REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mouloud Mammeri de Tizi-Ouzou Faculté de génie de la construction Département de génie mécanique

Mémoire de fin d'études

En vue de l'obtention du diplôme de Master académique en génie mécanique

Option : Énergétique

Thème

Simulation numérique de la combustion

<u>Proposé et dirigé par :</u>

Mr. FERROUK M.

<u>Réalisé par :</u>

DJOUAHER AMAZIGH

HAMMAD FARID

NAIT ALAMARA NORDINE

Promotion: 2018/2019

Remerciements

Nous commençons par remercier notre Dieu le tout puissant de nous avoir procuré volonté, courage et patience pour la réalisation de notre travail.

Nos remerciements profonds et haute considération aussi à :

- Mr. FERROUK M. ; notre promoteur, pour avoir accepté de diriger ce modeste travail. Honorées d'avoir travaillé avec lui et tiré un immense profit de son savoir, de ses conseils utiles et de ses discussions fertiles.
- > Aux membres du jury qui examineront et évalueront notre travail.
- A toutes personnes ayant contribué de près ou de loin à la réalisation de notre projet.

Dédicaces

C'est avec beaucoup de joie que nous avons l'honneur de dédier ce travail :

A nos très chers parents.

A tous nos frères et sœurs.

A toute la famille.

A tous ceux qui nous ont soutenues.

A tous ceux qui ont cru en nous.

A tous ceux qui nous ont aidés.

HAMMAD Farid

NAIT ALAMARA Nordine

DJOUAHER Amazigh

a_s	rapport stæchiométrique carburant-a	ir -
C_p	Chaleur spécifique	$J \cdot kg^{-1} \cdot K^{-1}$
Η	Enthalpie	J
h	Enthalpie spécifique	KJ/kg
\overline{h}_{f}°	Enthalpie de formation	KJ/mol
G	Énergie de Gibbs	KJ/kg
K_p	Constante d'équilibre	-
М	Masse molaire	kg/kmol
т	Masse	kg
Ν	Nombre total de moles	-
n	Nombre de mol	-
Р	Pression	Ра
P_i	Pression partielle	bar
Q	Chaleur	J
R	Constant de gaz	J/mol.K
S	Entropie massique	kJ/kg.K
Т	Température	°K
U	Énergie interne	J
и	Énergie interne spécifique	J/kg
V	Volume	m^3

-

W	Travail	J
x_i	Fraction massique	-
Уr	Fraction résiduelle	-
<i>Yi</i>	Fraction molaire	-
{	Richesse	-
	Masse volumique	kg/m ³

Indices

f	Carburant		
r	Réel		
st	Sociométrique		
а	Air		
AF	Air fuel		
FAR	Fuel air ratio		

Figure II.1 : Schéma de la combustion	2
Figure II.2 : Différentes fractions molaires des espèces produites, en fonction de ϕ , l'or de	
la combustion de l'octane (C8H18) en à $T = 3000$ K, et $P = 50$ bar	4
Figure III.1. a : Évolution des fractions molaire N2 H2O CO2, produits de la combustion	
de C8H18 en fonction de la température pour une richesse $\phi = 0.8$	б
Figure III.1.b: Évolution des fractions molaire OH NO H O, produits de la combustion de	
C8H18 en fonction de la température pour une richesse $\phi = 0.8$	б
Figure III.1.c : Évolution des fractions molaire N H2 O2, produits de la combustion de	
C8H18 en fonction de la température pour une richesse $\phi = 0.8$	7
Figure III.2.a : Évolution des fractions molaire N2 H2O CO2, produits de la combustion	
de C8H18 en fonction de la température pour une richesse $\phi = 1.0$	9
Figure III.2.b : Évolution des fractions molaire NO OH O H, produits de la combustion de	
C8H18 en fonction de la température pour une richesse $\phi = 1.0$	9
Figure III.2.c : Évolution des fractions molaire CO H2 O2, produits de la combustion de	
C8H18 en fonction de la température pour une richesse $\phi = 0.8$	0
Figure III.3.a : Évolution des fractions molaire N2 H2O CO2, produits de la combustion	
de C8H18 en fonction de la température pour une richesse ϕ = 1.242	2
Figure III.3.b: Évolution des fractions molaire NO OH O H, produits de la combustion de	
C8H18 en fonction de la température pour une richesse $\phi = 1.2$	2
Figure III.3.c : Évolution des fractions molaire CO H2 O2 produits de la combustion de	
C8H18 en fonction de la température pour une richesse $\phi = 1.2$	3
Figure III.4 : Évolution de la température de la flamme adiabatique pour l'octane et	
l'hydrogène en fonction de la richesse φ46	б

Tableau II.1 : Masse moléculaire, rapports stœchiométrique air-carburant et fractions molaires de produit et qualité	14
Tableau II.2 : Ensemble des solutions pour les produits de combustion à basse température (T<1000 K)	19
Tableau II.3 : Constante d'équilibre Ki , et coefficients d'ajustement de la courbe.	27
Tableau II.4 : Enthalpie de formation, de quelques combustibles.	30
Tableau II.5 : Tableau présente la valeur inférieure de et la valeur supérieure de l'entropieabsolue à 298 K, et l'énergie maximale disponible de la combustion.	32
Tableau III.1 : Fractions molaires des différents produits de la combustion de C8H18 enfonction de la température pour une richesse $\phi = 0.8$	35
Tableau III.2 : Fractions molaires des différents produits de la combustion de C8H18 en fonction de la température pour une richesse $\phi = 1.0$	38
Tableau III.3 : Fractions molaires des différents produits de la combustion de C8H18 enfonction de la température pour une richesse $\phi = 1.2$	41
Tableau III.4 : Températures de flamme adiabatique, pour l'octane et l'hydrogène en fonction de la richesse φ.	45

Introduction générale

Chapitre I : Thermodynamique de la combustion

I.1. Introduction
I.2. Propriétés extensives et intensives
I.3. Les Principales Lois De La Thermodynamique
I.3.1. Loi de MARIOTTE4
I.3.2. Loi de CHARLES (ou 2eme loi de GAY-LUSSAC)4
I.3.3. Loi de Joule Gay-Lussac
I.3.4. Mélange de gaz parfaits5
I.3.5. Enthalpie d'un mélange6
I.3.6. Entropie d'un mélange
I.3.7. L'énergie de Gibbs (L'enthalpie libre)
I.4. Les combustibles9
I.4.1. Classification des combustibles9
I.4.2. Caractéristique physico-chimiques des combustibles10

Chapitre II : Modélisation de la combustion

II.1.	Historique	11
	•	
II.2.	La combustion	11

II.3. Combustion stæchiométrique	12
II.4. Chaleur Spécifique	15
II.5. Combustion à Basse Température	17
II.6. Combustion avec gaz résiduel	20
II.7. Méthode des constantes d'équilibre chimique	22
II.8. Premier principe de la thermodynamique	28
II.9. Enthalpie	29
II.10. Chaleur de combustion	30
II.11. Température de flamme adiabatique	32

Chapitre III : Résultats et Discussion.

III.1. Fractions molaires des produits de combustion	34
III.2. Prédiction de la température de la flamme adiabatique	44

Conclusion générale	
---------------------	--

Bibliographie.

Annexes.

Depuis l'avènement de l'ère industrielle au milieu du XIXe siècle, l'humanité ne cesse d'accroître sa consommation d'énergie sous des formes multiples pour répondre à la complexification des sociétés (industrie, transports, chauffage, électricité, ...). Ce développement n'a pu se produire que grâce à l'utilisation massive des combustibles par le moyen de la combustion.

Cette dernière s'intéresse à une grande gamme d'applications qui ont chacune des besoins spécifiques partageant aussi un noyau de connaissances commun. A titre d'exemple, les turbines à gaz, les foyers aéronautiques, les foyers industriels, les fours pour les procédés d'élaboration des matériaux...etc.

Les systèmes industriels impliquant les phénomènes de combustion (fours, moteurs automobiles ou aéronautiques, turbines à gaz...) sont soumis à des contraintes de plus en plus importantes, tant sur le plan économique (réduction des couts, amélioration des performances, ...) que sur le plan environnemental (réduction des émissions de polluants, des émissions sonores, ...). L'ensemble de ces considérations motive de nombreux travaux de recherche liés à la combustion. En effet, la compréhension, la modélisation et éventuellement le contrôle des phénomènes physiques interagissant au sein d'une chambre de combustion permettent non seulement l'amélioration des systèmes actuels mais aussi le développement de nouvelles technologies performantes et propres.

Dans ce contexte, la modélisation permet aux ingénieurs d'améliorer la conception de nouveaux dispositifs industriels et d'optimiser les conditions de fonctionnement de systèmes de combustion afin de réduire les émissions de polluants. D'ailleurs, la préservation de l'environnement et le contrôle de la pollution suscitent un intérêt de plus en plus accru dans les milieux industriels.

Cet intérêt, nous a conduits à l'élaboration d'un ensemble de routines rédigées en MATLAB et en fortran, indispensables pour l'étude et la modélisation de la combustion.

La démarche adoptée pour la réalisation de cette étude est la suivante :

Recherche bibliographique sur la thermodynamique de la combustion exposée au chapitre 1

Développement des routines (programmes) de calcul des propriétés thermodynamiques (enthalpie, entropie, chaleur spécifique) des produits de combustion données dans les tables annexées à la fin du mémoire.

Elaboration des programmes permettant le calcul de la chaleur de combustion, la température de la flamme adiabatique et les fractions molaires des produits de combustion en fonction de la richesse de la température et ce pour n'importe quel carburant. Les modèles ou les équations retenues dans les programmes sont passés en revue dans les chapitres 1 et 2. Les programmes élaborés ont été testé et validés et quelques résultats obtenus sont discutés au chapitre 3.

Une conclusion et les développements possibles en perspective sont exposés après le chapitre 3.

En annexe, sont données les tables de propriétés thermodynamiques utilisées, des produits de combustion et de quelques combustibles.

I.1. Introduction

Dans ce premier chapitre, nous avons choisi de détailler quelques lois fondamentales de la thermodynamique, et qui vont nous être utiles pour l'étude qu'on va mener dans le deuxième chapitre.

I.2. Grandeurs extensives et intensives

La valeur numérique d'une propriété extensive dépend de la quantité, masse où nombre de moles d'une substance considérée. Les grandeurs extensives sont notées par des majuscules, par exemple :

$$V = [m^3]$$
 pour le volume, $U[J]$ pour l'énergie interne, $H[J] = U + PV$ pour l'enthalpie, etc.

D'autre part une propriété intensive (spécifique) est exprimée par unité de masse où de mole, sa valeur numérique est indépendante da la quantité ou de la substance.

Les propriétés intensives sont notées par des minuscules, par exemple :

u[J/kg]pour l'énergie spécifique interne, h[J/kg] = u + PV pour l'enthalpie spécifique, etc.

La température et la pression sont des variables intensives, elles sont notées par T et P.

Les variables intensives pondérées par des moles sont notées par des barres, par exemple \overline{u} et \overline{h} (J/mole). Les propriétés extensives sont obtenues par multiplication de celles intensives par la masse.

Correspondantes, par unité de masse ou de moles, par la quantité de la masse ou de moles [1] :

```
V = mv = N\overline{v}U = mu = N\overline{u}H = mh = n\overline{h}
```


I.3. Les Principales Lois De La Thermodynamique

Dans le calcul des paramètres de cycle, de l'efficacité thermique, nous avons besoin de calculer les paramètres et l'énergie au cours de la combustion. Dans les analyses qui suivent, nous modélisons le mélange air-carburant et les produits de combustion en tant que mélanges de gaz idéaux. Pour un gaz idéal, qui satisfait à l'équation d'état, ou encore c'est un gaz qui obéit rigoureusement aux trois lois. Mariotte, Gay –Lussac et Charles.

Pour ungaz idéal, les relations familières entre la pression P, la température T et le volume V sont :

 $PV = NR_{u}T$ PV = mrTPV = rT (I.1)P = ...rT

I.3.1. Loi de MARIOTTE

Si on considère deux états différents d'une même masse gazeuse à la même température avec : P_1 et V_1 pression et volume à l'état (1).

P2 et V2 pression et volume à l'état (2), la loi de MARIOTTE sera alors :

 $P_1 V_1 = P_2 V_2(I.2)$

I.3.2. Loi de CHARLES (ou 2eme loi de GAY-LUSSAC)

A volume constant, l'augmentation de pression d'un gaz parfait est proportionnelle à l'élévation de la température.

$$\frac{P}{T} = \text{Cte}$$
 (I.3)

I.3.3. Loi de Joule Gay-Lussac

Dans un système (A+B) le 1er principe de la thermodynamique permet d'écrire :

$$W + Q = U + Ep + Ec(I.4)$$

I.3.4. Mélange de gaz parfaits

On s'est principalement limité jusqu'à présent à l'étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des mélanges de substances pures ; Parmi les propriétés d'un mélange de gaz parfaits on a :

La fraction molaire y_i du gaz i dans le mélange est le rapport entre n_i nombre de moles de gaz et N, nombre de moles du mélange.

$$y_i = \frac{n_i}{N} \tag{I.5}$$

Le nombre total de moles, N, d'un mélange est la somme des moles de tous les n composants.

$$N = \sum_{i=1}^{n} n_i \quad (I.6)$$

La fraction massique, xi , d'une espèce donnée est définie comme :

$$x_i = \frac{m_i}{m} (\text{I.7})$$

Il est donc clair que :

$$\sum_{i=1}^{n} x_i = 1 \, (\text{I.8})$$

La masse, m(Kg), d'un mélange gazeux est la somme de la masse de tous les n composants

$$m = \sum_{i=1}^{n} m_i \quad (I.9)$$

La masse moléculaire du mélange est :

$$M = \sum_{i=1}^{n} y_i M_i$$
(I.10)

La constante de gaz (spécifique) à forte intensité massique est liée à l'intensité molaire intensive. Constante de gaz universelle R_U est donnée par :

$$R = \frac{R_U}{M} (I.11)$$

 $R_U = 3.14 kj/(kmol.K)$

Ou $R_U = 3.14 k j / (kmol.K)$. L'énergie interne du mélange U(KJ), elle est la somme de l'énergie interne de tous composants

$$U = \sum_{i=1}^{n} m_i u_i$$
(I.12)

L'énergie interne spécifique u(KJ/Kg):

$$u = \sum_{i=1}^{n} x_i u_i$$
 (I.13)

L'énergie interne U d'un mélange peut également s'écrire comme :

$$U = \sum_{i=1}^{n} n_i \overline{u_i}$$
(I.14)

Ou les propriétés molaires intensives sont indiquées par une barre supérieure. L'énergie interne molaire spécifique (kJ/k.mol) est la somme pondérée de la fraction molaire de la composante internede l'énergie :

$$\overline{u} = \sum_{i=1}^{n} y_i \overline{u_i}$$
(I.15)

I.3.5. Enthalpie d'un mélange

Les relations analogues pour l'enthalpie H(kJ) et l'enthalpie spécifique h(kJ/kg):

$$H = \sum_{i=1}^{n} m_i h_i$$
 (I.16)

$$h = \sum_{i=1}^{n} x_i h_i \tag{I.17}$$

Notons que l'enthalpie h_i d'un composant est évaluée à la pression totale P ;

$$h_i = U_i + Pv_i \quad (I.18)$$

L'enthalpie est :

$$H = \sum_{i=1}^{n} n_i \overline{h_i}$$
(I.19)

$$\overline{h} = \sum_{i=1}^{n} y_i \overline{h_i}$$
(I.20)

L'enthalpie est définie pour un état de référence normalisé, T=298.15 K et $P_0 = 1$ bar.

L'enthalpie normalisée comprend deux parties, l'enthalpie liée au produit chimique, c'est l'énergie de liaison nécessaire pour former la substance à partir de ses éléments, définie comme l'enthalpie de formation, \overline{h}_{f}° , et l'enthalpie liée à la température T. valeurs de l'enthalpie spécifique dans d'autres états sont déterminés par rapport à cet état de référence normalisé, comme le montre équation1.21

$$\overline{h_i}(T) = \overline{h_f^{\circ}} + \left(\overline{h_i}(T) - \overline{h_f^{\circ}}\right)$$
(I.21)

L'enthalpie de la formation \overline{h} de la forme stable des éléments tels que l'hydrogène H_2 , l'oxygène O_2 , l'azote N_2 et le carbone solide C (s) est attribuée une valeur nulle à la température de référence T = 298.15K. Pour les composés, l'enthalpie de formation est l'enthalpie requise pour former le composé à partir de ses éléments dans leur état stable. L'enthalpie de formation du CO_2 est de -393522(kJ/kmol) = -8942(kJ/kg). En raison de la différence des énergies de liaison, l'enthalpie du $CO_2(-8942kJ/kg)$ au l'état de référence standard est par conséquent inférieur à l'enthalpie de ses éléments C et $O_2(kJ/kmol)$ au même état de référence. De même, l'enthalpie de formation de vapeur de H_2O est -24182(kJ/kmol) = -13.424(kJ/kg).

I.3.6. Entropie d'un mélange

L'entropie S(kJ/K) d'un mélange est la somme de l'entropie de chaque composant ;

$$S = \sum_{i=1}^{n} m_{i} s_{i} = \sum_{i=1}^{n} n_{i} \overline{s_{i}}$$
(I.22)

D'après les équations de Gibbs, l'entropie spécifique massique et molaire, S_i , (kJ/kg.K) et $s_i (kJ/kmolK)$ du composant *i* sont :

$$S_i(T.P) = S_i^{\circ}(T) - R_i \ln\left(\frac{P_i}{P_0}\right) (I.23)$$

$$S_i(T.P) = \overline{S_i^{\circ}}(T) - R_U \ln\left(\frac{P_i}{P_0}\right) (I.24)$$

L'entropie d'un composant est évaluée à sa pression partielle, P_i , définie comme :

$$P_i = y_i P$$
 (I.25)

I.3.6. L'énergie de Gibbs (L'enthalpie libre)

L'enthalpie libre se comporte en effet comme une fonction potentielle et intègre le comportement du milieu extérieur. De plus, elle est la fonction d'état la plus appropriée pour étudier les équilibres chimiques réalisés à température et à pression constantes, ce qui est le lot de nombreuses réactions effectuées à l'air libre, à la pression atmosphérique.

L'énergie libre de Gibbs G d'un mélange de gaz idéal est définie comme :

$$G = H - TS = \sum_{i=1}^{n} n_i \overline{g_i}$$
(I.26)

$$G = \sum_{i=1}^{n} n_i \left(\overline{h_i} - \overline{TS_i} \right)$$
(I.27)

I.4. Les combustibles

Un combustible est un composé qui se consume dans une réaction chimique générant de la chaleur et cela en présence d'un comburant et de l'énergie pour amorcer la combustion.

On peut les classer en trois catégories :

- Combustible solide (Bois, charbon...)
- Combustible liquide (diesel, pétrole ...)
- Combustible gazeux (Gaz naturel, hydrogène...)

I.4.1. Classification des combustibles

Groupes	Classes	Sous-classes	Familles
	Combustibles Naturels	Charbon	
		Tourbes	
Combustibles		Végétaux	Bois, déchets de bois, écores
sondes	Combustions	agglomérés	
		Charbon de bois	
		Sous- produits	
	Combustibles Artificiels	Huiles minérales	
Combustibles liquides		Goudrons de houille	
		Sous-produits	Liqueurs noires concentrées
Combustibles	Combustibles Naturels	Gaz naturel	
gazeux	Combustibles Artificiels	Gaz de gazogène	Gaz à l'air, gaz à l'eau
		Gaz de distillation sèche	Gaz de coke

Les combustibles sont multiples (gaz, pétrole, bois, charbon...) mais ils ont en commun, celui de contenir des combinaisons multiples de carbone et d'hydrogène représentées par la formule générale $C_x H_y$

Tous les combustibles naturels contiennent aussi du soufre.

I.4.2. Caractéristique physico-chimiques des combustibles

On distingue quatre caractéristiques suivant sont :

a. Le pouvoir combivore

C'est la quantité d'air juste suffisante pour bruler 1kg de combustible solide ou liquide ou bien 1 m^3 de combustible gazeux.

b. Le pouvoir fumigène

C'est la quantité de fumées produites par la combustion de 1kg de combustible solide ou liquide ou bien 1m³ de combustible gazeux.

c. Le pouvoir calorifique

C'est la quantité de chaleur exprimé en kilocalories dégagées par la combustion complète de 1kg de combustible solide ou liquide ou bien de 1m³ de combustible gazeux dans les conditions suivantes (la pression égale 1atm) et (la température égale 0°C).

On distingue le pouvoir calorifique supérieur et le pouvoir calorifique inférieur :

• Le pouvoir calorifique supérieur (PCS)

C'est la quantité de chaleur exprimée en kilocalories dégagées par la combustion complète de 1Kgde combustible solide ou liquide ou bien de $1m^3$ de combustible gazeux dans les conditions normales de pression et de température (1atm et 0°C).

• Le pouvoir calorifique inférieur (PCI)

Quantité de chaleur dégagée par la combustion complète d'une unité decombustible, la vapeur d'eau étant supposée non condensée et la chaleur non récupérée.Des pertes par rayonnement plus la chaleur absorbée par la dissociation.

d. L'inflammabilité

Elle caractérise l'aptitude de combustion à s'enflammer spontanément ou en présence d'un point incandescent. [2]

II.1. Historique

La découverte de la combustion par le dioxygène est imputable au chimiste français Lavoisier, en 1775 car on considère généralement que JOSEPH PRIESTLEY, qui a isolé pour la première fois du dioxygène (impur) en 1774 n'a pas pour autant découvert le rôle de comburant du dioxygène. En effet, dans la mesure où il se fondait sur la théorie du phlogistique, cela l'empêchait de concevoir le rôle du dioxygène dans la combustion.

Selon le philosophe des sciences THOMAS SAMUEL KUHN, la découverte de la combustion par le dioxygène constitue une révolution scientifique majeure dans l'histoire des sciences.

La combustion par le dioxygène a au XIX^e siècle, et plus encore au XX^e siècle, de nombreuses applications industrielles. Elle a cependant conduit pendant l'ère industrielle à l'émission massive de dioxyde de carbone, qui est un gaz à effet de serre contribuant pour une large part aux phénomènes de dérèglement climatique [3].

II.2. La combustion

La combustion est une réaction chimique globalement et généralement fortement exothermique, autonome, susceptible de s'accélérer brutalement et d'être accompagnée d'émission de rayonnements. Elle peut être lente ou vive, turbulente, spontanée, catalytique. Elle nécessite un comburant (généralement l'air ou l'oxygène) et un combustible (tels que les composés hydrocarbonés et oxygénés).

D'une manière générale, la combustion complète d'un composé hydrocarboné produit du dioxyde de carbone (CO_2) et de l'eau. Cependant, cette réaction ne représente qu'un bilan global de la combustion. Des espèces intermédiaires de réaction sont formées à partir du combustible initial et contribuent à la production de ces produits (CO_2 et H_2O) ainsi qu'à celle de composés plus lourds lors d'une combustion incomplète.

Dans le monde moderne, la combustion est surtout utilisée pour produire de l'énergie (chaleur, électricité) mais aussi pour obtenir des détonations (explosions utilisées pour la sécurité industrielle, la propulsion hypersonique, et la pyrotechnie) [4].

Figure II.1 : Schema de la combustion.

II.3. Combustion stæchiométrique

C'est une combustion complète sans défaut ni excès d'air. Les fumées de cette combustion sont composées de CO₂, H₂O et N₂.

L'équation de cette combustion s'écrit alors :

$$C_aH_bO_cN_d + a_s(O_2 + 3.76N_2) \rightarrow n_1CO_2 + n_2H_2O + n_3N_2$$
 (II.1)

En admettant que l'air contient en volume 20,9% d'Oxygène et 79,1% d'azote.

Pour déterminer le coefficients stœchiométriques, n_1, n_2, n_3 , on fait un bilan atomique pour chaque atome à savoir C, H, N, O :

C: $a = n_1$

H: $b = 2n_2$

O:
$$c + 2a_s = 2n_1 + n$$
 (II.2)

N: $d + 2 \times 3.76 \times a_s = 2n_3$

La solution de ces quatre équations donne :

$$a_{s} = a + \frac{b}{4} - \frac{c}{2}$$

$$n_{1} = a$$

$$n_{2} = \frac{b}{2} (II.3)$$

$$n_3 = \frac{d}{2} + 3.76 (a + \frac{b}{4} - \frac{c}{2})$$

Le rapport stœchiométrique masse air carburant AFs peut être déterminé à partir de a_s et le rapport masse air / carburant.

$$AF_{s} = \left(\frac{m_{air}}{m_{fuel}}\right) = \frac{2.8 \ (4.7 \ as)}{(1.0 \ a+1.0 \ b+1.0 \ +1.0 \ d)} (II.4)$$

La composition du milieu réactionnel s'exprime alors par la richesse définie comme suit :

$$\varphi = \frac{\left(\frac{m}{m}\right)r}{\left(\frac{m}{m}\right)s} = \frac{F}{F}$$
(II.5)

L'excédent d'air } est l'inverse de la richesse φ , il est définit par :

$$\lambda = \frac{1}{\varphi} = \frac{\binom{m}{m}i}{\binom{m}{m}s} = \frac{F}{F}$$
(II.6)

- $\lambda = 1$: Mélange stœchiométrique.
- $\lambda > 1$: Mélange pauvre, combustion avec excès d'air.
- $\lambda < 1$: Mélange riche, combustion avec défaut d'air.

Tableau II.1 : Masse moléculaire, rapports stechiométrique air-carburant et fractions molaires de

Fuel	Formule chimique	M (kg/k.mole)	AF_s	a_s	<i>Y</i> _{C02}	Y _{H2O}	Xeq
hydrogène	H ₂	2.02	34.06	0.50	0.000	0.347	0.0061
Méthane	CH ₄	16.04	17.12	2.00	0.095	0.190	0.139
Ammoniac	NH ₃	17.03	6.05	0.75	0.000	0.311	0.0072
méthanol	CH4O	32.04	6.43	1.50	0.116	0.231	0.109
Propane	C ₃ H ₈	44.09	15.57	5.00	0.116	0.155	0.178
éthanol	C ₂ H ₆ O	46.07	8.94	3.00	0.123	0.184	0.145
nitrométhane	CH ₃ NO ₂	61.04	1.69	0.75	0.158	0.237	0.105
Gazoline	C ₇ H ₁₇	101.21	15.27	11.25	0.121	0.147	0.201
Octane	C ₈ H ₁₈	114.22	15.03	12.50	0.125	0.141	0.199
Diesel	C _{14.4} H _{24.9}	198.04	14.30	20.63	0.138	0.119	0.242
Tétra décane	C ₁₄ H ₃₀	198.39	14.54	21.50	0.127	0.110	0.207
Hexa décane	C ₁₆ H ₃₄	226.44	14.56	24.5	0.128	0.136	0.208

produit et qualité

Les fractions molaires et massiques de carburant dans un mélange air-carburant stœchiométriques sont les suivantes :

$$y_s = \frac{n}{n + n} = \frac{1}{1 + 4.7 \ a}$$
(II.7)

 $x_s = \frac{m}{m + m} = \frac{1}{1 + A s}$

II.4. Chaleur Spécifique

Si la composition, c'est-à-dire les fractions molaires, du mélange combustible-air-gaz résiduel est connue, les propriétés thermodynamiques \Box , u, s et v du mélange sont obtenues par application des relations de propriétés ci-dessus. La chaleur spécifique à pression constante du mélange carburant-air, c, nécessite une analyse plus détaillée. La chaleur spécifique à pression constante d'équilibre dépend non seulement du changement d'enthalpie mais aussi du changement de composition du mélange en fonction de la température [5].

Il est défini comme suit :

$$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} \tag{II.8}$$

Avec : $\Box = \overline{h}/M$

$$\frac{\partial h}{\partial T} = \frac{1}{M} \frac{\partial \bar{h}}{\partial T} + \bar{h} \frac{\partial}{\partial T} \left(\frac{1}{M} \right)$$
(II.9)

La dérivée de la chaleur spécifique molaire par rapport à la température donne :

$$\overline{h} = \sum_{i=1}^{n} y_{i} \overline{h}$$

$$\frac{\partial \overline{h}}{\partial T} = \sum_{i=1}^{n} y_{i} \frac{\partial \overline{h}}{\partial T} + \sum_{i=1}^{n} \overline{h} \frac{\partial y_{i}}{\partial T} \qquad (\text{II.10})$$

$$C_{p} = \frac{1}{M} \left[\sum_{i=1}^{n} y_{i} c_{pi} + \sum_{i=1}^{n} \overline{h}_{i} \frac{\partial y_{i}}{\partial T} \right] - \frac{\overline{h}}{M^{2}} \frac{\partial M}{\partial T}$$

La masse molaire est : M = yi

$$C_{P} = \frac{1}{M} \left[\sum_{i=1}^{n} y_{i} c_{pi} + \sum_{i=1}^{n} \overline{h}_{i} \frac{\partial y_{i}}{\partial T} - \frac{\overline{h}}{M} \sum_{i=1}^{n} M_{i} \frac{\partial y_{i}}{\partial T} \right] (\text{II.11})$$

Les dérivées partielles des fractions molaires par rapport à la pression et à la température, $\partial /\partial = \operatorname{et} \partial /\partial$, sont importantes pour la détermination de la chaleur spécifique du mélange. Pour les calculs informatiques, il est difficile de traiter des données tabulaires.

Pour cette raison, les chaleurs spécifiques de diverses espèces sont données sous forme de polynômes minimisant l'erreur à l'aide de la technique des moindres carrés (Gordon et McBride, 1994). La fonction que nous emploierons pour une espèce donnée est la suivante :

$$\frac{c_p}{R} = a_1 + a_2T + a_3T^2 + a_4T^3 + a_5T^4$$
(II.12)

Pour un gaz idéal, dh = c et $d = (c \nearrow T)d$, l'enthalpie et l'entropie standard à pression atmosphérique sont les suivantes :

$$\frac{h}{RT} = a_1 + \frac{a_2}{2}T + \frac{a_3}{3}T^2 + \frac{a_4}{4}T^3 + \frac{a_5}{5}T^4 + \frac{a_6}{7}(II.13)$$
$$\frac{S^{\circ}}{R} = a_1 \ln T + a_2 \ln T + \frac{a_3}{2}T^2 + \frac{a_4}{3}T^3 + \frac{a_5}{4}T^4 + a_7(II.14)$$

 Oua_6 et a_7 sont des constantes d'intégration déterminées en faisant correspondre l'enthalpie et l'entropie à une température de référence quelconque. Comme nous l'avons vu plus haut, la température de référence pour l'enthalpie est choisie pour être de 298,15K, l'enthalpie de H₂, O₂, N₂ et C(s) étant réglée à zéro.

Les valeurs des constantes d'ajustement de la courbe pour plusieurs espèces d'intérêt pour la combustion, CO₂, H₂O, N₂,O₂, CO, H₂, H, O, OH et NO sont données dans l'annexe A, pour les plages de température de 300 à 1000 K et de 1000 à 3000 K.

Des coefficients d'ajustement de courbe similaires pour plusieurs combustibles sont également donnés dans cette même annexe.

II.5. Combustion à Basse Température

A basse température (T<1000K) et pour un rapport C/O inférieure à 1, la réaction de combustion s'écrit comme suit :

$$C_a H_b O_c N_d + \frac{a}{(O_2 + 3.76N_2)} \rightarrow$$

 $n_1 CO_2 + n_2 H_2 O + n_3 N_2 + n_4 O_2 + n_5 CO + n_6 H_2$ (II.15)

Les coefficients ni sont déterminés à l'aide des hypothèses suivantes :

 Pour les mélanges pauvre ou stœchiométrique, Ø 1, nous supposons qu'il y'a pas de produit CO et H₂ (n₅=n₆=0).

On aura quatre équations avec quatre inconnus :

C:
$$a = n_1 + n_5$$

H: $b = 2n_2 + 2n_6$ (II.16)

O:
$$c + 2^{\frac{a}{2}} = 2n_1 + n_2 + 2n_4 + n_5$$

N:
$$d + \frac{a}{2} (3.76 \times 2) = 2n_3$$

2. Pour les mélanges riches $\emptyset > 1$, peut être négligé O_2 c'est-à-dire $n_4=0$.

Dans ce cas, il y a quatre équations avec cinq inconnues :

C:
$$a = n_1 + n_5$$

H: $b = 2n_2 + 2n_6$ (II.17)

O:
$$c + 2^{\underline{a}} = 2n_1 + n_2 + 2n_4 + n_5$$

N: $d + \frac{a}{2}(3.76 \times 2) = 2n_3$

La solution : $n_1 = a - n_5$

 $n_2 = b/2 - 2a_s(1-1/) + n_5$

 $n_3 = d/2 + 3.76^{a}$

n4 =0

 $n_6 = 2 a_s(1-1/) - n_5$

Nous avons donc besoin d'une équation supplémentaire pour compléter les quatre équations d'équilibre atomique. Comme nous avons des produits de combustion incomplets, nous devons supposer des conditions d'équilibre entre les espèces de produits CO₂, H₂O, CO et H₂ et aucune dissociation afin de déterminer la composition du produit.

Cette réaction d'équilibre est la réaction du gaz à l'eau :

$$CO_2+H_2 \rightleftharpoons CO+H_2O$$
 (II.18)

Avec la constante d'équilibre K(T) pour la réaction du gaz a l'eau, on obtient la cinquième équation :

$$K(T) = \frac{nC \quad nH}{nC \quad nH}$$
(II.19)

La constante d'équilibre K (T), équation (II.20), est un ajustement de la courbe des données du tableau JANAF pour 400 < T < 3200:

Ln(T)=2.743
$$-\frac{1.761}{t} - \frac{1.611}{t^2} - \frac{0.2803}{t^3}$$
 (II.20)

Avec : $t = \frac{T}{1}$

Dans le cas de la combustion riche, le nombre de moles de CO, n_5 est calculé par la solution de l'équation quadratique :

$$n_5 = \frac{-b_1 \pm \sqrt{b_1^2 - 4a_1c_1}}{2a_1} \tag{II.21}$$

On pose:

 $a_1 = 1 - K$

 $b_1 = b/2 + K a - d_1(1-K)$

 $c_1 = -a_1 k$

 $d_1 = 2a_s(1-1/\emptyset)$

Tableau II.2 : Relations donnant les fractions des produits de combustion à basse température(T < 1000 K), en fonction de la richesse :

Produits	ni	Ø 1	Ø>1
CO ₂	n 1	а	u-n ₅
H ₂ O	n 2	b/2	$b/2-d_1+n_5$
N ₂	n 3	d/2+3.76as/Ø	d/2+3.76as/Ø
O ₂	n 4	a _s (1/Ø-1)	0
СО	n 5	0	n ₅
H ₂	n ₆	0	<i>d</i> ₁ -n ₅

II.6. Combustion avec gaz résiduel :

Dans les moteurs thermiques (à explosion), il y a des gaz résiduels mélangés au carburant et à l'air, car tous les gaz de combustion ne quittent pas le cylindre.

On suppose que le gaz résiduel est à une basse température (T<1000 K) pour que les relations d'espèces du Tableau II.2 soient encore valables.

Réécrivons l'équation de combustion comme suit :

 $n_{0} C_{a} H_{b} O_{c} N_{d} + n_{4} O_{2} + n_{3} N_{2} \rightarrow$

$$n_{1}CO_{2} + n_{2}H_{2}O + n_{3}N_{2} + n_{4}O_{2} + n_{5}CO + n_{6}H_{2}$$
 (2.22)

Avec :

 $n_i'' =$ réactifs.

 $n_i'' =$ produits.

En adoptant une notation similaire pour d'autres symboles, nous pouvons développer des relations pour la masse des espèces et les fractions molaires pour un mélange de gaz résiduel (r) avec la fraction résiduelle f et l'air-carburant pré mélangé (fa).

La fraction molaire résiduelle yr est :

$$y = \frac{n_r}{n_f + n_r} = \frac{1}{\frac{n_{fa}}{n_r} + 1}$$
 (II.23)

On a :

$$\frac{n_f}{n_r} = \frac{m_f}{m_r} \frac{M_\Gamma}{M_f} = \frac{m_f}{m_r} \frac{M''}{M'} \qquad (II.24)$$

Avec f = mr/m:

$$\frac{m_f}{m_r} = \frac{1}{f} \cdot 1 \tag{II.25}$$

En remplaçant, la fraction molaire résiduelle y s'écrit comme suit :

$$y_{\rm r} = \left[1 + \frac{M'}{M'} \left(\frac{1}{f} - 1\right)\right]^{-1}$$
 (II.26)

Les fractions molaires des espèces yi sont donneés par :

$$y_i = \frac{n_i}{N} = \frac{n_i}{n_f} y_{fa} + \frac{n_i}{n_r} y_r$$
(II.27)

Avec :

$$v = 1 - v$$

$$y_i = \frac{n_i}{n_F}$$
 et $y_i = \frac{n_i}{n_f}$

Les fractions molaires :

$$y_i = (1 - y_r)y_i + y_r y_i$$
 (II.28)

Les fractions massiques :

$$x_i = (1 - f)x_i + fx_i$$
 (II.29)

Pour un mélange à composition constante, la chaleur spécifique d'équilibre est identique à la chaleur spécifique congelée. Toutefois, pour un mélange de combustible, d'air et de gaz résiduel de réaction, les dérivées partielles des fractions molaires constitutives par rapport à la température sont nécessaires pour déterminer la chaleur spécifique à l'équilibre.

Puisque ni les fractions molaires résiduelle y_r , ni les fractions molaires réactives y_i dépendant de la température, la dérivée de l'équation (II.28) par rapport a la température conduit à :

$$\frac{\partial_{t}}{\partial} = y_{r} \frac{\partial y^{t}}{\partial} = y_{r} \frac{1}{N} \frac{\partial_{t}}{\partial} (\text{II.30})$$

Le tableau II.2 indique que pour la combustion pauvre, aucune de ces six dérivées partielles ne dépend de la température. Pour une combustion riche, seules les dérivées se rapprochant à n_5 (CO) dépendent de la température, puisque la constante d'équilibre dépend de la température (**T**) apparaît dans la solution de l'équation quadratique (II.21). Ainsi, nous pouvons écrire

$$\frac{\partial}{\partial} = 0$$
 (pauvre)

$$\frac{\partial_{t}}{\partial} = y_{r} \frac{1}{N} \frac{\partial_{t}}{\partial} \frac{\partial_{t}}{\partial} \frac{\partial_{t}}{\partial} \frac{\partial_{t}}{\partial} \frac{\partial_{t}}{\partial} (riche)$$
(II.31)

Les termes ∂ / ∂ 5 dans l'équation (II.31) peuvent être déterminés en dérivant les relations de la colonne du tableau II.2 pour $\phi > 1$ par rapport à n_5 .Ce qui donne :

 ∂ 1/ ∂ 5 = -1, ∂ 2/ ∂ 5 = 1, ∂ 3/ ∂ 5 = 0

 ∂ 4/ ∂ 5 =0, ∂ 5/ ∂ 5 =1, ∂ 6/ ∂ 5 = -1.

Aussi, en dérivant l'équation (II.20) par rapport à T :

$$\frac{\partial}{\partial} = \frac{\partial}{\partial} \frac{\partial}{\partial}$$
$$= \left(\frac{1.7}{t^2} + \frac{3.2}{t^2} - \frac{0.8}{t^4}\right) \frac{K}{1}$$

Finalement, on obtient :

$$\frac{\partial n_{\rm b}}{\partial} = -\frac{(a - n_{\rm b})[n_{\rm b} + 2a_{\rm s}(1/\emptyset - 1)]}{\beta/2 + n_{\rm b} + 2a_{\rm s}(1/\emptyset - 1)} (\text{II}.32)$$

II.7. Méthode des constantes d'équilibre chimique :

Cette section présente une solution numérique pour les propriétés des produits de combustion à l'équilibre basée sur une méthode de constante d'équilibre appliquée par Olikara et Borman (1975) aux produits de combustion en phase gazeuse des combustibles hydrocarbonés. L'utilisation de constantes d'équilibre est également basée sur la minimisation de l'énergie libre de Gibbs du mélange gazeux.

La figures II.2 montre que pour ϕ <3, les seules espèces ou produits de combustion issus de la réaction sont N₂ ,H₂O , CO₂ , CO , O₂ , H₂ , OH ,H ,O et NO. Par conséquent, nous n'avons besoin de considérer que 10 espèces. Considérons donc la réaction suivante :

$$C_a H_b O_c N_d + -(O_2 + 3.76N_2) \rightarrow$$

$$n_1CO_2 + n_2H_2O + n_3N_2 + n_4O_2 + n_5CO + n_6H_2 + n_7H + n_8O + n_9OH + n_{10}NO$$
 (II.33)

On aura quatre équations:

$$\mathbf{C}: \qquad \qquad \boldsymbol{\boldsymbol{\boldsymbol{\omega}}} = (\mathbf{y}_1 + \mathbf{y}_5)\mathbf{N}$$

H:
$$b = (2y_2 + 2y_6 + y_7 + y_9)N$$

O:
$$c + 2^{\underline{a}} = (2y_1 + y_2 + 2y_4 + y_5 + y_8 + y_9 + y_{10})N$$
 (II.34)

N: $d + \frac{a}{2} (3.76 \times 2) = (2y_3 + y_{10})N$

N est la somme des fractions molaires telle que :

$$\sum_{i=1}^{10} y_i = 1$$

De l'équation (2.33) on a :

 $N = \frac{a}{(y_1 + y_5)}$ on la remplace dans les autres équations on obtient :

Figure II.2 : Fractions molaires des produits de combustion, en fonction de ϕ , lors de la combustion de l'octane (C₈H₁₈) à*T* =3000 K, et **P** = 50 bars.

• $\frac{1}{t=1}y = 1$

•
$$2y_2 + 2y_6 + y_7 + y_9 - \frac{b}{a}y - \frac{b}{a}y = 0$$

• $2y_1 + y_2 + 2y_4 + y_5 + y_8 + y_9 + y_{10} - (\frac{c}{a} - 2\frac{a}{b})y_1 - (\frac{c}{a} - 2\frac{a}{b})y_2 = 0$ (II.35)
• $2y_3 + y_{10} - (\frac{a}{a}7.52)y_1 - (\frac{a}{a}7.52)y_5 = 0$

Les constantes d'équilibre ont été mise en place en cherchant à décrire l'équilibre chimique, c'est a dire en maximisant l'entropie de la réaction ou en minimisant son enthalpie libre. Soit une réaction réversible :

$$_{1}A + _{2}B \quad _{3}C + _{4}D$$
 (II.36)

Sa constante d'équilibre est définie de la manière suivante :

$$Kp = \left(\frac{n_C^{\nu^3} n_D^{\nu^4}}{n_A^{\nu^1} n_B^{\nu^2}}\right) \left(\frac{P}{P_{ntotal}^{\circ}}\right) \Delta \nu$$
(II.37)

Avec

- n_i : nombres de mole du compose i,
- P : pression du mélange e (dans notre cas, elle vaut 1 atm),
- P° : pression standard, égale à 1 atm .
- n_{total} : le nombre total de mole des composés chimiques dans le mélange,
- = 3 + 4 1 2.

On a quatre équations avec 10 inconnus, donc on rajoute 6 équations à notre système pour sa résolution.

Quatre équations de dissociation de l'hydrogène, oxygène, eau et dioxyde de carbone et deux équations de formation de l'oxyde d'hydrogène et d'oxyde d'azote.

$$\frac{1}{2}\text{H}_2 \rightleftharpoons \text{H} \qquad \qquad K_1 = \frac{y_7 P^{1/2}}{y_0^{1/2}}$$

$$\frac{1}{2}O_{2} \rightleftharpoons 0 \qquad K_{2} = \frac{y_{0}p^{1/2}}{y_{4}^{1/2}}$$

$$\frac{1}{2}H_{2} + \frac{1}{2}O_{2} \rightleftharpoons OH \qquad K_{3} = \frac{y_{0}}{y_{4}^{1/2}y_{0}^{1/2}} (II.38)$$

$$\frac{1}{2}O_{2} + \frac{1}{2}N_{2} \rightleftharpoons NO \qquad K_{4} = \frac{y_{1}}{y_{4}^{1/2}y_{3}^{1/2}}$$

$$H_{2} + \frac{1}{2}O_{2} \rightleftharpoons H_{2}O \qquad K_{5} = \frac{y_{2}}{y_{4}^{1/2}y_{0}p^{1/2}}$$

$$CO + \frac{1}{2}O \rightleftharpoons CO2 \quad K_{6} = \frac{y_{1}}{y_{4}^{1/2}y_{0}p^{1/2}}$$

La pression dans les six équations ci-dessus est en atmosphères (atm).

Olikara et Borman (1975) ont ajusté les constantes d'équilibre K(T) aux données du tableau JANAF pour la plage de température 600 <*T* < 4000 K. Leurs expressions ont la forme suivante :

$$Log_{10} K_{i}(T) = A_{i}ln(T/1000) + \frac{B_{i}}{T} + C_{i} + D_{i}T + E_{i}T^{2}$$
(II.39)

où T est en Kelvin. La constante d'équilibre K_i , les coefficients d'ajustement de la courbe sont indiqués dans le tableauII.3. Compte tenu de la pression P, de la température T et du rapport d'équivalence ϕ .

Ki	Ai	Bi	Ci	Di	Ei
<i>K</i> 1	+0.432168E + 00	-0.112464E + 05	+0.267269E + 01	-0.745744E - 04	+0.242484E- 08
K 2	+0.310805E+00	-0.129540E + 05	+0.321779E + 01	-0.738336E - 04	+0.344645E- 08
К3	-0.141784E + 00	-0.213308E + 04	+0.853461E + 00	+0.355015E - 04	-0.310227E- 08
K 4	+0.150879E - 01	-0.470959E + 04	+0.646096E + 00	+0.272805E - 05	-0.154444E - 08
К5	-0.752364E + 00	+0.124210E + 05	-0.260286E + 01	+0.259556E - 03	-0.162687E - 07
K 6	-0.415302E - 02	+0.148627E + 05	-0.475746E + 01	+0.124699E - 03	-0.900227E - 08

Tableau II.3 : Constante d'équilibre K_i , et coefficients d'ajustement de la courbe.

Les équations précédentes donneront dix équations pour les dix inconnues, Les dix fractions molaires inconnues y. le remplacement de ces six équations de réaction d'équilibre individuelles dans les équations d'équilibre atomique donne quatre équations dans quatre inconnues (y_3 , y_{4,y_5} , y_{6}):

Avec :

$$y_{7} = \frac{K_{1}y_{0}^{1/2}}{p^{1/2}}, \qquad y_{8} = \frac{K_{2}y_{4}^{1/2}}{p^{1/2}}, \qquad y_{9} = K_{3}y_{4}^{1/2}y_{6}^{1/2},$$
$$y_{1} = K_{4}y_{4}^{1/2}y_{3}^{1/2}, \qquad y_{2} = K_{5}y_{4}^{1/2}y_{6}P^{1/2}, \qquad y_{1} = K_{6}y_{4}^{1/2}y_{5}P^{1/2}$$

On a quatre équations :

•
$$\sum_{i=1}^{10} y_i = 0$$

•
$$2\left(K_{5}y_{4}^{1/2}y_{6}P^{1/2}\right) + 2y_{6} + \left(\frac{K_{1}y_{6}^{1/2}}{p^{1/2}}\right) + \left(K_{3}y_{4}^{1/2}y_{6}^{1/2}\right) - \frac{b}{a}\left(K_{6}y_{4}^{1/2}y_{5}P^{1/2}\right) - \frac{b}{a}y_{5} = 0 \quad (II.40)$$

$$2\left(K_{6}y_{4}^{1/2}y_{5}P^{1/2}\right) + \left(K_{5}y_{4}^{1/2}y_{6}P^{1/2}\right) + 2y_{4} + y_{5} + \left(\frac{K_{2}y_{4}^{1/2}}{P^{1/2}}\right) + \left(K_{3}y_{4}^{1/2}y_{6}^{1/2}\right) + \left(K_{4}y_{4}^{1/2}y_{3}^{1/2}\right) - \left(\frac{c}{a} - 2\frac{a_{s}}{w}\right)\left(K_{6}y_{4}^{1/2}y_{5}P^{1/2}\right) - \left(\frac{c}{a} - 2\frac{a_{s}}{w}\right)\left(K_{5}y_{4}^{1/2}y_{6}P^{1/2}\right) = 0$$

$$2y_{3} + \left(K_{4}y_{4}^{1/2}y_{3}^{1/2}\right) - \left(\frac{a_{s}}{wa}7.52\right)\left(K_{6}y_{4}^{1/2}y_{5}P^{1/2}\right) - \left(\frac{a_{s}}{wa}7.52\right)y_{5} = 0$$

Le développementdétaillé de ces équationsest donnée dans l'annexe C,Elles sont résolues numériquement à l'aide d'un programme informatique, le programme calcule les fractions molaires et les propriétés du produit en fonction de la pression du mélange, de la température et du rapport d'équivalence carburant-air.

II.7. Premier principe de la thermodynamique :

Supposons que les réactifs constitués de combustible, d'air et de gaz résiduels soient prémélangés à un état homogène et brûlés dans un système de combustion. L'application de la loi du système fermé d'abord à ce processus de combustion conduit à :

Le premier principe de la thermodynamique on a :

$$U = Q + W \tag{II.41}$$

Puisque le processus est a pression constante, W = P V, et de H = U + P, nous avons :

$$H = U + (PV) = U + P V + V P$$

$$H = U + P V avec:$$

$$Q = U + W = U + P V = H$$
(II.42)

En fin :

$$H = Q \rightarrow Q = H_P - H_R$$

II.8. Enthalpie :

Nous sommes en présence d'une combustion adiabatique, à pression constante et sans travail ni crée ni fourni.

A partir du premier principe de la thermodynamique on a la relation suivante :

$$\sum_{R} \left(n\overline{h} \right)_{R} = \sum_{P} \left(n\overline{h} \right)_{P} \tag{II.43}$$

Où H est l'enthalpie total du système. Cette relation peut se réécrire comme suit :

$$H_R(T_R,P) = H_P(T_P,P)$$
(II.44)

Nous avons aussi :

$$H_{R}(T_{R},P) = \sum_{i=1}^{réactifs} n_{i}\overline{h}(T_{R},P)$$

$$H_{P}(T_{P},P) = \sum_{i=1}^{produits} n_{i}\overline{h}(T_{P},P) \qquad (II.45)$$

Pour un gaz idéal, h=f(T):

$$\overline{h}(\mathbf{T},\mathbf{P}) = \overline{h}^{\circ}_{I} + \frac{T}{T} \qquad C_{P} d\mathbf{T}$$
(II.46)

Remarque :

Les enthalpies standards de formation, à 25°C de plusieurs espèces sont données dans des tables en annexe A.

Fuel	Formule chimique	\overline{h}_{f}° (<i>MJ/k.mole</i>)	
hydrogène	H ₂	0.0	
Méthane	CH ₄	16.04	
Ammoniac	NH ₃	17.03	
méthanol	CH ₄ O	32.04	
Propane	C ₃ H ₈	44.09	
Éthanol	C ₂ H ₆ O	46.07	
Nitrométhane	CH ₃ NO ₂	61.04	
Gazoline	C7H17	101.21	
Octane	C ₈ H ₁₈	114.22	
Diesel	C14.4H24.9	198.04	

Tableau II.3 : Enthalpie de formation \overline{h}_{f}° , de quelques combustibles.

II.9. Chaleur de combustion :

La chaleur de combustion ou le pouvoir calorifique, q_c , d'un combustible est défini comme l'énergie thermique transférée hors d'un système par unité de masse ou par mole de combustible lorsque les états initial et final sont à la température et à la pression de référence, $T_0 = 298,15$ Ket $P_0 = 101$ kPa.Le nombre de moles dans le système n'est alors pas constant lors d'un changement d'état de combustion. Par convention, la chaleur transférée hors d'un système est négative, et la chaleur de combustion est un nombre positif, c'est-à-dire $q_c = -Q$, donc :

$$q_c = H_r - H_p \tag{II.47}$$

pour la combustion à volume constant où : $W = P\Delta V = 0$ et :

$$q_c = U_r - U_P \tag{II.48}$$

On suppose que la combustion est complète, le combustible se transformant en dioxyde de carbone et en eau. Comme les produits sont à basse température (To < 1000 K), les analyses qui ont mené au Tableau 2.2 pour le cas pauvre ou stœchiométrique peuvent être utilisées pour calculer la chaleur de combustion qc. Dans ce cas, on peut montrer que l'équation 2.48 devient :

$$q_{c} = \sum_{i} n_{r,i} \overline{h}_{r,i} - \sum_{i} n_{p,i} \overline{h}_{p,i}$$
(II.49)

 $= 1 \times \overline{h}_{fuel} - n_{co_2} \overline{h}_{co_2} - n_{H_2O} \left(\overline{h}_{H_2O} - (1 - t) h_{fg,H_2O} \right)$

Puisque les enthalpies de l'oxygène O_2 et de l'azote N_2 sont assignées à zéro à la température de référence $T_0 = 298,15$ K.

Deux valeurs de qc sont reconnues :

La chaleur de combustion inférieure q_{lhc} est définie comme l'état où toute l'eau dans les produits est de la vapeur (la qualité $\chi = 1$), et

La chaleur de combustion supérieure, q_{hhc} est définie comme l'état où toute l'eau dans les produits est liquide (la qualité $\chi = 0$).

Si la qualité de l'eau n'est pas spécifiée, on suppose généralement que $q_c = q_{lhc}$.

Fuel	Formule chimique	\overline{h}_{f}° (MJ/k.mole)	$ar{s}^{\circ}_{298}(kJ/(kmol\ K))$	q _{lhc} (MJ/kg)	q _{hhc} (MJ/kg)	a ₀ (MJ/kg)
hydrogène	H ₂	0.0	130.6	119.95	141.6	119.52
Méthane	CH ₄	16.04	17.12	2.00	0.095	0.190
Ammoniac	NH ₃	17.03	6.05	0.75	0.000	0.311
méthanol	CH ₄ O	32.04	6.43	1.50	0.116	0.231
Propane	C ₃ H ₈	44.09	15.57	5.00	0.116	0.155
éthanol	C ₂ H ₆ O	46.07	8.94	3.00	0.123	0.184
nitrométhane	CH ₃ NO ₂	61.04	1.69	0.75	0.158	0.237
Gazoline	C ₇ H ₁₇	101.21	15.27	11.25	0.121	0.147
Octane	C ₈ H ₁₈	114.22	15.03	12.50	0.125	0.141
Diesel	C _{14.4} H _{24.9}	198.04	14.30	20.63	0.138	0.119

Tableau II.4 : Pouvoir calorifique inférieur q_{lhc} et supérieur q_{hhc} , l'entropie absolue $\overline{s}_{298}^{\circ}$, à 298 K, et a_0 , l'énergie maximale disponible de la combustion.

II.10. Température de flamme adiabatique :

Un autre paramètre de combustion utile est la température adiabatique de la flamme T_f . Elle est définie comme la température des produits de combustion lorsque ceux-ci sont complètement brûlés sans production de travail (W = 0) ou de transfert de chaleur (Q = 0) vers l'environnement. La température adiabatique de la flamme représente la température maximale d'un processus de combustion, car tout transfert de chaleur de la réaction et toute combustion incomplète abaisse la température des produits. Pour une combustion à pression constante, la première loi de thermodynamique s'écrit :

$$H_p = H_r \tag{II.50}$$

L'état initial des réactifs est supposé être à la température et à la pression de référence, To = 298,15 K et Po = 101 kPa. Comme la température du produit est généralement inconnue dans les calculs de la première loi de combustion, il faut procéder à une itération avec une estimation de la température initiale pour déterminer l'enthalpie du mélange de produits. [5]

Pour une combustion à volume constant, la première loi de la thermodynamique sans travail (W = 0) ou sans transfert de chaleur (Q = 0) vers l'environnement est :

$$U_p = U_r \tag{II.51}$$

La température de la flamme adiabatique à volume constant est supérieure à la température de la flamme adiabatique à pression constante puisque le travail p est nul dans un processus à volume constant. La température stœchiométrique de la flamme adiabatique de plusieurs combustibles est indiquée dans le tableau II.2. Les résultats tabulés supposent des conditions de référence de $T_0 = 298,15$ K, $P_0 = 101$ kPa, f = 0 et

 ϕ =1. Il y a peu de dépendance sur le type de carburant parmi les hydrocarbures, qui ont des températures de flamme adiabatique d'environ 2250 K. Notez que les moteurs en fonctionnement auront un *T*o plus grand et une température de flamme adiabatique correspondante plus grande.

Dans ce chapitre, nous présentons les résultats obtenus par nos programmes de calcul rédigés en Matlab pour le calcul des fractions molaires des produits de combustion issus de la combustion de l'octane, en fonction de la richesse et de la température du mélange. Nous présentons également les résultats obtenus lors de la prédiction de la température de la flamme adiabatique pour l'hydrogène et l'octane en fonction de la richesse. Les résultats qui en découlent sont illustrés par des tableaux et des figures.

III.1. Fractions molaires des produits de combustion

Les fractions molaires calculées par notre programme pour le cas de la combustion de l'octane C_8H_{18} à la pression P = 1.013 bar en fonction de la température du mélange, sont résumées dans les tableaux 3.1, 3.2 et 3.3 respectivement pour des richesses ϕ de 0.8, 1.0 et 1.2. Nous avons retenu dix espèces ou produits de combustion (n₁ à n₁₀) dans l'équation de la réaction chimique.

Sur ces tableaux, nous remarquons que certaines espèces ne sont pas présentes à faible température.

Т	y1- CO2	y2- H2O	y3-N2	y4-O2	y5-CO	y6-H2	y7-H	y8-O	у9-ОН	y10- NO
1000	0,1014	0,114	0,7449	0,0396	0	0	0	0	0	0
1200	0,1014	0,114	0,7449	0,0396	0	0	0	0	0	0,0001
1400	0,1014	0,114	0,7448	0,0394	0	0	0	0	0	0,0003
1600	0,1014	0,114	0,7445	0,0392	0	0	0	0	0	0,0009
1800	0,1014	0,114	0,744	0,0386	0	0	0	0	0,0002	0,0019
2000	0,1013	0,1138	0,7431	0,0378	0,0001	0	0	0	0,0005	0,0034
2200	0,1009	0,1133	0,7417	0,0367	0,0004	0,0001	0	0,0001	0,0013	0,0055
2400	0,0998	0,1124	0,7397	0,0355	0,0014	0,0002	0	0,0003	0,0025	0,0082
2600	0,0971	0,1107	0,7364	0,0346	0,0039	0,0006	0,0001	0,0006	0,0046	0,0115
2800	0,0916	0,1078	0,7313	0,0343	0,009	0,0014	0,0004	0,0014	0,0076	0,0154
3000	0,0827	0,1034	0,7238	0,0348	0,0171	0,0026	0,0011	0,0028	0,0117	0,02
3200	0,0709	0,0973	0,7137	0,0357	0,0279	0,0043	0,0025	0,0056	0,0169	0,0253
3400	0,0577	0,0893	0,7014	0,0364	0,0399	0,0065	0,005	0,0098	0,023	0,0311
3600	0,0449	0,0798	0,6877	0,0365	0,0512	0,009	0,0092	0,0154	0,0293	0,0369
3800	0,0336	0,069	0,6727	0,0354	0,0608	0,0118	0,0157	0,0236	0,0353	0,0422
4000	0,0246	0,0575	0,6570	0,0332	0,068	0,0143	0,0247	0,0339	0,0401	0,0467

Tableau III.1 : Fractions molaires des différents produits de la combustion de C $_8H_{18}$ en fonctionde la température pour une richesse $\phi = 0.8$.

Figure III.1. a : Évolution des fractions molaire N₂ H₂O CO₂, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 0.8$.

Figure III.1.b: Évolution des fractions molaire OH NO H O, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 0.8$.

Figure III.1.c : Évolution des fractions molaire N H₂ O₂, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 0.8$.

T(K)	y1- CO2	y2- H2O	y3-N2	y4-O2	y5-CO	y6-H2	у 7-Н	y8-O	у9-ОН	у10- NO
1000	0,1248	0,1405	0,7344	0,0001	0,0001	0	0	0	0	0
1200	0,1248	0,1405	0,7344	0,0001	0,0001	0	0	0	0	0
1400	0,1248	0,1405	0,7344	0,0001	0,0001	0	0	0	0	0
1600	0,1248	0,1405	0,7344	0,0001	0,0001	0	0	0	0	0
1800	0,1246	0,1404	0,7343	0,0001	0,0003	0,0001	0	0	0	0,0001
2000	0,1238	0,1401	0,7338	0,0004	0,001	0,0002	0	0	0,0002	0,0004
2200	0,1219	0,1394	0,7326	0,0011	0,0028	0,0006	0	0	0,0006	0,0009
2400	0,118	0,1381	0,7303	0,0024	0,0064	0,0012	0,0001	0,0001	0,0014	0,0021
2600	0,1114	0,1356	0,7263	0,0045	0,0125	0,0021	0,0002	0,0002	0,003	0,0041
2800	0,1017	0,1317	0,7201	0,0074	0,0214	0,0036	0,0007	0,0006	0,0057	0,0071
3000	0,089	0,1261	0,7115	0,0109	0,033	0,0056	0,0016	0,0016	0,0097	0,0111
3200	0,0745	0,1184	0,7007	0,0145	0,046	0,0082	0,0034	0,0034	0,0149	0,016
3400	0,0596	0,1086	0,688	0,0177	0,0592	0,0113	0,0066	0,0065	0,0211	0,0214
3600	0,0459	0,0968	0,6737	0,0199	0,071	0,0149	0,0119	0,0113	0,0277	0,0269
3800	0,0342	0,0836	0,6583	0,0209	0,0805	0,0185	0,0197	0,0181	0,0341	0,0321

Tableau III.2 : Fractions molaires des différents produits de la combustion de C₈H₁₈ en fonctionde la température pour une richesse $\phi = 1.0$.

Figure III.2.a : Évolution des fractions molaire N₂ H₂O CO₂, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 1.0$.

Figure III.2.b : Évolution des fractions molaire NO OH O H, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 1.0$.

Chapitre III : Résultats et Discussion.

Figure III.2.c : Évolution des fractions molaire CO H₂ O₂, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 0.8$.

Tableau III.3 : Fractions molaires des différents produits de la combustion de C₈H₁₈ en fonctionde la température pour une richesse $\phi = 1.2$.

T(K)	y1- CO2	у2- Н2О	y3-N2	y4-O2	y5-CO	y6-H2	у 7-Н	y8-O	у9-ОН	у10- NO
1000	0,0797	0,1487	0,6974	0	0,0627	0,0115	0	0	0	0
	0,0797	0,1487	0,6974	0	0,0627	0,0115	0	0	0	0
1400	0,0797	0,1487	0,6974	0	0,0627	0,0115	0	0	0	0
1600	0,0799	0,1485	0,6974	0	0,0625	0,0116	0	0	0	0
1800	0,0851	0,1433	0,6974	0	0,0573	0,0169	0	0	0	0
2000	0,0864	0,142	0,6974	0	0,056	0,0181	0	0	0	0
2200	0,0852	0,143	0,6973	0	0,0571	0,017	0,0001	0	0,0001	0
2400	0,0837	0,144	0,6971	0	0,0586	0,0158	0,0003	0	0,0004	0,0002
2600	0,0819	0,1441	0,6962	0,0001	0,0603	0,0149	0,0006	0	0,0012	0,0006
2800	0,0788	0,1427	0,6939	0,0005	0,0631	0,0147	0,0013	0,0002	0,0031	0,0018
3000	0,0729	0,1387	0,689	0,0017	0,0682	0,0155	0,0027	0,0006	0,0064	0,0043
3200	0,0637	0,1317	0,6809	0,0039	0,0762	0,0175	0,005	0,0017	0,0113	0,0082
3400	0,0526	0,1215	0,6699	0,0066	0,0855	0,0207	0,0089	0,004	0,0174	0,0129
3600	0,0414	0,1085	0,6567	0,0091	0,0945	0,0246	0,0153	0,0076	0,0242	0,0181
3800	0,0315	0,0938	0,6419	0,011	0,1019	0,0287	0,0245	0,013	0,0307	0,023
4000	0,0234	0,078	0,626	0,012	0,1072	0,0322	0,0371	0,0203	0,0363	0,0275

Chapitre III : Résultats et Discussion.

Figure III.3.a : Évolution des fractions molaire N₂ H₂O CO₂, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 1.2$.

Figure III.3.b: Évolution des fractions molaire NO OH O H, produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 1.2$.

Chapitre III : Résultats et Discussion.

Figure III.3.c : Évolution des fractions molaire CO H₂ O₂ produits de la combustion de C₈H₁₈ en fonction de la température pour une richesse $\phi = 1.2$.

Les Figures III.1.a , III.1.b et III.1.c montrent la concentration des fractions molaires des produits de combustion pour une richesse de 0.8 en variant la température de 1000 à 4000 K. Pour une température de 1000 à 2000 K , nous remarquons une forte concentration de CO₂. Les concentrations de H₂, O, N₂ et O₂ qui restent stable, et une légère apparition de NO OH qui augmente avec la température, Tandis que les espèces CO H₂ H O restent nulles.

À partir de 2000 K, il ya apparition des produits tels que le CO, H₂, H et de O et leurs concentrations augmentent avec la température. La fraction de N_2 est peut influencée par le changement de température. Une légère diminution de la concentration de CO₂, H₂O est constatée à partir de 3000 K.

 Les Figures III.2.a , III.2.b et III.2.c montrent la concentration des fractions molaires des produits de combustion pour une richesse de 1.0 en variant la température de 1000 à 4000 K.

 Les Figures III.3.a , III.3.b et III.3.c montrent la concentration des fractions molaires des produits de combustion pour une richesse de 1.2 en variant la température de 1000 à 4000 K.

Pour une température de 1000 à 2400K, nous remarquons une forte concentration de $CO_2 H_2O$ $N_2 CO$ qui reste stable, Tandis que les espèces $H O_2 O OH NO$ restent nulles.

À partir de 2400 K, il y a apparitions de $H O_2 O OH NO$ dont la concentration augmente avec la température. Une stabilisation de la concentration de N_2 , et une diminution de la concentration de $CO_2 H_2O$ à partir de 3000K est visible.

III.2. Prédiction de la température de la flamme adiabatique

Pour le calcul de la température de flamme adiabatique d'un mélange de gaz idéal, les relations algébriques simples entre l'état initial et l'état final ne peuvent pas être dérivées, et une procédure itérative pour la résolution de l'équation (II.50) ou l'équation (II.51) est nécessaire. Les résultats obtenus à l'aide de notre programme élaboré sous matlab et basé sur la méthode de Newton-Raphson pour la résolution des fonctions non linéaires, deux combustibles (octane C_8H_{18} et l'hydrogène H₂) sont présentés dans le tableau 3.4 et sous forme graphique sur la figure III.4. Les résultats qui en découlent concordent très bien avec ceux données dans la littérature [chapitreII.IX].

Tableau III.4 :	Températures	de	flamme	adiabatique,	pour	l'octane	$C_{8}H_{18}$	et
l'hydrog	ène H_2 en fonctio	on d	e la riches	sseφ.				

phiΦ	$T_{Ad}^{\circ}H_{2}$	$T^{\circ}_{\scriptscriptstyle Ad}C_{8}H_{18}$
0,01	332,75	327,24
0,05	468,43	442,18
0,1	629,81	581,2
0,2	924,4	840,5
0,3	1187,94	1078,34
0,4	1427,08	1299,31
0,5	1646,24	1506,48
0,6	1848,38	1702,16
0,7	2035,61	1887,75
0,8	2209,95	2064,24
0,9	2372,46	2232,94
1	2524,51	2394,27
1,1	2468,01	2318,48
1,2	2414,62	2245,55
1,3	2363,67	2175,07
1,4	2315,22	2106,73
1,5	2269,22	2040,83
1,6	2225,5	1971,63
1,7	2183,66	1895,27
2	2068,4	1675,72

Figure III.4 : Évolution de la température de la flamme adiabatique pour l'octane C_8H_{18} et l'hydrogène H_2 en fonction de la richesse ϕ .

On remarque une augmentation de la température de flamme adiabatique pour les deux combustible (hydrogène et octane) en fonction de la richesse ϕ du mélange pour atteindre un maximum quand cette dernière est égale à l'unité, puis elle décroit lorsque la richesse est supérieure à l'unité.

Conclusion

Les systèmes faisant intervenir le phénomène de la combustion sont soumis de plus en plus à des contraintes tant sur le plan économique que sur le plan environnemental la modélisation de la combustion requière donc une bonne connaissance des phénomènes liés à la turbulence et au dégagement de chaleur, cela implique un calcul précis des grandeurs intervenant dans la combustion.

Dans cette étude, nous nous sommes attelés à rédiger dans programmes informatiques. Sous environnement MATLAB, permettant de déterminer :

-Les propriétés thermodynamiques de quelques combustibles et des produits de combustion des fractions molaires.

-Des produits de la combustion, en fonction de la pression, température et de la richesse, le calcul de la température de la flamme adiabatique.

Les programmes élaborés permettent de mettre en évidence l'effet de la richesse, de la température et de la pression ; sur la fraction des espèces produits lors de réaction de combustion et sur la température adiabatique de la flamme.

Les programmes peuvent être implémentés et seront d'une grande utilité lors de la modélisation de la combustion dans les moteurs essence ou diesel.

En perspective, il est souhaitable d'étendre ou de généraliser le programme de production des fractions molaires à d'autres cas en confondant d'avantage les résultats obtenus avec ceux présentés dans les benchmarks.

[1].Cours de Combustion, Dr. MAMERI Abdelbaki Université d'Orléans 2009

[2]. Mémoire de fin d'étude : Étude comparative du rendement de la chaudière du groupe numéro 01de cap Djinet. Réalisé par Belkaid Tafath :

[3].carburant et moteurs de J.C.Guibet tome I, 1997

[4].MTU, N. HYDRO et HEW constructeur d'électrolyseurs alcalins, joint venture. École Nationale Polytechnique Laboratoire de Valorisation des Énergies Fossiles (2007).

[5]. Internal Combustion Engines de colin R.Ferguson et Allan T.Kirkpatrik, 3eme Edition, 2016

[6]. Internal Combustion Engines Fundamentals by J.B .Heywood, 1988

Annexe - B :

Coefficient des polynômes permettant le calcul des propriétés thermodynamiques de divers combustibles et gaz idéaux.

Fuel	Formula	aj	e1	<i>a</i> 3	a ₆	<i>a</i> 1
Methane	CH,	1.971324	7.871586E -03	-1.048592E -06	-9.930422E -03	8.873728
Gasoline	C1H.7	4.0652	6.0977E -02	-1.8801E-05	-3.5880E +04	1.545E+01
Diesel	Cus Hus	7.9710	1.1954E-01	-3.6858E-05	-1.9385E+04	-1.7879
Methanol	CHOH	1.779819	1.262503E-02	-3.624890E -06	-2.525420E +04	1.50884E+01
Nitromethane	CH _J NO ₁	1.412633	2.087101E -02	-8.142134E -06	-1.026351E +04	1.917126E +01

Coefficients d'ajustement de la courbe similaires pour plusieurs combustibles.

 $(a_4=a_5=0)$

Les valeurs des constantes d'ajustement de la courbe pour plusieurs espèces d'intérêt pour la combustion.

Pour les plages de température de 300 à 1000 K.

Species	<i>a</i> 1	#2	ay.	4	a_{ij}	a_6	$\mu_{\rm p}$
co,	0.24007797E+01	0.87350957E - 02	- 0.66070878E - 05	0.20021861E - 08	0.63274039E = 15	-0.48377527E+05	0.96951457E+01
H,O	0.40701275E + 01	= 0.11084499 E - 02	0.41521180E = 05	$= 0.29637404 \pm -08$	0.80702103E = 12	= 0.30279722E + 05	= 0.32270046E + 00
N ₂	0.36748261E + 01	- 0.12081500E - 02	0.23240102E - 05	- 0.63217559H - 09	- 0.22577253E - 12	-0.10611588E+04	0.23580424E+01
0,	0.36255985E+01	-0.18782184E-02	0.70554544E - 05	-0.67635137E-08	0.21555993E - 11	-0.10475226E+04	0.43052778E+01
co	0.37100928E+01	- 0.16190964E - 02	0.36923594E - 05	- 0.20319674E - 08	0.23953344E - 12	-0.14356310E+05	0.2955535E+01
H ₂	0.30574451E+01	0.26765200E-02	-0.58099162E-05	0.55210391E-08	-0.18122739E - 11	-0.98890474E+03	-0.22997056E+01
H	0.25000000E+01	0	0	Ű	0	0.25471627E+05	-0.46011762E+00
0	0.29464287E+01	-0.16381665E - 02	0.24210316E - 05	-0.16028432E-08	0.38906964E - 12	0.291476448 + 05	0.29639949E+01
OH	0.38375043E+01	- 0.10778858E - 02	0.96830378E - 06	0.18713972E - 09	- 0.22571094E - 12	0.36412823E+04	0.49370009E+00
NO	0.40459521E+01	= 0.34181783E - 02	0.79819190E - 05	~ 0.61139316E - 08	0.15919076E - 11	0.97453934E+04	0.29974988E+01

Source: Gordon, S. and B. McBride (1971), "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman–Jouquet Detorations," NASA SP-273.

Species	a_1	a_2	<i>u</i> ₅	σ_4	a_{5}	a_b	# ₂
co,	0.446080E + 01	0.309817E - 02	- 0.123925E - 05	0.227413E-09	- 0.155259E - 13	-0.489614E+05	- 0.986359
H,O	0.271676E+01	0.294513E - 02	-0.802243E-06	0.102266E-09	- 0.484721E - 14	~ 0.299058E + 05	0.663056e + 01
N.	0.289631E + 01	0.151548E - 02	-0.572352E-06	0.998073E - 10	- 0.652235E - 14	~ 0.905861E + 03	0.616151e + 01
o	0.362195E + 01	0.736182E - 03	-0.196522E - 06	0.362015E - 10	- 0.289456E - 14	-0.120198E+04	0.361509e + 01
co.	0.298406E+01	0.148913E - 02	-0.578996E - 06	0.103645E - 09	- 0.693535E - 14	-0.142452E+05	0.634791c + 01
H.	0.310019E + 01	0.511194E - 03	0.526442E - 07	- 0.349099E - 10	0.369453E-14	- 0.877380E + 03	-0.196294e +01
H	0.25E + 01	0	0	6	0	0.254716E + 05	- 0.460117
0	0.254205cE + 01	= 0.275506E = 04	~ 0.310280E - 08	0.455106E - 11	- 0.436805E - 15	0.292308E + 05	0.492030E + 01
CH	0.293064E + 01	0.959316E - D3	~ 0.194417E - 05	0.137566E - 10	0.142245E - 15	0.393538E+04	0.544234E + 01
NO	0.3189E + 01	0.133822E - 02	-0.528993E - 05	0.959193E - 10	- 0.648479E - 14	0.982832E + 04	0.674581E+01

Pour les plages de température de 1000 à 3000 K.

Source: Gordon and McBride, 1971.

Annexe – C

Développements détaillé du système d'équations résolus à l'aide du logiciel Matlab.

A partir de l'équation de combustion (II.33) ,on a obtenus un système de quatre équations , de dix inconnues .

Les six équations de réactions d'équilibre phase –gaz dont des réactions de disociation d'hydrogène, oxygène eau et dioxyde de Carbonne (équations II.38).

Le vecteur solution :

Ou Ki sont données par les expressions suivantes :

$$Log_{10} K_i(T) = A_i ln(T/1000) + \frac{B_l}{T} + C_i + D_i T + E_i T^2$$

Le système de l'équation et résolus par la méthode de Newtoon-Raphson ,le système se simplifié a quatre équations 10-6=4.

La matrice jacobéenne A est donnée par :

$$\frac{\partial f_{ij}}{\partial y_i}$$
;

Les éléments de la matrice sont détermines des premiers en déterminant les dérivées partielles suivant :

$$D_{ij} = \frac{\partial y k}{\partial yi} = \frac{i = 1, 2, 7, 8, 9, 0}{j = 3, 4, 5, 6}$$
$$D_{jj} = \frac{\partial yj}{\partial yj} = 1$$

Les dérivées partielles des fractions molaires donnent :

$$D_{76} = \frac{\partial y_7}{\partial y_6} = \frac{\partial}{\partial y_6} \left(\frac{k_1 y_6^{\frac{1}{2}}}{p^{\frac{1}{2}}} \right) = \frac{k_1}{p^{\frac{1}{2}}} \frac{\partial y_4^{\frac{1}{1}}}{\partial y_6} = \frac{1}{2} \frac{k_1}{p^{\frac{1}{2}} y_6^{\frac{1}{2}}}$$
$$D_{76} = \frac{1}{2} C_1 \frac{1}{y_6^{\frac{1}{2}}} \qquad \text{Avec} : C_1 = \frac{k_1}{p^{\frac{1}{2}}} \qquad y_7 = C_1 y_6^{\frac{1}{2}}$$
$$D_{84} = \frac{\partial y_8}{\partial y_4} = \frac{\partial}{\partial y_4} \left(\frac{k_2 y_4^{\frac{1}{2}}}{p^{\frac{1}{2}}} \right) = \frac{1}{2} \frac{k_2}{p^{\frac{1}{2}}} \frac{1}{y_4^{\frac{1}{2}}} = \frac{1}{2} C_2 \frac{1}{y_4^{\frac{1}{2}}}$$

Avec;
$$C_{2} = \frac{k_{2}}{p^{\frac{1}{2}}}$$
 $y_{8} = C_{2} \times \frac{1}{y_{4}^{\frac{1}{2}}}$
 $D_{94} = \frac{\partial y_{9}}{\partial y_{4}} = \frac{\partial \left(k_{3}y_{4}^{\frac{1}{2}}y_{6}^{\frac{1}{2}}\right)}{\partial y_{4}} = k_{3}y_{6}^{\frac{1}{2}}\frac{1}{2}\frac{1}{y_{4}^{\frac{1}{2}}}$
 $D_{94} = \frac{1}{2}k_{3}\frac{y_{6}^{\frac{1}{2}}}{y_{4}^{\frac{1}{2}}} = \frac{1}{2}C_{3}\frac{y_{6}^{\frac{1}{2}}}{y_{4}^{\frac{1}{2}}}$
Avec; $C_{3} = k_{3}$; $y_{9} = C_{3}y_{4}^{\frac{1}{2}}y_{6}^{\frac{1}{2}}$
 $D_{96} = \frac{\partial y_{9}}{\partial y_{6}} = \frac{\partial \left(k_{3}y_{4}^{\frac{1}{2}}y_{6}^{\frac{1}{2}}\right)}{\partial y_{6}} = k_{3}y_{4}^{\frac{1}{2}}\frac{1}{2y_{6}^{\frac{1}{2}}} = \frac{1}{2}k_{3}\frac{y_{4}^{\frac{1}{2}}}{y_{6}^{\frac{1}{2}}} = \frac{1}{2}C_{3}\frac{y_{4}^{\frac{1}{2}}}{y_{6}^{\frac{1}{2}}}$
 $D_{104} = \frac{\partial \left(k_{4}y_{4}^{\frac{1}{2}}y_{3}^{\frac{1}{2}}\right)}{\partial y_{4}} = k_{4}y_{3}^{\frac{1}{2}}\frac{\partial}{\partial y_{4}}\left(y_{4}^{\frac{1}{2}}\right) = \frac{1}{2}k_{4}\frac{y_{4}^{\frac{1}{2}}}{y_{4}^{\frac{1}{2}}}$
 $D_{104} = \frac{1}{2}C_{4}\frac{y_{3}^{\frac{1}{2}}}{y_{4}^{\frac{1}{2}}}$ $y_{10} = C_{4}y_{4}^{\frac{1}{2}}y_{3}^{\frac{1}{2}}$ Avec; $C_{4} = k_{4}$
 $D_{103} = \frac{\partial}{\partial y_{3}}\left(k_{4}y_{4}^{\frac{1}{2}}y_{3}^{\frac{1}{2}}\right) = \frac{1}{2}k_{4}\frac{y_{4}^{\frac{1}{2}}}{y_{3}^{\frac{1}{2}}} = \frac{1}{2}C_{5}\frac{y_{6}^{\frac{1}{2}}}{y_{4}^{\frac{1}{2}}}$
 $D_{103} = \frac{1}{2}C_{4}\frac{y_{4}^{\frac{1}{2}}}{y_{3}^{\frac{1}{2}}}$
 $D_{24} = k_{5}\frac{\partial}{\partial y_{4}}\left(y_{4}^{\frac{1}{2}}y_{6}^{\frac{1}{2}}p^{\frac{1}{2}}\right) = \frac{1}{2}p^{\frac{1}{2}}y_{6}\frac{k_{5}}{y_{4}^{\frac{1}{2}}} = \frac{1}{2}C_{5}\frac{y_{6}^{\frac{1}{2}}}{y_{4}^{\frac{1}{2}}}$
 $p_{26} = \frac{\partial \left(k_{5}y_{4}^{\frac{1}{2}}y_{6}p^{\frac{1}{2}}\right)}{p_{4}} = k_{5}y_{4}^{\frac{1}{2}}p^{\frac{1}{2}} = C_{5}y_{4}^{\frac{1}{2}}$

$$D_{26} = C_5 y_4^{\frac{1}{2}}$$

$$D_{14} = \frac{\partial y_1}{\partial y_4} = \frac{\partial (k_6 y_4^{\frac{1}{2}} y_5 p^{\frac{1}{2}})}{\partial y_4} = k_6 p^{\frac{1}{2}} \frac{y_5}{y_4^{\frac{1}{2}}} = \frac{1}{2} C_6 \frac{y_5}{y_4^{\frac{1}{2}}}$$

Avec ; $C_6 = k_6 p \frac{1}{2}$ $y_1 = C_6 y_5 y_4^{\frac{1}{2}}$

$$D_{15} = \frac{\partial y_1}{\partial y_5} = \frac{\partial (k_6 y_4^{\frac{1}{2}} y_5 p^{\frac{1}{2}})}{\partial y_5} = k_6 p^{\frac{1}{2}} y_4^{\frac{1}{2}}$$
$$D_{15} = C_6 y_4^{\frac{1}{2}}$$

Les éléments de la matrice jacobéenne sont donc :

$$A(1,1) = \frac{\partial f_1}{\partial y_3} = 0 + (+1 + D_{103})$$

$$A(1,2) = \frac{\partial f_1}{\partial y_4} = D_{14} + D_{24} + 1 + D_{84} + D_{94} + D_{104}$$

$$A(1,3) = \frac{\partial f_1}{\partial y_5} = D_{15} + 1$$

$$A(1,4) = \frac{\partial f_1}{\partial y_6} = D_{26} + 1 + D_{76} + D_{96}$$

$$A_{21} = \frac{\partial f_2}{\partial y_3} = 0 \qquad ;$$

$$A_{22} = \frac{\partial f_2}{\partial y_4} = 2D_{24} + D_{94} - d_1D_{14}$$

$$A_{23} = \frac{\partial f_2}{\partial y_5} = -d_1D_{15} - d_1 = -d_1(1 + D_{15})$$

$$A_{24} = \frac{\partial f_2}{\partial y_6} = \frac{\partial}{\partial y_6}(2y_2 + 2y_6 + y_7 + y_3 - d_1y_1 - dy_5) = 2D_{26} + 2 + D_{76} + D_{96}$$

$$A_{31} = \frac{\partial f_3}{\partial y_3} = \frac{\partial(2y_1 + y_2 + 2y_4 + y_5 + y_8 + y_9 + y_{10} - d_2y_1 - d_2y_5)}{\partial y_3}$$

$$A_{31} = 0 + 0 + 0 + 0 + 0 + D_{103} - 0 - 0 = D_{103}$$

$$\begin{aligned} A_{32} &= \frac{\partial f_3}{\partial y_4} = \frac{\partial (2y_1 + y_2 + 2y_4 + y_5 + y_8 + y_9 + y_{10} - d_2y_1 - d_2y_5)}{\partial y_4} \\ A_{32} &= 2D_{14} + D_{24} + 2 + D_{84} + D_{94} + D_{104} - d_2D_{14} \\ A_{32} &= 2 + (2 - d_2)D_{14} + D_{24} + D_{84} + D_{94} + D_{104} \\ A_{33} &= \frac{\partial f_3}{\partial y_5} = \frac{\partial (2y_1 + y_2 + 2y_4 + y_5 + y_8 + y_9 + y_{10} - d_2y_1 - d_2y_5)}{\partial y_5} \\ &= 2D_{15} + 0 + 0 + 1 + 0 + 0 + 0 - d_2D_{15} - d_2 \\ A_{33} &= 1 - d_2 + D_{15}(2 - d_2) \\ A_{34} &= \frac{\partial f_3}{\partial y_6} = \frac{\partial (2y_1 + y_2 + 2y_4 + y_5 + y_8 + y_9 + y_{10} - d_2y_1 - d_2y_5)}{\partial y_6} \\ A_{34} &= 0 + D_{26} + 0 + 0 + 0 + D_{96} + 0 - 0 - 0 \\ A_{34} &= 0 + D_{26} + 0 + 0 + 0 + D_{96} + 0 - 0 - 0 \\ A_{34} &= D_{26} + D_{96} \\ A_{41} &= \frac{\partial f_4}{\partial y_3} = \frac{\partial (2y_3 + y_{10} - d_3y_1 - d_3y_5)}{\partial y_4} = 2 + D_{103} - 0 - 0 \\ A_{42} &= \frac{\partial f_4}{\partial y_4} = \frac{\partial (2y_3 + y_{10} - d_3y_1 - d_3y_5)}{\partial y_4} = 0 + D_{104} - d_3D_{14} - 0 \\ A_{42} &= D_{104} - d_3D_{14} \\ A_{43} &= \frac{\partial f_4}{\partial y_5} = \frac{\partial (2y_3 + y_{10} - d_3y_1 - d_3y_5)}{\partial y_5} = 0 + 0 - d_3D_{15} - d_3 \\ A_{43} &= -d(1 + D_{15}) \end{aligned}$$

$$A_{44} = \frac{\partial f_4}{\partial y_6} = \frac{\partial (2y_3 + y_{10} - d_3y_1 - d_3y_5)}{\partial y_6} = 0 + 0 - 0 + 0 = 0$$
$$A_{44} = 0$$

L'évaluation des dérivées partielles nécessitent :

L'évaluation des dérivées partielles des fractions molaires y_3, y_4, y_5, y_6 par rapport à T et *p*.

A). Dérivées partielles par rapport à la température :

$$\frac{\partial y_3}{\partial T}$$
, $\frac{\partial y_4}{\partial T}$, $\frac{\partial y_5}{\partial T}$, et $\frac{\partial y_6}{\partial T}$

Les données suivantes sont exprimées comme sont :

1.
$$\frac{\partial y_{7}}{\partial T} = \frac{\partial (C_{1} y_{6}^{\vee})}{\partial T} = C_{1} \frac{\partial (y_{6}^{\vee})}{\partial T} + y_{6}^{\vee} \frac{\partial C_{1}}{\partial T} = C_{1} \frac{1}{2} \frac{\partial y_{6}}{\partial T} \frac{1}{y_{6}^{\vee}} + y_{6}^{\vee} \frac{\partial C_{1}}{\partial T}$$
$$= \frac{1}{2} C_{1} \frac{1}{y_{6}^{\vee}} \frac{\partial y_{6}}{\partial T} + y_{6}^{\vee} \frac{\partial C_{1}}{\partial T}$$
$$\frac{\partial y_{7}}{\partial T} = D_{76} \frac{\partial y_{6}}{\partial T} + y_{6}^{\vee} \frac{\partial C_{1}}{\partial T}$$
2.
$$\frac{\partial y_{8}}{\partial T} = ?$$
$$y_{8} = C_{2} y_{4}^{\vee} \qquad \text{Avec} ; C_{2} = \frac{k_{2}}{p^{\vee}}$$
$$\frac{\partial y_{8}}{\partial T} = y_{4}^{\vee} \frac{\partial C_{2}}{\partial T} + C_{2} \frac{\partial (y_{4}^{\vee})}{\partial T} = y_{4}^{\vee} \frac{\partial C_{2}}{\partial T} + C_{2} \frac{1}{2} \frac{\partial y_{4}}{\partial T} \frac{1}{y_{4}^{\vee}}$$
$$= y_{4}^{\vee} \frac{\partial C_{2}}{\partial T} + \frac{1}{2} C_{2} \frac{1}{y_{4}^{\vee}} \frac{\partial y_{4}}{\partial T}$$
$$\frac{\partial y_{8}}{\partial T} = y_{4}^{\vee} \frac{\partial C_{2}}{\partial T} + D_{84} \frac{\partial y_{4}}{\partial T}$$
3.
$$\frac{\partial y_{9}}{\partial T} = ?$$
$$y_{9} = C_{3} y_{4}^{\vee} y_{6}^{\vee}$$

$$\frac{\partial y_2}{\partial T} = y_4^{\frac{1}{2}} y_6 \frac{\partial C_5}{\partial T} + D_{24} \frac{\partial y_4}{\partial T} + D_{26} \frac{\partial y_6}{\partial T}$$

6.
$$\frac{\partial y_1}{\partial T} = ?$$

 $y_1 = k_6 y_4^{\frac{1}{2}} y_5 p^{\frac{1}{2}} = C_6 y_4^{\frac{1}{2}} y_5$
 $\frac{\partial y_1}{\partial T} = y_4^{\frac{1}{2}} y_5 \frac{\partial C_6}{\partial T} + C_6 y_4^{\frac{1}{2}} \frac{\partial y_5}{\partial T} + C_6 y_5 \frac{1}{2} \frac{\partial y_4}{\partial T} \frac{1}{y_4^{\frac{1}{2}}}$
 $\frac{\partial y_1}{\partial T} = y_4^{\frac{1}{2}} y_5 \frac{\partial C_6}{\partial T} + D_{15} \frac{\partial y_5}{\partial T} + D_{14} \frac{\partial y_4}{\partial T}$

B). les dérivées partielle par rapport à la pression ;

1.
$$\frac{\partial y_1}{\partial P} = ?$$

$$y_1 = C_6 y_4^{\frac{1}{2}} y_5$$

$$\frac{\partial y_1}{\partial P} = y_4^{\frac{1}{2}} y_5 \frac{\partial C_6}{\partial P} + \frac{\partial y_4}{\partial P} \frac{1}{2} \frac{C_6}{y_4^{\frac{1}{2}}} y_5 + \frac{\partial y_5}{\partial P} C_6 y_4^{\frac{1}{2}}$$

$$\frac{\partial y_1}{\partial P} = y_4^{\frac{1}{2}} y_5 \frac{\partial C_6}{\partial P} + D_{14} \frac{\partial y_4}{\partial P} + D_{15} \frac{\partial y_5}{\partial P}$$
2.
$$\frac{\partial y_2}{\partial P} = ?$$

$$y_2 = k_5 y_4^{\frac{1}{2}} y_6 \frac{\partial C_5}{\partial P} + C_5 y_4^{\frac{1}{2}} \frac{\partial y_6}{\partial P} + \frac{1}{2} C_5 \frac{1}{y_4^{\frac{1}{2}}} \frac{\partial y_4}{\partial P} y_6$$

$$\frac{\partial y_2}{\partial P} = y_4^{\frac{1}{2}} y_6 \frac{\partial C_5}{\partial P} + D_{26} \frac{\partial y_6}{\partial P} + D_{24} \frac{\partial y_4}{\partial P}$$
3.
$$\frac{\partial y_7}{\partial P} = y_6^{\frac{1}{2}} \frac{\partial C_1}{\partial P} + C_1 \frac{1}{2} \frac{\partial y_6}{\partial P} \frac{1}{y_6^{\frac{1}{2}}}$$
4.
$$\frac{\partial y_8}{\partial P} = ?$$

$$y_8 = C_2 y_4^{\frac{1}{2}}$$

$$\begin{aligned} \frac{\partial y_8}{\partial P} &= y_4^{\frac{1}{2}} \frac{\partial C_2}{\partial P} + C_2 \frac{1}{2} \frac{\partial y_4}{\partial P} \frac{1}{y_4^{\frac{1}{2}}} \\ \frac{\partial y_8}{\partial P} &= y_4^{\frac{1}{2}} \frac{\partial C_2}{\partial P} + D_{84} \frac{\partial y_4}{\partial P} \end{aligned}$$
5.
$$\begin{aligned} \frac{\partial y_9}{\partial P} &= y_4^{\frac{1}{2}} y_6^{\frac{1}{2}} \frac{\partial C_3}{\partial P} + C_3 \frac{1}{2} \frac{y_6^{\frac{1}{2}}}{y_4^{\frac{1}{2}}} \frac{\partial y_4}{\partial P} + C_3 y_4^{\frac{1}{2}} \frac{1}{2} \frac{1}{y_6^{\frac{1}{2}}} \frac{\partial y_6}{\partial P} \\ \frac{\partial y_9}{\partial P} &= y_4^{\frac{1}{2}} y_6^{\frac{1}{2}} \frac{\partial C_3}{\partial P} + C_3 \frac{1}{2} \frac{y_6^{\frac{1}{2}}}{y_4^{\frac{1}{2}}} \frac{\partial y_4}{\partial P} + C_3 y_4^{\frac{1}{2}} \frac{1}{2} \frac{1}{y_6^{\frac{1}{2}}} \frac{\partial y_6}{\partial P} \\ \frac{\partial y_9}{\partial P} &= y_4^{\frac{1}{2}} y_6^{\frac{1}{2}} \frac{\partial C_3}{\partial P} + D_{94} \frac{\partial y_4}{\partial P} + D_{96} \frac{\partial y_6}{\partial P} \end{aligned}$$
6.
$$\begin{aligned} \frac{\partial y_{10}}{\partial P} &= y_4^{\frac{1}{2}} y_3^{\frac{1}{2}} \frac{\partial C_4}{\partial P} + C_4 \frac{1}{2} \frac{1}{y_4^{\frac{1}{2}}} \frac{\partial y_4}{\partial P} y_3^{\frac{1}{2}} + C_4 \frac{1}{2} \frac{1}{y_3^{\frac{1}{2}}} \frac{\partial y_3}{\partial P} y_4^{\frac{1}{2}} \\ \frac{\partial y_{10}}{\partial P} &= D_{104} \frac{\partial y_4}{\partial P} + D_{103} \frac{\partial y_3}{\partial P} \end{aligned}$$

Calcul des dérivées partielles par rapport à T :

•
$$\frac{\partial f_i}{\partial T}$$

1). $\frac{\partial f_1}{\partial T} = ?$

$$f_1 = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} - 1 = 0$$

On a :

$$x_1 = \frac{y_1}{C_6} \Longrightarrow y_1 = x_1 C_6 \quad ;$$

$$\begin{aligned} x_{2} &= \frac{y_{2}}{C_{5}} \Rightarrow y_{2} = x_{1}C_{5} \quad ; \\ x_{7} &= \frac{y_{7}}{C_{1}} \Rightarrow y_{7} = x_{7}C_{1} \quad ; \\ x_{8} &= \frac{y_{8}}{C_{2}} \Rightarrow y_{8} = x_{8}C_{2} \; ; \\ x_{9} &= \frac{y_{9}}{C_{3}} \Rightarrow y_{9} = x_{9}C_{3} \; ; \\ x_{10} &= \frac{y_{10}}{C_{4}} \Rightarrow y_{10} = x_{10}C_{4} \; ; \\ &\Rightarrow \frac{\partial f_{1}}{\partial T} = \frac{\partial C_{6}}{\partial T}x_{1} + \frac{\partial C_{5}}{\partial T}x_{2} + \frac{\partial C_{1}}{\partial T}x_{7} + \frac{\partial C_{2}}{\partial T}x_{8} + \frac{\partial C_{3}}{\partial T}x_{9} + \frac{\partial C_{4}}{\partial T}x_{10} \\ 2)\frac{\partial f_{1}}{\partial T} = ? \\ f_{2} &= 2y_{2} + 2y_{6} + y_{7} + y_{9} - d_{1}y_{1} - d_{1}y_{5} \\ &\Rightarrow \frac{\partial f_{2}}{\partial T} = 2\frac{\partial C_{5}}{\partial T}x_{2} + \frac{\partial C_{1}}{\partial T}x_{7} + \frac{\partial C_{3}}{\partial T}x_{9} - d_{1}\frac{\partial C_{6}}{\partial T}x_{1} \\ &\Rightarrow \frac{\partial f_{3}}{\partial T} = ? \\ &\Rightarrow \frac{\partial f_{3}}{\partial T} = 2\frac{\partial C_{6}}{\partial T}x_{1} + \frac{\partial C_{5}}{\partial T}x_{2} + \frac{\partial C_{2}}{\partial T}x_{8} + \frac{\partial C_{3}}{\partial T}x_{9} + \frac{\partial C_{4}}{\partial T}x_{10} - d_{2}\frac{\partial C_{6}}{\partial T}x_{1} \\ &= 2y_{3} + y_{10} - d_{3}y_{1} - d_{3}y_{5} \end{aligned}$$

$$\Rightarrow \frac{\partial f_4}{\partial T} = \frac{\partial C_4}{\partial T} x_{10} - d_3 \frac{\partial C_6}{\partial T} x_1$$

> Calcul des dérivées partielles par rapport à P ; 1) $\frac{\partial f_1}{\partial P} = ?$ $f_1 = y_1 + y_2 + y_7 + y_8 + y_9 + y_{10}$ $y_1 = x_1 C_6$; $y_2 = x_2 C_5$; $y_7 = x_7 C_1$; $y_8 = x_8 C_2$; $y_9 = x_9 C_3$; $y_{10} = x_{10}C_4$; $\Rightarrow \frac{\partial f_1}{\partial P} = \frac{\partial C_6}{\partial P} x_1 + \frac{\partial C_5}{\partial P} x_2 + \frac{\partial C_1}{\partial P} x_7 + \frac{\partial C_2}{\partial P} x_8 + \frac{\partial C_3}{\partial P} x_9 + \frac{\partial C_4}{\partial P} x_{10}$ $\frac{\partial C_3}{\partial P} x_9 = 0$ Et $\frac{\partial C_4}{\partial P} x_{10} = 0$ Donc: $\frac{\partial f_1}{\partial P} = \frac{\partial C_6}{\partial P} x_1 + \frac{\partial C_5}{\partial P} x_2 + \frac{\partial C_1}{\partial P} x_7 + \frac{\partial C_2}{\partial P} x_8$ $2)\frac{\partial f_2}{\partial P} = ?$ $f_2 = 2y_2 + y_7 + y_9 - d_1y_1$ $\frac{\partial f_2}{\partial P} = 2 \frac{\partial C_5}{\partial P} x_2 + \frac{\partial C_1}{\partial P} x_7 + \frac{\partial C_3}{\partial P} x_9 - d_1 \frac{\partial C_6}{\partial P} x_1$ $\frac{\partial C_3}{\partial P} x_9 = 0$ $\Rightarrow \frac{\partial f_2}{\partial P} = 2 \frac{\partial C_5}{\partial P} x_2 + \frac{\partial C_1}{\partial P} x_7 - d_1 \frac{\partial C_6}{\partial P} x_1$

$$3) \frac{\partial f_3}{\partial P} = ? \qquad f_3 = 2y_1 + y_2 + y_8 + y_9 + y_{10} - d_2 y_1$$

$$\frac{\partial f_3}{\partial P} = 2 \frac{\partial C_6}{\partial P} x_1 + \frac{\partial C_5}{\partial P} x_2 + \frac{\partial C_2}{\partial P} x_8 + \frac{\partial C_3}{\partial P} x_9 + \frac{\partial C_4}{\partial P} x_{10} - d_2 \frac{\partial C_6}{\partial P} x_1$$

$$\frac{\partial C_3}{\partial P} x_9 = 0 \qquad \frac{\partial C_4}{\partial P} x_{10} = 0$$

$$\Rightarrow \frac{\partial f_3}{\partial P} = 2 \frac{\partial C_6}{\partial P} x_1 + \frac{\partial C_5}{\partial P} x_2 + \frac{\partial C_2}{\partial P} x_8 - d_2 \frac{\partial C_6}{\partial P} x_1$$

$$4) \frac{\partial f_4}{\partial P} = ?$$

$$f_4 = y_{10} - d_3 y_1$$

$$\frac{\partial f_4}{\partial P} = \frac{\partial C_4}{\partial P} x_{10} - d_3 \frac{\partial C_6}{\partial P} x_1$$

$$\Rightarrow \frac{\partial f_4}{\partial P} = -d_3 \frac{\partial C_6}{\partial P} x_1$$

$$\Rightarrow Calcul des dérivées partielles par rapport à w ;$$

On a; $d_1 = b/a$

$$d_2 = \frac{c}{a} + \frac{2a_s}{wa}$$

$$d_3 = \frac{d}{a} + \frac{7.52a_s}{Wa}$$

$$1)\frac{\partial f_1}{\partial W} = ?$$
$$f_1 = ?$$

$$f_1 = y_1 + y_2 + y_7 + y_8 + y_9 + y_{10}$$

$$\Rightarrow \frac{\partial f_1}{\partial \mathsf{W}} = 0$$

$$2) \frac{\partial f_2}{\partial W} = ?$$

$$\Rightarrow \frac{\partial f_2}{\partial W} = 0$$

$$3) \frac{\partial f_3}{\partial W} = ?$$

$$f_3 = 2y_1 + y_2 - d_2 y_1$$

$$\Rightarrow \frac{\partial f_3}{\partial W} = \frac{\partial (2y_1 + y_2 - d_2 y_1)}{\partial W} = \frac{-\partial (d_2 y_1)}{\partial W} = -\left(\frac{\partial d_2}{\partial W}y_1 + \frac{\partial y_1}{\partial W}d_2\right) = -\frac{\partial d_2}{\partial W}y_1$$
On a ; $d_2 = \frac{c}{a} + \frac{2a_s}{W^*a} \Rightarrow \frac{\partial d_2}{\partial W} = \frac{\partial}{\partial W} \left(\frac{2a_s}{a}W^{-1}\right) = \frac{2a_s}{a} \ln W$
Donc ; $\frac{\partial f_3}{\partial W} = -\left(\frac{2a_s}{a}\ln W\right)y_1$

C₃ et C₄ ne dépendent pas de la pression, les termes $\partial C_3 / \partial$ et $\partial C_4 / \partial$ sont nuls. Les autres dérivés sont :

1.
$$\frac{\partial C_1}{\partial P} = ?$$

$$C_1 = \frac{k_1}{P^{\frac{1}{2}}} = k_1 P^{-\frac{1}{2}}$$

$$\frac{\partial C_1}{\partial P} = k_1 \frac{\partial (P^{-\frac{1}{2}})}{\partial P} = k_1 \left(-\frac{1}{2}\right) P^{-1-\frac{1}{2}} = k_1 \left(-\frac{1}{2}\right) P^{-\frac{3}{2}} = -k_1 \frac{1}{2} P^{-\frac{1}{2}} P^{-1}$$

$$\frac{\partial C_1}{\partial P} = -\frac{1}{2} \frac{C_1}{P}$$
2.
$$\frac{\partial C_2}{\partial P} = ?$$

$$C_2 = \frac{k_2}{P^{\frac{1}{2}}} \Rightarrow \frac{\partial C_2}{\partial P} = -\frac{1}{2} \frac{C_3}{P}$$
3.
$$\frac{\partial C_3}{\partial P} = ?$$
$$C_{3} = k_{3} \implies \frac{\partial C_{3}}{\partial P} = 0$$
4. $\frac{\partial C_{4}}{\partial P} = ?$

$$C_{4} = k_{4} \implies \frac{\partial C_{4}}{\partial P} = 0$$
5. $\frac{\partial C_{5}}{\partial P} = ?$

$$C_{5} = k_{5} \frac{1}{2} P^{-1+\frac{1}{2}} = k_{5} \frac{1}{2} P^{\frac{1}{2}} P^{-1} = \frac{1}{2} \frac{C_{5}}{P}$$

$$\frac{\partial C_{5}}{\partial P} = \frac{1}{2} \frac{C_{5}}{P}$$
6. $\frac{\partial C_{6}}{\partial P} = ?$

$$C_{6} = k_{6} P^{\frac{1}{2}}$$

$$\Rightarrow \frac{\partial C_{6}}{\partial P} = \frac{1}{2} \frac{C_{6}}{P}$$

_

Annexe - A

Propriétés thermodynamiques de divers gaz idéaux.

Annexes

Substance A	Substance B	<i>T</i> (K)	$D_{\rm AB} \times 10^5 \; ({\rm m^2/s})$
Benzene	Air	273	0.77
Carbon dioxide	Air	273	1.38
Cyclohexane	Air	318	0.86
<i>n</i> -Decane	Nitrogen	363	0.84
n-Dodecane	Nitrogen	399	0.81
Ethanol	Air	273	1.02
<i>n</i> -Hexane	Nitrogen	288	0.757
Hydrogen	Air	273	0.611
Methanol	Air	273	1.32
<i>n</i> -Octane	Air	273	0.505
Water	Air	273	2.2

Table B.2 Binary Diffusion Coefficients at 1 atm $(D_{AB} \sim T^{3/2}/P)$

Source: Perry, Green, and Maloney (1984), Perry's Chemical Engineers' Handbook, McGraw-Hill, New York.

	Nitrogen, Diatomic (N ₂) $\bar{h}_{f,298}^{o} = 0 \text{ kJ/kmol}$ M = 28.013		Nitrogen, Monatomic (N) $\bar{h}_{f,298}^{o} = 472,680 \text{ kJ/kmol}$ M = 14.007	
	$\overline{(ar{h}-ar{h}^{\mathrm{o}}_{298})}$	\overline{s}^{o}	$(ar{h}-ar{h}^{\mathrm{o}}_{298})$	\bar{s}^{o}
T (K)	(kJ/kmol)	(kJ/(kmol K))	(kJ/kmol)	(kJ/(kmol K))
0	-8670	0	-6197	0
100	-5768	159.812	-4119	130.593
200	-2857	179.985	-2040	145.001
298	0	191.609	0	153.300
300	54	191.789	38	153.429
400	2971	200.181	2117	159.409
500	5911	206.740	4196	164.047
600	8894	212.177	6274	167.837
700	11,937	216.865	8353	171.041
800	15,046	221.016	10,431	173.816
900	18,223	224.757	12,510	176.265
1000	21,463	228.171	14,589	178.455
1100	24,760	231.314	16,667	180.436
1200	28,109	234.227	18,746	182.244
1300	31,503	236.943	20,825	183.908
1400	34,936	239.487	22,903	185.448
1500	38,405	241.881	24,982	186.883
1600	41,904	244.139	27,060	188.224
1700	45,430	246.276	29,139	189.484
1800	48,979	248.304	31,218	190.672
1900	52,549	250.234	33,296	191.796
2000	56,137	252.075	35,375	192.863
				(continued)

 $\label{eq:stable} \textbf{Table B.3} \quad \text{Ideal Gas Properties of N}_2 \text{ and N} (\text{SI Units}), \text{Entropies at 0.1-MPa} (1\text{-bar}) \text{ Pressure}$

	Nitrogen, Diatomic (N ₂) $\bar{h}_{f,298}^{o} = 0 \text{ kJ/kmol}$ M = 28.013		Nitrogen, Monatomic (N) $\bar{h}_{f,298}^{o} = 472,680 \text{ kJ/kmol}$ M = 14.007	
T (K)	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	¯s ^o (kJ/(kmol K))	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	₹ ⁰ (kJ/(kmol K))
2200	63,362	255.518	39,534	194.845
2400	70,640	258.684	43,695	196.655
2600	77,963	261.615	47,860	198.322
2800	85,323	264.342	52,033	199.868
3000	92,715	266.892	56,218	201.311
3200	100,134	269.286	60,420	202.667
3400	107,577	271.542	64,646	203.948
3600	115,042	273.675	68,902	205.164
3800	122,526	275.698	73,194	206.325
4000	130,027	277.622	77,532	207.437
4400	145,078	281.209	86,367	209.542
4800	160,188	284.495	95,457	211.519
5200	175,352	287.530	104,843	213.397
5600	190,572	290.349	114,550	215.195
6000	205,848	292.984	124,590	216.926

Т (К)	Oxygen, Diatomic (O ₂) $\bar{h}_{f,298}^{o} = 0 \text{ kJ/kmol}$ M = 31.999		Oxygen, Monatomic (O) $\bar{h}_{f,298}^{o} = 249,170 \text{ kJ/kmol}$ M = 16.00	
	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	¯σ [°] (kJ/(kmol K))	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	σ̄° (kJ/(kmol K))
0	-8683	0	-6725	0
100	-5777	173.308	-4518	135.947
200	-2868	193.483	-2186	152.153
298	0	205.148	0	161.059
300	54	205.329	41	161.194
400	3027	213.873	2207	167.431
500	6086	220.693	4343	172.198
600	9245	226.450	6462	176.060
700	12,499	231.465	8570	179.310
800	15,836	235.920	10,671	182.116
900	19,241	239.931	12,767	184.585
1000	22,703	243.579	14,860	186.790
1100	26,212	246.923	16,950	188.783
1200	29,761	250.011	19,039	190.600
1300	33,345	252.878	21,126	192.270
1400	36,958	255.556	23,212	193.816
1500	40,600	258.068	25,296	195.254
1600	44,267	260.434	27,381	196.599
1700	47,959	262.673	29,464	197.862
1800	51,674	264.797	31,547	199.053
1900	55,414	266.819	33,630	200.179
2000	59,176	268.748	35,713	201.247
2200	66,770	272.366	39,878	203.232
2400	74,453	275.708	44,045	205.045
2600	82,225	278.818	48,216	206.714
2800	90,080	281.729	52,391	208.262
3000	98,013	284.466	56,574	209.705
3200	106,022	287.050	60,767	211.058
3400	114,101	289.499	64,971	212.332
3600	122,245	291.826	69,190	213.538
3800	130,447	294.043	73,424	214.682
4000	138,705	296.161	77,675	215.773
4400	155,374	300.133	86,234	217.812
4800	172,240	303.801	94,873	219.691
5200	189,312	307.217	103,592	221.435
5600	206,618	310.423	112,391	223.066
6000	224,210	313.457	121,264	224.597

Table B.4Ideal Gas Properties of O_2 and O (SI Units), Entropies at 0.1-MPa (1-bar) Pressure

Т (К)	Carbon Dioxide (CO ₂) $\bar{h}_{f,298}^{o} = -393,522 \text{ kJ/kmol}$ M = 44.01		Carbon Monoxide (CO) $\bar{h}_{f,298}^{o} = -110,527 \text{ kJ/kmol}$ M = 28.01	
	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	σ̄° (kJ/(kmol K))	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	₅° (kJ/(kmol K))
0	-9364	0	-8671	0
100	-6457	179.010	-5772	165.852
200	-3413	199.976	-2860	186.024
298	0	213.794	0	197.651
300	69	214.024	54	197.831
400	4003	225.314	2977	206.240
500	8305	234.902	5932	212.833
600	12,906	243.284	8942	218.321
700	17,754	250.752	12,021	223.067
800	22,806	257.496	15,174	227.277
900	28,030	263.646	18,397	231.074
1000	33,397	269.299	21,686	234.538
1100	38,885	274.528	25,031	237.726
1200	44,473	279.390	28,427	240.679
1300	50,148	283.931	31,867	243.431
1400	55,895	288.190	35,343	246.006
1500	61,705	292.199	38,852	248.426
1600	67,569	295.984	42,388	250.707
1700	73,480	299.567	45,948	252.866
1800	79,432	302.969	49,529	254.913
1900	85,420	306.207	53,128	256.860
2000	91,439	309.294	56,743	258.716
2200	103,562	315.070	64,012	262.182
2400	115,779	320.384	71,326	265.361
2600	128,074	325.307	78,679	268.302
2800	140,435	329.887	86,070	271.044
3000	152,853	334.170	93,504	273.607
3200	165,321	338.194	100,962	276.012
3400	177,836	341.988	108,440	278.279
3600	190,394	345.576	115,938	280.422
3800	202,990	348.981	123,454	282.454
4000	215,624	352.221	130,989	284.387
4400	240,992	358.266	146,108	287.989
4800	266,488	363.812	161,285	291.290
5200	292,112	368.939	176,510	294.337
5600	317,870	373.711	191,782	297.167
6000	343,782	378.180	207,105	299.809

Table B.5 Ideal Gas Properties of CO2 and CO (SI Units), Entropies at 0.1-MPa (1-	bar) Pressure
---	---------------

Т (К)	Water (H ₂ O) $\bar{h}_{f,298}^{o} = -241,826 \text{ kJ/kmol}$ M = 18.015		Hydroxyl (OH) $\bar{h}_{f,298}^{0} = 38,987 \text{ kJ/kmol}$ M = 17.007	
	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	¯σ [°] (kJ/(kmol K))	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	₅ ^o (kJ/(kmol K))
0	-9904	0	-9172	0
100	-6617	152.386	-6140	149.591
200	-3282	175.488	-2975	171.592
298	0	188.835	0	183.709
300	62	189.043	55	183.894
400	3450	198.787	3034	192.466
500	6922	206.532	5991	199.066
600	10,499	213.051	8943	204.448
700	14,190	218.739	11,902	209.008
800	18,002	223.826	14,881	212.984
900	21,937	228.460	17,889	216.526
1000	26,000	232.739	20,935	219.735
1100	30,190	236.732	24,024	222.680
1200	34,506	240.485	27,159	225.408
1300	38,941	244.035	30,340	227.955
1400	43,491	247.406	33,567	230.347
1500	48,149	250.620	36,838	232.604
1600	52,907	253.690	40,151	234.741
1700	57,757	256.631	43,502	236.772
1800	62,693	259.452	46,890	238.707
1900	67,706	262.162	50,311	240.556
2000	72,788	264.769	53,763	242.328
2200	83,153	269.706	60,751	245.659
2400	93,741	274.312	67,840	248.743
2600	104,520	278.625	75,018	251.614
2800	115,463	282.680	82,268	254.301
3000	126,548	286.504	89,585	256.825
3200	137,756	290.120	96,960	259.205
3400	149,073	293.550	104,388	261.456
3600	160,484	296.812	111,864	263.592
3800	171,981	299.919	119,382	265.625
4000	183,552	302.887	126,940	267.563
4400	206,892	308.448	142,165	271.191
4800	230,456	313.573	157,522	274.531
5200	254,216	318.328	173,002	277.629
5600	278,161	322.764	188,598	280.518
6000	302,295	326.926	204,309	283.227

Table B.6Ideal Gas Properties of H_2O and OH (SI Units), Entropies at 0.1-MPa (1-bar) Pressure

	Hydrogen (H ₂) $\bar{h}_{f,298}^{o} = 0 \text{ kJ/kmol}$ M = 2.016		Hydrogen, Monatomic (H) $\bar{h}_{f,298}^{o} = 217,999 \text{ kJ/kmol}$ M = 1.008	
<i>T</i> (K)	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	ر ة (kJ/(kmol K))	$(\bar{h} - \bar{h}_{298}^{o})$ (kJ/kmol)	₅° (kJ/(kmol K))
0	-8467	0	-6197	0
100	-5467	100.727	-4119	92.009
200	-2774	119.410	-2040	106.417
298	0	130.678	0	114.716
300	53	130.856	38	114.845
400	2961	139.219	2117	120.825
500	5883	145.738	4196	125.463
600	8799	151.078	6274	129.253
700	11,730	155.609	8353	132.457
800	14,681	159.554	10,431	135.233
900	17,657	163.060	12,510	137.681
1000	20,663	166.225	14,589	139.871
1100	23,704	169.121	16,667	141.852
1200	26,785	171.798	18,746	143.661
1300	29,907	174.294	20,825	145.324
1400	33,073	176.637	22,903	146.865
1500	36,281	178.849	24,982	148.299
1600	39,533	180.946	24,060	149.640
1700	42,826	182.941	29,139	150.900
1800	46,160	184.846	31,218	152.089
1900	49,532	186.670	33,296	153.212
2000	52,942	188.419	35,375	154.279
2200	59,865	191.719	39,532	156.260
2400	66,915	194.789	43,689	158.069
2600	74,082	197.659	47,847	159.732
2800	81,355	200.355	52,004	161.273
3000	88,725	202.898	56,161	162.707
3200	96,187	205.306	60,318	164.048
3400	103,736	207.593	64,475	165.308
3600	111,367	209.773	68,633	166.497
3800	119,077	211.856	72,790	167.620
4000	126,864	213.851	76,947	168.687
4400	142,658	217.612	85,261	170.668
4800	158,730	221.109	93,576	172.476
5200	175,057	224.379	101,890	174.140
5600	191,607	227.447	110,205	175.681
6000	208,332	230.322	118,519	177.114

Table B.7 Ideal Gas Properties of H ₂ and H (SI Units), Entropies at 0.1-MPa (1-bar) Pressu
--

Т (К)	Nitric Oxide (NO) $\bar{h}_{f,298}^{o} = 90,291 \text{ kJ/kmol}$ M = 30.006		Nitrogen Dioxide (NO ₂) $\bar{h}_{f,298}^{o} = 33,100 \text{ kJ/kmol}$ M = 46.005	
	$\overline{(\bar{h} - \bar{h}^{\rm o}_{298})}$ (kJ/kmol)	¯σ [°] (kJ/(kmol K))	$(\bar{h} - \bar{h}^{o}_{298})$ (kJ/kmol)	₅o (kJ/(kmol K))
0	-9192	0	-10186	0
100	-6073	177.031	-6861	202.563
200	-2951	198.747	-3495	225.852
298	0	210.759	0	240.034
300	55	210.943	68	240.263
400	3040	219.529	3927	251.342
500	6059	226.263	8099	260.638
600	9144	231.886	12,555	268.755
700	12,308	236.762	17,250	275.988
800	15,548	241.088	22,138	282.513
900	18,858	244.985	27,180	288.450
1000	22,229	248.536	32,344	293.889
1100	25,653	251.799	37,606	298.904
1200	29,120	254.816	42,946	303.551
1300	32,626	257.621	48,351	307.876
1400	36,164	260.243	53,808	311.920
1500	39,729	262.703	59,309	315.715
1600	43,319	265.019	64,846	319.289
1700	46,929	267.208	70,414	322.664
1800	50,557	269.282	76,008	325.861
1900	54,201	271.252	81,624	328.898
2000	57,859	273.128	87,259	331.788
2200	65,212	276.632	98,578	337.182
2400	72,606	279.849	109,948	342.128
2600	80,034	282.822	121,358	346.695
2800	87,491	285.585	132,800	350.934
3000	94,973	288.165	144,267	354.890
3200	102,477	290.587	155,756	358.597
3400	110,000	292.867	167,262	362.085
3600	117,541	295.022	178,783	365.378
3800	125,099	297.065	190,316	368.495
4000	132.671	299.007	201.860	371.456
4400	147.857	302.626	224.973	376.963
4800	163.094	305.940	248.114	381.997
5200	178.377	308.998	271.276	386.632
5600	193,703	311.838	294,455	390.926
6000	209,070	314.488	317,648	394.926

Table B.8	Ideal Gas Properties of	of NO and NO ₂ (S	SI Units), Entropies	at 0.1-MPa (1-bar) Pressure
-----------	-------------------------	------------------------------	----------------------	-----------------------------