSM)
RDENS<-TABLEAU$RDENS
G<-TABLEAU$G
RAP<-TABLEAU$RAP
XO<-TABLEAU$XO
XI<-TABLEAU$XI
pairs(cbind.data.frame(RDENS,G,RAP,XO,XI,RDSM))
ImTABLEAU<-Im(RDSM~RDENS*XI*XO*RAP*G)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(RDSM~RDENS*G*RAP*XO*XI))
plot(predict(Im(RDSM~RDENS*G*RAP*XO*XI)),predict(Im(RDSM~RDENS*G*RAP*XO*XI)))
abline(0,1)
plot(predict(Im(RDSM~RDENS*G*RAP*XO*XI)),predict(Im(RDSM~RDENS*G*RAP*XO*XI)),ty
pe="n")
```

text(predict(Im(RDSM~RDENS*G*RAP*XO*XI)),predict(Im(RDSM~RDENS*G*RAP*XO*XI)),ro w.names(TABLEAU))

Modèle 30 : $RDSM = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO, XI\right)$

```
chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
qqnorm((RDSM))
qqline((RDSM))
RDSM<-TABLEAU$RDSM
XO<-TABLEAU$XO
XI<-TABLEAU$XI
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
pairs(cbind.data.frame(RDENS,G,RAP,XO,XI,RDSM))
ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XO*XI)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(RDSM~RDENS*G*RAP*XO*XI))
plot(predict(Im(RDSM~RDENS*G*RAP*XO*XI)),predict(Im(RDSM~RDENS*G*RAP*XO*XI)))
abline(0,1)
plot(predict(Im(RDSM~RDENS*G*RAP*XO*XI)),predict(Im(RDSM~RDENS*G*RAP*XO*XI)),ty
pe="n")
text(predict(Im(RDSM~RDENS*G*RAP*XO*XI)),predict(Im(RDSM~RDENS*G*RAP*XO*XI)),ro
w.names(TABLEAU))
```

Modèle 31 : $logRDSM = log\left(\frac{\rho_L}{\rho_c}, G, \frac{L}{p}, XO\right)$

```
chemin<-choose.files()
attach(TABLEAU)
qqnorm(log(RDSM))
qqline(log(RDSM))
RDSM<-log(TABLEAU$RDSM)
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XO<-TABLEAU$XO
pairs(cbind.data.frame(RDSM,RDENS,G,RAP,XO))
ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XO)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(RDSM~RDENS*G*RAP*XO))
plot(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)))
abline(0,1)
plot(predict(lm(RDSM~RDENS*G*RAP*XO)),predict(lm(RDSM~RDENS*G*RAP*XO)),type="n"
text(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)),row.nam
es(TABLEAU))
```

Modèle 32 : $logRDSM = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XO\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) RDENS<-TABLEAU\$RDENS G<-TABLEAU\$G RAP<-TABLEAU\$RAP XO<-TABLEAU\$XO pairs(cbind.data.frame(RDSM,RDENS,G,RAP,XO)) ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XO) anova(ImTABLEAU) Smmary(ImTABLEAU) coefficients (Im(RDSM~RDENS*G*RAP*XO)) plot(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO))) abline(0,1) plot(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)),type="n" text(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)),row.nam es(TABLEAU))

Modèle 33 : $RDSM = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{\rho}, XO\right)$

```
chemin<-choose.files()
TABLEAU<-data.frame(read.table(chemin.header=TRUE))
qqnorm((RDSM))
qqline((RDSM))
RDSM<-TABLEAU$RDSM
RDENS<-log(TABLEAU$RDENS)
G<-log(TABLEAU$G)
RAP<-log(TABLEAU$RAP)
XO<-TABLEAU$XO
pairs(cbind.data.frame(RDENS,G,RAP,XO,RDSM))
ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XO)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(RDSM~RDENS*G*RAP*XO))
plot(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)))
abline(0,1)
plot(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)),type="n"
)text(predict(Im(RDSM~RDENS*G*RAP*XO)),predict(Im(RDSM~RDENS*G*RAP*XO)),row.na
mes(TABLEAU))
```

Modèle 34 : $logRDSM = log\left(\frac{\rho L}{\rho G}, G, \frac{L}{p}, XI\right)$

chemin<-choose.files()
qqnorm(log(RDSM))</pre>

qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G) RAP<-log(TABLEAU\$RAP) XI<-TABLEAU\$XI pairs(cbind.data.frame(RDSM,RDENS,G,RAP,XI)) ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XI) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(RDSM~RDENS*G*RAP*XI)) plot(predict(Im(RDSM~RDENS*G*RAP*XI)),predict(Im(RDSM~RDENS*G*RAP*XI))) abline(0,1) plot(predict(Im(RDSM~RDENS*G*RAP*XI)),predict(Im(RDSM~RDENS*G*RAP*XI)),type="n") text(predict(Im(RDSM~RDENS*G*RAP*XI)),predict(Im(RDSM~RDENS*G*RAP*XI)),row.names (TABLEAU))

Modèle 35 : $logRDSM = \left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$

chemin<-choose.files() attach(TABLEAU) qqnorm(log(RDSM)) qqline(log(RDSM)) RDSM<-log(TABLEAU\$RDSM) **RDENS<-TABLEAU\$RDENS** G<-TABLEAU\$G RAP<-TABLEAU\$RAP XI<-TABLEAU\$XI pairs(cbind.data.frame(RDSM,RDENS,RAP,G,XI)) ImTABLEAU<-Im(RDSM~RDENS*RAP*G*XI) anova(ImTABLEAU) summary(ImTABLEAU) coefficients (Im(RDSM~RDENS*RAP*G*XI)) plot(predict(Im(RDSM~RDENS*RAP*G*XI)),predict(Im(RDSM~RDENS*RAP*G*XI))) abline(0,1) plot(predict(Im(RDSM~RDENS*RAP*G*XI)),predict(Im(RDSM~RDENS*RAP*G*XI)),type="n") text(predict(Im(RDSM~RDENS*RAP*G*XI)),predict(Im(RDSM~RDENS*RAP*G*XI)),row.names (TABLEAU))

Modèle 36 : $RDSM = \log\left(\frac{\rho L}{\rho G}, G, \frac{L}{D}, XI\right)$

chemin<-choose.files() TABLEAU<-data.frame(read.table(chemin.header=TRUE)) qqnorm((RDSM)) qqline((RDSM)) RDSM<-TABLEAU\$RDSM RDENS<-log(TABLEAU\$RDENS) G<-log(TABLEAU\$G)

```
RAP<-log(TABLEAU$RAP)
XI<-TABLEAU$XI
pairs(cbind.data.frame(RDSM,RDENS,G,RAP,XI))
ImTABLEAU<-Im(RDSM~RDENS*G*RAP*XI)
anova(ImTABLEAU)
summary(ImTABLEAU)
coefficients (Im(RDSM~RDENS*G*RAP*XI))
plot(predict(Im(RDSM~RDENS*G*RAP*XI)),predict(Im(RDSM~RDENS*G*RAP*XI)))
abline(0,1)
plot(predict(Im(RDSM~RDENS*G*RAP*XI)),predict(Im(RDSM~RDENS*G*RAP*XI)),type="n")
text(predict(Im(RDSM~RDENS*G*RAP*XI)),predict(Im(RDSM~RDENS*G*RAP*XI)),row.names
(TABLEAU))
```