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Abstract

This thesis deals with the decon�nement phase transition of a �nite system, using a

simple model of coexisting hadron and QGP phases in a �nite volume. The equations of

state of in�nite matter of the two phases are �rst used, and the �nite-size e¤ects on the

decon�nement phase transition are investigated by probing the behavior of some useful

quantities near the transition. It turns out that in a �nite size system, all singularities

occurring in the thermodynamic limit are smeared out and the transition is perfectly

smooth.

Secondly, the color-singletness requirement is imposed to the QGP phase, to satisfy

the color con�nement property of QCD, introducing an additional �nite-size e¤ect, and

leading to a shift of the transition point. A �nite size scaling analysis is then carried out

to determine the scaling critical exponents, characterizing the scaling behavior when

approaching the thermodynamic limit (V �!1), both in analytical and numerical

ways.

Since hadrons are not pointlike because of their composite character, they should

be treated as extended particles. To account for this, we then consider the excluded

volume e¤ects and examine their e¤ects on the decon�nement phase transition.

The �rst chapter of this thesis is devoted to a review of the physics of phase transi-

tions, as well as their classi�cation, and the second one overviews the phase transitions



in �nite systems.

In the third chapter, we study the decon�nement phase transition in a �nite system

within the phase coexistence model. Equations of state of in�nite matter are used

for a hadronic gas of pions and for a QGP consisting of gluons and massless quarks,

then the color-singletness condition is implemented using the projection method. An

approximate color-singlet partition function of the QGP is derived within the saddle

point approximation and is used in a �rst step to calculate mean values of physical

quantities. The expressions of these latter with T , � and V are obtained, in these two

cases, and both temperature-driven and density-driven decon�nement phase transitions

are then studied, at �xed chemical potential and temperature respectively. In a second

step, the exact integral expression of the color-singlet partition function of the QGP

is used to accurately determine mean values of several quantities probing the phase

transition in a �nite volume, without explicitly calculating the color-singlet partition

function itself.

The fourth chapter is dedicated to the numerical determination of the scaling critical

exponents characterizing the studied phase transition, by the mean of a �nite size

scaling analysis.

In the �fth chapter, the excluded volume correction is considered for the hadronic

phase, and his e¤ects on the decon�nement phase transition are investigated.

Last, the obtained results are discussed and compared to results of other models

and approaches.
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Introduction

It is well established that QCD at �nite temperature exhibits a typical behavior of

a system with a phase transition. At su¢ ciently high temperatures and/or densities,

quarks and gluons are no more con�ned into hadrons; strongly interacting matter seems

to undergo a phase transition from hadronic state to what has been called the �Quark-

Gluon Plasma� (QGP). This is logically a consequence of the quark-parton level of

the matter structure and of the dynamics of strong interactions described by the QCD

theory. The occurrence of this phase transition is important from a conceptual point

of view, as it implies the existence of a novel state of matter, which was present in the

early universe up to times � 10�5s, and which could occur in the core of heavy neutron

stars. The only available and experimental way to study the QCD decon�nement phase

transition is to try to create in the laboratory, by ultra-relativistic heavy ion collisions,

conditions similar to those in the early moments of the universe, right after the Big

Bang.

If ever the QGP is created in ultra-relativistic heavy ion collisions, the volume

within which the eventual formation would take place would certainly be �nite. Also,

in lattice QCD studies, the scale of the lattice space volume is �nite. This motivates

the study of the �nite size e¤ects on the expected decon�nement phase transition from

a Hadronic Gas (HG) phase to a QGP phase. These e¤ects are certainly important

12
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since statistical �uctuations in a �nite volume may hinder a sharp transition between

the two phases. Phase transitions are known to be in�nitely sharp, signaled by some

singularities, only in the thermodynamic limit [1]. In general, �nite size e¤ects lead

to a rounding of these singularities as pointed out in [2, 3]. However, even in such

a situation, it is possible to obtain information on the critical behavior. Large but

�nite systems show a universal behavior called �Finite-Size Scaling�(FSS), allowing

to put all the physical systems undergoing a phase transition in a certain number of

universality classes. The systems in a given universality class display the same critical

behavior, meaning that certain dimensionless quantities have the same values for all

these systems. Critical exponents are an example of these universal quantities.

This thesis is devoted to the study of the �nite size behavior for the decon�nement

phase transition. For this purpose, we use a simple QCD model described in [4], based

on the standard MIT bag model [5], and on the coexistence of hadronic and QGP

phases in a �nite system of volume V: The equations of state of the two phases are

then used, and mean values of useful thermodynamic quantities can be calculated.

Additionally, we implement the color charge con�nement property by requiring to

the QGP phase to be a colorless object in the color space. The color-singlet parti-

tion function of the QGP is derived using the group theoretical projection technique

formulated by Turko and Redlich [6], but can not be exactly determined and is usu-

ally calculated within the saddle point approximation in the limit VQGPT 3 >> 1 as in

[7, 8, 9, 10, 11]. It turns out, in our case, that the use of the obtained approximated

partition function for the calculation of a mean value within the de�nition of our model,

has as a consequence the absence of the decon�nement phase transition [12]. This is due

to the fact that the approximation used for the calculation of the color-singlet partition
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function breaks down at VQGPT 3 << 1, and this limit is attained in our case. This

has been noted in further works in which additional approximations have been used to

carry out calculations, as in [4, 9]. We propose in the following a method which allows

us to accurately calculate physical quantities describing well the decon�nement phase

transition at �nite volumes within the QCD model chosen, avoiding then the problem

arising at VQGPT 3 << 1 and without any approximation. We proceed by using the

exact de�nition of the color-singlet partition function for ZQGP in the de�nition of the

mean value of a physical quantity. A �rst analytical step in the calculation of the mean

value is then achieved, and an expression with integral coe¢ cients is obtained. The

double integrals are then carried out with a suitable numerical method at each value of

temperature and volume, and the behavior of the physical quantity of the �nite system

can so be obtained on the whole range of temperature, for various volumes, without any

restriction. Afterwards, scaling critical exponents characterizing the scaling behavior

of some quantities are determined using a numerical FSS analysis.

Since hadrons are not pointlike, they should be treated as extended particles. To

account for this, we then consider the excluded volume e¤ects and examine their in�u-

ence on the decon�nement phase transition.

This thesis is organized as follows. After the present introduction, the �rst chapter

is mainly an overview of the physics of phase transitions, and the standard classi�cation

existing in literature. Besides, we have tried to achieve a more general classi�cation of

phase transitions.

In the second chapter, phase transitions in �nite systems are reviewed. Finite-size

e¤ects are examined as well as �nite-size scaling.

In the third chapter, we study the decon�nement phase transition in a �nite system
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within the phase coexistence model. Equations of state of in�nite matter are �rst used

for a hadronic gas of pions and for a QGP consisting of gluons and massless quarks, and

some physical quantities are studied for both temperature and density driven decon-

�nement phase transition, since their expressions with T and � are obtained [13, 14].

Then, the color-singletness requirement is implemented in the partition function of the

QGP using the projection method. An approximate color-singlet partition function

of the QGP has been derived within the saddle point approximation and used in a

�rst step, in our works [15, 16], to calculate mean values of thermodynamical quan-

tities. Secondly, the exact integral expression of the color-singlet partition function

of the QGP is used to accurately determine mean values of several quantities probing

the phase transition in a �nite volume, without explicitly calculating the color-singlet

partition function itself.

The fourth chapter is dedicated to the numerical determination of the scaling critical

exponents characterizing the studied phase transition, by the mean of a �nite size

scaling analysis.

In the �fth chapter, the excluded volume correction is implemented for the hadronic

phase, and their e¤ects on the decon�nement phase transition are investigated.

Last is a discussion of the obtained results and a conclusion to our work.



Chapter 1

General Study of Phase Transitions

1.1 Introduction

The study of the physics of phase transitions phenomena occurring in nature is con-

sidered to be a subject of great interest to physicists. It is easy to understand the

importance of this subject because �rstly the list of systems exhibiting interesting

phase transitions continues to expand, including the Universe itself, and secondly the

theoretical framework of equilibrium statistical mechanics has found applications in

very di¤erent areas of physics like string �eld theories, elementary particle physics,

physics of the chaos, condensed matter ... etc.

Phase transitions are abrupt changes in the global behavior and in the qualitative

properties of a system when certain parameters pass through particular values. Tech-

nically, phase transitions are characterized by the appearance of singularities in some

thermodynamic quantities, in the thermodynamical limit where the volume V and the

number of particles N go to in�nity, while the density � =
N

V
remains constant. That

is, at the transition, some global behavior is not analytic in the in�nite volume limit.

16
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Examples of phase transitions are:

� The transitions between the solid, liquid, and gaseous phases (evaporation, boil-

ing, melting, freezing, sublimation, etc.).

� The transition between the ferromagnetic and paramagnetic phases of magnetic

materials at the Curie point.

� The emergence of superconductivity in certain metals when cooled below a critical

temperature.

� Quantum condensation of bosonic �uids, such as Bose-Einstein condensation and

the super�uid transition in liquid helium.

� The breaking of symmetries in the laws of physics during the early history of the

universe as its temperature cooled.

In this chapter, we want to give an overview on the physics of phase transitions, and

the related features. We�ll look carefully at how the thermodynamic variables behave

close to the transition point, in order to compare the behavior at �rst- and higher-

order transitions, and to de�ne the critical exponents. The QCD phase transition is

also reviewed since it is subject of our study in this thesis, as well as some results of

lattice QCD.
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1.2 Review of Some Useful Thermodynamic Func-

tions

The order of a phase transition is one of the basic thermodynamic classi�cations. It

concerns the thermodynamic potential and its derivatives at the transition. In Tables

(1.1) and (1.2), we recall the thermodynamic formulas for a magnet and a �uid [15],

where � =
1

T
with the units chosen as: kB = ~ = c = 1.

First derivatives of the physical potential (the free energy for the �uid system) with

respect to T; H or V lead to the internal energy U , the entropy S, the magnetizationM

or the pressure P; according to the equations in Tables (1.1) and (1.2). On the second

level of derivatives, we have the speci�c heat C at constant H or M (respectively

at constant V or P for a �uid) and the isothermal susceptibility �T for a magnet

(respectively the isothermal compressibility �T for a �uid).

In the in�nite volume limit, a phase transition is signalled by a singularity (in the

sense of non analyticity) in some thermodynamic function. On whether a discontinuity

occurs in one of the �rst derivatives or of the second or higher derivatives of the

thermodynamical potential 
; depends the order of the transition and the class to

which the phase transition belongs. But before enumerating the di¤erent classes of

phase transitions, let us introduce in the following a characteristic quantity of the

transition representing the main qualitative di¤erences between the various phases,

whose evolution allows the determination of the nature of the phase transition, namely

The Order Parameter.
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Thermodynamic variables for a magnet
First law: dU = TdS �MdH

Partition function
Z(T;H) =

P
r e

��Er

#
Free energy
F = �T lnZ

. # &
Internal energy Entropy Magnetization

U =
�@ lnZ
@�

S = �
�
@F

@T

�
H

M = �
�
@F

@H

�
T

# # #
Speci�c Heat Speci�c Heat Isothermal susceptibility
(constant H) (constant X = H;M)

CH =

�
@U

@T

�
H

CX = T

�
@S

@T

�
X

�T =

�
@M

@H

�
T

Table 1.1: Thermodynamic variables for a magnetic system

Thermodynamic variables for a �uid
First law: dU = TdS � PdV

Partition function
Z(T;H) =

P
r e

��Er

#
Free energy
F = �T lnZ

. # &
Internal energy Entropy Pressure

U =
�@ lnZ
@�

S = �
�
@F

@T

�
V

P = �
�
@F

@V

�
T

# # #
Speci�c Heat Speci�c Heat Isothermal compressibility
(constant V ) (constant X = V; P )

CV =

�
@U

@T

�
V

CX = T

�
@S

@T

�
X

�T = �
1

V

�
@V

@P

�
T

Table 1.2: Thermodynamic variables for a �uid system
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1.3 Order Parameter of a General x-driven phase

transition

Thermodynamical systems can exist in various stable homogeneous states (phases)

which might di¤er in their structure, symmetry, order and dynamics. We represent

this stability by the presence of an order in the system. Any modi�cation occurring

in one parameter can lead to a macroscopic change in the state and alter its stability,

and as a consequence there is a wholesale reorganization of matter, even locally. Then,

the system undergoes an abrupt change from one phase to another, called a phase

transition, whose signature is a singularity or discontinuity of some observable physical

properties. A �rst mathematical description of phase transitions was given by Gibbs

[16] who characterized a phase transition by a point of non-analyticity in one or more

thermodynamic functions. The apparition of a phase transition is nowadays interpreted

as coming from the strong �uctuations of the system close to the critical point. At

the critical point, the system exhibits a singular behavior and the phase transition

is known as a critical phenomenon. Kramers was the �rst who suggested that the

singular behavior only appears when the thermodynamic limit is taken ( the volume V

and the number of particles N go to in�nity, with a �xed density � =
N

V
): This view

was demonstrated theoretically through the famous work of Lee and Yang published

in 1952 [17].

If we consider a phase transition between two di¤erent phases, we have certainly one

of the phases as statistically more ordered (Ordered Phase) than the other (Disordered

Phase). In an other sense, we can speak about a disorder-order phase transition which

results from the loss of stability of the disordered (parent) phase. The stability is
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Transition Order Parameter hOi
Ferromagnetic Transition Spontaneous Magnetization

Water Gas-Liquid Transition Density Di¤erence between Liquid and Gas
Liquid Crystal Transition Degree of Orientational Order

Superconducting Transition
Energy Gap between the Ground State

and the Spectrum of Single-Particle Excitations

Table 1.3: Order parameters of some phase transitions

restored by a distortion of the parent phase and in this way a distorted (ordered)

phase is created. The most useful function generally used to characterize this order

is a some appropriate thermodynamical quantity which has a non-vanishing value in

the ordered phase and a zero value in the disordered phase. We commonly call this

quantity "Order Parameter", since its value re�ects the strength and kind of ordering

in the system, and we�ll note it O in the following. Then by de�nition:8><>: hOi = hOi+ , the system is in an ordered phase

hOi = hOi� < hOi+ , the system is in a disordered phase

in which h:::i means the statistical average.

An order parameter may be a scalar quantity or may be a multicomponent (or

even complex) quantity and is de�ned di¤erently in di¤erent kinds of physical systems.

We give in Table (1.3) some examples of order parameters as de�ned in special known

systems [18].

In both experimental and numerical Monte Carlo studies, a complete study of the

behavior of a well chosen order parameter hOi at the phase transition is usually a

key to determine the nature of the phase transition and gives a good way to calculate

its most important thermodynamical properties. When studying the phase transition,

we need then to de�ne the varying thermodynamical parameter x (temperature (T ),

magnetc �eld (H), chemical potential (�), ...) whose change may cause the phase
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)(xO
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)(xO −

x

)(xO
)(xO +

)(xO −

x
Figure 1.1: Evolution of the order parameter from the ordered phase to the disordered
phase as a function of the thermodynamic x�variable driving the phase transition.

transition and then, on which it is interesting to study the dependence of hOi. We

speak about an x-driven phase transition, and therefore we describe the phase transition

with the help of diagrams where the order parameter is plotted against the respective

thermodynamic parameter x, i. e., hOi = hOi (x): Going from the ordered phase to the

disordered phase, the evolution of hOi (x) from hOi+ (x) to hOi� (x); Fig. (1.1), can

have mathematically di¤erent behaviors. According to this, we can distinguish three

di¤erent classes of phase transitions, which have quite di¤erent qualitative properties

near the transition point.

1.4 Standard Classi�cation of Phase Transitions

Discontinuous or First Order Phase Transitions (1st-OPT) are characterized by

a �nite discontinuity in hOi (x) (i. e. basically in anything except the free energy, which

of course must be equal for the two phases at the transition point). The transition point



1. General Study of Phase Transitions 23

will be marked by a sudden and drastic jump from one phase (hOi+ (x)) to the other

(hOi� (x)) as illustrated in Fig. (1.2). For example, in the case of a ferromagnet there

is a jump in the magnetization, if one passes through the transition temperature from

the phase of broken symmetry to the symmetric phase, and the phase transition is then

of �rst order.

Second Order Phase Transitions (2nd-OPT), on the other hand, are charac-

terized by a continuous but nonanalytic behavior of hOi (x). A �nite discontinuity

appears in the �rst derivative of hOi (x) as illustrated in Fig. (1.3). The transition to

superconductivity without an external magnetic �eld is an example of phase transitions

of this kind, where the discontinuity of the speci�c heat at Tc is due to a kink in the

entropy. When the discontinuity in the �rst derivative of hOi (x) becomes in�nite as

in Fig. (1.4), the phase transition is called a continuous Phase Transition (c-PT).

Because of the characteristic shape of the �rst derivative of the order parameter in this

case, such phase transitions are called ���Transitions�. An interesting example of

such phase transitions is the transition to super�uidity in 4He, in which the disconti-

nuity in the speci�c heat is not due to a kink in the entropy but to a vertical tangent

at Tc [19].

This is somewhat a resume of the Ehrenfest and Fisher classi�cations. The Ehren-

fest classi�cation scheme was the �rst attempt at classifying phase transitions,

based on the degree of non-analyticity involved. Under this scheme, phase transitions

were labelled by the lowest derivative of the thermodynamic potential that is discontin-

uous at the transition, such that is called of nth-Order the phase transition for which

there is a discontinuity at the nth-order derivative of an appropriate thermodynamic

potential. Though useful, Ehrenfest classi�cation is �awed since it didn�t account for
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Figure 1.2: Behavior of the order parameter as a function of the thermodynamic
x�variable driving the transition, for a �rst-order phase transition.
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Figure 1.3: Behavior of the order parameter and its �rst derivative with respect to
the thermodynamic x�variable driving the transition, near the critical point xc for a
second-order phase transition.
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Figure 1.4: Behavior of the order parameter and its �rst derivative with respect to
the thermodynamic x�variable driving the transition, near the critical point xc for a
��transition.

the case of a divergence in the derivatives of the thermodynamic potential. After this,

a more complete classi�cation which is Fisher classi�cation scheme came, under

which is denoted by 1st-Order phase transition the case for which the 1st derivative

of the thermodynamic potential is discontinuous and by �higher order phase tran-

sition� or �continuous phase transition� the case for which the 1st derivatives

of the thermodynamic potential are continuous while the 2nd derivatives are either

discontinuous or in�nitely divergent.
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1.5 Mathematical description of general x-driven

phase transitions and new approach to their

classi�cation

To achieve a more general classi�cation of phase transitions, let us start from a general

case of an x-driven phase transition described by an order parameter hOi (x) having

a behavior schematized in Fig. (1.2) in which we suppose a �nite discontinuity at the

transition point xc . The parent phase is described by hOi+ (x) and the �nal phase by

hOi� (x): When the �nite discontinuity becomes smaller getting close to zero, we can

have a continuous Phase Transition (c-PT) case from the initial discontinuous Phase

Transition (d-PT) case. This fact allows to consider the d-PT case as more general

than the c-PT one. We can then write:8><>: hOi (x) = hOi� (x) if x � xc

hOi (x) = hOi+ (x) if x � xc ;
(1.1)

from which a formal analogy with the de�nition of the causal temporal green function

as well known in the standard statistical quantum �eld theory is to be noted. Then by

using the Heaviside step- function �(x); we rewrite eq. (1.1) in the compact form :

hOi (x) = [1��(x� xc)] hOi+ (x) + �(x� xc) hOi� (x): (1.2)

This formula will reveal a great importance in what follows since its mathematical

manipulation, as we shall see, permits to construct a new classi�cation of the existing

phase transitions, which agrees very well with the Fisher�s classi�cation and gives a

clari�cation to the Ehrenfest one.

We suppose now that the singular behavior manifested by the phase transition at
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xc appears in the nth-order derivative:
@n hOi
@xn

(x ! xc) � 1; the f(n� 1)-orderg

derivatives being all continuous functions. We need then to derive the nth-order

derivative of hOi (x):

hOin (x) = ��(x� xc)� hOin�1 (x) + [1��(x� xc)] hOi+n (x) + �(x� xc) hOi�n (x);

(1.3)

with: 8>><>>:
hOin (x) =

@n hOi (x)
@xn

� hOin (x) = hOi
+
n (x)� hOi

�
n (x):

(1.4)

The possible mathematical cases in which we can have a singularity corresponding

to our phase transition are the followings:

1. Case N�1: � hOin�1 (x)=�nite and hOi
�
n (x)=�nite. We have a �nite disconti-

nuity in hOin�1 (x) and the singularity is dominated by the �(x� xc) function:

hOin (x) � �(x� xc); (1.5)

) The phase transition is called nth-Order d-PT.

2. Case N�2: � hOin�1 (x) = 0 and hOi
�
n (x) = 1. We have no discontinuity in

hOin�1 (x) and the singularity is dominated by divergent hOi
�
n (x):

hOin (x) � [1��(x� xc)] hOi+n (x) + �(x� xc) hOi�n (x); (1.6)

) The phase transition is called nth-Order c-PT.

3. Case N�3 : � hOin�1 (x) = �nite and hOi
�
n (x) =1. We are opposite a special

case, in which the singularity comes from both �(x� xc) and divergent hOi�n (x):

Until now, to our knowledge, we have not observed any experimental phase tran-

sition manifesting the two di¤erent kinds of singularities at the same time.
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4. Case N�4 : � hOin�1 (x) = 0 and hOi�n (x) = �nite. In this case the phase

transition does not manifest any singularity in the hOin (x): We must look for it

in the (n+ 1)-order derivative, and then similar cases may appear at this level.

We can then summarize our classi�cation by saying that we have in reality two

di¤erent kinds of phase transitions: discontinuous phase transitions (d-PT) and con-

tinuous phase transitions (c-PT). The order of a d-PT is nothing but the order of the

derivative of the order parameter at which the singularity appears as a �-function:

nth�Order d�PT class

hOin�1 (x) � �(x� xc); hOin (x) � �(x� xc) ;

which agrees with the �rst and traditional classi�cation formulated by Ehrenfest (1933).

For the c-PT, the singularity comes from a divergent hOi�n (x) and with the same

considerations, we can speak about the order of the c-PT as the order of the derivative

hOin (x) having a divergent behavior. We note that this case of an in�nite singularity

in the hOin (x) fails to the Ehrenfest classi�cation because :

nth�Order c�PT class

Lim
x!xc

hOin (x) � 1; , hOin�1 (x) / (x� xc)
� ;

which gives a constraint on the value of the critical exponent � : � � 1 � 0.

We �nish our discussion by a diagrammatic view which may explain more clearly

the di¤erent kinds of phase transitions existing in nature.
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hOi (x)

. &

DiscontinuoushOi (x) at xc Continuous hOi (x)

# . &

hOin=1 (x) � �(x�xc) Discontinuous hOin=1 (x) Continuous hOin=1 (x)

. & . &

Finite In�nite Discont.hOin=2 (x) Cont.hOin=2 (x)

# # ...
...

hOin=2 (x) � �(x�xc) Lim
x!xc

hOin=1 (x) � 1
...

...

+ + + ...
...

1st-O d-PT 2nd-O d-PT 1st-O c-PT ...

1.6 Critical Behavior and Exponents

From thermodynamical point of view, a critical point is characterized by the type

of singularity of the thermodynamic potential and its derivatives with respect to the

relevant variables at this point. It turns out to be very important to the theory of

critical phenomena to understand more carefully the form of the singular behavior

of these quantities near the critical point. Considering the critical behavior, it is

convenient to speak in terms of the reduced distance from the critical point:

ex = x� xc
xc

; (1.7)

then, the thermodynamic functions have singularities at ex = 0: Data from multiple

experiments as well as results from a number of exactly soluble models show that these

thermodynamic functions can be described by a set of simple power laws in the vicinity
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of the critical point xc, characterized by powers, with a customary notation in terms

of greek letters, called Critical Exponents. Then the critical exponent associated with

a function F (ex) is:
� = limex!0

ln jF (ex)j
ln jexj ; (1.8)

assuming that the limit exists, or as it is more usually written:

F (ex) � jexj� : (1.9)

The proportionality sign � is to remind that eq. (1.9) only represents the asymptotic

behavior of the function F (ex) as ex! 0, and is then an asymptotic law. More generally,

one might expect:

F (ex) = A jexj� �1 + bex�1 + :::
�
; �1 > 0: (1.10)

It can easily be seen that su¢ ciently near the critical point, the behavior of the

leading term dominates.

De�nitions of the most commonly used critical exponents connected to the most

important quantities are given in the following, for thermally driven phase transitions

in �uids and/or magnets.

� The exponent �

This exponent describes the divergence of the speci�c heat CV for a �uid or CH for

a magnet near the critical point:

CV � jtj�� ; CH � jtj�� ; (1.11)

where the deviation in temperature from the critical temperature Tc has been noted t:

� The exponent �
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The critical exponent � is connected to the density di¤erence
�
�l � �g

�
for a �uid

system or the spontaneous magnetization M for a magnetic system. It shows how the

order parameter varies with the varying temperature T as Tc is approached.

�
�l � �g

�
� (�t)� ; M � (�t)� : (1.12)

� The exponent 


This exponent describes the critical variation at t! 0 of the isothermal compress-

ibility �T for a �uid and the isothermal susceptibility �T for a magnet:

�T � jtj�
 ; �T � jtj
�
 : (1.13)

� The exponent �

The exponent � describes the variation of the di¤erence in Pressure (P � Pc) with�
�l � �g

�
(�uid) and of the �eld H with magnetization M (magnet) along the critical

isotherm T = Tc:

(P � Pc) �
���l � �g

��� sgn(�l � �g); H � jM j� sgn(M); (1.14)

where sgn is the sign function:

sgn(z) =

8><>:
z

jzj if z 6= 0

0 if z = 0 :
(1.15)

� The exponent �

The critical exponent � is associated to the critical variation at t ! 0 of the
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connected two point correlation function G(r) 1, where r denotes the separation of the

two points, at P = Pc for a �uid or at H = 0 for a magnet.

G(r) � r�(d�2+�): (1.16)

Here d is the dimensionality of the system.

� The exponent �

The last exponent concerns the correlation length which is a measure of the range

of the correlation function.

� � jtj�� ; t! 0; H = 0: (1.17)

The exponent de�nitions are summarized for �uid and magnetic system in Tables

(1.4) and (1.5) respectively [15, 20].

1Thermodynamic variables like the magnetization or the entropy are macroscopic properties. A
much fuller understanding of phase transitions can be obtained by considering what happens on a
microscopic level. To be able to do this in a more qualitative way, we introduce correlation functions
[15]. Let the order parameter O be written as a volume integral over an order parameter density

o(�!r ) as: O =
�Z

d3r o(�!r )
�
; where h:::i represents the statistical average by which one obtains

thermodynamic functions. The correlation function de�ned as: G (�!r ) = ho(�!r )o(0)i � ho(�!r )i ho(0)i ;
measures how the value of the order parameter at one point is correlated to its value at some other
point. Away from the critical point, far away points (r !1) become uncorrelated and hence the
correlation length decays to zero. This decay is exponential with the form: G (�!r ) � r��e�r=�;
where � is some number, and � the correlation length which is a measure of the range over which
�uctuations in one region of space are correlated with those in another region. Experimentally, the
correlation length is found to diverge at the critical point, which means that very far points become
correlated. Thus the system near a second-order PT �loses memory�of its microscopic structure and
begins to display new long-range macroscopic correlations. Evidence form experiments and exactly
soluble models shows that here the correlation function decays as a power law: G (�!r ) � r�(d�2+�):
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Speci�c heat at constant volume CV � jtj��

Liquid-gas density di¤erence
�
�l � �g

�
� (�t)�

Isothermal compressibility �T � jtj�


Critical isotherm (t = 0) P � Pc �
���l � �g

��� sgn(�l � �g)
Pair correlation function at Tc G(r) � r�(d�2+�)

Correlation length � � jtj��

Table 1.4: De�nitions of the most commonly used critical exponents for a �uid system

Zero-�eld speci�c heat CH � jtj��

Zero-�eld magnetization M � (�t)�
Zero-�eld isothermal susceptibility �T � jtj

�


Critical isotherm (t = 0) H � jM j� sgn(M)
Pair correlation function at Tc G(r) � r�(d�2+�)

Correlation length � � jtj��

Table 1.5: De�nitions of the most commonly used critical exponents for a magnetic
system

1.7 Universality, Scaling and Renormalization Group

Theory

Having de�ned the critical exponents, we need to justify why they are interesting, and

indeed why they are more interesting than the critical point itself. It turns out that,

whereas the critical point depends sensitively on the details of the interatomic inter-

actions, the critical exponents are to a large degree universal depending only on a few

fundamental parameters, consisting in the dimensionality of space, the symmetry of the

order parameter and the range of the interaction. Simple systems, or numerical models

appropriate for computer simulations, are used to describe the critical behavior. The

results are then extended to more complex systems: by making sure that one is working

in the right dimension and that the symmetry is correctly represented by a model, it

can be used to obtain critical exponents for all the systems within its universality class.
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Universality
Class

Symmetry of
Order Parameter

� � 
 � � �

2-d Ising 2-component scalar
0

(log)
1=8 7=4 15 1 1=4

3-d Ising 2-component scalar 0.10 0.33 1.24 4.8 0.63 0.04
3-d X-Y 2-dimensional vector 0.01 0.34 1.30 4.8 0.66 0.04

3-d Heisenberg 3-dimensional vector -0.12 0.36 1.39 4.8 0.71 0.04
2-d Potts; q = 3

q = 4
q-component scalar

1=3
2=3

1=9
1=12

13=9
7=6

14
15

5=6
2=3

4=15
1=4

Table 1.6: Examples of universality classes with the corresponding symmetry of the
order parameter and the values of the critical exponents

Striking evidence for this comes when comparing the value of the critical exponent �

for phase transitions in completely di¤erent systems, with a scalar order parameter,

such as the liquid-gas phase transition, magnets with uniaxial anisotropy in spin space,

phase separation in the binary �uid mixture and the lattice models of �1 spins (Ising

models); in all these cases � is the same, 1=3, and thus all four systems fall in the same

universality class in the sense that they are described by the same scaling relations.

The Ising model, however, is much simpler than the other experimental systems, and

it has been used extensively in numerical simulations [21].

Some universality classes are listed in Table (1.6) with a description of the symmetry

of the corresponding order parameter and the values of the critical exponents [15].

Universality means that systems di¤ering in microscopic details (e.g. di¤erent types

of interaction potentials, ion species, ... etc) exhibit identical collective behavior, or as

termed by Kadano¤ [22]: "All phase transition problems can be divided into a small

number of di¤erent classes depending upon the dimensionality of the system and the

symmetries of the ordered state. Within each class, all phase transitions have identical

behavior in the critical region, only the names of thermodynamic variables are changed".

Not all of the critical exponents de�ned in the previous section are independent
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Rushbrooke�s law �+ 2� + 
 � 2
Gri¢ ths law �+ � (1 + �) � 2
Fisher�s law (2� �) � � 

Josephson�s law d� � 2� �

Table 1.7: Scaling laws of critical exponents

and using a number of thermodynamic arguments one can derive a series of exponent

relations called scaling laws. Rushbrooke (1963), Gri¢ ths (1965), Josephson (1967) and

Fisher (1969) were the �rst to �nd certain inequalities between the critical exponents.

By experimental evidence, it turned out later that these are in fact equalities. Table

(1.7) resumes these scaling laws.

Universality in critical phenomena is described by the Renormalization Group The-

ory. The �rst work describing the fundamental concepts of the renormalization group

approach was the paper of K. G. Wilson published in 1971 [23]. The renormalization

group works by changing the length scale of a system by removing degrees of freedom,

using renormalization group transformations which relate a system with correlations

on the scale � to another system with correlations on the scale �=b, where the scale

factor b > 1: Only at criticality will the properties of the system remain unaltered by

the change in scale and hence the critical behavior is described by the so-called �xed

points of the transformation, and this leads to the important result that the thermody-

namic functions can be written in a scaling form. The equality of the critical exponents

above and below the critical temperature and the relations between them then follow

immediately [15, 21, 24].

We note that the ideas of Universality, Scaling and Renormalization are important

concepts from which a modern understanding of critical phenomena has emerged, and

H.E. Stanley has recently pointed out in his famous article [25] that: "Scaling, Univer-
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sality and Renormalization are the three pillars of the current understanding of modern

critical phenomena".

1.8 QCD phase transition and the Hagedorn tem-

perature

Today, we think that we arrived at a deep level of structure of matter. All matter in the

universe is constructed from Quarks and Leptons: the Quark-Lepton Level. These fun-

damental particles are spin 1
2
: �fermions�and are classi�ed into three �generations�(or

families) and interact through the exchange of gauge bosons. Both quarks and leptons

are structureless at the smallest distances currently probed by the highest energy accel-

erators (current limits of resolution or present observational limit � 10�21m = 10�6fm

[26]).

If we heat and/or compress very highly a strongly interacting (hadronic) matter,

we arrive to such extreme conditions which do not permit the hadrons to survive,

and above a certain high temperature Tc and/or high density nc; the dissolution of

the hadronic matter into its components can occur, and a weakly interacting system of

nearly free quarks and gluons can be created. Since quarks and gluons play similar roles

in Quantum Chromo-Dynamics (QCD) than the electrons and photons in Quantum

Electro-Dynamics (QED), this phase is generally known as the Quark Gluon Plasma

(QGP), Partonic Plasma or Non-Abelian Plasma. In this naive picture, the phase

diagram of QCD contains two important regions:

� A Hadronic Gas (HG) phase at low temperature (density).

� A QGP phase at high temperature (density).
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The qualitative di¤erences between these two phases lead to speculate the existence

of a phase transition connecting them, commonly called the QCD Decon�nement Phase

Transition (DPT), which is as old as the quark structure of matter [27, 28, 29, 30].

The nature and the character of this QCD DPT are still much debated questions.

Its existence, however, has been partly supported by Lattice QCD calculations and

the Cosmological Standard Model predictions. Experimentally, the only way to study

this QCD phase transition is to try to recreate, in ultra-relativistic heavy ion colli-

sions, conditions similar to those which occurred in the early times of the universe

(� 10�6s), immediately after the big bang. To understand the physics of this QCD

DPT, numerous studies have been performed using phenomenological approaches to

the two-phase nature of strongly interacting matter; the �Statistical Bootstrap Model�

(SBM) of Hagedorn is one of those [31, 32]. It is a statistical model based on the

observation that hadrons not only form bound and resonance states but also decay

statistically into such states if they are heavy enough. This leads to the concept of

a sequence of heavier and heavier bound and resonance states, each being a possible

constituent of a still heavier resonance, while at the same time being itself composed of

lighter ones. We call these states �clusters�or ��reballs�. The thermodynamical study

of nuclei collisions shows that when the impact energy gets very high, the temperature

in the collision, estimated from the energy distribution of the emitted fragments, does

not increase as fast as the model suggests. The temperature seems to approach some

kind of plateau as the collision energy grows. This is due to the fact that the energy

in the collision is high enough to convert into mass, and then higher-mass hadrons

are created: the temperature in the collision remains the same until the most massive

hadron has been created, then it starts to increase again.
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The same situation occurs during the liquid-vapor transition in water: the temper-

ature of boiling water does not change during the phase transition when water enters

its vapor phase. Hagedorn suggested that this limiting temperature, of the order of

pion mass, characterizes the limit of existence of hadronic matter.

Several estimates of this temperature from the SBM have been given, and here are

some of them [32]:

� The Frautschi-Yellin bootstrap equation (BE) yields with pions only:

T0 � 0:145GeV

� If K and N were added to the input: T0 � 0:135GeV

� Hamer and Frautschi solve their BE by numerical iteration and read o¤:

T0 � 0:140GeV

� Nahm derives a sum rule from which he found, under di¤erent assumptions:

T0 � 0:154GeV

or T0 � 0:142GeV

Actually, this singular temperature is interpreted as the temperature where (for

chemical potential � = 0) the phase transition from hadronic matter to quark-gluon

plasma occurs.

Another widely used model describing the QCD phase transition is the thermody-

namic approach with two-phase matter equations of state, which will be used in the

present work, from chapter 3 on.
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1.9 Lattice QCD

In 1974, Wilson proposed a formulation of quantum chromodynamics (QCD) on a

discrete space-time lattice [33]. A few years later, Creutz demonstrated that this

formulation was a promising basis for the successful numerical simulation of the theory

[34]. The simulation method is the most promising currently available method for

deducing nonperturbative characteristics of QCD at �nite temperature and/or density

[35].

In the past several years, considerable progress has been made and lattice simu-

lations continue providing results on the equation of state of QCD [36, 37, 38, 39],

the transition temperature [40, 41], the order of the decon�nement phase transition

[37, 40, 42, 43], as well as the QCD phase diagram [40, 44, 45]. It has been shown that

the nature of this transition depends strongly on the number of colors (Nc), the num-

ber of �avors (Nf) and the current quark masses as revealed by several lattice QCD

calculations (see for example [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

For in�nite or very large quark masses, the transition is a 1st order decon�ning tran-

sition. In the opposite case of zero quark masses, one may have a 2nd order chiral

phase transition for two �avors or a 1st order chiral phase transition for three �a-

vors. For intermediate masses, the transition is just a rapid crossover, meaning that

thermodynamic quantities change very rapidly in a narrow temperature interval [61].



Chapter 2

Phase Transitions in Finite-Size

Systems

2.1 Introduction

Phase transitions in statistical physics are known to be in�nitely sharp only in the

thermodynamic limit, where the volume V and the number of particles N go to in�nity,

while the density � =
N

V
remains constant. Only in this limit is the thermodynamical

potential or any of its derivatives singular at the critical point. However, real systems

and systems we simulate are �nite.

In general, �nite size e¤ects lead to a mixed phase system and a rounding of the

transition, rendering the order of the transition di¢ cult to infer. The main care is

then how to sign a possible phase transition in a �nite system. It turns out that we

can extract the true critical behavior of in�nite systems from calculations on �nite sys-

tems, by studying how some characteristic thermodynamical quantities vary with the

size of the system, namely by a Finite Size Scaling (FSS) analysis. Studies in statisti-

40
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cal physics have shown that despite the apparent diversity in the underlying structure

of systems undergoing phase transitions, these latter take place with some universal

global behavior, depending only on the range of interaction of the forces at play and the

dimensionality of the problem. This means the singular behavior of some characteris-

tic observables near criticality is identical for many systems when appropriately scaled.

This universality allows the put of all the physical systems undergoing a phase tran-

sition in a certain number of universality classes. The systems in a given universality

class display the same critical behavior, meaning that certain dimensionless quantities

have the same values for all these systems. Critical exponents are an example of these

universal quantities. The determination of critical exponents has long been one of the

main interests for both analytical calculations and numerical simulations.

This chapter is mainly an overview of phase transitions in �nite size systems. The

�nite size e¤ects are examined and the �nite size scaling analysis permitting the deter-

mination of the scaling critical exponents is reviewed for both �rst and second order

phase transitions.

2.2 Thermodynamic Limit

In statistical mechanics, the existence of phase transitions is associated with singu-

larities of the thermodynamic potential in some region of the thermodynamic space.

These singularities occur only in the thermodynamic limit, where the volume V and

particle number N go to in�nity, with a constant density � =
N

V
. This fact could be

understood by analyzing the partition function which contains all of the essential infor-

mation about the system under consideration, and whose general form for a classical
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system is:

Z =
X

all states

e��H; (2.1)

where H is the Hamiltonian of the system, � =
1

T
with the units chosen as: kB = ~ =

c = 1. The sum in eq. (2.1) is over all possible states of the system and thus depends

upon the size of the system and the number of degrees of freedom for each particle. For

a �nite system, the partition function is a �nite sum of analytical terms, and therefore

it is itself an analytical function. It is necessary to take an in�nite number of terms

to obtain a singularity, and this has been demonstrated through the work of Lee and

Yang in [17].

Thus, in a �nite system no singularity occurs and, strictly speaking, no phase

transition occurs. The question of why a �nite system can apparently describe phase

transitions and the relation of this phenomenon with true phase transitions in in�nite

systems is the main subject of the Finite Size Scaling (FSS) theory [2, 62, 63, 64, 65, 66].

Finite Size Scaling is not only a formal way to understand the asymptotic behavior of

a system when the size goes to in�nity. In fact, the theory gives us numerical methods

capable of obtaining accurate results for in�nite systems only by studying very small

systems.

2.3 Finite Size E¤ects and Useful Thermodynamic

x�Response Functions

In the thermodynamic limit and at criticality, the phase transition is signaled by a diver-

gence (in�nite singularity) manifested by some thermodynamic function F (x;1). This

singularity is according to our classi�cation in chapter 1 given by the �(~x)�function
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for a discontinuous phase transition (d-PT), while for a continuous phase transition

(c-PT), the singularity has the form of a power-law ~x��function. Now, if the volume

is �nite at least in one dimension with a characteristic size L = V 1=d, the singularity

is smeared out into a peak with �nite mathematical properties, and three e¤ects can

be observed [3, 62, 67, 68]:

1. The rounding e¤ect of the maximum of the in�nite singularity

The In�nite height of the xc(1)-singularity (F (xc(1);1) = 1) becomes �nite

(F (xc(L); L) = finite)

2. The shifting e¤ect of the transition point position

The position of the xc(1)-singularity is shifted to xc(L)

3. The widening of the transition region around the transition point

The xc(1)-singularity acquires a �nite width (�x(L) = finite) around the xc(L)-

maximum.

The most important feature in a �nite volume is then the localization of the �nite

size transition point: xc(L). If we analyze the �nite peak of F (x; L) when approaching

the thermodynamic limit, we see that it tends to the real initial singularity. It is

then logical to say that the location of the maximum of the rounded peak of F (x; L)

determines the �nite-size transition point xc(L); i. e.,�
@hF (x; L)i

@x

�
x=xc(L)

= 0 : (2.2)

For each of the FSE described previously, we may associate a scaling critical ex-

ponent according to the scaling law � L�: The value of the critical exponent � may
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certainly depend enormously on the kind of singularity occurring in the thermodynamic

limit, and di¤er according to the phase transitions class, i. e., �(d-PT) 6= �(c-PT).

The principal reason is the dependence of �(c-PT) on the critical exponent � which

does not exist in the case of a d-PT [69]. Thus, we can say that the value of the scaling

critical exponent � can give an indication on the order of a phase transition and may

be used as a criterion for its determination.

Now, we de�ne the most useful two thermodynamical functions for the study of FSE

on the more commonly encountered x� driven phase transitions, namely the �rst-order

phase transition and the second-order phase transition, and for the derivation of the

associated scaling critical exponents. These two x� response functions are:

1. The x� susceptibility de�ned to be the �rst derivative of the order parameter

with respect to the x� variable, i. e.,

�(x; L) =
@hO (x; L)i

@x
; (2.3)

2. The x� speci�c heat density de�ned to be the �rst derivative of the energy density

"(x; L) of the system with respect to the x� variable, i. e.,

c(x; L) =
@h" (x; L)i

@x
: (2.4)

A FSS analysis of the scaling behavior of the properties describing �(x; L) and

c(x; L), namely of:

� The height of the x-susceptibility maximum j�xj
max (L)

� The height of the x-speci�c heat maximum cmaxx (L)
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� The shift of the pseudo-critical point from the true critical point:

�x(L) = xc(L)� xc(1)

� The width of the transition region �x(L) over which the singularities occur-

ring in �(x; L) and c(x; L) are rounded,

is used to study quantitatively the volume dependence of these �nite size e¤ects, and

to recover the scaling critical exponents characterizing the phase transition in question.

2.4 Finite Size Scaling

The appreciable rounding of the critical point singularities induced by �nite size ef-

fects render it di¢ cult to infer the order of a phase transition. Fortunately, there are

characteristic signatures in a �nite volume which anticipate the behavior in the ther-

modynamic limit. A careful analysis of these signatures allows to determine the order

of the transition, by performing measurements as function of a varying volume.

In the following, we discuss the �nite size scaling behavior of singularities in ther-

modynamic functions for both 1st-Order and 2nd-Order phase transitions.

2.4.1 Finite-size scaling at 2nd-Order phase transitions

Let us consider a thermodynamical function F (~x;1) which admits a critical singularity

in the in�nite volume limit (the susceptibility �(~x; V ) or the speci�c heat c(~x; V )),

characterized by an index �:

F (~x;1) � AF j~xj�� : (2.5)
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For a system which is �nite at least in one dimension with a characteristic size

L = V 1=d, this function is F (~x; L): For large L and small ~x; the property of Finite

Size Scaling means that F (~x; L) has the asymptotic form:

F (~x; L) = j~xj�� f(L=�(~x;1)); (2.6)

where �(~x;1) � �0 j~xj
�� is the correlation length in the in�nite volume limit.

We are interested in the limit x ! xc at �xed L < 1, i. e., L

�(~x! 0;1) !

0; at which F (~x; L) should be �nite. Hence, the singularity of F (~x;1) has to be

compensated by the scaling function f(L=�(~x;1)) which may behave as:

f(L=�(~x;1)) � ( L

�(~x;1))
�=� for

L

�(~x;1) ! 0; (2.7)

where �(~x;1) � j~xj�� for ~x! 0. It follows then [70]:

F (xc; L) = F (~x = 0; L) � L�=� : (2.8)

The last relation (2.8) predicts for instance for the susceptibility:

�(xc; L) � L
=� ; (2.9)

and for the speci�c heat:

c(xc; L) � L�=� : (2.10)

For the width of the transition region �x (L) and the shift of the transition point

�x (L) which vanish at the in�nite volume limit, their scaling behavior is characterized

by the same critical index 1=�, according to:

�x (L) � L�1=� ; �x (L) � L�1=� ; (2.11)

while the scaling behavior of the correlation length in a �nite volume is stated as [70]:

�(~x; L) = �(~x;1)f�(L=�(~x;1)) : (2.12)
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2.4.2 Finite-size scaling at 1st-Order phase transitions

Finally, we turn to �nite-size scaling analysis at �rst-order phase transitions. In an

in�nite system, a 1st-Order phase transition is characterized by delta function singu-

larities in the second derivatives of the thermodynamical potential at the critical point

xc (1). In �nite systems, of course, these delta function singularities are rounded o¤

into �nite peaks. The �nite-size scaling analysis for 1st-Order phase transitions is more

di¢ cult than for 2nd-Order phase transitions because
�(~x;1)

L
is no longer a sensible

scaling variable as in eq. (2.7) since the correlation length for a 1st-Order phase tran-

sition stays �nite even in the in�nite volume limit as x! xc [70]. Thus, since there is

no diverging characteristic length to which the linear dimension could be compared at

1st-Order phase transition, it is simply the volume Ld that controls the size e¤ects.

The goal of the �nite size scaling analysis for 1st-Order phase transitions is to

predict the rounding and shifting of ��function singularities in the second derivatives

of a thermodynamical potential due to the �nite volume, e.g., in the speci�c heat due

to a latent heat, or in the susceptibility due to a jump in the order parameter (see

[2, 3, 64, 71, 72]).

We plot in Fig. (2.1) a diagrammatic behavior of the susceptibility �(L; x), the

speci�c heat c(L; x) as well as the x�derivative of the susceptibility [@�(L; T )=@x] as

function of x; and show the characteristic maxima of the rounded peaks j�xj
max (L) and

cmaxx (L), the width of the region over which the transition is rounded o¤ �x(L), and

the shift of the transition point xc(L)� xc(1); which scale with the volume according
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Figure 2.1: Behavior of the susceptibility � (x; L), its �rst derivative @�
@x
and speci�c

heat c (x; L) versus the thermodynamic x�variable driving the transition, at the tran-
sition point xc.

to: 8>>>>>>><>>>>>>>:

�x (L) � L�d � = V ��

(xc (L)� xc (1)) � L�d � = V ��

j�xj
max (L) � Ld 
 = V 


Cmaxx (L) � Ld � = V � :

(2.13)

It has been shown in the FSS theory [3, 64, 66, 67, 71] that in this case, the scaling

exponents �, �, � and 
 are all equal to unity, and it is only the dimensionality which

controls the �nite size e¤ects.

As an example, we shall report on in the following the work in [3] to recover the

scaling exponents for a �rst order phase transition. Using thermodynamic �uctuation
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theory, �nite-size e¤ects at �rst order phase transitions have been worked out in Ising

models below Tc; to discuss the rounding of the magnetization jump in the Ising ferro-

magnet as the �eld H is varied. In an in�nite system, the magnetization jumps from

�Msp as H ! 0+ to +Msp reached for H ! 0�. In a system with all linear dimensions

L �nite, however, no singularity can occur and the variation of the magnetization hSiL

with �eld is perfectly smooth. Rather than the in�nitely steep variation of hSiL with

H from H = 0+ to H = 0� occurring for L ! 1, hSiL has a large but �nite slope of

order
M2

LL
d

kT
, for a �nite region of �elds �MLL

d

kT
. H . MLL

d

kT
. Here �ML are the

values of the magnetization where the probability distribution PL (s) at zero �eld is

maximal, and d is the system�s dimensionality.

The probability distribution of the magnetization of an Ising system below Tc at

zero �eld can be approximated by two Gaussian curves, one centered on �M and one

on +M , as:

PL(s) =
1

2

Ld=2�
2�kT�(L)

�1=2
(
exp

"
�(s�ML)

2Ld

2kT�(L)

#
+ exp

"
�(s+ML)

2Ld

2kT�(L)

#)
: (2.14)

The generalization to nonzero �eld H then simply is:

PL(s) = A

(
exp

"
�((s�Msp)

2 � 2�sH)Ld
2kT�(L)

#
+ exp

"
�((s+ML)

2 � 2�sH)Ld
2kT�(L)

#)
;

(2.15)

with A a normalization constant which can be written as:

A =
1

2

Ld=2�
2�kT�(L)

�1=2 exp ���H 2Ld

2kT

�
= cosh

�
HMspL

d

kT

�
: (2.16)

Eq. (2.15) can then be rewritten as:

PL(s) =
1

2
Ld

�
2�kT�(L)

��1=2
cosh [HMspLd=kT ]

(
exp

�
HMspL

d

kT

�
exp

"
�(s�Msp � �H)2Ld

2kT�(L)

#

+exp

�
HMspL

d

kT

�
exp

"
�(s+ML � �H)2Ld

2kT�(L)

#)
: (2.17)
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Figure 2.2: (a) Variation of magnetization hsiL in a �nite Ising ferromagnet plotted
vs magnetic �eld H, as observed in thermal equilibrium (full curve) and in a Monte
Carlo simulation with su¢ ciently short observation time where metastable branches
occur (dash-dotted). The behavior of the in�nite system is also indicated (schema-
tized). Msp is the spontaneous magnetization of the in�nte system. ML is the most
probable value of the magnetization in the �nite system at T < Tc. (b) Schematic
probability distribution of the magnetization for two cases (open circles in (a)) where
the magnetization is in between [3].
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Thus, PL(s) still is a superposition of two Gaussians, now centered around the shifted

magnetization �Msp + �H:

From eq. (2.17), it is now easy to obtain the moments hskiL of interest. The �rst

moment hsiL giving the magnetization is then:

hsiL = �H +Msp tanh

�
HMspL

d

kT

�
; (2.18)

and we conclude that for
HMspL

d

kT
� 1 we simply have the bulk behavior:

hsiL = �H +Msp; (2.19)

while in the limit
HMspL

d

kT
� 1; we have:

hsiL = �H +
HM 2

spL
d

kT
: (2.20)

The width over which the transition is rounded is of the order of:

�Hround �
kT

MspLd
; (2.21)

since, as can be seen from eq. (2.18), the �eld H has to exceed this value to �nd the

behavior characteristic of the in�nite system.

The susceptibility of the �nite system �L becomes:

�L = (
@hsiL
@H

)T = �+
M 2

spL
d

kT cosh2
h
HMspLd

kT

i ; (2.22)

which shows that instead of the ��function singularity at H = 0, we now have a

smooth peak of height proportional to Ld. Also, it is easy to show that:

hs2iL =M 2
sp + �2H2 +

kT�

Ld
+ 2Msp�H tanh

�
HMspL

d

kT

�
; (2.23)
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and hence the �uctuation relation:

hs2iL � hsi2L =
kT�L
Ld

; (2.24)

holds as usual. Thus, the only scaling power of L which enters in the above rela-

tions of hsiL, �L, etc. comes via the volume Ld of the system. Hence, it is only the

dimensionality of the system which controls the �nite size e¤ects.

In the following, Table (2.1) resumes the scaling behavior at the limit of an in�nite

volume and in the vicinity of the transition point for each of the previous four quantities

of eq. (2.13), and shows how to relate the �nite size e¤ects on the singularities of

thermodynamic quantities close to both 1st-order and 2nd-order phase transitions, to

the critical exponents of the in�nite system.

The di¤erence between the scaling critical exponents for 1st-Order and 2nd-Order

phase transitions allows to distinguish between the two classes, since for a 1st-Order

phase transition 
 = � = � = � = 1 and for a 2nd-Order phase transition 
; �

and � di¤er from 1. This is also revealed by the results found for the scaling critical

exponents in theoretical, numerical and experimental studies, hence the use of the

critical exponents as a criterion for the determination of the order of a phase transition

[47, 48, 49, 50, 70, 73, 74].

2.5 Localization of the transition point in a �nite

volume

In addition to the two ways cited in section (2.3) for determining the transition point in

a �nite volume xc(L), from the localization of the extrema of the susceptibility �(x; L)
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1st-Order PT 2nd-Order PT
In�nite System

(TL)
Finite-Size
System

In�nite System
(TL)

Finite-Size
System

j�xj
max (V ) �(~x) Ld 
 ~x�
 L
=�

cmaxx (V ) �(~x) Ld � ~x�� L�=�

�x(V ) F L�d � F L�1=�

�x (V ) F L�d � F L�1=�

Table 2.1: Scaling behavior of characteristic quantities for 1st-order phase transition
and 2nd-order phase transition in both in�nite and �nite systems.

and speci�c heat c(x; L), another quantity has been proposed in [3, 66, 75] which is

the fourth order cumulant of the order parameter, de�ned as:

B4(L) = 1�
hO(L)i4
3 hO2(L)i2 ; (2.25)

and which presents a minimum value at an e¤ective transition point xc(L) whose shift

from the true transition point xc(1) is of order L�d for a �rst order transition. This

cumulant is a �nite size scaling function [3, 66, 67, 68, 76], and is widely used to indicate

the order of the transition in a �nite volume.

Other cumulants are also expected to give information on the transition point in a

�nite volume, and some of them (the second and third order ones) will be examined

later in this work (chapter 4) to determine the e¤ective transition temperature.

The speed of sound (squared) de�ned by: c2s =
dP

d"
; P being the pressure and " the

energy density, is also used to localize the transition point, since for a �rst order phase

transition, occurring at the thermodynamic limit, c2s has a vanishing minimum at the

transition point xc(1): In a �nite volume, c2s decreases in the transition region and has

a minimum at the e¤ective transition point xc(L):



Chapter 3

Finite-Size E¤ects for the

Decon�nement Phase Transition

3.1 Introduction and Motivation

If ever the QGP phase is created in ultra-relativistic heavy ion collisions, the volume

in which its eventual formation may take place would certainly be �nite. Naively,

the formation of a quark-gluon plasma (QGP) in a relativistic heavy ion collision is

generally assumed to take place in a reaction zone having a �nite volume V; about

1 fermi of width and a transverse area of colliding nuclei � A2=3, which gives: V '

A2=3fm3. Since the AGS and SPS data are available, then the use of the Hanbury

Brown Twiss (HBT) interferometry method to estimate the possible sizes of the QGP

gives the results resumed in Table (3.1) (for the RHIC and LHC energies, simple entropy

arguments have been used to predict the QGP sizes [77]) :

Also, the study of the phase transition from HG to QGP with lattice QCD calcula-

tions is necessarily performed in �nite lattices [78]. In lattice QCD and if we consider

54
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Accelerator AGS-SPS RHIC LHC
QGP Volume (fm3) � (34� 268) � (268� 2144) � (905� 5575)

Table 3.1: QGP volumes realised at AGS-SPS and RHIC and expected at LHC.

References [79] [80] [81] [82] [83] [78]
QCD Lattice Volume Vmax (fm3) . 40 � 7 � 8 � 21 � 37 � 14

Table 3.2: Values of some lattice volumes used in lattice-QCD calculations

a 4-dimensional lattice, of lattice spacing a, on which we want to perform Monte-carlo

simulations of QCD, the lattice sizes are T � L� L� L:

E¤ects of the �nite volume are certainly important, since statistical �uctuations

in a �nite volume are considerable and may hinder a sharp transition between the

two phases. Indeed, phase transitions are known to be in�nitely sharp only in the

thermodynamic limit. In general, �nite size e¤ects lead to a mixed phase system, a

rounding of the transition and a broadened transition region.

This chapter is devoted to the study of a �nite system undergoing a decon�nement

phase transition from a hadronic gas phase to a QGP. The �nite size e¤ects are studied

within a simple thermodynamic model used in [4], based on the assumption of the co-

existence of con�ned and decon�ned phases in a �nite volume, and using the equations

of state of the two phases. For the HG phase, we consider the partition function of a

pionic gas. For the QGP phase, we �rst consider the partition function of a free gas of

quarks and gluons derived simply within the bag model.

After this, to account for the �color neutrality�of the observed free particles, and

then of the total QGP, we require that all physical states be color-singlet with respect

to the SU(3) color gauge group. Hence, we include the exact color-singletness con-
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dition in the calculation of the QGP partition function using the Group Theoretical

Projection Technique [6]. This color-singlet partition function can not be exactly cal-

culated and is usually calculated within the saddle point and Gaussian approximations

in the limit V T 3 >> 1 [7, 8]. It turns out that the use of the such obtained partition

function, within the phase coexistence model, has as a consequence the absence of the

decon�nement phase transition. We show that this is due to the fact that the approx-

imations used for the calculation of the color-singlet partition function break down at

V T 3 << 1, and this limit is attained using the phase coexistence model, since the

fractional volume VQGP occupied by the QGP is allowed to take small and even zero

values.

In view to analyze the �nite-size e¤ects in such a model, we �rst proposed in [13, 14]

the calculation of an adequate color-singlet partition function expanded in a power se-

ries of the QGP volume fraction, using some approximations but avoiding the problem

arising at V T 3 << 1: The color-singlet partition function derived in this way allowed

us to accurately calculate physical quantities describing well the decon�nement phase

transition at �nite volumes, and to probe the behavior of the phase transition at criti-

cality, for both temperature-driven and density-driven decon�nement phase transition.

This part of the work will not be exposed in this thesis.

After this, we proceeded in a di¤erent way for calculating the mean values of phys-

ical quantities numerically and without any approximation, by including the exact

de�nition of the color-singlet partition function within the phase coexistence model,

without explicitly calculating this latter [84]. The e¤ects of �niteness of the system size

are then studied by examining the behavior of several physical quantities with varying

volume. This is the main object of the present chapter.
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3.2 The Decon�nement Phase Transition in a Fi-

nite Volume

3.2.1 The Decon�nement Phase Transition within the Phase

Coexistence Model

To study the QCD decon�nement phase transition in a �nite volume, we consider a

simple phase coexistence model used in [4], in which the mixed HG-QGP phase system

has a �nite volume: V = VHG + VQGP . The parameter h representing the fraction

of volume occupied by the HG: VHG = hV; is then de�ned. Thus, the value: h = 1

corresponds to a total HG phase and when h = 0; the system is completely in the QGP

phase. Assuming non-interacting phases (separability of the energy spectra of the two

phases), the total partition function of the system can be approximately written as:

Z (h;T; �; V ) = ZQGP (h;T; �; V )ZHG (h;T; �; V ) ; (3.1)

and the probability to �nd the system in the state h, as de�ned in [4], is then given by:

p (h;T; �; V ) =
Z (h;T; �; V )

1R
0

Z (h;T; �; V ) dh

: (3.2)

The mean value of any thermodynamic quantity A(T; �; V ) of the system can then be

calculated by:

hA(T; �; V )i =

1Z
0

A (h;T; �; V ) p (h;T; �; V ) dh

=

1R
0

A (h;T; �; V )Z (h;T; �; V ) dh

1R
0

Z (h;T; �; V ) dh

; (3.3)
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where A(h;T; �; V ) is the total thermodynamic quantity in the state h, given in the

case of an extensive quantity by:

A(h;T; �; V ) = AHG(T; �; hV ) +AQGP (T; �; (1� h)V ); (3.4)

and in the case of an intensive quantity, by:

A(h;T; �; V ) = hAHG(T; �; hV ) + (1� h)AQGP (T; �; (1� h)V ); (3.5)

with AQGP and AHG the thermodynamic quantities relative to the individual QGP

and HG phases, respectively.

Let us note that the coexistence of two phases in a �nite system undergoing a phase

transition taken alone seems not to be su¢ cient for anticipating the �rst order nature of

the phase transition when approaching the thermodynamic limit. A similar confusion

can arise in the case of a correlation length scaling with the volume and suggesting a

second order nature of the transition in the thermodynamic limit. This subtle situation

has been noticed and clari�ed in several works [46, 70, 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95, 96]. Then, for a �rm determination of the order of a phase transition in a �nite

system, a full and detailed �nite size scaling analysis of di¤erent response functions

simultaneously, yielding various scaling critical exponents, seems to be necessary. This

is not all in our case, since other basic parameters of QCD like the number of �avors

and the current quark masses have a strong in�uence on how the phase transition

occurs. A clear sensitivity of the order of the QCD decon�nement phase transition

to these parameters has been revealed by several lattice QCD calculations (see for

example [46]-[60]).

The partition functions of both HG and QGP phases are calculated, and their �nal

expressions are given in the following. For a pionic gas, the partition function is simply
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given by:

ZHG (T; VHG) = e
�2

30
T 3VHG ; (3.6)

and for a QGP consisting of gluons and two �avors of massless quarks (up, down),

with a chemical potential �, within the bag model [5], the partition function is given

by [97]:

ZQGP (T; �; VQGP ) = exp

��
37�2

90
T 3 + �2T +

1

2�2
�4

T
� B

T

�
VQGP

�
; (3.7)

where B is the bag constant accounting for the real vacuum pressure exerted on the

perturbative vacuum. Let us note that taking the same chemical potential for quarks,

i.e., �u = �d = �; is just an approximation for simpli�cation, and is usually used [98].

The chemical potential depends on several parameter as the bath temperature and the

particle masses, since it determines the energy required to add/remove a particle at

�xed pressure, energy and entropy [99].

The pressure of the QGP can then be derived directly as:

PQGP =
37�2

90
T 4 + �2T 2 +

1

2�2
�4 �B: (3.8)

and that of the hadronic matter is given by:

PHG =
�2

30
T 4: (3.9)

From the Gibbs criteria, the two matter phases are in equilibrium when the tem-

perature, the chemical potential and the pressure of both of them are equal [100]. The

phase transition parameters in our simple model come then from setting:

PHG (�c; Tc) = PQGP (�c; Tc) ; (3.10)

which gives the following expression relating between Tc and �c:

17�2

45
T 4c + �2cT

2
c +

1

2�2
�4c = B: (3.11)
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Figure 3.1: Phase diagram in the �� T plane.

Fig. (3.1) shows the phase diagram in the � � T plane [101], separating between

hadronic and QGP phases, and giving at each point the transition parameters (�c; Tc)

for two �avors (Nf = 2); with the common value of the bag constant B1=4 = 145MeV:

The extreme case � = 0 could be attained in heavy-ion collisions at high energy (i.

e., at high temperature), and the critical temperature evaluated in this case is:

Tc =
B1=4�
17�2

45

� 1
4

; (3.12)

so the QGP is favored at high temperature (T > Tc), and the hadronic phase is favored

at low temperature (T < Tc) :

The second extreme case T = 0 could be reached in the core of some neutron stars
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where the density is high, and the critical chemical potential is then given by:

�c =
B1=4�
1

2�2

� 1
4

; (3.13)

so the QGP is favored at large baryon density, i. e., large chemical potential (� > �c),

and the hadronic phase is favored at low baryon density (� < �c) :

3.2.2 Finite Size Rounding of the Decon�nement Phase Tran-

sition

As it is known, the decon�ned quark matter state can be obtained at extreme condi-

tions of temperature and/or density, i. e., either by raising temperature or chemical

potential. The decon�nement phase transition is then temperature-driven or density-

driven. We�ll study in the following the FSE for a temperature driven decon�nement

phase transition, at a vanishing chemical potential (� = 0), and for a density driven

decon�nement phase transition at a �xed temperature (T = 100MeV ), using the com-

mon value B1=4 = 145MeV for the bag constant. To study these e¤ects of volume

�niteness, we�ll examine the behavior of some thermodynamic quantities with temper-

ature and chemical potential for varying volume. The main quantities of interest are

the order parameter, which is simply in this case the mean value of the hadronic volume

fraction, the entropy density and the energy density. The mean values of these latter,

i. e., hs (T; �; V )i and h" (T; �; V )i are related to the order parameter hh (T; �; V )i by

the expressions:

hs (T; �; V )i = sQGP + (sHG � sQGP ) hh (T; �; V )i

h" (T; �; V )i = eQGP + (eHG � eQGP ) hh (T; �; V )i; (3.14)
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where:

hh (T; �; V )i =
�
� 1
T
(fHG � fQGP )V � 1

�
e�

1
T
(fHG�fQGP )V + 1

� 1
T
(fHG � fQGP )V

�
e�

1
T
(fHG�fQGP )V � 1

� ; (3.15)

with: 8>>>><>>>>:
fQGP = �37�2

90
T 4 � �2T 2 � 1

2�2
�4 +B; fHG = ��2

30
T 4

sQGP =
74�2

45
T 3 + 2�2T ; sHG =

2�2

15
T 3

eQGP = B + 37�2

30
T 4 + �2T 2 � �4

2�2
; eHG =

�2

10
T 4:

(3.16)

Fig. (3.2) shows the three-dimensional plots of the order parameter, energy density

h" (T; V )i and entropy density hs (T; V )i, vs temperature and system volume, at a van-

ishing chemical potential (� = 0), with B1=4 = 145MeV for the bag constant, and Fig.

(3.3) illustrates those of the normalized energy density
h" (T; V )i

T 4
and entropy density

hs (T; V )i
T 3

. The �rst-order character of the transition is showed by the step-like rise

or sharp discontinuity of each of the order parameter, as well as the normalized en-

ergy and entropy densities, when approaching the thermodynamic limit, at a transition

temperature Tc (1) ' 104:35MeV , which re�ects the existence of a latent heat accom-

panying the phase transition. The quantities
h"i
T 4

and
hsi
T 3

are traditionally interpreted

as a measure of the number of e¤ective degrees of freedom [102]; the temperature in-

crease causes then a �melting�of the constituent degrees of freedom �frozen� in the

hadronic state, making the energy and entropy densities attain their plasma values. In

small systems, the phase transition is rounded since the probability of presence of the

QGP phase below Tc, and of the hadron phase above Tc are �nite because of the con-

siderable thermodynamical �uctuations. The transition region around the transition

temperature Tc (1) is then broadened, acquiring a bigger width �T (V ), smaller is the

volume.

Similarly, Fig. (3.4) shows the variations of the order parameter, the energy and
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entropy densities with chemical potential and system volume, at the temperature T =

100MeV: The �rst-order character of the transition can, also in this case, clearly be seen

from the sharp discontinuity of the three quantities at a transition chemical potential

�c (1) ' 81:8MeV; at the large volume limit. In small systems, the transition is

perfectly smooth over a broadened region of chemical potential of width ��(V ). Let us

note that in the QGP phase at � > �c (V ), the energy and entropy densities grow with

chemical potential like in Fig. (3.2) with temperature, but in this case it is no more

possible to normalize in view to obtain the number of degrees of freedom because of

the existence of both chemical potential and temperature in the expressions.

3.3 The QCD Decon�nement Phase Transition in a

Finite Volume Including the Color-Singletness

Requirement

3.3.1 The Color-Singlet Partition Function of the QGP

For the QGP phase, we consider a free gas of quarks and gluons with the exact color-

singletness requirement. To implement the color-singletness constraint into the quan-

tum statistical description of the system, we use the group theoretical projection tech-

nique formulated by Turko and Redlich [6], as done in several works [7, 8, 103, 104,

105, 106, 107, 108, 109, 110, 111, 112, 113]. The projected partition function for a

system of quarks, antiquarks and gluons in a volume V; at temperature T and quark

chemical potential � is given by:

Zj(T; �; V ) = Tr( bPje�� bH); (3.17)
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Figure 3.2: Mean values of (top) the order parameter, (middle) the energy density
and (bottom) the entropy density as functions of temperature T and system size V , at
� = 0:
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Figure 3.3: Mean values of (top) the energy density normalized by T 4 and (bottom)
the entropy density normalized by T 3as functions of temperature T and system size V ,
at � = 0:
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Figure 3.4: Mean values of (top) the order parameter, (middle) the energy density and
(bottom) the entropy density as functions of chemical potential � and system size V ,
at the temperature T = 100MeV:
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where: � = 1
T
with the units chosen as: kB = ~ = c = 1; bH is the Hamiltonian of the

system and bPj is a projection operator for a symmetry group G (compact Lie group)
having a unitary representation bU(g) in a Hilbert space H,

bPj = dj

Z
G

d�(g)��j(g)bU(g); (3.18)

d�(g) being the normalized Haar measure in G, dj the dimension and ��j(g) the char-

acter of the irreducible representation �j�of G.

For SU(3) color-singlet con�guration, dj = 1, �j = 1; and the explicit form of the

Haar measure is:Z
SU(Nc)

d�(g) =
1

Nc!

 
Nc�1Y
c=1

Z +�

��

d�c
2�

!"
NcY
i<k

�
2 sin

�i � �k
2

�2#
; (3.19)

�l being a class parameter obeying the periodicity condition
NcP
l=1

�l = 0 (mod 2�) and

insuring that the group element is SU(Nc): Hence, eq. (3.17) becomes:

Zc(T; �; V ) =

Z
SU(3)

d�(g)T r(bU(g)e�� bH): (3.20)

The Hilbert space H of the composite system has the structure of a tensor product

of their individual Fock spaces as:

H = Hq 
Hq 
Hg; (3.21)

where the subscripts q, q and g denote respectively the quark, antiquark and gluon.

The trace involved in eq. (3.20) decomposes then into the product of 3 traces as:

Zc(T; �; V ) =

Z
SU(3)

d�(g)T r(cUq(g)e�� bHq)T r(cUq(g)e��cHq)T r(cUg(g)e��cHg): (3.22)



3. Finite-Size E¤ects for the Decon�nement Phase Transition 68

Now, the trace operations may be performed, and one can then write Zc as:

Zc(T; �; V ) =

Z
SU(3)

d�(g) eZquark eZglue; (3.23)

with the quark and gluon contributions individually given by:

eZquark =
Y

q=r;g;b

Y
�

�
1 + e��(�

�
q��q)+i�q

� h
1 + e��(�

�
q��q)�i�q

i
=

Y
q=r;g;b

Y
�

�
1 + e��(�

���)+i�q
� �
1 + e��(�

�+�)�i�q
�
; (3.24)

where �� are single-particle energies, the explicit expressions of the angles �q (q = r; b; g)

in SU(3) are:

�r =
'

2
+
 

3
; �g = �

'

2
+
 

3
; �b = �

2 

3
; (3.25)

and in the second factor arising from the antiquarks, we have replaced: ��q = ��q = ��

and �q = ��q = ��; and:

eZglue = Y
g=1;2;3;4

Y
�

�
1� e����+i�g

��1 �
1� e�����i�g

��1
; (3.26)

with the angles �g (g = 1; :::4) being:

�1 = �r � �g; �2 = �g � �b; �3 = �b � �r; �4 = 0: (3.27)

In the continuum approximation for the single-particle energy levels, one can replaceP
�

by
R
�(�)d� where: �(�) = dQ=g

V
2�2
�2 is the single-particle density of states, dQ=G is

the spin-isospin degeneracy factor for quarks or gluons, with dQ = 2Nf and dG = 2.

After integration, the quark contribution is given by:

eZQuark (T; V; �;';  ) = exp"�2
12
T 3V dQ

X
q=r;g;b

 
7

30
�
�
�q � i( �

T
)

�

�2
+
1

2

�
�q � i( �

T
)

�

�4!#
;

(3.28)
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and the gluon contribution by:

eZGluon (T; V ;';  ) = exp"�2
12
T 3V dG

4X
g=1

 
� 7
30
+

�
�g � �

�

�2
� 1
2

�
�g � �

�

�4!#
:

(3.29)

Thus, the partition function for a color-singlet quark-gluon plasma can be written

as [7, 8]:

Z(T; V; �) =
8

3�2
e�

BV
T

Z +�

��

Z +�

��
d
�'
2

�
d

�
 

3

�
M(';  ) eZ(T; V; �;';  ); (3.30)

where M(';  ) is explicitly given by:

M(';  ) =

�
sin

�
1

2
( +

'

2
)

�
sin(

'

2
) sin

�
1

2
( � '

2
)

��2
; (3.31)

B being the bag constant.

Let us write eZ on the form:
eZ (T; V; �;';  ) = eV T

3g('; ; �
T
); (3.32)

with:

g(';  ;
�

T
) =

�2

12
(
21

30
dQ +

16

15
dG) +

�2

12

dQ
2

X
q=r;b;g

8<:�1 +
 �

�q � i( �
T
)
�2

�2
� 1
!29=;

��
2

12

dG
2

4X
g=1

 
(�g � �)2

�2
� 1
!2

; (3.33)

then eq. (3.30) becomes:

Z(T; V; �) =
8

3�2
e�

BV
T

Z +�

��

Z +�

��
d
�'
2

�
d

�
 

3

�
M(';  )eV T

3g('; ; �
T
): (3.34)

3.3.2 Calculation of the Color-Singlet Partition Function of

the QGP, within the Saddle Point Approximation

The analytic calculation of the color-singlet partition function of the QGP in eq. (3.34)

being not possible to be e¤ectuated exactly, an approximated calculus is usually carried
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out using the saddle point approximation as in [8, 9, 10]. Let�s derive in the following

such an approximate color-singlet partition function at zero chemical potential (� = 0):

In this case, we have:

g�=0(';  ) =
�2

12
(
21

30
dQ +

16

15
dG) +

�2

12

dQ
2

X
q=r;b;g

 �
�2q
�2
� 1
�2
� 1
!

��
2

12

dG
2

4X
g=1

 
(�g � �)2

�2
� 1
!2

; (3.35)

and then the color-singlet partition function for a quark-gluon plasma contained in a

volume VQGP becomes:

Z(T; VQGP ) =
8

3�2
e�

BVQGP
T

Z +�

��

Z +�

��
d
�'
2

�
d

�
 

3

�
M(';  ) exp

�
VQGPT

3g�=0(';  )
�
:

(3.36)

The integral in (3.36) can be evaluated by a saddle point approximation around

the maximum of the integrand at (';  ) = (0; 0). For that purpose, we expand the

weight functionM to leading order in the angular variables, and expand the argument

of the exponential to second order in ' and  (gaussian approximation). The measure

function has then the following form:

M(';  ) �M (0;0)(';  ) =
1

64
'2
�
 2 � '2

4

�2
; (3.37)

and g�=0(';  ) becomes for two �avors (Nf = 2) (up and down quarks ):

g�=0(';  ) � g
(0;0)
�=0 (';  ) = S0 �

2

3

�
'2 +

4

3
 2
�
; (3.38)

with:

S0 =
�2

12
(
7Nf

5
+
32

15
): (3.39)

Therefore, we have integrals like:Z a

0

e��x
2

dx �
Z 1

0

e��x
2

dx =
p
�=�; (3.40)
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with �� 1:

From all these considerations, the partition function can then be rewritten as:

Z(T; VQGP ) =
8

3�2
e�

BVQGP
T

Z +1

�1

Z +1

�1
d
�'
2

�
d

�
 

3

�
M (0;0)(';  ) exp

�
g
(0;0)
�=0 (';  )VQGPT

3
�
;

(3.41)

which gives after calculation:

Z(T; VQGP ) =
A0e

(S0T 3�B
T )VQGP

(VQGPT 3)
4 ; (3.42)

where:

A0 =
27
p
3

8192�
: (3.43)

We mention here a similar result obtained in [9] given for a zero baryon density as:

ZQGP (T; VQGP ) = AC�4u�3=2
exp

�
1
3
uVQGPT

3
�

(VQGPT 3)
13=2

exp(�BVQGP
T

); (3.44)

with: 8>>>>><>>>>>:
A =

3
p
2�

4

C = 2 +
Nf

3

u =

�
8

15
+
7Nf

20

�
�2:

(3.45)

3.3.3 Problem with the Use of the Color-Singlet Partition

Function Derived within the Saddle Point Approxima-

tion, in the Phase Coexistence Model

Let us incorporate such an approximate partition function, eqs. (3.42-43), for the QGP

in the phase coexistence model. The order parameter can then be expressed as:

hh(T; V )i = 1�

0@ 1Z
0

q�3eKqdq =

1Z
0

q�4eKqdq

1A ; (3.46)
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where q is the QGP volume fraction de�ned as: q = 1�h, and: K =
�
S0 � �2

30

�
T 3V �

BV
T
:

By expanding the exponential eKq, and taking the limit q0 for q instead of 0 in the

integral above ( i.e., h �! h0), we obtain the following expression for the mean value

of the hadronic volume fraction:

hh(T; V )i = 1� q0

 1X
p=0

Kp

p! (p� 2)
�
qp0 � q20

�
=

1X
p=0

Kp

p! (p� 3)
�
qp0 � q30

�!
: (3.47)

We can easily show that for q0 �! 0 (i. e., h0 �! 1), the mean value of the

hadronic volume fraction is equal to 1 for all values of temperature and volume [12].

Hence, the use of the obtained approximate total partition function Z (h) in the

de�nition (3.3), has as a consequence the absence of the decon�nement phase transition.

This is due to the fact that the saddle point approximation, used for the calculation

of the color-singlet partition function, breaks down at VQGPT 3 << 1. We propose

in the following, �rst, a new method for calculating an exact color-singlet partition

function with the unique disadvantage of necessitating very long times for numerical

calculations.

3.3.4 Remedy to the problem

To remedy to the problem exposed above in a �rst step, we have tried to do the

expansion of the exponential eVQGPT
3g('; ; �

T
) as:

eVQGPT
3g('; ; �

T
) =

1X
j=0

(VQGPT
3)j

j!

�
g(';  ;

�

T
)
�j
; (3.48)

then (3.34) becomes:

ZQGP (T; �; VQGP ) =
8

3�2

Z +�

��

Z +�

��
d('=2)d( =3)M(';  )

1X
j=0

(VQGPT
3)j

j!

�
g(';  ;

�

T
)
�j
;

(3.49)



3. Finite-Size E¤ects for the Decon�nement Phase Transition 73

and by putting:

�j =
4

9�2

Z +�

��

Z +�

��
d'd M(';  )

�
g(';  ; �

T
)
�j

j!
; (3.50)

the partition function becomes:

ZQGP (T; �; VQGP ) =

1X
j=0

�j(VQGPT
3)j =

1X
j=0

�jz
j; (3.51)

where: z = VQGPT
3: It can be seen that the series (3.51) giving the color-singlet

partition function is convergent and causes no more problems at z ! 0 since for

VQGPT
3 = 0; Z (VQGPT

3 = 0) = �0: It can then be incorporated in the phase coexis-

tence model to probe the critical behavior of thermodynamic quantities characterizing

the system which undergoes a decon�nement phase transition. Because of numerical

di¢ culties, it was not possible for us to illustrate this exact calculus at the present

time. Indeed, the integral coe¢ cients �j have been calculated to high ranks (j = 175)

using a numerical integration program with fortran, and the series giving ZQGP has

been calculated for values of T and VQGP such that VQGPT 3 � 5; for example, for

VQGPT
3 = 2 the value of ZQGP is stable at j � 110. But it turned out that for large

volumes and/or temperatures, the rank j at which the convergence of ZQGP is attained

is very high, and since the values of the coe¢ cients �j are largely increasing and due

to the insu¢ cient precision o¤ered by fortran, the convergence of ZQGP couldn�t be

attained.

After this, we have tried to use Mathematica 4.0 for the numerical calculation of

�j, since this software can insure much more precision but it turned out that the time

of calculus at ranks j & 13 begins to become too long, rendering the use of such a

method practically a waste of time.

In order to get a �rst understanding of the decon�nement phase transition in a
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�nite volume, we have proceeded, in a second step of the work, by e¤ectuating some

approximations to derive a suitable color-singlet partition function, which allowed us

to accurately calculate physical quantities describing well the decon�nement phase

transition at �nite volumes. This part of the work can be found in [13, 14].

A more rigorous calculus then followed, where the color-singlet partition function

of the QGP has not been calculated explicitly, but has just been used with its exact

expression (3.34) in order to calculate mean values of physical quantities of the system

using the de�nition (3.3) [84]. Details are given in the following.

3.4 Finite-Size E¤ects with the Exact Color-Singlet

Partition Function within the Lmn Method

In the following, we�ll derive the mean values of the order parameter, and then of other

thermodynamic quantities, directly from the de�nition (3.3) of the mean value of any

physical quantity within the phase coexistence model, using the exact de�nition (3.34)

of the QGP color-singlet partition function. The exact total partition function given

by:

Z (q) =
4

9�2
e
�2

30
V T 3

Z +�

��

Z +�

��
d'd M(';  )e

qV T 3
�
g('; ; �

T
)��2

30
� B
T4

�
; (3.52)

will not be calculated itself exactly, but the integration on q in the calculation of

the mean values using this exact partition function will �rst be e¤ectuated, then the

integrations on ' and  will be done at last [84].

Let�s �rst illustrate the variations of the probability density p(h) =
Z(h)

1R
0

Z(h)dh

with

the hadron fraction h, for various system volumes, at the temperature T = 105MeV
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Figure 3.5: Probability density as a function of the hadron fraction for di¤erent system
volumes, at the temperature T = 105MeV .

(Fig. (3.5)). The probability density exhibits a "two hump" structure at the extremal

values of the hadron fraction h, more accentuated for big volumes. This structure

indicates the dominance of one phase in the mixed phase system. It has been shown

in [3] that such a structure is expected in the case of �rst order phase transitions.

The probability distribution at a �xed value of h is also plotted versus temperature

at di¤erent volumes in Fig. (3.6), which shows that the probability at �xed h and V

is peaked at a certain temperature tending to the true transition temperature Tc (1)

with increasing volume, at which it is maximal. This temperature is shifted to bigger

values for small volumes. It can also be noted that the probability distribution looks to

be symmetric for h = 0:5, while for h = 0:1 and h = 0:9 it is not symmetric. The tail of

the distribution is heavier on the right for h = 0:1 and heavier on the left for h = 0:9.

This is easily understandable, since at h = 0:1 it is the QGP which is dominant and
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Figure 3.6: Variations of the probability of �nding the system (of volume V ) in a state
(bottom) h =0:1; (middle) h =0:5; and (top) h =0:9 with temperature T , for di¤erent
system volumes.
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this occurs above the transition temperature, and at h = 0:9 it is the hadronic gas

phase which is dominant and this occurs below the transition temperature.

3.4.1 Order Parameter, Energy and Entropy Densities

Like in the case without including the color-singletness requirement, let�s calculate

now the order parameter at zero chemical potential (� = 0), using the total partition

function (3.52). Its expression is in this case:

< h(T; V ) >�= 1�

R +�
��
R +�
�� d'd M(';  )

1R
0

qeq R('; ;T;V )dq

R +�
��
R +�
�� d'd M(';  )

1R
0

eq R('; ;T;V )dq

; (3.53)

with:

R (';  ;T; V ) =

�
g�=0(';  )�

�2

30
� B

T 4

�
V T 3: (3.54)

After e¤ectuation of the integrations on q; the order parameter can be written on

the form:

< h(T; V ) >�=
L01 (0) + L02 (0)� L02 (1)

L01 (0)� L01 (1)
; (3.55)

where the general form of the integrals on ' and  appearing in this expression is:

Lmn (q) =

Z +�

��

Z +�

��
d'd M(';  )(g�=0(';  ))

m eq R('; ;T;V )

(R (';  ;T; V ))n
: (3.56)

The integrals Lmn represent in themselves state functions, and they have been

chosen in a judicious way so that all thermodynamic quantities can, in one way or

the other, be written as function of these Lmn�s. They can be calculated numerically

at each temperature T and volume V , and the mean values of physical quantities can

therefore be illustrated on the hole range of temperature for varying volume. Fig. (3.7)

illustrates the variations of some Lmn�s with temperature at �xed volume.



3. Finite-Size E¤ects for the Decon�nement Phase Transition 78

94 96 98 100 102 104 106 108 110 112 114 116 118 120 122
­2,00E+065

0,00E+000

2,00E+065

4,00E+065

6,00E+065

8,00E+065

1,00E+066

1,20E+066

1,40E+066

94 96 98 100 102 104 106 108 110 112 114 116 118 120 122
­5,00E+063

0,00E+000

5,00E+063

1,00E+064

1,50E+064

2,00E+064

2,50E+064

3,00E+064

3,50E+064

L0
1 

( q
=1

;V
=5

00
fm

3  )

T ( MeV )

L 12
 ( 

q=
1;

V
=5

00
fm

3  )

T (MeV)

Figure 3.7: Variations of L01 (q = 1) and L12 (q = 1) with temperature at the volume
V = 500fm3:

The mean value of the energy density is also calculated in the same way, and is

found to be related to < h(T; V ) >� by the expression:

< "(T; V ) >�= B� (B � eHG) < h(T; V ) >
� �3T 4 L12 (0) + L11 (1)� L12 (1)

L01 (0)� L01 (1)
: (3.57)

Let us note that we have used �Mathematica 4.0� to evaluate the integrals Lmn

numerically, and then the mean values of the order parameter and energy density.

The evaluation of the order parameter at a given temperature and volume takes an

approximate time of about 13minutes, and that of< "(T; V ) >� about 25minutes, on a

(PentiumIII, 500MHz). For the illustration of both< h(T; V ) >� and< "(T; V ) >�, the

calculations are done on an interval of temperature (95� 120MeV ) with a temperature

step (dT = 0:1MeV ) and are repeated for various volumes.

The entropy can be obtained from the thermodynamic relation: s =
1

T
(" � f),

knowing the free energy F = fV; which is de�ned as: F = �T lnZ: The mean value
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of this latter involves then an integral
1R
0

dhZ(h) lnZ(h) as given by the expression:

hF (T; V )i� = �T
�
ln(

4

9�2
) +

�2

30
V T 3

+

1R
0

dq
�R +�

��
R +�
�� d'd M(';  )e

q R('; ;T;V )
�
ln
�R +�

��
R +�
�� d'd M(';  )e

q R('; ;T;V )
�

1R
0

dq
R +�
��
R +�
�� d'd M(';  )e

q R('; ;T;V )

37775 ;(3.58)
and can not be evaluated as < h(T; V ) >� and < "(T; V ) >� simply with the Lmn�s.

Hence, it is evaluated with a numerical integration of the numerator in the last term

of eq. (3.58).

The entropy density can also be obtained from the de�nitions of the speci�c heat at

constant V (see section 1.2): CV =
�
@U

@T

�
V

= T

�
@S

@T

�
V

: We have then the speci�c

heat density related to both energy and entropy densities as:

c =

�
@h"i�
@T

�
V

= T

�
@hsi�
@T

�
V

: (3.59)

Hence, the entropy density can be obtained from:

hs(T; V )i� =
Z
1

T

�
@h"i�
@T

�
dT =

Z
c(T; V )

T
dT; (3.60)

by the mean of a numerical integration of the speci�c heat density, whose expression

after di¤erentiation of the energy density in (3.57) with respect to temperature, is given
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by:

c(T; V ) =
2�2

5
T 3 hh(T; V )i� +

�
�2

10
T 4 �B

�
�(T; V ) + 12T 3

(L11 (1)� L12 (1) + L12 (0))

L01 (1)� L01 (0)

+3T 6V

�
1

L01 (1)� L01 (0)
(3(L21 (1)� 2L22 (1) + 2L23 (1)� 2L23 (0))

�( B
T 4
� �2

10
)(L11 (1)� 2L12 (1) + 2L13 (1)� 2L13 (0))

�
�L11 (1)� L12 (1) + L12 (0)

(L01 (1)� L01 (0))
2 (3(L11 (1)� L12 (1) + L12 (0))

+(
B

T 4
� �2

10
)(L01 (1)� L02 (1) + L02 (0))

��
; (3.61)

with:

� (T; V ) = T 2V

�
1

L01 (0)� L01 (1)
(�3(L12 (0) + 2L13 (0) + L12 (1)� 2L13 (1))

�( B
T 4
� �2

10
)(L02 (0) + 2L03 (0) + L02 (1)� 2L03 (1))

�
+
L01 (0) + L02 (0)� L02 (1)

(L01 (0)� L01 (1))
2 (3(L11 (1)� L12 (1) + L12 (0))

+(
B

T 4
� �2

10
)(L01 (1)� L02 (1) + L02 (0))

��
: (3.62)

Our results for the variations of each of the order parameter, the energy density

normalized by T 4 and the entropy density normalized by T 3; with temperature at

di¤erent system sizes are presented in the plots on Fig. (3.8). A pronounced size

dependence of these quantities can be noted over almost the entire temperature range.

The main and striking di¤erence, comparatively with Fig. (3.2), is the shift of the

transition temperature to higher values for small sizes. This is due to the e¤ect of

the color-singletness requirement which was found to lead to a gradual freezing of the

e¤ective number of degrees of freedom in the QGP [7]. In a �nite volume, the pressure

at a given temperature has a lower value and the equilibrium between the two phases

according to the Gibbs criterion is then reached at temperatures greater than Tc (1) :



3. Finite-Size E¤ects for the Decon�nement Phase Transition 81

This freezing in the QGP degrees of freedom can more clearly be seen on Fig. (3.9)

where we compare the normalized energy density
h" (T; V )i

T 4
; representing the e¤ective

number of degrees of freedom as yet mentioned, with (dashed line) and without (solid

line) color-singletness requirement at the volume V = 150fm3 for example. It can

also be noted that the smearing due to the �uctuations including the color-singletness

is less pronounced than in the case without color-singletness, maybe because of the

reduction of the QGP degrees of freedom.

Let�s note that as it was the case in Fig. (3.3), the variations of the normalized

energy and entropy densities, including color singletness are not exactly the same,. This

can better be seen in Fig. (3.10) where the normalized energy density vs temperature

at di¤erent volumes is illustrated more clearly. The di¤erence from the normalized

entropy density, which can be approximated by a step function, can easily be observed.

3.4.2 Susceptibility and Speci�c Heat Density

It is also worth to illustrate two additional thermal response functions relevant to

this case, which are the speci�c heat density c (T; V ) =
@h"(T; V )i�

@T
and susceptibility

� (T; V ) =
@hh (T; V )i�

@T
; obtained by di¤erentiating the energy density in (3.57) and

the order parameter in (3.55-56) with respect to temperature. Their expressions have

been obtained in (3.61) and (3.62) respectively.

In the following, the variations of the thermal susceptibility and speci�c heat density

with temperature are illustrated on Figs. (3.11) and (3.12) respectively, for various

sizes. It can clearly be seen that the delta function singularity of both quantities

occurring in the thermodynamical limit is smeared, in a �nite volume, into a �nite

peak of width �T (V ) : This result is expected, since the derivative of the step function
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Figure 3.9: Normalized energy density
h" (T; V )i

T 4
; versus temperature, with (dashed
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Figure 3.11: Plot of the susceptibility � (T; V ) versus temperature for di¤erent system
volumes.

is a delta function, as well known. The rounding of each of hh (T; V )i� and h"(T; V )i�

manifests then at the level of their �rst derivatives as a smearing of the delta function.

For decreasing volume, the width of the peaks gets larger while their heights, noted

j �T jmax (V ) and cmaxT (V ) ; decrease, occurring at e¤ective transition temperatures

Tc(V ) shifted away from the true transition temperature Tc (1) :

3.4.3 Pressure and Sound Velocity

In what follows, let�s examine the behavior of the pressure for the system undergoing

a decon�nement phase transition. Its mean value can be determined, and is simply in

this case related to both energy density and order parameter by:

hP (T; V )i� = 1

3
(h"(T; V )i� � 4 B (1� hh(T; V )i�)) : (3.63)
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Figure 3.12: Plot of the speci�c heat density c (T; V ) versus temperature for di¤erent
system volumes.
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An other quantity, determined by the pressure gradient dP for a given gradient in

the energy density d", is the sound velocity squared, de�ned as [114]:

c2s =
�vs
c

�2
=
dP

d"
; (3.64)

which is the most relevant measure of the system�s tendency to expand [115]. After a

straightforward calculation, c2s can be related to both thermal susceptibility � (T; V )

and speci�c heat density c (T; V ) ; by the relation:

c2s =
1

3

�
1 + 4B

�

c

�
: (3.65)

Fig. (3.13) illustrates the variations of the pressure normalized by T 4 with tem-

perature for di¤erent volumes, and it can clearly be seen that below the transition

temperature, the pressure is constant with the Stefan-Boltzmann value for a hadronic

gas, then it abruptly increases around Tc(V ) and continues increasing, rather slowly

this time.

The velocity of sound squared is plotted on Fig. (3.14) as a function of temperature,

for di¤erent sizes, and it is obvious from the curves that for temperatures well below

and/or above a transition temperature, it approaches the value for an ultra-relativistic

ideal gas c2s =
1

3
: In a �nite volume, cs decreases in the transition region, and has

a minimum at the e¤ective transition temperature Tc(V ). For a �rst order phase

transition, occurring at the thermodynamic limit, this minimum is zero at Tc(1):

It is more common and useful to plot thermodynamic quantities as a function of

the energy density h"i�, especially in hydrodynamics, as in [115, 116, 117]. The graph

of the pressure hP i� vs h"i� in Fig. (3.15-top) shows that for large volumes, hP i�

increases with increasing energy density below a value "HG and above "QGP . On a

range of energy density "HG � " � "QGP , the pressure remains constant meaning that
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Figure 3.13: Plot of the normalized pressure
hP i�

T 4
versus temperature for di¤erent

system volumes.
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Figure 3.14: Velocity of sound squared c2s as a function of temperature at di¤erent
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the system does not perform mechanical work. This region is referred to as the soft

region of the equation of state [115, 116, 117, 118]. For small systems, it can clearly

be seen that the pressure increases continuously with increasing energy density. The

notions of soft region and softest point can better be seen by illustrating the ratio
hP i�

h"i� as a function of h"i
�. The minimum of this latter occurs at the point h"i� = "QGP

which is called the softest point of the equation of state. Fig. (3.15-middle) shows that

for large volumes, the ratio
hP i�

h"i� =
1

3
= c2s in the hadronic phase, then it starts to

decrease at "HG, since hP i� is constant in the mixed phase while h"i� increases. At the

softest point "QGP ;
hP i�

h"i� takes its minimum value then resumes increasing in the QGP

phase (h"i� � "QGP ) to reach again the asymptotic value
1

3
for h"i� ! 1: For small

volumes, the minimum of
hP i�

h"i� increases and the softening of the equation of state is

less pronounced.

Fig. (3.15-bottom) illustrates the variations of the speed of sound squared with the

energy density for di¤erent system volumes, and shows that for big volumes, the speed

of sound takes the value for an ultra-relativistic ideal gas c2s =
1

3
at h"i� � "HG and

h"i� � "QGP . On a range of energy density between "HG and "QGP ; i.e., in the mixed

phase, the speed of sound is nearly vanishing, re�ecting the �rst order character of the

transition. It has been interpreted in [115, 116, 117, 118] that mixed phase matter does

not expand at all on account of its internal pressure, even if there are strong gradients

in the energy density, and this has, in turn, the consequence that it does not perform

mechanical work and therefore cools less rapidly. Thus, the expansion of the system

is delayed and its lifetime is considerably prolonged. For small systems, the sound

velocity is damped in a larger domain of energy density and does not vanish, since

pressure gradients are �nite, but they are still smaller than for an ideal gas equation
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of state, and therefore the tendency of the system to expand is also reduced.

3.4.4 Second Derivative of the Order Parameter

The second derivative of the order parameter @2

@T 2
hh (T; V )i� is also worth to be studied.

Its expression is given by:

@2

@T 2
hh (T; V )i� =

2�

T
+

(T 2V )
2

L01(0)� L01(1)
[18L23(0) + 54L24(0)� 9L22(1) + 36L23(1)

�54L24(1) +
�
B
T 4
� �2

10

�
(12L13(0) + 36L14(0)� 6L12(1) + 24L13(1)� 36L14(1))

+
�
B
T 4
� �2

10

�2
(2L03(0) + 6L04(0)� L02(1) + 4L03(1)� 6L04(1))

�
+
4BV

T 3
L02(0) + 2L03(0) + L02(1)� 2L03(1)

L01(0)� L01(1)

+
(T 2V )

2

(L01(0)�L01(1))2

h�
�3L12(0)� 3L11(1) + 3L12(1) +

�
B
T 4
� �2

10

�
(�L02(0)� L01(1)

+L02(1)))
�
3L12(0) + 6L13(0) + 3L12(1)� 6L13(1) +

�
B
T 4
� �2

10

�
(L02(0) + 2L03(0)

+L02(1)� 2L03(1))) + (L01(0) + L02(0)� L02(1)) (9L21(1)� 18L22(1) + 18L23(1)

�18L23(0) +
�
B
T 4
� �2

10

�
(6L11(1)� 12L12(1) + 12L13(1)� 12L13(0))

+
�
B
T 4
� �2

10

�2
(L01(1)� 2L02(1) + 2L03(1)� 2L03(0))� 4B

T 7V
(L01(1)� L02(1) + L02(0))

�
+
�
3L11(1)� 3L12(1) + 3L12(0) +

�
B
T 4
� �2

10

�
(L01(1)� L02(1) + L02(0))

�
�
�
6L13(1)� 3L12(1)� 3L12(0)� 6L13(0) +

�
B
T 4
� �2

10

�
(2L03(1)� L02(1)� L02(0)

�2L03(0)))] +
2 (T 2V )

2

(L01(0)� L01(1))
3 (L01(0) + L02(0)� L02(1))

�
�
3L12(0) + 3L11(1)� 3L12(1) +

�
B
T 4
� �2

10

�
(L02(0) + L01(1)� L02(1))

�2
; (3.66)

and its variations with temperature for various system sizes are illustrated in Fig.

(3.16). It can be seen that this quantity takes its extrema at two temperatures T1(V )
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velocity vs energy density, for di¤erent volumes of the system.
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Figure 3.16: Plot of the second derivative of the order parameter, hh (T; V )i00 =
@2hh (T; V )i=@T 2; versus temperature for di¤erent system volumes.

and T2(V ), so that the gap T2(V ) � T1(V ), which represents the broadening of the

transition region �T (V ), decreases with increasing volume.

Thus, from the illustration of all these response functions for the studied decon�ne-

ment phase transition, the three e¤ects of �niteness of the volume evoked in section

(2.3) have been recovered. A �nite size scaling analysis will then be carried out in

the next chapter to determine the corresponding scaling behavior and determine the

relevant scaling critical exponents.



Chapter 4

Numerical Determination of the

Scaling Critical Exponents for the

Decon�nement Phase Transition

4.1 Introduction

In the precedent chapter, we have seen that �nite-size e¤ects have led to a rounding

of the decon�nement phase transition over a range of temperature �T (V ); around a

transition temperature Tc(V ). This e¤ective transition temperature is shifted relative

to the true one Tc(1) in such a way that the shift Tc(V ) � Tc(1) increases for small

volumes. This smearing makes the order of the transition di¢ cult to infer. It turns

out that the analysis of some known characteristic signatures as functions of varying

volume allows one to go up to the order of the transition.

In �nite systems, the shift of the e¤ective transition temperature Tc(V ) relative to

the true one Tc(1), the width �T (V ) of the critical region over which the transition

93
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Figure 4.1: Illustration of the �nite size behavior of the susceptibility � (T; V ), the
speci�c heat density c (T; V ) and the second derivative of the order parameter @�=@T .

is smeared out and the maxima of the rounded peaks of the thermal susceptibility

� (T; V ) =
@hh (T; V )i�

@T
and speci�c heat density c (T; V ) =

@h"(T; V )i�
@T

, which are

illustrated on Fig. (4.1), are expected to behave like powers of the volume V , respec-

tively, as: 8>>>>>>>>><>>>>>>>>>:

�T (V ) = Tc(V )� Tc(1) � V ��T

�T (V ) � V ��T

j�T j
max (V ) � V 
T

cmaxT (V ) � V �T ;

(4.1)

where the scaling critical exponents �T ; �T ; 
T and �T characterize their dependence

on the volume in a d-space, and are expected to be all equal to unity [2, 3, 66, 67], i.e.,

�T = �T = 
T = �T = 1:

These results have been recovered in our work [119] where an analytic determination
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of the scaling critical exponents relevant to a thermally driven decon�nement phase

transition has been carried out.

In the following, we shall determine numerically these scaling critical exponents. For

this purpose, a FSS analysis of characteristic quantities for a system which undergoes

a thermal decon�nement phase transition, from a pionic gas to a QGP consisting of

two massless quarks at zero chemical potential, may be used.

4.2 Numerical Determination of the Critical Ex-

ponents for the Thermal Decon�nement Phase

Transition with the Exact Color-Singlet Parti-

tion Function

In the following, we use a FSS analysis to recover the scaling exponents �T , �T , �T and


T for the thermally driven decon�nement phase transition. For this purpose, we pro-

ceed by studying the thermal susceptibility and speci�c heat density. We examine the

behavior of their maxima, their rounding as well as the shift of the e¤ective transition

temperature with varying volume. Let�s note that the determination of the location of

the maxima of the �nite size peaks as well as their heights is done in a numerical way,

and this yields a systematic error, which is estimated and given for the determined

scaling exponents.
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Figure 4.2: Linear �t of the results for the maxima of the susceptibility vs volume.

4.2.1 The susceptibility critical exponent

Fig. (4.2) illustrates the plot of the maxima of the thermal susceptibility peaks, j

�T jmax (V ) versus volume. The linearity of the data with V can clearly be noted. A

numerical parametrization with the power-law form: j �T jmax (V ) � V 
T ; gives the

value of the susceptibility critical exponent: 
T = 1:012� 0:002:

4.2.2 The speci�c heat critical exponent

As in the precedent case, the data of the maxima of the speci�c heat cmaxT (V ) are

plotted in Fig. (4.3), and are �tted to the power-law form: cmaxT (V ) � V �T . The

obtained speci�c heat critical exponent is: �T = 1:0075� 0:0007:
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Figure 4.3: Variations of the maxima of the speci�c heat density with the volume.

4.2.3 The smearing critical exponent

The width of the transition region can be de�ned by the gap: �T (V ) = T2(V ) �

T1(V ) with T1(V ) and T2(V ) the temperatures at which the second derivative of the

order parameter reaches its extrema, or in other terms the temperatures at which the

third derivative of the order parameter vanishes, i. e., @3

@T 3
hh (T; V )i�

���
T1(V );T2(V )

= 0:

To localize T1(V ) and T2(V ); we�ll then search for the locations of the extrema of

@2

@T 2
hh (T; V )i�, whose expression was given in (3.66).

The results for the widths �T (V ), plotted in Fig. (4.4) vs the inverse of the volume,

were �tted to the power law form: �T (V ) � V ��T , and the obtained smearing critical

exponent is: �T = 1:03� 0:02:
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Figure 4.4: Data of the width of the temperature region over which the transition is
smeared, �tted to a power-law of the inverse volume.

4.2.4 The shift critical exponent

For the study of the shift of the transition temperature �T (V ) = Tc (V ) � Tc (1), we

need to locate the e¤ective transition temperature in a �nite volume Tc (V ). A way to

de�ne Tc (V ) is to locate the maxima of the rounded peaks of the susceptibility and

the speci�c heat, shifted away from the true transition temperature Tc (1).

Results of the shift of the transition temperature obtained in this way are plotted in

Fig. (4.5) versus inverse volume. The shift critical exponent obtained from a �t to the

form: �T (V ) � V ��, is : � = 0:876� 0:041: Such a value 6= 1 suggests the contribution

of non-leading terms in the expression of the volume variation of the shift. Di¤erent

forms of the �t of �T (V ) including additional terms with higher powers of V �1, such

as A1V ��+A2V
�2; and A1V ��+A2V

�2+A3V
�3; have been tested, and the obtained

results show that e¤ectively, the shift critical exponent � increases from the value 0:876
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Figure 4.5: Plot of the shift of the transition temperature (from the maxima of
� (T; V ) and c (T; V )) vs inversed volume.

and tends to 1; with a better �2. Other forms have been tested, where the value of the

shift exponent has been �xed to 1, and �nite-size correction terms have been included.

In this case also, we note that we obtain a better �2 value with the presence of the

non-leading terms.

The e¤ective transition temperature can also be obtained from the minimum of the

velocity of sound, as explained in subsection (3.5.3). Data of the locations of the minima

of the sound velocity at di¤erent volumes T (c
2 (min)
s )

c (V ) are collected, and their shifts

away from the true transition temperature Tc (1) are plotted vs inversed volume in Fig.

(4.6). A �t of this shift to the form: � (c
2 (min)
s )

T (V ) = T
(c
2 (min)
s )

c (V ) � Tc (1) � V ��0T ,

gives the shift critical exponent : �0T = 0:841 � 0:004: Such a value suggests, in turn,

the contribution of non-leading terms to the expression of the shift as a function of the

volume.

Other ways for de�ning the transition temperature are investigated and the details

are given in the two next subsections.
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4.2.5 Parametrization of the Order Parameter and the Sus-

ceptibility

Within the model used in this work, the order parameter in the limit of in�nite volume

being equal to 1 below the transition temperature and zero above it, it can then be

expressed in a simple way using the Heaviside step-function � as:

hh (T; V �!1)i = 1��(T � Tc (1)) : (4.2)

Such a parametrization has been used �rst in [120], for a similar case of a system of

coexisting hadronic matter and QGP phases, then in other works as [121]. Using one

of the known mathematical representations of the smoothed step function �(T � Tc) ;



4. Numerical Determination of the Scaling Critical Exponents for
the Decon�nement Phase Transition 101

the order parameter may then be expressed as:

hh (T; V )i = 1

2

�
1� tanh

�
T � Tc (V )

�T (V )

��
; (4.3)

where Tc (V ) is the e¤ective transition temperature and �T (V ) the half-width of the

rounded transition region, which leads to the susceptibility expression :

� (T; V ) =
�1

2�T (V ) cosh
2
�
T�Tc(V )
�T (V )

� : (4.4)

The parametrization choice (4.3) is the most accepted physically, and it can be

understood phenomenologically in the context of the Double Gaussian Peaks model

where the obtained expressions of the order parameter and the susceptibility are very

similar to (4.3) and (4.4) [3, 70, 122].

An illustration of such parametrizations of the order parameter at the volume V =

4000fm3, and the susceptibility at the volume V = 900fm3 are presented in Figs.

(4.7-left) and (4.7-right) respectively, and the parameters Tc (V ) and �T (V ) obtained

from each �t are given.

The results for the width of the transition region and the shift of the transition

temperature from the parametrizations of the order parameter and the susceptibility

are �tted to power law forms: � fit(1)
T (V ) � V ��1 ; �

fit(2)
T (V ) � V ��2 ; �T fit(1) (V ) �

V ��1 and �T fit(2) (V ) � V ��2 which give the scaling critical exponents: �1 = 0:830�

0:013 ; �2 = 0:857� 0:006 ; �1 = 0:990� 0:015 and �2 = 1:032� 0:003 :
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Figure 4.7: Parametrization of the order parameter to the form (4.3) at the volume
V = 4000fm3, and of the susceptibility to the form (4.4) at the volume V = 900fm3.

4.2.6 Shift of the transition temperature and width of the

transition region from cumulants

A way for locating Tc (V ) is to consider the fourth order cumulant:

B4 (T; V ) = 1�
hh (T; V )i�4
3 hh2 (T; V )i�2 ; (4.5)

introduced by Binder [75, 3], and which is known to present a minimum at an e¤ective

transition temperature whose shift from the true transition temperature Tc(1) is of

order V �1 for a �rst order transition. This cumulant is a �nite size scaling function

[3, 66, 67, 68, 76], and is widely used to indicate the order of the transition in a �nite

volume.

The expression of B4 (T; V ) as function of the integral terms, for this case of the
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Figure 4.8: (Left) Binder Cumulant B4 vs temperature at di¤erent system volumes.
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decon�nement transition, is after calculation:

B4(T; V ) = 1� (L01(1)� L01(0))

3 (2L03(1)� 2L03(0)� 2L02(0)� L01(0))
2

� (24 (L05(1)� L05(0)� L04(0))� 12L03(0)� 4L02(0)� L01(0)) :(4.6)

Fig. (4.8-left) illustrates the variations of the Binder cumulant with tempera-

ture for various volumes, and shows that the locations of the minima in �nite sizes

Tmin (V ) are shifted to higher values from Tc (1). Data of the shift of the tran-

sition temperature obtained in this way are plotted in Fig. (4.8-right) versus in-

versed volume, and the scaling shift critical exponent obtained from a �t to the form:

�
(Bmin4 )
T (V ) = T

(Bmin4 )
c (V ) � Tc (1) � V ��3, is: �3 = 0:883 � 0:043: In this case also,

non-leading terms appear in the expression of � (B
min
4 )

T (V ):

We can also calculate the Binder cumulant de�ned from the 4th normalized central

moment as:

B0
4 (T; V ) = 1�

h(h� hhi�)4i�

3 h(h� hhi�)2i�2
; (4.7)
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which is directly related to the kurtosisK (T; V ) ; which will be de�ned in the following,

by:

B0
4 (T; V ) =

�K (T; V )
3

: (4.8)

The locations of the extrema of both B0
4 (T; V ) and K (T; V ) are then the same.

In the same context, we have thought to examine the second and third cumulants

for the case of the probability distribution p(h) used in the present work. For this

purpose, let�s �rst begin with some de�nitions.

De�nitions of the Moments

The nth moment of a function f(x) of a variable x about a value x0 is mathematically

de�ned by:

Mn =

1Z
0

(x� x0)
n f(x)dx : (4.9)

The moments about zero are usually referred to simply as the moments of a function.

Usually, the function will be a probability density function. The nth moment (about

zero) of a probability density function f(x) is the expected value of xn. The moments

about its meanM are called central moments; these describe the shape of the function,

independently of translation.

Signi�cance of the Moments

The �rst moment about zero, if it exists, is the expectation of x, i.e., the mean of the

probability distribution of x, designatedM. In higher orders, the central moments are

more interesting than the moments about zero.

The nth central moment of the probability distribution of a random variable x is
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then given by:

Mn = h(x�M)ni = h(x� hxi)ni: (4.10)

The �rst central moment is thus 0; the second central moment is the variance �2;

the square root of which is the standard deviation � de�ned as:

� =
�
h(x� hxi)2i

�1=2
: (4.11)

The normalized nth central moment is the nth central moment divided by �n. These

normalized central moments are dimensionless quantities, which represent the distrib-

ution independently of any linear change of scale.

The third central moment is a measure of symmetry, or more precisely, the lack of

symmetry. A distribution, or data set, is symmetric if it looks the same to the left and

right of the center point. The 3rd central moment for a normal distribution is zero,

and any symmetric distribution will have a third central moment, if de�ned, near zero.

The normalized 3rd central moment is called the skewness � :

� =
h(x� hxi)3i

�3
: (4.12)

A distribution that is skewed to the left (the tail of the distribution is heavier on

the left) will have a negative skewness. A distribution that is skewed to the right (the

tail of the distribution is heavier on the right) will have a positive skewness.

The fourth central moment is a measure of whether the distribution is peaked or

�at relative to a normal distribution. Since it is the expectation of a fourth power, the

fourth central moment, where de�ned, is always positive. The fourth central moment

of a normal distribution is 3�4.

The Kurtosis is de�ned to be the normalized 4th central moment minus 3:

K =
h(x� hxi)4i

�4
� 3; (4.13)
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so that the standard normal distribution has a kurtosis of zero. Positive kurtosis

indicates a "peaked" distribution and negative kurtosis indicates a "�at" distribution.

That is, distributions or data sets with high kurtosis tend to have a distinct peak near

the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis

tend to have a �at top near the mean rather than a sharp peak

Cumulants

The �rst moment and the second and third unnormalized central moments are linear

in the sense that if x and y are independent random variables, then:

M1(x+ y) =M1(x) +M1(y) ; (4.14)

and:

M2(x+ y) =M2(x) +M2(y) ; (4.15)

and:

M3(x+ y) =M3(x) +M3(y) : (4.16)

This is true because these moments are the �rst three cumulants; the fourth cumu-

lant is the kurtosis times �4.

The four �rst cumulants for the probability density p(h)

For this case of probability distribution p(h), the �rst cumulant is the order parameter

hhi� ; the second is the variance given by:

�2 (T; V ) = h(h� hhi�)2i� = hh2i� � hhi�2; (4.17)
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which is expressed by mean of the Lmn�s as:

�2 (T; V ) =
1

(L01 (1)� L01 (0))
2 [(2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0))

� (L01 (1)� L01 (0))� (L01 (0) + L02 (0)� L02 (1))
2� : (4.18)

The third cumulant is the skewness times �3, with the skewness given by:

� (T; V ) =
h(h� hhi�)3i�

�3
=
hh3i� � 3hhi�hh2i� + 2hhi�3

(hh2i� � hhi�2)3=2
; (4.19)

which can be written as function of the Lmn�s as:

� (T; V ) =
�
(L01 (1)� L01 (0))

2 (6L04 (1)� 6L04 (0)� 6L03 (0)� 3L02 (0)� L01(0))

+3 (L01 (1)� L01 (0)) (L01 (0) + L02 (0)� L02 (1)) (2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0))

�2 (L01 (0) + L02 (0)� L02 (1))
3� = [(2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0))

� (L01 (1)� L01 (0))� (L01 (0) + L02 (0)� L02 (1))
2�3=2 : (4.20)

The fourth cumulant is the kurtosis times �4, where the kurtosis is given by:

K (T; V ) =
h(h� hhi�)4i�

�4
� 3 = hh4i� � 4hhi�hh3i� + 6hhi�2hh2i� � 3hhi�4

(hh2i� � hhi�2)2
� 3; (4.21)

whose expression with the Lmn�s is:

K (T; V ) =
��
(L01 (1)� L01 (0))

3 (24L05 (1)� 24L05 (0)� 24L04 (0)� 12L03 (0)

�4L02 (0)� L01(0)) + 4 (L01 (1)� L01 (0))
2 (L01 (0) + L02 (0)� L02 (1))

� (6L04 (1)� 6L04 (0)� 6L03 (0)� 3L02 (0)� L01(0))� 3 (L01 (0) + L02 (0)� L02 (1))
4�

= [(2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0)) (L01 (1)� L01 (0))

� (L01 (0) + L02 (0)� L02 (1))
2�2o� 3 : (4.22)
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with:

hh2i� = 2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0)

L01 (1)� L01 (0)
; (4.23)

hh3i� = 6L04 (1)� 6L04 (0)� 6L03 (0)� 3L02 (0)� L01(0)

L01 (1)� L01 (0)
; (4.24)

hh4i� = 24L05 (1)� 24L05 (0)� 24L04 (0)� 12L03 (0)� 4L02 (0)� L01(0)

L01 (1)� L01 (0)
: (4.25)

As it can clearly be observed on Fig. (4.9), the plots of the variance versus temper-

ature for di¤erent system volumes look like bell functions, with the peaks broadened,

smaller is the volume. These peaks are located at temperatures T
(�2

max
)
(V ); seemingly

tending to Tc(1) with increasing volume.

Similarly, Fig. (4.10) illustrates the variations of skewness with temperature at

di¤erent sizes. The curves of skewness show that this latter vanishes at a temperature

T
(�=0)
c ; being negative for T < T

(�=0)
c and positive for T > T

(�=0)
c , and the probability

distribution seems then to be skewed to the left for T < T
(�=0)
c , and skewed to the right

for T > T
(�=0)
c . The temperature at which skewness vanishes is expected to represent

the transition temperature, and tends apparently to Tc(1) with increasing volume,

while the temperature gap between the two maxima is expected to give the width of

the transition region.

Finally, the plots of kurtosis versus temperature are represented on Fig. (4.11), as

usual at di¤erent sizes, but because of the high values taken by the kurtosis at large

volumes, information on a part of the temperature range is lost. To see the detailed kur-

tosis, an individual plot at the volume V = 300fm3 is illustrated on Fig. (4.12), which

shows that kurtosis is positively peaked around a temperature T (K
max1 )

c (V ) attaining

high values, vanishes then takes negative values on a narrow interval of temperatures

with a minimum at a temperature T (K
min)

c (V ) and vanishes again, then takes positive
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Figure 4.9: Variance vs Temperature at di¤erent system volumes.

but low values with a peak around a temperature T (K
max2 )

c (V ). In this case, we expect

the transition temperature to occur at the minimum of kurtosis.

To verify the validity of the assumptions that the transition temperatures can be

de�ned at the maximum of the variance, at vanishing skewness and at the minimum of

kurtosis, we plot the variations of the shifts of the such obtained transition tempera-

tures, relative to Tc(1), with inversed volume and �t to a power law, like in eq. (4.1).

The numerical values of the shift critical exponents obtained in this way are:

�
(V ar)
T (V ) = T (�

2max ) (V )� Tc (1) � V ��4 ; �4 = 0:861� 0:002;

�
(Skew)
T (V ) = T (�=0) (V )� Tc (1) � V ��5 ; �5 = 0:862� 0:002; (4.26)

�
(Kurt)
T (V ) = T (K

min) (V )� Tc (1) � V ��6 ; �6 = 0:861� 0:002;

and are very close to the values of the shift critical exponent previously obtained
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Figure 4.10: Skewness vs Temperature at di¤erent system volumes.
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Figure 4.11: Kurtosis vs Temperature at di¤erent system volumes.
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Figure 4.12: Kurtosis vs Temperature at the volume V = 300fm3.

(subsections 4.2.4 to 4.2.6), and which are 6= 1 suggesting the contribution of non-

leading terms in the expression of the volume variation of the shift, as yet mentioned.

For the width of the transition region, data are obtained from skewness as the gap

in temperature between the two extrema, and are �tted to power laws of the inversed

volume. The smearing critical exponent obtained in this case is:

�T (Skew) (V ) � V ��0T ; �0T = 0:903� 0:011 : (4.27)

For more accuracy, we�ll search in the next section for the correlation between the

such obtained shifts and the shift of the transition temperature obtained from the value

0:5 of the order parameter, or equivalently from the peaks of the susceptibility. A linear

relation between the two, with a slope equal to 1 will indicate whether the transition

temperature is e¤ectively that determined from each cumulant.
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Cumulant Value of a Value of b
Variance maximum (�2max)

c 0:0019� 0:0098 0:971� 0:024
Vanishing skewness (� = 0) 0:000593� 0:000078 0:9941� 0:0002
First kurtosis maximum 0:00152� 0:00344 0:3331� 0:0008
Kurtosis minimum 0:00105� 0:00027 0:99150� 0:00067
Second kurtosis maximum �0:00569� 0:00105 1:30045� 0:00259
Binder cumulant minimum �0:0117� 0:0018 1:0008� 0:0002

Table 4.1: Numerical values of the �t parameters a and b, with the formula (4.28).

4.3 Correlation between the cumulants and the sus-

ceptibility

In the following, we shall examine the correlation between the temperatures at the

locations of the di¤erent cumulant peaks and the transition temperatures obtained

from the maxima of the peaks of the thermal susceptibility j �T jmax. For this, we plot

the shift T (Cum)c (V ) � Tc(1) with T (Cum)c (V ) obtained from the peaks of each of the

dispersion �2 and the kurtosis K, versus T (j�T j
max)

c (V ) � Tc(1). For the skewness �,

T
(Cum)
c (V ) is obtained at the vanishing value �(V ) = 0:

The di¤erent plots are illustrated on Figs. (4-13) to (4.17), and the linearity of the

variations can clearly be observed. Fits with the linear forms:

T (Cum)c (V )� Tc(1) = a+ b(T (j�T j
max)

c (V )� Tc(1)) ; (4.28)

give the values of the �t parameters a and b presented in Table 4.1.

Results of these �ts show exact linear variations of the shifts of the transition

temperatures from cumulants with the shifts of the transition temperatures from the

susceptibility maxima, except for the kurtosis maxima, indicating that the most ap-

propriate way for de�ning the transition temperature from kurtosis is at the location of

its minimum, while its de�nition from the maximum of the variance and the vanishing
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Figure 4.13: Linear �t of the data of the shift of the transition temperature de�ned
as the location of the variance maximum vs the shift of the transition temperature
obtained from j �T jmax.

skewness are well justi�ed and can be adopted.
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Figure 4.14: Linear �t of the data of the shift of the transition temperature de�ned at
a vanishing skewness vs the shift of the transition temperature obtained from j �T jmax.
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Figure 4.16: Linear �t of the data of the shift of the transition temperature de�ned
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Chapter 5

Finite-Size E¤ects and Scaling of

the Decon�nement Phase

Transition within the Excluded

Volume E¤ects

5.1 Introduction

So far in this work, hadrons have been considered as point particles, and the considered

�nite size e¤ects were those due to the �niteness of the system undergoing a phase

transition, additionally to those induced by the color-singletness requirement. But,

since hadrons are composed of quarks, they are extended particles and have �nite

volumes.

In the present chapter, such excluded volume e¤ects are considered within the

117
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phase coexistence model, using the color-singlet partition function for the QGP. Their

e¤ects on the studied decon�nement phase transition are then examined by probing the

behavior of some physical quantities, as in the two previous chapters. It has been shown

in [123] that "dense nuclear matter can go through a second order phase transition into

a QGP when the �nite extensions of hadronic constituents are taken into account".

5.2 The role of the �nite volume of particles and

their interactions: Hagedorn correction

The Hagedorn model described in section (1.8) represents a nonperturbative, analyt-

ically soluble model of a strongly interacting many-particle system. It predicts either

the existence of a limiting temperature or a phase transition at high energy density.

If the latter is true, the new phase cannot be treated in the framework of this model.

Much progress has also been achieved in the mathematical understanding of the boot-

strap constraint, mostly due to its reformulation in a relativistically covariant way.

An excellent review of these results can be found in [124]. There were, however, two

important questions to be answered. First, why can the �reball be treated as an ideal

gas of hadron resonances? Second, how to take into account the �nite proper volumes

of the hadrons in the �reball? As to the �rst question, it has been argued that the

rest masses of the observed hadron resonances arise as a result of strong interaction

and with the inclusion of the total mass spectrum, the interaction (more precisely, its

attractive part) is entirely taken into account [125]. According to this point of view, the

observed hadron resonances are considered as quasiparticles among which only some

residual interaction can be imagined, and which is neglected.
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The second problem has been addressed by di¤erentiating between the volume Vext

of the gas and the volume V available for the particles [126, 127];

V = Vext �
NpX
i=1

Vi (5.1)

where Vi are the proper volumes of the resonances. From the consistent, relativisti-

cally covariant treatment, it follows that the proper volume of the resonances must be

proportional to their mass, Vi =
mi

4B
. This is precisely the relation derived in the MIT

bag model. Therefore, the constant B can be identi�ed with the bag constant. The

particles occupy an available volume,

V = Vext �
E

4B
(5.2)

depending on their energy. Thus, V is the volume in which the particles move as if

they were pointlike, while in reality they have �nite proper volumes and move in Vext:

Treating the hadrons as extended particles leads to important consequences in the

thermodynamical behavior of the gas. If the gas of hadron resonances is a real gas

with some repulsion among the particles represented by the impenetrability of their

proper volumes, then there is no limiting temperature, but the gas undergoes a phase

transition and the energy density becomes too large. We can explain what happens as

follows: The thermodynamical problem can be solved at �rst for a gas of �ctitious point

particles enclosed in the available volume V and one gets the corresponding equations

of state. Then one can express the energy density of the real gas through the energy

density of the gas of �ctitious particles by means of the formula:

E

Vext
=

(E=V )

1 +
(E=V )

4B

: (5.3)
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Even if the energy density (E=V ) of the gas of �ctitious point particles diverges in

the limit T ! Tc, the energy density of the real gas remains constant and tends to the

energy density of the hadronic bag, (E=Vext)! 4B.

In order to take into account the repulsive interactions between hadrons, all thermo-

dynamical quantities in the hadronic phase may be corrected by the Hagedorn factor

[126, 99]:

�Hag =
1

1 +
"HG
4B

; (5.4)

where "HG(T; V ) is the energy density of the hadronic matter. The corrected thermo-

dynamical quantities of the hadronic gas phase are then written as:

AHG cor(T; V ) = �Hag AHG(T; V ): (5.5)

5.3 Finite Size Rounding of the Decon�nement Phase

Transition within the Excluded Volume E¤ects

Taking the excluded volume e¤ects into account, the phase transition between the

hadronic and QGP phases then occurs when:

PHG cor (�c; Tc) = PQGP (�c; Tc) ; (5.6)

with:

PQGP =
37�2

90
T 4 + �2T 2 +

1

2�2
�4 �B; (5.7)

and:

PHG cor = �Hag
�2

30
T 4: (5.8)
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Thus, the relation between Tc and �c is:

127

12
T 4c +

37�2

120

T 8c
B
+
30

�2
�2cT

2
c +

3

4

�2cT
6
c

B
+
15

�4
�4c +

3

8�2
�4cT

4
c

B
� 30
�2
B = 0: (5.9)

The phase diagram in the � � T plane, separating between hadronic and QGP

phases, and giving at each point the transition parameters (�c; Tc) for two �avors

(Nf = 2); with the common value of the bag constant B1=4 = 145MeV , can also be

illustrated in this case when the volume of the hadrons is considered. The extreme

values of the transition parameters at � = 0 and T = 0 are: T 0c (� = 0;V =1) =

104:21MeV ; �0c (T = 0;V =1) = 305:63MeV:

We�ll study in the following the FSE for a temperature driven decon�nement phase

transition, at a vanishing chemical potential (� = 0), and for a density driven decon-

�nement phase transition at a �xed temperature (T = 100MeV ), taking into account

these excluded volume e¤ects. For this purpose, we�ll examine, like in chapter 3, the be-

havior of the order parameter, the entropy and energy densities with temperature and

chemical potential for varying volume, when the volume of the hadrons is considered.

The corrected mean values of the energy and entropy densities are then related to

the corrected order parameter by:

hs (T; �; V )icor = sQGP + (sHG cor � sQGP ) hh (T; �; V )icor

h" (T; �; V )icor = eQGP + (eHG cor � eQGP ) hh (T; �; V )icor; (5.10)

where:

hh (T; �; V )icor =
�
� 1
T
(fHG cor � fQGP )V � 1

�
e�

1
T
(fHG cor�fQGP )V + 1

� 1
T
(fHG cor � fQGP )V

�
e�

1
T
(fHG cor�fQGP )V � 1

� : (5.11)

In Fig. (5.1), we compare the order parameters without and with the Hagedorn

correction, for two volumes, V = 150fm3 and V = 1000fm3, and for more clear-

ness let�s rather illustrate the variations of the relative di¤erence between the order



5. Finite-Size E¤ects and Scaling of the Decon�nement Phase
Transition within the Excluded Volume E¤ects 122

96 98 100 102 104 106 108 110 112 114
0,0

0,2

0,4

0,6

0,8

1,0

96 98 100 102 104 106 108 110 112 114
0,0

0,2

0,4

0,6

0,8

1,0

< 
h 

>

T ( MeV )

 < h ( T , V=1000fm3 >
 < h ( T , V=1000fm3 >cor

< 
h 

>

T ( MeV )

 < h ( T , V=150fm3 >
 < h ( T , V=150fm3 >cor

Figure 5.1: Order parameter versus temperature without (solid line) and with (dashed
line) the Hagedorn correction, for the volumes, (left) V = 1000fm3 and (right) V =
150fm3.

parameters with and without the hagedorn correction hhi�hhicor
hhicor , with temperature at

di¤erent volumes in Fig. (5.2). We can notice that the di¤erence is mostly notable in

a temperature region around a temperature at which it is maximal, and which tends

to Tc (1) with increasing volume. This relative di¤erence is more and more appre-

ciable for big volumes, meaning that the transition region is the more sensitive to the

extended volume correction

The three-dimensional plots of the corrected order parameter, entropy density

scaled by T 3;
hs (T; V )icor

T 3
, and energy density scaled by T 4;

h" (T; V )icor
T 4

are il-

lustrated, respectively, in the top, middle and bottom of Fig. (5.3). Like for the

non-corrected quantities in Figs. (3.2), these plots exhibit a discontinuity at a critical

temperature T 0c (1) ' 104:21MeV for big volumes (V � 1000fm3), indicating a �rst-

order phase transition, while rounded curves are obtained when the volume decreases.
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Figure 5.2: Relative di¤erence hhi�hhicor
hhicor versus temperature for di¤erent volumes.

Similarly, Fig. (5.4) shows the variations of the corrected order parameter, normal-

ized energy and entropy densities with chemical potential and system volume, at the

temperature T = 100MeV: The �rst-order character of the transition can, also in this

case, clearly be seen from the sharp discontinuity of the three quantities at a transition

chemical potential �0c (1) ' 80:81MeV; at the large volume limit. In small systems,

the transition is perfectly smooth over a broadened region of chemical potential.
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Figure 5.3: Three-dimensional plots of the corrected (top) order parameter, (middle)
entropy density scaled by T 3; and (bottom) energy density scaled by T 4; with tem-
perature and volume, at � = 0.
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Figure 5.4: Three-dimensional plots of the corrected (top) order parameter, (middle)
entropy density and (bottom) energy density with chemical potential and volume, at
the temperature T = 100MeV .
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5.4 Finite-Size E¤ects with the Exact Color-Singlet

Partition Function and the Excluded Volume

Correction

Hereafter, we shall consider the excluded volume correction for hadrons, as well as

the color-singletness condition for the QGP phase within the phase coexistence model.

The e¤ects on the thermal decon�nement phase transition are then investigated by

illustrating, �rst, each of the order parameter, energy and entropy densities calculated

in this case.

The corrected mean value of the order parameter at zero chemical potential (� = 0)

is calculated from the expression:

< h(T; V ) >�cor= 1�

R +�
��
R +�
�� d'd M(';  )

1R
0

qeqRcor('; ;T;V )dq

R +�
��
R +�
�� d'd M(';  )

1R
0

eqRcor('; ;T;V )dq

; (5.12)

with:

Rcor (';  ;T; V ) =

�
g�=0(';  )� �Hag

�2

30
� B

T 4

�
V T 3: (5.13)

After e¤ectuation of the integrations on q; the order parameter can be written on

the form:

< h(T; V ) >�cor=
L01 cor (0) + L02 cor (0)� L12 cor (1)

L01 cor (0)� L11 cor (1)
; (5.14)

where the general form of the corrected integral coe¢ cients appearing in this expression

is:

Lmn cor (q) =

Z +�

��

Z +�

��
d'd M(';  )(g�=0(';  ))

m

�
eR cor('; ;T;V )

�n
Rcor (';  ;T; V )

: (5.15)
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The corrected mean value of the energy density is then related to < h(T; V ) >�cor

by the expression:

< "(T; V ) >�cor= B +
�
eHG �Hag

�
1�

eHG �Hag
3B

�
�B

�
< h(T; V ) >�cor

�3T 4 L12 cor(0) + L11 cor(1)� L12 cor(1)

L01 cor(0)� L01 cor(1)
: (5.16)

Also in this case, as in (3.5.1), the corrected mean value of the entropy density will

be calculated numerically by integrating 1
T
(d<"(T;V )>

�
cor

dT
), since it can not be expressed

simply by the mean of the Lmn cor�s.

Fig. (5.5) shows the variations of the corrected order parameter, energy density

over T 4 and entropy density over T 3 with temperature for various volumes. The same

behavior as in Fig. (3.8) is observed, with the shifting e¤ect induced by the color-

singletness requirement.

5.5 Scaling Critical Exponents for the Decon�ne-

ment Phase Transition with the Exact Color-

Singletness Condition and the Excluded Vol-

ume Correction

In the following, we shall carry out a �nite size scaling analysis in order to determine

the scaling critical exponents, given in eqs. (4.1), characterizing the decon�nement

phase transition, when both excluded volume e¤ects and color-singletness requirement

are taken into account. For this purpose, each of the corrected thermal susceptibility,

speci�c heat density and second derivative of the order parameter are �rst derived,
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Figure 5.5: Variations of the corrected order parameter, normalized energy density <
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4 and normalized entropy density< s(T; V ) >�cor =T
3 with temperature,

at various volumes.
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then analyzed in the transition region.

5.5.1 The susceptibility critical exponent

The obtained expression of the corrected thermal susceptibility is:

�cor (T; V ) =
T 2V

L01(0)� L01(1)
[�3(L12 cor(0) + 2L13 cor(0) + L12 cor(1)� 2L13 cor(1))

�( B
T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(L02 cor(0) + 2L03 cor(0) + L02 cor(1)� 2L03 cor(1))

�
�T 2V L01 cor(0) + L02 cor(0)� L02 cor(1)

(L01 cor(0)� L01 cor(1))
2 [�3(L12 cor(0)� L11 cor(1) + L12 cor(1))

�( B
T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(L02 cor(0)� L01 cor(1) + L02 cor(1))

�
; (5.17)

and its variations with temperature at di¤erent volumes are represented on Fig. (5.6).

Exactly the same behavior as in chapter 3 is found, and the di¤erence between the

values of the corrected and non corrected susceptibility at �xed temperature and volume

is extremely small.

The data of the minima of the susceptibility at di¤erent system volumes are then

extracted, and �tted to a power law of the volume: j �T jmax (V ) � V 
0T , with the

susceptibility scaling critical exponent: 
0T = 1:029� 0:003:



5. Finite-Size E¤ects and Scaling of the Decon�nement Phase
Transition within the Excluded Volume E¤ects 130

102 104 106 108 110 112

-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

χ
co

r (
 T

 , V
 )

T ( MeV )

 V=150fm3

 V=200fm3

 V=300fm3

 V=500fm3

 V=1000fm3

Figure 5.6: Variations of the corrected susceptibility with temperature for various
volumes.

5.5.2 The speci�c heat critical exponent

The corrected thermal speci�c heat density given by:

ccor (T; V ) =

�
2�2

5
�Hag �

�2

10
�2Hag

"HG
B

�
T 3 hh (T; V )i�cor

+
�
eHG �Hag

�
1�

eHG �Hag
3B

�
�B

�
�cor (T; V ) + 12T

3L11 cor(1)� L12 cor(1) + L12 cor(0)

L11 cor(1)� L01 cor(0)

+
3T 6V

L01 cor(1)� L01 cor(0)
[�6L23 cor(0) + 3L21 cor(1)� 6L22 cor(1) + 6L23 cor(1)

+(
B

T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(�2L13 cor(0) + L11 cor(1)� 2L12 cor(1) + 2L13 cor(1))

�
�3T 6V L11 cor(1)� L12 cor(1) + L12 cor(0)

(L01 cor(1)� L01 cor(0))
2 [3(L12 cor(0) + L11 cor(1)� L12 cor(1))

+(
B

T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(L02 cor(0) + L01 cor(1)� L02 cor(1))

�
; (5.18)
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Figure 5.7: Variations of the corrected speci�c heat density with temperature for vari-
ous volumes.

is illustrated in Fig. (5.7) versus temperature at various volumes. Here also, the

same behavior as for the speci�c heat density in Fig. (3.12) is observed. Results of the

maxima of the corrected speci�c heat density cmaxTcor
(V ) are �tted to the power-law form:

cmaxTcor
(V ) � V �0T , and the obtained speci�c heat scaling exponent is: �0T = 0:996�0:005:

5.5.3 The smearing critical exponent

The width of the transition region is given by the di¤erence: �T 0(V ) = T 02(V )� T 01(V )

with T 01(V ) and T
0
2(V ) the locations of the extrema of the corrected second derivative

of the order parameter @2

@T 2
hh (T; V )i�cor . The expression of this latter is:
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@2hh (T; V )i�cor
@T 2

=
2�cor
T

+
(T 2V )

2

L01cor(0)� L01cor(1)
�

[18L23cor(0) + 54L24cor(0)� 9L22cor(1) + 36L23cor(1)� 54L24cor(1)

+
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�
(12L13cor(0) + 36L14cor(0)� 6L12cor(1) + 24L13cor(1)

�36L14cor(1)) +
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�2
(2L03cor(0) + 6L04cor(0)� L02cor(1)

+4L03cor(1)� 6L14cor(1))� (L02cor(0) + 2L03cor(0) + L02cor(1)� 2L03cor(1))

�
�
�4B
T 7V

+ 7�4

300
T
BV
�2Hag � �6

1500
T 5

B2V
�3Hag

�i
� (T 2V )

2

(L01cor(0)� L01cor(1))
2

� [(3L12cor(0) + 3L11cor(1)� 3L12cor(1) +
�
B
T 4
� �2

10
�Hag + �Hag +

�4

300
T 4

B
�2Hag�

2
Hag

�
� (L02cor(0) + L01cor(1)� L02cor(1))) (3L12cor(0) + 6L13cor(0) + 3L12cor(1)� 6L13cor(1)

+
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�
(L02cor(0) + 2L03cor(0) + L02cor(1)� 2L03cor(1))

�
+(L01cor(0) + L02cor(0)� L02cor(1)) (�9L21cor(1) + 18L22cor(1)� 18L23cor(1) + 18L23cor(0)

�
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�
(6L11cor(1)� 12L12cor(1) + 12L13cor � 12L13cor(0))

�
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�2
(L11cor(1)� 2L12cor(1) + 2L13cor(1)� 2L03cor(0))

�
�
�4B
T 7V

+ 7�4

300
T
BV
�2Hag � �6

1500
T 5

B2V
�3Hag

�
(L01(1)� L02cor(1) + L02cor(0))

�
�
�
3L11cor(1)� 3L12cor(1) + 3L12cor(0) +

�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�
� (L01cor(1)� L02cor(1) + L02cor(0))) (6L13cor(1)� 3L12cor(1)� 3L12cor(0)� 6L13cor(0)

+
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�
(2L03cor(1)� L02cor(1)� L02cor(0)� 2L03cor(0))

�i
+

2 (T 2V )
2

(L01cor(0)� L01cor(1))
3 (L01cor(0) + L02cor(0)� L02cor(1)) (3L12cor(0) + 3L11cor(1)

�3L12cor(1) +
�
B
T 4
� �2

10
�Hag +

�4

300
T 4

B
�2Hag

�
(L02cor(0) + L01cor(1)� L02cor(1))

�2
; (5.19)

and its variations with temperature at various system sizes are represented in Fig.

(5.8).

The results of the width �T (V ) are �tted to the power-law form: �T (V ) � V ��0T ,
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Figure 5.8: Second derivative of the corrected order parameter versus temperature at
di¤erent volumes.

and the obtained value of the smearing scaling critical exponent is: �0T = 0:998�0:005:

5.5.4 The shift critical exponent

The transition temperature can, also in this case, be obtained by several ways as in

chapter 4. Extracting the data of Tc(V ) from the locations of the peaks of the thermal

susceptibility j �T jmax (V ), and �tting them to a power-law function of the volume:

�T (V ) � V ��0T , gives the shift scaling critical exponent: �0T = 0:812� 0:003:

The obtained results for the scaling critical exponents in this case are akin to those

obtained previously in chapter 4 without the excluded volume correction. The phase

transition is then still of �rst order, and has not been a¤ected by the �nite extention

of the hadrons, as in [123].



Conclusion

The present work dealt with the study of the �nite-size e¤ects on the decon�nement

phase transition, using a simple model of coexisting hadronic and QGP phases in a

�nite volume. Our model has shown the in�uence of the �niteness of the system size

on the behavior of some response functions in the vicinity of the transition point. A

sharp transition is observed in the thermodynamical limit, signaled by discontinuities

in the order parameter, the entropy density s and the energy density " at a transition

temperature Tc (1) for a thermally driven decon�nement phase transition (at � = 0),

and at a transition chemical potential �c (1) for a density driven decon�nement phase

transition (at T = 100MeV ). In other terms, the decon�nement phase transition is

labelled by a rapid rise in the e¤ective degrees of freedom, represented by the ratios
"

T 4

and
s

T 3
for a thermal decon�nement phase transition. Such a step-like rise behavior

re�ects a �rst-order phase transition. In �nite volumes, the transition is rounded o¤

and the variations of these thermodynamic quantities are perfectly smooth on the whole

range of temperature. The delta function singularities appearing in the �rst derivatives

of these discontinuous quantities, i.e., in the susceptibility � = @hhi
@T

and the speci�c

heat density c = @h"i
@T
, are then smeared out into �nite peaks of widths �T (V ) :

When the color-singlet character of physical states is exactly treated in the equation

of state for the QGP in a �nite volume, then a gradual ��freezing�of internal degrees

134
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of freedom appears, as compared to the equation of state for in�nite matter. This is

re�ected by a shift of the transition temperature Tc(V ) at which the thermal decon-

�nement phase transition from hadronic to QGP phases occurs, for �nite systems. The

maxima of the peaks of both susceptibility and speci�c heat density occur at e¤ec-

tive transition temperatures Tc (V ) shifted away from the true transition temperature

Tc (1).

Our work has also shown that temperature and chemical potential play the same

role when they drive the decon�nement phase transition. For a density driven decon-

�nement phase transition at a �xed temperature, the sharp transition occurring at the

thermodynamic limit is smeared out in �nite volumes over a range of chemical potential

�� (V ) around the transition chemical potential �c (1), and when the color-singletness

requirement is included for the QGP, the e¤ective transition chemical potential �c (V )

is shifted away from �c (1).

Other physical quantities can also be examined, which carry informations on the

transition. Examples of such quantities are the sound velocity, rate of �uctuations and

the second, third and fourth cumulants of the used probability distribution, each giving

the transition temperature at some de�ned point. An other quantity of interest is the

second derivative of the order parameter from which the width of the transition region

can be obtained.

For a thermal decon�nement phase transition, �nite size scaling analysis of the

behavior of the maxima of the rounded peaks of the thermal susceptibility �maxT (V ) and

speci�c heat density cmaxT (V ), the width of the transition region �T (V ), and the shift of

the e¤ective transition temperature relative to the true one �T (V ) = Tc (V )� Tc (1),

shows their power-law variations with the volume characterized by the scaling critical
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exponents 
; �; �; and � respectively. Numerical results of these scaling exponents

have been determined in chapter 4, where the transition temperature has been obtained

from various quantities as well from parametrizations of the order parameter and the

susceptibility. These results are in good agreement with the analytical ones: 
 = � =

� = � = 1 obtained in our work [97], except for the shift critical exponent which slightly

de�ects from the analytical value 1. This may be due on one hand to the di¢ culty

of locating accurately the peaks of the physical quantities, especially in the case of

large volumes for which the peaks become very sharp, and on the other hand to the

non-leading terms which contribute to the expression of the shift �T (V ). However,

a �rst estimate of the scaling critical exponents for the thermal decon�nement phase

transition within this model has been obtained, and our result expressing the equality

between all scaling exponents and the space dimensionality is a consequence of the

singularity characterizing a �rst order phase transition and agrees very well with the

predictions of the standard �nite size scaling theoretical approaches to a �rst order

phase transition [49, 50, 55, 106, 107, 108, 109] and with those obtained in a rather

di¤erent and rigorous way, generalizing the �nite size scaling description of a �rst order

phase transition [110]. Also, we note a good agreement with the results of calculations

using Monte Carlo methods in both lattice QCD [78, 111, 112, 113, 114] and other

models in statistical physics [57, 115, 116].

A supplementary volume e¤ect due to the �nite hadron volumes has been considered

in a part of this work. Wether the excluded volume e¤ects in�uence the decon�nement

phase transition has been examined, since it has been demonstrated that they can

alter the kind of the transition. It has been shown in [100] that when the �nite volume

extensions of constituents in a hadronic gas are taken into account, for certain values of



137

the parameters of the used model, namely the QCD coupling constant �s and the bag

constant B, a smooth evolution from nuclear matter to a quark plasma phase through

a second order transition becomes possible. In our model, we have found that such a

correction does not a¤ect the order of the transition.
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Abstract. We study the finite-size effects for the thermal quantum chromodynamics (QCD) deconfinement
phase transition, and use a numerical finite-size scaling analysis to extract the scaling exponents character-
izing its scaling behavior when approaching the thermodynamic limit (V −→ ∞). For this, we use a simple
model of coexistence of hadronic gas and color-singlet quark gluon plasma (QGP) phases in a finite volume.
The color-singlet partition function of the QGP cannot be exactly calculated and is usually derived within
the saddle-point approximation. When we try to do calculations with such an approximate color-singlet
partition function, a problem arises in the limit of small temperatures and/or volumes

(
V T 3 << 1

)
, re-

quiring additional approximations if we want to carry out calculations. We propose in this work a method
for an accurate calculation of any quantity of the finite system, without any approximation. By probing
the behavior of some useful thermodynamic response functions on the whole range of temperature, it turns
out that, in a finite-size system, all singularities in the thermodynamic limit are smeared out and the
transition point is shifted away. A numerical finite-size scaling (FSS) analysis of the obtained data allows us
to determine the scaling exponents of the QCD deconfinement phase transition. Our results expressing the
equality between their values and the space dimensionality is a consequence of the singularity characterizing
a first-order phase transition and agree very well with the predictions of other FSS theoretical approaches
to a first-order phase transition and with the results of calculations using Monte Carlo methods in both
lattice QCD and statistical physics models.

1 Introduction

It is generally believed that at sufficiently high tempera-
tures and/or densities a new phase of matter called the
quark gluon plasma (QGP) can be created. This is logi-
cally a consequence of the quark–parton level of the matter
structure and of the dynamics of strong interactions de-
scribed by the quantum chromodynamics (QCD) theory.
Its existence, however, has been partly supported by lat-
tice QCD calculations and cosmological standard model
predictions. The only available and experimental way to
study the QCD deconfinement phase transition is to try to
create it in ultra-relativistic heavy-ion collision conditions
similar to those in the early moments of the universe, right
after the Big Bang. If ever the QGP is created in ultra-
relativistic heavy-ion collisions, the volume within which
the eventual formation would take place would certainly
be finite. Also, in lattice QCD studies, the scale of the
lattice space volume is finite. This motivates the study
of finite-size effects on the expected deconfinement phase
transition from a hadronic gas (HG) phase to a QGP phase.

a e-mail: Ladrem@eepad.dz
b e-mail: Aitamel@eepad.dz

These effects are certainly important since statistical fluc-
tuations in a finite volume may hinder a sharp transition
between the two phases. Phase transitions are known to
be infinitely sharp, signaled by some singularities, only in
the thermodynamic limit [1]. In general, finite-size effects
lead to a rounding of these singularities, as pointed out
in [2, 3]. However, even in a such situation, it is possible
to obtain information on the critical behavior. Large but
finite systems show a universal behavior called “finite-size
scaling” (FSS), allowing one to put all the physical sys-
tems undergoing a phase transition in a certain number
of universality classes. The systems in a given universality
class display the same critical behavior, meaning that cer-
tain dimensionless quantities have the same values for all
these systems. Critical exponents are an example of these
universal quantities.

In the present work, we study the finite-size behavior
for the thermally driven deconfinement phase transition
within a simple QCD model as used in [4]. The model is
based on the standard MIT bag model with a mixed phase
system having a finite total volume V [5]. The fraction of
volume (defined by the parameter h) occupied by the HG
phase is given by: VHG = hV, and the remaining volume:
VQGP = (1−h)V then contains the QGP phase. Addition-
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ally, we implement the color-charge confinement property
by requiring that the QGP phase is a colorless object in
the color space. Then, if we assume noninteracting phases
(separability of the energy spectra of the two phases), the
total partition function of the system can be written as
the product:

Z(h) = ZQGP(h)ZHG(h)ZVac(h), (1)

where:

ZVac(T, h) = exp(−BVQGP/T )

= exp(−BV (1 − h)/T ), (2)

accounts for the confinement of quarks and gluons by the
real vacuum pressure exerted on the perturbative vacuum
(B) of the bag model. For the HG phase, the partition
function is calculated just for a pionic gas and is simply
given by:

ZHG = e
π2
30 T

3VHG . (3)

The partition function ZQGP(h) of the QGP phase is
calculated by considering a free gas of quarks and glu-
ons with the exact color-singletness requirement. We can
then perform calculation of the mean value of any thermo-
dynamic quantity of the system 〈A(T, µ, V )〉, as defined
in [4], by:

〈A(T, µ, V )〉 =

1∫
0

A (h, T, µ, V )Z (h) dh

1∫
0
Z (h) dh

, (4)

where A(h, T, µ, V ) is the total thermodynamic quantity
in the state h, given in the case of an extensive quantity by:

A(h, T, µ, V ) = AHG(T, µ, hV )

+AQGP(T, µ, (1 − h)V ), (5)

and in the case of an intensive quantity, by:

A(h, T, µ, V ) = hAHG(T, µ, hV )

+ (1 − h)AQGP(T, µ, (1 − h)V ), (6)

with AQGP and AHG being the contributions relative to
the individual QGP and HG phases, respectively.

Let us note that the coexistence of two phases in a finite
system undergoing a phase transition taken alone seems
not to be sufficient for anticipating the first-order nature
of the phase transition when approaching the thermody-
namic limit. A similar confusion can arise in the case of a
correlation-length scaling with the volume and suggesting
a second-order nature of the transition in the thermody-
namic limit. This subtle situation has been noticed and
clarified in several works [6–9]. Then, for a firm determi-
nation of the order of a phase transition in a finite system,
a full and detailed finite-size scaling analysis of different
response functions simultaneously, yielding various scal-
ing critical exponents, seems to be necessary. This is not

all in our case, since other basic parameters of QCD like
the number of flavors and the current quark masses have a
strong influence on how the phase transition occurs. A clear
sensitivity of the order of the QCD deconfinement phase
transition to these parameters has been revealed by several
lattice QCD calculations (see, for example, [7, 10,11]).

The color-singlet partition function of the QGP de-
rived using the group-theoretical projection technique for-
mulated by Turko and Redlich [12] cannot be exactly cal-
culated and is usually calculated within the saddle-point
approximation in the limit VQGPT 3 >> 1 as in [13–16]. It
turns out that the use of the obtained approximated par-
tition function for the calculation of a mean value within
the definition (4), has as a consequence the absence of the
deconfinement phase transition [17]. This is due to the fact
that the approximation used for the calculation of the color-
singlet partition function breaks down at VQGPT 3 << 1,
and this limit is attained in our case. This has been empha-
sized in further works in which additional approximations
have been used to carry out calculations, as in [4,14]. We
propose in the following a method which allows us to cal-
culate physical quantities accurately describing well the
deconfinement phase transition at finite volumes within
the QCD model chosen, thus avoiding then the problem
arising at VQGPT 3 << 1 without any approximation. We
proceed by using the exact definition of the color-singlet
partition function for ZQGP in the definition (4) of the
mean value of a physical quantity. A first analytical step in
the calculation of the mean value is then achieved, and an
expression with integral coefficients is obtained. The dou-
ble integrals are then carried out with a suitable numerical
method at each value of temperature and volume, and the
behavior of the physical quantity of the finite system can so
be obtained on the whole range of temperature, for various
volumes, without any restriction. Afterwards, scaling crit-
ical exponents characterizing the scaling behavior of some
quantities are determined using a numerical FSS analysis.

2 Exact color-singlet partition function
of the QGP

The exact partition function for a color-singlet QGP con-
tained in a volume VQGP , at temperature T and quark
chemical potential µ, is determined by [13]:

ZQGP(T, VQGP, µ) (7)

=
8

3π2

+π∫
−π

+π∫
−π

d
(
ϕ
2

)
d
(
ψ
3

)
M(ϕ,ψ)Z̃(T, VQGP, µ;ϕ,ψ),

M(ϕ,ψ) is the weight function (Haar measure) given by:

M(ϕ,ψ) =
(
sin
( 1

2 (ψ + ϕ
2 )
)
sin( ϕ2 ) sin

( 1
2 (ψ − ϕ

2 )
))2

,
(8)

and Z̃ the generating function defined by:
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Z̃(T, VQGP, µ;ϕ,ψ) (9)

= Tr
[
exp

(
−β
(
Ĥ0 − µ

(
N̂q − N̂q

))
+ iϕÎ3 + iψŶ8

)]
,

where β =
1
T

(with the units chosen as: kB = � = c = 1),

Ĥ0 is the free quark–gluon Hamiltonian, N̂q
(
N̂q

)
denotes

the (anti-) quark number operator, and Î3 and Ŷ8 are the
color “isospin” and “hypercharge” operators respectively.
Its final expression, in the massless limit, can be put in
the form:

ZQGP(T, VQGP, µ) (10)

=
4

9π2

∫ +π

−π

∫ +π

−π
dϕdψM(ϕ,ψ)eVQGPT

3g(ϕ,ψ, µ
T ),

with:

g(ϕ,ψ,
µ

T
)

=
π2

12
(
21
30
dQ +

16
15
dG)

+
π2

12
dQ

2

∑
q=r,b,g

−1 +

((
αq − i( µT )

)2
π2 − 1

)2


− π2

12
dG

2

4∑
g=1

(
(αg − π)2

π2 − 1

)2

, (11)

dQ = 2Nf and dG = 2 being the degeneracy factors of
quarks and gluons respectively, αq (q = r, b, g) the angles
determined by the eigenvalues of the color charge opera-
tors in (9):

αr = ϕ
2 + ψ

3 , αg = − ϕ
2 + ψ

3 , αb = − 2ψ
3 , (12)

and αg (g = 1, . . . , 4) being:

α1 = αr−αg, α2 = αg−αb, α3 = αb−αr, α4 = 0. (13)

3 Finite-size effects

To study the effects of volume finiteness on the thermal
deconfinement phase transition within the QCD model cho-
sen, we will examine in the following the behavior of some
thermodynamic quantities of the system with temperature,
at a vanishing chemical potential (µ = 0), considering the
two lightest quarks u and d (Nf = 2), and using the com-
mon value B1/4 = 145MeV for the bag constant.

The first quantity of interest for our study is the mean
value of the hadronic volume fraction < h(T, V ) >, which
can be considered as representing the order parameter for
the studied deconfinement phase transition. According to

(4), < h(T, V ) > is expressed as:

< h(T, V ) >= 1 −

+π∫
−π

+π∫
−π

dϕdψM(ϕ,ψ)
1∫
0

qeqR(ϕ,ψ;T,V )dq

+π∫
−π

+π∫
−π

dϕdψM(ϕ,ψ)
1∫
0
eqR(ϕ,ψ;T,V )dq

,

(14)
with: R (ϕ,ψ;T, V ) =

(
gµ=0(ϕ,ψ) − π2

30 − B
T 4

)
V T 3. Af-

ter integration on the q variable representing the QGP
volume fraction, the order parameter can be written as:

< h(T, V ) >=
L01 + L02 − L12

L01 − L11
, (15)

where the general form of the integral terms appearing in
this expression is:

Lnm =

+π∫
−π

+π∫
−π

dϕdψM(ϕ,ψ)

(
eR(ϕ,ψ;T,V )

)n
(R (ϕ,ψ;T, V ))m

. (16)

These integrals are then carried out using a suitable nu-
merical method at each fixed temperature and volume.

The second quantity of interest is the energy density
ε(T, V ), whose mean value is related to < h(T, V ) > by:

< ε(T, V ) > = εHG < h(T, V ) > +B [1− < h(T, V )]

− 3T 4

[
L̃11 − L̃12 + L̃02

L01 − L11

]
, (17)

where the new integrals on ϕ and ψ , noted by L̃nm, are
given by:

L̃nm =
∫ +π

−π

∫ +π

−π
dϕdψM(ϕ,ψ)gµ=0(ϕ,ψ)

×
(
eR(ϕ,ψ;T,V )

)n
(R (ϕ,ψ;T, V ))m

, (18)

and: εHG = π2

10 T
4.

We can also examine the effects of volume finiteness
by illustrating two more quantities representing the first
derivatives of the two previous ones, that is, the suscepti-
bility χ defined as:

χ (T, V ) =
∂〈h (T, V )〉

∂T
, (19)

and the specific heat density c (T, V ) defined as:

c (T, V ) =
∂〈ε (T, V )〉

∂T
. (20)

Our results for the variations of these four response
functions with temperature at different system sizes are
presented in the plots on Figs. 1 and 2 and show a pro-
nounced size dependence over almost the entire temper-
ature range. The curves show that, in the limit of an in-
finite volume, both 〈h〉 and

< ε >

T 4 exhibit a finite sharp
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Fig. 1. Temperature variation of the order parameter (top)
and the energy density normalized by T 4 (bottom) at µ = 0,
for different system volumes

discontinuity, which is related to the latent heat of the
deconfinement phase transition, at a bulk transition tem-
perature Tc (∞) � 104.35 MeV, reflecting the first-order

character of the transition. The quantity
〈ε〉
T 4 is tradition-

ally interpreted as a measure of the number of effective
degrees of freedom; the temperature increase then causes
a “melting” of the constituent degrees of freedom “frozen”
in the hadronic state, making the energy density attain its
plasma value. This finite discontinuity can be mathemat-
ically described by a step function, which transforms to
a δ-function in χ and c. When the volume decreases, the
four quantities vary continuously such that the finite sharp
jump is rounded off and the δ-peaks are smeared out into
finite peaks over a range of temperature δT (V ). This is
due to the finite probability of the presence of the QGP
phase below Tc and of the hadron phase above Tc, induced
by the considerable thermodynamical fluctuations.

Another feature which can be noted is that the max-
ima of these rounded peaks occur at effective transition

temperatures Tc (V ) shifted away from the bulk transi-
tion temperature for infinite volume Tc (∞). This shift is
a consequence of the color-singletness requirement since
the effective number of internal degrees of freedom for a
color-singlet QGP is drastically reduced with decreasing
volume, as can clearly be seen from the curves, and has
been shown in [13]. Thus, the pressure of the QGP phase
is lower at a given temperature, and the mechanical Gibbs
equilibrium between the two phases would then be reached
for Tc(V ) > Tc (∞) .

It can also be noted that, for decreasing volume, while
the height of the peak decreases, its width gets larger. To see
this in more detail, we illustrate in the following the second
derivative of the order parameter 〈h (T, V )〉′′ = ∂2〈h(T,V )〉

∂T 2 ,
which reaches its extrema at thetemperatures T1(V ) and
T2(V ). The width of the transition region can simply be
defined by the gap between these two temperatures, that
is, δT (V ) = T2(V ) − T1(V ). The variations of 〈h (T, V )〉′′
with temperature for various sizes are illustrated in Fig. 3,
from which it can clearly be seen that the gap between the
two extrema decreases with increasing volume.

Finally from the obtained results for the finite size re-
sponse functions, four finite-size effects can be observed:

– the rounding effect of the discontinuities,
– the smearing effect of the singularities,
– the shifting effect of the transition point,
– the broadening effect of the transition region,

and to study quantitatively the volume dependence of these
effects, a numerical scaling analysis is carried out, which
will be presented in the next section.

4 Finite-size scaling analysis

4.1 Finite-size scaling

In statistical mechanics, it is known that only in the ther-
modynamic limit are phase transitions characterized by the
appearance of singularities in some second derivatives of the
thermodynamic potential, such as the susceptibility and
the specific heat. For a first-order phase transition, the di-
vergences are δ-function singularities, corresponding to the

104 105 106 107 108 109 110 111 112
0

200

400

600

800

1000

104 105 106 107 108 109 110 111 112

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

T ( MeV )

c 
( 

T
 , 

V
 )

 V=150fm3

 V=200fm3

 V=300fm3

 V=500fm3

 V=1000fm3 V=150fm3

 V=200fm3

 V=300fm3

 V=500fm3

 V=1000fm3

χ 
( 

T
,V

 )

T (MeV)

Fig. 2. Plot of (left) the susceptibility χ (T, V ) and (right) the specific heat density c (T, V ), versus temperature for different
system volumes
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Fig. 4. Illustration of the finite-size behavior of the suscepti-
bility χ (T, V ), the specific-heat density c (T, V ) and the second
derivative of the order parameter ∂χ/∂ T

finite discontinuities in thefirst derivatives of the thermody-
namic potential, while for a second-order phase transition
the singularity has a power-law form. For the QCD model
of the thermal deconfinement phase transition studied in
this work, δ-singularities appear in the susceptibility χ and
in the specific heat density c in the thermodynamic limit.
In finite volumes, these δ-functions are found to be smeared
out into finite peaks. To the finite-size effects, four useful
characteristic quantities can be associated as illustrated
on Fig. 4: the maxima of the peaks of the susceptibility
χmax
T (V ) and the specific heat density cmax

T (V ), the shift
of the transition temperature τT (V ) = Tc (V )−Tc (∞) and
the width of the transition region δT (V ). Each of these
quantities can be considered as a signature which may an-
ticipate the behavior in the thermodynamic limit, and is
expected to present a scaling behavior described by a power
law of the volume V = Ld, where L is the linear extension
of the volume and d the space dimensionality, character-
ized by a scaling critical exponent. For a first-order phase

transition, the set of power laws is:

χmax
T (V ) ∼ V γ ,

cmax
T (V ) ∼ V α ,

δT (V ) ∼ V −θ ,

τT (V ) = Tc (V ) − Tc (∞) ∼ V −λ ,

(21)

and it has been shown in the FSS theory [18–21] that in
this case, the scaling exponents θ, λ, α and γ are all equal
to unity, and it is only the dimensionality which controls
the finite-size effects.

At a second-order phase transition, the correlation
length diverges as ξ ∝ |T − Tc|−ν , and this we predict
the same power-law behavior as for a first-order transi-
tion, but with different scaling critical exponents, usually
given as:

χmax
T (V ) ∼ V γ/dν ,

cmax
T (V ) ∼ V α/dν ,

δT (V ) ∼ V −1/dν ,

τT (V ) = Tc (V ) − Tc (∞) ∼ V −1/dν .

(22)

The values of the scaling critical exponents may then
give an indication on the order of a phase transition and
are usually used as a criterion for the determination of this
latter [9, 11,22,23].

4.2 Numerical determination
of the scaling critical exponents
for the thermal deconfinement phase transition

In the following, we use a FSS analysis to recover the scaling
exponents θ, λ, α and γ for the thermally driven decon-
finement phase transition. For this purpose, we proceed by
studying the behavior of the response-function maxima,
their rounding as well as the shift of the effective transi-
tion temperature with varying volume. Let us note that the
determination of the location of the maxima of the finite-
size peaks as well as their heights is done in a numerical
way, and this yields a systematic error, which is estimated
and given for the determined scaling exponents.

4.2.1 Susceptibility, specific heat
and smearing scaling exponents

The data of the maxima of the rounded peaks of the sus-
ceptibility | χT |max (V ) and the specific heat density
cmax
T (V ) are plotted versus volume in Fig. 5 (left) and Fig. 5

(right),respectively, and their linearity with V can clearly
be noted. A numerical parameterization with the power-
law forms: | χT |max (V ) ∼ V γ and: cmax

T (V ) ∼ V α,
gives the values of the susceptibility scaling exponent:
γ = 1.01 ± 0.03, and the specific-heat scaling exponent:
α = 1.007±0.031, where the associated errors are system-
atic.
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Figure 6 illustrates the plot of the results of the width
δT (V ) with the inverse of the volume, and their fit to the
power-law form: δT (V ) ∼ V −θ. The obtained smearing
scaling exponent is: θ = 1.03 ± 0.03.

4.2.2 The shift scaling exponent

For the study of the shift of the transition temperature
τT (V ) = Tc (V ) − Tc (∞), we need to locate the effective
transition temperature in a finite volume Tc (V ). A way to
define Tc (V ) is to locate the maxima of the rounded peaks
of the susceptibility and the specific heat, shifted away
from the true transition temperature Tc (∞). Results of
the shift of the transition temperature obtained in this
way are plotted in Fig. 7 versus inverse volume. The shift
critical exponent obtained from a fit to the form: τT (V ) ∼
V −λ, is: λ = 0.876 ± 0.041. Such a value �= 1 suggests the
contribution of non-leading terms in the expression of the
volume variation of the shift. Different forms of the fit of
τT (V ), including additional terms with higher powers of
V −1, such as A1V

−λ + A2V
−2, and A1V

−λ + A2V
−2 +

A3V
−3, have been tested, and the obtained results show

that effectively, the shift critical exponent λ increases from
the value 0.876 and tends to 1, with a betterχ2. Other forms
have been tested, where the value of the shift exponent has
been fixed to 1, and finite-size correction terms have been
included. In this case also, we note that we obtain a better
χ2 value with the presence of the non-leading terms.

4.2.3 The shift from the binder cumulant

Another way of locating Tc (V ) is to consider the fourth-
order cumulant of the order parameter proposed in [3,19]
and defined as:

B4 (T, V ) = 1 − 〈h4 (T, V )〉
3 〈h2 (T, V )〉2 , (23)

which presents a minimum value at an effective transition
temperature whose shift from the true transition temper-
ature is of the order V −1 for a first-order transition. This
cumulant is a finite-size scaling function [3, 19, 20, 24, 25],
and has been proven to be a suitable indicator of the order
of the transition in a finite volume.

The expression for B4 (T, V ) as function of the inte-
gral terms, for this case of the deconfinement transition,
is after calculation:
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B4(T, V ) (24)

= 1 − (L11 − L01)(24(L15 − L05 − L04) − 12L03 − 4L02 − L01)
3 (2L13 − 2L03 − 2L02 − L01)2

.

Figure 8 (left) illustrates the variations of the fourth cu-
mulant of the order parameter with temperature for various
volumes, and shows that the locations of the minima in fi-
nite sizes Tmin (V ) are shifted to higher values from Tc (∞).
Data of the shift of the transition temperature obtained
in this way are plotted in Fig. 8 (right) versus inverse vol-
ume, and the scaling shift critical exponent obtained from
a fit to the form: τ ′

T (V ) = Tmin (V ) − Tc (∞) ∼ V −λ′
, is

λ′ = 0.883 ± 0.043. In this case also, non-leading terms
appear in the expression of τ ′

T (V ).

4.2.4 Parameterization of the order parameter
and the susceptibility

Within the model used in this work, the order parameter in
the limit of infinite volume being equal to 1 below the tran-
sition temperature and zero above, it can then be expressed
in a simple way using the Heaviside step function as:

〈h (T, V −→ ∞)〉 = 1 −Θ (T − Tc (∞)) . (25)

Such a parameterization has been used in [26], for a
similar case of a system of coexisting hadronic matter and
QGP phases. Using one of the known mathematical repre-
sentations of the smoothed step function Θ (T − Tc) , the
order parameter may then be expressed as:

〈h (T, V )〉 =
1
2

(
1 − tanh

(
T − Tc (V )
ΓT (V )

))
, (26)

where Tc (V ) is the effective transition temperature and
ΓT (V ) is the half-width of the rounded transition region,
which leads to the susceptibility expression :

χ (T, V ) =
−1

2ΓT (V ) cosh2
(
T−Tc(V )
ΓT (V )

) . (27)

The parameterization choice (26) is the most accepted
physically, and can be understood phenomenologically in
the context of the double Gaussian peaks model where
the obtained expressions of the order parameter and the
susceptibility are very similar to (26) and (27) [3, 9, 27].

An illustration of such parameterizations of the order
parameter at the volume V = 4000 fm3, and the suscepti-
bility at the volume V = 900 fm3 are presented in Fig. 9
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(left) and Fig. 9 (right), respectively, and the parameters
Tc (V ) and ΓT (V ) obtained from each fit are given.

The results for the width of the transition region and
the shift of the transition temperature from the parameter-
izations of the order parameter and the susceptibility are
fitted to power-law forms: τ fit(1)

T (V ) ∼ V −λ1 , τ fit(2)
T (V ) ∼

V −λ2 , δT fit(1) (V ) ∼ V −θ1 , and δT fit(2) (V ) ∼ V −θ2 which
give the scaling critical exponents:λ1 = 0.830±0.013 ,λ2 =
0.857±0.006 , θ1 = 0.990±0.015, and θ2 = 1.032±0.003 .

5 Conclusion

Our model has shown the influence of the finiteness of the
system size on the behavior of some response functions
in the vicinity of the transition point. The sharp transi-
tion observed in the thermodynamical limit, signaled by
discontinuities in the order parameter and in the energy
density at a transition temperature Tc (∞), is rounded off
in finite volumes, and the variations of these thermody-
namic quantities are perfectly smooth on the whole range
of temperature. The delta function singularities appearing
in the first derivatives of these discontinuous quantities,
i.e., in the susceptibility and specific heat density, are then
smeared out intofinite peaks ofwidths δT (V ) .Themaxima
of these peaks occur at effective transition temperatures
Tc (V ) shifted away from the true transition temperature
Tc (∞). An FSS analysis of the behavior of the maxima of
the rounded peaks of the susceptibility χmax

T (V ) and the
specific heat density cmax

T (V ), the width of the transition
region δT (V ), and the shift of the effective transition tem-
perature relative to the true one τT (V ) = Tc (V )−Tc (∞),
shows their power-law variations with the volume char-
acterized by the scaling critical exponents γ, α, θ, and λ,
respectively. Numerical results for these scaling exponents
are obtained and are in good agreement with our analyt-
ical results: γ = α = θ = λ = 1 obtained in [28], except
for the shift critical exponent which slightly deflects from
the analytical value 1. This may be due, on one hand,
to the difficulty of locating accurately the peaks of χ, c
and B4, especially in the case of large volumes for which
the peaks become very sharp and, on the other hand, to
the non-leading terms which contribute to the expression
of τT (V ). However, a first estimate of the scaling critical
exponents for the thermal deconfinement phase transition
within this model has been obtained, and our result ex-
pressing the equality between all scaling exponents and
the space dimensionality is a consequence of the singularity
characterizing a first-order phase transition and agrees very
well with the predictions of the standard FSS theoretical
approaches to a first-order phase transition [19,21,29–33]
and with those obtained in a rather different and rigorous
way, generalizing the FSS description of a first-order phase
transition [34]. Also, we note the good agreement with
the results of calculations using Monte Carlo methods in
both lattice QCD [8,35–38] and other models in statistical
physics [22,39,40].
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Abstract

This thesis deals with the decon�nement phase transition of a �nite system, using a

simple model of coexisting hadron and QGP phases in a �nite volume. The equations of

state of in�nite matter of the two phases are �rst used, and the �nite-size e¤ects on the

decon�nement phase transition are investigated by probing the behavior of some useful

quantities near the transition. It turns out that in a �nite size system, all singularities

occurring in the thermodynamic limit are smeared out and the transition is perfectly

smooth.

Secondly, the color-singletness requirement is imposed to the QGP phase, to satisfy

the color con�nement property of QCD, introducing an additional �nite-size e¤ect, and

leading to a shift of the transition point. A �nite size scaling analysis is then carried out

to determine the scaling critical exponents, characterizing the scaling behavior when

approaching the thermodynamic limit (V �!1), both in analytical and numerical

ways.

Since hadrons are not pointlike because of their composite character, they should

be treated as extended particles. To account for this, we then consider the excluded

volume e¤ects and examine their e¤ects on the decon�nement phase transition.

The �rst chapter of this thesis is devoted to a review of the physics of phase transi-

tions, as well as their classi�cation, and the second one overviews the phase transitions



in �nite systems.

In the third chapter, we study the decon�nement phase transition in a �nite system

within the phase coexistence model. Equations of state of in�nite matter are used

for a hadronic gas of pions and for a QGP consisting of gluons and massless quarks,

then the color-singletness condition is implemented using the projection method. An

approximate color-singlet partition function of the QGP is derived within the saddle

point approximation and is used in a �rst step to calculate mean values of physical

quantities. The expressions of these latter with T , � and V are obtained, in these two

cases, and both temperature-driven and density-driven decon�nement phase transitions

are then studied, at �xed chemical potential and temperature respectively. In a second

step, the exact integral expression of the color-singlet partition function of the QGP

is used to accurately determine mean values of several quantities probing the phase

transition in a �nite volume, without explicitly calculating the color-singlet partition

function itself.

The fourth chapter is dedicated to the numerical determination of the scaling critical

exponents characterizing the studied phase transition, by the mean of a �nite size

scaling analysis.

In the �fth chapter, the excluded volume correction is considered for the hadronic

phase, and his e¤ects on the decon�nement phase transition are investigated.

Last, the obtained results are discussed and compared to results of other models

and approaches.
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Introduction

It is well established that QCD at �nite temperature exhibits a typical behavior of

a system with a phase transition. At su¢ ciently high temperatures and/or densities,

quarks and gluons are no more con�ned into hadrons; strongly interacting matter seems

to undergo a phase transition from hadronic state to what has been called the �Quark-

Gluon Plasma� (QGP). This is logically a consequence of the quark-parton level of

the matter structure and of the dynamics of strong interactions described by the QCD

theory. The occurrence of this phase transition is important from a conceptual point

of view, as it implies the existence of a novel state of matter, which was present in the

early universe up to times � 10�5s, and which could occur in the core of heavy neutron

stars. The only available and experimental way to study the QCD decon�nement phase

transition is to try to create in the laboratory, by ultra-relativistic heavy ion collisions,

conditions similar to those in the early moments of the universe, right after the Big

Bang.

If ever the QGP is created in ultra-relativistic heavy ion collisions, the volume

within which the eventual formation would take place would certainly be �nite. Also,

in lattice QCD studies, the scale of the lattice space volume is �nite. This motivates

the study of the �nite size e¤ects on the expected decon�nement phase transition from

a Hadronic Gas (HG) phase to a QGP phase. These e¤ects are certainly important

12
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since statistical �uctuations in a �nite volume may hinder a sharp transition between

the two phases. Phase transitions are known to be in�nitely sharp, signaled by some

singularities, only in the thermodynamic limit [1]. In general, �nite size e¤ects lead

to a rounding of these singularities as pointed out in [2, 3]. However, even in such

a situation, it is possible to obtain information on the critical behavior. Large but

�nite systems show a universal behavior called �Finite-Size Scaling�(FSS), allowing

to put all the physical systems undergoing a phase transition in a certain number of

universality classes. The systems in a given universality class display the same critical

behavior, meaning that certain dimensionless quantities have the same values for all

these systems. Critical exponents are an example of these universal quantities.

This thesis is devoted to the study of the �nite size behavior for the decon�nement

phase transition. For this purpose, we use a simple QCD model described in [4], based

on the standard MIT bag model [5], and on the coexistence of hadronic and QGP

phases in a �nite system of volume V: The equations of state of the two phases are

then used, and mean values of useful thermodynamic quantities can be calculated.

Additionally, we implement the color charge con�nement property by requiring to

the QGP phase to be a colorless object in the color space. The color-singlet parti-

tion function of the QGP is derived using the group theoretical projection technique

formulated by Turko and Redlich [6], but can not be exactly determined and is usu-

ally calculated within the saddle point approximation in the limit VQGPT 3 >> 1 as in

[7, 8, 9, 10, 11]. It turns out, in our case, that the use of the obtained approximated

partition function for the calculation of a mean value within the de�nition of our model,

has as a consequence the absence of the decon�nement phase transition [12]. This is due

to the fact that the approximation used for the calculation of the color-singlet partition
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function breaks down at VQGPT 3 << 1, and this limit is attained in our case. This

has been noted in further works in which additional approximations have been used to

carry out calculations, as in [4, 9]. We propose in the following a method which allows

us to accurately calculate physical quantities describing well the decon�nement phase

transition at �nite volumes within the QCD model chosen, avoiding then the problem

arising at VQGPT 3 << 1 and without any approximation. We proceed by using the

exact de�nition of the color-singlet partition function for ZQGP in the de�nition of the

mean value of a physical quantity. A �rst analytical step in the calculation of the mean

value is then achieved, and an expression with integral coe¢ cients is obtained. The

double integrals are then carried out with a suitable numerical method at each value of

temperature and volume, and the behavior of the physical quantity of the �nite system

can so be obtained on the whole range of temperature, for various volumes, without any

restriction. Afterwards, scaling critical exponents characterizing the scaling behavior

of some quantities are determined using a numerical FSS analysis.

Since hadrons are not pointlike, they should be treated as extended particles. To

account for this, we then consider the excluded volume e¤ects and examine their in�u-

ence on the decon�nement phase transition.

This thesis is organized as follows. After the present introduction, the �rst chapter

is mainly an overview of the physics of phase transitions, and the standard classi�cation

existing in literature. Besides, we have tried to achieve a more general classi�cation of

phase transitions.

In the second chapter, phase transitions in �nite systems are reviewed. Finite-size

e¤ects are examined as well as �nite-size scaling.

In the third chapter, we study the decon�nement phase transition in a �nite system
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within the phase coexistence model. Equations of state of in�nite matter are �rst used

for a hadronic gas of pions and for a QGP consisting of gluons and massless quarks, and

some physical quantities are studied for both temperature and density driven decon-

�nement phase transition, since their expressions with T and � are obtained [13, 14].

Then, the color-singletness requirement is implemented in the partition function of the

QGP using the projection method. An approximate color-singlet partition function

of the QGP has been derived within the saddle point approximation and used in a

�rst step, in our works [15, 16], to calculate mean values of thermodynamical quan-

tities. Secondly, the exact integral expression of the color-singlet partition function

of the QGP is used to accurately determine mean values of several quantities probing

the phase transition in a �nite volume, without explicitly calculating the color-singlet

partition function itself.

The fourth chapter is dedicated to the numerical determination of the scaling critical

exponents characterizing the studied phase transition, by the mean of a �nite size

scaling analysis.

In the �fth chapter, the excluded volume correction is implemented for the hadronic

phase, and their e¤ects on the decon�nement phase transition are investigated.

Last is a discussion of the obtained results and a conclusion to our work.



Chapter 1

General Study of Phase Transitions

1.1 Introduction

The study of the physics of phase transitions phenomena occurring in nature is con-

sidered to be a subject of great interest to physicists. It is easy to understand the

importance of this subject because �rstly the list of systems exhibiting interesting

phase transitions continues to expand, including the Universe itself, and secondly the

theoretical framework of equilibrium statistical mechanics has found applications in

very di¤erent areas of physics like string �eld theories, elementary particle physics,

physics of the chaos, condensed matter ... etc.

Phase transitions are abrupt changes in the global behavior and in the qualitative

properties of a system when certain parameters pass through particular values. Tech-

nically, phase transitions are characterized by the appearance of singularities in some

thermodynamic quantities, in the thermodynamical limit where the volume V and the

number of particles N go to in�nity, while the density � =
N

V
remains constant. That

is, at the transition, some global behavior is not analytic in the in�nite volume limit.

16



1. General Study of Phase Transitions 17

Examples of phase transitions are:

� The transitions between the solid, liquid, and gaseous phases (evaporation, boil-

ing, melting, freezing, sublimation, etc.).

� The transition between the ferromagnetic and paramagnetic phases of magnetic

materials at the Curie point.

� The emergence of superconductivity in certain metals when cooled below a critical

temperature.

� Quantum condensation of bosonic �uids, such as Bose-Einstein condensation and

the super�uid transition in liquid helium.

� The breaking of symmetries in the laws of physics during the early history of the

universe as its temperature cooled.

In this chapter, we want to give an overview on the physics of phase transitions, and

the related features. We�ll look carefully at how the thermodynamic variables behave

close to the transition point, in order to compare the behavior at �rst- and higher-

order transitions, and to de�ne the critical exponents. The QCD phase transition is

also reviewed since it is subject of our study in this thesis, as well as some results of

lattice QCD.
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1.2 Review of Some Useful Thermodynamic Func-

tions

The order of a phase transition is one of the basic thermodynamic classi�cations. It

concerns the thermodynamic potential and its derivatives at the transition. In Tables

(1.1) and (1.2), we recall the thermodynamic formulas for a magnet and a �uid [15],

where � =
1

T
with the units chosen as: kB = ~ = c = 1.

First derivatives of the physical potential (the free energy for the �uid system) with

respect to T; H or V lead to the internal energy U , the entropy S, the magnetizationM

or the pressure P; according to the equations in Tables (1.1) and (1.2). On the second

level of derivatives, we have the speci�c heat C at constant H or M (respectively

at constant V or P for a �uid) and the isothermal susceptibility �T for a magnet

(respectively the isothermal compressibility �T for a �uid).

In the in�nite volume limit, a phase transition is signalled by a singularity (in the

sense of non analyticity) in some thermodynamic function. On whether a discontinuity

occurs in one of the �rst derivatives or of the second or higher derivatives of the

thermodynamical potential 
; depends the order of the transition and the class to

which the phase transition belongs. But before enumerating the di¤erent classes of

phase transitions, let us introduce in the following a characteristic quantity of the

transition representing the main qualitative di¤erences between the various phases,

whose evolution allows the determination of the nature of the phase transition, namely

The Order Parameter.
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Thermodynamic variables for a magnet
First law: dU = TdS �MdH

Partition function
Z(T;H) =

P
r e

��Er

#
Free energy
F = �T lnZ

. # &
Internal energy Entropy Magnetization

U =
�@ lnZ
@�

S = �
�
@F

@T

�
H

M = �
�
@F

@H

�
T

# # #
Speci�c Heat Speci�c Heat Isothermal susceptibility
(constant H) (constant X = H;M)

CH =

�
@U

@T

�
H

CX = T

�
@S

@T

�
X

�T =

�
@M

@H

�
T

Table 1.1: Thermodynamic variables for a magnetic system

Thermodynamic variables for a �uid
First law: dU = TdS � PdV

Partition function
Z(T;H) =

P
r e

��Er

#
Free energy
F = �T lnZ

. # &
Internal energy Entropy Pressure

U =
�@ lnZ
@�

S = �
�
@F

@T

�
V

P = �
�
@F

@V

�
T

# # #
Speci�c Heat Speci�c Heat Isothermal compressibility
(constant V ) (constant X = V; P )

CV =

�
@U

@T

�
V

CX = T

�
@S

@T

�
X

�T = �
1

V

�
@V

@P

�
T

Table 1.2: Thermodynamic variables for a �uid system
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1.3 Order Parameter of a General x-driven phase

transition

Thermodynamical systems can exist in various stable homogeneous states (phases)

which might di¤er in their structure, symmetry, order and dynamics. We represent

this stability by the presence of an order in the system. Any modi�cation occurring

in one parameter can lead to a macroscopic change in the state and alter its stability,

and as a consequence there is a wholesale reorganization of matter, even locally. Then,

the system undergoes an abrupt change from one phase to another, called a phase

transition, whose signature is a singularity or discontinuity of some observable physical

properties. A �rst mathematical description of phase transitions was given by Gibbs

[16] who characterized a phase transition by a point of non-analyticity in one or more

thermodynamic functions. The apparition of a phase transition is nowadays interpreted

as coming from the strong �uctuations of the system close to the critical point. At

the critical point, the system exhibits a singular behavior and the phase transition

is known as a critical phenomenon. Kramers was the �rst who suggested that the

singular behavior only appears when the thermodynamic limit is taken ( the volume V

and the number of particles N go to in�nity, with a �xed density � =
N

V
): This view

was demonstrated theoretically through the famous work of Lee and Yang published

in 1952 [17].

If we consider a phase transition between two di¤erent phases, we have certainly one

of the phases as statistically more ordered (Ordered Phase) than the other (Disordered

Phase). In an other sense, we can speak about a disorder-order phase transition which

results from the loss of stability of the disordered (parent) phase. The stability is
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Transition Order Parameter hOi
Ferromagnetic Transition Spontaneous Magnetization

Water Gas-Liquid Transition Density Di¤erence between Liquid and Gas
Liquid Crystal Transition Degree of Orientational Order

Superconducting Transition
Energy Gap between the Ground State

and the Spectrum of Single-Particle Excitations

Table 1.3: Order parameters of some phase transitions

restored by a distortion of the parent phase and in this way a distorted (ordered)

phase is created. The most useful function generally used to characterize this order

is a some appropriate thermodynamical quantity which has a non-vanishing value in

the ordered phase and a zero value in the disordered phase. We commonly call this

quantity "Order Parameter", since its value re�ects the strength and kind of ordering

in the system, and we�ll note it O in the following. Then by de�nition:8><>: hOi = hOi+ , the system is in an ordered phase

hOi = hOi� < hOi+ , the system is in a disordered phase

in which h:::i means the statistical average.

An order parameter may be a scalar quantity or may be a multicomponent (or

even complex) quantity and is de�ned di¤erently in di¤erent kinds of physical systems.

We give in Table (1.3) some examples of order parameters as de�ned in special known

systems [18].

In both experimental and numerical Monte Carlo studies, a complete study of the

behavior of a well chosen order parameter hOi at the phase transition is usually a

key to determine the nature of the phase transition and gives a good way to calculate

its most important thermodynamical properties. When studying the phase transition,

we need then to de�ne the varying thermodynamical parameter x (temperature (T ),

magnetc �eld (H), chemical potential (�), ...) whose change may cause the phase



1. General Study of Phase Transitions 22

)(xO
)(xO +

)(xO −

x

)(xO
)(xO +

)(xO −

x
Figure 1.1: Evolution of the order parameter from the ordered phase to the disordered
phase as a function of the thermodynamic x�variable driving the phase transition.

transition and then, on which it is interesting to study the dependence of hOi. We

speak about an x-driven phase transition, and therefore we describe the phase transition

with the help of diagrams where the order parameter is plotted against the respective

thermodynamic parameter x, i. e., hOi = hOi (x): Going from the ordered phase to the

disordered phase, the evolution of hOi (x) from hOi+ (x) to hOi� (x); Fig. (1.1), can

have mathematically di¤erent behaviors. According to this, we can distinguish three

di¤erent classes of phase transitions, which have quite di¤erent qualitative properties

near the transition point.

1.4 Standard Classi�cation of Phase Transitions

Discontinuous or First Order Phase Transitions (1st-OPT) are characterized by

a �nite discontinuity in hOi (x) (i. e. basically in anything except the free energy, which

of course must be equal for the two phases at the transition point). The transition point
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will be marked by a sudden and drastic jump from one phase (hOi+ (x)) to the other

(hOi� (x)) as illustrated in Fig. (1.2). For example, in the case of a ferromagnet there

is a jump in the magnetization, if one passes through the transition temperature from

the phase of broken symmetry to the symmetric phase, and the phase transition is then

of �rst order.

Second Order Phase Transitions (2nd-OPT), on the other hand, are charac-

terized by a continuous but nonanalytic behavior of hOi (x). A �nite discontinuity

appears in the �rst derivative of hOi (x) as illustrated in Fig. (1.3). The transition to

superconductivity without an external magnetic �eld is an example of phase transitions

of this kind, where the discontinuity of the speci�c heat at Tc is due to a kink in the

entropy. When the discontinuity in the �rst derivative of hOi (x) becomes in�nite as

in Fig. (1.4), the phase transition is called a continuous Phase Transition (c-PT).

Because of the characteristic shape of the �rst derivative of the order parameter in this

case, such phase transitions are called ���Transitions�. An interesting example of

such phase transitions is the transition to super�uidity in 4He, in which the disconti-

nuity in the speci�c heat is not due to a kink in the entropy but to a vertical tangent

at Tc [19].

This is somewhat a resume of the Ehrenfest and Fisher classi�cations. The Ehren-

fest classi�cation scheme was the �rst attempt at classifying phase transitions,

based on the degree of non-analyticity involved. Under this scheme, phase transitions

were labelled by the lowest derivative of the thermodynamic potential that is discontin-

uous at the transition, such that is called of nth-Order the phase transition for which

there is a discontinuity at the nth-order derivative of an appropriate thermodynamic

potential. Though useful, Ehrenfest classi�cation is �awed since it didn�t account for
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Figure 1.2: Behavior of the order parameter as a function of the thermodynamic
x�variable driving the transition, for a �rst-order phase transition.
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∂
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Figure 1.3: Behavior of the order parameter and its �rst derivative with respect to
the thermodynamic x�variable driving the transition, near the critical point xc for a
second-order phase transition.
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Figure 1.4: Behavior of the order parameter and its �rst derivative with respect to
the thermodynamic x�variable driving the transition, near the critical point xc for a
��transition.

the case of a divergence in the derivatives of the thermodynamic potential. After this,

a more complete classi�cation which is Fisher classi�cation scheme came, under

which is denoted by 1st-Order phase transition the case for which the 1st derivative

of the thermodynamic potential is discontinuous and by �higher order phase tran-

sition� or �continuous phase transition� the case for which the 1st derivatives

of the thermodynamic potential are continuous while the 2nd derivatives are either

discontinuous or in�nitely divergent.
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1.5 Mathematical description of general x-driven

phase transitions and new approach to their

classi�cation

To achieve a more general classi�cation of phase transitions, let us start from a general

case of an x-driven phase transition described by an order parameter hOi (x) having

a behavior schematized in Fig. (1.2) in which we suppose a �nite discontinuity at the

transition point xc . The parent phase is described by hOi+ (x) and the �nal phase by

hOi� (x): When the �nite discontinuity becomes smaller getting close to zero, we can

have a continuous Phase Transition (c-PT) case from the initial discontinuous Phase

Transition (d-PT) case. This fact allows to consider the d-PT case as more general

than the c-PT one. We can then write:8><>: hOi (x) = hOi� (x) if x � xc

hOi (x) = hOi+ (x) if x � xc ;
(1.1)

from which a formal analogy with the de�nition of the causal temporal green function

as well known in the standard statistical quantum �eld theory is to be noted. Then by

using the Heaviside step- function �(x); we rewrite eq. (1.1) in the compact form :

hOi (x) = [1��(x� xc)] hOi+ (x) + �(x� xc) hOi� (x): (1.2)

This formula will reveal a great importance in what follows since its mathematical

manipulation, as we shall see, permits to construct a new classi�cation of the existing

phase transitions, which agrees very well with the Fisher�s classi�cation and gives a

clari�cation to the Ehrenfest one.

We suppose now that the singular behavior manifested by the phase transition at
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xc appears in the nth-order derivative:
@n hOi
@xn

(x ! xc) � 1; the f(n� 1)-orderg

derivatives being all continuous functions. We need then to derive the nth-order

derivative of hOi (x):

hOin (x) = ��(x� xc)� hOin�1 (x) + [1��(x� xc)] hOi+n (x) + �(x� xc) hOi�n (x);

(1.3)

with: 8>><>>:
hOin (x) =

@n hOi (x)
@xn

� hOin (x) = hOi
+
n (x)� hOi

�
n (x):

(1.4)

The possible mathematical cases in which we can have a singularity corresponding

to our phase transition are the followings:

1. Case N�1: � hOin�1 (x)=�nite and hOi
�
n (x)=�nite. We have a �nite disconti-

nuity in hOin�1 (x) and the singularity is dominated by the �(x� xc) function:

hOin (x) � �(x� xc); (1.5)

) The phase transition is called nth-Order d-PT.

2. Case N�2: � hOin�1 (x) = 0 and hOi
�
n (x) = 1. We have no discontinuity in

hOin�1 (x) and the singularity is dominated by divergent hOi
�
n (x):

hOin (x) � [1��(x� xc)] hOi+n (x) + �(x� xc) hOi�n (x); (1.6)

) The phase transition is called nth-Order c-PT.

3. Case N�3 : � hOin�1 (x) = �nite and hOi
�
n (x) =1. We are opposite a special

case, in which the singularity comes from both �(x� xc) and divergent hOi�n (x):

Until now, to our knowledge, we have not observed any experimental phase tran-

sition manifesting the two di¤erent kinds of singularities at the same time.
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4. Case N�4 : � hOin�1 (x) = 0 and hOi�n (x) = �nite. In this case the phase

transition does not manifest any singularity in the hOin (x): We must look for it

in the (n+ 1)-order derivative, and then similar cases may appear at this level.

We can then summarize our classi�cation by saying that we have in reality two

di¤erent kinds of phase transitions: discontinuous phase transitions (d-PT) and con-

tinuous phase transitions (c-PT). The order of a d-PT is nothing but the order of the

derivative of the order parameter at which the singularity appears as a �-function:

nth�Order d�PT class

hOin�1 (x) � �(x� xc); hOin (x) � �(x� xc) ;

which agrees with the �rst and traditional classi�cation formulated by Ehrenfest (1933).

For the c-PT, the singularity comes from a divergent hOi�n (x) and with the same

considerations, we can speak about the order of the c-PT as the order of the derivative

hOin (x) having a divergent behavior. We note that this case of an in�nite singularity

in the hOin (x) fails to the Ehrenfest classi�cation because :

nth�Order c�PT class

Lim
x!xc

hOin (x) � 1; , hOin�1 (x) / (x� xc)
� ;

which gives a constraint on the value of the critical exponent � : � � 1 � 0.

We �nish our discussion by a diagrammatic view which may explain more clearly

the di¤erent kinds of phase transitions existing in nature.
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hOi (x)

. &

DiscontinuoushOi (x) at xc Continuous hOi (x)

# . &

hOin=1 (x) � �(x�xc) Discontinuous hOin=1 (x) Continuous hOin=1 (x)

. & . &

Finite In�nite Discont.hOin=2 (x) Cont.hOin=2 (x)

# # ...
...

hOin=2 (x) � �(x�xc) Lim
x!xc

hOin=1 (x) � 1
...

...

+ + + ...
...

1st-O d-PT 2nd-O d-PT 1st-O c-PT ...

1.6 Critical Behavior and Exponents

From thermodynamical point of view, a critical point is characterized by the type

of singularity of the thermodynamic potential and its derivatives with respect to the

relevant variables at this point. It turns out to be very important to the theory of

critical phenomena to understand more carefully the form of the singular behavior

of these quantities near the critical point. Considering the critical behavior, it is

convenient to speak in terms of the reduced distance from the critical point:

ex = x� xc
xc

; (1.7)

then, the thermodynamic functions have singularities at ex = 0: Data from multiple

experiments as well as results from a number of exactly soluble models show that these

thermodynamic functions can be described by a set of simple power laws in the vicinity
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of the critical point xc, characterized by powers, with a customary notation in terms

of greek letters, called Critical Exponents. Then the critical exponent associated with

a function F (ex) is:
� = limex!0

ln jF (ex)j
ln jexj ; (1.8)

assuming that the limit exists, or as it is more usually written:

F (ex) � jexj� : (1.9)

The proportionality sign � is to remind that eq. (1.9) only represents the asymptotic

behavior of the function F (ex) as ex! 0, and is then an asymptotic law. More generally,

one might expect:

F (ex) = A jexj� �1 + bex�1 + :::
�
; �1 > 0: (1.10)

It can easily be seen that su¢ ciently near the critical point, the behavior of the

leading term dominates.

De�nitions of the most commonly used critical exponents connected to the most

important quantities are given in the following, for thermally driven phase transitions

in �uids and/or magnets.

� The exponent �

This exponent describes the divergence of the speci�c heat CV for a �uid or CH for

a magnet near the critical point:

CV � jtj�� ; CH � jtj�� ; (1.11)

where the deviation in temperature from the critical temperature Tc has been noted t:

� The exponent �
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The critical exponent � is connected to the density di¤erence
�
�l � �g

�
for a �uid

system or the spontaneous magnetization M for a magnetic system. It shows how the

order parameter varies with the varying temperature T as Tc is approached.

�
�l � �g

�
� (�t)� ; M � (�t)� : (1.12)

� The exponent 


This exponent describes the critical variation at t! 0 of the isothermal compress-

ibility �T for a �uid and the isothermal susceptibility �T for a magnet:

�T � jtj�
 ; �T � jtj
�
 : (1.13)

� The exponent �

The exponent � describes the variation of the di¤erence in Pressure (P � Pc) with�
�l � �g

�
(�uid) and of the �eld H with magnetization M (magnet) along the critical

isotherm T = Tc:

(P � Pc) �
���l � �g

��� sgn(�l � �g); H � jM j� sgn(M); (1.14)

where sgn is the sign function:

sgn(z) =

8><>:
z

jzj if z 6= 0

0 if z = 0 :
(1.15)

� The exponent �

The critical exponent � is associated to the critical variation at t ! 0 of the



1. General Study of Phase Transitions 32

connected two point correlation function G(r) 1, where r denotes the separation of the

two points, at P = Pc for a �uid or at H = 0 for a magnet.

G(r) � r�(d�2+�): (1.16)

Here d is the dimensionality of the system.

� The exponent �

The last exponent concerns the correlation length which is a measure of the range

of the correlation function.

� � jtj�� ; t! 0; H = 0: (1.17)

The exponent de�nitions are summarized for �uid and magnetic system in Tables

(1.4) and (1.5) respectively [15, 20].

1Thermodynamic variables like the magnetization or the entropy are macroscopic properties. A
much fuller understanding of phase transitions can be obtained by considering what happens on a
microscopic level. To be able to do this in a more qualitative way, we introduce correlation functions
[15]. Let the order parameter O be written as a volume integral over an order parameter density

o(�!r ) as: O =
�Z

d3r o(�!r )
�
; where h:::i represents the statistical average by which one obtains

thermodynamic functions. The correlation function de�ned as: G (�!r ) = ho(�!r )o(0)i � ho(�!r )i ho(0)i ;
measures how the value of the order parameter at one point is correlated to its value at some other
point. Away from the critical point, far away points (r !1) become uncorrelated and hence the
correlation length decays to zero. This decay is exponential with the form: G (�!r ) � r��e�r=�;
where � is some number, and � the correlation length which is a measure of the range over which
�uctuations in one region of space are correlated with those in another region. Experimentally, the
correlation length is found to diverge at the critical point, which means that very far points become
correlated. Thus the system near a second-order PT �loses memory�of its microscopic structure and
begins to display new long-range macroscopic correlations. Evidence form experiments and exactly
soluble models shows that here the correlation function decays as a power law: G (�!r ) � r�(d�2+�):
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Speci�c heat at constant volume CV � jtj��

Liquid-gas density di¤erence
�
�l � �g

�
� (�t)�

Isothermal compressibility �T � jtj�


Critical isotherm (t = 0) P � Pc �
���l � �g

��� sgn(�l � �g)
Pair correlation function at Tc G(r) � r�(d�2+�)

Correlation length � � jtj��

Table 1.4: De�nitions of the most commonly used critical exponents for a �uid system

Zero-�eld speci�c heat CH � jtj��

Zero-�eld magnetization M � (�t)�
Zero-�eld isothermal susceptibility �T � jtj

�


Critical isotherm (t = 0) H � jM j� sgn(M)
Pair correlation function at Tc G(r) � r�(d�2+�)

Correlation length � � jtj��

Table 1.5: De�nitions of the most commonly used critical exponents for a magnetic
system

1.7 Universality, Scaling and Renormalization Group

Theory

Having de�ned the critical exponents, we need to justify why they are interesting, and

indeed why they are more interesting than the critical point itself. It turns out that,

whereas the critical point depends sensitively on the details of the interatomic inter-

actions, the critical exponents are to a large degree universal depending only on a few

fundamental parameters, consisting in the dimensionality of space, the symmetry of the

order parameter and the range of the interaction. Simple systems, or numerical models

appropriate for computer simulations, are used to describe the critical behavior. The

results are then extended to more complex systems: by making sure that one is working

in the right dimension and that the symmetry is correctly represented by a model, it

can be used to obtain critical exponents for all the systems within its universality class.
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Universality
Class

Symmetry of
Order Parameter

� � 
 � � �

2-d Ising 2-component scalar
0

(log)
1=8 7=4 15 1 1=4

3-d Ising 2-component scalar 0.10 0.33 1.24 4.8 0.63 0.04
3-d X-Y 2-dimensional vector 0.01 0.34 1.30 4.8 0.66 0.04

3-d Heisenberg 3-dimensional vector -0.12 0.36 1.39 4.8 0.71 0.04
2-d Potts; q = 3

q = 4
q-component scalar

1=3
2=3

1=9
1=12

13=9
7=6

14
15

5=6
2=3

4=15
1=4

Table 1.6: Examples of universality classes with the corresponding symmetry of the
order parameter and the values of the critical exponents

Striking evidence for this comes when comparing the value of the critical exponent �

for phase transitions in completely di¤erent systems, with a scalar order parameter,

such as the liquid-gas phase transition, magnets with uniaxial anisotropy in spin space,

phase separation in the binary �uid mixture and the lattice models of �1 spins (Ising

models); in all these cases � is the same, 1=3, and thus all four systems fall in the same

universality class in the sense that they are described by the same scaling relations.

The Ising model, however, is much simpler than the other experimental systems, and

it has been used extensively in numerical simulations [21].

Some universality classes are listed in Table (1.6) with a description of the symmetry

of the corresponding order parameter and the values of the critical exponents [15].

Universality means that systems di¤ering in microscopic details (e.g. di¤erent types

of interaction potentials, ion species, ... etc) exhibit identical collective behavior, or as

termed by Kadano¤ [22]: "All phase transition problems can be divided into a small

number of di¤erent classes depending upon the dimensionality of the system and the

symmetries of the ordered state. Within each class, all phase transitions have identical

behavior in the critical region, only the names of thermodynamic variables are changed".

Not all of the critical exponents de�ned in the previous section are independent
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Rushbrooke�s law �+ 2� + 
 � 2
Gri¢ ths law �+ � (1 + �) � 2
Fisher�s law (2� �) � � 

Josephson�s law d� � 2� �

Table 1.7: Scaling laws of critical exponents

and using a number of thermodynamic arguments one can derive a series of exponent

relations called scaling laws. Rushbrooke (1963), Gri¢ ths (1965), Josephson (1967) and

Fisher (1969) were the �rst to �nd certain inequalities between the critical exponents.

By experimental evidence, it turned out later that these are in fact equalities. Table

(1.7) resumes these scaling laws.

Universality in critical phenomena is described by the Renormalization Group The-

ory. The �rst work describing the fundamental concepts of the renormalization group

approach was the paper of K. G. Wilson published in 1971 [23]. The renormalization

group works by changing the length scale of a system by removing degrees of freedom,

using renormalization group transformations which relate a system with correlations

on the scale � to another system with correlations on the scale �=b, where the scale

factor b > 1: Only at criticality will the properties of the system remain unaltered by

the change in scale and hence the critical behavior is described by the so-called �xed

points of the transformation, and this leads to the important result that the thermody-

namic functions can be written in a scaling form. The equality of the critical exponents

above and below the critical temperature and the relations between them then follow

immediately [15, 21, 24].

We note that the ideas of Universality, Scaling and Renormalization are important

concepts from which a modern understanding of critical phenomena has emerged, and

H.E. Stanley has recently pointed out in his famous article [25] that: "Scaling, Univer-
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sality and Renormalization are the three pillars of the current understanding of modern

critical phenomena".

1.8 QCD phase transition and the Hagedorn tem-

perature

Today, we think that we arrived at a deep level of structure of matter. All matter in the

universe is constructed from Quarks and Leptons: the Quark-Lepton Level. These fun-

damental particles are spin 1
2
: �fermions�and are classi�ed into three �generations�(or

families) and interact through the exchange of gauge bosons. Both quarks and leptons

are structureless at the smallest distances currently probed by the highest energy accel-

erators (current limits of resolution or present observational limit � 10�21m = 10�6fm

[26]).

If we heat and/or compress very highly a strongly interacting (hadronic) matter,

we arrive to such extreme conditions which do not permit the hadrons to survive,

and above a certain high temperature Tc and/or high density nc; the dissolution of

the hadronic matter into its components can occur, and a weakly interacting system of

nearly free quarks and gluons can be created. Since quarks and gluons play similar roles

in Quantum Chromo-Dynamics (QCD) than the electrons and photons in Quantum

Electro-Dynamics (QED), this phase is generally known as the Quark Gluon Plasma

(QGP), Partonic Plasma or Non-Abelian Plasma. In this naive picture, the phase

diagram of QCD contains two important regions:

� A Hadronic Gas (HG) phase at low temperature (density).

� A QGP phase at high temperature (density).
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The qualitative di¤erences between these two phases lead to speculate the existence

of a phase transition connecting them, commonly called the QCD Decon�nement Phase

Transition (DPT), which is as old as the quark structure of matter [27, 28, 29, 30].

The nature and the character of this QCD DPT are still much debated questions.

Its existence, however, has been partly supported by Lattice QCD calculations and

the Cosmological Standard Model predictions. Experimentally, the only way to study

this QCD phase transition is to try to recreate, in ultra-relativistic heavy ion colli-

sions, conditions similar to those which occurred in the early times of the universe

(� 10�6s), immediately after the big bang. To understand the physics of this QCD

DPT, numerous studies have been performed using phenomenological approaches to

the two-phase nature of strongly interacting matter; the �Statistical Bootstrap Model�

(SBM) of Hagedorn is one of those [31, 32]. It is a statistical model based on the

observation that hadrons not only form bound and resonance states but also decay

statistically into such states if they are heavy enough. This leads to the concept of

a sequence of heavier and heavier bound and resonance states, each being a possible

constituent of a still heavier resonance, while at the same time being itself composed of

lighter ones. We call these states �clusters�or ��reballs�. The thermodynamical study

of nuclei collisions shows that when the impact energy gets very high, the temperature

in the collision, estimated from the energy distribution of the emitted fragments, does

not increase as fast as the model suggests. The temperature seems to approach some

kind of plateau as the collision energy grows. This is due to the fact that the energy

in the collision is high enough to convert into mass, and then higher-mass hadrons

are created: the temperature in the collision remains the same until the most massive

hadron has been created, then it starts to increase again.
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The same situation occurs during the liquid-vapor transition in water: the temper-

ature of boiling water does not change during the phase transition when water enters

its vapor phase. Hagedorn suggested that this limiting temperature, of the order of

pion mass, characterizes the limit of existence of hadronic matter.

Several estimates of this temperature from the SBM have been given, and here are

some of them [32]:

� The Frautschi-Yellin bootstrap equation (BE) yields with pions only:

T0 � 0:145GeV

� If K and N were added to the input: T0 � 0:135GeV

� Hamer and Frautschi solve their BE by numerical iteration and read o¤:

T0 � 0:140GeV

� Nahm derives a sum rule from which he found, under di¤erent assumptions:

T0 � 0:154GeV

or T0 � 0:142GeV

Actually, this singular temperature is interpreted as the temperature where (for

chemical potential � = 0) the phase transition from hadronic matter to quark-gluon

plasma occurs.

Another widely used model describing the QCD phase transition is the thermody-

namic approach with two-phase matter equations of state, which will be used in the

present work, from chapter 3 on.
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1.9 Lattice QCD

In 1974, Wilson proposed a formulation of quantum chromodynamics (QCD) on a

discrete space-time lattice [33]. A few years later, Creutz demonstrated that this

formulation was a promising basis for the successful numerical simulation of the theory

[34]. The simulation method is the most promising currently available method for

deducing nonperturbative characteristics of QCD at �nite temperature and/or density

[35].

In the past several years, considerable progress has been made and lattice simu-

lations continue providing results on the equation of state of QCD [36, 37, 38, 39],

the transition temperature [40, 41], the order of the decon�nement phase transition

[37, 40, 42, 43], as well as the QCD phase diagram [40, 44, 45]. It has been shown that

the nature of this transition depends strongly on the number of colors (Nc), the num-

ber of �avors (Nf) and the current quark masses as revealed by several lattice QCD

calculations (see for example [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

For in�nite or very large quark masses, the transition is a 1st order decon�ning tran-

sition. In the opposite case of zero quark masses, one may have a 2nd order chiral

phase transition for two �avors or a 1st order chiral phase transition for three �a-

vors. For intermediate masses, the transition is just a rapid crossover, meaning that

thermodynamic quantities change very rapidly in a narrow temperature interval [61].



Chapter 2

Phase Transitions in Finite-Size

Systems

2.1 Introduction

Phase transitions in statistical physics are known to be in�nitely sharp only in the

thermodynamic limit, where the volume V and the number of particles N go to in�nity,

while the density � =
N

V
remains constant. Only in this limit is the thermodynamical

potential or any of its derivatives singular at the critical point. However, real systems

and systems we simulate are �nite.

In general, �nite size e¤ects lead to a mixed phase system and a rounding of the

transition, rendering the order of the transition di¢ cult to infer. The main care is

then how to sign a possible phase transition in a �nite system. It turns out that we

can extract the true critical behavior of in�nite systems from calculations on �nite sys-

tems, by studying how some characteristic thermodynamical quantities vary with the

size of the system, namely by a Finite Size Scaling (FSS) analysis. Studies in statisti-

40
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cal physics have shown that despite the apparent diversity in the underlying structure

of systems undergoing phase transitions, these latter take place with some universal

global behavior, depending only on the range of interaction of the forces at play and the

dimensionality of the problem. This means the singular behavior of some characteris-

tic observables near criticality is identical for many systems when appropriately scaled.

This universality allows the put of all the physical systems undergoing a phase tran-

sition in a certain number of universality classes. The systems in a given universality

class display the same critical behavior, meaning that certain dimensionless quantities

have the same values for all these systems. Critical exponents are an example of these

universal quantities. The determination of critical exponents has long been one of the

main interests for both analytical calculations and numerical simulations.

This chapter is mainly an overview of phase transitions in �nite size systems. The

�nite size e¤ects are examined and the �nite size scaling analysis permitting the deter-

mination of the scaling critical exponents is reviewed for both �rst and second order

phase transitions.

2.2 Thermodynamic Limit

In statistical mechanics, the existence of phase transitions is associated with singu-

larities of the thermodynamic potential in some region of the thermodynamic space.

These singularities occur only in the thermodynamic limit, where the volume V and

particle number N go to in�nity, with a constant density � =
N

V
. This fact could be

understood by analyzing the partition function which contains all of the essential infor-

mation about the system under consideration, and whose general form for a classical
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system is:

Z =
X

all states

e��H; (2.1)

where H is the Hamiltonian of the system, � =
1

T
with the units chosen as: kB = ~ =

c = 1. The sum in eq. (2.1) is over all possible states of the system and thus depends

upon the size of the system and the number of degrees of freedom for each particle. For

a �nite system, the partition function is a �nite sum of analytical terms, and therefore

it is itself an analytical function. It is necessary to take an in�nite number of terms

to obtain a singularity, and this has been demonstrated through the work of Lee and

Yang in [17].

Thus, in a �nite system no singularity occurs and, strictly speaking, no phase

transition occurs. The question of why a �nite system can apparently describe phase

transitions and the relation of this phenomenon with true phase transitions in in�nite

systems is the main subject of the Finite Size Scaling (FSS) theory [2, 62, 63, 64, 65, 66].

Finite Size Scaling is not only a formal way to understand the asymptotic behavior of

a system when the size goes to in�nity. In fact, the theory gives us numerical methods

capable of obtaining accurate results for in�nite systems only by studying very small

systems.

2.3 Finite Size E¤ects and Useful Thermodynamic

x�Response Functions

In the thermodynamic limit and at criticality, the phase transition is signaled by a diver-

gence (in�nite singularity) manifested by some thermodynamic function F (x;1). This

singularity is according to our classi�cation in chapter 1 given by the �(~x)�function
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for a discontinuous phase transition (d-PT), while for a continuous phase transition

(c-PT), the singularity has the form of a power-law ~x��function. Now, if the volume

is �nite at least in one dimension with a characteristic size L = V 1=d, the singularity

is smeared out into a peak with �nite mathematical properties, and three e¤ects can

be observed [3, 62, 67, 68]:

1. The rounding e¤ect of the maximum of the in�nite singularity

The In�nite height of the xc(1)-singularity (F (xc(1);1) = 1) becomes �nite

(F (xc(L); L) = finite)

2. The shifting e¤ect of the transition point position

The position of the xc(1)-singularity is shifted to xc(L)

3. The widening of the transition region around the transition point

The xc(1)-singularity acquires a �nite width (�x(L) = finite) around the xc(L)-

maximum.

The most important feature in a �nite volume is then the localization of the �nite

size transition point: xc(L). If we analyze the �nite peak of F (x; L) when approaching

the thermodynamic limit, we see that it tends to the real initial singularity. It is

then logical to say that the location of the maximum of the rounded peak of F (x; L)

determines the �nite-size transition point xc(L); i. e.,�
@hF (x; L)i

@x

�
x=xc(L)

= 0 : (2.2)

For each of the FSE described previously, we may associate a scaling critical ex-

ponent according to the scaling law � L�: The value of the critical exponent � may
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certainly depend enormously on the kind of singularity occurring in the thermodynamic

limit, and di¤er according to the phase transitions class, i. e., �(d-PT) 6= �(c-PT).

The principal reason is the dependence of �(c-PT) on the critical exponent � which

does not exist in the case of a d-PT [69]. Thus, we can say that the value of the scaling

critical exponent � can give an indication on the order of a phase transition and may

be used as a criterion for its determination.

Now, we de�ne the most useful two thermodynamical functions for the study of FSE

on the more commonly encountered x� driven phase transitions, namely the �rst-order

phase transition and the second-order phase transition, and for the derivation of the

associated scaling critical exponents. These two x� response functions are:

1. The x� susceptibility de�ned to be the �rst derivative of the order parameter

with respect to the x� variable, i. e.,

�(x; L) =
@hO (x; L)i

@x
; (2.3)

2. The x� speci�c heat density de�ned to be the �rst derivative of the energy density

"(x; L) of the system with respect to the x� variable, i. e.,

c(x; L) =
@h" (x; L)i

@x
: (2.4)

A FSS analysis of the scaling behavior of the properties describing �(x; L) and

c(x; L), namely of:

� The height of the x-susceptibility maximum j�xj
max (L)

� The height of the x-speci�c heat maximum cmaxx (L)
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� The shift of the pseudo-critical point from the true critical point:

�x(L) = xc(L)� xc(1)

� The width of the transition region �x(L) over which the singularities occur-

ring in �(x; L) and c(x; L) are rounded,

is used to study quantitatively the volume dependence of these �nite size e¤ects, and

to recover the scaling critical exponents characterizing the phase transition in question.

2.4 Finite Size Scaling

The appreciable rounding of the critical point singularities induced by �nite size ef-

fects render it di¢ cult to infer the order of a phase transition. Fortunately, there are

characteristic signatures in a �nite volume which anticipate the behavior in the ther-

modynamic limit. A careful analysis of these signatures allows to determine the order

of the transition, by performing measurements as function of a varying volume.

In the following, we discuss the �nite size scaling behavior of singularities in ther-

modynamic functions for both 1st-Order and 2nd-Order phase transitions.

2.4.1 Finite-size scaling at 2nd-Order phase transitions

Let us consider a thermodynamical function F (~x;1) which admits a critical singularity

in the in�nite volume limit (the susceptibility �(~x; V ) or the speci�c heat c(~x; V )),

characterized by an index �:

F (~x;1) � AF j~xj�� : (2.5)
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For a system which is �nite at least in one dimension with a characteristic size

L = V 1=d, this function is F (~x; L): For large L and small ~x; the property of Finite

Size Scaling means that F (~x; L) has the asymptotic form:

F (~x; L) = j~xj�� f(L=�(~x;1)); (2.6)

where �(~x;1) � �0 j~xj
�� is the correlation length in the in�nite volume limit.

We are interested in the limit x ! xc at �xed L < 1, i. e., L

�(~x! 0;1) !

0; at which F (~x; L) should be �nite. Hence, the singularity of F (~x;1) has to be

compensated by the scaling function f(L=�(~x;1)) which may behave as:

f(L=�(~x;1)) � ( L

�(~x;1))
�=� for

L

�(~x;1) ! 0; (2.7)

where �(~x;1) � j~xj�� for ~x! 0. It follows then [70]:

F (xc; L) = F (~x = 0; L) � L�=� : (2.8)

The last relation (2.8) predicts for instance for the susceptibility:

�(xc; L) � L
=� ; (2.9)

and for the speci�c heat:

c(xc; L) � L�=� : (2.10)

For the width of the transition region �x (L) and the shift of the transition point

�x (L) which vanish at the in�nite volume limit, their scaling behavior is characterized

by the same critical index 1=�, according to:

�x (L) � L�1=� ; �x (L) � L�1=� ; (2.11)

while the scaling behavior of the correlation length in a �nite volume is stated as [70]:

�(~x; L) = �(~x;1)f�(L=�(~x;1)) : (2.12)
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2.4.2 Finite-size scaling at 1st-Order phase transitions

Finally, we turn to �nite-size scaling analysis at �rst-order phase transitions. In an

in�nite system, a 1st-Order phase transition is characterized by delta function singu-

larities in the second derivatives of the thermodynamical potential at the critical point

xc (1). In �nite systems, of course, these delta function singularities are rounded o¤

into �nite peaks. The �nite-size scaling analysis for 1st-Order phase transitions is more

di¢ cult than for 2nd-Order phase transitions because
�(~x;1)

L
is no longer a sensible

scaling variable as in eq. (2.7) since the correlation length for a 1st-Order phase tran-

sition stays �nite even in the in�nite volume limit as x! xc [70]. Thus, since there is

no diverging characteristic length to which the linear dimension could be compared at

1st-Order phase transition, it is simply the volume Ld that controls the size e¤ects.

The goal of the �nite size scaling analysis for 1st-Order phase transitions is to

predict the rounding and shifting of ��function singularities in the second derivatives

of a thermodynamical potential due to the �nite volume, e.g., in the speci�c heat due

to a latent heat, or in the susceptibility due to a jump in the order parameter (see

[2, 3, 64, 71, 72]).

We plot in Fig. (2.1) a diagrammatic behavior of the susceptibility �(L; x), the

speci�c heat c(L; x) as well as the x�derivative of the susceptibility [@�(L; T )=@x] as

function of x; and show the characteristic maxima of the rounded peaks j�xj
max (L) and

cmaxx (L), the width of the region over which the transition is rounded o¤ �x(L), and

the shift of the transition point xc(L)� xc(1); which scale with the volume according
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Figure 2.1: Behavior of the susceptibility � (x; L), its �rst derivative @�
@x
and speci�c

heat c (x; L) versus the thermodynamic x�variable driving the transition, at the tran-
sition point xc.

to: 8>>>>>>><>>>>>>>:

�x (L) � L�d � = V ��

(xc (L)� xc (1)) � L�d � = V ��

j�xj
max (L) � Ld 
 = V 


Cmaxx (L) � Ld � = V � :

(2.13)

It has been shown in the FSS theory [3, 64, 66, 67, 71] that in this case, the scaling

exponents �, �, � and 
 are all equal to unity, and it is only the dimensionality which

controls the �nite size e¤ects.

As an example, we shall report on in the following the work in [3] to recover the

scaling exponents for a �rst order phase transition. Using thermodynamic �uctuation
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theory, �nite-size e¤ects at �rst order phase transitions have been worked out in Ising

models below Tc; to discuss the rounding of the magnetization jump in the Ising ferro-

magnet as the �eld H is varied. In an in�nite system, the magnetization jumps from

�Msp as H ! 0+ to +Msp reached for H ! 0�. In a system with all linear dimensions

L �nite, however, no singularity can occur and the variation of the magnetization hSiL

with �eld is perfectly smooth. Rather than the in�nitely steep variation of hSiL with

H from H = 0+ to H = 0� occurring for L ! 1, hSiL has a large but �nite slope of

order
M2

LL
d

kT
, for a �nite region of �elds �MLL

d

kT
. H . MLL

d

kT
. Here �ML are the

values of the magnetization where the probability distribution PL (s) at zero �eld is

maximal, and d is the system�s dimensionality.

The probability distribution of the magnetization of an Ising system below Tc at

zero �eld can be approximated by two Gaussian curves, one centered on �M and one

on +M , as:

PL(s) =
1

2

Ld=2�
2�kT�(L)

�1=2
(
exp

"
�(s�ML)

2Ld

2kT�(L)

#
+ exp

"
�(s+ML)

2Ld

2kT�(L)

#)
: (2.14)

The generalization to nonzero �eld H then simply is:

PL(s) = A

(
exp

"
�((s�Msp)

2 � 2�sH)Ld
2kT�(L)

#
+ exp

"
�((s+ML)

2 � 2�sH)Ld
2kT�(L)

#)
;

(2.15)

with A a normalization constant which can be written as:

A =
1

2

Ld=2�
2�kT�(L)

�1=2 exp ���H 2Ld

2kT

�
= cosh

�
HMspL

d

kT

�
: (2.16)

Eq. (2.15) can then be rewritten as:

PL(s) =
1

2
Ld

�
2�kT�(L)

��1=2
cosh [HMspLd=kT ]

(
exp

�
HMspL

d

kT

�
exp

"
�(s�Msp � �H)2Ld

2kT�(L)

#

+exp

�
HMspL

d

kT

�
exp

"
�(s+ML � �H)2Ld

2kT�(L)

#)
: (2.17)
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Figure 2.2: (a) Variation of magnetization hsiL in a �nite Ising ferromagnet plotted
vs magnetic �eld H, as observed in thermal equilibrium (full curve) and in a Monte
Carlo simulation with su¢ ciently short observation time where metastable branches
occur (dash-dotted). The behavior of the in�nite system is also indicated (schema-
tized). Msp is the spontaneous magnetization of the in�nte system. ML is the most
probable value of the magnetization in the �nite system at T < Tc. (b) Schematic
probability distribution of the magnetization for two cases (open circles in (a)) where
the magnetization is in between [3].
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Thus, PL(s) still is a superposition of two Gaussians, now centered around the shifted

magnetization �Msp + �H:

From eq. (2.17), it is now easy to obtain the moments hskiL of interest. The �rst

moment hsiL giving the magnetization is then:

hsiL = �H +Msp tanh

�
HMspL

d

kT

�
; (2.18)

and we conclude that for
HMspL

d

kT
� 1 we simply have the bulk behavior:

hsiL = �H +Msp; (2.19)

while in the limit
HMspL

d

kT
� 1; we have:

hsiL = �H +
HM 2

spL
d

kT
: (2.20)

The width over which the transition is rounded is of the order of:

�Hround �
kT

MspLd
; (2.21)

since, as can be seen from eq. (2.18), the �eld H has to exceed this value to �nd the

behavior characteristic of the in�nite system.

The susceptibility of the �nite system �L becomes:

�L = (
@hsiL
@H

)T = �+
M 2

spL
d

kT cosh2
h
HMspLd

kT

i ; (2.22)

which shows that instead of the ��function singularity at H = 0, we now have a

smooth peak of height proportional to Ld. Also, it is easy to show that:

hs2iL =M 2
sp + �2H2 +

kT�

Ld
+ 2Msp�H tanh

�
HMspL

d

kT

�
; (2.23)
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and hence the �uctuation relation:

hs2iL � hsi2L =
kT�L
Ld

; (2.24)

holds as usual. Thus, the only scaling power of L which enters in the above rela-

tions of hsiL, �L, etc. comes via the volume Ld of the system. Hence, it is only the

dimensionality of the system which controls the �nite size e¤ects.

In the following, Table (2.1) resumes the scaling behavior at the limit of an in�nite

volume and in the vicinity of the transition point for each of the previous four quantities

of eq. (2.13), and shows how to relate the �nite size e¤ects on the singularities of

thermodynamic quantities close to both 1st-order and 2nd-order phase transitions, to

the critical exponents of the in�nite system.

The di¤erence between the scaling critical exponents for 1st-Order and 2nd-Order

phase transitions allows to distinguish between the two classes, since for a 1st-Order

phase transition 
 = � = � = � = 1 and for a 2nd-Order phase transition 
; �

and � di¤er from 1. This is also revealed by the results found for the scaling critical

exponents in theoretical, numerical and experimental studies, hence the use of the

critical exponents as a criterion for the determination of the order of a phase transition

[47, 48, 49, 50, 70, 73, 74].

2.5 Localization of the transition point in a �nite

volume

In addition to the two ways cited in section (2.3) for determining the transition point in

a �nite volume xc(L), from the localization of the extrema of the susceptibility �(x; L)
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1st-Order PT 2nd-Order PT
In�nite System

(TL)
Finite-Size
System

In�nite System
(TL)

Finite-Size
System

j�xj
max (V ) �(~x) Ld 
 ~x�
 L
=�

cmaxx (V ) �(~x) Ld � ~x�� L�=�

�x(V ) F L�d � F L�1=�

�x (V ) F L�d � F L�1=�

Table 2.1: Scaling behavior of characteristic quantities for 1st-order phase transition
and 2nd-order phase transition in both in�nite and �nite systems.

and speci�c heat c(x; L), another quantity has been proposed in [3, 66, 75] which is

the fourth order cumulant of the order parameter, de�ned as:

B4(L) = 1�
hO(L)i4
3 hO2(L)i2 ; (2.25)

and which presents a minimum value at an e¤ective transition point xc(L) whose shift

from the true transition point xc(1) is of order L�d for a �rst order transition. This

cumulant is a �nite size scaling function [3, 66, 67, 68, 76], and is widely used to indicate

the order of the transition in a �nite volume.

Other cumulants are also expected to give information on the transition point in a

�nite volume, and some of them (the second and third order ones) will be examined

later in this work (chapter 4) to determine the e¤ective transition temperature.

The speed of sound (squared) de�ned by: c2s =
dP

d"
; P being the pressure and " the

energy density, is also used to localize the transition point, since for a �rst order phase

transition, occurring at the thermodynamic limit, c2s has a vanishing minimum at the

transition point xc(1): In a �nite volume, c2s decreases in the transition region and has

a minimum at the e¤ective transition point xc(L):



Chapter 3

Finite-Size E¤ects for the

Decon�nement Phase Transition

3.1 Introduction and Motivation

If ever the QGP phase is created in ultra-relativistic heavy ion collisions, the volume

in which its eventual formation may take place would certainly be �nite. Naively,

the formation of a quark-gluon plasma (QGP) in a relativistic heavy ion collision is

generally assumed to take place in a reaction zone having a �nite volume V; about

1 fermi of width and a transverse area of colliding nuclei � A2=3, which gives: V '

A2=3fm3. Since the AGS and SPS data are available, then the use of the Hanbury

Brown Twiss (HBT) interferometry method to estimate the possible sizes of the QGP

gives the results resumed in Table (3.1) (for the RHIC and LHC energies, simple entropy

arguments have been used to predict the QGP sizes [77]) :

Also, the study of the phase transition from HG to QGP with lattice QCD calcula-

tions is necessarily performed in �nite lattices [78]. In lattice QCD and if we consider

54
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Accelerator AGS-SPS RHIC LHC
QGP Volume (fm3) � (34� 268) � (268� 2144) � (905� 5575)

Table 3.1: QGP volumes realised at AGS-SPS and RHIC and expected at LHC.

References [79] [80] [81] [82] [83] [78]
QCD Lattice Volume Vmax (fm3) . 40 � 7 � 8 � 21 � 37 � 14

Table 3.2: Values of some lattice volumes used in lattice-QCD calculations

a 4-dimensional lattice, of lattice spacing a, on which we want to perform Monte-carlo

simulations of QCD, the lattice sizes are T � L� L� L:

E¤ects of the �nite volume are certainly important, since statistical �uctuations

in a �nite volume are considerable and may hinder a sharp transition between the

two phases. Indeed, phase transitions are known to be in�nitely sharp only in the

thermodynamic limit. In general, �nite size e¤ects lead to a mixed phase system, a

rounding of the transition and a broadened transition region.

This chapter is devoted to the study of a �nite system undergoing a decon�nement

phase transition from a hadronic gas phase to a QGP. The �nite size e¤ects are studied

within a simple thermodynamic model used in [4], based on the assumption of the co-

existence of con�ned and decon�ned phases in a �nite volume, and using the equations

of state of the two phases. For the HG phase, we consider the partition function of a

pionic gas. For the QGP phase, we �rst consider the partition function of a free gas of

quarks and gluons derived simply within the bag model.

After this, to account for the �color neutrality�of the observed free particles, and

then of the total QGP, we require that all physical states be color-singlet with respect

to the SU(3) color gauge group. Hence, we include the exact color-singletness con-
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dition in the calculation of the QGP partition function using the Group Theoretical

Projection Technique [6]. This color-singlet partition function can not be exactly cal-

culated and is usually calculated within the saddle point and Gaussian approximations

in the limit V T 3 >> 1 [7, 8]. It turns out that the use of the such obtained partition

function, within the phase coexistence model, has as a consequence the absence of the

decon�nement phase transition. We show that this is due to the fact that the approx-

imations used for the calculation of the color-singlet partition function break down at

V T 3 << 1, and this limit is attained using the phase coexistence model, since the

fractional volume VQGP occupied by the QGP is allowed to take small and even zero

values.

In view to analyze the �nite-size e¤ects in such a model, we �rst proposed in [13, 14]

the calculation of an adequate color-singlet partition function expanded in a power se-

ries of the QGP volume fraction, using some approximations but avoiding the problem

arising at V T 3 << 1: The color-singlet partition function derived in this way allowed

us to accurately calculate physical quantities describing well the decon�nement phase

transition at �nite volumes, and to probe the behavior of the phase transition at criti-

cality, for both temperature-driven and density-driven decon�nement phase transition.

This part of the work will not be exposed in this thesis.

After this, we proceeded in a di¤erent way for calculating the mean values of phys-

ical quantities numerically and without any approximation, by including the exact

de�nition of the color-singlet partition function within the phase coexistence model,

without explicitly calculating this latter [84]. The e¤ects of �niteness of the system size

are then studied by examining the behavior of several physical quantities with varying

volume. This is the main object of the present chapter.
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3.2 The Decon�nement Phase Transition in a Fi-

nite Volume

3.2.1 The Decon�nement Phase Transition within the Phase

Coexistence Model

To study the QCD decon�nement phase transition in a �nite volume, we consider a

simple phase coexistence model used in [4], in which the mixed HG-QGP phase system

has a �nite volume: V = VHG + VQGP . The parameter h representing the fraction

of volume occupied by the HG: VHG = hV; is then de�ned. Thus, the value: h = 1

corresponds to a total HG phase and when h = 0; the system is completely in the QGP

phase. Assuming non-interacting phases (separability of the energy spectra of the two

phases), the total partition function of the system can be approximately written as:

Z (h;T; �; V ) = ZQGP (h;T; �; V )ZHG (h;T; �; V ) ; (3.1)

and the probability to �nd the system in the state h, as de�ned in [4], is then given by:

p (h;T; �; V ) =
Z (h;T; �; V )

1R
0

Z (h;T; �; V ) dh

: (3.2)

The mean value of any thermodynamic quantity A(T; �; V ) of the system can then be

calculated by:

hA(T; �; V )i =

1Z
0

A (h;T; �; V ) p (h;T; �; V ) dh

=

1R
0

A (h;T; �; V )Z (h;T; �; V ) dh

1R
0

Z (h;T; �; V ) dh

; (3.3)
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where A(h;T; �; V ) is the total thermodynamic quantity in the state h, given in the

case of an extensive quantity by:

A(h;T; �; V ) = AHG(T; �; hV ) +AQGP (T; �; (1� h)V ); (3.4)

and in the case of an intensive quantity, by:

A(h;T; �; V ) = hAHG(T; �; hV ) + (1� h)AQGP (T; �; (1� h)V ); (3.5)

with AQGP and AHG the thermodynamic quantities relative to the individual QGP

and HG phases, respectively.

Let us note that the coexistence of two phases in a �nite system undergoing a phase

transition taken alone seems not to be su¢ cient for anticipating the �rst order nature of

the phase transition when approaching the thermodynamic limit. A similar confusion

can arise in the case of a correlation length scaling with the volume and suggesting a

second order nature of the transition in the thermodynamic limit. This subtle situation

has been noticed and clari�ed in several works [46, 70, 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95, 96]. Then, for a �rm determination of the order of a phase transition in a �nite

system, a full and detailed �nite size scaling analysis of di¤erent response functions

simultaneously, yielding various scaling critical exponents, seems to be necessary. This

is not all in our case, since other basic parameters of QCD like the number of �avors

and the current quark masses have a strong in�uence on how the phase transition

occurs. A clear sensitivity of the order of the QCD decon�nement phase transition

to these parameters has been revealed by several lattice QCD calculations (see for

example [46]-[60]).

The partition functions of both HG and QGP phases are calculated, and their �nal

expressions are given in the following. For a pionic gas, the partition function is simply
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given by:

ZHG (T; VHG) = e
�2

30
T 3VHG ; (3.6)

and for a QGP consisting of gluons and two �avors of massless quarks (up, down),

with a chemical potential �, within the bag model [5], the partition function is given

by [97]:

ZQGP (T; �; VQGP ) = exp

��
37�2

90
T 3 + �2T +

1

2�2
�4

T
� B

T

�
VQGP

�
; (3.7)

where B is the bag constant accounting for the real vacuum pressure exerted on the

perturbative vacuum. Let us note that taking the same chemical potential for quarks,

i.e., �u = �d = �; is just an approximation for simpli�cation, and is usually used [98].

The chemical potential depends on several parameter as the bath temperature and the

particle masses, since it determines the energy required to add/remove a particle at

�xed pressure, energy and entropy [99].

The pressure of the QGP can then be derived directly as:

PQGP =
37�2

90
T 4 + �2T 2 +

1

2�2
�4 �B: (3.8)

and that of the hadronic matter is given by:

PHG =
�2

30
T 4: (3.9)

From the Gibbs criteria, the two matter phases are in equilibrium when the tem-

perature, the chemical potential and the pressure of both of them are equal [100]. The

phase transition parameters in our simple model come then from setting:

PHG (�c; Tc) = PQGP (�c; Tc) ; (3.10)

which gives the following expression relating between Tc and �c:

17�2

45
T 4c + �2cT

2
c +

1

2�2
�4c = B: (3.11)
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Figure 3.1: Phase diagram in the �� T plane.

Fig. (3.1) shows the phase diagram in the � � T plane [101], separating between

hadronic and QGP phases, and giving at each point the transition parameters (�c; Tc)

for two �avors (Nf = 2); with the common value of the bag constant B1=4 = 145MeV:

The extreme case � = 0 could be attained in heavy-ion collisions at high energy (i.

e., at high temperature), and the critical temperature evaluated in this case is:

Tc =
B1=4�
17�2

45

� 1
4

; (3.12)

so the QGP is favored at high temperature (T > Tc), and the hadronic phase is favored

at low temperature (T < Tc) :

The second extreme case T = 0 could be reached in the core of some neutron stars
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where the density is high, and the critical chemical potential is then given by:

�c =
B1=4�
1

2�2

� 1
4

; (3.13)

so the QGP is favored at large baryon density, i. e., large chemical potential (� > �c),

and the hadronic phase is favored at low baryon density (� < �c) :

3.2.2 Finite Size Rounding of the Decon�nement Phase Tran-

sition

As it is known, the decon�ned quark matter state can be obtained at extreme condi-

tions of temperature and/or density, i. e., either by raising temperature or chemical

potential. The decon�nement phase transition is then temperature-driven or density-

driven. We�ll study in the following the FSE for a temperature driven decon�nement

phase transition, at a vanishing chemical potential (� = 0), and for a density driven

decon�nement phase transition at a �xed temperature (T = 100MeV ), using the com-

mon value B1=4 = 145MeV for the bag constant. To study these e¤ects of volume

�niteness, we�ll examine the behavior of some thermodynamic quantities with temper-

ature and chemical potential for varying volume. The main quantities of interest are

the order parameter, which is simply in this case the mean value of the hadronic volume

fraction, the entropy density and the energy density. The mean values of these latter,

i. e., hs (T; �; V )i and h" (T; �; V )i are related to the order parameter hh (T; �; V )i by

the expressions:

hs (T; �; V )i = sQGP + (sHG � sQGP ) hh (T; �; V )i

h" (T; �; V )i = eQGP + (eHG � eQGP ) hh (T; �; V )i; (3.14)
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where:

hh (T; �; V )i =
�
� 1
T
(fHG � fQGP )V � 1

�
e�

1
T
(fHG�fQGP )V + 1

� 1
T
(fHG � fQGP )V

�
e�

1
T
(fHG�fQGP )V � 1

� ; (3.15)

with: 8>>>><>>>>:
fQGP = �37�2

90
T 4 � �2T 2 � 1

2�2
�4 +B; fHG = ��2

30
T 4

sQGP =
74�2

45
T 3 + 2�2T ; sHG =

2�2

15
T 3

eQGP = B + 37�2

30
T 4 + �2T 2 � �4

2�2
; eHG =

�2

10
T 4:

(3.16)

Fig. (3.2) shows the three-dimensional plots of the order parameter, energy density

h" (T; V )i and entropy density hs (T; V )i, vs temperature and system volume, at a van-

ishing chemical potential (� = 0), with B1=4 = 145MeV for the bag constant, and Fig.

(3.3) illustrates those of the normalized energy density
h" (T; V )i

T 4
and entropy density

hs (T; V )i
T 3

. The �rst-order character of the transition is showed by the step-like rise

or sharp discontinuity of each of the order parameter, as well as the normalized en-

ergy and entropy densities, when approaching the thermodynamic limit, at a transition

temperature Tc (1) ' 104:35MeV , which re�ects the existence of a latent heat accom-

panying the phase transition. The quantities
h"i
T 4

and
hsi
T 3

are traditionally interpreted

as a measure of the number of e¤ective degrees of freedom [102]; the temperature in-

crease causes then a �melting�of the constituent degrees of freedom �frozen� in the

hadronic state, making the energy and entropy densities attain their plasma values. In

small systems, the phase transition is rounded since the probability of presence of the

QGP phase below Tc, and of the hadron phase above Tc are �nite because of the con-

siderable thermodynamical �uctuations. The transition region around the transition

temperature Tc (1) is then broadened, acquiring a bigger width �T (V ), smaller is the

volume.

Similarly, Fig. (3.4) shows the variations of the order parameter, the energy and
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entropy densities with chemical potential and system volume, at the temperature T =

100MeV: The �rst-order character of the transition can, also in this case, clearly be seen

from the sharp discontinuity of the three quantities at a transition chemical potential

�c (1) ' 81:8MeV; at the large volume limit. In small systems, the transition is

perfectly smooth over a broadened region of chemical potential of width ��(V ). Let us

note that in the QGP phase at � > �c (V ), the energy and entropy densities grow with

chemical potential like in Fig. (3.2) with temperature, but in this case it is no more

possible to normalize in view to obtain the number of degrees of freedom because of

the existence of both chemical potential and temperature in the expressions.

3.3 The QCD Decon�nement Phase Transition in a

Finite Volume Including the Color-Singletness

Requirement

3.3.1 The Color-Singlet Partition Function of the QGP

For the QGP phase, we consider a free gas of quarks and gluons with the exact color-

singletness requirement. To implement the color-singletness constraint into the quan-

tum statistical description of the system, we use the group theoretical projection tech-

nique formulated by Turko and Redlich [6], as done in several works [7, 8, 103, 104,

105, 106, 107, 108, 109, 110, 111, 112, 113]. The projected partition function for a

system of quarks, antiquarks and gluons in a volume V; at temperature T and quark

chemical potential � is given by:

Zj(T; �; V ) = Tr( bPje�� bH); (3.17)
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Figure 3.2: Mean values of (top) the order parameter, (middle) the energy density
and (bottom) the entropy density as functions of temperature T and system size V , at
� = 0:
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Figure 3.3: Mean values of (top) the energy density normalized by T 4 and (bottom)
the entropy density normalized by T 3as functions of temperature T and system size V ,
at � = 0:
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Figure 3.4: Mean values of (top) the order parameter, (middle) the energy density and
(bottom) the entropy density as functions of chemical potential � and system size V ,
at the temperature T = 100MeV:
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where: � = 1
T
with the units chosen as: kB = ~ = c = 1; bH is the Hamiltonian of the

system and bPj is a projection operator for a symmetry group G (compact Lie group)
having a unitary representation bU(g) in a Hilbert space H,

bPj = dj

Z
G

d�(g)��j(g)bU(g); (3.18)

d�(g) being the normalized Haar measure in G, dj the dimension and ��j(g) the char-

acter of the irreducible representation �j�of G.

For SU(3) color-singlet con�guration, dj = 1, �j = 1; and the explicit form of the

Haar measure is:Z
SU(Nc)

d�(g) =
1

Nc!

 
Nc�1Y
c=1

Z +�

��

d�c
2�

!"
NcY
i<k

�
2 sin

�i � �k
2

�2#
; (3.19)

�l being a class parameter obeying the periodicity condition
NcP
l=1

�l = 0 (mod 2�) and

insuring that the group element is SU(Nc): Hence, eq. (3.17) becomes:

Zc(T; �; V ) =

Z
SU(3)

d�(g)T r(bU(g)e�� bH): (3.20)

The Hilbert space H of the composite system has the structure of a tensor product

of their individual Fock spaces as:

H = Hq 
Hq 
Hg; (3.21)

where the subscripts q, q and g denote respectively the quark, antiquark and gluon.

The trace involved in eq. (3.20) decomposes then into the product of 3 traces as:

Zc(T; �; V ) =

Z
SU(3)

d�(g)T r(cUq(g)e�� bHq)T r(cUq(g)e��cHq)T r(cUg(g)e��cHg): (3.22)
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Now, the trace operations may be performed, and one can then write Zc as:

Zc(T; �; V ) =

Z
SU(3)

d�(g) eZquark eZglue; (3.23)

with the quark and gluon contributions individually given by:

eZquark =
Y

q=r;g;b

Y
�

�
1 + e��(�

�
q��q)+i�q

� h
1 + e��(�

�
q��q)�i�q

i
=

Y
q=r;g;b

Y
�

�
1 + e��(�

���)+i�q
� �
1 + e��(�

�+�)�i�q
�
; (3.24)

where �� are single-particle energies, the explicit expressions of the angles �q (q = r; b; g)

in SU(3) are:

�r =
'

2
+
 

3
; �g = �

'

2
+
 

3
; �b = �

2 

3
; (3.25)

and in the second factor arising from the antiquarks, we have replaced: ��q = ��q = ��

and �q = ��q = ��; and:

eZglue = Y
g=1;2;3;4

Y
�

�
1� e����+i�g

��1 �
1� e�����i�g

��1
; (3.26)

with the angles �g (g = 1; :::4) being:

�1 = �r � �g; �2 = �g � �b; �3 = �b � �r; �4 = 0: (3.27)

In the continuum approximation for the single-particle energy levels, one can replaceP
�

by
R
�(�)d� where: �(�) = dQ=g

V
2�2
�2 is the single-particle density of states, dQ=G is

the spin-isospin degeneracy factor for quarks or gluons, with dQ = 2Nf and dG = 2.

After integration, the quark contribution is given by:

eZQuark (T; V; �;';  ) = exp"�2
12
T 3V dQ

X
q=r;g;b

 
7

30
�
�
�q � i( �

T
)

�

�2
+
1

2

�
�q � i( �

T
)

�

�4!#
;

(3.28)
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and the gluon contribution by:

eZGluon (T; V ;';  ) = exp"�2
12
T 3V dG

4X
g=1

 
� 7
30
+

�
�g � �

�

�2
� 1
2

�
�g � �

�

�4!#
:

(3.29)

Thus, the partition function for a color-singlet quark-gluon plasma can be written

as [7, 8]:

Z(T; V; �) =
8

3�2
e�

BV
T

Z +�

��

Z +�

��
d
�'
2

�
d

�
 

3

�
M(';  ) eZ(T; V; �;';  ); (3.30)

where M(';  ) is explicitly given by:

M(';  ) =

�
sin

�
1

2
( +

'

2
)

�
sin(

'

2
) sin

�
1

2
( � '

2
)

��2
; (3.31)

B being the bag constant.

Let us write eZ on the form:
eZ (T; V; �;';  ) = eV T

3g('; ; �
T
); (3.32)

with:

g(';  ;
�

T
) =

�2

12
(
21

30
dQ +

16

15
dG) +

�2

12

dQ
2

X
q=r;b;g

8<:�1 +
 �

�q � i( �
T
)
�2

�2
� 1
!29=;

��
2

12

dG
2

4X
g=1

 
(�g � �)2

�2
� 1
!2

; (3.33)

then eq. (3.30) becomes:

Z(T; V; �) =
8

3�2
e�

BV
T

Z +�

��

Z +�

��
d
�'
2

�
d

�
 

3

�
M(';  )eV T

3g('; ; �
T
): (3.34)

3.3.2 Calculation of the Color-Singlet Partition Function of

the QGP, within the Saddle Point Approximation

The analytic calculation of the color-singlet partition function of the QGP in eq. (3.34)

being not possible to be e¤ectuated exactly, an approximated calculus is usually carried
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out using the saddle point approximation as in [8, 9, 10]. Let�s derive in the following

such an approximate color-singlet partition function at zero chemical potential (� = 0):

In this case, we have:

g�=0(';  ) =
�2

12
(
21

30
dQ +

16

15
dG) +

�2

12

dQ
2

X
q=r;b;g

 �
�2q
�2
� 1
�2
� 1
!

��
2

12

dG
2

4X
g=1

 
(�g � �)2

�2
� 1
!2

; (3.35)

and then the color-singlet partition function for a quark-gluon plasma contained in a

volume VQGP becomes:

Z(T; VQGP ) =
8

3�2
e�

BVQGP
T

Z +�

��

Z +�

��
d
�'
2

�
d

�
 

3

�
M(';  ) exp

�
VQGPT

3g�=0(';  )
�
:

(3.36)

The integral in (3.36) can be evaluated by a saddle point approximation around

the maximum of the integrand at (';  ) = (0; 0). For that purpose, we expand the

weight functionM to leading order in the angular variables, and expand the argument

of the exponential to second order in ' and  (gaussian approximation). The measure

function has then the following form:

M(';  ) �M (0;0)(';  ) =
1

64
'2
�
 2 � '2

4

�2
; (3.37)

and g�=0(';  ) becomes for two �avors (Nf = 2) (up and down quarks ):

g�=0(';  ) � g
(0;0)
�=0 (';  ) = S0 �

2

3

�
'2 +

4

3
 2
�
; (3.38)

with:

S0 =
�2

12
(
7Nf

5
+
32

15
): (3.39)

Therefore, we have integrals like:Z a

0

e��x
2

dx �
Z 1

0

e��x
2

dx =
p
�=�; (3.40)
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with �� 1:

From all these considerations, the partition function can then be rewritten as:

Z(T; VQGP ) =
8

3�2
e�

BVQGP
T

Z +1

�1

Z +1

�1
d
�'
2

�
d

�
 

3

�
M (0;0)(';  ) exp

�
g
(0;0)
�=0 (';  )VQGPT

3
�
;

(3.41)

which gives after calculation:

Z(T; VQGP ) =
A0e

(S0T 3�B
T )VQGP

(VQGPT 3)
4 ; (3.42)

where:

A0 =
27
p
3

8192�
: (3.43)

We mention here a similar result obtained in [9] given for a zero baryon density as:

ZQGP (T; VQGP ) = AC�4u�3=2
exp

�
1
3
uVQGPT

3
�

(VQGPT 3)
13=2

exp(�BVQGP
T

); (3.44)

with: 8>>>>><>>>>>:
A =

3
p
2�

4

C = 2 +
Nf

3

u =

�
8

15
+
7Nf

20

�
�2:

(3.45)

3.3.3 Problem with the Use of the Color-Singlet Partition

Function Derived within the Saddle Point Approxima-

tion, in the Phase Coexistence Model

Let us incorporate such an approximate partition function, eqs. (3.42-43), for the QGP

in the phase coexistence model. The order parameter can then be expressed as:

hh(T; V )i = 1�

0@ 1Z
0

q�3eKqdq =

1Z
0

q�4eKqdq

1A ; (3.46)
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where q is the QGP volume fraction de�ned as: q = 1�h, and: K =
�
S0 � �2

30

�
T 3V �

BV
T
:

By expanding the exponential eKq, and taking the limit q0 for q instead of 0 in the

integral above ( i.e., h �! h0), we obtain the following expression for the mean value

of the hadronic volume fraction:

hh(T; V )i = 1� q0

 1X
p=0

Kp

p! (p� 2)
�
qp0 � q20

�
=

1X
p=0

Kp

p! (p� 3)
�
qp0 � q30

�!
: (3.47)

We can easily show that for q0 �! 0 (i. e., h0 �! 1), the mean value of the

hadronic volume fraction is equal to 1 for all values of temperature and volume [12].

Hence, the use of the obtained approximate total partition function Z (h) in the

de�nition (3.3), has as a consequence the absence of the decon�nement phase transition.

This is due to the fact that the saddle point approximation, used for the calculation

of the color-singlet partition function, breaks down at VQGPT 3 << 1. We propose

in the following, �rst, a new method for calculating an exact color-singlet partition

function with the unique disadvantage of necessitating very long times for numerical

calculations.

3.3.4 Remedy to the problem

To remedy to the problem exposed above in a �rst step, we have tried to do the

expansion of the exponential eVQGPT
3g('; ; �

T
) as:

eVQGPT
3g('; ; �

T
) =

1X
j=0

(VQGPT
3)j

j!

�
g(';  ;

�

T
)
�j
; (3.48)

then (3.34) becomes:

ZQGP (T; �; VQGP ) =
8

3�2

Z +�

��

Z +�

��
d('=2)d( =3)M(';  )

1X
j=0

(VQGPT
3)j

j!

�
g(';  ;

�

T
)
�j
;

(3.49)
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and by putting:

�j =
4

9�2

Z +�

��

Z +�

��
d'd M(';  )

�
g(';  ; �

T
)
�j

j!
; (3.50)

the partition function becomes:

ZQGP (T; �; VQGP ) =

1X
j=0

�j(VQGPT
3)j =

1X
j=0

�jz
j; (3.51)

where: z = VQGPT
3: It can be seen that the series (3.51) giving the color-singlet

partition function is convergent and causes no more problems at z ! 0 since for

VQGPT
3 = 0; Z (VQGPT

3 = 0) = �0: It can then be incorporated in the phase coexis-

tence model to probe the critical behavior of thermodynamic quantities characterizing

the system which undergoes a decon�nement phase transition. Because of numerical

di¢ culties, it was not possible for us to illustrate this exact calculus at the present

time. Indeed, the integral coe¢ cients �j have been calculated to high ranks (j = 175)

using a numerical integration program with fortran, and the series giving ZQGP has

been calculated for values of T and VQGP such that VQGPT 3 � 5; for example, for

VQGPT
3 = 2 the value of ZQGP is stable at j � 110. But it turned out that for large

volumes and/or temperatures, the rank j at which the convergence of ZQGP is attained

is very high, and since the values of the coe¢ cients �j are largely increasing and due

to the insu¢ cient precision o¤ered by fortran, the convergence of ZQGP couldn�t be

attained.

After this, we have tried to use Mathematica 4.0 for the numerical calculation of

�j, since this software can insure much more precision but it turned out that the time

of calculus at ranks j & 13 begins to become too long, rendering the use of such a

method practically a waste of time.

In order to get a �rst understanding of the decon�nement phase transition in a
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�nite volume, we have proceeded, in a second step of the work, by e¤ectuating some

approximations to derive a suitable color-singlet partition function, which allowed us

to accurately calculate physical quantities describing well the decon�nement phase

transition at �nite volumes. This part of the work can be found in [13, 14].

A more rigorous calculus then followed, where the color-singlet partition function

of the QGP has not been calculated explicitly, but has just been used with its exact

expression (3.34) in order to calculate mean values of physical quantities of the system

using the de�nition (3.3) [84]. Details are given in the following.

3.4 Finite-Size E¤ects with the Exact Color-Singlet

Partition Function within the Lmn Method

In the following, we�ll derive the mean values of the order parameter, and then of other

thermodynamic quantities, directly from the de�nition (3.3) of the mean value of any

physical quantity within the phase coexistence model, using the exact de�nition (3.34)

of the QGP color-singlet partition function. The exact total partition function given

by:

Z (q) =
4

9�2
e
�2

30
V T 3

Z +�

��

Z +�

��
d'd M(';  )e

qV T 3
�
g('; ; �

T
)��2

30
� B
T4

�
; (3.52)

will not be calculated itself exactly, but the integration on q in the calculation of

the mean values using this exact partition function will �rst be e¤ectuated, then the

integrations on ' and  will be done at last [84].

Let�s �rst illustrate the variations of the probability density p(h) =
Z(h)

1R
0

Z(h)dh

with

the hadron fraction h, for various system volumes, at the temperature T = 105MeV
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Figure 3.5: Probability density as a function of the hadron fraction for di¤erent system
volumes, at the temperature T = 105MeV .

(Fig. (3.5)). The probability density exhibits a "two hump" structure at the extremal

values of the hadron fraction h, more accentuated for big volumes. This structure

indicates the dominance of one phase in the mixed phase system. It has been shown

in [3] that such a structure is expected in the case of �rst order phase transitions.

The probability distribution at a �xed value of h is also plotted versus temperature

at di¤erent volumes in Fig. (3.6), which shows that the probability at �xed h and V

is peaked at a certain temperature tending to the true transition temperature Tc (1)

with increasing volume, at which it is maximal. This temperature is shifted to bigger

values for small volumes. It can also be noted that the probability distribution looks to

be symmetric for h = 0:5, while for h = 0:1 and h = 0:9 it is not symmetric. The tail of

the distribution is heavier on the right for h = 0:1 and heavier on the left for h = 0:9.

This is easily understandable, since at h = 0:1 it is the QGP which is dominant and
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Figure 3.6: Variations of the probability of �nding the system (of volume V ) in a state
(bottom) h =0:1; (middle) h =0:5; and (top) h =0:9 with temperature T , for di¤erent
system volumes.
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this occurs above the transition temperature, and at h = 0:9 it is the hadronic gas

phase which is dominant and this occurs below the transition temperature.

3.4.1 Order Parameter, Energy and Entropy Densities

Like in the case without including the color-singletness requirement, let�s calculate

now the order parameter at zero chemical potential (� = 0), using the total partition

function (3.52). Its expression is in this case:

< h(T; V ) >�= 1�

R +�
��
R +�
�� d'd M(';  )

1R
0

qeq R('; ;T;V )dq

R +�
��
R +�
�� d'd M(';  )

1R
0

eq R('; ;T;V )dq

; (3.53)

with:

R (';  ;T; V ) =

�
g�=0(';  )�

�2

30
� B

T 4

�
V T 3: (3.54)

After e¤ectuation of the integrations on q; the order parameter can be written on

the form:

< h(T; V ) >�=
L01 (0) + L02 (0)� L02 (1)

L01 (0)� L01 (1)
; (3.55)

where the general form of the integrals on ' and  appearing in this expression is:

Lmn (q) =

Z +�

��

Z +�

��
d'd M(';  )(g�=0(';  ))

m eq R('; ;T;V )

(R (';  ;T; V ))n
: (3.56)

The integrals Lmn represent in themselves state functions, and they have been

chosen in a judicious way so that all thermodynamic quantities can, in one way or

the other, be written as function of these Lmn�s. They can be calculated numerically

at each temperature T and volume V , and the mean values of physical quantities can

therefore be illustrated on the hole range of temperature for varying volume. Fig. (3.7)

illustrates the variations of some Lmn�s with temperature at �xed volume.
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Figure 3.7: Variations of L01 (q = 1) and L12 (q = 1) with temperature at the volume
V = 500fm3:

The mean value of the energy density is also calculated in the same way, and is

found to be related to < h(T; V ) >� by the expression:

< "(T; V ) >�= B� (B � eHG) < h(T; V ) >
� �3T 4 L12 (0) + L11 (1)� L12 (1)

L01 (0)� L01 (1)
: (3.57)

Let us note that we have used �Mathematica 4.0� to evaluate the integrals Lmn

numerically, and then the mean values of the order parameter and energy density.

The evaluation of the order parameter at a given temperature and volume takes an

approximate time of about 13minutes, and that of< "(T; V ) >� about 25minutes, on a

(PentiumIII, 500MHz). For the illustration of both< h(T; V ) >� and< "(T; V ) >�, the

calculations are done on an interval of temperature (95� 120MeV ) with a temperature

step (dT = 0:1MeV ) and are repeated for various volumes.

The entropy can be obtained from the thermodynamic relation: s =
1

T
(" � f),

knowing the free energy F = fV; which is de�ned as: F = �T lnZ: The mean value
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of this latter involves then an integral
1R
0

dhZ(h) lnZ(h) as given by the expression:

hF (T; V )i� = �T
�
ln(

4

9�2
) +

�2

30
V T 3

+

1R
0

dq
�R +�

��
R +�
�� d'd M(';  )e

q R('; ;T;V )
�
ln
�R +�

��
R +�
�� d'd M(';  )e

q R('; ;T;V )
�

1R
0

dq
R +�
��
R +�
�� d'd M(';  )e

q R('; ;T;V )

37775 ;(3.58)
and can not be evaluated as < h(T; V ) >� and < "(T; V ) >� simply with the Lmn�s.

Hence, it is evaluated with a numerical integration of the numerator in the last term

of eq. (3.58).

The entropy density can also be obtained from the de�nitions of the speci�c heat at

constant V (see section 1.2): CV =
�
@U

@T

�
V

= T

�
@S

@T

�
V

: We have then the speci�c

heat density related to both energy and entropy densities as:

c =

�
@h"i�
@T

�
V

= T

�
@hsi�
@T

�
V

: (3.59)

Hence, the entropy density can be obtained from:

hs(T; V )i� =
Z
1

T

�
@h"i�
@T

�
dT =

Z
c(T; V )

T
dT; (3.60)

by the mean of a numerical integration of the speci�c heat density, whose expression

after di¤erentiation of the energy density in (3.57) with respect to temperature, is given
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by:

c(T; V ) =
2�2

5
T 3 hh(T; V )i� +

�
�2

10
T 4 �B

�
�(T; V ) + 12T 3

(L11 (1)� L12 (1) + L12 (0))

L01 (1)� L01 (0)

+3T 6V

�
1

L01 (1)� L01 (0)
(3(L21 (1)� 2L22 (1) + 2L23 (1)� 2L23 (0))

�( B
T 4
� �2

10
)(L11 (1)� 2L12 (1) + 2L13 (1)� 2L13 (0))

�
�L11 (1)� L12 (1) + L12 (0)

(L01 (1)� L01 (0))
2 (3(L11 (1)� L12 (1) + L12 (0))

+(
B

T 4
� �2

10
)(L01 (1)� L02 (1) + L02 (0))

��
; (3.61)

with:

� (T; V ) = T 2V

�
1

L01 (0)� L01 (1)
(�3(L12 (0) + 2L13 (0) + L12 (1)� 2L13 (1))

�( B
T 4
� �2

10
)(L02 (0) + 2L03 (0) + L02 (1)� 2L03 (1))

�
+
L01 (0) + L02 (0)� L02 (1)

(L01 (0)� L01 (1))
2 (3(L11 (1)� L12 (1) + L12 (0))

+(
B

T 4
� �2

10
)(L01 (1)� L02 (1) + L02 (0))

��
: (3.62)

Our results for the variations of each of the order parameter, the energy density

normalized by T 4 and the entropy density normalized by T 3; with temperature at

di¤erent system sizes are presented in the plots on Fig. (3.8). A pronounced size

dependence of these quantities can be noted over almost the entire temperature range.

The main and striking di¤erence, comparatively with Fig. (3.2), is the shift of the

transition temperature to higher values for small sizes. This is due to the e¤ect of

the color-singletness requirement which was found to lead to a gradual freezing of the

e¤ective number of degrees of freedom in the QGP [7]. In a �nite volume, the pressure

at a given temperature has a lower value and the equilibrium between the two phases

according to the Gibbs criterion is then reached at temperatures greater than Tc (1) :



3. Finite-Size E¤ects for the Decon�nement Phase Transition 81

This freezing in the QGP degrees of freedom can more clearly be seen on Fig. (3.9)

where we compare the normalized energy density
h" (T; V )i

T 4
; representing the e¤ective

number of degrees of freedom as yet mentioned, with (dashed line) and without (solid

line) color-singletness requirement at the volume V = 150fm3 for example. It can

also be noted that the smearing due to the �uctuations including the color-singletness

is less pronounced than in the case without color-singletness, maybe because of the

reduction of the QGP degrees of freedom.

Let�s note that as it was the case in Fig. (3.3), the variations of the normalized

energy and entropy densities, including color singletness are not exactly the same,. This

can better be seen in Fig. (3.10) where the normalized energy density vs temperature

at di¤erent volumes is illustrated more clearly. The di¤erence from the normalized

entropy density, which can be approximated by a step function, can easily be observed.

3.4.2 Susceptibility and Speci�c Heat Density

It is also worth to illustrate two additional thermal response functions relevant to

this case, which are the speci�c heat density c (T; V ) =
@h"(T; V )i�

@T
and susceptibility

� (T; V ) =
@hh (T; V )i�

@T
; obtained by di¤erentiating the energy density in (3.57) and

the order parameter in (3.55-56) with respect to temperature. Their expressions have

been obtained in (3.61) and (3.62) respectively.

In the following, the variations of the thermal susceptibility and speci�c heat density

with temperature are illustrated on Figs. (3.11) and (3.12) respectively, for various

sizes. It can clearly be seen that the delta function singularity of both quantities

occurring in the thermodynamical limit is smeared, in a �nite volume, into a �nite

peak of width �T (V ) : This result is expected, since the derivative of the step function
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Figure 3.11: Plot of the susceptibility � (T; V ) versus temperature for di¤erent system
volumes.

is a delta function, as well known. The rounding of each of hh (T; V )i� and h"(T; V )i�

manifests then at the level of their �rst derivatives as a smearing of the delta function.

For decreasing volume, the width of the peaks gets larger while their heights, noted

j �T jmax (V ) and cmaxT (V ) ; decrease, occurring at e¤ective transition temperatures

Tc(V ) shifted away from the true transition temperature Tc (1) :

3.4.3 Pressure and Sound Velocity

In what follows, let�s examine the behavior of the pressure for the system undergoing

a decon�nement phase transition. Its mean value can be determined, and is simply in

this case related to both energy density and order parameter by:

hP (T; V )i� = 1

3
(h"(T; V )i� � 4 B (1� hh(T; V )i�)) : (3.63)
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An other quantity, determined by the pressure gradient dP for a given gradient in

the energy density d", is the sound velocity squared, de�ned as [114]:

c2s =
�vs
c

�2
=
dP

d"
; (3.64)

which is the most relevant measure of the system�s tendency to expand [115]. After a

straightforward calculation, c2s can be related to both thermal susceptibility � (T; V )

and speci�c heat density c (T; V ) ; by the relation:

c2s =
1

3

�
1 + 4B

�

c

�
: (3.65)

Fig. (3.13) illustrates the variations of the pressure normalized by T 4 with tem-

perature for di¤erent volumes, and it can clearly be seen that below the transition

temperature, the pressure is constant with the Stefan-Boltzmann value for a hadronic

gas, then it abruptly increases around Tc(V ) and continues increasing, rather slowly

this time.

The velocity of sound squared is plotted on Fig. (3.14) as a function of temperature,

for di¤erent sizes, and it is obvious from the curves that for temperatures well below

and/or above a transition temperature, it approaches the value for an ultra-relativistic

ideal gas c2s =
1

3
: In a �nite volume, cs decreases in the transition region, and has

a minimum at the e¤ective transition temperature Tc(V ). For a �rst order phase

transition, occurring at the thermodynamic limit, this minimum is zero at Tc(1):

It is more common and useful to plot thermodynamic quantities as a function of

the energy density h"i�, especially in hydrodynamics, as in [115, 116, 117]. The graph

of the pressure hP i� vs h"i� in Fig. (3.15-top) shows that for large volumes, hP i�

increases with increasing energy density below a value "HG and above "QGP . On a

range of energy density "HG � " � "QGP , the pressure remains constant meaning that
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the system does not perform mechanical work. This region is referred to as the soft

region of the equation of state [115, 116, 117, 118]. For small systems, it can clearly

be seen that the pressure increases continuously with increasing energy density. The

notions of soft region and softest point can better be seen by illustrating the ratio
hP i�

h"i� as a function of h"i
�. The minimum of this latter occurs at the point h"i� = "QGP

which is called the softest point of the equation of state. Fig. (3.15-middle) shows that

for large volumes, the ratio
hP i�

h"i� =
1

3
= c2s in the hadronic phase, then it starts to

decrease at "HG, since hP i� is constant in the mixed phase while h"i� increases. At the

softest point "QGP ;
hP i�

h"i� takes its minimum value then resumes increasing in the QGP

phase (h"i� � "QGP ) to reach again the asymptotic value
1

3
for h"i� ! 1: For small

volumes, the minimum of
hP i�

h"i� increases and the softening of the equation of state is

less pronounced.

Fig. (3.15-bottom) illustrates the variations of the speed of sound squared with the

energy density for di¤erent system volumes, and shows that for big volumes, the speed

of sound takes the value for an ultra-relativistic ideal gas c2s =
1

3
at h"i� � "HG and

h"i� � "QGP . On a range of energy density between "HG and "QGP ; i.e., in the mixed

phase, the speed of sound is nearly vanishing, re�ecting the �rst order character of the

transition. It has been interpreted in [115, 116, 117, 118] that mixed phase matter does

not expand at all on account of its internal pressure, even if there are strong gradients

in the energy density, and this has, in turn, the consequence that it does not perform

mechanical work and therefore cools less rapidly. Thus, the expansion of the system

is delayed and its lifetime is considerably prolonged. For small systems, the sound

velocity is damped in a larger domain of energy density and does not vanish, since

pressure gradients are �nite, but they are still smaller than for an ideal gas equation
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of state, and therefore the tendency of the system to expand is also reduced.

3.4.4 Second Derivative of the Order Parameter

The second derivative of the order parameter @2

@T 2
hh (T; V )i� is also worth to be studied.

Its expression is given by:

@2

@T 2
hh (T; V )i� =

2�

T
+

(T 2V )
2

L01(0)� L01(1)
[18L23(0) + 54L24(0)� 9L22(1) + 36L23(1)

�54L24(1) +
�
B
T 4
� �2

10

�
(12L13(0) + 36L14(0)� 6L12(1) + 24L13(1)� 36L14(1))

+
�
B
T 4
� �2

10

�2
(2L03(0) + 6L04(0)� L02(1) + 4L03(1)� 6L04(1))

�
+
4BV

T 3
L02(0) + 2L03(0) + L02(1)� 2L03(1)

L01(0)� L01(1)

+
(T 2V )

2

(L01(0)�L01(1))2

h�
�3L12(0)� 3L11(1) + 3L12(1) +

�
B
T 4
� �2

10

�
(�L02(0)� L01(1)

+L02(1)))
�
3L12(0) + 6L13(0) + 3L12(1)� 6L13(1) +

�
B
T 4
� �2

10

�
(L02(0) + 2L03(0)

+L02(1)� 2L03(1))) + (L01(0) + L02(0)� L02(1)) (9L21(1)� 18L22(1) + 18L23(1)

�18L23(0) +
�
B
T 4
� �2

10

�
(6L11(1)� 12L12(1) + 12L13(1)� 12L13(0))

+
�
B
T 4
� �2

10

�2
(L01(1)� 2L02(1) + 2L03(1)� 2L03(0))� 4B

T 7V
(L01(1)� L02(1) + L02(0))

�
+
�
3L11(1)� 3L12(1) + 3L12(0) +

�
B
T 4
� �2

10

�
(L01(1)� L02(1) + L02(0))

�
�
�
6L13(1)� 3L12(1)� 3L12(0)� 6L13(0) +

�
B
T 4
� �2

10

�
(2L03(1)� L02(1)� L02(0)

�2L03(0)))] +
2 (T 2V )

2

(L01(0)� L01(1))
3 (L01(0) + L02(0)� L02(1))

�
�
3L12(0) + 3L11(1)� 3L12(1) +

�
B
T 4
� �2

10

�
(L02(0) + L01(1)� L02(1))

�2
; (3.66)

and its variations with temperature for various system sizes are illustrated in Fig.

(3.16). It can be seen that this quantity takes its extrema at two temperatures T1(V )
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velocity vs energy density, for di¤erent volumes of the system.
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Figure 3.16: Plot of the second derivative of the order parameter, hh (T; V )i00 =
@2hh (T; V )i=@T 2; versus temperature for di¤erent system volumes.

and T2(V ), so that the gap T2(V ) � T1(V ), which represents the broadening of the

transition region �T (V ), decreases with increasing volume.

Thus, from the illustration of all these response functions for the studied decon�ne-

ment phase transition, the three e¤ects of �niteness of the volume evoked in section

(2.3) have been recovered. A �nite size scaling analysis will then be carried out in

the next chapter to determine the corresponding scaling behavior and determine the

relevant scaling critical exponents.



Chapter 4

Numerical Determination of the

Scaling Critical Exponents for the

Decon�nement Phase Transition

4.1 Introduction

In the precedent chapter, we have seen that �nite-size e¤ects have led to a rounding

of the decon�nement phase transition over a range of temperature �T (V ); around a

transition temperature Tc(V ). This e¤ective transition temperature is shifted relative

to the true one Tc(1) in such a way that the shift Tc(V ) � Tc(1) increases for small

volumes. This smearing makes the order of the transition di¢ cult to infer. It turns

out that the analysis of some known characteristic signatures as functions of varying

volume allows one to go up to the order of the transition.

In �nite systems, the shift of the e¤ective transition temperature Tc(V ) relative to

the true one Tc(1), the width �T (V ) of the critical region over which the transition

93
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Figure 4.1: Illustration of the �nite size behavior of the susceptibility � (T; V ), the
speci�c heat density c (T; V ) and the second derivative of the order parameter @�=@T .

is smeared out and the maxima of the rounded peaks of the thermal susceptibility

� (T; V ) =
@hh (T; V )i�

@T
and speci�c heat density c (T; V ) =

@h"(T; V )i�
@T

, which are

illustrated on Fig. (4.1), are expected to behave like powers of the volume V , respec-

tively, as: 8>>>>>>>>><>>>>>>>>>:

�T (V ) = Tc(V )� Tc(1) � V ��T

�T (V ) � V ��T

j�T j
max (V ) � V 
T

cmaxT (V ) � V �T ;

(4.1)

where the scaling critical exponents �T ; �T ; 
T and �T characterize their dependence

on the volume in a d-space, and are expected to be all equal to unity [2, 3, 66, 67], i.e.,

�T = �T = 
T = �T = 1:

These results have been recovered in our work [119] where an analytic determination
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of the scaling critical exponents relevant to a thermally driven decon�nement phase

transition has been carried out.

In the following, we shall determine numerically these scaling critical exponents. For

this purpose, a FSS analysis of characteristic quantities for a system which undergoes

a thermal decon�nement phase transition, from a pionic gas to a QGP consisting of

two massless quarks at zero chemical potential, may be used.

4.2 Numerical Determination of the Critical Ex-

ponents for the Thermal Decon�nement Phase

Transition with the Exact Color-Singlet Parti-

tion Function

In the following, we use a FSS analysis to recover the scaling exponents �T , �T , �T and


T for the thermally driven decon�nement phase transition. For this purpose, we pro-

ceed by studying the thermal susceptibility and speci�c heat density. We examine the

behavior of their maxima, their rounding as well as the shift of the e¤ective transition

temperature with varying volume. Let�s note that the determination of the location of

the maxima of the �nite size peaks as well as their heights is done in a numerical way,

and this yields a systematic error, which is estimated and given for the determined

scaling exponents.
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Figure 4.2: Linear �t of the results for the maxima of the susceptibility vs volume.

4.2.1 The susceptibility critical exponent

Fig. (4.2) illustrates the plot of the maxima of the thermal susceptibility peaks, j

�T jmax (V ) versus volume. The linearity of the data with V can clearly be noted. A

numerical parametrization with the power-law form: j �T jmax (V ) � V 
T ; gives the

value of the susceptibility critical exponent: 
T = 1:012� 0:002:

4.2.2 The speci�c heat critical exponent

As in the precedent case, the data of the maxima of the speci�c heat cmaxT (V ) are

plotted in Fig. (4.3), and are �tted to the power-law form: cmaxT (V ) � V �T . The

obtained speci�c heat critical exponent is: �T = 1:0075� 0:0007:
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Figure 4.3: Variations of the maxima of the speci�c heat density with the volume.

4.2.3 The smearing critical exponent

The width of the transition region can be de�ned by the gap: �T (V ) = T2(V ) �

T1(V ) with T1(V ) and T2(V ) the temperatures at which the second derivative of the

order parameter reaches its extrema, or in other terms the temperatures at which the

third derivative of the order parameter vanishes, i. e., @3

@T 3
hh (T; V )i�

���
T1(V );T2(V )

= 0:

To localize T1(V ) and T2(V ); we�ll then search for the locations of the extrema of

@2

@T 2
hh (T; V )i�, whose expression was given in (3.66).

The results for the widths �T (V ), plotted in Fig. (4.4) vs the inverse of the volume,

were �tted to the power law form: �T (V ) � V ��T , and the obtained smearing critical

exponent is: �T = 1:03� 0:02:
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Figure 4.4: Data of the width of the temperature region over which the transition is
smeared, �tted to a power-law of the inverse volume.

4.2.4 The shift critical exponent

For the study of the shift of the transition temperature �T (V ) = Tc (V ) � Tc (1), we

need to locate the e¤ective transition temperature in a �nite volume Tc (V ). A way to

de�ne Tc (V ) is to locate the maxima of the rounded peaks of the susceptibility and

the speci�c heat, shifted away from the true transition temperature Tc (1).

Results of the shift of the transition temperature obtained in this way are plotted in

Fig. (4.5) versus inverse volume. The shift critical exponent obtained from a �t to the

form: �T (V ) � V ��, is : � = 0:876� 0:041: Such a value 6= 1 suggests the contribution

of non-leading terms in the expression of the volume variation of the shift. Di¤erent

forms of the �t of �T (V ) including additional terms with higher powers of V �1, such

as A1V ��+A2V
�2; and A1V ��+A2V

�2+A3V
�3; have been tested, and the obtained

results show that e¤ectively, the shift critical exponent � increases from the value 0:876
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Figure 4.5: Plot of the shift of the transition temperature (from the maxima of
� (T; V ) and c (T; V )) vs inversed volume.

and tends to 1; with a better �2. Other forms have been tested, where the value of the

shift exponent has been �xed to 1, and �nite-size correction terms have been included.

In this case also, we note that we obtain a better �2 value with the presence of the

non-leading terms.

The e¤ective transition temperature can also be obtained from the minimum of the

velocity of sound, as explained in subsection (3.5.3). Data of the locations of the minima

of the sound velocity at di¤erent volumes T (c
2 (min)
s )

c (V ) are collected, and their shifts

away from the true transition temperature Tc (1) are plotted vs inversed volume in Fig.

(4.6). A �t of this shift to the form: � (c
2 (min)
s )

T (V ) = T
(c
2 (min)
s )

c (V ) � Tc (1) � V ��0T ,

gives the shift critical exponent : �0T = 0:841 � 0:004: Such a value suggests, in turn,

the contribution of non-leading terms to the expression of the shift as a function of the

volume.

Other ways for de�ning the transition temperature are investigated and the details

are given in the two next subsections.
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Figure 4.6: Plot of the shift of the transition temperature, from the minima of the
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4.2.5 Parametrization of the Order Parameter and the Sus-

ceptibility

Within the model used in this work, the order parameter in the limit of in�nite volume

being equal to 1 below the transition temperature and zero above it, it can then be

expressed in a simple way using the Heaviside step-function � as:

hh (T; V �!1)i = 1��(T � Tc (1)) : (4.2)

Such a parametrization has been used �rst in [120], for a similar case of a system of

coexisting hadronic matter and QGP phases, then in other works as [121]. Using one

of the known mathematical representations of the smoothed step function �(T � Tc) ;
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the order parameter may then be expressed as:

hh (T; V )i = 1

2

�
1� tanh

�
T � Tc (V )

�T (V )

��
; (4.3)

where Tc (V ) is the e¤ective transition temperature and �T (V ) the half-width of the

rounded transition region, which leads to the susceptibility expression :

� (T; V ) =
�1

2�T (V ) cosh
2
�
T�Tc(V )
�T (V )

� : (4.4)

The parametrization choice (4.3) is the most accepted physically, and it can be

understood phenomenologically in the context of the Double Gaussian Peaks model

where the obtained expressions of the order parameter and the susceptibility are very

similar to (4.3) and (4.4) [3, 70, 122].

An illustration of such parametrizations of the order parameter at the volume V =

4000fm3, and the susceptibility at the volume V = 900fm3 are presented in Figs.

(4.7-left) and (4.7-right) respectively, and the parameters Tc (V ) and �T (V ) obtained

from each �t are given.

The results for the width of the transition region and the shift of the transition

temperature from the parametrizations of the order parameter and the susceptibility

are �tted to power law forms: � fit(1)
T (V ) � V ��1 ; �

fit(2)
T (V ) � V ��2 ; �T fit(1) (V ) �

V ��1 and �T fit(2) (V ) � V ��2 which give the scaling critical exponents: �1 = 0:830�

0:013 ; �2 = 0:857� 0:006 ; �1 = 0:990� 0:015 and �2 = 1:032� 0:003 :
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Figure 4.7: Parametrization of the order parameter to the form (4.3) at the volume
V = 4000fm3, and of the susceptibility to the form (4.4) at the volume V = 900fm3.

4.2.6 Shift of the transition temperature and width of the

transition region from cumulants

A way for locating Tc (V ) is to consider the fourth order cumulant:

B4 (T; V ) = 1�
hh (T; V )i�4
3 hh2 (T; V )i�2 ; (4.5)

introduced by Binder [75, 3], and which is known to present a minimum at an e¤ective

transition temperature whose shift from the true transition temperature Tc(1) is of

order V �1 for a �rst order transition. This cumulant is a �nite size scaling function

[3, 66, 67, 68, 76], and is widely used to indicate the order of the transition in a �nite

volume.

The expression of B4 (T; V ) as function of the integral terms, for this case of the
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Figure 4.8: (Left) Binder Cumulant B4 vs temperature at di¤erent system volumes.
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decon�nement transition, is after calculation:

B4(T; V ) = 1� (L01(1)� L01(0))

3 (2L03(1)� 2L03(0)� 2L02(0)� L01(0))
2

� (24 (L05(1)� L05(0)� L04(0))� 12L03(0)� 4L02(0)� L01(0)) :(4.6)

Fig. (4.8-left) illustrates the variations of the Binder cumulant with tempera-

ture for various volumes, and shows that the locations of the minima in �nite sizes

Tmin (V ) are shifted to higher values from Tc (1). Data of the shift of the tran-

sition temperature obtained in this way are plotted in Fig. (4.8-right) versus in-

versed volume, and the scaling shift critical exponent obtained from a �t to the form:

�
(Bmin4 )
T (V ) = T

(Bmin4 )
c (V ) � Tc (1) � V ��3, is: �3 = 0:883 � 0:043: In this case also,

non-leading terms appear in the expression of � (B
min
4 )

T (V ):

We can also calculate the Binder cumulant de�ned from the 4th normalized central

moment as:

B0
4 (T; V ) = 1�

h(h� hhi�)4i�

3 h(h� hhi�)2i�2
; (4.7)
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which is directly related to the kurtosisK (T; V ) ; which will be de�ned in the following,

by:

B0
4 (T; V ) =

�K (T; V )
3

: (4.8)

The locations of the extrema of both B0
4 (T; V ) and K (T; V ) are then the same.

In the same context, we have thought to examine the second and third cumulants

for the case of the probability distribution p(h) used in the present work. For this

purpose, let�s �rst begin with some de�nitions.

De�nitions of the Moments

The nth moment of a function f(x) of a variable x about a value x0 is mathematically

de�ned by:

Mn =

1Z
0

(x� x0)
n f(x)dx : (4.9)

The moments about zero are usually referred to simply as the moments of a function.

Usually, the function will be a probability density function. The nth moment (about

zero) of a probability density function f(x) is the expected value of xn. The moments

about its meanM are called central moments; these describe the shape of the function,

independently of translation.

Signi�cance of the Moments

The �rst moment about zero, if it exists, is the expectation of x, i.e., the mean of the

probability distribution of x, designatedM. In higher orders, the central moments are

more interesting than the moments about zero.

The nth central moment of the probability distribution of a random variable x is
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then given by:

Mn = h(x�M)ni = h(x� hxi)ni: (4.10)

The �rst central moment is thus 0; the second central moment is the variance �2;

the square root of which is the standard deviation � de�ned as:

� =
�
h(x� hxi)2i

�1=2
: (4.11)

The normalized nth central moment is the nth central moment divided by �n. These

normalized central moments are dimensionless quantities, which represent the distrib-

ution independently of any linear change of scale.

The third central moment is a measure of symmetry, or more precisely, the lack of

symmetry. A distribution, or data set, is symmetric if it looks the same to the left and

right of the center point. The 3rd central moment for a normal distribution is zero,

and any symmetric distribution will have a third central moment, if de�ned, near zero.

The normalized 3rd central moment is called the skewness � :

� =
h(x� hxi)3i

�3
: (4.12)

A distribution that is skewed to the left (the tail of the distribution is heavier on

the left) will have a negative skewness. A distribution that is skewed to the right (the

tail of the distribution is heavier on the right) will have a positive skewness.

The fourth central moment is a measure of whether the distribution is peaked or

�at relative to a normal distribution. Since it is the expectation of a fourth power, the

fourth central moment, where de�ned, is always positive. The fourth central moment

of a normal distribution is 3�4.

The Kurtosis is de�ned to be the normalized 4th central moment minus 3:

K =
h(x� hxi)4i

�4
� 3; (4.13)
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so that the standard normal distribution has a kurtosis of zero. Positive kurtosis

indicates a "peaked" distribution and negative kurtosis indicates a "�at" distribution.

That is, distributions or data sets with high kurtosis tend to have a distinct peak near

the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis

tend to have a �at top near the mean rather than a sharp peak

Cumulants

The �rst moment and the second and third unnormalized central moments are linear

in the sense that if x and y are independent random variables, then:

M1(x+ y) =M1(x) +M1(y) ; (4.14)

and:

M2(x+ y) =M2(x) +M2(y) ; (4.15)

and:

M3(x+ y) =M3(x) +M3(y) : (4.16)

This is true because these moments are the �rst three cumulants; the fourth cumu-

lant is the kurtosis times �4.

The four �rst cumulants for the probability density p(h)

For this case of probability distribution p(h), the �rst cumulant is the order parameter

hhi� ; the second is the variance given by:

�2 (T; V ) = h(h� hhi�)2i� = hh2i� � hhi�2; (4.17)
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which is expressed by mean of the Lmn�s as:

�2 (T; V ) =
1

(L01 (1)� L01 (0))
2 [(2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0))

� (L01 (1)� L01 (0))� (L01 (0) + L02 (0)� L02 (1))
2� : (4.18)

The third cumulant is the skewness times �3, with the skewness given by:

� (T; V ) =
h(h� hhi�)3i�

�3
=
hh3i� � 3hhi�hh2i� + 2hhi�3

(hh2i� � hhi�2)3=2
; (4.19)

which can be written as function of the Lmn�s as:

� (T; V ) =
�
(L01 (1)� L01 (0))

2 (6L04 (1)� 6L04 (0)� 6L03 (0)� 3L02 (0)� L01(0))

+3 (L01 (1)� L01 (0)) (L01 (0) + L02 (0)� L02 (1)) (2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0))

�2 (L01 (0) + L02 (0)� L02 (1))
3� = [(2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0))

� (L01 (1)� L01 (0))� (L01 (0) + L02 (0)� L02 (1))
2�3=2 : (4.20)

The fourth cumulant is the kurtosis times �4, where the kurtosis is given by:

K (T; V ) =
h(h� hhi�)4i�

�4
� 3 = hh4i� � 4hhi�hh3i� + 6hhi�2hh2i� � 3hhi�4

(hh2i� � hhi�2)2
� 3; (4.21)

whose expression with the Lmn�s is:

K (T; V ) =
��
(L01 (1)� L01 (0))

3 (24L05 (1)� 24L05 (0)� 24L04 (0)� 12L03 (0)

�4L02 (0)� L01(0)) + 4 (L01 (1)� L01 (0))
2 (L01 (0) + L02 (0)� L02 (1))

� (6L04 (1)� 6L04 (0)� 6L03 (0)� 3L02 (0)� L01(0))� 3 (L01 (0) + L02 (0)� L02 (1))
4�

= [(2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0)) (L01 (1)� L01 (0))

� (L01 (0) + L02 (0)� L02 (1))
2�2o� 3 : (4.22)
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with:

hh2i� = 2L03 (1)� 2L03 (0)� 2L02 (0)� L01(0)

L01 (1)� L01 (0)
; (4.23)

hh3i� = 6L04 (1)� 6L04 (0)� 6L03 (0)� 3L02 (0)� L01(0)

L01 (1)� L01 (0)
; (4.24)

hh4i� = 24L05 (1)� 24L05 (0)� 24L04 (0)� 12L03 (0)� 4L02 (0)� L01(0)

L01 (1)� L01 (0)
: (4.25)

As it can clearly be observed on Fig. (4.9), the plots of the variance versus temper-

ature for di¤erent system volumes look like bell functions, with the peaks broadened,

smaller is the volume. These peaks are located at temperatures T
(�2

max
)
(V ); seemingly

tending to Tc(1) with increasing volume.

Similarly, Fig. (4.10) illustrates the variations of skewness with temperature at

di¤erent sizes. The curves of skewness show that this latter vanishes at a temperature

T
(�=0)
c ; being negative for T < T

(�=0)
c and positive for T > T

(�=0)
c , and the probability

distribution seems then to be skewed to the left for T < T
(�=0)
c , and skewed to the right

for T > T
(�=0)
c . The temperature at which skewness vanishes is expected to represent

the transition temperature, and tends apparently to Tc(1) with increasing volume,

while the temperature gap between the two maxima is expected to give the width of

the transition region.

Finally, the plots of kurtosis versus temperature are represented on Fig. (4.11), as

usual at di¤erent sizes, but because of the high values taken by the kurtosis at large

volumes, information on a part of the temperature range is lost. To see the detailed kur-

tosis, an individual plot at the volume V = 300fm3 is illustrated on Fig. (4.12), which

shows that kurtosis is positively peaked around a temperature T (K
max1 )

c (V ) attaining

high values, vanishes then takes negative values on a narrow interval of temperatures

with a minimum at a temperature T (K
min)

c (V ) and vanishes again, then takes positive
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Figure 4.9: Variance vs Temperature at di¤erent system volumes.

but low values with a peak around a temperature T (K
max2 )

c (V ). In this case, we expect

the transition temperature to occur at the minimum of kurtosis.

To verify the validity of the assumptions that the transition temperatures can be

de�ned at the maximum of the variance, at vanishing skewness and at the minimum of

kurtosis, we plot the variations of the shifts of the such obtained transition tempera-

tures, relative to Tc(1), with inversed volume and �t to a power law, like in eq. (4.1).

The numerical values of the shift critical exponents obtained in this way are:

�
(V ar)
T (V ) = T (�

2max ) (V )� Tc (1) � V ��4 ; �4 = 0:861� 0:002;

�
(Skew)
T (V ) = T (�=0) (V )� Tc (1) � V ��5 ; �5 = 0:862� 0:002; (4.26)

�
(Kurt)
T (V ) = T (K

min) (V )� Tc (1) � V ��6 ; �6 = 0:861� 0:002;

and are very close to the values of the shift critical exponent previously obtained
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Figure 4.10: Skewness vs Temperature at di¤erent system volumes.
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Figure 4.11: Kurtosis vs Temperature at di¤erent system volumes.
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Figure 4.12: Kurtosis vs Temperature at the volume V = 300fm3.

(subsections 4.2.4 to 4.2.6), and which are 6= 1 suggesting the contribution of non-

leading terms in the expression of the volume variation of the shift, as yet mentioned.

For the width of the transition region, data are obtained from skewness as the gap

in temperature between the two extrema, and are �tted to power laws of the inversed

volume. The smearing critical exponent obtained in this case is:

�T (Skew) (V ) � V ��0T ; �0T = 0:903� 0:011 : (4.27)

For more accuracy, we�ll search in the next section for the correlation between the

such obtained shifts and the shift of the transition temperature obtained from the value

0:5 of the order parameter, or equivalently from the peaks of the susceptibility. A linear

relation between the two, with a slope equal to 1 will indicate whether the transition

temperature is e¤ectively that determined from each cumulant.
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Cumulant Value of a Value of b
Variance maximum (�2max)

c 0:0019� 0:0098 0:971� 0:024
Vanishing skewness (� = 0) 0:000593� 0:000078 0:9941� 0:0002
First kurtosis maximum 0:00152� 0:00344 0:3331� 0:0008
Kurtosis minimum 0:00105� 0:00027 0:99150� 0:00067
Second kurtosis maximum �0:00569� 0:00105 1:30045� 0:00259
Binder cumulant minimum �0:0117� 0:0018 1:0008� 0:0002

Table 4.1: Numerical values of the �t parameters a and b, with the formula (4.28).

4.3 Correlation between the cumulants and the sus-

ceptibility

In the following, we shall examine the correlation between the temperatures at the

locations of the di¤erent cumulant peaks and the transition temperatures obtained

from the maxima of the peaks of the thermal susceptibility j �T jmax. For this, we plot

the shift T (Cum)c (V ) � Tc(1) with T (Cum)c (V ) obtained from the peaks of each of the

dispersion �2 and the kurtosis K, versus T (j�T j
max)

c (V ) � Tc(1). For the skewness �,

T
(Cum)
c (V ) is obtained at the vanishing value �(V ) = 0:

The di¤erent plots are illustrated on Figs. (4-13) to (4.17), and the linearity of the

variations can clearly be observed. Fits with the linear forms:

T (Cum)c (V )� Tc(1) = a+ b(T (j�T j
max)

c (V )� Tc(1)) ; (4.28)

give the values of the �t parameters a and b presented in Table 4.1.

Results of these �ts show exact linear variations of the shifts of the transition

temperatures from cumulants with the shifts of the transition temperatures from the

susceptibility maxima, except for the kurtosis maxima, indicating that the most ap-

propriate way for de�ning the transition temperature from kurtosis is at the location of

its minimum, while its de�nition from the maximum of the variance and the vanishing
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Figure 4.13: Linear �t of the data of the shift of the transition temperature de�ned
as the location of the variance maximum vs the shift of the transition temperature
obtained from j �T jmax.

skewness are well justi�ed and can be adopted.
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Figure 4.14: Linear �t of the data of the shift of the transition temperature de�ned at
a vanishing skewness vs the shift of the transition temperature obtained from j �T jmax.
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Figure 4.16: Linear �t of the data of the shift of the transition temperature de�ned
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Chapter 5

Finite-Size E¤ects and Scaling of

the Decon�nement Phase

Transition within the Excluded

Volume E¤ects

5.1 Introduction

So far in this work, hadrons have been considered as point particles, and the considered

�nite size e¤ects were those due to the �niteness of the system undergoing a phase

transition, additionally to those induced by the color-singletness requirement. But,

since hadrons are composed of quarks, they are extended particles and have �nite

volumes.

In the present chapter, such excluded volume e¤ects are considered within the

117
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phase coexistence model, using the color-singlet partition function for the QGP. Their

e¤ects on the studied decon�nement phase transition are then examined by probing the

behavior of some physical quantities, as in the two previous chapters. It has been shown

in [123] that "dense nuclear matter can go through a second order phase transition into

a QGP when the �nite extensions of hadronic constituents are taken into account".

5.2 The role of the �nite volume of particles and

their interactions: Hagedorn correction

The Hagedorn model described in section (1.8) represents a nonperturbative, analyt-

ically soluble model of a strongly interacting many-particle system. It predicts either

the existence of a limiting temperature or a phase transition at high energy density.

If the latter is true, the new phase cannot be treated in the framework of this model.

Much progress has also been achieved in the mathematical understanding of the boot-

strap constraint, mostly due to its reformulation in a relativistically covariant way.

An excellent review of these results can be found in [124]. There were, however, two

important questions to be answered. First, why can the �reball be treated as an ideal

gas of hadron resonances? Second, how to take into account the �nite proper volumes

of the hadrons in the �reball? As to the �rst question, it has been argued that the

rest masses of the observed hadron resonances arise as a result of strong interaction

and with the inclusion of the total mass spectrum, the interaction (more precisely, its

attractive part) is entirely taken into account [125]. According to this point of view, the

observed hadron resonances are considered as quasiparticles among which only some

residual interaction can be imagined, and which is neglected.
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The second problem has been addressed by di¤erentiating between the volume Vext

of the gas and the volume V available for the particles [126, 127];

V = Vext �
NpX
i=1

Vi (5.1)

where Vi are the proper volumes of the resonances. From the consistent, relativisti-

cally covariant treatment, it follows that the proper volume of the resonances must be

proportional to their mass, Vi =
mi

4B
. This is precisely the relation derived in the MIT

bag model. Therefore, the constant B can be identi�ed with the bag constant. The

particles occupy an available volume,

V = Vext �
E

4B
(5.2)

depending on their energy. Thus, V is the volume in which the particles move as if

they were pointlike, while in reality they have �nite proper volumes and move in Vext:

Treating the hadrons as extended particles leads to important consequences in the

thermodynamical behavior of the gas. If the gas of hadron resonances is a real gas

with some repulsion among the particles represented by the impenetrability of their

proper volumes, then there is no limiting temperature, but the gas undergoes a phase

transition and the energy density becomes too large. We can explain what happens as

follows: The thermodynamical problem can be solved at �rst for a gas of �ctitious point

particles enclosed in the available volume V and one gets the corresponding equations

of state. Then one can express the energy density of the real gas through the energy

density of the gas of �ctitious particles by means of the formula:

E

Vext
=

(E=V )

1 +
(E=V )

4B

: (5.3)
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Even if the energy density (E=V ) of the gas of �ctitious point particles diverges in

the limit T ! Tc, the energy density of the real gas remains constant and tends to the

energy density of the hadronic bag, (E=Vext)! 4B.

In order to take into account the repulsive interactions between hadrons, all thermo-

dynamical quantities in the hadronic phase may be corrected by the Hagedorn factor

[126, 99]:

�Hag =
1

1 +
"HG
4B

; (5.4)

where "HG(T; V ) is the energy density of the hadronic matter. The corrected thermo-

dynamical quantities of the hadronic gas phase are then written as:

AHG cor(T; V ) = �Hag AHG(T; V ): (5.5)

5.3 Finite Size Rounding of the Decon�nement Phase

Transition within the Excluded Volume E¤ects

Taking the excluded volume e¤ects into account, the phase transition between the

hadronic and QGP phases then occurs when:

PHG cor (�c; Tc) = PQGP (�c; Tc) ; (5.6)

with:

PQGP =
37�2

90
T 4 + �2T 2 +

1

2�2
�4 �B; (5.7)

and:

PHG cor = �Hag
�2

30
T 4: (5.8)



5. Finite-Size E¤ects and Scaling of the Decon�nement Phase
Transition within the Excluded Volume E¤ects 121

Thus, the relation between Tc and �c is:

127

12
T 4c +

37�2

120

T 8c
B
+
30

�2
�2cT

2
c +

3

4

�2cT
6
c

B
+
15

�4
�4c +

3

8�2
�4cT

4
c

B
� 30
�2
B = 0: (5.9)

The phase diagram in the � � T plane, separating between hadronic and QGP

phases, and giving at each point the transition parameters (�c; Tc) for two �avors

(Nf = 2); with the common value of the bag constant B1=4 = 145MeV , can also be

illustrated in this case when the volume of the hadrons is considered. The extreme

values of the transition parameters at � = 0 and T = 0 are: T 0c (� = 0;V =1) =

104:21MeV ; �0c (T = 0;V =1) = 305:63MeV:

We�ll study in the following the FSE for a temperature driven decon�nement phase

transition, at a vanishing chemical potential (� = 0), and for a density driven decon-

�nement phase transition at a �xed temperature (T = 100MeV ), taking into account

these excluded volume e¤ects. For this purpose, we�ll examine, like in chapter 3, the be-

havior of the order parameter, the entropy and energy densities with temperature and

chemical potential for varying volume, when the volume of the hadrons is considered.

The corrected mean values of the energy and entropy densities are then related to

the corrected order parameter by:

hs (T; �; V )icor = sQGP + (sHG cor � sQGP ) hh (T; �; V )icor

h" (T; �; V )icor = eQGP + (eHG cor � eQGP ) hh (T; �; V )icor; (5.10)

where:

hh (T; �; V )icor =
�
� 1
T
(fHG cor � fQGP )V � 1

�
e�

1
T
(fHG cor�fQGP )V + 1

� 1
T
(fHG cor � fQGP )V

�
e�

1
T
(fHG cor�fQGP )V � 1

� : (5.11)

In Fig. (5.1), we compare the order parameters without and with the Hagedorn

correction, for two volumes, V = 150fm3 and V = 1000fm3, and for more clear-

ness let�s rather illustrate the variations of the relative di¤erence between the order
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Figure 5.1: Order parameter versus temperature without (solid line) and with (dashed
line) the Hagedorn correction, for the volumes, (left) V = 1000fm3 and (right) V =
150fm3.

parameters with and without the hagedorn correction hhi�hhicor
hhicor , with temperature at

di¤erent volumes in Fig. (5.2). We can notice that the di¤erence is mostly notable in

a temperature region around a temperature at which it is maximal, and which tends

to Tc (1) with increasing volume. This relative di¤erence is more and more appre-

ciable for big volumes, meaning that the transition region is the more sensitive to the

extended volume correction

The three-dimensional plots of the corrected order parameter, entropy density

scaled by T 3;
hs (T; V )icor

T 3
, and energy density scaled by T 4;

h" (T; V )icor
T 4

are il-

lustrated, respectively, in the top, middle and bottom of Fig. (5.3). Like for the

non-corrected quantities in Figs. (3.2), these plots exhibit a discontinuity at a critical

temperature T 0c (1) ' 104:21MeV for big volumes (V � 1000fm3), indicating a �rst-

order phase transition, while rounded curves are obtained when the volume decreases.
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Figure 5.2: Relative di¤erence hhi�hhicor
hhicor versus temperature for di¤erent volumes.

Similarly, Fig. (5.4) shows the variations of the corrected order parameter, normal-

ized energy and entropy densities with chemical potential and system volume, at the

temperature T = 100MeV: The �rst-order character of the transition can, also in this

case, clearly be seen from the sharp discontinuity of the three quantities at a transition

chemical potential �0c (1) ' 80:81MeV; at the large volume limit. In small systems,

the transition is perfectly smooth over a broadened region of chemical potential.
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Figure 5.3: Three-dimensional plots of the corrected (top) order parameter, (middle)
entropy density scaled by T 3; and (bottom) energy density scaled by T 4; with tem-
perature and volume, at � = 0.
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Figure 5.4: Three-dimensional plots of the corrected (top) order parameter, (middle)
entropy density and (bottom) energy density with chemical potential and volume, at
the temperature T = 100MeV .
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5.4 Finite-Size E¤ects with the Exact Color-Singlet

Partition Function and the Excluded Volume

Correction

Hereafter, we shall consider the excluded volume correction for hadrons, as well as

the color-singletness condition for the QGP phase within the phase coexistence model.

The e¤ects on the thermal decon�nement phase transition are then investigated by

illustrating, �rst, each of the order parameter, energy and entropy densities calculated

in this case.

The corrected mean value of the order parameter at zero chemical potential (� = 0)

is calculated from the expression:

< h(T; V ) >�cor= 1�

R +�
��
R +�
�� d'd M(';  )

1R
0

qeqRcor('; ;T;V )dq

R +�
��
R +�
�� d'd M(';  )

1R
0

eqRcor('; ;T;V )dq

; (5.12)

with:

Rcor (';  ;T; V ) =

�
g�=0(';  )� �Hag

�2

30
� B

T 4

�
V T 3: (5.13)

After e¤ectuation of the integrations on q; the order parameter can be written on

the form:

< h(T; V ) >�cor=
L01 cor (0) + L02 cor (0)� L12 cor (1)

L01 cor (0)� L11 cor (1)
; (5.14)

where the general form of the corrected integral coe¢ cients appearing in this expression

is:

Lmn cor (q) =

Z +�

��

Z +�

��
d'd M(';  )(g�=0(';  ))

m

�
eR cor('; ;T;V )

�n
Rcor (';  ;T; V )

: (5.15)
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The corrected mean value of the energy density is then related to < h(T; V ) >�cor

by the expression:

< "(T; V ) >�cor= B +
�
eHG �Hag

�
1�

eHG �Hag
3B

�
�B

�
< h(T; V ) >�cor

�3T 4 L12 cor(0) + L11 cor(1)� L12 cor(1)

L01 cor(0)� L01 cor(1)
: (5.16)

Also in this case, as in (3.5.1), the corrected mean value of the entropy density will

be calculated numerically by integrating 1
T
(d<"(T;V )>

�
cor

dT
), since it can not be expressed

simply by the mean of the Lmn cor�s.

Fig. (5.5) shows the variations of the corrected order parameter, energy density

over T 4 and entropy density over T 3 with temperature for various volumes. The same

behavior as in Fig. (3.8) is observed, with the shifting e¤ect induced by the color-

singletness requirement.

5.5 Scaling Critical Exponents for the Decon�ne-

ment Phase Transition with the Exact Color-

Singletness Condition and the Excluded Vol-

ume Correction

In the following, we shall carry out a �nite size scaling analysis in order to determine

the scaling critical exponents, given in eqs. (4.1), characterizing the decon�nement

phase transition, when both excluded volume e¤ects and color-singletness requirement

are taken into account. For this purpose, each of the corrected thermal susceptibility,

speci�c heat density and second derivative of the order parameter are �rst derived,
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at various volumes.
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then analyzed in the transition region.

5.5.1 The susceptibility critical exponent

The obtained expression of the corrected thermal susceptibility is:

�cor (T; V ) =
T 2V

L01(0)� L01(1)
[�3(L12 cor(0) + 2L13 cor(0) + L12 cor(1)� 2L13 cor(1))

�( B
T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(L02 cor(0) + 2L03 cor(0) + L02 cor(1)� 2L03 cor(1))

�
�T 2V L01 cor(0) + L02 cor(0)� L02 cor(1)

(L01 cor(0)� L01 cor(1))
2 [�3(L12 cor(0)� L11 cor(1) + L12 cor(1))

�( B
T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(L02 cor(0)� L01 cor(1) + L02 cor(1))

�
; (5.17)

and its variations with temperature at di¤erent volumes are represented on Fig. (5.6).

Exactly the same behavior as in chapter 3 is found, and the di¤erence between the

values of the corrected and non corrected susceptibility at �xed temperature and volume

is extremely small.

The data of the minima of the susceptibility at di¤erent system volumes are then

extracted, and �tted to a power law of the volume: j �T jmax (V ) � V 
0T , with the

susceptibility scaling critical exponent: 
0T = 1:029� 0:003:
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Figure 5.6: Variations of the corrected susceptibility with temperature for various
volumes.

5.5.2 The speci�c heat critical exponent

The corrected thermal speci�c heat density given by:

ccor (T; V ) =

�
2�2

5
�Hag �

�2

10
�2Hag

"HG
B

�
T 3 hh (T; V )i�cor

+
�
eHG �Hag

�
1�

eHG �Hag
3B

�
�B

�
�cor (T; V ) + 12T

3L11 cor(1)� L12 cor(1) + L12 cor(0)

L11 cor(1)� L01 cor(0)

+
3T 6V

L01 cor(1)� L01 cor(0)
[�6L23 cor(0) + 3L21 cor(1)� 6L22 cor(1) + 6L23 cor(1)

+(
B

T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(�2L13 cor(0) + L11 cor(1)� 2L12 cor(1) + 2L13 cor(1))

�
�3T 6V L11 cor(1)� L12 cor(1) + L12 cor(0)

(L01 cor(1)� L01 cor(0))
2 [3(L12 cor(0) + L11 cor(1)� L12 cor(1))

+(
B

T 4
� �2

10
�Hag +

�4

300

T 4

B
�2Hag)(L02 cor(0) + L01 cor(1)� L02 cor(1))

�
; (5.18)
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Figure 5.7: Variations of the corrected speci�c heat density with temperature for vari-
ous volumes.

is illustrated in Fig. (5.7) versus temperature at various volumes. Here also, the

same behavior as for the speci�c heat density in Fig. (3.12) is observed. Results of the

maxima of the corrected speci�c heat density cmaxTcor
(V ) are �tted to the power-law form:

cmaxTcor
(V ) � V �0T , and the obtained speci�c heat scaling exponent is: �0T = 0:996�0:005:

5.5.3 The smearing critical exponent

The width of the transition region is given by the di¤erence: �T 0(V ) = T 02(V )� T 01(V )

with T 01(V ) and T
0
2(V ) the locations of the extrema of the corrected second derivative

of the order parameter @2

@T 2
hh (T; V )i�cor . The expression of this latter is:
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@2hh (T; V )i�cor
@T 2

=
2�cor
T

+
(T 2V )

2

L01cor(0)� L01cor(1)
�

[18L23cor(0) + 54L24cor(0)� 9L22cor(1) + 36L23cor(1)� 54L24cor(1)
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�
B
T 4
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10
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300
T 4
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�4B
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; (5.19)

and its variations with temperature at various system sizes are represented in Fig.

(5.8).

The results of the width �T (V ) are �tted to the power-law form: �T (V ) � V ��0T ,
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Figure 5.8: Second derivative of the corrected order parameter versus temperature at
di¤erent volumes.

and the obtained value of the smearing scaling critical exponent is: �0T = 0:998�0:005:

5.5.4 The shift critical exponent

The transition temperature can, also in this case, be obtained by several ways as in

chapter 4. Extracting the data of Tc(V ) from the locations of the peaks of the thermal

susceptibility j �T jmax (V ), and �tting them to a power-law function of the volume:

�T (V ) � V ��0T , gives the shift scaling critical exponent: �0T = 0:812� 0:003:

The obtained results for the scaling critical exponents in this case are akin to those

obtained previously in chapter 4 without the excluded volume correction. The phase

transition is then still of �rst order, and has not been a¤ected by the �nite extention

of the hadrons, as in [123].



Conclusion

The present work dealt with the study of the �nite-size e¤ects on the decon�nement

phase transition, using a simple model of coexisting hadronic and QGP phases in a

�nite volume. Our model has shown the in�uence of the �niteness of the system size

on the behavior of some response functions in the vicinity of the transition point. A

sharp transition is observed in the thermodynamical limit, signaled by discontinuities

in the order parameter, the entropy density s and the energy density " at a transition

temperature Tc (1) for a thermally driven decon�nement phase transition (at � = 0),

and at a transition chemical potential �c (1) for a density driven decon�nement phase

transition (at T = 100MeV ). In other terms, the decon�nement phase transition is

labelled by a rapid rise in the e¤ective degrees of freedom, represented by the ratios
"

T 4

and
s

T 3
for a thermal decon�nement phase transition. Such a step-like rise behavior

re�ects a �rst-order phase transition. In �nite volumes, the transition is rounded o¤

and the variations of these thermodynamic quantities are perfectly smooth on the whole

range of temperature. The delta function singularities appearing in the �rst derivatives

of these discontinuous quantities, i.e., in the susceptibility � = @hhi
@T

and the speci�c

heat density c = @h"i
@T
, are then smeared out into �nite peaks of widths �T (V ) :

When the color-singlet character of physical states is exactly treated in the equation

of state for the QGP in a �nite volume, then a gradual ��freezing�of internal degrees

134
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of freedom appears, as compared to the equation of state for in�nite matter. This is

re�ected by a shift of the transition temperature Tc(V ) at which the thermal decon-

�nement phase transition from hadronic to QGP phases occurs, for �nite systems. The

maxima of the peaks of both susceptibility and speci�c heat density occur at e¤ec-

tive transition temperatures Tc (V ) shifted away from the true transition temperature

Tc (1).

Our work has also shown that temperature and chemical potential play the same

role when they drive the decon�nement phase transition. For a density driven decon-

�nement phase transition at a �xed temperature, the sharp transition occurring at the

thermodynamic limit is smeared out in �nite volumes over a range of chemical potential

�� (V ) around the transition chemical potential �c (1), and when the color-singletness

requirement is included for the QGP, the e¤ective transition chemical potential �c (V )

is shifted away from �c (1).

Other physical quantities can also be examined, which carry informations on the

transition. Examples of such quantities are the sound velocity, rate of �uctuations and

the second, third and fourth cumulants of the used probability distribution, each giving

the transition temperature at some de�ned point. An other quantity of interest is the

second derivative of the order parameter from which the width of the transition region

can be obtained.

For a thermal decon�nement phase transition, �nite size scaling analysis of the

behavior of the maxima of the rounded peaks of the thermal susceptibility �maxT (V ) and

speci�c heat density cmaxT (V ), the width of the transition region �T (V ), and the shift of

the e¤ective transition temperature relative to the true one �T (V ) = Tc (V )� Tc (1),

shows their power-law variations with the volume characterized by the scaling critical
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exponents 
; �; �; and � respectively. Numerical results of these scaling exponents

have been determined in chapter 4, where the transition temperature has been obtained

from various quantities as well from parametrizations of the order parameter and the

susceptibility. These results are in good agreement with the analytical ones: 
 = � =

� = � = 1 obtained in our work [97], except for the shift critical exponent which slightly

de�ects from the analytical value 1. This may be due on one hand to the di¢ culty

of locating accurately the peaks of the physical quantities, especially in the case of

large volumes for which the peaks become very sharp, and on the other hand to the

non-leading terms which contribute to the expression of the shift �T (V ). However,

a �rst estimate of the scaling critical exponents for the thermal decon�nement phase

transition within this model has been obtained, and our result expressing the equality

between all scaling exponents and the space dimensionality is a consequence of the

singularity characterizing a �rst order phase transition and agrees very well with the

predictions of the standard �nite size scaling theoretical approaches to a �rst order

phase transition [49, 50, 55, 106, 107, 108, 109] and with those obtained in a rather

di¤erent and rigorous way, generalizing the �nite size scaling description of a �rst order

phase transition [110]. Also, we note a good agreement with the results of calculations

using Monte Carlo methods in both lattice QCD [78, 111, 112, 113, 114] and other

models in statistical physics [57, 115, 116].

A supplementary volume e¤ect due to the �nite hadron volumes has been considered

in a part of this work. Wether the excluded volume e¤ects in�uence the decon�nement

phase transition has been examined, since it has been demonstrated that they can

alter the kind of the transition. It has been shown in [100] that when the �nite volume

extensions of constituents in a hadronic gas are taken into account, for certain values of
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the parameters of the used model, namely the QCD coupling constant �s and the bag

constant B, a smooth evolution from nuclear matter to a quark plasma phase through

a second order transition becomes possible. In our model, we have found that such a

correction does not a¤ect the order of the transition.
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Abstract. We study the finite-size effects for the thermal quantum chromodynamics (QCD) deconfinement
phase transition, and use a numerical finite-size scaling analysis to extract the scaling exponents character-
izing its scaling behavior when approaching the thermodynamic limit (V −→ ∞). For this, we use a simple
model of coexistence of hadronic gas and color-singlet quark gluon plasma (QGP) phases in a finite volume.
The color-singlet partition function of the QGP cannot be exactly calculated and is usually derived within
the saddle-point approximation. When we try to do calculations with such an approximate color-singlet
partition function, a problem arises in the limit of small temperatures and/or volumes

(
V T 3 << 1

)
, re-

quiring additional approximations if we want to carry out calculations. We propose in this work a method
for an accurate calculation of any quantity of the finite system, without any approximation. By probing
the behavior of some useful thermodynamic response functions on the whole range of temperature, it turns
out that, in a finite-size system, all singularities in the thermodynamic limit are smeared out and the
transition point is shifted away. A numerical finite-size scaling (FSS) analysis of the obtained data allows us
to determine the scaling exponents of the QCD deconfinement phase transition. Our results expressing the
equality between their values and the space dimensionality is a consequence of the singularity characterizing
a first-order phase transition and agree very well with the predictions of other FSS theoretical approaches
to a first-order phase transition and with the results of calculations using Monte Carlo methods in both
lattice QCD and statistical physics models.

1 Introduction

It is generally believed that at sufficiently high tempera-
tures and/or densities a new phase of matter called the
quark gluon plasma (QGP) can be created. This is logi-
cally a consequence of the quark–parton level of the matter
structure and of the dynamics of strong interactions de-
scribed by the quantum chromodynamics (QCD) theory.
Its existence, however, has been partly supported by lat-
tice QCD calculations and cosmological standard model
predictions. The only available and experimental way to
study the QCD deconfinement phase transition is to try to
create it in ultra-relativistic heavy-ion collision conditions
similar to those in the early moments of the universe, right
after the Big Bang. If ever the QGP is created in ultra-
relativistic heavy-ion collisions, the volume within which
the eventual formation would take place would certainly
be finite. Also, in lattice QCD studies, the scale of the
lattice space volume is finite. This motivates the study
of finite-size effects on the expected deconfinement phase
transition from a hadronic gas (HG) phase to a QGP phase.

a e-mail: Ladrem@eepad.dz
b e-mail: Aitamel@eepad.dz

These effects are certainly important since statistical fluc-
tuations in a finite volume may hinder a sharp transition
between the two phases. Phase transitions are known to
be infinitely sharp, signaled by some singularities, only in
the thermodynamic limit [1]. In general, finite-size effects
lead to a rounding of these singularities, as pointed out
in [2, 3]. However, even in a such situation, it is possible
to obtain information on the critical behavior. Large but
finite systems show a universal behavior called “finite-size
scaling” (FSS), allowing one to put all the physical sys-
tems undergoing a phase transition in a certain number
of universality classes. The systems in a given universality
class display the same critical behavior, meaning that cer-
tain dimensionless quantities have the same values for all
these systems. Critical exponents are an example of these
universal quantities.

In the present work, we study the finite-size behavior
for the thermally driven deconfinement phase transition
within a simple QCD model as used in [4]. The model is
based on the standard MIT bag model with a mixed phase
system having a finite total volume V [5]. The fraction of
volume (defined by the parameter h) occupied by the HG
phase is given by: VHG = hV, and the remaining volume:
VQGP = (1−h)V then contains the QGP phase. Addition-
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ally, we implement the color-charge confinement property
by requiring that the QGP phase is a colorless object in
the color space. Then, if we assume noninteracting phases
(separability of the energy spectra of the two phases), the
total partition function of the system can be written as
the product:

Z(h) = ZQGP(h)ZHG(h)ZVac(h), (1)

where:

ZVac(T, h) = exp(−BVQGP/T )

= exp(−BV (1 − h)/T ), (2)

accounts for the confinement of quarks and gluons by the
real vacuum pressure exerted on the perturbative vacuum
(B) of the bag model. For the HG phase, the partition
function is calculated just for a pionic gas and is simply
given by:

ZHG = e
π2
30 T

3VHG . (3)

The partition function ZQGP(h) of the QGP phase is
calculated by considering a free gas of quarks and glu-
ons with the exact color-singletness requirement. We can
then perform calculation of the mean value of any thermo-
dynamic quantity of the system 〈A(T, µ, V )〉, as defined
in [4], by:

〈A(T, µ, V )〉 =

1∫
0

A (h, T, µ, V )Z (h) dh

1∫
0
Z (h) dh

, (4)

where A(h, T, µ, V ) is the total thermodynamic quantity
in the state h, given in the case of an extensive quantity by:

A(h, T, µ, V ) = AHG(T, µ, hV )

+AQGP(T, µ, (1 − h)V ), (5)

and in the case of an intensive quantity, by:

A(h, T, µ, V ) = hAHG(T, µ, hV )

+ (1 − h)AQGP(T, µ, (1 − h)V ), (6)

with AQGP and AHG being the contributions relative to
the individual QGP and HG phases, respectively.

Let us note that the coexistence of two phases in a finite
system undergoing a phase transition taken alone seems
not to be sufficient for anticipating the first-order nature
of the phase transition when approaching the thermody-
namic limit. A similar confusion can arise in the case of a
correlation-length scaling with the volume and suggesting
a second-order nature of the transition in the thermody-
namic limit. This subtle situation has been noticed and
clarified in several works [6–9]. Then, for a firm determi-
nation of the order of a phase transition in a finite system,
a full and detailed finite-size scaling analysis of different
response functions simultaneously, yielding various scal-
ing critical exponents, seems to be necessary. This is not

all in our case, since other basic parameters of QCD like
the number of flavors and the current quark masses have a
strong influence on how the phase transition occurs. A clear
sensitivity of the order of the QCD deconfinement phase
transition to these parameters has been revealed by several
lattice QCD calculations (see, for example, [7, 10,11]).

The color-singlet partition function of the QGP de-
rived using the group-theoretical projection technique for-
mulated by Turko and Redlich [12] cannot be exactly cal-
culated and is usually calculated within the saddle-point
approximation in the limit VQGPT 3 >> 1 as in [13–16]. It
turns out that the use of the obtained approximated par-
tition function for the calculation of a mean value within
the definition (4), has as a consequence the absence of the
deconfinement phase transition [17]. This is due to the fact
that the approximation used for the calculation of the color-
singlet partition function breaks down at VQGPT 3 << 1,
and this limit is attained in our case. This has been empha-
sized in further works in which additional approximations
have been used to carry out calculations, as in [4,14]. We
propose in the following a method which allows us to cal-
culate physical quantities accurately describing well the
deconfinement phase transition at finite volumes within
the QCD model chosen, thus avoiding then the problem
arising at VQGPT 3 << 1 without any approximation. We
proceed by using the exact definition of the color-singlet
partition function for ZQGP in the definition (4) of the
mean value of a physical quantity. A first analytical step in
the calculation of the mean value is then achieved, and an
expression with integral coefficients is obtained. The dou-
ble integrals are then carried out with a suitable numerical
method at each value of temperature and volume, and the
behavior of the physical quantity of the finite system can so
be obtained on the whole range of temperature, for various
volumes, without any restriction. Afterwards, scaling crit-
ical exponents characterizing the scaling behavior of some
quantities are determined using a numerical FSS analysis.

2 Exact color-singlet partition function
of the QGP

The exact partition function for a color-singlet QGP con-
tained in a volume VQGP , at temperature T and quark
chemical potential µ, is determined by [13]:

ZQGP(T, VQGP, µ) (7)

=
8

3π2

+π∫
−π

+π∫
−π

d
(
ϕ
2

)
d
(
ψ
3

)
M(ϕ,ψ)Z̃(T, VQGP, µ;ϕ,ψ),

M(ϕ,ψ) is the weight function (Haar measure) given by:

M(ϕ,ψ) =
(
sin
( 1

2 (ψ + ϕ
2 )
)
sin( ϕ2 ) sin

( 1
2 (ψ − ϕ

2 )
))2

,
(8)

and Z̃ the generating function defined by:
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Z̃(T, VQGP, µ;ϕ,ψ) (9)

= Tr
[
exp

(
−β
(
Ĥ0 − µ

(
N̂q − N̂q

))
+ iϕÎ3 + iψŶ8

)]
,

where β =
1
T

(with the units chosen as: kB = � = c = 1),

Ĥ0 is the free quark–gluon Hamiltonian, N̂q
(
N̂q

)
denotes

the (anti-) quark number operator, and Î3 and Ŷ8 are the
color “isospin” and “hypercharge” operators respectively.
Its final expression, in the massless limit, can be put in
the form:

ZQGP(T, VQGP, µ) (10)

=
4

9π2

∫ +π

−π

∫ +π

−π
dϕdψM(ϕ,ψ)eVQGPT

3g(ϕ,ψ, µ
T ),

with:

g(ϕ,ψ,
µ

T
)

=
π2

12
(
21
30
dQ +

16
15
dG)

+
π2

12
dQ

2

∑
q=r,b,g

−1 +

((
αq − i( µT )

)2
π2 − 1

)2


− π2

12
dG

2

4∑
g=1

(
(αg − π)2

π2 − 1

)2

, (11)

dQ = 2Nf and dG = 2 being the degeneracy factors of
quarks and gluons respectively, αq (q = r, b, g) the angles
determined by the eigenvalues of the color charge opera-
tors in (9):

αr = ϕ
2 + ψ

3 , αg = − ϕ
2 + ψ

3 , αb = − 2ψ
3 , (12)

and αg (g = 1, . . . , 4) being:

α1 = αr−αg, α2 = αg−αb, α3 = αb−αr, α4 = 0. (13)

3 Finite-size effects

To study the effects of volume finiteness on the thermal
deconfinement phase transition within the QCD model cho-
sen, we will examine in the following the behavior of some
thermodynamic quantities of the system with temperature,
at a vanishing chemical potential (µ = 0), considering the
two lightest quarks u and d (Nf = 2), and using the com-
mon value B1/4 = 145MeV for the bag constant.

The first quantity of interest for our study is the mean
value of the hadronic volume fraction < h(T, V ) >, which
can be considered as representing the order parameter for
the studied deconfinement phase transition. According to

(4), < h(T, V ) > is expressed as:

< h(T, V ) >= 1 −

+π∫
−π

+π∫
−π

dϕdψM(ϕ,ψ)
1∫
0

qeqR(ϕ,ψ;T,V )dq

+π∫
−π

+π∫
−π

dϕdψM(ϕ,ψ)
1∫
0
eqR(ϕ,ψ;T,V )dq

,

(14)
with: R (ϕ,ψ;T, V ) =

(
gµ=0(ϕ,ψ) − π2

30 − B
T 4

)
V T 3. Af-

ter integration on the q variable representing the QGP
volume fraction, the order parameter can be written as:

< h(T, V ) >=
L01 + L02 − L12

L01 − L11
, (15)

where the general form of the integral terms appearing in
this expression is:

Lnm =

+π∫
−π

+π∫
−π

dϕdψM(ϕ,ψ)

(
eR(ϕ,ψ;T,V )

)n
(R (ϕ,ψ;T, V ))m

. (16)

These integrals are then carried out using a suitable nu-
merical method at each fixed temperature and volume.

The second quantity of interest is the energy density
ε(T, V ), whose mean value is related to < h(T, V ) > by:

< ε(T, V ) > = εHG < h(T, V ) > +B [1− < h(T, V )]

− 3T 4

[
L̃11 − L̃12 + L̃02

L01 − L11

]
, (17)

where the new integrals on ϕ and ψ , noted by L̃nm, are
given by:

L̃nm =
∫ +π

−π

∫ +π

−π
dϕdψM(ϕ,ψ)gµ=0(ϕ,ψ)

×
(
eR(ϕ,ψ;T,V )

)n
(R (ϕ,ψ;T, V ))m

, (18)

and: εHG = π2

10 T
4.

We can also examine the effects of volume finiteness
by illustrating two more quantities representing the first
derivatives of the two previous ones, that is, the suscepti-
bility χ defined as:

χ (T, V ) =
∂〈h (T, V )〉

∂T
, (19)

and the specific heat density c (T, V ) defined as:

c (T, V ) =
∂〈ε (T, V )〉

∂T
. (20)

Our results for the variations of these four response
functions with temperature at different system sizes are
presented in the plots on Figs. 1 and 2 and show a pro-
nounced size dependence over almost the entire temper-
ature range. The curves show that, in the limit of an in-
finite volume, both 〈h〉 and

< ε >

T 4 exhibit a finite sharp
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Fig. 1. Temperature variation of the order parameter (top)
and the energy density normalized by T 4 (bottom) at µ = 0,
for different system volumes

discontinuity, which is related to the latent heat of the
deconfinement phase transition, at a bulk transition tem-
perature Tc (∞) � 104.35 MeV, reflecting the first-order

character of the transition. The quantity
〈ε〉
T 4 is tradition-

ally interpreted as a measure of the number of effective
degrees of freedom; the temperature increase then causes
a “melting” of the constituent degrees of freedom “frozen”
in the hadronic state, making the energy density attain its
plasma value. This finite discontinuity can be mathemat-
ically described by a step function, which transforms to
a δ-function in χ and c. When the volume decreases, the
four quantities vary continuously such that the finite sharp
jump is rounded off and the δ-peaks are smeared out into
finite peaks over a range of temperature δT (V ). This is
due to the finite probability of the presence of the QGP
phase below Tc and of the hadron phase above Tc, induced
by the considerable thermodynamical fluctuations.

Another feature which can be noted is that the max-
ima of these rounded peaks occur at effective transition

temperatures Tc (V ) shifted away from the bulk transi-
tion temperature for infinite volume Tc (∞). This shift is
a consequence of the color-singletness requirement since
the effective number of internal degrees of freedom for a
color-singlet QGP is drastically reduced with decreasing
volume, as can clearly be seen from the curves, and has
been shown in [13]. Thus, the pressure of the QGP phase
is lower at a given temperature, and the mechanical Gibbs
equilibrium between the two phases would then be reached
for Tc(V ) > Tc (∞) .

It can also be noted that, for decreasing volume, while
the height of the peak decreases, its width gets larger. To see
this in more detail, we illustrate in the following the second
derivative of the order parameter 〈h (T, V )〉′′ = ∂2〈h(T,V )〉

∂T 2 ,
which reaches its extrema at thetemperatures T1(V ) and
T2(V ). The width of the transition region can simply be
defined by the gap between these two temperatures, that
is, δT (V ) = T2(V ) − T1(V ). The variations of 〈h (T, V )〉′′
with temperature for various sizes are illustrated in Fig. 3,
from which it can clearly be seen that the gap between the
two extrema decreases with increasing volume.

Finally from the obtained results for the finite size re-
sponse functions, four finite-size effects can be observed:

– the rounding effect of the discontinuities,
– the smearing effect of the singularities,
– the shifting effect of the transition point,
– the broadening effect of the transition region,

and to study quantitatively the volume dependence of these
effects, a numerical scaling analysis is carried out, which
will be presented in the next section.

4 Finite-size scaling analysis

4.1 Finite-size scaling

In statistical mechanics, it is known that only in the ther-
modynamic limit are phase transitions characterized by the
appearance of singularities in some second derivatives of the
thermodynamic potential, such as the susceptibility and
the specific heat. For a first-order phase transition, the di-
vergences are δ-function singularities, corresponding to the
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finite discontinuities in thefirst derivatives of the thermody-
namic potential, while for a second-order phase transition
the singularity has a power-law form. For the QCD model
of the thermal deconfinement phase transition studied in
this work, δ-singularities appear in the susceptibility χ and
in the specific heat density c in the thermodynamic limit.
In finite volumes, these δ-functions are found to be smeared
out into finite peaks. To the finite-size effects, four useful
characteristic quantities can be associated as illustrated
on Fig. 4: the maxima of the peaks of the susceptibility
χmax
T (V ) and the specific heat density cmax

T (V ), the shift
of the transition temperature τT (V ) = Tc (V )−Tc (∞) and
the width of the transition region δT (V ). Each of these
quantities can be considered as a signature which may an-
ticipate the behavior in the thermodynamic limit, and is
expected to present a scaling behavior described by a power
law of the volume V = Ld, where L is the linear extension
of the volume and d the space dimensionality, character-
ized by a scaling critical exponent. For a first-order phase

transition, the set of power laws is:

χmax
T (V ) ∼ V γ ,

cmax
T (V ) ∼ V α ,

δT (V ) ∼ V −θ ,

τT (V ) = Tc (V ) − Tc (∞) ∼ V −λ ,

(21)

and it has been shown in the FSS theory [18–21] that in
this case, the scaling exponents θ, λ, α and γ are all equal
to unity, and it is only the dimensionality which controls
the finite-size effects.

At a second-order phase transition, the correlation
length diverges as ξ ∝ |T − Tc|−ν , and this we predict
the same power-law behavior as for a first-order transi-
tion, but with different scaling critical exponents, usually
given as:

χmax
T (V ) ∼ V γ/dν ,

cmax
T (V ) ∼ V α/dν ,

δT (V ) ∼ V −1/dν ,

τT (V ) = Tc (V ) − Tc (∞) ∼ V −1/dν .

(22)

The values of the scaling critical exponents may then
give an indication on the order of a phase transition and
are usually used as a criterion for the determination of this
latter [9, 11,22,23].

4.2 Numerical determination
of the scaling critical exponents
for the thermal deconfinement phase transition

In the following, we use a FSS analysis to recover the scaling
exponents θ, λ, α and γ for the thermally driven decon-
finement phase transition. For this purpose, we proceed by
studying the behavior of the response-function maxima,
their rounding as well as the shift of the effective transi-
tion temperature with varying volume. Let us note that the
determination of the location of the maxima of the finite-
size peaks as well as their heights is done in a numerical
way, and this yields a systematic error, which is estimated
and given for the determined scaling exponents.

4.2.1 Susceptibility, specific heat
and smearing scaling exponents

The data of the maxima of the rounded peaks of the sus-
ceptibility | χT |max (V ) and the specific heat density
cmax
T (V ) are plotted versus volume in Fig. 5 (left) and Fig. 5

(right),respectively, and their linearity with V can clearly
be noted. A numerical parameterization with the power-
law forms: | χT |max (V ) ∼ V γ and: cmax

T (V ) ∼ V α,
gives the values of the susceptibility scaling exponent:
γ = 1.01 ± 0.03, and the specific-heat scaling exponent:
α = 1.007±0.031, where the associated errors are system-
atic.
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Figure 6 illustrates the plot of the results of the width
δT (V ) with the inverse of the volume, and their fit to the
power-law form: δT (V ) ∼ V −θ. The obtained smearing
scaling exponent is: θ = 1.03 ± 0.03.

4.2.2 The shift scaling exponent

For the study of the shift of the transition temperature
τT (V ) = Tc (V ) − Tc (∞), we need to locate the effective
transition temperature in a finite volume Tc (V ). A way to
define Tc (V ) is to locate the maxima of the rounded peaks
of the susceptibility and the specific heat, shifted away
from the true transition temperature Tc (∞). Results of
the shift of the transition temperature obtained in this
way are plotted in Fig. 7 versus inverse volume. The shift
critical exponent obtained from a fit to the form: τT (V ) ∼
V −λ, is: λ = 0.876 ± 0.041. Such a value �= 1 suggests the
contribution of non-leading terms in the expression of the
volume variation of the shift. Different forms of the fit of
τT (V ), including additional terms with higher powers of
V −1, such as A1V

−λ + A2V
−2, and A1V

−λ + A2V
−2 +

A3V
−3, have been tested, and the obtained results show

that effectively, the shift critical exponent λ increases from
the value 0.876 and tends to 1, with a betterχ2. Other forms
have been tested, where the value of the shift exponent has
been fixed to 1, and finite-size correction terms have been
included. In this case also, we note that we obtain a better
χ2 value with the presence of the non-leading terms.

4.2.3 The shift from the binder cumulant

Another way of locating Tc (V ) is to consider the fourth-
order cumulant of the order parameter proposed in [3,19]
and defined as:

B4 (T, V ) = 1 − 〈h4 (T, V )〉
3 〈h2 (T, V )〉2 , (23)

which presents a minimum value at an effective transition
temperature whose shift from the true transition temper-
ature is of the order V −1 for a first-order transition. This
cumulant is a finite-size scaling function [3, 19, 20, 24, 25],
and has been proven to be a suitable indicator of the order
of the transition in a finite volume.

The expression for B4 (T, V ) as function of the inte-
gral terms, for this case of the deconfinement transition,
is after calculation:
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B4(T, V ) (24)

= 1 − (L11 − L01)(24(L15 − L05 − L04) − 12L03 − 4L02 − L01)
3 (2L13 − 2L03 − 2L02 − L01)2

.

Figure 8 (left) illustrates the variations of the fourth cu-
mulant of the order parameter with temperature for various
volumes, and shows that the locations of the minima in fi-
nite sizes Tmin (V ) are shifted to higher values from Tc (∞).
Data of the shift of the transition temperature obtained
in this way are plotted in Fig. 8 (right) versus inverse vol-
ume, and the scaling shift critical exponent obtained from
a fit to the form: τ ′

T (V ) = Tmin (V ) − Tc (∞) ∼ V −λ′
, is

λ′ = 0.883 ± 0.043. In this case also, non-leading terms
appear in the expression of τ ′

T (V ).

4.2.4 Parameterization of the order parameter
and the susceptibility

Within the model used in this work, the order parameter in
the limit of infinite volume being equal to 1 below the tran-
sition temperature and zero above, it can then be expressed
in a simple way using the Heaviside step function as:

〈h (T, V −→ ∞)〉 = 1 −Θ (T − Tc (∞)) . (25)

Such a parameterization has been used in [26], for a
similar case of a system of coexisting hadronic matter and
QGP phases. Using one of the known mathematical repre-
sentations of the smoothed step function Θ (T − Tc) , the
order parameter may then be expressed as:

〈h (T, V )〉 =
1
2

(
1 − tanh

(
T − Tc (V )
ΓT (V )

))
, (26)

where Tc (V ) is the effective transition temperature and
ΓT (V ) is the half-width of the rounded transition region,
which leads to the susceptibility expression :

χ (T, V ) =
−1

2ΓT (V ) cosh2
(
T−Tc(V )
ΓT (V )

) . (27)

The parameterization choice (26) is the most accepted
physically, and can be understood phenomenologically in
the context of the double Gaussian peaks model where
the obtained expressions of the order parameter and the
susceptibility are very similar to (26) and (27) [3, 9, 27].

An illustration of such parameterizations of the order
parameter at the volume V = 4000 fm3, and the suscepti-
bility at the volume V = 900 fm3 are presented in Fig. 9
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(left) and Fig. 9 (right), respectively, and the parameters
Tc (V ) and ΓT (V ) obtained from each fit are given.

The results for the width of the transition region and
the shift of the transition temperature from the parameter-
izations of the order parameter and the susceptibility are
fitted to power-law forms: τ fit(1)

T (V ) ∼ V −λ1 , τ fit(2)
T (V ) ∼

V −λ2 , δT fit(1) (V ) ∼ V −θ1 , and δT fit(2) (V ) ∼ V −θ2 which
give the scaling critical exponents:λ1 = 0.830±0.013 ,λ2 =
0.857±0.006 , θ1 = 0.990±0.015, and θ2 = 1.032±0.003 .

5 Conclusion

Our model has shown the influence of the finiteness of the
system size on the behavior of some response functions
in the vicinity of the transition point. The sharp transi-
tion observed in the thermodynamical limit, signaled by
discontinuities in the order parameter and in the energy
density at a transition temperature Tc (∞), is rounded off
in finite volumes, and the variations of these thermody-
namic quantities are perfectly smooth on the whole range
of temperature. The delta function singularities appearing
in the first derivatives of these discontinuous quantities,
i.e., in the susceptibility and specific heat density, are then
smeared out intofinite peaks ofwidths δT (V ) .Themaxima
of these peaks occur at effective transition temperatures
Tc (V ) shifted away from the true transition temperature
Tc (∞). An FSS analysis of the behavior of the maxima of
the rounded peaks of the susceptibility χmax

T (V ) and the
specific heat density cmax

T (V ), the width of the transition
region δT (V ), and the shift of the effective transition tem-
perature relative to the true one τT (V ) = Tc (V )−Tc (∞),
shows their power-law variations with the volume char-
acterized by the scaling critical exponents γ, α, θ, and λ,
respectively. Numerical results for these scaling exponents
are obtained and are in good agreement with our analyt-
ical results: γ = α = θ = λ = 1 obtained in [28], except
for the shift critical exponent which slightly deflects from
the analytical value 1. This may be due, on one hand,
to the difficulty of locating accurately the peaks of χ, c
and B4, especially in the case of large volumes for which
the peaks become very sharp and, on the other hand, to
the non-leading terms which contribute to the expression
of τT (V ). However, a first estimate of the scaling critical
exponents for the thermal deconfinement phase transition
within this model has been obtained, and our result ex-
pressing the equality between all scaling exponents and
the space dimensionality is a consequence of the singularity
characterizing a first-order phase transition and agrees very
well with the predictions of the standard FSS theoretical
approaches to a first-order phase transition [19,21,29–33]
and with those obtained in a rather different and rigorous
way, generalizing the FSS description of a first-order phase
transition [34]. Also, we note the good agreement with
the results of calculations using Monte Carlo methods in
both lattice QCD [8,35–38] and other models in statistical
physics [22,39,40].
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