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Abstract

On Estimation and Observer Design in Nonlinear Systems: Theory and

Application

Ania Adil

The work conducted in this thesis contributes to the state of the art on observer design

for nonlinear systems. The main objective is to design a high-gain like observer for a class

of nonlinear systems with delayed output measurements. To overcome some limitations of

the standard high-gain observer and enhance the time response, two high-gain like observer

approaches have been proposed.

In the first part, we present a high-gain observer design for nonlinear systems with time-

varying delayed output measurements. Based on a recent high-gain like observer design

method, called HG/LMI observer, a larger bound of the time-delay is allowed compared

to that obtained by using the standard high-gain methodology. Such a HG/LMI observer

adopts a lower value of the tuning parameter, which results in the reduction of the observer’s

gain value and an increase in the maximum bound of the delay required to ensure exponential

convergence. An application to nonlinear systems with sampled measurements is provided.

Furthermore, the proposed methodology is extended to systems with nonlinear outputs.

The second part is dedicated to the design of a prescribed-time high-gain observer that

achieves stability in a predefined time. The fixed time convergence of the observer within a

prescribed time is shown through a Lyapunov differential inequality and a state transformation

that involves a scaling function. The observer’s gain depends on a time-varying function

monotonically increasing to infinity as the time tends to the predefined time of convergence.

Moreover, the proposed observer reduces the peaking phenomenon, which is one of the main

limitations of the high-gain observer design.

In the last part, an application of the proposed high-gain approaches to estimate the

water level in the Coupled Tanks system is presented. Extensive numerical simulations are
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provided to show the effectiveness of the HG/LMI observer and the prescribed-time high-gain

observer. Furthermore, a comparison with the standard high-gain observer is established to

demonstrate the superiority of the proposed observer design approaches in reducing the peak-

ing phenomena and enhancing the estimation convergence error, respectively.

Keywords: High-gain observer, delayed output measurements, linear matrix inequalities

(LMIs), Lyapunov–Krasovskii functionals, prescribed-time convergence, time-varying scaling

function, fixed-time stability, nonlinear triangular systems, Coupled Tanks plant.

Resumé

Les travaux menés dans cette thèse est une contribution à la conception d’observateurs pour

les systèmes non linéaires. L’objectif principal est de concevoir un observateur grand gain pour

une classe de systèmes non linéaires avec des mesures de sortie retardées. Pour surmonter

certaines limitations de l’observateur grand gain standard et améliorer sa réponse temporelle,

deux approches de type observateur à grand gain ont été proposées.

Dans la première partie, nous proposons une conception d’observateur grand gain pour

les systèmes non linéaires avec des mesures de sortie retardées par un retard variant dans

le temps. En se basant sur une récente méthode de conception d’observateur grand gain,

appelée observateur HG/LMI, une plus grande borne du retard est tolerée par rapport à

celle obtenue en utilisant la méthodologie standard. Un tel observateur HG/LMI adopte une

valeur inférieure du paramètre de réglage, ce qui entrâıne la réduction de la valeur de gain

de l’observateur et une augmentation de la borne maximale du retard nécessaire pour assurer

la convergence exponentielle. Une application aux systèmes non linéaires avec des mesures

échantillonnées est fournie. De plus, la méthodologie proposée est étendue aux systèmes avec

des sorties non linéaires.

La deuxième partie est consacrée à la conception d’un observateur grand gain à temps pre-

scrit qui atteint la stabilité dans un temps prédéfini. La convergence fixe de l’observateur en

un temps prescrit est représentée par une inégalité différentielle de Lyapunov et une transfor-
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mation d’état qui implique une fonction de transformation. Le gain de l’observateur dépend

d’une fonction variable dans le temps augmentant de manière monotone jusqu’à l’infini lorsque

le temps tend vers le temps de convergence prédéfini. De plus, l’observateur proposé réduit

le phénomène de “peaking”, qui est l’une des principales limitations de l’observateur grand

gain.

Dans la dernière partie, les approches de l’observateur grand gain proposées sont ap-

pliquées pour estimer le niveau d’eau dans un procédé hydraulique avec réservoirs couplés.

Des simulations numériques illustrent l’efficacité de l’observateur HG/LMI et de l’observateur

grand gain à temps prescrit. En outre, une comparaison avec l’observateur grand gain stan-

dard est établie pour démontrer la supériorité des approches proposées à réduire le phénomène

du “peaking” et améliorer la convergence de l’erreur d’estimation, respectivement.

Mots-Clés: Observateur grand gain, mesures de sortie retardées, inégalités matricielles

linéaires, fonctionnelle de Lyapunov–Krasovskii, convergence en temps prescrit, fonction de

transformation, stabilité en temps fixe, systèmes non linéaires triangulaires, procédé hy-

draulique avec réservoirs couplés.
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“But it may be that you hate something while it is good for you,

and it may be that you love something while it is bad for you.

Allah knows, and you do not know.”

– Ayah 216, Surat Al-Baqara
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CHAPTER 1

GENERAL INTRODUCTION

Time-delay is widely involved in various real-world engineering and physical systems such as

industrial processes, chemical industry, mechanical and electrical engineering, communication

networks, transportation, and biomedical engineering (MacDonald and Lags, 1978; Anthonis

et al., 2007; Wu et al., 2010; Fridman, 2014) (see Figure 1.1). Time-delay is ubiquitous in most

biological systems studying epidemics and diseases, for instance, implementing lockdowns

due to the coronavirus disease 2019 pandemic is based on the latest data, but data includes

delays in both diagnosis and reporting till the reduction of the transmission (Rong et al.,

2020). Transmission delays in networked control systems are another family of time-delays.

For example, a network delay may appear while transmitting the data from its origin to

its destination, affecting the performance of the networked control systems (Tipsuwan and

Chow, 2003). In everyday life, the time-delay may occur in several situations. For instance,

while driving a car, the driver tries to avoid delay in his reaction if he needs to slam on the

brakes upon receiving a stimulus (Abdallah et al., 2011). Another example is a delay between

turning the faucet and what the person feels while trying to control the water temperature

in the shower (Fridman, 2014).

In practice, dynamical systems’ variables are not fully accessible for measurement and are

not entirely known due to various physical and economic constraints on the dynamical model.
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Communication

(Networked control systems,...)

Mechanical & Electrical

Engineering

(Drilling system, Hydraulic

control,...)

Time-Delay Systems

Transportations

(Traffic control, Transport

process,...)

Biology, Medecine

(Populations dynamics, Regulation

of Glucose-Insulin system,...)

Figure 1.1: Examples of time-delay systems1

Moreover, dynamical systems may be corrupted by time-delays either in the state, the mea-

surements, or the control input. It is crucial to consider the delay in performance evaluation

and control system design. Indeed, the presence of time-delay leads to performance degra-

dation or system instabilities. Therefore, it is important to develop efficient state estimation

methods to extract the unavailable information from the accessible measurements and cope

with the time-delay involved in the dynamical systems.

A common way of addressing the reconstruction of internal states problem is by using

state observers. However, the presence of a time-delay renders the estimation process more

challenging. Indeed, the delay can degrade the observer’s performance and affect its stability

and robustness if it is not appropriately compensated. Furthermore, time-delay systems

belong to the class of functional differential equations which require a general type of functional

functions for stability analysis. For these reasons, time-delay systems have increased the

interest of the control community from different perspectives. Therefore, the stability analysis

and control design of time-delay systems are of theoretical and practical importance.

There are different types of convergence for dynamical systems. Several applications be-

have diversely and require several time response constraints to complete a desired action or

1Modified from: https ∶ //homepages.laas.fr/aseuret/Delsys/Links.html
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behavior in practice. In some applications, the model takes the time needed until the action

is achieved. Such convergence is called asymptotic. In others, the model is often required to

achieve action in a short and finite amount of time, called finite-time convergence. For exam-

ple, a walking robot where the state must be provided before each impact with the ground, or

the missile guidance that requires a short time to nullify the target (Holloway, 2018). Besides

their practical importance, finite-time and asymptotic estimations also contribute different

challenges to designing and analyzing time-delay systems in control theory. Hence, many

control and estimation problems for time-delay systems remain a very active area of research.

1.1 Motivation and challenges

For many decades, the interest of automatic control community to nonlinear observers con-

tinues to grow because of their crucial role in the design of control schemes, namely trajectory

tracking, fault diagnosis, and health monitoring (Parisini, 1997), (Alcorta-Garcia and Frank,

1997), (Gao and Ho, 2006). Due to the introduction of new technologies and the complex-

ity of novel industrial infrastructures, the use of nonlinear observers has emerged in modern

applications such as synchronization of multi-agent systems, cyber-attacks detection, and con-

trol of cyber-physical systems (Zhu and Basar, 2011), (Teixeira et al., 2010), (An and Liu,

2014). Despite the various methodologies of nonlinear observer in the literature, namely the

extended Kalman observer (Kalman, 1960), Luenberger observer (Luenberger, 1971), (Huong

et al., 2019), high-gain observer (Gauthier and Kupka, 1994), sliding mode observer (Alessan-

dri, 2003), and LMI-based observers (Zemouche and Boutayeb, 2013), (Mazenc et al., 2017),

these solutions are not general and can be applied only on a specific class of systems.

The high-gain observer is particularly interesting due to its easy implementation because it

depends on only one single tuning parameter, which requires a specific condition, to ensure ex-

ponential convergence. Indeed, high-gain observer exhibits excellent global properties, which

takes into consideration the nonlinear structure of the system. It ensures convergence and

stability with adjustable convergence speed. Furthermore, it is usually applied to uniformly

3



observable systems that have a complete or partial triangular structure, under the assumption

that the nonlinearities satisfy Lipschitz condition. Despite this simplicity of implementation,

the high-gain observer is far from being a perfect solution to nonlinear estimation, and it has

three limitations that should be highlighted (Khalil, 2008; Khalil and Praly, 2014). First,

it is computationally inefficient when dealing with large scale and high dimensional systems

due to the high gain values. Second, it suffers from the peaking phenomenon. Last but not

least, it is highly sensitive to output disturbances (measurement noise, delayed outputs, sam-

pled data,. . . ). Many research activities have been conducted in this research area aiming at

proposing solutions overcoming such drawbacks of the high-gain observer (Zemouche et al.,

2019; Alessandri and Rossi, 2015, 2013; Astolfi and Marconi, 2015; Khalil, 2017; Cacace et al.,

2020; Zhang and Shen, 2017; Boizot et al., 2010; Nguyen and Trinh, 2016; Trinh et al., 2004).

In this thesis, we mainly focus on the use of high-gain methodologies for systems with de-

layed output measurements. Indeed, such a problem is complex when the goal is to provide an

observer with a maximum allowable value of the time-delay. This latter can affect the perfor-

mance of the observer and its stability and robustness if it is not appropriately compensated.

More often, system’s measurements are subject to delay due to the the system’s complexity or

to some communication delays. This measurement delay will certainly affect the estimation

process. Various state estimation methods for nonlinear systems with time-delay have been

developed in the literature. For instance, different types of observers have been extended from

standard nonlinear systems to time-delay systems such as chain of observers (Cacace et al.,

2014; Targui et al., 2018). These observers are based on a chain algorithm that allows esti-

mating the system’s states within the time-delay window. There are also observer-predictor

based approaches to compensate the effects of the delay (Ahmed-Ali et al., 2013b; Khosravian

et al., 2015). However, the determination of an implementable form for the observer-predictor

feedback gains over the past time interval can be challenging. Therefore, these solutions are

not general and can be applied only on a specific class of systems.

Besides, finite-time state estimation has recently attracted increasing attention from the
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automatic control community. Several approaches have been proposed in the literature

(see (Basin, 2019) and the references therein). Examples of finite time observers include

those based on sliding mode approaches which are widely used due to their robustness with

respect to uncertainties and disturbances (Levant, 1998; Angulo et al., 2013; Cruz-Zavala

et al., 2011; Hou et al., 2019). There are also homogeneity-based observers (Ménard et al.,

2009; Lopez-Ramirez et al., 2018; Li et al., 2011; Ménard et al., 2017; Andrieu et al., 2009;

Silm et al., 2018). Such observers exploit the homogeneity property of function in which a

multiplicative scaling of the argument of the function results in a proportional scaling of the

function (Lopez-Ramirez, 2019). Finite-time convergence estimation approaches also include

modulating functions based methods (Jouffroy and Reger, 2015; Asiri et al., 2020; Ghaffour

et al., 2020; Belkhatir et al., 2018; Djennoune et al., 2019).

The main challenge in finite time design is the strong effect of initial conditions on the

convergence time function, which are often unknown. This may result in slow dynamic re-

sponse when the initial error is large. In recent years, there has been significant interest

into fixed time observer design where the observer converges within a prescribed time. The

main feature of the prescribed-time convergence is that the convergence time is known in

advance irrespectively to initial conditions and without the need to know the upper bound

of uncertainties or the settling-time function as in the case of predefined-time convergence

and finite/fixed-time convergence. Nevertheless, establishing finite-time and prescribed-time

concepts remain challenging and few works are established in the literature (Espitia and Per-

ruquetti, 2020; Espitia et al., 2022; Espitia and Perruquetti, 2021; Zhang and Efimov, 2021;

Mazenc and Malisoff, 2021; Krishnamurthy and Khorrami, 2020).

1.2 Objectives and contributions

The work conducted in this thesis contributes to the state of the art on observer design for

nonlinear systems in general and nonlinear systems with delayed output in particular. First,

a high-gain like observer design for nonlinear triangular systems with time-varying delayed

5



output measurements is designed, which covers the standard high-gain observer as a particular

solution. Indeed, new and less conservative LMI conditions guaranteeing the stability of the

proposed high-gain observer are developed. In addition to this, an extension to systems with

nonlinear outputs and sampled measurements are established. Then, a new prescribed-time

high-gain observer is designed allowing the convergence in prescribed time independently of

initial conditions.

As mentioned previously, state estimation of nonlinear systems with delayed output mea-

surements is challenging when the goal is to provide a high-gain observer with a lower tuning

parameter and a higher maximum value of the delay. This latter is usually small due to the

high value of the observer’s tuning parameter, which means that the standard high-gain ob-

server cannot guarantee the exponential convergence of the estimation error for larger value of

the time-delay. To overcome this issue, in this thesis, we considered a new structure of high-

gain observer, called HG/LMI observer, recently developed in (Zemouche et al., 2019). This

is based on the utilization of the LMI-based approach combined with the standard high-gain

technique which allows introducing a compromise index. This index offers the possibility to

adjust the value of the tuning high-gain parameter. Such observer leads to significantly lower

tuning parameter, which reduces the value of the observer gain and increases the maximum

bound of the time-delay allowed to ensure exponential convergence. Furthermore, the peaking

phenomenon is considerably reduced.

Moreover, as aforementioned, the initial conditions strongly affects on the convergence

time in the finite-time design. To this end, we designed a new prescribed-time high-gain

observer. Such observer achieves the prescribed-time stability of the estimation error within a

predefined time, chosen a priori by the user. The advantage of the prescribed-time convergence

is that the convergence time is known a priori independently of initial conditions and there is

no need to upper-bound the settling-time function. The proposed observer has the structure

of a high-gain observer where the gain depends on scaling function. The scaling function is

monotonically increasing to infinity as the time tends to the predefined convergence time.
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Through introducing a state transformation involving a time-scaling function, the estimation

error is transformed into a fixed-time stable system. This feature allows to reduce the peaking

phenomenon.

To show the relevance of the work conducted in this thesis, the main contributions are

summarized in the following:

• A high-gain like observer design for nonlinear triangular systems with time-varying

delayed output measurements is designed. The standard high-gain observer is covered

as a particular solution.

• As compared to the standard high-gain observer, new and less conservative LMI condi-

tions guaranteeing the stability of the proposed high-gain observer are developed.

• An extension to systems with nonlinear outputs is established by using the mean value

theorem. Furthermore, an extension to nonlinear systems with sampled measurements

is developed.

• A new prescribed-time high-gain observer for a class of nonlinear systems is proposed.

Such observer achieves stability in a predefined time, freely set by the user independently

of initial conditions.

1.3 Organization of the thesis

The structure of this thesis is briefly outlined in the following:

• Chapter 2 introduces some preliminary concepts on the Lyapunov stability of time-delay

systems and a short reminder on observer design for nonlinear systems.

• Chapter 3 of this thesis is dedicated to the HG/LMI observer design for nonlinear sys-

tem with delayed output measurements. We start by presenting the class of systems

under consideration. The standard high gain observer is then recalled and its conver-

gence is analyzed. We present and discuss the proposed observer design strategy using
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the HG/LMI observer with a lower value of the tuning parameter highlighted with

the observer design procedure. Extensions to systems with sampled measurements and

systems with nonlinear outputs are also provided in the last section. Two numerical ex-

amples with comparisons to the standard high-gain observer and the observer presented

in (Van Assche et al., 2011) are given.

• Chapter 4 is devoted to the design of the prescribed-time high-gain observer. In this

chapter, we start by the problem formulation and presenting the class of systems under

consideration. The prescribed-time observer is then designed and its convergence is

presented. A numerical example is discussed to show the effectiveness of the proposed

prescribed-time observer.

• Chapter 5 is concerned with the application of the established results in the previous

chapters to estimate the water levels in the Coupled Tanks system. The numerical

results are performed to illustrate the performance of the proposed HG/LMI observer

and the prescribed-time high-gain observer in estimating the water levels in tanks.

• Chapter 6 summarizes the work of this thesis. Moreover, the future directions are

outlined.
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CHAPTER 2

THEORETICAL BACKGROUND

Contents

1.1 Motivation and challenges . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction

The purpose of this chapter is to recall the fundamental concepts and tools required in this

thesis. Stability definitions of time-delay systems and different notions of finite-time stability

are presented. Then, the concept of state observer and the standard high-gain observer

methodology are recalled.

2.2 Lyapunov stability of time-delay systems

Stability is a crucial for time-delay systems. For stability analysis, the Lyapunov method

for time-delay systems needs an adaptation of the second Lyapunov method for ordinary

differential equations to the functional differential equations, since Lyapunov function for

time-delay systems depends on xt and thus is a functional. Hereafter, we will present stability
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notions of time-delay systems. Consider the following retarded differential equation:

ẋ(t) = f(t, xt), t ≥ t0, (2.1)

where f ∶ R × C([−h,0]) → Rn is continuous and is locally Lipschitz continuous in x and

xt = x(t + ν), ν ∈ [−h,0].

2.2.1 Fundamental concepts of stability

In this part, we will present some notions of stability for time-delay systems.

Definition 1 (Fridman, 2014; Hale and Lunel, 2013) The trivial solution of (2.1) is

• Stable: if for any t0 ∈ R and ϵ > 0, there exists a ϱ = ϱ(t0, ϵ) such that

∥xt0∥ < ϱ⇒ ∥x(t)∥ < ϵ, t ≥ t0,

• Asymptotically stable: if it is stable, and if, for any t0 ∈ R, there exists a ϱ = ϱ(t0) > 0

such that

∥xt0∥ < ϱ⇒ lim
t→∞
∥x(t)∥ = 0,

• Global exponential stable: if there exists constants a > 0 and b > 0 such that

∥x(t)∥ ≤ b sup
−h≤ν≤0

∥x(ν)∥e−at.

The main approaches to investigate the stability of time-delay systems are the Lyapunov-

Razumikhin method and the Lyapunov-Krasovskii method. The first method has been de-

veloped by Razumikhin (Razumikhin, 1956). It uses the classical Lyapunov function with

additional conditions. The latter approach has been introduced by Krasovskii (Krasovskii,

1963) who proposed to use a functional that depends on xt instead of the classical Lyapunov

function that depends on x(t). Both approaches will be recalled here.
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2.2.2 Lyapunov-Razumikhin method

The objective of Lyapunov-Razumikhin method is to consider a classical Lyapunov function

V (t, x(t)) = x(t)TPx(t), P > 0 where the derivative is not necessary negative along all the

trajectories of the system.

Theorem 1 (Lyapunov-Razumikhin Theorem) (Fridman, 2014)

Suppose f ∶ R × C([−h,0]) Ð→ Rn takes R×(bounded set in C([−h,0])) into bounded sets

of Rn and that u, v,w ∶ R+ → R+ are continuous nondecreasing functions, u(s) and v(s) are

positive for s > 0, and u(0) = v(0) = 0. If there exists a continuous functional V ∶ R×Rn → R+,

which is positive definite such that

1) u(∥x∥) ≤ V (t, ϕ) ≤ v(∥x∥), (2.2)

2) V̇ (t, x(t)) ≤ −w(∥x(t)∥) if V (t + ν, x(t + ν)) ⩽ V (t, x(t)),∀ν ∈ [−h,0]. (2.3)

then the trivial solution of (2.1) is uniformly stable.

Additionally, if w(s) > 0 for s > 0, and there exists a continuous nondecreasing function

ρ(s) > 0 for s > 0 such that

V̇ (t, x(t)) ≤ −w(∥x(t)∥) if V (t + ν, x(t + ν)) ⩽ ρV (t, x(t)),∀ν ∈ [−h,0]. (2.4)

then the trivial solution is uniformly asymptotically stable. Moreover, if lims→∞ u(s) = ∞,

then it is globally uniformly asymptotically stable.

The Lyapunov-Razumikhin method provides conservative results in general. Nevertheless, it

allows to consider time-varying delays without constraints on the derivative of the delay which

yields to delay-independent stability conditions.

2.2.3 Lyapunov-Krasovskii method

The Lyapunov-Krasovskii method is a generalization of the Lyapunov method for ordinary

differential equations to the stability analysis of time-delay systems. It consists of choosing a

functional V (t, xt) that is positive definite and decreasing along (2.1).

11



Theorem 2 (Lyapunov-krasovskii Theorem) (Fridman, 2014; Hale and Lunel, 2013)

Suppose that the function f ∶ R×C([−h,0])→ Rn takes R× (bounded set in C([−h,0])) into

bounded sets of Rn and that u, v,w ∶ R+ → R+ are continuous nondecreasing functions, u(s)

and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there exists a continuous functional

V ∶ R × C([−h,0])→ R+, which is positive definite such that

u(∥ϕ(0)∥) ≤ V (t, ϕ) ≤ v(∥ϕ∥), (2.5)

V̇ (t, ϕ) ≤ −w(∥ϕ(0)∥). (2.6)

Then the trivial solution of (2.1) is uniformly stable.

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable. If lims→∞ u(s) =

∞, then it is globally uniformly asymptotically stable.

The selection of Lyapunov-Krasovskii functional is crucial to acquire the stability crite-

ria. A candidate functional may lead to delay-dependent and delay-independent conditions.

Delay-independent criteria means that the system is stable for any delays. If the stability

is guaranteed for some values of the delay and unstable for others, then stability criteria is

delay-dependent.

2.2.4 Delay-independent criteria

A simple Lyapunov-Krasovskii functional candidate for delay-independent analysis has the

form (Fridman, 2014; Seuret et al., 2016)

V (xt) = x⊺(t)Px(t) + ∫
t

t−h
xT (s)Rx(s)ds (2.7)

where P > 0 and R > 0 are n×n matrices. The requirement of delay-independent criteria arises

while establishing stability analysis. Indeed, the obtained condition is independent from the

delay h, which means that the system is stable for any arbitrary delay. Such functionals yield

to restrictive conditions as a wide class of time-delay systems remain stable only for some

values of the delay. Several studies have considered other functional candidates which yields

to delay-dependent conditions.
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2.2.5 Delay-dependent criteria

A simple method to derive delay-dependent stability criteria is by using Newton-Leibnitz

formula

x(t − d) − x(t) = −∫
t

t−h
ẋ(s)ds (2.8)

Usually, a double integral term is added to the classical Lyapunov function x⊺(t)Px(t). Such

structure is considered to compensate the extra terms ∫ t
t−h ẋ(s)ds coming from the derivative

of the first function. Several functionals have been proposed in the literature to handle various

terms (Fridman and Shaked, 2003; Fridman, 2014), for example:

V (xt) = V1(xt) + V2(xt), (2.9)

where

V1(t) = x⊺(t)Px(t),

and

V2(t) = ∫
0

−h
∫

t

t+ν
xT (s)Rx(s)dsdν.

To enrich the Lyapunov-Krasovskii functionals and deriving less restrictive stability condi-

tions, the researchers developed and introduced more terms to include in the Lyapunov-

Krasovskii functional to obtain better stability conditions (Fridman and Shaked, 2002, 2003;

Seuret et al., 2016; Wu et al., 2010; Fridman and Shaked, 2003), for instance:

V (t, xt, ẋt) = x⊺(t)Px(t) + ∫
t

t−h
xT (s)Rx(s)ds + h∫

0

−h
∫

t

t+ν
ẋTQRẋ(s)dsdν

2.2.6 Finite-time stability

In the following, we will recall definitions on finite-time stability. The difference between the

stability notions will be explained followed by a representative scheme for illustration.

Definition 2 (Efimov et al., 2021; Djennoune et al., 2022) The origin of the system (2.1) is
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• Finite-time stable: if it is stable and if for any x0 ∈ Rn there exists 0 ≤ T < +∞ such

that x(t, x0) = 0 for all t ≥ T .

The function T (x0) = inf{T ≥ 0 ∶ x(t, x0) = 0, ∀t ≥ T} determines the settling time of

the system (2.1).

• Fixed-time stable: if it is finite-time stable and if the settling time function T (x0) is

bounded, i.e., there exists Tmax > t0 such that, for every initial condition x0 ∈ Rn,

T (x0) ≤ Tmax.

• Predefined-time stable: denote by ρ the system parameters of (2.1) and let Tc = Tc(ρ)

a design parameter. The origin of (2.1) is globally weakly predefined-time stable if it is

globally fixed-time stable and if the settling time function satisfies

T (x0) ≤ Tc,∀x0 ∈ Rn (2.10)

In addition, the origin of (2.1) is globally strongly predefined-time stable if it is globally

fixed-time stable and if the settling-time function satisfies

sup
x0∈Rn

T (x0) = Tc,∀x0 ∈ Rn (2.11)

• Prescribed-time stable: if it is globally fixed-time stable and if every nonzero trajec-

tory reaches the origin at exactly a desired finite time Tp after t0, i.e., T (x0) = Tp,∀x0 ≠

0.

Remark 1 From the previous definitions, we distinguish different finite-time stability crite-

rions:

• When the settling time function depends on the initial conditions of the system, the

convergence is called finite-time.

• If the settling time function does not depends on the initial conditions of the system but

bounded, such convergence refers to be fixed-time.
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• When the settling time is bounded but may depend on system’s parameters involved in

the design, the convergence is called predefined.

• Prescribed-time convergence refers to the situation when the user can establish a priori

a desired time of convergence. Such time of convergence is independent on the system’s

initial conditions and the parameters involved in the design.

Figure (2.1) summaries the types of convergence exposed in this chapter.

Asymptotic

Exponential

Finite-time

Fixed-time

Predefined-time

Prescribed-time

Figure 2.1: Types of convergence

2.3 Observer design for nonlinear systems

In several applications, estimation of the real state of a dynamical system is important for

control and monitoring. A common way of addressing this problem is by using sensors in the

physical system, called a state observer. After receiving some information from the sensors,

the observer processes and reconstructs a reliable estimate of the system’s states. This section

presents the principle of a state observer and a short state of the art on the different techniques

for designing observers for nonlinear systems is given.
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2.3.1 State observer

Let us consider the following nonlinear system stated as follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = f(x(t), u),

y(t) = g(x(t)),
(2.12)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm represents the external inputs, and

y(t) ∈ Rp is the vector of output measurements.

Definition 3 (Observer) (Besançon, 2007) Let be a system (2.12). An observer is given

by an auxiliary system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż(t) = F (z(t), u(t), y(t), t),

x̂(t) = G(z(t), u(t), y(t), t),
(2.13)

such that

(1) x̂(0) = x(0) Ô⇒ x̂(t) = x(t), ∀t ⩾ 0;

(2) ∥x̂(t) − x(t)∥→ 0 as t→∞;

If (2) holds for any x(0), x̂(0), the observer is global.

If (2) holds with exponential convergence, the observer is exponential.

If (2) holds with a convergence rate which can be tuned, the observer is tunable.

An observer for system (2.12) can be illustrated by the block-diagram in Figure 2.2.

In control theory, the observer is known as a method to reconstruct the inaccessible states

of a dynamical system using the inputs and outputs measured from this last. The classical

state observer was proposed and developed by Luenberger for the first time in the early

seventies of the last century (Luenberger, 1971). Since then, several approaches of nonlinear

observers have been developed in the literature. Some approaches have been extended from

linear systems to deal with nonlinear dynamical systems, for instance:

• Extended Kalman observer (Reif and Unbehauen, 1999),
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Figure 2.2: Block-diagram of a state observer

• Luenberger observer (Zeitz, 1987),

• High-gain observer (Khalil and Praly, 2014),

• Adaptive observer (Cho and Rajamani, 1997),

• Sliding mode observer (Fridman et al., 2008).

In the next section, we will only recall the standard high-gain observer methodology.

2.3.2 Standard high-gain observer methodology

We consider the class of nonlinear systems described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f(x(t))

y(t) = Cx(t),
(2.14)

where the matrices A and C are defined by

C = [ 1 0 . . . 0 ] , (A)i,j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if j = i + 1,

0 if j ≠ i + 1,
(2.15)

where x(t) ∈ Rn is the state vector of the system and y(t) ∈ R is the measured output. The

function f ∶ Rn Ð→ Rn satisfies the Lipschitz property. We consider the Luenberger observer

˙̂x(t) = Ax̂(t) + f(x̂(t)) +L[y(t) −Cx̂(t)], (2.16)
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where x̂(t) represents the state estimation and L is the observer gain.

The dynamics of the estimation error e(t) = x(t) − x̂(t) is given as follows

ė(t) = (A −LC)e(t) + [f(x(t)) − f(x̂(t))]. (2.17)

In the standard high-gain methodology, as in (Gauthier and Kupka, 1994), the gain L of

the observer is written as follows:

L ≜ T (θ)K; θ ⩾ 1, (2.18)

where

T (θ) ∶= diag(θ, . . . , θn) and K ∈ Rn.

Moreover, the observer’ estimation error is transformed into

ē(t) ∶= T−1(θ)e(t),

where T−1(θ) is the inverse of T (θ) given by

T −1(θ) ∶= diag (1
θ
, . . . ,

1

θn
) .

The dynamics of the transformed error is given by

˙̄e(t) = θ(A −KC)ē(t) + T−1(θ)∆f, (2.19)

with

∆f ∶= f(x) − f(x − T (θ)ē).

From the fact that θ ⩾ 1 and by using the Lipschitz condition, it was shown in (Alessandri

and Rossi, 2013) that there exists a positive constant kf , independent of θ, such that

∥T−1(θ)∆f)∥ ⩽ kf∥ē∥. (2.20)

The exponential stability of the transformed error is guaranteed by the following conditions

established in the theorem cited below:

18



Theorem 3 (Zemouche et al., 2019) If there exist P > 0, λ > 0, Y , and θ ≥ 1 such that

ATP + PA −CTY − Y TC + λI < 0 (2.21)

θ > θ0 =
2kfλmax(P )

λ
(2.22)

then the estimation error e is exponentially stable with K = P −1Y T , where λmax(P ) is the

maximum eigenvalue of the matrix P .

Proof The proof of this theorem can be found in (Zemouche et al., 2019).

2.4 Conclusion

The objective of this chapter was to give an overview related to the stability notions of time-

delay systems and some existing methods about the stability were summarized (Lyapunov

stability and finite-time stability). On the other hand, we presented a reminder of a state

observer and the standard high-gain observer methodology.
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3.1 Introduction

State estimation for nonlinear systems is a very important topic as the state is often unknown

but needed for control design or fault detection. Many papers proposed state observer solu-

tions for different classes of nonlinear systems. In particular, there has been a recent interest

in the class of nonlinear systems with delayed output measurements. Indeed, system’s mea-

surements are often subject to delay due to the underlying complexity of the system itself or

to some communication delays if the measurements need to be sent to another location. This

measurement delay will obviously affect the estimation and the control performance.

In (Ahmed-Ali et al., 2009), the authors proposed a cascade high-gain observer based on

the Lyapunov method in which explicit relations between the delay and the number of cascade

observers have been proposed. Subsequently, an extension to high-gain observer design with

time varying-delay and sampled data cases where the delay is sufficiently small has been

presented in Van Assche et al. (2011). Although the maximum value of the allowable delay

is improved, however, it still remains small due to the high value of the tuning parameter

required by the standard high-gain observer. On the other hand, the maximum bound of

the delay is obtained by solving an ordinary differential equation that depends on the design

tuning parameter. The proposed work in this chapter has been motivated by this issue, namely

establishing a high-gain like design method with a lower tuning parameter, which leads to a

higher maximum value of the delay.

To this end, we proposed an observer design method, which covers the standard high-gain

observer, used in the above papers, as a particular case. This is based on the exploitation

of the LMI-based approach combined with the standard high-gain technique, called HG/LMI

observer, which allows introducing a compromise index js. This index js offers the possibility

to adjust the value of the tuning high-gain parameter ensuring exponential convergence for

larger values of the delay. The convergence analysis is performed by using a Lyapunov-

Krasovskii functional. To reach less conservative bounds, the Halanay inequality is applied

on the integral term containing the error, instead of developing strong upper bounds to make
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it vanish from the Lyapunov analysis. The obtained results show explicitly the effectiveness of

the proposed HG/LMI observer-based technique, due to the mathematical relation between

the tuning parameter of the observer and the maximum bound of the delay. An extension

to nonlinear systems with sampled measurements is given as an application of the result.

Furthermore, the proposed methodology is extended to systems with nonlinear outputs.

3.2 System description and problem formulation

In this section, we introduce the class of systems under consideration and formulate the

estimation problem.

We consider the class of nonlinear systems described by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

⋮

ẋn−1

ẋn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 + f1(x1)

x3 + f2(x1, x2)

⋮

xn−1 + fn−1(x1, x2, . . . , xn−1)

fn(x1, . . . , xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y = x1(t − τ(t)),

(3.1)

where x(t) ∈ Rn is the state vector of the system and y(t) ∈ R is the measured output. We

assume that τ(t) is a known time-varying delay satisfying

0 < τ(t) ⩽ τM .

The functions fi ∶ Ri Ð→ R, i=1,. . . , n, satisfy the following Lipschitz property:

∣fi(x1 +∆1, . . . , xi +∆i) − fi(x1, . . . , xi)∣ ⩽
i

∑
j=1

kj ∣∆j ∣ (3.2)

where kj is the Lipschitz constant and ∆j ∈ R,∀j = 1, . . . , i.

For simplicity of the presentation, system (3.1) can be rewritten under the following compact

form:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f(x(t)),

y(t) = Cx(t − τ(t)),
(3.3)
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where the matrices A and C are defined as in (2.15) and

f(x(t)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(x1)

f2(x1, x2)

⋮

fn−1(x1, x2, . . . , xn−1)

fn(x1, . . . , xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

Let us introduce the following Luenberger observer

˙̂x(t) = Ax̂(t) + f(x̂(t)) +L[y(t) −Cx̂(t − τ(t))], (3.5)

where x̂(t) represents the state estimation and L is the observer gain.

The dynamics of the estimation error e(t) = x(t) − x̂(t) is given as follows

ė(t) = Ae(t) + [f(x(t)) − f(x̂(t))] −LCe(t − τ(t)). (3.6)

The objective consists in designing a high-gain observer for system (3.1) that provides stability

of the estimation error. We also provide an expression of the maximum bound of the allowable

delay and the design parameter under which the proposed observer converges exponentially.

To establish the exponential convergence, the following lemma is useful.

Lemma 1 (Halanay (1966)) If there exist a positive Lyapunov-Krasovskii functional V (e(t))

such that

d

dt
V (e(t)) ⩽ −αV (e(t)) + β sup

s∈[t−τM ,t]
V (e(s)),

where α > β > 0, then there exist two scalars η > 0 and δ > 0 such that

V (e(t)) ⩽ ηe−δ(t−t0) for all t ⩾ t0.

In order to show the improvement of the results by using the the HG/LMI observer based

design, we first start by deriving new LMI conditions based on the use of the standard high-

gain observer methodology.
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3.3 Standard high-gain observer based design

This section is devoted to the preliminary results shared into several intermediate results.

Indeed, after some preliminary and useful mathematical lemmas and propositions related to

time-delay systems theory, we propose a new LMI-based observer design procedure. The

latter provides conditions on the maximum upper bound of the allowed delay guaranteeing

exponential convergence of the observer. The design technique is based on the use of the

standard high-gain observer methodology.

By using the standard high-gain methodology recalled in Chapter 2, the dynamics of the

transformed error is given by

˙̄e(t) = θ(A −KC)ē(t) + T−1(θ)∆f − θKC(ē(t − τ(t)) − ē(t)), (3.7)

with

∆f ∶= f(x(t)) − f(x(t) − T (θ)ē(t)).

Before presenting the main theorem corresponding to the use of the standard high-gain

observer, we will introduce first a series of intermediate results. Such intermediate results will

improve the clarity and readability of the first main theorem.

Lemma 2 Let f be a nonlinear function satisfying (2.20). Then for any symmetric and

positive definite matrix P and a vector ē of appropriate dimensions, we have

He{(T−1(θ)∆f)
⊺
ē(t)} ≤ 2kfλmax(P )ē⊺(t)ē(t), (3.8)

where He{S} ∶= S + S⊺.

Proof The proof is omitted. It is straightforward by applying the well-known Cauchy-Schwarz

inequality and the fact that θ ≥ 1.

Proposition 1 Let Y be an arbitrary matrix of appropriate dimension. Define Υ as

Υ ≜ ē⊺(t)Y ⊺C(ē(t) − ē(t − τ(t))) + (ē(t) − ē(t − τ(t)))
⊺
C⊺Y ē(t),
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where ē(t) is the transformed estimation error satisfying (3.7). Then there exist three positive

scalars µi > 0, i = 1, . . . ,3 such that Υ satisfies the following inequality:

Υ ⩽ 1

µ1
ē⊺(t)Y ⊺Y ē(t)

+ µ1(1 +
1

µ2
)τMθ2∫

t

t−τM
(ē2(s))2ds

+ µ1(1 +
1

µ3
)(1 + µ2)k21τM ∫

t

t−τM
(ē1(s))2ds

+ µ1(1 + µ2)(1 + µ3)τMK2
1θ

2∫
t

t−τM
(ē1(s − τ(s)))2 ds. (3.9)

where ē1 and ē2 are the first and second components of the estimation error vector ē(t), and

K1 is the first component of K.

Proof By applying the Young inequality on Υ, we obtain

Υ ⩽ µ1(ē(t) − ē(t − τ(t)))
⊺
C⊺C(ē(t) − ē(t − τ(t))) + 1

µ1
ē⊺(t)Y ⊺Y ē(t), (3.10)

for any given scalar µ1 > 0. By using the Newton-Leibniz integration formula

ē(t) − ē(t − τ(t)) = ∫
t

t−τ(t)
˙̄e(s)ds,

inequality (3.10) can be rewritten as follows:

Υ ⩽ µ1J(t) +
1

µ1
ē⊺(t)Y⊺Y ē(t), (3.11)

where

J(t) ≜ (∫
t

t−τ(t)
˙̄e(s)ds)

⊺
C⊺C (∫

t

t−τ(t)
˙̄e(s)ds) .

From Jensen Inequality and the fact that Cē(s) = ē1(s), and

˙̄e1(s) = (θē2(s)+
1

θ
∆f1 − θK1ē1(s − τ(s))), (3.12)
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we obtain an upper bound of J(t) as follows:

J(t) ⩽ τ(t)∫
t

t−τ(t)
˙̄e(s)⊺C⊺C ˙̄e(s)ds

⩽ τM ∫
t

t−τM
( ˙̄e1(s))

2
ds

= τM ∫
t

t−τM
(θē2(s)+

1

θ
∆f1 − θK1ē1(s − τ(s)))

2
ds

⩽ (1 + 1

µ2
)τMθ2∫

t

t−τM
(ē2(s))2ds

+ (1 + µ2)τM ∫
t

t−τM
(1
θ
∆f1 − θK1ē1(s − τ(s)))

2

ds

⩽ (1 + 1

µ2
)τMθ2∫

t

t−τM
(ē2(s))2ds

+ (1 + 1

µ3
)(1 + µ2)k21τM ∫

t

t−τM
(ē1(s))2ds

+ (1 + µ2)(1 + µ3)τMK2
1θ

2∫
t

t−τM
(ē1(s − τ(s)))2 ds (3.13)

where µ2 > 0 and µ3 > 0 come from the application of Young inequality. By substituting (3.13)

in (3.11), inequality (3.9) is inferred. This ends the proof of Proposition 1.

Lemma 3 Let X(t) be a positive and continuous function. Let τ(.) be a positive time-delay

with τ(t) ≤ τM . Then the following inequality holds:

∫
t

t−τ(t)
X(s − τ(s))ds ≤ τM sup

s∈[t−2τM , t]
{X(s)}. (3.14)

Proof The proof is straightforward. Indeed, if s ∈ [t − τM , t] and τ(s) ≥ 0, then we have

s − τ(s) ∈ [t − 2τM , t].

Proposition 2 Consider the Lyapunov function V1(ē(t)) ≜ ē⊺(t)P ē(t), where P = P ⊺ > 0.

Then the derivative of V1 along the trajectories of (3.7) satisfies the following inequality:

d

dt
V1 ⩽ θē⊺(t)[A⊺P + PA −C⊺Y −Y⊺C +

1

µ1
Y⊺Y]ē(t) + 2kfλmax(P)ē⊺(t)ē(t)

+µ1(1 +
1

µ2
)τMθ3∫

t

t−τM
(ē2(s))2ds

+ϖ(µ1, µ2, µ3)τ2M sup
s∈[t−2τM , t]

V1(s), (3.15)
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where

ϖ(µ1, µ2, µ3) ≜
µ1

λmin(P )
[(1 + 1

µ3
)(1 + µ2)k21θ + (1 + µ2)(1 + µ3)K2

1θ
3] , (3.16)

and

Y =K⊺P.

Proof Let us start by computing the derivative of V1 along the trajectories of (3.7). We

obtain

d

dt
V1(t) = ˙̄eT (t)P ē(t) + ēT (t)P ˙̄e(t)

= θēT (t) [(A −KC)TP + P (A −KC)] ē(t)

+ (T−1(θ)∆f)TP ē(t) + ēT (t)P (T−1(θ)∆f) + θΥ,

where

Υ ≜ ē⊺(t)Y⊺C(ē(t) − ē(t − τ(t))) + (ē(t) − ē(t − τ(t)))
⊺
C⊺Y ē(t),

and

Y =KTP.

The rest of the proof can be obtained straightforwardly from Lemma 2, Proposition 1, and

Lemma 3.

Lemma 4 Let us define the function

ϑ(z) ≜ ∫
t

t−τM
∫

t

ξ
z(s)dsdξ,

where z(s) ∈ R+ and τM > 0 is a scalar constant. Then the two following equations hold:

ϑ(z) ⩽ τM ∫
t

t−τM
z(s)ds, (3.17a)

d

dt
ϑ(z(t)) = τMz(t) − ∫

t

t−τM
z(s)ds. (3.17b)
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Proof The first inequality (3.17a) is obvious and can be obtained by integrating with respect

to ξ and the fact that t − s ≤ τM for s ∈ [t − τM , t].

Now we are ready to state the preliminary result summarized in the following theorem

providing new LMI conditions ensuring exponential convergence of the standard high-gain

observer.

Theorem 4 Assume there exist a positive definite matrix P , a matrix Y of appropriate di-

mension and real constants µi> 0, i = 1, . . . ,3, λ> 0, τM > 0 such that the following conditions

hold

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA −Y⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0, (3.18)

θ >max(1, 2kfλmax(P )
λ

) , (3.19)

τM ≤min(τ1, τ2), (3.20)

where

τ1 ≜

¿
ÁÁÁÁÀ

[λθ − 2kfλmax(P )]

λmax(P )ϖ(µ1, µ2, µ3)
, (3.21)

τ2 ≜
1

µ1(1 + 1
µ2
)θ2 + [λθ − 2kfλmax(P )]

λmax(P )

, (3.22)

with

ϖ(µ1, µ2, µ3)≜
µ1

λmin(P )
[(1 + 1

µ3
)(1 + µ2)k21θ + (1 + µ2)(1 + µ3)K2

1θ
3] , (3.23)

R = [0 1 01×n−2], (3.24)

K = P −1Y⊺ = [K1 . . .Kn]⊺. (3.25)

Then the observer (3.5) converges exponentially and the observer gain is given by L =

T (θ)K.
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Proof Consider the following Lyapunov-Krasovskii functional

V (t) = V (ē(t)) = V1(ē(t)) + θV2(ē(t)), (3.26)

where

V1(t) = ē⊺(t)P ē(t),

and

V2(t) = ∫
t

t−τM
∫

t

ξ
(ē2(s))2dsdξ.

From Schur lemma, LMI (3.18) is equivalent to

ATP + PA −CTY −YTC + 1

µ1
YTY + τMRTR < −λI.

Hence, by substituting this inequality in the derivative of V (ē(t)) and from Proposition 2 and

Lemma 4, we get the following inequality:

d

dt
V (t) ⩽ −(θλ − 2kfλmax(P ))ē⊺(t)ē(t)

− θτM (
1

τM
− µ1(1 +

1

µ2
)θ2)∫

t

t−τM
(ē2(s))2ds

+ϖ(µ1, µ2, µ3)τ2M sup
s∈[t−2τM , t]

V1(s),

for any positive scalars µi, i = 1, . . . ,3, where ϖ(µ1, µ2, µ3) is defined in (3.16). From (3.22),

we deduce that

1

τM
− µ1(1 +

1

µ2
)θ2 > 0.

Then by applying Lemma 4, Lemma 3, and since V1(s) ≤ V (s), we obtain

d

dt
V (t) ⩽ −(θλ − 2kfλmax(P ))ē⊺(t)ē(t) − θ (

1

τM
− µ1(1 +

1

µ2
)θ2)V2(t)

+ϖ(µ1, µ2, µ3)τ2M sup
s∈[t−2τM , t]

V (s).

Finally, from (3.19) and the inequality below

−ē⊺(t)ē(t) ≤ − 1

λmax(P )
V1(t),
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we get

d

dt
V (t) ⩽ −αV (t) +ϖ(µ1, µ2, µ3)τ2M sup

[t−2τM ,t]
V (s),

where

α ≜min
⎛
⎝
θλ − 2kfλmax(P )

λmax(P )
,
1

τM
− µ1(1 +

1

µ2
)θ2
⎞
⎠
,

ϖ(µ1, µ2, µ3) is defined in (3.16). From (3.21) and (3.22) we have ϖ(µ1, µ2, µ3) < α. Con-

sequently, we deduce from Lemma 1 that there exist two positive scalars η and δ such that

V (ē(t)) ⩽ ηe−δ(t−t0), ∀ t ⩾ t0,

which means that the estimation error is exponentially stable to zero. This ends the proof.

Remark 2 All the scalar positive quantities µi, i = 1,3 come from the application of Young in-

equality appropriately. The variable µ1 is considered as a decision variable in the LMI (3.18),

while the µ2 and µ3 appear in (3.21)-(3.22). They should be fixed adequately to increase the

value of the tolerated τM . However, since they are involved nonlinearly, it is difficult to opti-

mize their computation. To simplify the computation of τ1 and τ2, we chose as values of µ2

and µ3 those often used in the Young inequality, namely µ2 = µ3 = 1. Therefore, (3.21)-(3.22)

are simplified as follows:

τ1 ≜

¿
ÁÁÁÁÁÀ

λmin(P )[λθ − 2kfλmax(P )]

4µ1θλmax(P )[k21 +K2
1θ

2]
, (3.27)

τ2 ≜
1

2µ1θ2 +
[λθ − 2kfλmax(P )]

λmax(P )

. (3.28)

Remark 3 In the particular case where the system contains only one nonlinearity in the last

component (fi ≡ 0, i = 1, . . . , n − 1), then Theorem 4 with k1 = 0 can be applied to get larger

values of the tolerated τM . Indeed, in such a situation, the dynamics of ē1 in (3.12) does not

contain the term
1

θ
∆f1.

Notice that the upper bound of the delay can be very small for high values of θ. This

means that for relatively important delays, the considered observer cannot guarantee the
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exponential convergence of the estimation error. Indeed, an exponential observer with a high

value of θ tolerates small upper bound τM of the delay. In the next section, to overcome this

problem, we propose to use the high-gain like-observer with lower tuning parameter introduced

in (Zemouche et al., 2019).

3.4 HG/LMI observer based design

In this section, we extend the HG/LMI observer methodology developed in (Zemouche et al.,

2019) for nonlinear systems to system (3.1) with the objective of improving the allowable

value of τM while ensuring exponential convergence of the observer.

3.4.1 HG/LMI-based transformation

From the LPV/LMI method in (Zemouche and Boutayeb, 2013), each nonlinear component

∆fi in (3.7) can be rewritten under the following form (Zemouche et al., 2019):

∆fi =
i−ji
∑
j=1

θjψij ēj +
ji

∑
j=1

θki(j)ψiki(j)ēki(j),

where

ki(j) = i − (ji − j), 0 ⩽ ji ⩽ i.

It follows that ∆f is written as

∆f =

for HG
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n

∑
i=1

i−ji
∑
j=1

θjψijvn(i)ēj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆f1

+

for LPV/LMI
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n

∑
i=1

ji

∑
j=1

θki(j)ψiki(j)vn(i)ēki(j),

Therefore, the error dynamics (3.7) is rewritten as follows:

˙̄e(t) = θ(A(Ψθ) −KC)ē(t) + T−1(θ)∆f1 − θKC(ē(t − τ(t)) − ē(t)), (3.29)

with

A(Ψθ) = A +
n

∑
i=1

ji

∑
j=1

ψθ
ijvn(i)enki(j),
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Ψθ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ψθ
11

⋮

ψθ
1j1

ψθ
21

⋮

ψθ
2j2

⋮

ψθ
njn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ R∑n
i=1 ji ,

and

ψθ
j =

ψiki(j)

θ1+(ji−j)
.

Define the convex bounded set

Hσ
js = {Φ ∈ R∑

n
i=1 ji ∶

γ
γiki(j)

σ1+(ji−j)
≤ Φij ⩽

γ̄γiki(j)

σ1+(ji−j)
} ,

for which the set of vertices is defined by

VHσ
js
= {Φ ∈ R∑n

i=1 ji ∶ Φij ∈ {
γ
γiki(j)

σ1+(ji−j)
,
γ̄γiki(j)

σ1+(ji−j)
}}

where γ̄γiki(j) ≥ 0 and γ
γiki(j)

≤ 0 are, respectively, the lower and the upper bounds of the

bounded parameter ψiki(j). Then, for two positive scalars σ1, σ2, we have

σ1 ≤ σ2 Ô⇒Hσ1
js
⊃Hσ2

js
.

It follows that

lim
σ→+∞

Hσ
js = {0}.

On the other hand, we can show that there exists a constant kjs independent from θ such

that the following inequality holds:

∥T−1(θ)∆f1∥ ⩽
kjs
θjs
∥ē∥. (3.30)
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3.4.2 HG/LMI synthesis conditions

This section is devoted to the main theorem, which provides sufficient synthesis conditions

guaranteeing exponential convergence of the estimation error. The design is based on the

use of the HG/LMI technique for the class of nonlinear systems with delayed outputs given

in (3.1).

Theorem 5 Assume there exist a positive definite matrix P , a matrix Y of appropriate di-

mension and real constants µi> 0, i = 1, . . . ,3, λ> 0, τM > 0 such that the following conditions

hold

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψ) −Y⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0, (3.31)

θ >max
⎛
⎝
σ,

1+js

√
2kjsλmax(P )

λ

⎞
⎠
, (3.32)

τM ≤min(τ1, τ2), (3.33)

where

τ1 ≜

¿
ÁÁÁÁÀ
[θλ − 2kjsλmax(P )

θjs
]

λmax(P )ϖ(µ1, µ2, µ3)
, (3.34)

τ2 ≜
1

µ1(1 +
1

µ2
)θ2 +

[θλ − 2kjsλmax(P )
θjs

]

λmax(P )

, (3.35)

with

ϖ(µ1, µ2, µ3) ≜
µ1

λmin(P )
[(1 + 1

µ3
)(1 + µ2)k21θ + (1 + µ2)(1 + µ3)K2

1θ
3] , (3.36)

R = [0 1 01×n−2], (3.37)

K = P −1Y⊺ = [K1 . . .Kn]⊺. (3.38)

Then the observer (3.5) converges exponentially and the observer gain is given by L = T (θ)K.

33



Proof Consider the following Lyapunov-Krasovskii functional

V (t) = V1(t) + θV2(t),

where

V1(t) = ē⊺(t)P ē(t),

and

V2(t) = ∫
t

t−τM
∫

t

ξ
(ē2(s))2dsdξ.

From Schur lemma, LMI (3.31) is equivalent to

A(Ψσ)⊺P + PA(Ψσ) −C⊺Y −Y⊺C + 1

µ1
Y⊺Y + τMR⊺R ⩽ −λI.

By analogy to the proof of Theorem 4, the derivative of V along the trajectories of (3.29)

satisfies

d

dt
V (t) ⩽ −(θλ −

2kjsλmax(P )
θjs

)ē⊺(t)ē(t) − θ ( 1

τM
− µ1(1 +

1

µ2
)θ2)V2(t)

+ϖ(µ1, µ2, µ3)τ2M sup
s∈[t−2τM , t]

V (s)

for any positive scalars µi, i = 1, . . . ,3, where ϖ(µ1, µ2, µ3) is defined in (3.16).

Therefore

d

dt
V (t) ⩽ −αV (t) +ϖ(µ1, µ2, µ3)τ2M sup

[t−2τM ,t]
V (s),

with

α ≜min

⎛
⎜⎜⎜
⎝

θλ − 2kjsλmax(P )
θjs

λmax(P )
,
1

τM
− µ1(1 +

1

µ2
)θ2
⎞
⎟⎟⎟
⎠
.

From (3.34) and (3.35) we have ϖ(µ1, µ2, µ3) < α. Hence, Lemma 1 allows concluding expo-

nential convergence to zero of the estimation error. This ends the proof.

Remark 4 The previous proof shows the role of the ”compromise index” js. It allows reducing

the tuning parameter value of the observer. Since the expression of the delay depends on the

tuning parameter, reducing this later increments the value of the maximum delay τM compared

to the standard high-gain observer.
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Remark 5 One important property of the standard high gain observers is the fast exponential

convergence. However, such fast convergence has several drawbacks: high sensitivity to mea-

surement noise; peaking phenomenon; and time-delay in the output. Indeed, high values of

delay affect the convergence of the observer. It is important to keep in mind that the standard

high-gain observer is a particular solution to the proposed methodology. It corresponds exactly

to the case js = 0. This means that if for a given value of the delay τ , the standard high-

gain observer converges, then also the proposed HG/LMI based observer converges with the

same convergence rate. The proposed observer offers the possibility to adjust the values of js

and θ to have a good tradeoff between ensuring analytically the exponential convergence, with

adjustable convergence rate, and allowing large values of the delay, while standard high-gain

observer does not have this possibility. A large value of the delay could make the standard

high-gain observer diverge, while the proposed observer can converge by increasing the index

js to adjust the value of θ. This analysis comes from the interpretation of the design condi-

tions given in Theorem 4 and Theorem 5, and supported by the numerical results provided in

Section 3.5. Furthermore, by adjusting θ and js, the proposed observer is able to avoid the

peaking phenomenon, to reduce the sensitivity to high-frequency measurement noise, and to

enhance the convergence rate if necessary.

3.4.3 Application to sampled-data case

Theorem 5 can be applied straightforwardly to the case of systems with sampled output

measurements. The output is sampled at instants tk satisfying

0 ⩽ t0 < . . . < tk < tk+1 < . . .

with lim
t→+∞

tk = +∞. In this case, the sampling period τk = t−tk is positive with τk ⩽ τM ,∀k ⩾ 0.

To apply the results of the previous sections, we write the sampled-output as a delayed-output,

where the delay satisfies all the required conditions. Indeed, the output y(tk) can be written

as

y(tk) = y(t − τ(t)),
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with τ(t) = t − tk. For all t ∈ [tk tk+1], we have

0 < τ(t) ≤ τM .

Hence, Theorem 5 can be applied to build an observer for system (3.3) based on the sampled-

measurements y(tk). This application is summarized in the following corollary.

Corollary 1 Let us consider the following observer (3.39) corresponding to system (3.3):

˙̂x(t) = Ax̂(t) + f(x̂(t)) +L(y(tk) −Cx̂(tk)), t ∈ [tk, tk+1[, (3.39)

where L is given by (2.18). Assume there exist a positive definite matrix P and a matrix Y of

appropriate dimensions and real constants µi > 0, i = 1, . . . ,3, λ> 0, and τM > 0 such that the

conditions (3.31)-(3.35) of Theorem 5 hold. Then the observer (3.39) converges exponentially.

3.4.4 Extension to systems with nonlinear output

This section provides an extension of the result to nonlinear output case. Hence we consider

system (3.1) with output measurement

y(t) = h(x1(t − τ(t))), (3.40)

where h ∶ R ↦ R is a strictly monotonic nonlinear function. That is we assume that there

exists 0 < δ ≤ 1 such that

∂h

∂z
(z) ≥ δ, ∀z ∈ R. (3.41)

Notice that without condition (3.41), we lose local observability of the system. Assume also

that h is γh−Lipschitz. Without loss of generality, we assume that

γh ≜max
z∈R
(∣ ∂h
∂z
(z) ∣) = 1. (3.42)

Indeed, if (3.42) is not satisfied, then instead of y(t), we can use as measurement the new

output

yh(t) ≜
y(t)

max
z∈R
(∣ ∂h
∂z
(z) ∣)

≜ h̄(x1(t − τ(t))), (3.43)
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with

h̄(x1(t − τ(t))) ≜
h(x1(t − τ(t)))

max
z∈R
(∣ ∂h
∂z
(z) ∣)

,

satisfying

max
z∈R
(∣ ∂h̄
∂z
(z) ∣) = 1.

Now consider the observer corresponding to (3.1) and (3.40) as follows:

˙̂x(t) = Ax̂(t) + f(x̂(t)) +L [y(t) − h(x̂1(t − τ(t)))] , (3.44)

where x̂ represents the state estimation and L is the observer gain.

From the differential mean value theorem, there exists z(t) ∈ Co(x1(t − τ(t)), x̂1(t − τ(t)))

such that

h(x1(t − τ(t))) − h(x̂1(t − τ(t))) = θ
∂h

∂z
(z)Cē(t − τ(t)),

where Co(x1(t−τ(t)), x̂1(t−τ(t))) is the convex hull defined by x1(t−τ(t)) and x̂1(t−τ(t)).

Then, the dynamics of the transformed error, ē(t), is given by

˙̄e(t) = θ(A − ∂h
∂z
(z)KC)ē(t) + T−1(θ)∆f + θ∂h

∂z
(z)KC(ē(t) − ē(t − τ(t))), (3.45)

By using the HG/LMI technique, the error dynamics (3.45) can be written under the form:

˙̄e(t) = θ(A(Ψθ) − ∂h
∂z
(z)KC)ē(t) + T −1(θ)∆f1 + θ

∂h

∂z
(z)KC(ē(t) − ē(t − τ(t))). (3.46)

Following the same steps than the previous section, will lead to the following theorem.

Theorem 6 Assume there exist a positive definite matrix P , a matrix Y of appropriate di-

mension and real constants µi> 0, i = 1, . . . ,3, λ> 0, τM > 0 such that the following conditions

hold

a) The following LMI conditions (3.47)-(3.48) are satisfied:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψ) −Y⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0, (3.47)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψ) − δY⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0, (3.48)

b) θ satisfies (3.32), subject to (3.47)-(3.48);

c) τM satisfies, (3.33)-(3.35), subject to (3.47)-(3.48);

d) The observer gain matrix K is given by K = P −1Y⊺.

Then the observer (3.44) converges exponentially.

Proof The proof follows exactly the same steps of the previous section. The proof is based on

the same Lyapunov–Krasovskii functional as defined in (3.26).

From Schur lemma, the inequality

He{PA(Ψσ) − ∂h
∂z
(z)Y⊺C} + 1

µ1
Y⊺Y + τMR⊺R ⩽ −λI, ∀Ψσ ∈Hσ

js .

is satisfied if the following one hold:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψσ) − ∂h
∂z
(z)Y⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0. (3.49)

On the other hand, assuming (3.42) is important and allows using the same developments

established in Theorem 5 with slight modifications. Indeed, due to (3.42), the term
∂h

∂z
(z)

appears only in the matrix block He{PA(Ψ) − ∂h
∂z
(z)Y⊺C}. Since this matrix is convex in

∂h

∂z
(z), then from the convexity principle, it is sufficient to solve the LMIs with max

z∈R
(∂h
∂z
(z)) =

1 and min
z∈R
(∂h
∂z
(z)) = δ. Hence, using the fact that

δ ≤ ∂h
∂z
(z) ≤ 1, ∀z ∈ R, (3.50)

and Ψσ ∈Hσ
js, we deduce that (3.49) is satisfied if the following two of LMIs hold:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψσ) −Y⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0,
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψσ) − δY⊺C} + τMR⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⩽ 0.

By following the steps of the proof of Theorem (5), we obtain
d

dt
V (t) < 0,∀x(t) /= 0.Then the

conditions on θ and τM are derived similarly as in the previous theorems. This ends the proof.

Remark 6 The extension to systems with nonlinear outputs is particularly a new contribution

and a non-straightforward extension. The generalization is based on the use of the differential

mean value theorem and some judicious mathematical arrangements. The extension leads to

more general design conditions, which can be reduced easily to those of the linear case. This

extension is simple to implement, and therefore it is appropriate for applications to real-world

models.

Remark 7 The linear case can be deduced straightforwardly from the nonlinear output case

by taking δ = 1. Indeed, h(.) is linear if and only if
∂h

∂z
(z) ≡ Constant. ∂h

∂z
(z) is identically

constant if and only if

max
z∈R
(∂h
∂z
(z)) =min

z∈R
(∂h
∂z
(z)) .

From (3.42),
∂h

∂z
(z) is constant if δ = 1. In this case, LMIs (3.47) and (3.48) are identical,

and then reduced to (3.47) only, which corresponds to the linear case.

3.4.5 Numerical design procedure

This section is devoted to a numerical observer design procedure. Due to the presence of

several decision variables as observer parameters, in the previous theorems, a well-structured

numerical design procedure will help the users to implement the proposed methodology. The

proposed design procedure is based on the use of the gridding method. We introduce a

bijective change of variables ϱ = σ

1 − σ , (σ =
ϱ

1 − ϱ) where the new variable ϱ ∈ ]1
2
1]. The

proposed procedure allows obtaining a lower design parameter, θ, and a larger upper bound

on the delay, τM , provided by Theorem 5 (which is applicable also on Corollary 1). To solve

39



LMI (3.31), we use Matlab LMI Toolbox and YALMIP. Furthermore, LMI (3.31) are always

feasible (Zemouche et al., 2019), however they have an infinite number of solutions and depend

on σ (or equivalently, on ϱ). Then the gridding method will return the solution giving a lower

value of θ, and a larger bound on τM . On the other hand, it is worth noting that LMI (3.31)

depends on τM , which is computed by (3.33)-(3.35) after solving the (3.31). Then, to solve the

LMI (3.31) independently from τM , we need to introduce a new variable τ̄ > 0, and solve (3.31)

with τ̄ > 0 instead of τM , i.e.:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PA(Ψ) −Y⊺C} + τ̄R⊺R + λI Y⊺

Y −µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.51)

Hence, by chosing

τM =min(τ̄ , τ1, τ2). (3.52)

we guarantee exponential convergence of the observer because LMI (3.31) still feasible for

any τM ≤ τ̄ . Furthermore, inequality (3.51) can return a τ̄ value very close to zero, which

is not suitable because the objective is to get a value of τ̄ large enough to force τM to take

either the value of τ1 or that of τ2. To this end, a solution consists in fixing τ̄ in (3.51).

Indeed, we cannot maximise τ̄ because it is obvious to show that if (3.51) is feasible for τ̄ = 1,

then it still remains feasible for any τ̄ > 0. A change of variable to eliminate τ̄ from (3.51)

cannot be performed since µ1 is used to calculate τ1 and τ2. The procedure is summarized

in Algorithm 1, which will be implemented in Section 3.5 to show the performances of the

proposed methodology, compared to those of the standard high-gain observer.

Remark 8 There are several methods applicable for the same class of systems studied in this

chapter that avoid bounds on the delay by either using chain of observers (Germani et al.,

2002), (Cacace et al., 2014) or by using predictors (Ahmed-Ali et al., 2013b), (Khosravian

et al., 2015). These papers proposed effective methods based on elegant mathematical argu-

ments overcoming the problem of presence of arbitrarily long delay in the output. What we

propose in this work can be viewed as an alternative method, which improves existing results in
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Algorithm 1: A numerical design procedure

Step 1. Choose a small ϵ > 0 for the gridding, take ϱ = 1

2
, appropriate values for

λ > 0, µ1 > 0, and a sufficiently high value vgain > 0 and go to Step 2;

Step 2. While ϱ + ϵ < 1, take ϱ ∶= ϱ + ϵ and go to Step 3;

Step 3. Solve LMI (3.51) with respect to λ,P > 0, ϱ > 0, for a given τ̄ > 0.

Step 4. Take σ = ϱ

(1 − ϱ) ,K = P
−1Y⊺ and compute

• θ =max
⎛
⎝
σ,

1+js

√
2kjsλmax(P )

λ

⎞
⎠
;

• L = T (θ)K;

if vgain > ∥L∥ then
put vgain ∶= ∥L∥ and go to Step 2

else

return

• τ1 =

¿
ÁÁÁÁÀ
[θλ − 2kjsλmax(P )

θjs
]

λmax(P )ϖ(µ1, µ2, µ3)
;

• τ2 =
1

µ1(1 +
1

µ2
)θ2 +

[θλ − 2kjsλmax(P )
θjs

]

λmax(P )

;

• τM =min(τ̄ , τ1, τ2).

the literature. Anywhere the standard high-gain observer is used for systems with delayed out-

puts, the proposed methodology can be applied to improve the results while ensuring exponential

convergence for large values of the delay. The choice of Lyapunov based-functional can lead to

delay-independent stability conditions. For instance, the chain of observers (Germani et al.,

2002), (Cacace et al., 2014) and observer-predictor in (Ahmed-Ali et al., 2013b), (Khosravian

et al., 2015) can be effective for the compensation of the delay. However, the determination

of an implementable form for the observer-predictor feedback gains over the past time interval

can be challenging. Furthermore, the construction of Lyapunov-Krasovskii functional for ex-
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ponential stability analysis of the observer error dynamics under the observer-predictor scheme

is difficult to carry due to the output delayed measurement state. It is worth mentioning that

the practical implementation of the high-gain predictor-observer requires the future values of

the measurement state, which can significantly increase the computation. On the other hand,

the proposed observer in this work is simple to implement on real-world models without any

computational complexity. The observer design parameters are also easy to compute.

Remark 9 The methodology established in this work may open the door to further contri-

butions and new ideas to solve other control problems, namely output feedback stabilization;

reference trajectory tracking; self-synchronization in networks of multi-agent systems. More

importantly, the proposed methodology can be used as a design tool in several alternative ap-

proaches, like those using a chain of observers (Germani et al., 2002), (Ahmed-Ali et al.,

2009), (Cacace et al., 2014), or those using prediction part (Ahmed-Ali et al., 2013b), (Khos-

ravian et al., 2015).

3.5 Numerical comparisons

To show the effectiveness of the proposed methodology, we present in this section two numeri-

cal examples. We will provide some comparisons between the standard high-gain observer, the

high-gain observer method presented in (Van Assche et al., 2011) and the proposed HG/LMI

based observer. The simulations will be carried out by using MATLAB.

3.5.1 Example 1

The aim of this example is to compare the proposed approach to the standard high-gain design

and the high-gain observer proposed in (Van Assche et al., 2011). We consider the following

fifth order nonlinear system with only a single nonlinearity in the last component including a

delay in the output:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Bf(x(t)),

y(t) = Cx(t − τ(t)),
(3.53)
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where the matrices A and C are defined as in (2.15), and B is as follows

B = [ 0 0 0 0 1 ]
⊺
.

The nonlinearity is defined by

f(x) = kf
5

5

∑
i=1

sin(xi). (3.54)

In the sequel, we will provide comparisons between the standard high-gain observer, the

observer by (Van Assche et al., 2011) and the HG/LMI based design.

The comparison results are shown in Table 3.1, which illustrates how the values of the tuning

parameter are decreased and the maximum bounds on the delay become larger. For js = 2, the

value of the tuning parameter θ is significantly reduced to θ = 1.8571, compared to θ = 3407

obtained by (Van Assche et al., 2011), for kf = 0.1. It is also reduced from θ = 170350

with (Van Assche et al., 2011) to θ = 10.7647 for kf = 5. Meanwhile, in comparison to the

standard high-gain observer, the design parameter θ is decreased from θ = 6.3638 to θ = 1.8571

for kf = 0.1 and from θ = 186.6738 to θ = 10.7647 for kf = 5. On the other hand, the maximum

bound on the delay given by the observer in (Van Assche et al., 2011) and the standard

high-gain observer considerably increased from τM = 3.3760×10−11s and τM = 2.3661×10−6s,

respectively, to τM = 1.6505×10−4s for kf = 0.1 with HG/LMI approach. The previous values

are decreased more by increasing the value of the compromise index js. We notice that the

HG/LMI observer gain is considerably reduced compared to the standard high gain observer

and the observer in (Van Assche et al., 2011). For instance, for kf = 0.1, the norms of the

gains obtained by the standard high-gain observer and the observer in (Van Assche et al.,

2011) are significantly decreased from 15875 and 4.5906 × 1017, respectively, to 89.7547 with

the HG/LMI approach for js = 2.

Table 3.2 provides percentage of reduction/increment of the design parameter and the

maximum bound of the delay, according to the following formulas:

∆θ,i =
θi − θHG/LMI

θi
%, (3.55)

∆τ,i =
τM,HG/LMI − τM,i

τM,HG/LMI

%, (3.56)
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Table 3.1: Comparison between the proposed HG/LMI observer (HG/LMI), the standard

high-gain observer (SHG), and the high-gain observer (VVA) proposed in (Van Assche et al.,

2011) for different values of kf

Methods kf js σ θ τM ∥L∥

VVA

0.1

0 / 3407 3.3760 × 10−11 4.5906 × 1017

SHG 0 / 6.3638 2.3661 × 10−06 15875

HG/LMI 1 2.5088 2.5088 8.2499 × 10−05 269.5916

2 1.8571 1.8571 1.6505 × 10−04 89.7547

VVA

1

0 / 34070 3.0255 × 10−12 4.5906 × 1022

SHG 0 / 42.3560 1.5305 × 10−07 5.2321 × 1008

HG/LMI 1 7 7 2.3810 × 10−05 84446

2 4.1282 4.1282 3.6851 × 10−05 9330.5

VVA

5

0 / 170350 3.9542 × 10−13 1.4346 × 1026

SHG 0 / 186.6738 9.0240 × 10−09 1.8313 × 1012

HG/LMI 1 17.1818 17.1818 3.8231 × 10−06 1.9828 × 1007

2 10.7647 10.7647 4.1180 × 10−06 3.3268 × 1006

where θM,i, τi, θHG/LMI , and τM,HG/LMI stand for the design parameter and the maximum

bound of the delay of the observer in (Van Assche et al., 2011), the standard high-gain ob-

server, and the HG/LMI observer, respectively. The index i refers to VVA or SHG. We notice

that the percentage of reduction of the design parameter is up to 90.2536% for js = 2 and

kf = 1 in comparison to the initial value given by the standard high-gain observer. It is also

up to 99.9879% in comparison to the initial value provided by the observer in (Van Assche

et al., 2011). Meanwhile, the improvement of the maximum bound of the delay is greater than

99.5846% and 99.999991% for js = 2 and kf = 1, compared to both the standard high-gain

observer and the observer by (Van Assche et al., 2011), respectively.

Simulations have been carried out with kf = 1, and comparisons between the HG/LMI based
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Table 3.2: Percentage of reduction/increment for different values of js = 0,1,2

Methods kf js θ ∆θ,SHG ∆θ,V V A τM ∆τ,SHG ∆τ,V V A

VVA 0 3407 / 0 3.3760 × 10−11 / 0

SHG 0 6.3638 0 / 2.3661 × 10−06 0 /

HG/LMI 0.1 1 2.5088 60.5770 99.9264 8.2499 × 10−05 97.1319 99.999959

2 1.8571 70.8178 99.9455 1.6505 × 10−04 98.5664 99.999979

VVA 0 34070 / 0 3.0255 × 10−12 / 0

SHG 0 42.3560 0 / 1.5305 × 10−07 0 /

HG/LMI 1 1 6 85.8344 99.9824 2.3810 × 10−05 99.3572 99.999987

2 4.1282 90.2536 99.9879 3.6851 × 10−05 99.5846 99.999991

observer and the standard high-gain observer are provided. The simulation with the approach

proposed in (Van Assche et al., 2011) cannot occur due the the high value of the gain and

numerical instabilities.

By using MATLAB, the obtained value of the design parameter of the standard high-gain

observer is θ = 42.3560. By choosing the compromise index as js = 2, the obtained value

of the tuning parameter by applying the HG/LMI approach is θ = 4.1282, which is signif-

icantly reduced compared to that obtained by the standard high-gain based approach. In

addition, the maximum bound on the delay obtained with the standard high-gain based

approach is τM = 1.5310×10−7s, while with the HG/LMI observer we got a larger value,

τM = 3.6851×10−5s. Denote by x̂LMI = [x̂1,LMI , x̂2,LMI , x̂3,LMI , x̂4,LMI , x̂5,LMI]⊺ and x̂HG =

[x̂1,HG, x̂2,HG, x̂3,HG, x̂4,HG, x̂5,HG]⊺ the state estimates for the system (3.53) by using the

observer design method proposed in the present work and the standard high-gain observer,

respectively. Let x̂LMI(0) = [−1,−1,−1,−1,−1]⊺ and x̂HG(0) = [−2,−2,−2,−2,−2]⊺. The sim-

ulation results are depicted in Figures 3.1-3.5, which provide the behaviors of xi and their

estimates x̂i,LMI , x̂i,HG, i = 1, . . . ,5, respectively. It is quite clear that both estimated states
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converge to the actual states, however, the proposed HG/LMI based observer considerably

reduces the peaking phenomenon.
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Figure 3.1: Behaviour of x1 and its estimates for, kf =1, λ = 1 and µ1 = 25
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Figure 3.2: Behaviour of x2 and its estimates for, kf =1, λ = 1 and µ1 = 25
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Figure 3.3: Behaviour of x3 and its estimates for, kf =1, λ = 1 and µ1 = 25
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Figure 3.4: Behaviour of x4 and its estimates for, kf =1, λ = 1 and µ1 = 25
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Figure 3.5: Behaviour of x5 and its estimates for, kf =1, λ = 1 and µ1 = 25

3.5.2 Example 2

To evaluate the performance and superiority of the proposed HG/LMI observer based design

method, compared to the observer developed in (Van Assche et al., 2011) for systems with

multi-nonlinearities, we consider the example studied in (Van Assche et al., 2011) with a slight

modification on the last component to cope with the same class of system investigated in this

work. The system is described by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) − l1x1(t),

ẋ2(t) = c1c2 sin(x1(t)) + c1c3 cos(x2(t)) − c1c4u(t)

y(t) = x1(t − τ(t)),

(3.57)

The values of the parameters are set to c1 = 1, c2 = c3 = 0.02, c4 = 8, l1 = 0.04. The input

function is u(t) = sin(0.35t). System (3.57) is in the canonical form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f(x(t), u),

y(t) = x1(t − τ(t)),
(3.58)

with

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

, f(x,u) =
⎛
⎜⎜
⎝

f1(x1(t), u)

f2(x1(t), x2(t), u)

⎞
⎟⎟
⎠
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where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(x1(t), u) = −l1x1(t),

f2(x1(t), x2(t), u) = c1c2 sin(x1(t)) + c1c3 cos(x2(t)) − c1c4u(t).

The Lipschitz constants of the nonlinearities are kf1 = kf2 = 0.04. In (Van Assche et al.,

2011), the following high gain observer design was proposed:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̂x(t) = Ax̂(t) + f(x̂, u) − θ∆−1S−1CT (Cx̂(t − τ(t)) − y)),

y(t) = x1(t − τ(t)),
(3.59)

where

∆ = diag(1, 1
θ
), θ > 1,

S = ST > 0, C = [1 0] .

The matrix S =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1

−1 2

⎤⎥⎥⎥⎥⎥⎥⎦

is determined by solving the following equation

SA +ATS −CTC = −S. (3.60)

Table 3.3 illustrates the results obtained by the approach in (Van Assche et al., 2011) and the

HG/LMI based observer design.

Table 3.3: Percentage of reduction/increment of θ and τM , respectively

Methods θ τM

VVA observer 1.55 0.01

HG/LMI observer 1.0202 0.0202

Relative error 34.18% 50.49%

We can see that the HG/LMI-based observer decreases the value of the tuning parameter θ

by more than 34.18% compared to the one obtained by the observer proposed in (Van Assche

et al., 2011). In addition, the maximum bound on the delay is increased by 50.49%. It should

be mentioned that the reduction/increment of the design parameter θ and the maximum

bound on delay τM using the HG/LMI observer is obtained with js = 1.
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3.6 Conclusion

In this chapter, we considered the problem of observer design for a class of nonlinear systems

with time-varying delayed output measurements. The delay is assumed to be time-varying.

The objective was to develop a state observer with a small tuning parameter allowing a

maximum bound of the delay as high as possible while ensuring exponential convergence. To

this end, we extended the HG/LMI observer design introduced in (Zemouche et al., 2019)

for delayed output measurements, which led to a considerably higher allowable maximum

bound on the delay compared to the standard high-gain methodology. The convergence

analysis is established by using a Lyapunov-Krasovskii functional, depending on the tuning

parameter of the observer, jointly with the Halanay inequality. On the other hand, the

explicit relation between the tuning parameter of the observer and the maximum bound

of the delay shows analytically the superiority of the proposed method with respect to the

standard high-gain observer design. Two examples are provided to illustrate the performance

of the proposed observer design procedure in comparison to the standard high-gain and to the

high-gain observer proposed by (Van Assche et al., 2011). Moreover, extensions to systems

with nonlinear outputs and to systems with sampled measurements are established.

In the next chapter, we will introduce a new prescribed-time high-gain observer for a class

of nonlinear systems. Such observer guarantees the convergence to the real state in a desired

time chosen a priori by the user independently of the initial conditions.
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4.1 Introduction

In recent years, there has been significant interest into fixed time observer design where the

observer converges within a prescribed time. This type of convergence is highly desirable in

several applications, such as missile guidance (Holloway, 2018). Indeed, it is characterized

by the property to enable achieving convergence within a short amount of time that can be

arbitrarily prescribed irrespectively to initial conditions or any other design parameter of the

system. Therefore, prescribed-time estimation has received increasing attention from control

community during the recent years. For instance, (Holloway and Krstic, 2019) introduces the

prescribed observer for class of linear system in canonical form. Motivated by (Song et al.,

2017) and after using a change of coordinates of the observer error state and selecting the

time-varying observer gains, the proposed observer achieves fixed-time estimation where the

convergence time is defined a priori. However, the practical implementation of this observer

through finding the high-gain parameter is challenging, and the algorithm is restricted to linear

system. A state transformation is introduced in (Chen et al., 2020a) and (Chen et al., 2021) to

address the prescribed-time feedback problem for a family of uncertain nonlinear multi-agent

systems and lower triangular nonlinear systems, respectively. Using a state transformation

through a time-varying scaling function, the prescribed-time feedback stabilization problem

is transformed into designing appropriate gain parameters with global asymptotic stability

guarantees. Similar ideas were used in (Chitour et al., 2020) to exploit the time-varying

homogeneity.

Motivated by the aforementioned methods, in this chapter, we propose a new prescribed

high-gain observer for a class of nonlinear systems, that achieves stability in a predefined

fixed time. This effort is the first attempt on deriving prescribed-time observer for this class

of systems. This is a step beyond the result in Holloway and Krstic (2019) that is limited

to linear systems. The observer’s gains depend on a time-varying function monotonically

increasing to infinity as the time tends to the predefined convergence time. By introducing a

state transformation involving a time-scaling function, the estimation error is transformed into
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a fixed-time stable system. Moreover, the proposed observer reduces the peaking phenomenon,

which is one of the main limitations of the high-gain observer design.

4.2 Problem formulation

In this section, we formulate the estimation problem. We consider the class of nonlinear

systems described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f(x(t)),

y(t) = Cx(t),
(4.1)

where the matrices A and C are defined as in (2.15), x(t) ∈ Rn is the state vector of the

system and y(t) ∈ R is the measured output. The nonlinearity f is defined as in (3.4).

The functions fi ∶ Ri Ð→ R, i=1,. . . ,n, satisfy the Lipschitz property formulated under the

following form

∣fi(x1, . . . , xi)−f i(x̄1, . . . , x̄i)∣ ⩽ γf i

i

∑
j=1
∣xj − x̄j ∣, (4.2)

where γfi is the Lipschitz constant.

The objective is to estimate the state within a finite time 0 < T ⩽ tf where T is prescribed

independently of initial conditions and tf is the terminal time. Hereafter, we propose a

high-gain observer with an appropriate structure to estimate the state of system (4.1) while

ensuring the prescribed-time asymptotic stability of the estimation error at predefined time

T .

4.3 Prescribed-time high-gain observer design

This section is devoted to the design approach of the prescribed-time observer for nonlinear

systems and to the proof of the stability of the estimation error.
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4.3.1 Design approach

Motivated by the time-varying scaling function and the standard Lyapunov differential in-

equality (Holloway and Krstic, 2019), (Chen et al., 2020a) involving the observer design to

achieve the prescribed-time stability of the observer error dynamics within a time T , we design

the following observer for system (4.1) as follows

˙̂x(t) = Ax̂(t) + f(x̂(t)) + Γ−1K(y(t) − x̂1(t)), (4.3)

where

Γ = diag{1/µ1+m, . . . ,1/µn(1+m)},

is a scaling matrix, K is the observer gain, and m is a design parameter such that m ⩾ 1.

The following function is introduced for our estimation design µ(t − t0, T ) ∶ [t0, t0 + T ) → R+

as (Holloway and Krstic, 2019):

µ(t − t0, T ) ∶=
T

T + t0 − t
. (4.4)

This function is monotonically increasing having the property that µ(t−t0, T ) tends to infinity

as t→ t0 + T where T is predefined time.

In this approach, the dynamics of the observer error e(t) = x(t) − x̂(t) is given as follows

ė(t) = Ae(t) +∆f − Γ−1Ke1(t), (4.5)

where

∆f ∶= f(x(t)) − f(x̂(t)). (4.6)

In order to prove the prescribed-time convergence for system (4.1), the following state trans-

formation is introduced

ē(t) = Γ(t)e(t). (4.7)

The dynamics of the transformed error is given as follows

˙̄e(t) = µ1+m(t)(A −KC)ē(t) − (1 +m) µ̇(t)
µ(t)Dē(t) + Γ∆f, (4.8)

where D is a diagonal matrix defined as D = diag{1,2, . . . , n}.
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4.3.2 Stability analysis

This part is devoted to the main theorem, which provides synthesis conditions guaranteeing

prescribed-time stability of the observer error.

Theorem 7 Assume that there exist a symmetric positive definite matrix P , a matrix Y

with appropriate dimension and real positive constants m, λ1 and λ2 such that the following

conditions hold

ATP + PA −CTY −YTC + λ1In ⩽ 0, (4.9)

DTP + PD − λ2In ⩾ 0, (4.10)

with

K = P −1Y⊺ = [K1 . . .Kn]⊺, (4.11)

D = diag{1,2, . . . , n}. (4.12)

Then the observer error is asymptotically stable at defined time T > 0.

Proof Consider the following Lyapunov function candidate

V (ē(t)) = ē(t)TP ē(t), P > 0. (4.13)

The derivative of V along the trajectories (4.8) can be calculated as

dV(t)
dt

= ˙̄eT (t)P ē(t)(t) + ēT (t)P ˙̄e(t)

= µ1+m(t)ēT (t) [(A −KC)TP + P (A −KC)] ē(t)

− (1 +m) µ̇(t)
µ(t) ē

T (t) [DTP + PD] ē(t) + 2ēT (t)P (Γ∆f).

Let

(A −KC)TP + P (A −KC) ⩽ −λ1In,

DTP + PD ⩾ λ2In.
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Hence the derivative of V (t) becomes

dV(t)
dt

⩽ −λ1µ1+mēT (t)ē(t) − λ2(1 +m)
µ̇(t)
µ(t) ē

T (t)ē(t) + 2ēT (t)P (Γ∆f).

Using the fact that f is Lipshitz, we have

2ēT (t)P (Γ∆f) ⩽ 2ēT (t)P [max
i
γfinΓ(x(t) − x̂(t))]

⩽ 2γf ēT (t)PΓ ⩽ 2γfλmax(P )ēT (t)ē(t),

where γf =maxi γfin, and knowing that

µ̇(t)
µ(t) =

1

T
µ(t). (4.14)

We obtain the following inequality

dV(t)
dt

⩽ − [λ1µ1+m(t) + λ2(1 +m)
µ(t)
T
− 2γfλmax(P )] ∥ē(t)∥2.

Similarly to the works (Chen et al., 2021), (Chen et al., 2020b), one can choose a time te > t0

such that for all t > te

λ2(1 +m)
µ(t)
T
⩾ 2γfλmax(P ), (4.15)

which implies

dV(t)
dt

⩽
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2γfλmax(P )∥ē(t)∥2, t ∈ [t0, te],

−λ1µ1+m(t)∥ē(t)∥2, t ∈ (te, t0 + T ).
(4.16)

For t ∈ [t0, te], one can directly have

V (t) ⩽ V (0) exp(2γfλmax(P )t
λmin(P )

),

which means that the finite time escape phenomenon will not occur for the transformed ob-

server error dynamic (4.8). For t ∈ (te, T ), one can get

dV(t)
dt

⩽ −λ1µ1+m(t)∥ē(t)∥2, (4.17)

and using the fact that

λmin(P )∥ē(t)∥2 ⩽ V (t) ⩽ λmax(P )∥ē(t)∥2, (4.18)
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we obtain

dV(t)
dt

⩽ −λ1µ
1+m(t)

λmax(P )
V (t). (4.19)

By integrating over the time interval [t0, t), we get (Chen et al., 2021)

∫
t

t0

V̇ (s)
V (s)ds ⩽ −∫

t

t0

λ1µ
1+m(t)

λmax(P )
ds = − λ1T

mλmax(P )
µm(s)∣

t

t0
,

which implies that

V (t) ⩽ V (0) exp(− λ1T

mλmax(P )
(µm(t) − 1)) , (4.20)

and by using (4.18), we obtain

∥ē(t)∥ ⩽
¿
ÁÁÀ V (0)

λmin(P )
exp(− λ1T

mλmax(P )
(µm(t) − 1)) . (4.21)

Since µ(t) is monotonically increasing to infinity as t → t0 + T , we have that lim
t→t0+T

∥ē(t)∥ =

0. Hence, according to definitions (A.2.3) and (A.2.4), we get that the dynamics of the

transformed error is globally asymptotically stable at defined time T . Moreover, through the

state transformation (4.7) and inequality (4.21), we have

∥e(t)∥ ⩽ nν1g(t) exp(−
λ1T

2mλmax(P )
(µm(t) − 1)) , (4.22)

where ν1 =
√

V (0)
λmin(P )

and

g(t) = µ(t)n(1+m) exp(− λ1T

2mλmax(P )
(µm(t) − 1)) .

From the derivative of g(t), we have (Chen et al., 2021)

ġ(t) = (n(1 +m)
T

− mν2
2
µm(t))µ(t)g(t),

where ν2 =
λ1

mλmax(P )
. If

2n(1 +m)
(mν2T )

⩾ µm(t), let ġ(t1) = 0, one can have t1 = T−(
mν2T

2n(1 +m))
1
m

T .

Hence, the upper bound of g(t) is g(t1), otherwise it should be g(t0). From (4.22) and the

upper bound of g(t), the observer error is bounded and satisfies lim
t→t0+T

∥e(t)∥ = 0. Then, the

observer error e is also globally asymptotically stable at defined time T according to defini-

tions (A.2.3) and (A.2.4).
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Remark 10 Numerical instabilities may be faced during the implementation of the observer.

Such problem comes from the gains that grows to infinity as the time t goes to the convergence

time T . Hence, several solutions have been proposed in the literature to solve such issues (Hol-

loway and Krstic, 2019; Espitia and Perruquetti, 2020; Song et al., 2017). One can suggest

to saturate the observer’s gains, setting the prescribed convergence time to a larger value to

prevent the observer’s gain from growing to infinity, or by stopping the convergence before the

prescribed time to obtain the prescribed-time stability to a neighborhood of the origin. Similar

thorough discussions can be also found in (Holloway and Krstic, 2019).

4.4 Illustrative example

To show the performance of the proposed prescribed-time observer design, we present in this

section a numerical example. The aim of this example is to show the performance of the

prescribed-time observer for different values of the time T and how the design parameter m

affects the convergence of the proposed observer. The simulations will be carried out by using

MATLAB and YALMIP.

We consider the following second order nonlinear system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) − l1x1(t),

ẋ2(t) = c1c2 sin(x1(t)) + c1c3 cos(x2(t)) − c1c4u(t),

y(t) = x1(t),

(4.23)

The values of the system parameters are set to c1 = 1, c2 = c3 = 0.02, c4 = 8, l1 = 0.04. The

input function is u(t) = sin(0.35t). System (4.23) is in the canonical form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f(x(t), u),

y(t) = x1(t),
(4.24)

with

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

, f(x,u) =
⎛
⎜⎜
⎝

f1(x1(t), u)

f2(x1(t), x2(t), u)

⎞
⎟⎟
⎠
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(x1(t), u = −l1x1,

f2(x1(t), x2(t), u) = c1c2 sin(x1) + c1c3 cos(x2) − c1c4u(t).
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The proposed prescribed-time observer can be constructed as follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + f1(x̂) + µ1+m(t)K1(x1(t) − x̂1(t)),

˙̂x2(t) = f2(x̂) + µ2(1+m)K2(x1(t) − x̂1(t)).

where the scaling function µ is defined as in (4.4). The initial time t0 is set to zero, i.e t0 = 0.

By using Matlab and YALMIP, the matrices P and K are found equal to

P =

⎡⎢⎢⎢⎢⎢⎢⎣

116.2897 −33.3778

−33.3778 61.2821

⎤⎥⎥⎥⎥⎥⎥⎦

, K = [1.4401,2.6820]. (4.25)

We set the prescribed-time as T = 1 and T = 2, and the design parameter m = 1. Denote by

x̂(t) = [x̂1, x̂2]⊺ the state estimates for the system (4.23) by using the observer design method

proposed in the present chapter. Let x(0) = [1,1]⊺ and x̂(0) = [2,2]⊺. The behaviours of xi

and its estimates x̂i, i = 1,2, are illustrated in Figures 4.1-4.4. We can see that the proposed

observer converges to the actual states at the chosen time.
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Figure 4.1: Behaviour of x1 and its estimate for T = 1s and m = 1
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Figure 4.2: Behaviour of x2 and its estimate for T = 1s and m = 1
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Figure 4.3: Behaviour of x1 and its estimate for T = 2s and m = 1
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Figure 4.4: Behaviour of x2 and its estimate for T = 2s and m = 1
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To analyze the influence of the design parameter m, three values are chosen m = 1,m = 2

and m = 3. The behaviours of xi and its estimates x̂i, i = 1,2 are illustrated in Figures 4.5-

4.6. Indeed, the parameter m affects the convergence of the observer. By increasing m, the

observer converges faster at the prescribed-time.
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Figure 4.5: Behaviour of x1 and its estimates for T = 1s and m = 1,2,3
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Figure 4.6: Behaviour of x2 and its estimates for T = 1s and m = 1,2,3
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4.5 Conclusion

In this chapter, a new prescribed-time high-gain observer is designed for a class of nonlinear

systems. The objective was to develop a state observer that achieves the prescribed-time

stability of the estimation error within a predefined time T chosen a priory. The proposed

observer has the structure of a high-gain observer where the gain depends on scaling function.

A numerical example is provided to illustrate the performance of the proposed observer design

procedure.

In the following chapter, we will apply the proposed observer approaches to estimate the

water levels in the Coupled Tanks system. The effectiveness of the HG/LMI observer and the

prescribed-time high-gain observer will be performed.
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5.1 Introduction

In the last decades, the Coupled Tanks plant has been widely used in industrial processes

such as wastewater treatment, food industry, water desalination, chemical, and petrochemical

plants. The control and regulation of the Coupled Tank plants are difficult due to their multi-

variable/coupling structure, and nonlinear interactions between accessible and non-measured

variables. In practice, the variables of most of these industrial processes are not fully ac-
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cessible for measurements, and are not entirely known due to various physical and economic

constraints on the dynamical model. Therefore, observer-based control algorithms are used in

such applications to estimate and control the state, for example, the water level in the tanks

(see (Guo et al., 2020), (Gouta et al., 2015a), (Turki et al., 2014), (Meng et al., 2020), (Gouta

et al., 2015b), (Gouta et al., 2019) and references therein).

It should be noted that such application is usually selected for testing and validation of

observer design approaches because it emerges in several industrial processes, which require

several time response constraints to complete a desired action or behavior. This renders the

prescribed-time convergence the main feature. Additionally, a large time delay can occur due

to the interaction between the tanks, affecting the estimation and control design of the process.

Moreover, a small change in the pump voltage might cause a delay during the measurement of

the output (Li et al., 2020). Nevertheless, in order to apply advanced concepts of estimation

and control to practical applications, the transformation of the dynamical system into an

adequate canonical form is required. The presence of such constraints renders this application

fits within the aim of the work proposed in this thesis.

In this chapter, we will apply the proposed HG/LMI observer and the prescribed-time

high-gain observer for water level estimation in the Coupled Tanks system. We will start by

describing the Coupled Tanks system and explain how the mathematical model is derived.

Since the two proposed observers are under an observable canonical form, a transformation of

the Coupled Tanks system into the desired form is provided using a suitable diffeomorphism.

The effectiveness of the proposed observer design approaches in estimating the water levels

in the Coupled Tanks system are given, providing a comparison to the standard high-gain

observer.

5.2 Coupled Tanks system description

The Coupled-Tank (CT) plant consists of a pump with a water basin and two tanks. The two

tanks are mounted on the front plate such that flow from the upper tank can flow, through
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an outlet orifice located at the bottom of the tank, into the lower tank (Apkarian et al.,

2012). Flow from the second tank flows into the main water reservoir. The Coupled Tanks

experiment and a schematic of the plant are shown in Figure 5.1.

Pump

Water
Bassin

Tank 1

Tank 2

Out 1 Out 2

Dt1

Dt2

Do2

Do1

L2

L1

Figure 5.1: Coupled Tanks lab experiment with its schematic

5.3 Mathematical model of Coupled Tanks system

Let us start by deriving the Equation of Motion, EOM, characterizing the dynamics of tank

1. The input to the process is the voltage to the pump and its output is the water level in

tank 1. The obtained Equation of Motion is a function of the system’s input and output,

expressed under the following format:

dL1

dt
= f(L1, Vp). (5.1)
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In deriving the tank 1 EOM the mass balance principle can be applied to the water level in

tank 1, i.e.,

At1
dL1

dt
= Fi1 − Fo1, (5.2)

where At1 is the area of tank 1. Fi1 and Fo1 are the inflow rate and outflow rate, respectively.

The volumetric inflow rate to tank 1 is assumed to be directly proportional to the applied

pump voltage, such that:

Fi1 =KpVp, (5.3)

where Kp is the pump volumetric flow constant and Vp is the pump voltage.

Applying Bernouilli’s equation for small orifices, the outflow velocity from tank 1, vo1, can be

expressed by the following relationship:

vo1 =
√
2gL1, (5.4)

where g denotes the gravitational constant on Earth and L1 is the height of the water level

in the tank.

The outflow rate from tank 1, Fo1, can be expressed by:

Fo1 = Ao1vo1, (5.5)

where Ao1 is the cross-section area in tank 1 given by the following equation:

Ao1 =
1

4
πD2

o1, (5.6)

Substituting in equation (5.2) Fi1 and Fo1 with their expressions, the equation of motion for

the tank 1 is as follows

dL1

dt
= −Ao1

At1

√
2gL1 +

Kp

At1
Vp. (5.7)

where D is the diameter of the tank.

As for tank 2, the input is the water level, L1, in tank 1 (generating the outflow feeding tank

67



2) and its output is the water level, L2, in tank 2. Hence, the inflow rate is equal to the

outflow from tank 1:

Fi2 = Fi1, (5.8)

and the outflow rate from tank 2 is given by

Fo2 = Ao2

√
2gL2, (5.9)

where Ao2 is the cross-section area in tank 2 given by the following equation:

Ao2 =
1

4
πD2

o2, (5.10)

So the equation of motion in tank 2 is as follows

dL2

dt
= Ao1

At2

√
2gL1 −

Ao2

At2

√
2gL2. (5.11)

We obtain the following dynamic equations for Coupled Tanks system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dL1

dt
= −Ao1

At1

√
2gL1 +

Kp

At1
Vp,

dL2

dt
= Ao1

At2

√
2gL1 −

Ao2

At2

√
2gL2,

(5.12)

where L1, L2 are the water level in tank 1 and 2, respectively. Vp is the pump voltage.

For simpler reading of the model (5.13), we define the following notation z1 = L2 and z2 = L1.

Hence the dynamical model of the Coupled Tanks plant can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1
dt
= Ao1

At2

√
2gz2 −

Ao2

At2

√
2gz1,

dz2
dt
= −Ao1

At1

√
2gz2 +

Kp

At1
Vp,

y = z1,

(5.13)

where the measured output y of system (5.13) is the water level in tank 2. The values of the

physical parameter of system (5.13) are given in Table (5.1).

In practice, the following specifications are required to monitoring the water levels in tanks

1 and 2:
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Table 5.1: Coupled Tanks model’s parameters (Apkarian et al., 2012)

Symbol Description Value Unit

Vp Pump voltage 12 V

Kp Pump flow constant 3.3 cm3/s/V

Do1 Tank 1 outlet diameter 0.635 cm

Dt1 Tank 1 inside diameter 4.445 cm

Ao1 Tank 1 outlet section area 0.3167 cm2

At1 Tank 1 inside cross-section area 15.1579 cm2

Do2 Tank 2 outlet diameter 0.45625 cm

Dt2 Tank 2 inside diameter 4.445 cm

Ao2 Tank 2 outlet section area 0.1781 cm2

At2 Tank 2 inside cross-section area 15.1579 cm2

L̄ Maximum water levels in tanks 1,2 25 cm

g Gravitational constant on earth 981 cm/s2

Assumption 1

● The minimum and maximum water levels in the two tanks should be always greater than

1 cm and less than 25 cm, respectively.

● Additionally, the pump voltage Vp is maintained between 0 V and 12 V.

The Coupled Tanks system is a widely used nonlinear system for testing control and

estimation methods. Among the challenging problems is the water level estimation which

is needed for controlling the system. In this chapter, we will apply the HG/LMI observer

and the prescribed-time observer to estimate the water level in tank 1. The design of such

observers requires the transformation of system (5.13) into an observable canonical form using

a suitable diffeomorphism. In the sequel, we will show that the Coupled Tanks system (5.13)

is uniformly observable for any input and can be transformed into an observable canonical
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form.

5.4 Observability of Coupled Tanks system

A nonlinear single-input single-output system with linear output based on the mathematical

model developed in the previous section can be written as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż(t) = f(z(t)) + g(z(t))u,

y(t) = h(z(t)) = z1,
(5.14)

where z(t) ∈ R2, f(z) and g(z) are 2-dimensional smooth vector fields; u is the control

variable, y the output, h(z) is a scalar function of z along with the followings:

z = [z1, z2]T , f(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ao1

At2

√
2gz2 −

Ao2

At2

√
2gz1

−Ao1

At1

√
2gz2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, g(z) =

⎡⎢⎢⎢⎢⎢⎢⎣

0

Kp

At1

⎤⎥⎥⎥⎥⎥⎥⎦

(5.15)

In order to convert (5.14) into the observable canonical form, we choose the following nonlinear

map Ψ ∶ R2
+ → R2

+:

z → x = Ψ(z) =

⎡⎢⎢⎢⎢⎢⎢⎣

h(x)

Lfh(x)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

z1

Ao1

At2

√
2gz2 −

Ao2

At2

√
2gz1

⎤⎥⎥⎥⎥⎥⎥⎦

(5.16)

The Jacobian matrix of Ψ(z) is given as follows

J(Ψ(z)) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

−Ao2g

At2

1√
2gz1

Ao1g

At2

1√
2gz2

⎤⎥⎥⎥⎥⎥⎥⎦

(5.17)

The determinant of the Jacobian matrix of Ψ(z) is non zero, i.e, det(J(Ψ(z))) ≠ 0 for z1 ≠ 0

and z2 ≠ 0. By computing the rank of jacobian matrix J(Ψ(z)), we find that rank(J(Ψ(z))) =

2 and it is full row rank. It means that Ψ(z) is invertible and Ψ(z) is a diffeomorphism. The

inverse of the change of coordinates Ψ−1(x) is given as follows:

z = Ψ−1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z1 = x1,

z2 =
A2

t2

2gA2
o1

[x2 +
Ao2

At2

√
2gx1]

2

.
(5.18)
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Hence, system (5.13) is uniformly observable and can be transformed into an observable

canonical form (Gauthier et al., 1992).

We consider the hypotheses needed by the observer based on the map Ψ.

Assumption 2 The system is Globally Uniformly Lipschitz Drift-Observable (GULDO), i.e.

Ψ is a diffeomorphism in the domain of interest Ω and the maps Ψ, Ψ−1 are uniformly Lipschitz

in Ω.

In order to use the methods developed in this thesis, it will be necessary to determine a

positively invariant compact set Ω within the nonlinearity is globally lipschitz. According to

Assumption 1, since the input Vp is bounded, one can select the invariant set as following

Ω = [ς, L̄] × [ς, L̄]. (5.19)

where ς is a positive constant satisfying 1 ≤ ς < L̄. Therefore, x = Ψ(z) is a state transforma-

tion, and the observable canonical form of system in the x-coordinates is:

⎡⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

L2
fh(Ψ−1(x)) +LgLfh(Ψ−1(x))u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ(z,u)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.20)

where

φ(z, u) = − A2
o1g

At1At2
(1 + KpVp

At2x2 +Ao2
√
2gz1

) − Ao2g

At2
( z2√

2gz1
) .

Additionally, the following conditions hold:

• L2
fh(Ψ−1(x)) is uniformly Lipschitz in Ψ(Ω), that is there exist a constant γ1 such that

for all x1, x2 ∈ Ψ(Ω)

∥L2
fh(Ψ(x1)−1) −L2

fh(Ψ(x2)−1)∥ ≤ γ∥x1 − x2∥ (5.21)

• LgLfh(Ψ−1(x)) is uniformly Lipschitz in Ψ(Ω), that is there exist a constant γ2 such

that for all x1, x2 ∈ Ψ(Ω)

∥LgLfh(Ψ(x1)−1) −LgLfh(Ψ(x2)−1)∥ ≤ γ∥x1 − x2∥ (5.22)
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System (5.20) can be rewritten under the following form

ẋ(t) = Ax(t) +Φ(x(t)), (5.23)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

and Φ(x(t)) =

⎡⎢⎢⎢⎢⎢⎢⎣

0

φ(x1, x2)

⎤⎥⎥⎥⎥⎥⎥⎦

,

where the state vector of the system x(t) = [x1(t) x2(t)]T belongs to the subset Ω ⊂ R2
>0.

The function φ(.) is Lipschitz with respect to x in Ψ(Ω). The Lipschitz constant of φ(.)

is computed by calculating its partial derivatives in open-loop settings

∂φ(x1, x2)
∂x1

= − Ao2A
2
o1gKpVp

√
2gx1

2At1At2(At2x2 +Ao2
√
2gx1)2

+ Ao2g

2At2

x2√
2gx1

,

∂φ(x1, x2)
∂x2

= − A2
o1gKpVp

At1(At2x2 +Ao2
√
2gx1)2

− Ao2

At2
√
2gx1

.

and finding out the supremum of

∥[∂Φ(x1, x2)
∂x1

,
∂Φ(x1, x2)

∂x2
]∥ (5.24)

over a sufficiently long time interval.

5.5 Coupled Tanks state estimation

The following sections are devoted to the application of the proposed approaches in Chapters 3

and 4. We will show the effectiveness of the proposed observers on estimating the water level

in the tanks with a comparison to the standard high-gain observer.

5.5.1 HG/LMI observer

This section shows the effectiveness of the standard high gain observer and HG/LMI observer

design on estimating the Coupled Tanks water levels under a larger value of the time delay.

Resulting from the interaction between the tanks, the measured water level from tank 2 is

assumed to be affected by a time delay. Note that, in practice, the time delay is widespread
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in most industrial chemical processes, including water level control. On the other hand,

changing the pump voltage might lead to a delay while measuring the output (Li et al., 2020).

Therefore, one can write

y(t) = x1(t − τ(t)). (5.25)

Remark 11 System (5.23) contains only one nonlinearity in the last component. Then,

Theorems 4 and 5 with k1 = 0 can be used to estimate the water level in the tanks and get

larger values of the delay τM .

The simulations are carried out by using MATLAB and YALMIP. Notice that js = 0 cor-

responds to standard high-gain while the HG/LMI observer is defined for js = 1. Table 5.2

illustrates the comparison results of both high gain observers’ designs. Subsequently, the

tuning parameter values are decreased, and the delay’s maximum bounds become more sig-

nificant.

Table 5.2: Comparison between the standard high-gain observer (SHG) and the proposed

HG/LMI observer (HG/LMI)

Methods kf js σ θ τM ∥L∥

SHG 0 / 2984.9 1.2471 × 10−6 74099

HG/LMI 0.4943 1 49 49 2.5 × 10−3 24.6425

The Lipschitz constant L = 0.4943 is computed from (3.2). By taking js = 1 in the

HG/LMI design, the value of the tuning parameter θ given by the standard high-gain observer

is decreased from θ = 2984.9 to θ = 49. On the other hand, the maximum bound of the delay

is considerably increased from τM = 1.2471×10−6s to τM = 2.5×10−3s. We also notice that

the HG/LMI observer gain is considerably reduced compared to the standard high gain. For

instance, the norm of the standard high-gain observer’s gains is reduced from 74099 to 24.6425.

This is due to the compromise index js which reduces the values of the gain K and then the

gain L becomes smaller.
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The estimates of water levels in the tanks are plotted using the HG/LMI observer and

the standard high-gain observer. Denote by x̂HGLMI = [x̂1,HGLMI , x̂2,HGLMI]T and x̂SHG =

[x̂1,SHG, x̂2,SHG]T the state estimates for the system (5.23) by using the observer design

method proposed in Chapter 3 and the standard high-gain observer, respectively. The initial

water level in tanks 1 and 2 is x(0) = [4,4]T . Let x̂HGLMI(0) = [3,3]T and x̂SHG(0) =

[3,3]T . The curves of the states xi and their estimates x̂i and x̂i,HG, i = 1,2 are illustrated in

Figure 5.2.

From the plots of the estimated states, we observe both observer states converge to the

actual states. Furthermore, the HG/LMI observer considerably reduces the peaking phe-

nomenon. Nevertheless, the maximum value of the water level x2,HG in tank 1 given by the

standard high gain observer exceeds the maximum level of water in tank 1, which is equal to

L̄ = 25 cm and may damage the setup.

To analyze the effect of the maximum delay in both standard high gain observer and

HG/LMI observer, we set τM = 2.5×10−3 s, which corresponds to the maximum delay of the

HG/LMI observer. This value is greater than the value found by the standard high gain

observer. The curves of the states xi and their estimates x̂i and x̂i,HG, i = 1,2 are illustrated

in Figure 5.3. The HG/LMI observer converges to the real states meanwhile the standard

high-gain observer fails to reconstruct the water level in the tanks due to the large value of

the time-delay. This shows the superiority of HG/LMI observer on estimating the water level

in tank 1.
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Figure 5.2: Behaviour of x1, x2 and their estimates by using the standard high-gain observer

and the proposed HG/LMI observer
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Figure 5.3: Behaviour of x1, x2 and their estimates by using the standard high-gain observer

and the proposed HG/LMI observer for τM = 2.5×10−3s
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5.5.2 Prescribed-time high-gain observer

The aim of this section is to show the effectiveness of the proposed prescribed-time high-gain

observer design on estimating the Coupled Tanks water levels. This example is motivated

by the fact that some Coupled Tanks applications such as wastewater treatment, water de-

salination, pharmaceutical industries, and petrochemical plants may involve different time

responses constraints, which makes prescribed-time convergence the key feature. The pro-

posed prescribed-time observer will be used to estimate the water level in tank 1.

The proposed prescribed-time observer can be constructed as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + µ1+mK1(x1(t) − x̂1(t)),

˙̂x2(t) = ϕ(x̂1, x̂2) + µ2(1+m)K2(x1(t) − x̂1(t)).
(5.26)

where x̂1 and x̂2 are the state estimates and the scaling function µ1 is defined as follows:

µ(t − t0, T ) =
T

T + t0 − t
.

The initial time t0 is set to zero, i.e t0 = 0. By using Matlab and YALMIP, the matrices P

and K are found equal to

P =

⎡⎢⎢⎢⎢⎢⎢⎣

237.7077 −68.4342

−68.4342 04.4990

⎤⎥⎥⎥⎥⎥⎥⎦

, K = [1.6616,3.3629].

The estimates of water levels in the tanks are then plotted for T = 0.5s and T = 1s. Denote

by x̂(t) = [x̂1, x̂2]T the state estimates for the system (5.13) by using the observer (5.26). The

initial water level in tanks 1 and 2 is x(0) = [4,4]T . Let x̂(0) = [3,3]T . The curves of the

states xi and their estimates x̂i are illustrated in Figures 5.4-5.5-5.6 and 5.7. We can see that

the proposed observer converges to the actual states at the prescribed-time.

1The notation is chapter specific. T here refers to the prescribed convergence time.
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Figure 5.4: Behaviour of x1 and its estimates for T = 0.5s and m = 1
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Figure 5.5: Behaviour of x2 and its estimates for T = 0.5s and m = 1
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Figure 5.6: Behaviour of x1 and its estimate for T = 1s and m = 1
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Figure 5.7: Behaviour of x2 and its estimate for T = 1s and m = 1
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Comparison between the proposed prescribed-time observer and the standard

high-gain observer:

We compare the proposed prescribed-time high-gain observer to the standard high-gain (SHG)

observer at different prescribed times T = 0.01s, T = 0.05s and T = 0.08s. We adjusted both

observer’s parameters to obtain the same time response around T =0.08s.

The standard high-gain observer observer (2.16) can be constructed as follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) +L1(x1(t) − x̂1(t))

˙̂x2(t) = ϕ(x̂1, x̂2) +L2(x1(t) − x̂1(t))
(5.27)

with the observer’s gain is found equal to L = [159 12432]T .

Denote by x̂HG(t) = [x̂1,HG, x̂2,HG]T the state estimates for the system (4.23) by using

the standard high-gain observer. Let x̂HG(0) = [3,3]T . The curves of the states xi and their

estimates x̂i are illustrated in Figures 5.8-5.9. We notice that the proposed prescribed-time

observer considerably reduces the peaking phenomenon compared to the standard high-gain

observer, which illustrates the proposed observer’s fixed-time and time-varying gain functions

properties.
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Figure 5.8: Behaviour of x1 and its estimates by using the proposed prescribed-time observer

and the standard high gain observer
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Figure 5.9: Behaviour of x2 and its estimates by using the proposed prescribed-time observer

and the standard high gain observer
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5.6 Conclusion

In this chapter, we show the effectiveness of proposed HG/LMI observer and the prescribed-

time high-gain observer for water level estimation in the Coupled Tanks system. To deal with

the HG/LMI design, we considered that the measured output is delayed and time-varying.

The proposed state observer tolerates a smaller tuning parameter allowing a maximum bound

of the delay as high as possible while ensuring exponential convergence. We showed the supe-

riority of the proposed approach and how the standard high gain observer fails to reconstruct

the water levels in the tanks in the presence of larger values of the time-delay.

Furthermore, the prescribed-time high-gain observer successfully reconstructs the water

levels at the desired time freely chosen by the user. A comparison to the standard high-gain

observer is provided and showed how the prescribed-time high-gain observer considerably

reduces the peaking phenomenon compared to the standard high-gain observer.

82



CHAPTER 6

CONCLUSION AND PERSPECTIVES

This chapter summarises the work established in this thesis and presents some future work

perspectives.

6.1 Brief summary

In this thesis, we considered the problem of observer design for a class of nonlinear systems

nonlinear systems in general and nonlinear systems with delayed output in particular.

First, we extended the HG/LMI observer design introduced in (Zemouche et al., 2019) for

time-varying delayed output measurements. Such an observer led to a considerably higher

allowable maximum bound on the delay with a small tuning parameter compared to the

standard high-gain methodology. Moreover, extensions to systems with nonlinear outputs and

to systems with sampled measurements are established. Two numerical examples are provided

to illustrate the performance of the proposed HG/LMI observer design procedure with a

comparison to the standard high-gain and to the high-gain observer proposed by (Van Assche

et al., 2011).

Second, a prescribed-time observer is designed for a class of nonlinear systems. The objec-

tive was to design a high-gain observer that converges within a predefined time T independent
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on the system’s parameters chosen a prior. The proposed observer has the structure of a high-

gain observer where the gain depends on scaling function. A numerical example is provided

to illustrate the performance of the proposed observer design procedure.

Finally, we illustrated the performance of the proposed approaches in estimating the water

levels in the coupled-tanks system. We demonstrated the superiority of the HG/LMI approach

and how the standard high gain observer fails to reconstruct the water levels in the tanks in

the presence of larger values of the time-delay. Furthermore, the prescribed-time high-gain

observer successfully reconstructs the water levels at the prescribed-time. A comparison to

the standard high-gain observer is provided and showed how the prescribed-time high-gain

observer considerably reduces the peaking phenomenon compared to the standard high-gain

observer.

6.2 Future work

The work carried out in this thesis paves the way for new future research directions. As a

potential perspective, we can mention few ideas that can be developed:

• Improving the result by exploring new ideas on high-gain observers, namely the introduc-

tion of specific nonlinear transformations to decrease the value of the tuning parameter.

This will allow the application of the observer to industrial real-world applications.

• Extension of prescribed-time high-gain observer to nonlinear systems with delayed out-

put measurements, and trying to provide less restrictive conditions by using Lyapunov-

Krasovskii method.

• Experimental validation of the proposed observers on the Coupled Tanks plant and

other real-world applications, and developing efficient observer-based controllers to solve

control problems, namely output feedback stabilization, reference trajectory tracking.

• An interesting direction to explore is to introduce learning techniques to find the best

values of the design variables related to the observer’s parameter, Lipschitz constant
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and decision variables of LMIs.

85



APPENDIX A

USEFUL INEQUALITIES AND DEFINITIONS

A.1 Useful inequalities

In this section, we recall some useful inequalities exploited in the proof of some results estab-

lished in this thesis.

Jensen’s Inequality (Gu, 2000)

For any constant symmetric and positive definite matrixM ∈ Rn×n, scalars t1, t2 and vector

function v ∶ [t1, t2]→ Rn, then the following inequality holds:

(∫
t2

t1
v(β)dβ)

T

M (∫
t2

t1
v(β)dβ) ⩽ (t2 − t1) (∫

t2

t1
v⊺(β)Mv(β)dβ) .

Young’s Inequality (Nguyen and Trinh, 2016)

Let X and Y be two matrices of appropriate dimensions. Then, for every invertible matrix

S and scalar µ > 0, we have

X⊺Y + Y ⊺X ⩽ µX⊺SX + 1

µ
Y ⊺S−1Y.

Schur’s Lemma (Boyd et al., 1993)

Let A,B and C be three matrices of appropriate dimensions such as A = AT and C = CT .
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Then,

⎡⎢⎢⎢⎢⎢⎢⎣

A B

BT C

⎤⎥⎥⎥⎥⎥⎥⎦

≤ 0

if and only if

C < 0 and A −BC−1BT < 0,

or equivalent

A < 0 and C −BTA−1B < 0.

A.2 Useful definitions

In this section, we will recall some definitions which are necessary for the mathematical

developments given in this thesis.

Definition A.2.1 (Khalil, 2002) A continuous function α ∶ [0, a) → [0,∞) is said to belong

to class K if it is strictly increasing and a(0) = 0.

Definition A.2.2 (Khalil, 2002) A continuous function β ∶ [0, a)× [0,∞)→ [0,∞) is said to

belong to class KL if:

• For each fixed s, the mapping β(r, s) belongs to class K with respect to r.

• For each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as

s→∞.

Definition A.2.3 (Holloway and Krstic, 2019; Chen et al., 2020a) The system ẋ = f(x, t), (t, x) ∈

R≥0 ×Rn with f(t − t0,0) = 0 is said to be fixed-time, globally asymptotically stable in time T

(FT-GAS) over the interval IT ∶= [t0, t0 + T ) is there exists a class KL function β such that,

for any initial state x(0) ∈ Rn, the system states are well-defined on IT and satisfy:

∥x(t)∥ ⩽ β(∥x0(t)∥, µ(t − t0, T ) − 1), (A.1)

where the function µ(t − t0, T ) is defined in (4.4).
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Definition A.2.4 (Chen et al., 2020a) The system ẋ = f(x, t) is said to be globally convergent

to zero in any prescribed-finite time T , if for any initial state x(0) ∈ Rn, the system states are

well defined on t ∈ [t0, t0 + T ) and satisfy

lim
t→t0+T

∥x(t)∥ = 0. (A.2)

Lemma A.2.1 (Su et al., 2013) Suppose the matrix D ∈ Rn×n is defined as D = diag{1, . . . , n}

and P ∈ Rn×n is a positive definite matrix. Then, a positive constant λ can be found to satisfy:

PD +DP ⩾ λI.
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APPENDIX B

OBSERVABLE CANONICAL FORM

We consider nonlinear single-input single-output system of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),
(B.1)

where x(t) ∈ Ω ∈ Rn is the n-dimensional state vector defined on Ω ∈ Rn, u is the input, and

y(t) the measured output. f ∶ Rn → Rn, g ∶ Rn → Rn and h ∶ Rn → R are sufficiently smooth

real valued vector fields and scalar function, respectively. Moreover, we assume that Ω is

positively invariant set for the dynamics of system (B.1).

The drift-observability map z = Ψ(x) of system (B.1) is defined as

Ψ(x) = [h(x), , Lfh(x), . . . , Ln−1
f h(x)]⊺ (B.2)

Definition B.0.1 (Cacace et al., 2016; Gauthier et al., 1992) The system is said to be globally

drift-observable if the function z = Ψ(x) is a diffeomorphism in all Rn. A system is said to

be globally uniformly Lipschitz drift-observable (GULDO) if it is globally drift-observable and

the maps Ψ and Ψ−1 are uniformly Lipschitz.
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When the system is globally drift-observable, the map z = Ψ(x) defines a global of coordinates,

and the Jacobian

J(x) = dΨ(x)
dx

(B.3)

is nonsingular for all x ∈ Rn.

Definition B.0.2 (Gauthier et al., 1992; Cacace et al., 2016) The triple (f(x);G(x);h(x))

is said to have observation relative degree r in a set Ω ∈ R if

LgL
k
fh(z) = 0, k = 1, . . . , r − 2,∀z ∈ Ω (B.4)

LgL
r−1
f h(z) ≠ 0 for some z ∈ Ω (B.5)

If Ω = R, the triple is said to have observation relative degree r.

If the system (B.1) is globally drift-observable and the observation relative degree in Rn is n,

the following function is defined

p(x,u) = (Ln
fh(z) +LgL

n−1
f h(z))

x=Ψ−1(z) (B.6)

and, the representation in x-coordinates is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z(t) = Az(t) +Bp(z;u(t));

y(t) = Cz(t);
(B.7)

The following hypotheses are needed for the construction of an observer for system (B.1):

• The nonlinear system described by the triple (f(x);G(x);h(x)) is GULDO.

• The function p(z, u defined in (B.6) is globally uniformly Lipschitz with respect to z

and the Lipschitz coefficient γp is a (non decreasing) function of ∥u∥,i.e.,∀z1, z2 ∈ Rn

∥p(z1, u) − p(z2, u)∥ ≤ γp(∥u∥)∥z1 − z2∥ (B.8)

• The triple (f(x);G(x);h(x)) has uniform observation degree at least equal to n.
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